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Abstract II 
 

The advent of Building Information Modeling (BIM) has fundamentally altered the way 

how building projects are approached. Nevertheless, it is still the case that conflicts 

during the collaboration process are an unavoidable consequence, resulting in ineffi-

ciencies. The widespread adoption of BIM model checker has significantly contributed 

to the detection of conflicts. However, the automation of conflict resolution remains a 

nascent endeavor, and the reliance on manual communication among designers can 

be a significant time investment. To address this shortcoming, this research presents 

a framework for training a Reinforcement Learning (RL) agent, employing the Proximal 

Policy Optimization (PPO) algorithm, in the integrated real BIM environment to auto-

mate the conflict resolution process, with a particular focus on geometric conflicts. 

Three experiments, each focusing on a different type of conflict, were conducted to 

investigate the feasibility of the proposed framework. The results were analyzed, and 

the limitations were discussed. 

 

Abstract 



Zusammenfassung III 
 

Die Einführung von Building Information Modelling (BIM) hat zu einer grundlegenden 

Veränderung der Art und Weise geführt, wie Bauprojekte angegangen werden. 

Dennoch können Konflikte während der Zusammenarbeit nicht gänzlich 

ausgeschlossen werden, was zu Ineffizienzen führt. Die weit verbreitete Anwendung 

von BIM Modell-Checker hat maßgeblich zur Identifikation von Konflikten beigetragen. 

Die Automatisierung der Konfliktlösung befindet sich jedoch noch in den Anfängen und 

die Abhängigkeit von der manuellen Kommunikation zwischen den Planern kann einen 

erheblichen Zeitaufwand bedeuten. Um dieses Defizit zu beheben, wird in dieser 

Forschungsarbeit ein Rahmen für das Training eines Reinforcement Learning (RL)-

Agenten vorgestellt, der den Algorithmus Proximal Policy Optimization (PPO) in der 

integrierten realen BIM Umgebung einsetzt, um den Konfliktlösungsprozess zu 

automatisieren, wobei ein besonderer Schwerpunkt auf geometrischen Konflikten liegt. 

Zur Evaluierung der Machbarkeit des vorgeschlagenen Rahmens wurden drei 

Experimente durchgeführt, welche sich jeweils auf eine spezifische Art von Konflikten 

ausgerichtet. Die Ergebnisse wurden umfassend analysiert und die Limitationen der 

Experimente und des Rahmens diskutiert.

Zusammenfassung 
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Introduction 1 
 

Building Information Modeling (BIM) offers a novel approach to design, construction, 

and facility management, in which a digital representation of the building product and 

process is used to facilitate the exchange and interoperability of information (Sacks et 

al., 2018). BIM has revolutionized the workflow for building projects in the Architectural, 

Engineering, and Construction (AEC) industry. However, the process of BIM modeling 

often necessitates the collaboration of designers from different disciplines, which can 

give rise to conflicts. These conflicts are recognized as critical causes of deficiency 

and low performance in building projects (Charehzehi et al., 2017). Despite the avail-

ability of many BIM model checker tools that can automatically detect conflicts, the 

current state of conflict resolution remains a slow manual process that requires contin-

uous communication between responsible experts. In response to this challenge, our 

research explores the possibilities to apply Reinforcement Learning (RL) techniques to 

automate the BIM conflict resolution process. 

1.1 Motivation 

Collaborative teamwork is an essential aspect of a modern BIM project, which can be 

in two forms as, synchronous and asynchronous collaboration (Isikdag & Underwood, 

2010). Synchronous collaborative teamwork denotes a situation in which all members 

of a team are working on the same model at the same time and exchanging their expert 

knowledge simultaneously (Scherer, 2007). This approach to working is typically em-

ployed within the confines of a single design office, utilizing the specialized BIM au-

thoring software. Asynchronous collaboration means that each involved discipline 

team, including architectural engineering, structural engineering, and mechanical, 

electrical, plumbing (MEP) engineering, creating their own model and conducting their 

design process independently and at disparate locations. The project leader or BIM 

coordinator of each discipline communicates and exchanges information at frequent 

intervals and merges these sub-models into a federated model. When BIM subsets are 

integrated into a single BIM using appropriate software platforms, the design parame-

ters of different disciplines are most likely to conflict with each other, given the high 

complexity of building models (Chen & Hou, 2014). 

1 Introduction 



Introduction 2 
 

In order to achieve a conflict-free integrated BIM model, it is necessary to detect the 

existing conflicts. The same BIM authoring software is typically utilized by all team 

members within a single company. Accordingly, the detection and sharing of issues 

can be accomplished via the commercial cloud BIM platform provided by the corre-

sponding software vendor, such as BIM 360 from Autodesk, BIMcloud from Graphisoft, 

and BIMPLUS from Nemetschek. In contrast, this exchanged workflow between com-

panies that use different BIM authoring tools, often based on production of Industry 

Foundation Classes (IFC) files and BIM Collaboration Format (BCF) files (Kubicki et 

al., 2019). The IFC file is a vendor-neutral, industry-specific data model schema that 

enables the sharing of information throughout the project lifecycle, while the BCF file 

stores text, images, and component information about the conflicts, allowing different 

BIM applications to communicate model-based issues (buildingSMART, 2024). Details 

about the IFC file will be explained further in section 3.1. Once the detection of conflicts 

is complete, the engineers responsible for the issues need to resolve the conflicts man-

ually. This process frequently involves extensive collaboration and discussion with 

other disciplines until the integrated model is either conflict-free or at least acceptable 

without significant clashes. 

In regard to the aforementioned conflict resolution workflow, the detection process can 

be accomplished with a very high degree of automation. Most BIM cloud platforms can 

perform at least simple collision detection and categorize these issues according to the 

disciplines to which the conflicted element belongs. Other widely adopted BIM-based 

model checkers, such as Solibri, contribute significantly to conflict detection. In addition 

to geometrical collisions between elements, they can also check the accessibility of 

space, fire protection requirements, component properties, and numerous other build-

ing standards and regulations. 

Nevertheless, even with the utilization of model checker tools to automate conflict de-

tection, conflict resolution in BIM projects remains a slow and manual process(Harode 

et al., 2024). The automation of conflict resolution is currently very limited, and the 

intensive communication process among designers tends to be a significant time in-

vestment. In response to this challenge, research has already begun to explore the 

potential of utilizing various Artificial Intelligence (AI) technologies to automate the pro-

cess. For instance, Supervised Learning (SL) techniques can be employed to collect 

existing clash-resolution data and experts’ opinions with the objective of training a 

model to resolve clashes automatically (Hsu et al., 2020). This type of research has 
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yielded promising results. However, the SL learns from a set of provided labeled ex-

amples, which presents a critical disadvantage in the lack of sufficient data within the 

AEC sector.  

In distinction to the SL, the RL is applicable when examples of desired behavior are 

not available but where it is possible to evaluate examples of behavior according to 

some performance criterion (Si et al., 2009). Consequently, our research aims to ex-

plore the application of RL as an approach to automate the conflict resolution process, 

thereby reducing reliance on manual labor and improving the efficiency of this pivotal 

aspect of BIM development. 

1.2 Research Objectives 

The principal objective of this thesis is to: 

• Set up a RL environment that integrates the real-world BIM model and rule-

based model checker to train an agent to autonomously resolve geometric con-

flicts. 

The aim of this approach is to achieve a high degree of automation, requiring no input 

of data or specific prior knowledge, with the intention of reducing the laborious manual 

work involved in the conventional conflict resolution process. 

1.3 Reading Guide 

This thesis is structured in the following chapters: 

• Chapter 2 provides an overview of state-of-the-art research. The studies are 

classified into three categories based on the research topic. Their limitations are 

discussed, and the research gaps are summarized. 

• Chapter 3 outlines the hierarchical structure of the IFC file, the principle of soft-

ware Application Programming Interface (API), and the underpinnings of the RL 

algorithm, with a particular emphasis on the Proximal Policy Optimization (PPO). 

This information provides a useful theoretical basis for understanding the pro-

posed framework. 

• Chapter 4 details the methodology of the research, which is of crucial im-

portance for the thesis. The integration of the RL environment with the model 

checker using IFC file, and the application of PPO are explained in depth. 
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• Chapter 5 describes the practical implementation of the proposed method, illus-

trating the translating of the theoretical framework into practice by employing 

Solibri APIs and diverse Python libraries. 

• Chapter 6 demonstrates three distinct use cases and the configuration of the 

experimental setting for each. The training results of the RL algorithm are pre-

sented and analyzed individually.  

• Chapter 7 addresses the research questions, discusses the research findings, 

and summarizes the contributions of this thesis. The limitations of the study and 

the future possibility of the proposed framework are also provided. 

 



Related Works 5 
 

In this section, the state-of-the-art studies related to this research are presented. The 

findings of various studies on model checking can offer insights into the BIM conflicts. 

The application of different algorithms and methods to automate the resolution of con-

flicts can demonstrate the prevailing direction and advancements being made in this 

field. Furthermore, the research of the employment of RL in the broader BIM and mod-

eling domain can provide valuable references of the practical transformation of a real-

world problem into a modeled one. At the conclusion of this section, the characteristics 

and limitations of these studies will be summarized, thereby identifying the research 

gap that remains to be explored. 

2.1 BIM-Based Model Checking 

BIM model conflicts encompass a multitude of different issues. As a prerequisite for 

solving them, it is important to first comprehend how conflicts in BIM are identified and 

detected, as well as which parameters are of paramount importance for defining con-

flicts. By doing so, we can ascertain the most suitable tool for detecting conflicts in our 

research and concentrate on the most prevalent conflicts that can be resolved using 

RL, while also acknowledging the diversity of conflicts under study. Consequently, re-

search on model checking itself is also crucial.  

With the help of work breakdown structures, using better organized 3D BIM model to 

detect clash has been proven more efficient and accurate than using 2D drawings (Gi-

jezen et al., 2010). Because of the hierarchy structure present in IFC, in addition to the 

3D shape of building objects, clash detection using the IFC standard has been shown 

to have higher performance (Tizani, 2010). Two of the fastest ways to calculate geo-

metric collisions are presented: (1) comparing the distance between the centers and 

the sum of the radiuses of two spheres, and (2) comparing axis-aligned bounding 

boxes. More accurate detection requires the calculation of ray-triangle intersections. 

 

 

 

2 Related Works 
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A formalized knowledge representation for spatial conflict coordination was proposed 

for clash documentation (Wang & Leite, 2016). It comprises four categories: 

1. Clash description includes information used to describe the objects, such as 

system name, coordinate, length, object type etc. 

2.  Clash context represents two types of information: topological context, such 

as location, and constraints. 

3.  Clash evaluation contains clash severity, clash cause and solution 

4. Clash management involves the identification and monitoring of the coordina-

tion process. 

A knowledge base management system was integrated with BIM to improve the auto-

mated rule checking specifically for MEP systems (Xie et al., 2022). They identified 

three modules for the proposed checking system: system integrity checking, compo-

nent’s property checking, and spacing constrains of element checking. While current 

BIM model checker has facilitated the easy detection of conflicts, a notable proportion 

of these conflicts are either permissible or tolerable. However, the model checker usu-

ally does not adequately reveal this information. To address this shortcoming, a rule-

based reasoning system and Machine Learning (ML) classifiers were implemented 

(Huang & Lin, 2019). This research took structural clashes against the MEP model as 

a study example and revealed that the two most important factors for determining the 

severity of clashes are the type of the two clashing components and their placement. 

The extant literature underscores the complexity and diversity of model conflicts in BIM, 

emphasizing the superiority of 3D BIM models and the utility of IFC format. A Variety 

of methodologies have been proposed to enhance the detection and identification of 

conflicts. In light of the inherent impossibility of resolving all conflicts at once, the act 

of prioritization assumes considerable importance. Geometrical spatial conflicts are of 

particular significance and have been the focus of most studies. It is frequently ob-

served in the literature that two elements are in conflict with each other. Even in in-

stances where there are more than two elements involved, they can be effectively re-

duced to a two-by-two conflict structure. Consequently, our research endeavors have 

been directed towards the resolution of two-element geometrical conflicts. Some of the 

key factors, such as element type, coordinates and location, were repeatedly high-

lighted in different studies, which are very informative for our research, especially for 

the definition of custom RL environment state. 
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2.2 Automatic Conflict Resolution in BIM model 

With the increasing attention on BIM conflicts, several noteworthy studies have been 

conducted to the development of automated solutions for BIM-based clash resolution. 

These efforts have employed various AI technologies, including RL algorithms, to en-

hance the efficiency and accuracy of conflict resolution processes. The integration of 

AI into BIM workflows has led to significant advancements, allowing for more sophisti-

cated analysis and decision-making capabilities.  

In the early years, researchers proposed an automated approach for identifying and 

resolving spatial clashes in MEP design (Radke et al., 2009). The proposed resolution 

involved moving one of the two clashing entities to solve spatial conflicts. This basic 

approach can be seen in many subsequent studies. However, due to the technological 

limitations at that time, the approach still required much human intervention and did 

not utilize AI. An AI solution incorporating knowledge-based ML and heuristic optimiz-

ing techniques was developed to address design clashes in BIM model (Hsu et al., 

2020). Five experienced constructors were invited to participate extensively by com-

pleting a questionnaire. The results were collected, the underlying knowledge pattern 

was analyzed, and then used as the basis for optimization. The questionnaire and the 

test of the optimization approaches were all conducted in the same experimental envi-

ronment, which focused on the MEP systems in the basement of an actual student 

residence. 

Since one conflict can have different solutions, a fuzzy analytic hierarchy process was 

proposed to prioritize various collected optimal clash resolution methods, and a Navis-

works plug-in was designed to automatically display the available resolutions (Ha-

sannejad et al., 2023). The weighting and prioritizing criteria in this research were also 

obtained through questionnaires and expert consultations. Furthermore, the final deci-

sion was still required to be manually selected, and no additional clash detection was 

conducted subsequent to the application of the resolution. To simplify the clash reso-

lution process, most research primarily focused on moving a single objective, which 

can be challenging in practice. Therefore, considering it as a multi-objective optimiza-

tion problem, a second-generation non-dominated sorting genetic algorithm approach 

was proposed to balance the optimization of multiple objectives (X. Liu et al., 2024). 

Harode et.al. have investigated the general application of Supervised Learning (SL) for 

clash resolution (Harode & Thabet, 2021). In their paper, the limitations of SL were 
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pointed out, and a methodology combining SL and RL was proposed. The following 

year, the authors explained this methodology in more detail (Harode et al., 2022). A 

probabilistic model using an SL algorithm was designed. Information such as element 

type, Revit category, orientation for both clashing elements, and system priority were 

collected as input variables while the possible clash resolution decisions (moving ele-

ments up, down, left, right, changing the length or slope, and rerouting) were designed 

as output variables. In the follow-up study, they further explored the common strategy 

by adopting an artificial neural network prediction model that could suggest possible 

clash resolution options, achieving an accuracy of 84% at highest (Harode et al., 2024).  

In conclusion, many researchers have dedicated their efforts to improving automatic 

BIM-based conflict resolution, employing a diverse array of AI technologies. However, 

the majority of these approaches require input from existing data and the involvement 

of experienced experts, and the application scenarios are also very limited. There ex-

ists a notable gap in the application of RL. Some researchers have put forth the con-

cept of integrating SL and RL, developing a framework to facilitate the integration. Nev-

ertheless, in their subsequent and more in-depth research, they devoted a significant 

portion of their efforts to SL, while the research on the RL aspect has remained rela-

tively stagnant. 

2.3 The Application of RL in General BIM 

The rapid advancement of RL in recent years has demonstrated its potential for solving 

complex problems across a range of domains. One notable example is the develop-

ment of AlphaGo (Silver et al., 2016), which outperformed human champions in the 

strategic game of Go. In this section, we focus on research papers that employ RL to 

address topics similar to or highly relevant to conflict resolution in BIM, including model 

merging and reinforcement steel design. These studies illustrate the integrating role of 

RL within BIM, offering valuable practical examples. 

While situated in a different domain, general model merging issues bear significant 

similarity to the conflicts that arise from model collaboration in the context of BIM. An 

RL approach to automatically resolve merging conflicts based on quality characteristics, 

as introduced by language modeling engineers as preferences, was proposed to ad-

dress model merging issues (Sharbaf et al., 2022). This RL-based resolution algorithm 

does not require initial training data; however, the quality evaluation still heavily relies 

on the involved engineers. Yang et al. proposed a Deep Reinforcement Learning (DRL) 
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method for generating three-dimensional pipeline layouts (Yang et al., 2023). In this 

study, a highly simplified simulated training environment was constructed, containing 

several key elements in the space that affect pipeline layout. A series of rules were 

defined to ensure that the generated space complies with real building standards and 

that the geometric constraints of the pipelines prevent them from colliding with or pass-

ing through the obstacles or walls.  

The design of Rebar in Reinforced Concrete (RC) structures is a crucial stage in the 

structural modeling of BIM projects. Though the employment of BIM technology can 

assist in the design process, achieving a clash-free design for each joint, particularly 

with irregularly shaped RC structures and rebar, still demands labor-intensive manual 

work. A framework targeted at this specific task was presented, combining a Multi-

Agent Reinforcement Learning (MARL) system with BIM (J. Liu et al., 2019). Each 

rebar was regarded as an intelligent RL agent. The rebar design problem was formu-

lated as a three-dimensional path-planning problem. The authors described the pro-

posed RL framework in general terms using a fusion architecture for learning, cognition, 

and navigation engines. The following year, they extended this work and implemented 

Q-learning for a more realistic design of real-world RC structures (J. Liu et al., 2020). 

The state, action, and immediate and delayed rewards for the MARL were designed 

with consideration of actual constructible constraints and design codes. The jointed 

columns or beams were designed individually in the transformed grid-based digital en-

vironment. Each designed structure was considered an obstacle for the next, ensuring 

the complete design was clash-free. Comprehensive experiments on three typical 

beam-column joints in a two-story RC building frame were conducted to evaluate the 

proposed method. The average success rates and time spent confirmed that the pro-

posed framework is efficient and effective. The same framework was extended to au-

tomatically generate clash-free rebar designs in prefabricated concrete wall panels, 

integrating a Generative Adversarial Network (GAN) to learn from designers’ experi-

ences with existing design drawings and generate 2D preliminary rebar designs (P. Liu 

et al., 2023). Similarly, another RL method was proposed based on the Deep Deter-

ministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2019), with the objective of 

handling higher-dimensional tasks in continuous action space and designing an RC 

beam in a cost-effectively manner while considering both flexural and shear reinforce-

ment arrangements (Jeong & Jo, 2021). 
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It is notable that the utilization of RL has achieved remarkable outcomes in related 

fields, implying the potential for the practical application of RL in the context of auto-

matic BIM conflict resolution. These approaches to transforming real-world problems, 

simplifying, and modeling the environment are worthy of emulation. A number of RL 

algorithms, including Q-learning, DQN, and MARL, have been demonstrated to resolve 

different problems, thereby showing the extensibility of the RL framework. However, 

this also underscores the importance of selecting the appropriate algorithm. 

2.4 The Research Gap 

The results of the literature review demonstrated that the resolution of conflicts in BIM 

model has attracted considerable attention from researchers in recent years. Many 

conflict detection methodologies have been proposed, and various tools have been 

developed to automatically or semi-automatically address conflicts that emerge during 

the collaboration process. However, despite the progress made in BIM clash resolution, 

there remains significant gaps in the research, which are reflected in the following as-

pects: 

• Limited exploration of RL: Although a framework combining RL and SL has been 

proposed, the direct application of RL for general BIM conflict resolution has 

been scarcely studied. Researchers have focused more on automatic design 

within BIM, particularly in RC design. 

• Demand for data: As observed in numerous studies, researchers have pro-

posed a range of ML algorithms to resolve conflicts, which require a large quan-

tity of training data to achieve satisfactory results (Sutton & Barto, 1998). How-

ever, as previously stated, the dearth of adequate datasets in the BIM domain 

poses a formidable challenge for implementing SL in this field. While the input 

from several experts may be suffice for specific use cases, this approach is 

evidently limited by the number and expertise of the experts involved and is 

difficult to generalize to other scenarios. 

• Simplification of the BIM environment: Due to the complexity of real BIM model, 

most research studies employed significant simplifications, extracting only the 

essential information to create a simulated model and environment for RL train-

ing. However, a BIM model is an integrated whole, with complex interrelations 

among its objects, making simplifications less than ideal. 
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• Limited use cases: Most research has concentrated on a specific type of direct 

clash within BIM model, with MEP systems representing the most extensively 

studied discipline due to their complexity. However, architectural conflicts, struc-

tural conflicts, and interdisciplinary conflicts are also prevalent. Furthermore, in 

addition to clashes, there are numerous other types of geometrical conflicts. As 

a result, the generalization of the objects studied is limited. 

Given the aforementioned findings and current limitations, our research will focus on 

the practical application of an RL approach for a real IFC model for geometric conflict 

resolution. No extensive data is required, and the widely used RL algorithm, PPO, will 

be employed. This algorithm is known for its balance between simplicity and perfor-

mance. The integration of powerful BIM model checker facilitates the seamless detec-

tion of all conflicts within the IFC model throughout the training process, thereby en-

suring comprehensive compliance across the entire model. To illustrate the versatility 

and adaptability of our framework, three use cases will be examined, encompassing a 

diverse range of geometric conflicts from various disciplines. This study aims to bridge 

the existing research gaps in the field of automatic BIM conflict resolution. 
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This chapter presents several fundamental theoretical concepts relevant to the pro-

posed approach for BIM conflict resolution. It covers the introduction of IFC file format, 

the principles of API, and an overview of RL with a particular focus on the PPO algo-

rithm. This foundation provides a comprehensive guide for understanding the method-

ology of this thesis. 

3.1 Industry Foundation Classes File 

In comparison to existing research, the IFC model us selected as the data representa-

tion format for the entire workflow rather than relying on a specific model format of BIM 

authoring software, to enhance generalizability of our approach. Industry foundation 

classes is an international standardized digital representation of the built asset devel-

oped by buildingSMART. The IFC model has been certified under ISO 16739-1:2018 

and is designed to promote vendor-neutral and usable capabilities across a wide range 

of hardware devices, software platforms, and interfaces for various use cases (build-

ingSMART technical, 2024). To date, the buildingSMART team has developed the lat-

est official version, IFC 4.3. Furthermore, the majority of BIM authoring tools offer ex-

port and import functionalities for IFC files, ensuring the interoperability of IFC across 

the AEC sectors. 

IFC is a complex data model that allows for the representation of both the geometrical 

and semantic structures of a building model using an object-oriented approach (Borr-

mann et al., 2018). Each object type, such as walls, windows, and columns, has a 

hierarchical representation that defines its specialization and generalization relation-

ships. All objects and their relationships together constitute the digital building environ-

ment. This structure is crucial for ensuring that the IFC model can be accurately de-

composed into simpler parts, which is necessary for downstream applications, such as 

simulation, analysis, and quantity take-off. To gain a deeper comprehension of this 

structure, the schema of a conventional building component, the window, is presented 

as an illustrative example in Figure 3.1: 

3 Theoretical Basis 
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• Figure 3.1: An Example Diagram of IfcWindow (buildingSMART, 2024) 

From the instance of IfcWindow, the concept of entity inheritance is clearly understood. 

The hierarchy commences with the specific building element type, IfcWindow, and pro-

gresses up to the most abstract and root class, IfcRoot. Each class possesses a dis-

tinct set of attributes and dependencies. This hierarchy follows the semantic relation-

ship chain, yet it also includes interrelationships with geometric representations, such 

as the classes IfcObjectPlacement and IfcProductRepresentation, along with their sub-

classes, which are not detailed in the schema. The pre-defined attributes, some of 

which are specific and can be inherited by other classes, function to organize infor-

mation clearly, ensuring correct and straightforward interpretation and extraction by a 

variety of platforms, including Python. Furthermore, there are classes like IfcBuildingEl-

ementProxy, which accommodate non-standard building elements, providing similar 

functionality to any subtype of IfcBuildingElement without a predefined meaning. 

In addition to the hierarchical structure, an object is also defined by various relation-

ships, such as spatial relationships that link it to a story, building, site, and ultimately 

the project. The complexity and extensiveness of the IFC model are evident, which is 

why a Model View Definition (MVD) is introduced to define a subset of the full data for 

uniform exchange scenarios. For IFC 4, two standard pre-defined MVDs are available: 

the Reference View and the Design Transfer View. The latter contains more detail for 

scenarios where continued design and editing are required. 
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IFC plays a pivotal role in BIM project workflows. It has become the mandatory hand-

over format for public building projects in countries like Singapore (Building and Con-

struction Authority, 2013). Given the necessity for multidisciplinary teams to exchange 

and merge IFC files in the course of their collaboration in BIM, IFC is a suitable choice 

for our research, which aims to encompass conflicts across all architectural, structural, 

and MEP disciplines. 

3.2 Application Programming Interface 

An application programming interface is a set of rules or protocols that enables soft-

ware applications to communicate with each other, facilitating the exchange of data, 

features, and functionality (IBM, 2024). Essentially, an API defines the methods and 

data structures that clients or developers can use to interact with an application, ser-

vice, database, or component, often without needing to understand its underlying im-

plementation. APIs are fundamental to modern software, enabling efficient and seam-

less collaboration between different applications and services.  

 

• Figure 3.2: The Schematic Diagram of API 

APIs work by facilitating data exchange between applications, systems, and devices 

through a request and response cycle. As illustrated in Figure 3.2, a request is sent to 

the API, which then retrieves the data and returns it to the user (Postman, 2024). APIs 

can be classified in various ways. One such classification is based on access levels, 

which distinguishes between three types: (1) private APIs, (2) public APIs, and (3) 

partner APIs. Another classification is based on use cases, which identifies four types: 

(1) data APIs, (2) operating system APIs, (3) remote APIs, and (4) web APIs. This 

paper will focus on public operating system APIs and public web APIs. 

Operating system APIs, also referred to as local APIs, delineate how applications uti-

lize the services and resources of the operating system. Examples include Java APIs 

and Python APIs, which provide a set of functions for interacting with the operating 

system, local file systems, networks, graphical user interfaces, and databases. These 
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APIs require an understanding of the underlying logic of the software, assisting devel-

opers in the creation, management, and control of applications at the local level in 

accordance with their custom needs. In contrast, web APIs facilitate interaction over 

the internet, often using Hypertext Transfer Protocol (HTTP) as the communication 

protocol. They are commonly used for services such as data retrieval, remote proce-

dure calls, and interaction with third-party platforms. One popular architectural style for 

web APIs is the REpresentational State Transfer (REST) API.  

A REST API, also known as a RESTful API, is based on a stateless, client-server com-

munication model where the client interacts with resources on the server using stand-

ard HTTP methods. Each resource is represented by a unique uniform resource iden-

tifier, and four typical methods correspond to different types of operations are: 

• GET 

• POST 

• PUT 

• DELETE 

APIs are highly versatile and can be utilized to support a multitude of use cases, in-

cluding the integration of internal systems, the enhancement of functionality, and the 

automation of repetitive tasks. This versatility makes them an appropriate instrument 

for our research. Given that a building is an integrated complex with intricate interrela-

tionships between components, the relocation of one object to resolve a conflict may 

result in violating spatial constraints of other objects, potentially causing new conflicts. 

Abstracted training environments are ill-equipped to respond to this problem, even 

stetted up with custom checking features. This is because such customized detection 

functions are typically rudimentary, and the vast majority of other elements within the 

model are not abstracted into the training environment. Consequently, the optimal so-

lution is to employ a comprehensive BIM model and a robust model checker to oversee 

the training process. Leveraging a well-established BIM model checker and its public 

APIs for developers can effectively address this challenge. 
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3.3 Reinforcement Learning Algorithm 

Machine learning is a computational method that uses experience to improve perfor-

mance or make accurate predictions (Mohri et al., 2018). Based on how and what ex-

perience is transferred to the machine, machine learning can be divided into three cat-

egories: (1) Supervised Learning, (2) Unsupervised Learning, and (3) Reinforcement 

Learning. In our research, we focus on Reinforcement Learning. 

3.3.1 Reinforcement Learning Fundamentals 

In the field of reinforcement learning, the interaction between the agent and the envi-

ronment is modeled using the mathematical framework known as the Markov Decision 

Process (MDP). Unlike the other two types of ML, RL does not require initial training 

data, whether labeled or not. Instead, the RL model explores its environment freely, 

gathering knowledge based on its successes and failures. The RL model then applies 

this self-collected knowledge to adjust its behavior, thereby enhancing its accuracy in 

prediction and interaction with its environment. 

A RL model consists of two components:  

1. Agent: the entity that observes the environment, inferences, makes decisions 

and takes action. 

2. Environment: the external system with which the agent interacts. 

The learning process of an RL agent is analogous to human learning. For each suc-

cessful interaction with the environment, the agent receives a numerical reward to en-

courage similar future interactions. During the interaction between the agent and the 

environment, four important terminologies are involved: 

1. State (𝑠): represents the information contained in the environment at a specific 

point in time. 

2. Action (𝑎): refers to the interactions or decisions the agent makes with the en-

vironment. 

3. Policy (𝜋): the strategy that the agent employs to determine its actions based 

on the current state. 

4. Reward (𝑟): the numerical value the agent received from the environment after 

taking an action. 
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• Figure 3.3: The Schematic Diagram of RL 

The schematic diagram in the Figure 3.3 illustrates the training process of RL. The 

agent observes the current state (𝑠𝑡) of the environment at a given time 𝑡 and takes an 

action (𝑎𝑡) that is determined by the policy (𝜋). The policy is a mapping that represents 

the probability of taking a specific action given the state (𝑠𝑡), denoted as 𝜋(𝑎 ∣ 𝑠𝑡). As 

a consequence of the action, the state of the environment transitions from 𝑠𝑡 to 𝑠𝑡+1. 

The agent also receives a feedback signal, namely the reward (𝑟𝑡) based on the suc-

cess or failure of the action. This one iteration of the agent-environment interaction is 

defined as a step. The iterative loop continues until the environment reaches its termi-

nated state by successfully performing a sequence of actions or reaches its truncated 

state by triggering a certain condition. The sequence of steps that starts with the initial 

state and end with the end state is defined as an episode. 

During the training phase, the agent refines the policy and learns how to respond to 

states with appropriate actions that maximize the total reward. The reward received by 

the agent at each step is an immediate reward, designated as 𝑟𝑡, while the goal of RL 

is to maximize long-term cumulative rewards. Therefore, in addition to the current im-

mediate reward, it is necessary to consider the potential rewards that may be obtained 

in the future. The total accumulated future reward that an agent receives over time, 

starting from a specific time step 𝑡, is referred to as the return 𝐺𝑡: 

𝐺𝑡 = 𝑟𝑡 + 𝛾 ⋅ 𝑟𝑡+1 + 𝛾2 ⋅ 𝑟𝑡+2 + 𝛾3 ⋅ 𝑟𝑡+2 + ⋯ =  ∑ 𝛾𝑘 ⋅ 𝑟𝑡+𝑘

∞

𝑘=0
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The discount factors 𝛾 is introduced into the formula to represent the preference for 

immediate rewards over future rewards. The return is a crucial calculation concept in 

RL, as it serves as the basis for evaluating the effectiveness of policies, with the ob-

jective being to maximize the expected return. In particular, the State-Value function 

and the Action-Value function of a policy can be defined to measure the expectation of 

the return 𝐺𝑡 from a specific state under a certain policy and the expectation of the 

return 𝐺𝑡 from a specific state after executing a specific action. 

The State-Value function: 

𝑉𝜋(𝑠) =  𝔼𝜋[𝐺𝑡 ∣ 𝑠𝑡 = 𝑠] 

Here 

𝑉𝜋(𝑠): The expectation of the return that can be achieved by executing the policy 𝜋 in 

the current state 𝑠 

𝜋: The current policy being followed, determining the probability distribution over ac-

tions 

𝔼: The expectation 

This function measures the degree of merit to be in a state 𝑠 under a given policy, in 

terms of the expected cumulative reward.  

The Action-Value function: 

𝑄𝜋(𝑠, 𝑎) =  𝔼𝜋[ 𝐺𝑡 ∣∣ 𝑠𝑡 = 𝑠, a𝑡 = a ] 

With 

𝑄𝜋(𝑠, 𝑎): The expectation of the return that can be achieved by taking an action 𝑎 in 

certain state 𝑠 when following a policy 𝜋 

While the State-Value function evaluates states, the Action-Value function evaluates 

the quality of actions taken within those states. Both functions are central to value-

based RL algorithms.  

In addition to learning the value functions, another approach to training the agent is to 

directly refine the parameterized policy 𝜋𝜃. The fundamental concept underlying this 

learning process is to increase the probability of those actions that lead to higher re-

turns until an approximately optimal policy is reached (Lehmann, 2024). The probability 

of taking a specific action under the policy parameterized by 𝜃 is denoted as 𝑃: 

𝑃𝜃(𝑎|𝑠) = 𝜋𝜃(𝑎|𝑠) 
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A series of observations, actions and rewards within one episode is referred as a tra-

jectory. This trajectory can be expressed as: 

𝜏 = {𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, … , 𝑠𝑡, 𝑎𝑡, 𝑟𝑡} 

The total reward that the agent accumulates over this episode is the sum of the rewards 

received at each step of this trajectory: 

𝑟(𝜏) =  ∑ 𝑟𝑡

𝑡

0
 

The objective is to maximize the expected value of the 𝑟(𝜏). The objective function is 

defined as: 

𝐽(𝜃) =  𝔼𝜏~ 𝜋𝜃
[𝑟(𝜏)] 

To maximize 𝐽(𝜃), the typical approach is to perform gradient ascent. Hence, the gra-

dient over the learnable parameter 𝜃 is calculated as 𝛻𝜃𝐽(𝜃). Each time the policy is 

updated, the general form of the policy update can be represented as: 

𝜃𝑛𝑒𝑤 ← 𝜃 + 𝛼𝛻𝜃𝐽(𝜃) 

where 𝛼 is the learning rate parameter of the algorithm, determining the step size in 

the direction of the gradient. By calculating 𝜃, the policy-based algorithms are capable 

of updating and optimizing its policy directly. 

It is also noteworthy that during the learning process, the agent frequently encounters 

the dilemma of whether to explore unknown states and actions to gain more infor-

mation about the environment and potential rewards, or to exploit the information al-

ready collected to optimize its strategy. This dilemma is referred to as the exploration 

and exploitation trade-off. 

3.3.2 Classification of RL Algorithms 

Research on RL has a long history. In 1956, Bellman introduced the dynamic program-

ming approach, which is one of the cornerstones of RL (Bellman, 1956). The classic 

Q-learning algorithm was proposed in 1989 (Christopher Watkins, 1989). In 2014, the 

first deterministic policy gradient algorithm was introduced, significantly influencing the 

development of RL (Silver et al., 2014). With the evolution of Deep Learning (DL), the 

integration of DL with RL became feasible, and DRL has gained popularity as an alter-

native to heuristic algorithms. For example, visual input-based RL was applied to ve-

hicle control through a framework known as deep fitted Q-learning (Lange et al., 2012). 
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Compared to traditional algorithms, DRL offers significant advantages, including the 

ability to train models with generalization capability through trial and error for complex 

problems. Well-trained DRL models can be applied directly to subsequent tasks with-

out additional training, thereby saving substantial time. 

Over many years of development and research, RL has undergone significant ad-

vancements, resulting in the emergence of diverse algorithmic approaches. A compre-

hensive understanding of the classification of RL algorithms is crucial for gaining in-

sights into their respective strengths, limitations, and suitable application domains. 

Based on different criteria, RL algorithms can be categorized into several classes. 

Three of the most commonly used classifications are presented here. 

1. Classification based on whether the agent learns the value or the policy: 

• Value-Based Methods: In value-based methods, the agent explicitly learns a 

value function, which estimates the expected return for each state. This ap-

proach relies on the State-Value and Action-Value functions introduced in the 

previous subsection. Value-based methods are more efficient for storing and 

computing in discrete state and action spaces. A classic example is Q-learning, 

in which the agent stores all state-action pairs in a Q-table, learns the action-

value function 𝑄(𝑠, 𝑎) by referencing this table, and derives its policy by select-

ing actions that maximize Q. 

• Policy-Based Methods: In policy-based methods, the agent directly learns a pol-

icy that maps states to actions without necessarily learning a value function. 

Policy-based methods are well-suited to handling more complex and continuous 

action spaces. A well-known policy-based algorithm is REINFORCE (Williams, 

1992), where the agent directly learns the optimal policy using gradient descent, 

rather than explicitly estimates the value functions. 

• Actor-Critic Methods: Actor-Critic methods represent a synthesis of value-based 

and policy-based approaches. The actor takes action based on the policy, while 

the critic evaluates the current policy by estimating the value function. The actor 

then uses this feedback to refine the policy directly. PPO (Schulman, Wolski, et 

al., 2017) is a prominent example of an actor-critic algorithm. 
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2. Classification based on the consistency between data collection policy and learning 

policy: 

• On-Policy Methods: On-policy methods utilize the same policy for both interact-

ing with the environment and learning from the collected data. Which implies 

that the policy being improved is also the one used to generate the experience. 

On-policy methods often yield superior stability and consistency, as the policy 

is improved more directly and effectively, increasing the likelihood of converge. 

On-policy algorithms like State-Action-Reward-State-Action (SARSA) 

(Rummery & Niranjan, 1994) and PPO are widely used. 

• Off-Policy Methods: Off-Policy methods employ two different policies: a behav-

ior policy for interacting with the environment and collecting data, and a target 

policy for learning and improving. The target policy is ty the typically the optimal 

policy that the agent is attempting to learn. Off-policy algorithms offer better 

sample efficiency and broader exploration capability, thereby assisting in the 

avoidance of local optima. Examples of off-policy algorithms include Trust Re-

gion Policy Optimization (TRPO) (Schulman, Levine, et al., 2017) and Q-learn-

ing, along with various extensions based on it. 

3. Classification based on whether the agent learns the model of the environment: 

• Model-Based Methods: Model-based methods entail learning a model of the 

environment, often represented as a state transition function, which the agent 

employs to plan and make decisions. These methods predict the outcomes of 

actions and use this predictive capability to optimize the decision-making. An 

example of a model-based approach is Model Predictive Control (MPC) (García 

et al., 1989).  

• Model-Free Methods: Model-free methods, in the other hand, do not require the 

learning of an explicit model of the environment. Instead, they learn directly from 

the observed consequences of interactions with the environment. This approach 

focuses on learning the value functions or policy based on trial-and-error expe-

riences. Most approaches, including Q-learning and PPO fall under the category 

of model-free RL. 

Additionally, RL can also be classified according to various other criteria, such as 

online versus offline methods, continuous versus discrete action space, single agent 

versus multi-agent, and whether the model for action selection is a neural network or 
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not. In consideration of the distinctive characteristics of the algorithms and the partic-

ular requirements of the conflict resolution issue we are investigating, our primary focus 

is on the algorithm PPO. PPO is an actor-critic, on-policy, model-free, online DRL al-

gorithm. It is applicable to both discrete and continuous action spaces and is suitable 

for both single agent and multi-agent environments.  

3.3.3 Proximal Policy Optimization 

Proximal policy optimization (Schulman, Wolski, et al., 2017) was first proposed by 

OpenAI and has become one of the most widely applied algorithms in the field of RL. 

PPO is a policy gradient-based algorithm designed to offer a more stable and efficient 

approach to policy optimization. It is built on earlier policy-based methods, particularly 

TROP, and overcomes some of their limitations, such as computational complexity and 

implementation difficulty. As a result, PPO demonstrates robust performance and is 

relatively simple to implement across a variety of tasks. 

The various policy-based algorithms are based on the same principle as outlined in the 

subsection 3.3.1, but employ different mathematical techniques to perform and opti-

mize the updating of the gradient. The central innovation of the PPO algorithm is its 

approach to making the learning process more stable by constraining the extent of 

policy updates. This is achieved through a method known as the clipped surrogate 

objective, which is formulated as follows: 

𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[min(𝑟𝑡(𝜃) �̂�𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡)](Schulman, Wolski, et al., 2017) 

With: 

𝐿𝐶𝐿𝐼𝑃(𝜃): is an alternative objective function to approximate the real objective function 

need to be optimized. 

�̂�𝑡: is the estimated expectation value 

𝑟𝑡(𝜃): is the probability ratio 

�̂�𝑡: is an estimator of the advantage function at timestep 𝑡. 

𝜖: is a hyperparameter, usually a small positive value that defines the range of clipping. 

Directly optimizing the objective function 𝐽(𝜃) usually leads to destructively large policy 

updates. To address this problem, the “surrogate objective” 𝐿𝐶𝐿𝐼𝑃(𝜃) is introduced by 

constructing constraints.  
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The probability ratio 𝑟𝑡(𝜃) is calculated as: 

𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡 |𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡 |𝑠𝑡)

 

𝜃𝑜𝑙𝑑 is the vector of policy parameters before the update, which means 𝑟(𝜃𝑜𝑙𝑑) = 1. 

The advantage function is a metric that measures the “advantage” of taking a particular 

action 𝑎𝑡 in a particular state 𝑠𝑡 compared to the average action at that state under the 

current policy 𝜃. It provides a means of quantifying whether an action taken at time 𝑡 

is more or less advantageous than what the policy would typically suggest. It is formally 

defined as: 

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡) 

The advantage estimate �̂�𝑡 is an approximation of the advantage function 𝐴. It should 

be noted that when 𝐴 is positive, this indicates that the action 𝑎𝑡 taken in state 𝑠𝑡 is 

preferable than the average action in that state. Consequently, the policy should be 

updated with the aim of increasing the probability of selecting the action 𝑎𝑡 in the future. 

Conversely, when 𝐴 is negative, the action 𝑎𝑡 is deemed to be inferior to the average, 

thus the policy should be adjusted to decrease the probability of selecting that action. 

The clip function with three terms here means:  

𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) = {

1 − 𝜖      if 𝑟𝑡(𝜃) < 1 − 𝜖,                 

𝑟𝑡(𝜃)      if 1 − 𝜖 < 𝑟𝑡(𝜃) < 1 + 𝜖,

1 + 𝜖      if 𝑟𝑡(𝜃) > 1 + 𝜖.                

 

Essentially, it limits the probability ratio 𝑟𝑡(𝜃) to the range of [1 − 𝜖, 1 + 𝜖]. After the clip 

of the 𝑟, the minimum of clipped and unclipped objective 𝑟 �̂�𝑡 is taken, so the final ob-

jective is always a lower bound.  

Figure 3.4 shows a single timestep of the surrogate function 𝐿𝐶𝐿𝐼𝑃 as a function of the 

probability ratio 𝑟, for positive advantages (left) and negative advantages (right). If 𝐴 >

0, the surrogate objective 𝐿 increases as the action 𝑎 becomes more likely. The policy 

parameters 𝜃 are adjusted to reflect this change. By clipping the ratio 𝑟, this positive 

effect on the objective function disappears once we move outside the clip range. This 

clipping process is conservative, only applying the clip if the objective function would 

be improved. If the policy changes in the opposite direction that decreases 𝐿, the ratio 

𝑟 is not clipped due to the minimum function in the equation, resulting in the actual 

value range of 𝐿𝐶𝐿𝐼𝑃 in this case being: (0, (1 + 𝜖)𝐴). Conversely, if 𝐴 < 0, the value 
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range of 𝐿𝐶𝐿𝐼𝑃 is (−∞, (1 − 𝜖)𝐴). To put it another way, the clip in probability ratio 𝑟𝑡(𝜃) 

is ignored when it would worsen the objective and included only when it would improv 

it. This approach prevents extreme "optimization" due to a single data point, mitigating 

the risk of drastic degradation in policy performance. The red circle on each plot shows 

the starting point for the optimization. By employing the clipping mechanism, PPO sim-

plifies the complex constrained optimization process, reducing computational over-

head and making it easier to implement and tune.  

 

• Figure 3.4: The clipping of PPO’s surrogate objective function (Schulman, Wolski, et al., 2017) 

Apart from clipped surrogate objective, PPO can also employ a penalty on Kullback-

Leibler (KL) divergence with an adaptive penalty coefficient as an alternative. However, 

the clipped surrogate objective is generally preferred for its simplicity and effectiveness, 

and therefore most commonly associated with PPO. The details of the adaptive KL 

penalty coefficient and the more complex mathematical calculations implicit in the PPO 

algorithm are not covered here. 

In addition to the core concept of clipping the optimization, PPO exhibits several other 

noteworthy characteristics compared to other RL algorithms: 

• PPO allows policy updates to be performed multiple times in each iteration using 

the same data set, which improves data efficiency.  

• PPO can be easily parallelized, allowing it to be applied to large-scale problems.  

• PPO is capable of effectively balancing exploration and exploitation, making it 

suitable choice for complex environments where other methods may encounter 

difficulties in converging or require extensive tuning. 
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In conclusion, PPO represents a substantial advancement in the field of RL. By main-

taining the updated policy “proximal” to the previous one, PPO ensures stability in the 

learning process and address the limitations of previous policy gradient methods. This 

has made it a popular choice for training agents in diverse environments, from simu-

lated games to real-world robotic tasks, since its introduction. Consequently, it is the 

RL algorithm that we employ in this research. 
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This chapter presents our approach, which applies RL to automatically resolve geo-

metric conflicts in a BIM model. Our methodology integrates the BIM model and a 

model checker into the RL environment, thereby facilitating the training with real BIM. 

Figure 4.1 illustrates the proposed framework.  

 

• Figure 4.1: The framework of this study 

4 Methodology 
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Fig.4.1 displays the pipeline of our approach. The process commences with an existing 

BIM model that contains various geometric conflicts. The IFC file is firstly imported into 

the model checker, which is integrated into the established RL environment where the 

agent operates. The RL training loop proceeds as follows: the agent takes action to 

reposition (move or rotate) the conflicted components within the BIM model. Subse-

quently, the environment is updated in response and based on the checking results of 

the integrated model checker, the agent receives reward and updates its policy ac-

cordingly. The iteration continues until the environment reaches a terminated state, 

indicating that the BIM model has passed the conflict check. At this point, the conflicts 

have been successfully resolved, and the final conflict-free BIM model is exported as 

the resolution. The RL agent learns the optimal conflict resolution strategy through this 

training progress, with the objective of minimizing both the number and the severity of 

conflicts reported by the model checker. The trained RL model is saved for further 

evaluation and testing. This chapter will detail how the conflict resolution task is mod-

eled in the form of RL, including the construction of state, action, and reward modules 

based on the OpenAI Gym framework (Brockman et al., 2016) and the application of 

the PPO algorithm as the underlying engine for the agent. 

4.1 State Module 

In the context of RL, the concept of state is fundamental to the decision-making pro-

cess of an agent. The state represents the current situation of the environment with 

which the agent interacts. The accuracy and completeness of the state representation 

are crucial, as they directly influence the agent's capacity to predict future states and 

outcomes, and consequently, to learn an optimal policy. In this study, the environment 

is constructed using the Gym framework, which is a Python library for the creation and 

manipulation of RL environments. The modularity and flexibility of Gym facilitate the 

creation of custom environments tailored to specific research needs. Its compatibility 

with various RL libraries serves to further enhance its utility, making it a powerful tool. 

In Gym, the term “observation” is often used interchangeably with “state”. However, 

they are not always identical. An observation is the data that the agent receives from 

the environment at each step, which may be a full or partial representation of the un-

derlying state. In many practical scenarios, the observation only provide partial key 

information, meaning that the agent must learn to infer or approximate the true state of 

the environment from the observations due to the high level of complexity involved.  
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In contrast to other studies that construct an abstracted and highly simplified building 

space and building model comprising only a few relevant elements for training pur-

poses, our research integrates a complete IFC model into the RL environment. In a 

real BIM model, the relocation of a single element may have ramifications for numerous 

adjacent components. Consequently, a multitude of regulations and constraints must 

be considered. By employing a real IFC model, our approach addresses the intricacies 

and interdependencies intrinsic to actual building designs. This signifies that the state 

encompasses all components and semantic information within the BIM model. How-

ever, it is impractical to use state to represent the complete environment. Therefore, 

based on the findings presented in section 2.2, we focused on: (1) information about 

the conflicts and (2) the components causing these conflicts. This knowledge about 

the conflicts and the properties of the components is extracted as observations. The 

parameters of the observation space design are summarized in the following table: 

Key parameters Parameter definition 

number of conflicts 
The total number of conflicts that we aim to re-

solve in the BIM model. 

severity of conflicts 
The accumulative severity indicator for conflicts 

that we aim to resolve in the BIM model. 

number of created conflicts 

The total number of conflicts, that we do not in-

tend to cause, but arise during the iteration due 

to inappropriate action. 

severity of created conflicts 
The accumulative severity indicator for created 

conflicts that we do not intend to cause 

element type 
element 1 

The IFC class of the element. 
element 2 

element rotation 
element 1 The indicator for the current direction of the el-

ement. element 2 

element vertices 
element 1 The calculated world-coordinates of the eight 

vertices of the bounding box of the element element 2 

Table 4-1: Summary of the observation parameters 
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Number of conflicts represents the total number of existing conflicts in the BIM model. 

The ultimate goal of the RL agent is to reduce this number to zero.  

Severity of conflicts provides a measure of the overall severity of conflicts within the 

model. Each conflict is categorized into three levels of severity: Low, Moderate, and 

Critical. In order to quantify the severity in the RL environment, the three levels are 

represented with the numbers 1, 2, and 3, respectively. The size of the number indi-

cates the severity of the issue, and the sum of these values helps in assessing the 

cumulative impact of conflicts, thus providing a complement to the number of conflicts. 

Created conflicts refers to new conflicts that are introduced by the agent’s actions. 

These conflicts are tracked separately because they indicate whether the agent's ac-

tions inadvertently worsen the situation. The agent is trained to not only resolve exist-

ing conflicts but also to avoid creating new ones. An effective policy should lead to zero 

created conflicts alongside resolving initial conflicts. 

Element type identifies the type of elements involved in the conflicts. Different IFC 

classes are assigned specific numbers for easy identification and processing in RL. 

Based on the conducted literature review, the type of the involved element can greatly 

influence the severity and common resolution of this conflict, and guides decisions on 

which element regarded as the agent to move or adjust.  

Element rotation describes the orientation of the element as a matrix, with rotations 

limited to multiples of 90 degrees. Simplifying rotation to discrete angles helps in man-

aging the complexity of geometric representation. 

Element Vertices represents the vertices of the element’s axis-aligned bounding box 

in the world coordinate system. It provides geometrical information about the element’s 

size and placement. Given that different objects have different shapes, and that the 

number of real vertices can vary significantly, especially for round objects, the vertices 

of the element’s bounding box are calculated and included in the observation space. 

Along with rotation, they represent the most important geometrical information about 

the element.  

A conflict in BIM model can be related to one or more elements. In the case of a single 

element, it is typically the attributes and properties that fail to meet design regulations, 

which is not within the scope of this research. For other issues, two elements are typi-

cally engaged in a state of geometric conflict. Even when more than two elements are 

in a single conflict at the same time, they can be broken down into two-by-two conflicts. 
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Accordingly, the element type, rotation and vertices parameters are considered with 

regard to two conflicting elements, respectively.  

With the exception of the element vertices, all listed parameters are formulated as dis-

crete numbers. These are collected and flattened to a one-dimensional vector as the 

observation at each time step for the RL algorithm. The specific implementation details 

for collecting these parameters using model checker APIs and IfcOpenShell are out-

lined in the following section. 

4.2 Action Module 

To successfully resolve conflicts within BIM models, actions should be formulated in a 

way that allows the agent to directly manipulate the elements in the model in ways that 

are practical and effective, thereby addressing the identified conflicts. Based on the 

analysis of the literature and practical experience, the primary actions involved in re-

solving geometric conflicts generally involve moving or rotating one of the conflicted 

elements, and in some cases, both. 

Available action Action index Illustration 

Move 

Positive x: right 0 
 

Negative x: left 1 
 

Positive y: forward 2 
 

Negative y: backward 3 
 

Positive z: up 4 
 

Negative z: down 5 
 

Rotate 

Clockwise 90° 6 
 

Anticlockwise 90° 7 
 

Table 4-2: Summary of the action 
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An increase or decrease of 10 mm in the x, y, and z coordinates within a three-dimen-

sional coordinate space signifies one movement of the elements in disparate directions, 

including right, left, forward, backward, up, and down. The value of 10 mm is deter-

mined because in most BIM software, it is the default tolerance of the clash detection. 

Given that the element's orientation is constrained to four directions in the observation 

space, the available actions are limited to rotations of 90 degrees in either a clockwise 

or anticlockwise direction, centered on the z-axis. 

Eight available actions are designed in the RL environment to construct a discrete ac-

tion space. Each possible action can be indexed and encoded as part of the action 

space. These actions are summarized and illustrated in Table 4-2. They are performed 

by a Python library, IfcOpenshell, which will be introduced in the subsection 5.2. 

4.3 Reward Module 

The reward system functions as the primary feedback mechanism, indicating to the 

agent whether its actions are leading to improvements or deteriorations in the state of 

the environment. This feedback is of paramount importance for the agent's learning 

process, as it utilizes the rewards to evaluate the effectiveness of its actions and to 

refine its policy to maximize long-term rewards. In the proposed RL system, the reward 

is designed with three main considerations based on the state of the current BIM model, 

mainly related to the output of the model checker: 

1. The change in the number of conflicts 

2. The number of created conflicts 

3. The change in conflicts’ severity 

The number of conflicts is at its highest at the beginning of the training. As the iteration 

goes on, the number of conflicts decreases gradually until it reaches zero, with each 

conflict number decreased: 

𝑟𝑒𝑤𝑎𝑟𝑑 =  1 

Should the agent's actions result in the reintroduction of previously resolved conflicts, 

a penalty of 𝑟𝑒𝑤𝑎𝑟𝑑 =  −1 is applied. This discourages the agent from taking actions 

that undo previous progress. 
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During the training process of changing the geometric position of the elements, it is 

likely that new conflicts will arise, such as the agent intruding with another object 

around or the agent moving out of the original space. In such instances, each new 

conflict results in a penalty of 

𝑟𝑒𝑤𝑎𝑟𝑑 = − 1 

Given that we are modeling in a digital BIM environment instead of the physical world. 

The conflict with other elements during the process is acceptable as long as it is re-

solved at the end the training. Therefore, in the case of a newly created conflict is 

subsequently resolved, an equal reward 𝑟𝑒𝑤𝑎𝑟𝑑 =  1 will be granted. This reward en-

courages the agent to correct any additional issues that it may have introduced. 

As outlined in section 4.1, conflicts are classified according to their severity, which is 

measured on a three-point scale: low, moderate, and critical. The severity is quantified 

as a number, which is used to compare when the conflict number remains constant. 

This indicates either a minor improvement or regression in the model. For each unit 

decrease in the severity score: 

𝑟𝑒𝑤𝑎𝑟𝑑 = 0.2 

This enables the agent to focus not only on the quantity of conflicts but also on their 

gravity. Similarly, should the number increase by one, whether in regard to existing 

conflicts or created conflicts, a punishment of 𝑟𝑒𝑤𝑎𝑟𝑑 = −0.2 will be administered. 

In essence, the designed reward system guides the agent in learning to make deci-

sions that consistently lead to better states, which is evidenced by a reduction in the 

number or severity of conflicts, thereby achieving the overarching goal of the task. In 

order to conduct comprehensive checking of the model and to reflect the state of the 

model within the reward system, the rulesets in the model checker are predefined align 

with the aforementioned three considerations. The configuration of the rulesets takes 

three aspects into account: 

1. The primary rule to check specific types of conflicts that the agent aims to re-

solve. 

2. The general BIM validation rulesets ensure that the complete model is compre-

hensively taken into account, including the implicit structural rationality 

3. The additional rules to detect the specific conflicts that may arise during the 

relocation of an element according to its type and properties. 
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The subsequent chapter will provide a comprehensive account of the implementation 

of rulesets in the model checker, along with a detailed exposition of the extraction and 

processing of the checking results, which are integral to the proper functioning of the 

reward system. 

4.4 PPO-based Conflict Resolution Algorithm 

To summarize the methodology, the resolution algorithm, which is the main contribu-

tion of this paper is presented. The PPO is selected as the policy optimization algorithm, 

guiding the RL agent to take actions from the action space. The structured summary 

of the proposed PPO-based resolution algorithm is described as follows: 

Algorithm PPO-based conflict resolution 

Reset Environment: generate new environment with a new IFC model 

for each conflict ∈conflicts list do 

    while steps < maximum_steps_per_episode do 

        steps = steps + 1 

        action: select action from action space using PPO policy 

        update: perform the action and modify the IFC model 

        check: check the state of the IFC model with the predefined rules 

        result: extract key parameters from the result of model checker 

        reward: calculate reward based on the reward system 

        if the number of conflicts decreased then 

            Break while 

            end if 

    Else: Truncated  

end for 



Methodology 34 
 

 

The primary loop of the code iterates over a predefined number of episodes, with each 

beginning by resetting the environment. Upon each reset, the BIM model is reinitialized 

with a new set of conflicts, thereby ensuring that each episode starts from a consistent 

state and maintains the variability of the training environment. At each step, the agent 

attempts to resolve one conflict by applying an action selected by the PPO policy, gen-

erating a new state of the IFC model, which is then evaluated by the integrated model 

checker. The observation received is then utilized to calculate the reward, which guides 

the agent’s learning process and policy updates. Upon the resolution of a conflict, the 

algorithm proceeds to address the next conflict in the sequence. This iterative process 

continues until all conflicts have been resolved, signaling the termination of this epi-

sode with the environment marked as "done". Alternatively, the episode may truncate 

when the maximum step limit is reached. Details regarding the hyperparameters and 

training logging settings will be provided in the next chapter. Further experiments and 

three use cases will be presented in chapter 6.
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This chapter provides a detailed description of each technical implementation of the 

proposed methodology, which employs a combination of BIM-based model checker 

APIs and various Python libraries. The full implementation details of the RL system are 

illustrated in Figure 5.1: 

 

• Figure 5.1: Implementation of the RL system 

 

 

5 Implementation Details 
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5.1 Model Checker 

Solibri Office was selected as the model checker for this research. It facilitates the 

import of building models from various BIM authoring software through the standard-

ized IFC interface and offers an advanced and comprehensive library of customizable 

rule templates to address the most demanding quality assurance tasks (Solibri, 2024).  

5.1.1 Solibri Rulesets 

Solibri provides a large quantity of pre-implemented rulesets, which can detect not only 

geometric clashes, but also sematic errors in the model across various disciplines. 

including architecture, structure and MEP. It is noteworthy that the rulesets are highly 

extensible. The parameters can be adjusted to align with particular requirements, such 

as filtering component types or establishing distance tolerances. Moreover, the 

rulesets can be augmented through the utilization of Solibri Java API, which enables 

the development of custom rulesets tailored to specific needs. Compared to design 

check functionalities in a self-formulated environment, this degree of comprehensive-

ness and adaptability ensures that any unintended conflicts caused by relocating ele-

ments during training can be identified, thus maintaining the integrity of the BIM model. 

The completed and accurate rule selections and setup can maximize the benefits of 

the application of the model checker and ensure the optimal functioning of the RL re-

ward system. Conversely, the rules should not be excessively repetitive and should be 

tailored to the specific objective, in alignment with the aforementioned three principles 

in section 4.3. Figure 5.1 provides an example of selected rulesets in Solibri for the 

use case of a column positioned in front of a window. In this particular instance, three 

distinct types of rulesets are selected accordingly. The "Clearness in Front of Windows" 

ruleset is the primary means of detecting the focused conflict that the agent aims to 

resolve. Subsequently, a series of general rules are employed to ensure comprehen-

sive compliance with the integrity of the entire building, including an assessment of its 

implicit BIM rationality. The “Components Above Columns” rule ensures that when the 

column is relocated outside of the building, the model checker can indicate that a con-

flict indeed exists, even when the clearness of the window is guaranteed and there is 

no collision between the column and other components. 
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• Figure 5.2: An example of the predefined rulesets in Solibri 

Once the rules have been selected, the implementation of a Python-based update and 

checking progress, as well as the incorporation of the checking results into the RL 

training environment represent a crucial aspect of our approach. The realization of this 

process is made possible by leveraging Solibri APIs.  

Solibri offers the possibilities of different kinds of API, and in this study, the integration 

relies on both REST API and Java API. The objective is to achieve the following key 

functionalities: 

• Update the modified IFC model continuously 

• Check conflicts within the IFC model 

• Extract results for further interpretation in Python 
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5.1.2 Solibri REST API 

The Solibri representational state transfer API facilitates the first two tasks. This type 

of API allows for easy integration with Python, making it well-suited for our needs. To 

activate the REST API, the Solibri software must be launched with special command 

line arguments: 

Name Arguments Description 

--rest-api-server-port 
port number, for 

example = 10876 

Open Solibri with REST API in the given port 

number 

--rest-api-server-local-content  
Show local content, like full paths for opened 

model, instead just model name 

--rest-api-server-http  
Launch Solibri with http connection instead of 

https 

Table 5-1: The commands for launching Solibri using REST API 

To meet our objectives, specific REST requests provided by Solibri are selected: 

• /models/{modelUUID}/update (PUT) - This request is used to update the exist-

ing IFC model on the Solibri server. By sending a PUT request with the new IFC 

file, the server updates the model accordingly. The PUT method is idempotent, 

meaning that making the same request multiple times will yield the same result 

without creating duplicate resources. Universally Unique Identifier (UUID) is a 

128-bit label used for information in computer systems, and the {modelUUID} 

path parameter is essential, as it uniquely identifies the specific resource on the 

Solibri server. It must be obtained through another request before the training 

loop begins: 

• /models (GET) - This request retrieves the current models, allowing us to 

obtain the necessary UUID. The model UUID remains consistent 

throughout the training process. 

• /checking (POST) - This request initiates a model check, utilizing Solibri’s com-

prehensive rulesets and returns the results. 

However, the response of REST API checking provide limited information, particularly 

lacking the elements’ Globally Unique Identifier (GUID), which is essential for identify 

elements within the IFC file. Due to the current limitation of the Solibri REST API func-

tions, we have employed the Solibri Java API to achieve seamless integration with the 

Python and the Gym environment. This offers more detailed access to the model data 

and allows us to extract the required information, including the GUIDs. 
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5.1.3 Solibri Java API 

To facilitate the extraction of necessary information from Solibri following each model 

check, a Java file named “CHECKING EXPORTER” has been programmed based on 

the official templates provided by Solibri. This file will be executed each time the model 

is checked in Solibri, with the objective of retrieving essential data for the RL environ-

ment.  

Following the installation of the Java file into the Solibri software via Maven, a prelimi-

nary configuration is necessary prior to the inaugural utilization of the software. To 

commence the Solibri software, navigate to the VIEWS tab and select the CHECKING 

EXPORTER. A new window with the same name will appear, indicating that the tool is 

ready for use. Once configured, the CHECKING EXPORTER runs automatically with 

each model check conducted in Solibri. The Java API extracts specific information re-

garding issues detected during the check and exports this data into a Comma-Sepa-

rated Values (CSV) file for subsequent analysis. This process guarantees the availa-

bility of all relevant conflict data for integration into the RL environment. Each clash 

instance comprises the following details: 

1. IFC GUID of conflicting components 

2. name of the rule violated 

3. severity of the conflict 

A snippet of the exported CSV file, obtained after performing the check with the se-

lected rules, as illustrated in Figure 5.2, is displayed in Figure 5.3: 

 

• Figure 5.3: An example of the extracted checking results 
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Solibri automatically assigns a severity to every issue based on predefined criteria, 

such as the specific category of the result (e.g., incorrect door opening direction), or 

the degree of deviation from a given requirement (e.g., too close a column to a win-

dow). Additionally, it can be customized through the use of severity component filter 

parameter tables within the rule parameters, allowing users to tailor the evaluation of 

the severity according to their specific needs. 

These three types of information are specifically selected for two primary purposes: 

1. Extracting IFC model information: The data is exported to a CSV file, which is 

readily readable and manipulable using Python’s pandas package. Each row in 

the CSV file corresponds to a single conflict in the IFC model, providing a clear 

indicator of the model's current state during the optimization process. The dis-

tinct rule names and severity levels indicate the extent of the rule violations and 

are directly correlated to the reward module. 

2. Retrieving element profiles: The GUIDs of the conflicting components are uti-

lized as input into the IfcOpenShell toolkit to extract comprehensive profiles of 

the components. These profiles encompass the component’s IFC type, orienta-

tion state, and vertices. Based on the profiles, the proposed RL system can 

observe the changes of the model, which are then applied to update the obser-

vation for the agent. 

Prior to the commencement of training, the initial settings in Solibri must be completed 

manually. These include the implementation of the Java API, the classification of build-

ing elements, and the selection of appropriate rulesets for checking. Once the initial 

configuration is complete, the entire training process is automated through the use of 

Python scripting. This automation handles model checks, model updates, and the ex-

portation of certain check results functionalities in the framework. 

5.2 IfcOpenShell 

To construct an RL environment for the BIM model that permits the programmatic read-

ing and modification of IFC files, we employ a library named IfcOpenshell. IfcOpenShell 

serves as a versatile digital tool, spanning from design to construction, that supports 

our objectives. This open-source C++ software library is designed for working with the 

IFC file format, and it also provides good Python bindings to the core C++ system, as 

well as high level analysis and authoring functions (IfcOpenShell-Python, 2024). The 

full capabilities of the C++ core are available in Python, making IfcOpenShell an ideal 
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choice for seamless integration into our environment. IfcOpenShell supports a wide 

range of operations within IFC files. In this study, we employ it to achieve two core 

goals: 

• Accessing geometric and semantic Information: IfcOpenShell enables the ex-

traction of specific geometric and semantic details about building components, 

utilizing the GUID obtained from Solibri APIs. This information is crucial for the 

RL observation module. 

• Manipulating components: The library provides the functionality to move and 

rotate building components within the IFC model. This capability is essential for 

implementing the actions chosen by the RL agent, allowing the system to modify 

the environment in response to the agent’s decisions. 

Through these functionalities, IfcOpenShell plays a critical role in bridging the gap be-

tween the BIM model and the RL environment, enabling dynamic interaction and real-

time updates within the system. 

5.3 Stable Baselines3 

Stable Baselines3 (SB3) is a set of reliable implementations of RL algorithms in 

PyTorch. In comparison to developing PPO from scratch, the algorithms offered by 

SB3 are highly optimized and well-tested, ensuring reliable and consistent perfor-

mance across various environments. Moreover, the library facilitates seamless inte-

gration with custom environments made using the Gym framework. This enables us to 

prioritize research and practical applications over the low-level algorithm implementa-

tion details. 

Furthermore, SB3 incorporates a multitude of wrappers and utilities that significantly 

enhance the flexibility and efficiency of workflows. These facilitate a seamless custom-

ization of the environment or action, data processing, and monitoring and logging of 

training process. The built-in support for TensorBoard is crucial for our research, as it 

enables the easy storage, visualization, and assessment of training processes. During 

training, a CustomCallback class, derived from the BaseCallback, is designed to mon-

itor and log a series of actions, rewards, done states and observations. The Eval-

Callback is responsible for evaluating the model at periodic intervals, which can then 

be visualized using TensorBoard, and saves the best-performing model based on eval-

uation metrics. The CheckpointCallback ensures that the model is periodically saved, 

thus facilitating recovery and analysis. 
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In conclusion, the IFC file and Solibri APIs are employed in conjunction to construct 

the RL environment. The IfcOpenShell library executes the selected resolution action 

on the IFC model, with the actions guided by the PPO algorithm implemented by SB3. 

Solibri then evaluates the new state of the IFC model using REST API to perform up-

dates and checks. Observation and reward are extracted using Java API, pandas and 

IfcOpenShell to update the agent’s policy based on PPO. These implemented compo-

nents are tightly integrated, forming a complete and cohesive RL system.



The Experiments and Evaluation 43 
 

 

This section first introduces the general experimental environment and configurations, 

after which three proposed real cases are presented. In order to accommodate the 

specific characteristics of different use cases, the settings in the RL environment and 

in Solibri are adjusted accordingly. This approach facilitates a more streamlined train-

ing process. 

6.1 The Experimental Environment and Configurations 

The experiments were conducted in two distinct devices. The laptop is equipped with 

a 12th Gen Intel(R) Core (TM) i5-12500H CPU and 16GB of RAM, while the operating 

system and Solibri software are Windows 11 and Solibri Office 24.5.0.31, respectively. 

The second computer is equipped with an Intel(R) Core (TM) i7-7700H CPU and 32 

GB RAM, running the Windows 10 operating system and the Solibri Office 24.5.0.31 

software. The simultaneous training of two distinct use cases is therefore possible. 

However, a parallel environment was not constructed, as the vectorization of the RL 

environment is not viable due to the integration of Solibri. 

The employed PPO algorithm is implemented in the SB3 library. The neural network 

architecture for the policy and value functions is a standard feedforward network, com-

monly designated as a Multilayer Perceptron (MLP). The network comprises two hid-

den layers, each comprising 64 units. The Rectified Linear Unit (ReLU) activation func-

tion is applied to each hidden layer, providing non-linearity and facilitating the learning 

of complex patterns in the input data. 

The policy network generates a set of action probabilities. In contrast, the value net-

work produces a single scalar representing the expected return from the current state. 

The parameters of both networks are optimized using the Adam optimizer, with a learn-

ing rate of 𝟑 ∗ 𝟏𝟎−𝟒, which facilitates efficient learning while also balancing the trade-

off. A batch size of 64 is employed during training, which is a common choice to ensure 

a balance between computational efficiency and the stability of gradient estimates. The 

data was split into two batches, and the neural network was updated with 128 samples 

per batch. The number of epochs was set to four, which helps ensure that the learning 

process is thorough and that the updates are stable and effective.  

6 The Experiments and Evaluation  
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It is important to acknowledge that the proposed methodology can be theoretically ap-

plied to any conflicts within IFC files that can, in practice, be resolved through the eight 

available actions that can be performed by IfcOpenShell. However, for the purposes of 

evaluating the feasibility of this approach, we have only implemented the RL algorithm 

in three different specific use cases.  

The training was conducted in a typical one-family house, as illustrated in Figure 6.1. 

It comprises 8 entity types, 128 entities, and 659 relations. This standard IFC model is 

an open-source model offered by IfcOpenShell. To create different conflicts in specific 

use cases, this IFC file was imported and edited in Revit 2023. Subsequently, it was 

exported back as an IFC file using the standard IFC 4 MVD: design transfer view.  

 

 

Figure 6.1: The IFC model used for training 

6.2 The Toilet-Wall Conflict 

In bathrooms, the placement of the toilet seat in close proximity to the wall is regarded 

as a conflict. The DIN 18040-2 standard specifies a minimum lateral distance of 30cm 

between the toilet and the wall, as this distance is necessary to ensure accessibility 

and comfort. Additionally, a shorter distance could lead to alignment issues with the 

waste pipe of the plumbing system. This issue can be extended to many of the conflicts 

of insufficient distance between furniture, and inadequate accessibility of spaces, 

which are very common in the architectural discipline. 
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6.2.1 The Experiments 

The training environment was initially established in Solibri, for the purpose of selecting 

appropriate rulesets and modifying them to detect the toilet-wall conflicts and other 

potential issues that may arise during the training process. These modifications were 

made according to the specific requirements of our custom needs. For instance, if the 

toilet is not moved in alignment with the wall, but rather at a perpendicular angel, it may 

potentially resolve the conflict. However, this would result in the toilet being situated in 

the center of the room, lacking any connection to the surrounding walls. This outcome 

is clearly untenable. In other scenarios, the toilet may encounter interference from 

other surrounding fixtures or furniture during its movement, or it may encroach upon 

the designated bathroom space, even extending beyond the boundaries of the room. 

Given these considerations, three distinct rulesets were especially selected within 

Solibri, based on the pre-implemented rulesets: 

1. § 26.15 & 26.17 Shower and Bathrooms. This rule was adjusted to check the 

free space on both sides of the toilet seat. The parameter is set to 500mm on 

both sides, thereby ensuring that the distance between the toilet seat and the 

wall is at least 500mm. 

2. # 222 Component Distance. A new rule is created under this ruleset in the Solibri 

ruleset manager to ascertain the proximity of any IfcWall elements to the toilet 

seat. The maximum distance permitted is 10mm, ensuring that the toilet is not 

positioned in the center of the room. 

3. § Object Intersections. The intersection of the toilet seat with other components 

is checked with this rule. 

The complete set of rules is displayed in Appendix A.1. In practice, this type of conflict 

between a toilet and a wall is typically resolved by moving the toilet seat to an adjacent 

position along the wall. Accordingly, the action space for this specific use case was 

designed as a subset of the action space described in subsection 4.2. The available 

actions are as follows: (1) positive x move, (2) negative x move, (3) positive y move, 

and (4) negative y move. The distance traversed by each movement is 50 mm. This 

number was selected because it allows for the resolution of the issue in 10 time steps, 

assuming the policy is optimal, that is, the toilet seat is moved away from wall beside 

it. In order to resolve a conflict by moving the element, it is preferable that the move-

ment be as minimal as possible to maintain the original design intent. Consequently, 
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for each conflict, the iteration lasts for a maximum of 30 steps (max_steps_per_epi-

sode).  

It is also necessary to specify the observation space within the RL environment. In this 

instance, the element type parameter is set to "IfcFlowTerminal" and "IfcSpace", which 

indicate the classes of the two conflicting elements in Solibri. Although the conflicted 

element is not a wall in Solibri, the space is constructed by four walls. And in this case, 

the optimal policy is to move the toilet seat alongside the closest boundary of the space. 

Consequently, the element with the type "IfcFlowTerminal" was designed to move 

while the other remains stationary. 

For the initialization of the environment, the toilet was positioned in eight distinct re-

gions within the bathroom of the house, as illustrated in Figure 6.2. 

  

Figure 6.2: The initial placement regions of the toilet seat 

The toilet is a pre-implemented plumbing fixture in Revit with a type of Toilet-Domestic-

3D. It is imperative that a toilet be placed in each region, connected with one wall while 

with a distance smaller than 500 mm from another wall. The specific placement within 

the region is also randomly generated, thus enabling the agent to learn all eight differ-

ent conflict scenarios with varying coordinates. In addition to the toilet, a Sink Vanity-

Square 20″ x 18″, was added in the bathroom. This allowed for the toilet to potentially 

interact with the sink during the training process, thereby further enhancing the versa-

tility of the training environment.  
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6.2.2 Results and Analysis 

The algorithm commences its operation without any prior knowledge of the environ-

ment. Figure 6.3 provides an illustration of the execution of episode 1, delineating each 

step in a step-by-step manner. One unit in the scatterplot represents the movement 

distance of one action, i.e. 50 mm. The arrow indicates the direction of the action. As 

this is the inaugural instance of the algorithm processing each conflict, it attempts the 

available actions randomly and reaches the truncated state after 30 time steps. 

 

Figure 6.3: The illustration of the agent movement in the first training episode 

Due to the training speed limit, the duration of the training of this use case is 10000 

time steps. The training process itself takes approximately ten days. The most im-

portant evaluation diagram, which depicts the step and the reward, is presented in 

Figure 6.4. As the training time step increases, the rewards received by the agent ex-

hibit oscillating behavior, indicating a lack of converge. An examination of the custom 

training process loggings reveals that the agent has learned to consistently move in a 

single direction, rather than randomly moving in all four directions. However, it has not 

yet learned to move in one specific direction based on the observation space. 

 

Figure 6.4: The training evaluation for the toilet-wall conflict 
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The underlying causes of the unsuccessful outcome can be attributed to two underlying 

factors. The primary issue lies in the insufficient number of training steps. The integra-

tion of Solibri guarantees the completeness and thoroughness of the detection process; 

however, it has also led to a decline in the training speed in comparison to training in 

a simulated environment. The limited speed of API calls and the relatively slow pro-

cessing speed of the software are the primary contributing factors. One iteration of RL 

training can be a time-consuming process. In particular, as the number of training iter-

ations increases, the time required for each round rises exponentially. The initial steps 

may require only a few seconds, whereas after several hundred steps, the time needed 

for the algorithm to run each iteration may increase to one minute and subsequently 

decrease in efficiency. Despite this observation, a method of training 1,024 steps at a 

time and then continuing the training manually was implemented to accelerate the pro-

cess. However, the total time remained considerable.  

The second reason pertains to the tuning of hyperparameters, which are of critical 

importance in the context of RL algorithms. While certain general guidelines exist, there 

is currently no efficient method for hyperparameter tuning. Rather, the process is 

largely based on trial and error. Despite the fact that several combinations of hyperpa-

rameters have been tested, the training effect has not been significantly enhanced, 

particularly given the constraints imposed by the number of training steps. 

6.3 The Column-Window Conflict 

In the field of architectural design and structural engineering, the placement of a col-

umn too close to a window is a common conflict. This issue arises when structural 

elements obstruct key architectural features, such as windows, which are crucial for 

natural lighting and ventilation. The commonality of this conflict stems from constraints 

in design, where the optimal placement of load-bearing columns coincides with window 

locations. This practice contravenes principles of visibility, occupant comfort and day-

lighting standard in DIN 5034:2021-08.  

6.3.1 The Experiments 

In practice, the type of conflict between the column and the window requires the input 

of architects and structural engineers. In order to determine which element should be 

moved or even deleted in the event of an extreme scenario, it is necessary to consider 
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a number of factors, such as whether the column is load-bearing and whether the win-

dow constitutes a component of a specific façade design. For the purposes of training, 

the process was simplified to entail the relocation of the column. The configuration is 

analogous to that of the previous subsection. A comprehensive illustration of the 

rulesets configuration in Solibri is provided in Figure 5.2 within subsection 5.1.1. 

In accordance with the resolution assumption, the action space for this particular use 

case was also designed as a subset of the action space described in subsection 4.2. 

The available actions are as follows: The available actions are as follows: (1) positive 

x move, (2) negative x move, (3) positive y move, and (4) negative y move. The dis-

tance of each movement is 100 mm, given that the distance tolerance before the win-

dow is 1 m. Consequently, the agent is capable of resolving the issue up to a maximum 

of 10 time steps with the optimal policy, which entails moving the column in the oppo-

site direction of the window. For each conflict, the maximum of 30 steps is constrained. 

Different from the previous conflict, the observation space for this use case is defined 

as "IfcColumn" and "IfcWindow", which represent their IFC classes. 

To the reset of the training environment, the column was positioned in nine distinct 

areas distributed in front of each window in the house, as illustrated in Figure 6.5.  

 

Figure 6.5: The initial placement area of the column 

The length of the area is equivalent to the length of the window, while the width is 1 m. 

The column placement within the area was also randomly generated, ensuring that a 

column-window conflict was generated in the IFC file. The column that was added in 
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the original IFC file is a Concrete-Rectangular-Column 18 x 24 from Revit. In addition 

to the column, three tables: Furniture_System-Standing_Desk-Rectangular 60″ x 30″, 

were incorporated into the IFC model and situated in the office (Buero), living room 

(Wohnen), and bedroom (Schlafzimmer). This allowed for the column to potentially 

interact with the table during the training process, thereby emulating the actual sce-

nario. In this manner, the agent is capable of acquiring the requisite coordinates for a 

multitude of potential conflict scenarios and the diversity of the training environment is 

guaranteed. 

6.3.2 Results and Analysis 

The algorithm initiates its operation without any knowing of the environment, in a man-

ner analogous to that described in the preceding chapter. At the early stage of training, 

the algorithm randomly attempts the available operations and gradually improves. 

However, this use case presents the same issue as that observed in the first use case. 

The reward obtained by the agent has demonstrated a similar fluctuating pattern and 

has not reached a steady state as the training time step increases. As demonstrated 

in the preceding example, the agent has similarly acquired the capacity to move multi-

ple steps in a single direction, as opposed to randomly in all four directions. However, 

in lieu of learning to move in a particular direction based on the observation space. 

To address this issue, an alternative approach was taken, whereby extensive experi-

mentation on hyperparameters tuning was conducted for this use case. This involved 

runs extending to 2048 time steps, with the aim of ascertaining the impact of hyperpa-

rameters. The main hyperparameters that were adjusted included: 

• ent_coef (the entropy coefficient) to control the exploration,  

• learning_rate (the learning rate) to facilitate the agent's adaptation to the envi-

ronment, 

• batch_size (the size of the batch to update the gradient) to stabilize the gradient 

update 

• n_steps (the rollout buffer size) to change the time steps of observation before 

updating the policy 

Moreover, given the discrete action space and the issue of insufficient data samples 

resulting from the limited training speed, training with the DQN algorithm was also at-

tempted. As stated in Chapter 3, the DQN algorithm is an off-policy one, and thus 
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theoretically more suitable for situations where data is insufficient. Furthermore, for a 

discrete space, the DQN algorithm is a relatively simple choice. Figure 6.6 illustrates 

four of the training evaluation's diagrams.  

 

Figure 6.6: The training evaluation for the column-window conflict 

The training results obtained with PPO are marginally superior, though the difference 

is not statistically significant. Another notable finding is that the training speed of the 

PPO is approximately 50% faster than that of DQN. This result further corroborates the 

hypothesis that the primary limitation for the training is the restricted number of training 

steps. 

6.4 The Air Terminal-Door Conflict 

A common conflict that arises in the integration of MEP systems with architectural de-

sign is the placement of air terminals, whether supply or return, in proximity to door-

ways. Positioning an air terminal too close to a door is generally discouraged, as the 

movement of the door can significantly disrupt the airflow, leading to inefficiencies in 

air distribution and potential discomfort for occupants. This design consideration is of-

ten guided by standards DIN EN 13779. 

6.4.1 The Experiments 

In consideration of the two preceding experiments, we proceed to further simplify the 

environment with the intention of attaining optimal training outcomes. Moreover, the 

movement of MEP objects is generally more challenging than that of other disciplines 

due to the fact that MEP elements, such as pipes, ducts and cables, are typically situ-

ated in specific systems and are all interconnected. The movement of a single element 

often necessitates the coordinated movement of numerous other related elements. 

Therefore, in this use case, we also seek to illustrate the versatility and capabilities of 

manipulating elements within IFC files. 
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The selected rulesets in Solibri are presented in Appendix A.2. The primary two rules 

are to check whether the air terminal is sufficiently distant from the frame of the doors 

and to check the intersection between building services and other surrounding compo-

nents. The illustration of the conflict is shown in Figure 6.7. A simple mechanical sup-

ply-return air system was modeled in Revit to create conflicts. Four of the air terminals 

within the red circles with different directions were purposely positioned in front of the 

doors. 

     

Figure 6.7: The illustration of the air terminal-door conflict 

In this use case, it is assumed that the second floor is unoccupied and can be utilized 

for the positioning of the duct systems. In practice, this type of conflict is typically re-

solved by relocating the air terminal, particularly when there is sufficient space above 

the ceiling. Therefore, the action space comprises the same four actions required to 

move the air terminal in the x and y directions. To accelerate the training process, two 

modifications have been implemented: 

• The distance of each movement was set to 200 mm, thus enabling the resolu-

tion of conflicts in a more efficient manner. Under the optimal policy, one conflict 

can be resolved in five steps. 

• A knowledge-based restriction was introduced into the action space, whereby 

an action that does not result in an increase or decrease in the distance between 

the door and the air terminal will not be performed. In this case, the agent is 

given a penalty of 𝑟 = −0.5 directly, and advance to the next step.  

Different from the other two use cases, in the case of air terminal-door conflict, the 

requisite movement is contingent upon the corresponding movement of the related 

ducts and fittings. The utilization of the “port” class and the relations defined in the IFC 



The Experiments and Evaluation 53 
 

 

model enables the systematic tracing of related elements. Ports serve as pivotal con-

nection points for defining the flow relationships between different building services 

components. It facilitates the seamless interconnection of elements including ducts, 

fittings, and air terminals. In this use case, the diffuser is connected to an inport with 

the relation type of IfcRelNests, which indicates that the port is a subcomponent of the 

air terminal. In this context, the IfcRelConnectsPorts relationship is employed to define 

the connection between the port on the air terminal and the port on the duct, specifying 

the direction of the airflow. These relationships facilitate accurate modeling and the 

hierarchical structure of the IFC file, thereby enabling the retrieval of all related ele-

ments’ GUID in this use case: the short duct, the fitting and the long duct. In addition 

to the air terminal, the first two connected elements should also be relocated, and the 

long duct should be shortened or lengthened accordingly. 

 

Figure 6.8: The illustration of the agent for the air terminal-door conflict 

In total, four conflicts must be resolved with a total of 20 steps required to achieve this 

under the optimal policy. The maximum step limit is set at three times the number of 

necessary steps, as previously stated, equating to 60 steps. With regard to the action 

space, it is assumed that the agent performs invalid moves half of the time; therefore, 

the maximum step limit is finally set to 120 steps. The element type parameter is set 

to "IfcAirTerminal" and "IfcDoor". The same IFC model was used to reset the RL envi-

ronment each time. 

 

 



The Experiments and Evaluation 54 
 

 

6.4.2 Results and analysis 

The training speed of this experiment is evidently more rapid than that of the former 

two experiments, primarily due to the presence of two invalid actions. In particular, 

during the initial stages of training, the agent would consistently select the invalid action 

until reaching the truncation state of this episode. As illustrated in Figure 6.8, following 

a significant reduction in complexity, the agent demonstrated the capacity to effectively 

address the four specific conflicts. After training, in ten subsequent tests employing the 

trained RL model, the RL model exhibited an average of 32 steps to successfully re-

solve the four conflicts. 

 

Figure 6.9: The training evaluation for the air terminal-door conflict 

For a scenario with four fixed conflicts, the agent needs around 1600 training steps to 

get a good result. It is reasonable to assume, that for the other two experiments with 

much more variations of conflicts, the necessary training steps would increase expo-

nentially. 
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7.1 Conclusions 

The objective of this study was to investigate the approach of automating the conflict 

resolution process through the implementation of a PPO-based RL algorithm within an 

integrated BIM environment utilizing an IFC model checker. The main contributions are 

as follows: 

1. The integration of the IFC model checker, Solibri, with the Python-programmed 

formulated RL environment. 

2. The proposal of the PPO-based RL algorithm to interact with the environment. 

3. The definition of different conflict types and checking rules that are common in 

the AEC industry to test the feasibility of the proposed framework. 

4. The training of the RL agent in three different environments separately to re-

solve the conflicts. 

A conflict resolution RL algorithm based on PPO techniques was presented, which 

does not require initial input data to identify the optimal sequence of available resolu-

tion actions for a list of conflicts. The Solibri software was employed to detect and 

export the data pertaining to the conflicts within the IFC model, including the compo-

nents that are in conflict, as well as the severity of the conflicts. Based on this, the 

agent is able to observe the integrated environment. The parameters selected for ob-

servation include the number of conflicts, the severity of the conflicts, the IFC type of 

the components, the rotations of the components, and the vertices of the components. 

Subsequently, the agent selects the optimal action in accordance with the current pol-

icy, which is based on the PPO algorithm. The action is executed directly within the 

IFC file, which is integrated as a component of the RL environment. A bespoke reward 

function has been devised for the agent in conjunction with the model checker, ena-

bling the provision of the feedback. The reward function comprises three key changes: 

the number of conflicts, the number of newly created conflicts and the severity of the 

conflicts. Its applicability is evaluated through three experiments, which consider con-

flicts in architectural sub-aspects, between architectural and structural elements, and 

7 Conclusions and Future Works 
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between architectural and MEP elements. The experiment was successful in a simpli-

fied environment. The specific inheritance structure of the IFC model allows for a wide 

range of applications in different scenarios and the effective manipulation of different 

actual IFC elements. 

7.2 Limitations 

As pioneering research into the use of RL for BIM conflict resolution automation, the 

results of the experiments applying the proposed approach did not meet expectations. 

The following section will discuss the potential explanations for these outcomes and 

the associated limitations. 

The inadequate training step is the primary factor contributing to the unsuccessful train-

ing outcomes, which is attributable to the sluggish training speed of the environment. 

Model-free RL algorithms are relatively sample inefficient. They require a substantial 

number of samples, often millions of interactions to achieve something meaningful, 

which is the key reason why most of the successes in RL were achieved on games or 

in simulation only (StableBaselines3, 2024). However, the integration of Solibri re-

sulted in a discernible reduction in training speed during the training process. It was 

observed that initially, the training process exhibited a significantly faster runtime com-

pared to subsequent phases. Besides, the CPU usage is relatively low, generally below 

10%, while the memory usage is considerably higher, at 80-90%. It seems reasonable 

to posit that the accumulation of data and parameters over time may have increased 

memory usage and processing overhead, thereby further slowing down the training 

process. Furthermore, the iterative nature of RL, in conjunction with the necessity to 

frequently access, update and check the IFC model via Solibri, may have introduced 

delays due to the extensive I/O operations involved. The Solibri REST API calls are 

made over a network, and the condition of the network may change over training pro-

cess, resulting in increased latency. These factors collectively contribute to the ob-

served reduction in training speed over time. However, throughout the training process, 

the computer with the larger RAM capacity tends to complete the training process at a 

slower rate than the computer with 16 GB of memory. One potential explanation for 

this discrepancy is that larger memory systems are shared among multiple users, and 

the lack of full administrative privileges on the computer with the larger RAM capacity 

may have restricted certain optimizations and configurations that could enhance train-

ing efficiency. Additionally, the software updates and configurations on the computer 
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with the 32 GB RAM may have been limited, which could also have contributed to the 

observed slowness in training speed. 

A further limitation to the generalizability the framework is that the model is trained 

separately in three scenarios due to the lengthy training times involved. From a practi-

cal standpoint, it would be advantageous to merge the model into a single one, as this 

would enable the model to resolve all conflicts. This is a theoretically feasible approach, 

given that the three models share a common framework. However, to enhance the 

efficiency of the agent’s learning process and facilitate the optimal policy, certain nec-

essary adjustments were made to the distance of each movement, the available ac-

tions, and the number of IFC types. If one model is trained for the three use cases, 

with each move being 10mm and invalid z-axis moves or rotations included, the num-

ber of steps required to resolve the conflict would increases exponentially. It is there-

fore evident that the training process will be even more time-consuming. 

Another limitation is associated with its applicability across different models. During the 

training process, only a standard one-family house IFC model with relatively simple 

geometry was utilized. Despite the random positioning of the conflicting components 

at the initialization of the RL environment and the addition of other elements around to 

ensure the diversity and complexity of the conflicts in a certain degree, the application 

of the trained model to larger and more complex models still requires further testing 

and evaluation even if the training results of the three use cases are successful.  

The experiments conducted to tune hyperparameter tuning were insufficient. The se-

lection of hyperparameters in RL has a significant impact on the rate of convergence, 

the stability of the learning process, and the overall success of the learning task. 

Properly tuned hyperparameters has the potential to markedly improve the efficiency 

of the learning process and reduce training time. Nevertheless, Tuning RL hyperpa-

rameter does not have clear and sufficient scientific principles to work with (Li, 2018) 

and the process of tuning these hyperparameters is notoriously challenging due to the 

high dimensionality of the hyperparameter space of PPO and the stochastic nature of 

RL environments. As a result, the identification of the optimal set of hyperparameters 

remains a time-consuming and computationally expensive task in RL.  
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7.3 Future Works 

In response to the discussions and limitations identified in the previous subsection, our 

future work will focus on improving the training speed, expanding the framework to 

encompass a broader range of use cases, and applying the trained model to a variety 

of more complex situations. 

The primary objective is to investigate the potential for enhancing the integration of 

Solibri in order to facilitate a more expeditious training process, which serves as a 

fundamental basis for the subsequent improvements. Solibri provides a Java API, 

which is primarily utilized for the purpose of customizing rulesets. However, the poten-

tial for integrating its Java API and the Python RL environment directly could prove an 

effective method for accelerating the training process. This eliminates the necessity for 

REST API calls, thereby accelerating the training process. Moreover, it may be feasible 

to examine a specific region of the IFC model surrounding the conflicting components, 

as the significant portion of the model remains unchanged throughout the training pro-

cess. By reducing the number of components that require examination each time, the 

training process could be made to proceed more rapidly. Furthermore, the use of par-

allel environments could facilitate more efficient training and utilization of the CPU. As 

Solibri permits the inclusion of multiple models within a single SMC file, it may be fea-

sible to envisage a scenario in which disparate agents can be controlled across distinct 

models simultaneously. It may also be beneficial to investigate the memory allocation 

of the computer in order to achieve a more balanced usage of CPU and memory. This 

could entail the fine-tuning of the system's resource allocation policies or the imple-

mentation of more efficient algorithms for the handling of large datasets in memory 

during training. Furthermore, enhancing training efficiency may be achieved by utilizing 

more powerful hardware. 

The exploration of unify the separately trained RL into one model also represents a 

significant avenue for future research. Although the current proposed framework is 

theoretically feasible, it requires meticulous calibration of the agent's learning param-

eters and a more precise framework. Further refinement of the reward, action, obser-

vation module could prove beneficial. For example, breaking different rules in Solibri 

could be subject to disparate penalties, which would be determined in accordance with 

the applicable building regulations. Alternatively, the distance of the movement could 

not be defined in accordance with the element’s IFC type and the broken rule, rather 
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than a fixed value of 10mm. A more comprehensive RL system could prevent expo-

nential growth in the required training steps. Research could focus on refining these 

parameters to maintain a balance between generalizability and training efficiency. Fur-

ther exploration of alternative RL algorithms, such as DQN, could also provide insights 

into potentially more suitable methods for the specific problem at hand. 

Moreover, future studies should include the testing and evaluation of the RL model 

across a range of IFC models, encompassing varying degrees of conflicts complexity 

and structural diversity, rather than relying exclusively on the standard one-family 

house IFC model employed in the present study. The complexity of the model should 

be incrementally augmented, commencing with the successful conflict resolution of 

relatively simple environments and subsequently progressing to the testing or further 

training in somewhat more complex models. The implementation of a gradual progres-

sion reduces the amount of unnecessary training time. This could ensure the robust-

ness and applicability of the model in a broader range of practical settings. It would 

also be beneficial to investigate how to increase the diversity of the initialized conflicts 

in different IFC models. In the current experiments, the conflicted components' type 

and dimension are the same, only the placement and orientation are randomly gener-

ated. Implementing advanced techniques for automated generation of conflict scenar-

ios, such as GAN, could further enrich the diversity of training data. 

Finally, with regard to hyperparameter optimization, future work should incorporate the 

use of automated hyperparameter optimization tools, such as the Bayesian optimiza-

tion strategy or the Optuna optimization framework, for the systematic tuning of the 

parameters of the PPO algorithm. A comprehensive analysis of the training parameters 

throughout the training process should contribute to more effective hyperparameter 

tuning. 
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A.2 Predefined Rulesets in Solibri for Air Terminal-Door Conflict 
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