

Technical University of Munich

TUM School of Engineering and Design

Chair of Computational Modeling and Simulation

Automatic BIM Conflict Resolution Using a

Reinforcement Learning Approach

Master Thesis

For the Master of Science Program Resource Efficient and Sustainable

Building

Author: Yuye Jiang

Registration number:

Supervisor: Prof. Dr.-Ing. André Borrmann

 Dr. Stavros Nousias

 M.Sc. Changyu Du

Date of Issue: 29. February 2024

Date of Submission: 29. August 2024

Abstract II

The advent of Building Information Modeling (BIM) has fundamentally altered the way

how building projects are approached. Nevertheless, it is still the case that conflicts

during the collaboration process are an unavoidable consequence, resulting in ineffi-

ciencies. The widespread adoption of BIM model checker has significantly contributed

to the detection of conflicts. However, the automation of conflict resolution remains a

nascent endeavor, and the reliance on manual communication among designers can

be a significant time investment. To address this shortcoming, this research presents

a framework for training a Reinforcement Learning (RL) agent, employing the Proximal

Policy Optimization (PPO) algorithm, in the integrated real BIM environment to auto-

mate the conflict resolution process, with a particular focus on geometric conflicts.

Three experiments, each focusing on a different type of conflict, were conducted to

investigate the feasibility of the proposed framework. The results were analyzed, and

the limitations were discussed.

Abstract

Zusammenfassung III

Die Einführung von Building Information Modelling (BIM) hat zu einer grundlegenden

Veränderung der Art und Weise geführt, wie Bauprojekte angegangen werden.

Dennoch können Konflikte während der Zusammenarbeit nicht gänzlich

ausgeschlossen werden, was zu Ineffizienzen führt. Die weit verbreitete Anwendung

von BIM Modell-Checker hat maßgeblich zur Identifikation von Konflikten beigetragen.

Die Automatisierung der Konfliktlösung befindet sich jedoch noch in den Anfängen und

die Abhängigkeit von der manuellen Kommunikation zwischen den Planern kann einen

erheblichen Zeitaufwand bedeuten. Um dieses Defizit zu beheben, wird in dieser

Forschungsarbeit ein Rahmen für das Training eines Reinforcement Learning (RL)-

Agenten vorgestellt, der den Algorithmus Proximal Policy Optimization (PPO) in der

integrierten realen BIM Umgebung einsetzt, um den Konfliktlösungsprozess zu

automatisieren, wobei ein besonderer Schwerpunkt auf geometrischen Konflikten liegt.

Zur Evaluierung der Machbarkeit des vorgeschlagenen Rahmens wurden drei

Experimente durchgeführt, welche sich jeweils auf eine spezifische Art von Konflikten

ausgerichtet. Die Ergebnisse wurden umfassend analysiert und die Limitationen der

Experimente und des Rahmens diskutiert.

Zusammenfassung

List of Contents IV

List of Figures VI

List of Tables VII

List of Abbreviations VIII

1 Introduction 1

1.1 Motivation ...1

1.2 Research Objectives ...3

1.3 Reading Guide ..3

2 Related Works 5

2.1 BIM-Based Model Checking ...5

2.2 Automatic Conflict Resolution in BIM model ...7

2.3 The Application of RL in General BIM ...8

2.4 The Research Gap .. 10

3 Theoretical Basis 12

3.1 Industry Foundation Classes File .. 12

3.2 Application Programming Interface ... 14

3.3 Reinforcement Learning Algorithm.. 16

3.3.1 Reinforcement Learning Fundamentals .. 16

3.3.2 Classification of RL Algorithms ... 19

3.3.3 Proximal Policy Optimization .. 22

4 Methodology 26

4.1 State Module ... 27

4.2 Action Module ... 30

4.3 Reward Module ... 31

4.4 PPO-based Conflict Resolution Algorithm .. 33

5 Implementation Details 35

5.1 Model Checker .. 36

List of Contents

List of Contents V

5.1.1 Solibri Rulesets ... 36

5.1.2 Solibri REST API ... 38

5.1.3 Solibri Java API... 39

5.2 IfcOpenShell ... 40

5.3 Stable Baselines3 ... 41

6 The Experiments and Evaluation 43

6.1 The Experimental Environment and Configurations 43

6.2 The Toilet-Wall Conflict ... 44

6.2.1 The Experiments ... 45

6.2.2 Results and Analysis ... 47

6.3 The Column-Window Conflict ... 48

6.3.1 The Experiments ... 48

6.3.2 Results and Analysis ... 50

6.4 The Air Terminal-Door Conflict.. 51

6.4.1 The Experiments ... 51

6.4.2 Results and analysis ... 54

7 Conclusions and Future Works 55

7.1 Conclusions .. 55

7.2 Limitations ... 56

7.3 Future Works .. 58

References 60

Appendix A 67

List of Figures VI

Figure 3.1: An Example Diagram of IfcWindow .. 13

Figure 3.2: The Schematic Diagram of API .. 14

Figure 3.3: The Schematic Diagram of RL .. 17

Figure 3.4: The clipping of PPO’s surrogate objective function 24

Figure 4.1: The framework of this study ... 26

Figure 5.1: Implementation of the RL system ... 35

Figure 5.2: An example of the predefined rulesets in Solibri 37

Figure 5.3: An example of the extracted checking results .. 39

Figure 6.1: The IFC model used for training ... 44

Figure 6.2: The initial placement regions of the toilet seat .. 46

Figure 6.3: The illustration of the agent movement in the first training episode 47

Figure 6.4: The training evaluation for the toilet-wall conflict 47

Figure 6.5: The initial placement area of the column .. 49

Figure 6.6: The training evaluation for the column-window conflict 51

Figure 6.7: The illustration of the air terminal-door conflict 52

Figure 6.8: The illustration of the agent for the air terminal-door conflict 53

Figure 6.9: The training evaluation for the air terminal-door conflict 54

List of Figures

List of Tables VII

Table 4-1: Summary of the observation parameters ... 28

Table 4-2: Summary of the action ... 30

Table 5-1: The commands for launching Solibri using REST API 38

List of Tables

List of Abbreviations VIII

BIM Building Information Modeling

AEC Architectural, Engineering, and Construction

RL Reinforcement Learning

MEP Mechanical, Electrical, Plumbing

IFC Industry Foundation Classes

BCF BIM Collaboration Format

AI Artificial Intelligence

SL Supervised Learning

API Application Programming Interface

PPO Proximal Policy Optimization

ML Machine Learning

DRL Deep Reinforcement Learning

RC Reinforced Concrete

MARL Multi-Agent Reinforcement Learning

GAN Generative Adversarial Network

DDPG Deep Deterministic Policy Gradient

MVD Model View Definition

HTTP Hypertext Transfer Protocol

REST Representational State Transfer

List of Abbreviations

List of Abbreviations IX

MDP Markov Decision Process

DL Deep Learning

SARSA State-Action-Reward-State-Action

TRPO Trust Region Policy Optimization

MPC Model Predictive Control

KL Kullback-Leibler

UUID Universally Unique Identifier

GUID Globally Unique Identifier

CSV Comma-Separated Values

SB3 StableBaselines3

MLP Multilayer Perceptron

ReLU The Rectified Linear Unit

Introduction 1

Building Information Modeling (BIM) offers a novel approach to design, construction,

and facility management, in which a digital representation of the building product and

process is used to facilitate the exchange and interoperability of information (Sacks et

al., 2018). BIM has revolutionized the workflow for building projects in the Architectural,

Engineering, and Construction (AEC) industry. However, the process of BIM modeling

often necessitates the collaboration of designers from different disciplines, which can

give rise to conflicts. These conflicts are recognized as critical causes of deficiency

and low performance in building projects (Charehzehi et al., 2017). Despite the avail-

ability of many BIM model checker tools that can automatically detect conflicts, the

current state of conflict resolution remains a slow manual process that requires contin-

uous communication between responsible experts. In response to this challenge, our

research explores the possibilities to apply Reinforcement Learning (RL) techniques to

automate the BIM conflict resolution process.

1.1 Motivation

Collaborative teamwork is an essential aspect of a modern BIM project, which can be

in two forms as, synchronous and asynchronous collaboration (Isikdag & Underwood,

2010). Synchronous collaborative teamwork denotes a situation in which all members

of a team are working on the same model at the same time and exchanging their expert

knowledge simultaneously (Scherer, 2007). This approach to working is typically em-

ployed within the confines of a single design office, utilizing the specialized BIM au-

thoring software. Asynchronous collaboration means that each involved discipline

team, including architectural engineering, structural engineering, and mechanical,

electrical, plumbing (MEP) engineering, creating their own model and conducting their

design process independently and at disparate locations. The project leader or BIM

coordinator of each discipline communicates and exchanges information at frequent

intervals and merges these sub-models into a federated model. When BIM subsets are

integrated into a single BIM using appropriate software platforms, the design parame-

ters of different disciplines are most likely to conflict with each other, given the high

complexity of building models (Chen & Hou, 2014).

1 Introduction

Introduction 2

In order to achieve a conflict-free integrated BIM model, it is necessary to detect the

existing conflicts. The same BIM authoring software is typically utilized by all team

members within a single company. Accordingly, the detection and sharing of issues

can be accomplished via the commercial cloud BIM platform provided by the corre-

sponding software vendor, such as BIM 360 from Autodesk, BIMcloud from Graphisoft,

and BIMPLUS from Nemetschek. In contrast, this exchanged workflow between com-

panies that use different BIM authoring tools, often based on production of Industry

Foundation Classes (IFC) files and BIM Collaboration Format (BCF) files (Kubicki et

al., 2019). The IFC file is a vendor-neutral, industry-specific data model schema that

enables the sharing of information throughout the project lifecycle, while the BCF file

stores text, images, and component information about the conflicts, allowing different

BIM applications to communicate model-based issues (buildingSMART, 2024). Details

about the IFC file will be explained further in section 3.1. Once the detection of conflicts

is complete, the engineers responsible for the issues need to resolve the conflicts man-

ually. This process frequently involves extensive collaboration and discussion with

other disciplines until the integrated model is either conflict-free or at least acceptable

without significant clashes.

In regard to the aforementioned conflict resolution workflow, the detection process can

be accomplished with a very high degree of automation. Most BIM cloud platforms can

perform at least simple collision detection and categorize these issues according to the

disciplines to which the conflicted element belongs. Other widely adopted BIM-based

model checkers, such as Solibri, contribute significantly to conflict detection. In addition

to geometrical collisions between elements, they can also check the accessibility of

space, fire protection requirements, component properties, and numerous other build-

ing standards and regulations.

Nevertheless, even with the utilization of model checker tools to automate conflict de-

tection, conflict resolution in BIM projects remains a slow and manual process(Harode

et al., 2024). The automation of conflict resolution is currently very limited, and the

intensive communication process among designers tends to be a significant time in-

vestment. In response to this challenge, research has already begun to explore the

potential of utilizing various Artificial Intelligence (AI) technologies to automate the pro-

cess. For instance, Supervised Learning (SL) techniques can be employed to collect

existing clash-resolution data and experts’ opinions with the objective of training a

model to resolve clashes automatically (Hsu et al., 2020). This type of research has

Introduction 3

yielded promising results. However, the SL learns from a set of provided labeled ex-

amples, which presents a critical disadvantage in the lack of sufficient data within the

AEC sector.

In distinction to the SL, the RL is applicable when examples of desired behavior are

not available but where it is possible to evaluate examples of behavior according to

some performance criterion (Si et al., 2009). Consequently, our research aims to ex-

plore the application of RL as an approach to automate the conflict resolution process,

thereby reducing reliance on manual labor and improving the efficiency of this pivotal

aspect of BIM development.

1.2 Research Objectives

The principal objective of this thesis is to:

• Set up a RL environment that integrates the real-world BIM model and rule-

based model checker to train an agent to autonomously resolve geometric con-

flicts.

The aim of this approach is to achieve a high degree of automation, requiring no input

of data or specific prior knowledge, with the intention of reducing the laborious manual

work involved in the conventional conflict resolution process.

1.3 Reading Guide

This thesis is structured in the following chapters:

• Chapter 2 provides an overview of state-of-the-art research. The studies are

classified into three categories based on the research topic. Their limitations are

discussed, and the research gaps are summarized.

• Chapter 3 outlines the hierarchical structure of the IFC file, the principle of soft-

ware Application Programming Interface (API), and the underpinnings of the RL

algorithm, with a particular emphasis on the Proximal Policy Optimization (PPO).

This information provides a useful theoretical basis for understanding the pro-

posed framework.

• Chapter 4 details the methodology of the research, which is of crucial im-

portance for the thesis. The integration of the RL environment with the model

checker using IFC file, and the application of PPO are explained in depth.

Introduction 4

• Chapter 5 describes the practical implementation of the proposed method, illus-

trating the translating of the theoretical framework into practice by employing

Solibri APIs and diverse Python libraries.

• Chapter 6 demonstrates three distinct use cases and the configuration of the

experimental setting for each. The training results of the RL algorithm are pre-

sented and analyzed individually.

• Chapter 7 addresses the research questions, discusses the research findings,

and summarizes the contributions of this thesis. The limitations of the study and

the future possibility of the proposed framework are also provided.

Related Works 5

In this section, the state-of-the-art studies related to this research are presented. The

findings of various studies on model checking can offer insights into the BIM conflicts.

The application of different algorithms and methods to automate the resolution of con-

flicts can demonstrate the prevailing direction and advancements being made in this

field. Furthermore, the research of the employment of RL in the broader BIM and mod-

eling domain can provide valuable references of the practical transformation of a real-

world problem into a modeled one. At the conclusion of this section, the characteristics

and limitations of these studies will be summarized, thereby identifying the research

gap that remains to be explored.

2.1 BIM-Based Model Checking

BIM model conflicts encompass a multitude of different issues. As a prerequisite for

solving them, it is important to first comprehend how conflicts in BIM are identified and

detected, as well as which parameters are of paramount importance for defining con-

flicts. By doing so, we can ascertain the most suitable tool for detecting conflicts in our

research and concentrate on the most prevalent conflicts that can be resolved using

RL, while also acknowledging the diversity of conflicts under study. Consequently, re-

search on model checking itself is also crucial.

With the help of work breakdown structures, using better organized 3D BIM model to

detect clash has been proven more efficient and accurate than using 2D drawings (Gi-

jezen et al., 2010). Because of the hierarchy structure present in IFC, in addition to the

3D shape of building objects, clash detection using the IFC standard has been shown

to have higher performance (Tizani, 2010). Two of the fastest ways to calculate geo-

metric collisions are presented: (1) comparing the distance between the centers and

the sum of the radiuses of two spheres, and (2) comparing axis-aligned bounding

boxes. More accurate detection requires the calculation of ray-triangle intersections.

2 Related Works

Related Works 6

A formalized knowledge representation for spatial conflict coordination was proposed

for clash documentation (Wang & Leite, 2016). It comprises four categories:

1. Clash description includes information used to describe the objects, such as

system name, coordinate, length, object type etc.

2. Clash context represents two types of information: topological context, such

as location, and constraints.

3. Clash evaluation contains clash severity, clash cause and solution

4. Clash management involves the identification and monitoring of the coordina-

tion process.

A knowledge base management system was integrated with BIM to improve the auto-

mated rule checking specifically for MEP systems (Xie et al., 2022). They identified

three modules for the proposed checking system: system integrity checking, compo-

nent’s property checking, and spacing constrains of element checking. While current

BIM model checker has facilitated the easy detection of conflicts, a notable proportion

of these conflicts are either permissible or tolerable. However, the model checker usu-

ally does not adequately reveal this information. To address this shortcoming, a rule-

based reasoning system and Machine Learning (ML) classifiers were implemented

(Huang & Lin, 2019). This research took structural clashes against the MEP model as

a study example and revealed that the two most important factors for determining the

severity of clashes are the type of the two clashing components and their placement.

The extant literature underscores the complexity and diversity of model conflicts in BIM,

emphasizing the superiority of 3D BIM models and the utility of IFC format. A Variety

of methodologies have been proposed to enhance the detection and identification of

conflicts. In light of the inherent impossibility of resolving all conflicts at once, the act

of prioritization assumes considerable importance. Geometrical spatial conflicts are of

particular significance and have been the focus of most studies. It is frequently ob-

served in the literature that two elements are in conflict with each other. Even in in-

stances where there are more than two elements involved, they can be effectively re-

duced to a two-by-two conflict structure. Consequently, our research endeavors have

been directed towards the resolution of two-element geometrical conflicts. Some of the

key factors, such as element type, coordinates and location, were repeatedly high-

lighted in different studies, which are very informative for our research, especially for

the definition of custom RL environment state.

Related Works 7

2.2 Automatic Conflict Resolution in BIM model

With the increasing attention on BIM conflicts, several noteworthy studies have been

conducted to the development of automated solutions for BIM-based clash resolution.

These efforts have employed various AI technologies, including RL algorithms, to en-

hance the efficiency and accuracy of conflict resolution processes. The integration of

AI into BIM workflows has led to significant advancements, allowing for more sophisti-

cated analysis and decision-making capabilities.

In the early years, researchers proposed an automated approach for identifying and

resolving spatial clashes in MEP design (Radke et al., 2009). The proposed resolution

involved moving one of the two clashing entities to solve spatial conflicts. This basic

approach can be seen in many subsequent studies. However, due to the technological

limitations at that time, the approach still required much human intervention and did

not utilize AI. An AI solution incorporating knowledge-based ML and heuristic optimiz-

ing techniques was developed to address design clashes in BIM model (Hsu et al.,

2020). Five experienced constructors were invited to participate extensively by com-

pleting a questionnaire. The results were collected, the underlying knowledge pattern

was analyzed, and then used as the basis for optimization. The questionnaire and the

test of the optimization approaches were all conducted in the same experimental envi-

ronment, which focused on the MEP systems in the basement of an actual student

residence.

Since one conflict can have different solutions, a fuzzy analytic hierarchy process was

proposed to prioritize various collected optimal clash resolution methods, and a Navis-

works plug-in was designed to automatically display the available resolutions (Ha-

sannejad et al., 2023). The weighting and prioritizing criteria in this research were also

obtained through questionnaires and expert consultations. Furthermore, the final deci-

sion was still required to be manually selected, and no additional clash detection was

conducted subsequent to the application of the resolution. To simplify the clash reso-

lution process, most research primarily focused on moving a single objective, which

can be challenging in practice. Therefore, considering it as a multi-objective optimiza-

tion problem, a second-generation non-dominated sorting genetic algorithm approach

was proposed to balance the optimization of multiple objectives (X. Liu et al., 2024).

Harode et.al. have investigated the general application of Supervised Learning (SL) for

clash resolution (Harode & Thabet, 2021). In their paper, the limitations of SL were

Related Works 8

pointed out, and a methodology combining SL and RL was proposed. The following

year, the authors explained this methodology in more detail (Harode et al., 2022). A

probabilistic model using an SL algorithm was designed. Information such as element

type, Revit category, orientation for both clashing elements, and system priority were

collected as input variables while the possible clash resolution decisions (moving ele-

ments up, down, left, right, changing the length or slope, and rerouting) were designed

as output variables. In the follow-up study, they further explored the common strategy

by adopting an artificial neural network prediction model that could suggest possible

clash resolution options, achieving an accuracy of 84% at highest (Harode et al., 2024).

In conclusion, many researchers have dedicated their efforts to improving automatic

BIM-based conflict resolution, employing a diverse array of AI technologies. However,

the majority of these approaches require input from existing data and the involvement

of experienced experts, and the application scenarios are also very limited. There ex-

ists a notable gap in the application of RL. Some researchers have put forth the con-

cept of integrating SL and RL, developing a framework to facilitate the integration. Nev-

ertheless, in their subsequent and more in-depth research, they devoted a significant

portion of their efforts to SL, while the research on the RL aspect has remained rela-

tively stagnant.

2.3 The Application of RL in General BIM

The rapid advancement of RL in recent years has demonstrated its potential for solving

complex problems across a range of domains. One notable example is the develop-

ment of AlphaGo (Silver et al., 2016), which outperformed human champions in the

strategic game of Go. In this section, we focus on research papers that employ RL to

address topics similar to or highly relevant to conflict resolution in BIM, including model

merging and reinforcement steel design. These studies illustrate the integrating role of

RL within BIM, offering valuable practical examples.

While situated in a different domain, general model merging issues bear significant

similarity to the conflicts that arise from model collaboration in the context of BIM. An

RL approach to automatically resolve merging conflicts based on quality characteristics,

as introduced by language modeling engineers as preferences, was proposed to ad-

dress model merging issues (Sharbaf et al., 2022). This RL-based resolution algorithm

does not require initial training data; however, the quality evaluation still heavily relies

on the involved engineers. Yang et al. proposed a Deep Reinforcement Learning (DRL)

Related Works 9

method for generating three-dimensional pipeline layouts (Yang et al., 2023). In this

study, a highly simplified simulated training environment was constructed, containing

several key elements in the space that affect pipeline layout. A series of rules were

defined to ensure that the generated space complies with real building standards and

that the geometric constraints of the pipelines prevent them from colliding with or pass-

ing through the obstacles or walls.

The design of Rebar in Reinforced Concrete (RC) structures is a crucial stage in the

structural modeling of BIM projects. Though the employment of BIM technology can

assist in the design process, achieving a clash-free design for each joint, particularly

with irregularly shaped RC structures and rebar, still demands labor-intensive manual

work. A framework targeted at this specific task was presented, combining a Multi-

Agent Reinforcement Learning (MARL) system with BIM (J. Liu et al., 2019). Each

rebar was regarded as an intelligent RL agent. The rebar design problem was formu-

lated as a three-dimensional path-planning problem. The authors described the pro-

posed RL framework in general terms using a fusion architecture for learning, cognition,

and navigation engines. The following year, they extended this work and implemented

Q-learning for a more realistic design of real-world RC structures (J. Liu et al., 2020).

The state, action, and immediate and delayed rewards for the MARL were designed

with consideration of actual constructible constraints and design codes. The jointed

columns or beams were designed individually in the transformed grid-based digital en-

vironment. Each designed structure was considered an obstacle for the next, ensuring

the complete design was clash-free. Comprehensive experiments on three typical

beam-column joints in a two-story RC building frame were conducted to evaluate the

proposed method. The average success rates and time spent confirmed that the pro-

posed framework is efficient and effective. The same framework was extended to au-

tomatically generate clash-free rebar designs in prefabricated concrete wall panels,

integrating a Generative Adversarial Network (GAN) to learn from designers’ experi-

ences with existing design drawings and generate 2D preliminary rebar designs (P. Liu

et al., 2023). Similarly, another RL method was proposed based on the Deep Deter-

ministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2019), with the objective of

handling higher-dimensional tasks in continuous action space and designing an RC

beam in a cost-effectively manner while considering both flexural and shear reinforce-

ment arrangements (Jeong & Jo, 2021).

Related Works 10

It is notable that the utilization of RL has achieved remarkable outcomes in related

fields, implying the potential for the practical application of RL in the context of auto-

matic BIM conflict resolution. These approaches to transforming real-world problems,

simplifying, and modeling the environment are worthy of emulation. A number of RL

algorithms, including Q-learning, DQN, and MARL, have been demonstrated to resolve

different problems, thereby showing the extensibility of the RL framework. However,

this also underscores the importance of selecting the appropriate algorithm.

2.4 The Research Gap

The results of the literature review demonstrated that the resolution of conflicts in BIM

model has attracted considerable attention from researchers in recent years. Many

conflict detection methodologies have been proposed, and various tools have been

developed to automatically or semi-automatically address conflicts that emerge during

the collaboration process. However, despite the progress made in BIM clash resolution,

there remains significant gaps in the research, which are reflected in the following as-

pects:

• Limited exploration of RL: Although a framework combining RL and SL has been

proposed, the direct application of RL for general BIM conflict resolution has

been scarcely studied. Researchers have focused more on automatic design

within BIM, particularly in RC design.

• Demand for data: As observed in numerous studies, researchers have pro-

posed a range of ML algorithms to resolve conflicts, which require a large quan-

tity of training data to achieve satisfactory results (Sutton & Barto, 1998). How-

ever, as previously stated, the dearth of adequate datasets in the BIM domain

poses a formidable challenge for implementing SL in this field. While the input

from several experts may be suffice for specific use cases, this approach is

evidently limited by the number and expertise of the experts involved and is

difficult to generalize to other scenarios.

• Simplification of the BIM environment: Due to the complexity of real BIM model,

most research studies employed significant simplifications, extracting only the

essential information to create a simulated model and environment for RL train-

ing. However, a BIM model is an integrated whole, with complex interrelations

among its objects, making simplifications less than ideal.

Related Works 11

• Limited use cases: Most research has concentrated on a specific type of direct

clash within BIM model, with MEP systems representing the most extensively

studied discipline due to their complexity. However, architectural conflicts, struc-

tural conflicts, and interdisciplinary conflicts are also prevalent. Furthermore, in

addition to clashes, there are numerous other types of geometrical conflicts. As

a result, the generalization of the objects studied is limited.

Given the aforementioned findings and current limitations, our research will focus on

the practical application of an RL approach for a real IFC model for geometric conflict

resolution. No extensive data is required, and the widely used RL algorithm, PPO, will

be employed. This algorithm is known for its balance between simplicity and perfor-

mance. The integration of powerful BIM model checker facilitates the seamless detec-

tion of all conflicts within the IFC model throughout the training process, thereby en-

suring comprehensive compliance across the entire model. To illustrate the versatility

and adaptability of our framework, three use cases will be examined, encompassing a

diverse range of geometric conflicts from various disciplines. This study aims to bridge

the existing research gaps in the field of automatic BIM conflict resolution.

Theoretical Basis 12

This chapter presents several fundamental theoretical concepts relevant to the pro-

posed approach for BIM conflict resolution. It covers the introduction of IFC file format,

the principles of API, and an overview of RL with a particular focus on the PPO algo-

rithm. This foundation provides a comprehensive guide for understanding the method-

ology of this thesis.

3.1 Industry Foundation Classes File

In comparison to existing research, the IFC model us selected as the data representa-

tion format for the entire workflow rather than relying on a specific model format of BIM

authoring software, to enhance generalizability of our approach. Industry foundation

classes is an international standardized digital representation of the built asset devel-

oped by buildingSMART. The IFC model has been certified under ISO 16739-1:2018

and is designed to promote vendor-neutral and usable capabilities across a wide range

of hardware devices, software platforms, and interfaces for various use cases (build-

ingSMART technical, 2024). To date, the buildingSMART team has developed the lat-

est official version, IFC 4.3. Furthermore, the majority of BIM authoring tools offer ex-

port and import functionalities for IFC files, ensuring the interoperability of IFC across

the AEC sectors.

IFC is a complex data model that allows for the representation of both the geometrical

and semantic structures of a building model using an object-oriented approach (Borr-

mann et al., 2018). Each object type, such as walls, windows, and columns, has a

hierarchical representation that defines its specialization and generalization relation-

ships. All objects and their relationships together constitute the digital building environ-

ment. This structure is crucial for ensuring that the IFC model can be accurately de-

composed into simpler parts, which is necessary for downstream applications, such as

simulation, analysis, and quantity take-off. To gain a deeper comprehension of this

structure, the schema of a conventional building component, the window, is presented

as an illustrative example in Figure 3.1:

3 Theoretical Basis

Theoretical Basis 13

• Figure 3.1: An Example Diagram of IfcWindow (buildingSMART, 2024)

From the instance of IfcWindow, the concept of entity inheritance is clearly understood.

The hierarchy commences with the specific building element type, IfcWindow, and pro-

gresses up to the most abstract and root class, IfcRoot. Each class possesses a dis-

tinct set of attributes and dependencies. This hierarchy follows the semantic relation-

ship chain, yet it also includes interrelationships with geometric representations, such

as the classes IfcObjectPlacement and IfcProductRepresentation, along with their sub-

classes, which are not detailed in the schema. The pre-defined attributes, some of

which are specific and can be inherited by other classes, function to organize infor-

mation clearly, ensuring correct and straightforward interpretation and extraction by a

variety of platforms, including Python. Furthermore, there are classes like IfcBuildingEl-

ementProxy, which accommodate non-standard building elements, providing similar

functionality to any subtype of IfcBuildingElement without a predefined meaning.

In addition to the hierarchical structure, an object is also defined by various relation-

ships, such as spatial relationships that link it to a story, building, site, and ultimately

the project. The complexity and extensiveness of the IFC model are evident, which is

why a Model View Definition (MVD) is introduced to define a subset of the full data for

uniform exchange scenarios. For IFC 4, two standard pre-defined MVDs are available:

the Reference View and the Design Transfer View. The latter contains more detail for

scenarios where continued design and editing are required.

Theoretical Basis 14

IFC plays a pivotal role in BIM project workflows. It has become the mandatory hand-

over format for public building projects in countries like Singapore (Building and Con-

struction Authority, 2013). Given the necessity for multidisciplinary teams to exchange

and merge IFC files in the course of their collaboration in BIM, IFC is a suitable choice

for our research, which aims to encompass conflicts across all architectural, structural,

and MEP disciplines.

3.2 Application Programming Interface

An application programming interface is a set of rules or protocols that enables soft-

ware applications to communicate with each other, facilitating the exchange of data,

features, and functionality (IBM, 2024). Essentially, an API defines the methods and

data structures that clients or developers can use to interact with an application, ser-

vice, database, or component, often without needing to understand its underlying im-

plementation. APIs are fundamental to modern software, enabling efficient and seam-

less collaboration between different applications and services.

• Figure 3.2: The Schematic Diagram of API

APIs work by facilitating data exchange between applications, systems, and devices

through a request and response cycle. As illustrated in Figure 3.2, a request is sent to

the API, which then retrieves the data and returns it to the user (Postman, 2024). APIs

can be classified in various ways. One such classification is based on access levels,

which distinguishes between three types: (1) private APIs, (2) public APIs, and (3)

partner APIs. Another classification is based on use cases, which identifies four types:

(1) data APIs, (2) operating system APIs, (3) remote APIs, and (4) web APIs. This

paper will focus on public operating system APIs and public web APIs.

Operating system APIs, also referred to as local APIs, delineate how applications uti-

lize the services and resources of the operating system. Examples include Java APIs

and Python APIs, which provide a set of functions for interacting with the operating

system, local file systems, networks, graphical user interfaces, and databases. These

Theoretical Basis 15

APIs require an understanding of the underlying logic of the software, assisting devel-

opers in the creation, management, and control of applications at the local level in

accordance with their custom needs. In contrast, web APIs facilitate interaction over

the internet, often using Hypertext Transfer Protocol (HTTP) as the communication

protocol. They are commonly used for services such as data retrieval, remote proce-

dure calls, and interaction with third-party platforms. One popular architectural style for

web APIs is the REpresentational State Transfer (REST) API.

A REST API, also known as a RESTful API, is based on a stateless, client-server com-

munication model where the client interacts with resources on the server using stand-

ard HTTP methods. Each resource is represented by a unique uniform resource iden-

tifier, and four typical methods correspond to different types of operations are:

• GET

• POST

• PUT

• DELETE

APIs are highly versatile and can be utilized to support a multitude of use cases, in-

cluding the integration of internal systems, the enhancement of functionality, and the

automation of repetitive tasks. This versatility makes them an appropriate instrument

for our research. Given that a building is an integrated complex with intricate interrela-

tionships between components, the relocation of one object to resolve a conflict may

result in violating spatial constraints of other objects, potentially causing new conflicts.

Abstracted training environments are ill-equipped to respond to this problem, even

stetted up with custom checking features. This is because such customized detection

functions are typically rudimentary, and the vast majority of other elements within the

model are not abstracted into the training environment. Consequently, the optimal so-

lution is to employ a comprehensive BIM model and a robust model checker to oversee

the training process. Leveraging a well-established BIM model checker and its public

APIs for developers can effectively address this challenge.

Theoretical Basis 16

3.3 Reinforcement Learning Algorithm

Machine learning is a computational method that uses experience to improve perfor-

mance or make accurate predictions (Mohri et al., 2018). Based on how and what ex-

perience is transferred to the machine, machine learning can be divided into three cat-

egories: (1) Supervised Learning, (2) Unsupervised Learning, and (3) Reinforcement

Learning. In our research, we focus on Reinforcement Learning.

3.3.1 Reinforcement Learning Fundamentals

In the field of reinforcement learning, the interaction between the agent and the envi-

ronment is modeled using the mathematical framework known as the Markov Decision

Process (MDP). Unlike the other two types of ML, RL does not require initial training

data, whether labeled or not. Instead, the RL model explores its environment freely,

gathering knowledge based on its successes and failures. The RL model then applies

this self-collected knowledge to adjust its behavior, thereby enhancing its accuracy in

prediction and interaction with its environment.

A RL model consists of two components:

1. Agent: the entity that observes the environment, inferences, makes decisions

and takes action.

2. Environment: the external system with which the agent interacts.

The learning process of an RL agent is analogous to human learning. For each suc-

cessful interaction with the environment, the agent receives a numerical reward to en-

courage similar future interactions. During the interaction between the agent and the

environment, four important terminologies are involved:

1. State (𝑠): represents the information contained in the environment at a specific

point in time.

2. Action (𝑎): refers to the interactions or decisions the agent makes with the en-

vironment.

3. Policy (𝜋): the strategy that the agent employs to determine its actions based

on the current state.

4. Reward (𝑟): the numerical value the agent received from the environment after

taking an action.

Theoretical Basis 17

• Figure 3.3: The Schematic Diagram of RL

The schematic diagram in the Figure 3.3 illustrates the training process of RL. The

agent observes the current state (𝑠𝑡) of the environment at a given time 𝑡 and takes an

action (𝑎𝑡) that is determined by the policy (𝜋). The policy is a mapping that represents

the probability of taking a specific action given the state (𝑠𝑡), denoted as 𝜋(𝑎 ∣ 𝑠𝑡). As

a consequence of the action, the state of the environment transitions from 𝑠𝑡 to 𝑠𝑡+1.

The agent also receives a feedback signal, namely the reward (𝑟𝑡) based on the suc-

cess or failure of the action. This one iteration of the agent-environment interaction is

defined as a step. The iterative loop continues until the environment reaches its termi-

nated state by successfully performing a sequence of actions or reaches its truncated

state by triggering a certain condition. The sequence of steps that starts with the initial

state and end with the end state is defined as an episode.

During the training phase, the agent refines the policy and learns how to respond to

states with appropriate actions that maximize the total reward. The reward received by

the agent at each step is an immediate reward, designated as 𝑟𝑡, while the goal of RL

is to maximize long-term cumulative rewards. Therefore, in addition to the current im-

mediate reward, it is necessary to consider the potential rewards that may be obtained

in the future. The total accumulated future reward that an agent receives over time,

starting from a specific time step 𝑡, is referred to as the return 𝐺𝑡:

𝐺𝑡 = 𝑟𝑡 + 𝛾 ⋅ 𝑟𝑡+1 + 𝛾2 ⋅ 𝑟𝑡+2 + 𝛾3 ⋅ 𝑟𝑡+2 + ⋯ = ∑ 𝛾𝑘 ⋅ 𝑟𝑡+𝑘

∞

𝑘=0

Theoretical Basis 18

The discount factors 𝛾 is introduced into the formula to represent the preference for

immediate rewards over future rewards. The return is a crucial calculation concept in

RL, as it serves as the basis for evaluating the effectiveness of policies, with the ob-

jective being to maximize the expected return. In particular, the State-Value function

and the Action-Value function of a policy can be defined to measure the expectation of

the return 𝐺𝑡 from a specific state under a certain policy and the expectation of the

return 𝐺𝑡 from a specific state after executing a specific action.

The State-Value function:

𝑉𝜋(𝑠) = 𝔼𝜋[𝐺𝑡 ∣ 𝑠𝑡 = 𝑠]

Here

𝑉𝜋(𝑠): The expectation of the return that can be achieved by executing the policy 𝜋 in

the current state 𝑠

𝜋: The current policy being followed, determining the probability distribution over ac-

tions

𝔼: The expectation

This function measures the degree of merit to be in a state 𝑠 under a given policy, in

terms of the expected cumulative reward.

The Action-Value function:

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡 ∣∣ 𝑠𝑡 = 𝑠, a𝑡 = a]

With

𝑄𝜋(𝑠, 𝑎): The expectation of the return that can be achieved by taking an action 𝑎 in

certain state 𝑠 when following a policy 𝜋

While the State-Value function evaluates states, the Action-Value function evaluates

the quality of actions taken within those states. Both functions are central to value-

based RL algorithms.

In addition to learning the value functions, another approach to training the agent is to

directly refine the parameterized policy 𝜋𝜃. The fundamental concept underlying this

learning process is to increase the probability of those actions that lead to higher re-

turns until an approximately optimal policy is reached (Lehmann, 2024). The probability

of taking a specific action under the policy parameterized by 𝜃 is denoted as 𝑃:

𝑃𝜃(𝑎|𝑠) = 𝜋𝜃(𝑎|𝑠)

Theoretical Basis 19

A series of observations, actions and rewards within one episode is referred as a tra-

jectory. This trajectory can be expressed as:

𝜏 = {𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, … , 𝑠𝑡, 𝑎𝑡, 𝑟𝑡}

The total reward that the agent accumulates over this episode is the sum of the rewards

received at each step of this trajectory:

𝑟(𝜏) = ∑ 𝑟𝑡

𝑡

0

The objective is to maximize the expected value of the 𝑟(𝜏). The objective function is

defined as:

𝐽(𝜃) = 𝔼𝜏~ 𝜋𝜃
[𝑟(𝜏)]

To maximize 𝐽(𝜃), the typical approach is to perform gradient ascent. Hence, the gra-

dient over the learnable parameter 𝜃 is calculated as 𝛻𝜃𝐽(𝜃). Each time the policy is

updated, the general form of the policy update can be represented as:

𝜃𝑛𝑒𝑤 ← 𝜃 + 𝛼𝛻𝜃𝐽(𝜃)

where 𝛼 is the learning rate parameter of the algorithm, determining the step size in

the direction of the gradient. By calculating 𝜃, the policy-based algorithms are capable

of updating and optimizing its policy directly.

It is also noteworthy that during the learning process, the agent frequently encounters

the dilemma of whether to explore unknown states and actions to gain more infor-

mation about the environment and potential rewards, or to exploit the information al-

ready collected to optimize its strategy. This dilemma is referred to as the exploration

and exploitation trade-off.

3.3.2 Classification of RL Algorithms

Research on RL has a long history. In 1956, Bellman introduced the dynamic program-

ming approach, which is one of the cornerstones of RL (Bellman, 1956). The classic

Q-learning algorithm was proposed in 1989 (Christopher Watkins, 1989). In 2014, the

first deterministic policy gradient algorithm was introduced, significantly influencing the

development of RL (Silver et al., 2014). With the evolution of Deep Learning (DL), the

integration of DL with RL became feasible, and DRL has gained popularity as an alter-

native to heuristic algorithms. For example, visual input-based RL was applied to ve-

hicle control through a framework known as deep fitted Q-learning (Lange et al., 2012).

Theoretical Basis 20

Compared to traditional algorithms, DRL offers significant advantages, including the

ability to train models with generalization capability through trial and error for complex

problems. Well-trained DRL models can be applied directly to subsequent tasks with-

out additional training, thereby saving substantial time.

Over many years of development and research, RL has undergone significant ad-

vancements, resulting in the emergence of diverse algorithmic approaches. A compre-

hensive understanding of the classification of RL algorithms is crucial for gaining in-

sights into their respective strengths, limitations, and suitable application domains.

Based on different criteria, RL algorithms can be categorized into several classes.

Three of the most commonly used classifications are presented here.

1. Classification based on whether the agent learns the value or the policy:

• Value-Based Methods: In value-based methods, the agent explicitly learns a

value function, which estimates the expected return for each state. This ap-

proach relies on the State-Value and Action-Value functions introduced in the

previous subsection. Value-based methods are more efficient for storing and

computing in discrete state and action spaces. A classic example is Q-learning,

in which the agent stores all state-action pairs in a Q-table, learns the action-

value function 𝑄(𝑠, 𝑎) by referencing this table, and derives its policy by select-

ing actions that maximize Q.

• Policy-Based Methods: In policy-based methods, the agent directly learns a pol-

icy that maps states to actions without necessarily learning a value function.

Policy-based methods are well-suited to handling more complex and continuous

action spaces. A well-known policy-based algorithm is REINFORCE (Williams,

1992), where the agent directly learns the optimal policy using gradient descent,

rather than explicitly estimates the value functions.

• Actor-Critic Methods: Actor-Critic methods represent a synthesis of value-based

and policy-based approaches. The actor takes action based on the policy, while

the critic evaluates the current policy by estimating the value function. The actor

then uses this feedback to refine the policy directly. PPO (Schulman, Wolski, et

al., 2017) is a prominent example of an actor-critic algorithm.

Theoretical Basis 21

2. Classification based on the consistency between data collection policy and learning

policy:

• On-Policy Methods: On-policy methods utilize the same policy for both interact-

ing with the environment and learning from the collected data. Which implies

that the policy being improved is also the one used to generate the experience.

On-policy methods often yield superior stability and consistency, as the policy

is improved more directly and effectively, increasing the likelihood of converge.

On-policy algorithms like State-Action-Reward-State-Action (SARSA)

(Rummery & Niranjan, 1994) and PPO are widely used.

• Off-Policy Methods: Off-Policy methods employ two different policies: a behav-

ior policy for interacting with the environment and collecting data, and a target

policy for learning and improving. The target policy is ty the typically the optimal

policy that the agent is attempting to learn. Off-policy algorithms offer better

sample efficiency and broader exploration capability, thereby assisting in the

avoidance of local optima. Examples of off-policy algorithms include Trust Re-

gion Policy Optimization (TRPO) (Schulman, Levine, et al., 2017) and Q-learn-

ing, along with various extensions based on it.

3. Classification based on whether the agent learns the model of the environment:

• Model-Based Methods: Model-based methods entail learning a model of the

environment, often represented as a state transition function, which the agent

employs to plan and make decisions. These methods predict the outcomes of

actions and use this predictive capability to optimize the decision-making. An

example of a model-based approach is Model Predictive Control (MPC) (García

et al., 1989).

• Model-Free Methods: Model-free methods, in the other hand, do not require the

learning of an explicit model of the environment. Instead, they learn directly from

the observed consequences of interactions with the environment. This approach

focuses on learning the value functions or policy based on trial-and-error expe-

riences. Most approaches, including Q-learning and PPO fall under the category

of model-free RL.

Additionally, RL can also be classified according to various other criteria, such as

online versus offline methods, continuous versus discrete action space, single agent

versus multi-agent, and whether the model for action selection is a neural network or

Theoretical Basis 22

not. In consideration of the distinctive characteristics of the algorithms and the partic-

ular requirements of the conflict resolution issue we are investigating, our primary focus

is on the algorithm PPO. PPO is an actor-critic, on-policy, model-free, online DRL al-

gorithm. It is applicable to both discrete and continuous action spaces and is suitable

for both single agent and multi-agent environments.

3.3.3 Proximal Policy Optimization

Proximal policy optimization (Schulman, Wolski, et al., 2017) was first proposed by

OpenAI and has become one of the most widely applied algorithms in the field of RL.

PPO is a policy gradient-based algorithm designed to offer a more stable and efficient

approach to policy optimization. It is built on earlier policy-based methods, particularly

TROP, and overcomes some of their limitations, such as computational complexity and

implementation difficulty. As a result, PPO demonstrates robust performance and is

relatively simple to implement across a variety of tasks.

The various policy-based algorithms are based on the same principle as outlined in the

subsection 3.3.1, but employ different mathematical techniques to perform and opti-

mize the updating of the gradient. The central innovation of the PPO algorithm is its

approach to making the learning process more stable by constraining the extent of

policy updates. This is achieved through a method known as the clipped surrogate

objective, which is formulated as follows:

𝐿𝐶𝐿𝐼𝑃(𝜃) = �̂�𝑡[min(𝑟𝑡(𝜃) �̂�𝑡 , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡)](Schulman, Wolski, et al., 2017)

With:

𝐿𝐶𝐿𝐼𝑃(𝜃): is an alternative objective function to approximate the real objective function

need to be optimized.

�̂�𝑡: is the estimated expectation value

𝑟𝑡(𝜃): is the probability ratio

�̂�𝑡: is an estimator of the advantage function at timestep 𝑡.

𝜖: is a hyperparameter, usually a small positive value that defines the range of clipping.

Directly optimizing the objective function 𝐽(𝜃) usually leads to destructively large policy

updates. To address this problem, the “surrogate objective” 𝐿𝐶𝐿𝐼𝑃(𝜃) is introduced by

constructing constraints.

Theoretical Basis 23

The probability ratio 𝑟𝑡(𝜃) is calculated as:

𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡 |𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡 |𝑠𝑡)

𝜃𝑜𝑙𝑑 is the vector of policy parameters before the update, which means 𝑟(𝜃𝑜𝑙𝑑) = 1.

The advantage function is a metric that measures the “advantage” of taking a particular

action 𝑎𝑡 in a particular state 𝑠𝑡 compared to the average action at that state under the

current policy 𝜃. It provides a means of quantifying whether an action taken at time 𝑡

is more or less advantageous than what the policy would typically suggest. It is formally

defined as:

𝐴(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉(𝑠𝑡)

The advantage estimate �̂�𝑡 is an approximation of the advantage function 𝐴. It should

be noted that when 𝐴 is positive, this indicates that the action 𝑎𝑡 taken in state 𝑠𝑡 is

preferable than the average action in that state. Consequently, the policy should be

updated with the aim of increasing the probability of selecting the action 𝑎𝑡 in the future.

Conversely, when 𝐴 is negative, the action 𝑎𝑡 is deemed to be inferior to the average,

thus the policy should be adjusted to decrease the probability of selecting that action.

The clip function with three terms here means:

𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖) = {

1 − 𝜖 if 𝑟𝑡(𝜃) < 1 − 𝜖,

𝑟𝑡(𝜃) if 1 − 𝜖 < 𝑟𝑡(𝜃) < 1 + 𝜖,

1 + 𝜖 if 𝑟𝑡(𝜃) > 1 + 𝜖.

Essentially, it limits the probability ratio 𝑟𝑡(𝜃) to the range of [1 − 𝜖, 1 + 𝜖]. After the clip

of the 𝑟, the minimum of clipped and unclipped objective 𝑟 �̂�𝑡 is taken, so the final ob-

jective is always a lower bound.

Figure 3.4 shows a single timestep of the surrogate function 𝐿𝐶𝐿𝐼𝑃 as a function of the

probability ratio 𝑟, for positive advantages (left) and negative advantages (right). If 𝐴 >

0, the surrogate objective 𝐿 increases as the action 𝑎 becomes more likely. The policy

parameters 𝜃 are adjusted to reflect this change. By clipping the ratio 𝑟, this positive

effect on the objective function disappears once we move outside the clip range. This

clipping process is conservative, only applying the clip if the objective function would

be improved. If the policy changes in the opposite direction that decreases 𝐿, the ratio

𝑟 is not clipped due to the minimum function in the equation, resulting in the actual

value range of 𝐿𝐶𝐿𝐼𝑃 in this case being: (0, (1 + 𝜖)𝐴). Conversely, if 𝐴 < 0, the value

Theoretical Basis 24

range of 𝐿𝐶𝐿𝐼𝑃 is (−∞, (1 − 𝜖)𝐴). To put it another way, the clip in probability ratio 𝑟𝑡(𝜃)

is ignored when it would worsen the objective and included only when it would improv

it. This approach prevents extreme "optimization" due to a single data point, mitigating

the risk of drastic degradation in policy performance. The red circle on each plot shows

the starting point for the optimization. By employing the clipping mechanism, PPO sim-

plifies the complex constrained optimization process, reducing computational over-

head and making it easier to implement and tune.

• Figure 3.4: The clipping of PPO’s surrogate objective function (Schulman, Wolski, et al., 2017)

Apart from clipped surrogate objective, PPO can also employ a penalty on Kullback-

Leibler (KL) divergence with an adaptive penalty coefficient as an alternative. However,

the clipped surrogate objective is generally preferred for its simplicity and effectiveness,

and therefore most commonly associated with PPO. The details of the adaptive KL

penalty coefficient and the more complex mathematical calculations implicit in the PPO

algorithm are not covered here.

In addition to the core concept of clipping the optimization, PPO exhibits several other

noteworthy characteristics compared to other RL algorithms:

• PPO allows policy updates to be performed multiple times in each iteration using

the same data set, which improves data efficiency.

• PPO can be easily parallelized, allowing it to be applied to large-scale problems.

• PPO is capable of effectively balancing exploration and exploitation, making it

suitable choice for complex environments where other methods may encounter

difficulties in converging or require extensive tuning.

Theoretical Basis 25

In conclusion, PPO represents a substantial advancement in the field of RL. By main-

taining the updated policy “proximal” to the previous one, PPO ensures stability in the

learning process and address the limitations of previous policy gradient methods. This

has made it a popular choice for training agents in diverse environments, from simu-

lated games to real-world robotic tasks, since its introduction. Consequently, it is the

RL algorithm that we employ in this research.

Methodology 26

This chapter presents our approach, which applies RL to automatically resolve geo-

metric conflicts in a BIM model. Our methodology integrates the BIM model and a

model checker into the RL environment, thereby facilitating the training with real BIM.

Figure 4.1 illustrates the proposed framework.

• Figure 4.1: The framework of this study

4 Methodology

Methodology 27

Fig.4.1 displays the pipeline of our approach. The process commences with an existing

BIM model that contains various geometric conflicts. The IFC file is firstly imported into

the model checker, which is integrated into the established RL environment where the

agent operates. The RL training loop proceeds as follows: the agent takes action to

reposition (move or rotate) the conflicted components within the BIM model. Subse-

quently, the environment is updated in response and based on the checking results of

the integrated model checker, the agent receives reward and updates its policy ac-

cordingly. The iteration continues until the environment reaches a terminated state,

indicating that the BIM model has passed the conflict check. At this point, the conflicts

have been successfully resolved, and the final conflict-free BIM model is exported as

the resolution. The RL agent learns the optimal conflict resolution strategy through this

training progress, with the objective of minimizing both the number and the severity of

conflicts reported by the model checker. The trained RL model is saved for further

evaluation and testing. This chapter will detail how the conflict resolution task is mod-

eled in the form of RL, including the construction of state, action, and reward modules

based on the OpenAI Gym framework (Brockman et al., 2016) and the application of

the PPO algorithm as the underlying engine for the agent.

4.1 State Module

In the context of RL, the concept of state is fundamental to the decision-making pro-

cess of an agent. The state represents the current situation of the environment with

which the agent interacts. The accuracy and completeness of the state representation

are crucial, as they directly influence the agent's capacity to predict future states and

outcomes, and consequently, to learn an optimal policy. In this study, the environment

is constructed using the Gym framework, which is a Python library for the creation and

manipulation of RL environments. The modularity and flexibility of Gym facilitate the

creation of custom environments tailored to specific research needs. Its compatibility

with various RL libraries serves to further enhance its utility, making it a powerful tool.

In Gym, the term “observation” is often used interchangeably with “state”. However,

they are not always identical. An observation is the data that the agent receives from

the environment at each step, which may be a full or partial representation of the un-

derlying state. In many practical scenarios, the observation only provide partial key

information, meaning that the agent must learn to infer or approximate the true state of

the environment from the observations due to the high level of complexity involved.

Methodology 28

In contrast to other studies that construct an abstracted and highly simplified building

space and building model comprising only a few relevant elements for training pur-

poses, our research integrates a complete IFC model into the RL environment. In a

real BIM model, the relocation of a single element may have ramifications for numerous

adjacent components. Consequently, a multitude of regulations and constraints must

be considered. By employing a real IFC model, our approach addresses the intricacies

and interdependencies intrinsic to actual building designs. This signifies that the state

encompasses all components and semantic information within the BIM model. How-

ever, it is impractical to use state to represent the complete environment. Therefore,

based on the findings presented in section 2.2, we focused on: (1) information about

the conflicts and (2) the components causing these conflicts. This knowledge about

the conflicts and the properties of the components is extracted as observations. The

parameters of the observation space design are summarized in the following table:

Key parameters Parameter definition

number of conflicts
The total number of conflicts that we aim to re-

solve in the BIM model.

severity of conflicts
The accumulative severity indicator for conflicts

that we aim to resolve in the BIM model.

number of created conflicts

The total number of conflicts, that we do not in-

tend to cause, but arise during the iteration due

to inappropriate action.

severity of created conflicts
The accumulative severity indicator for created

conflicts that we do not intend to cause

element type
element 1

The IFC class of the element.
element 2

element rotation
element 1 The indicator for the current direction of the el-

ement. element 2

element vertices
element 1 The calculated world-coordinates of the eight

vertices of the bounding box of the element element 2

Table 4-1: Summary of the observation parameters

Methodology 29

Number of conflicts represents the total number of existing conflicts in the BIM model.

The ultimate goal of the RL agent is to reduce this number to zero.

Severity of conflicts provides a measure of the overall severity of conflicts within the

model. Each conflict is categorized into three levels of severity: Low, Moderate, and

Critical. In order to quantify the severity in the RL environment, the three levels are

represented with the numbers 1, 2, and 3, respectively. The size of the number indi-

cates the severity of the issue, and the sum of these values helps in assessing the

cumulative impact of conflicts, thus providing a complement to the number of conflicts.

Created conflicts refers to new conflicts that are introduced by the agent’s actions.

These conflicts are tracked separately because they indicate whether the agent's ac-

tions inadvertently worsen the situation. The agent is trained to not only resolve exist-

ing conflicts but also to avoid creating new ones. An effective policy should lead to zero

created conflicts alongside resolving initial conflicts.

Element type identifies the type of elements involved in the conflicts. Different IFC

classes are assigned specific numbers for easy identification and processing in RL.

Based on the conducted literature review, the type of the involved element can greatly

influence the severity and common resolution of this conflict, and guides decisions on

which element regarded as the agent to move or adjust.

Element rotation describes the orientation of the element as a matrix, with rotations

limited to multiples of 90 degrees. Simplifying rotation to discrete angles helps in man-

aging the complexity of geometric representation.

Element Vertices represents the vertices of the element’s axis-aligned bounding box

in the world coordinate system. It provides geometrical information about the element’s

size and placement. Given that different objects have different shapes, and that the

number of real vertices can vary significantly, especially for round objects, the vertices

of the element’s bounding box are calculated and included in the observation space.

Along with rotation, they represent the most important geometrical information about

the element.

A conflict in BIM model can be related to one or more elements. In the case of a single

element, it is typically the attributes and properties that fail to meet design regulations,

which is not within the scope of this research. For other issues, two elements are typi-

cally engaged in a state of geometric conflict. Even when more than two elements are

in a single conflict at the same time, they can be broken down into two-by-two conflicts.

Methodology 30

Accordingly, the element type, rotation and vertices parameters are considered with

regard to two conflicting elements, respectively.

With the exception of the element vertices, all listed parameters are formulated as dis-

crete numbers. These are collected and flattened to a one-dimensional vector as the

observation at each time step for the RL algorithm. The specific implementation details

for collecting these parameters using model checker APIs and IfcOpenShell are out-

lined in the following section.

4.2 Action Module

To successfully resolve conflicts within BIM models, actions should be formulated in a

way that allows the agent to directly manipulate the elements in the model in ways that

are practical and effective, thereby addressing the identified conflicts. Based on the

analysis of the literature and practical experience, the primary actions involved in re-

solving geometric conflicts generally involve moving or rotating one of the conflicted

elements, and in some cases, both.

Available action Action index Illustration

Move

Positive x: right 0

Negative x: left 1

Positive y: forward 2

Negative y: backward 3

Positive z: up 4

Negative z: down 5

Rotate

Clockwise 90° 6

Anticlockwise 90° 7

Table 4-2: Summary of the action

Methodology 31

An increase or decrease of 10 mm in the x, y, and z coordinates within a three-dimen-

sional coordinate space signifies one movement of the elements in disparate directions,

including right, left, forward, backward, up, and down. The value of 10 mm is deter-

mined because in most BIM software, it is the default tolerance of the clash detection.

Given that the element's orientation is constrained to four directions in the observation

space, the available actions are limited to rotations of 90 degrees in either a clockwise

or anticlockwise direction, centered on the z-axis.

Eight available actions are designed in the RL environment to construct a discrete ac-

tion space. Each possible action can be indexed and encoded as part of the action

space. These actions are summarized and illustrated in Table 4-2. They are performed

by a Python library, IfcOpenshell, which will be introduced in the subsection 5.2.

4.3 Reward Module

The reward system functions as the primary feedback mechanism, indicating to the

agent whether its actions are leading to improvements or deteriorations in the state of

the environment. This feedback is of paramount importance for the agent's learning

process, as it utilizes the rewards to evaluate the effectiveness of its actions and to

refine its policy to maximize long-term rewards. In the proposed RL system, the reward

is designed with three main considerations based on the state of the current BIM model,

mainly related to the output of the model checker:

1. The change in the number of conflicts

2. The number of created conflicts

3. The change in conflicts’ severity

The number of conflicts is at its highest at the beginning of the training. As the iteration

goes on, the number of conflicts decreases gradually until it reaches zero, with each

conflict number decreased:

𝑟𝑒𝑤𝑎𝑟𝑑 = 1

Should the agent's actions result in the reintroduction of previously resolved conflicts,

a penalty of 𝑟𝑒𝑤𝑎𝑟𝑑 = −1 is applied. This discourages the agent from taking actions

that undo previous progress.

Methodology 32

During the training process of changing the geometric position of the elements, it is

likely that new conflicts will arise, such as the agent intruding with another object

around or the agent moving out of the original space. In such instances, each new

conflict results in a penalty of

𝑟𝑒𝑤𝑎𝑟𝑑 = − 1

Given that we are modeling in a digital BIM environment instead of the physical world.

The conflict with other elements during the process is acceptable as long as it is re-

solved at the end the training. Therefore, in the case of a newly created conflict is

subsequently resolved, an equal reward 𝑟𝑒𝑤𝑎𝑟𝑑 = 1 will be granted. This reward en-

courages the agent to correct any additional issues that it may have introduced.

As outlined in section 4.1, conflicts are classified according to their severity, which is

measured on a three-point scale: low, moderate, and critical. The severity is quantified

as a number, which is used to compare when the conflict number remains constant.

This indicates either a minor improvement or regression in the model. For each unit

decrease in the severity score:

𝑟𝑒𝑤𝑎𝑟𝑑 = 0.2

This enables the agent to focus not only on the quantity of conflicts but also on their

gravity. Similarly, should the number increase by one, whether in regard to existing

conflicts or created conflicts, a punishment of 𝑟𝑒𝑤𝑎𝑟𝑑 = −0.2 will be administered.

In essence, the designed reward system guides the agent in learning to make deci-

sions that consistently lead to better states, which is evidenced by a reduction in the

number or severity of conflicts, thereby achieving the overarching goal of the task. In

order to conduct comprehensive checking of the model and to reflect the state of the

model within the reward system, the rulesets in the model checker are predefined align

with the aforementioned three considerations. The configuration of the rulesets takes

three aspects into account:

1. The primary rule to check specific types of conflicts that the agent aims to re-

solve.

2. The general BIM validation rulesets ensure that the complete model is compre-

hensively taken into account, including the implicit structural rationality

3. The additional rules to detect the specific conflicts that may arise during the

relocation of an element according to its type and properties.

Methodology 33

The subsequent chapter will provide a comprehensive account of the implementation

of rulesets in the model checker, along with a detailed exposition of the extraction and

processing of the checking results, which are integral to the proper functioning of the

reward system.

4.4 PPO-based Conflict Resolution Algorithm

To summarize the methodology, the resolution algorithm, which is the main contribu-

tion of this paper is presented. The PPO is selected as the policy optimization algorithm,

guiding the RL agent to take actions from the action space. The structured summary

of the proposed PPO-based resolution algorithm is described as follows:

Algorithm PPO-based conflict resolution

Reset Environment: generate new environment with a new IFC model

for each conflict ∈conflicts list do

 while steps < maximum_steps_per_episode do

 steps = steps + 1

 action: select action from action space using PPO policy

 update: perform the action and modify the IFC model

 check: check the state of the IFC model with the predefined rules

 result: extract key parameters from the result of model checker

 reward: calculate reward based on the reward system

 if the number of conflicts decreased then

 Break while

 end if

 Else: Truncated

end for

Methodology 34

The primary loop of the code iterates over a predefined number of episodes, with each

beginning by resetting the environment. Upon each reset, the BIM model is reinitialized

with a new set of conflicts, thereby ensuring that each episode starts from a consistent

state and maintains the variability of the training environment. At each step, the agent

attempts to resolve one conflict by applying an action selected by the PPO policy, gen-

erating a new state of the IFC model, which is then evaluated by the integrated model

checker. The observation received is then utilized to calculate the reward, which guides

the agent’s learning process and policy updates. Upon the resolution of a conflict, the

algorithm proceeds to address the next conflict in the sequence. This iterative process

continues until all conflicts have been resolved, signaling the termination of this epi-

sode with the environment marked as "done". Alternatively, the episode may truncate

when the maximum step limit is reached. Details regarding the hyperparameters and

training logging settings will be provided in the next chapter. Further experiments and

three use cases will be presented in chapter 6.

Implementation Details 35

This chapter provides a detailed description of each technical implementation of the

proposed methodology, which employs a combination of BIM-based model checker

APIs and various Python libraries. The full implementation details of the RL system are

illustrated in Figure 5.1:

• Figure 5.1: Implementation of the RL system

5 Implementation Details

Implementation Details 36

5.1 Model Checker

Solibri Office was selected as the model checker for this research. It facilitates the

import of building models from various BIM authoring software through the standard-

ized IFC interface and offers an advanced and comprehensive library of customizable

rule templates to address the most demanding quality assurance tasks (Solibri, 2024).

5.1.1 Solibri Rulesets

Solibri provides a large quantity of pre-implemented rulesets, which can detect not only

geometric clashes, but also sematic errors in the model across various disciplines.

including architecture, structure and MEP. It is noteworthy that the rulesets are highly

extensible. The parameters can be adjusted to align with particular requirements, such

as filtering component types or establishing distance tolerances. Moreover, the

rulesets can be augmented through the utilization of Solibri Java API, which enables

the development of custom rulesets tailored to specific needs. Compared to design

check functionalities in a self-formulated environment, this degree of comprehensive-

ness and adaptability ensures that any unintended conflicts caused by relocating ele-

ments during training can be identified, thus maintaining the integrity of the BIM model.

The completed and accurate rule selections and setup can maximize the benefits of

the application of the model checker and ensure the optimal functioning of the RL re-

ward system. Conversely, the rules should not be excessively repetitive and should be

tailored to the specific objective, in alignment with the aforementioned three principles

in section 4.3. Figure 5.1 provides an example of selected rulesets in Solibri for the

use case of a column positioned in front of a window. In this particular instance, three

distinct types of rulesets are selected accordingly. The "Clearness in Front of Windows"

ruleset is the primary means of detecting the focused conflict that the agent aims to

resolve. Subsequently, a series of general rules are employed to ensure comprehen-

sive compliance with the integrity of the entire building, including an assessment of its

implicit BIM rationality. The “Components Above Columns” rule ensures that when the

column is relocated outside of the building, the model checker can indicate that a con-

flict indeed exists, even when the clearness of the window is guaranteed and there is

no collision between the column and other components.

Implementation Details 37

• Figure 5.2: An example of the predefined rulesets in Solibri

Once the rules have been selected, the implementation of a Python-based update and

checking progress, as well as the incorporation of the checking results into the RL

training environment represent a crucial aspect of our approach. The realization of this

process is made possible by leveraging Solibri APIs.

Solibri offers the possibilities of different kinds of API, and in this study, the integration

relies on both REST API and Java API. The objective is to achieve the following key

functionalities:

• Update the modified IFC model continuously

• Check conflicts within the IFC model

• Extract results for further interpretation in Python

Implementation Details 38

5.1.2 Solibri REST API

The Solibri representational state transfer API facilitates the first two tasks. This type

of API allows for easy integration with Python, making it well-suited for our needs. To

activate the REST API, the Solibri software must be launched with special command

line arguments:

Name Arguments Description

--rest-api-server-port
port number, for

example = 10876

Open Solibri with REST API in the given port

number

--rest-api-server-local-content
Show local content, like full paths for opened

model, instead just model name

--rest-api-server-http
Launch Solibri with http connection instead of

https

Table 5-1: The commands for launching Solibri using REST API

To meet our objectives, specific REST requests provided by Solibri are selected:

• /models/{modelUUID}/update (PUT) - This request is used to update the exist-

ing IFC model on the Solibri server. By sending a PUT request with the new IFC

file, the server updates the model accordingly. The PUT method is idempotent,

meaning that making the same request multiple times will yield the same result

without creating duplicate resources. Universally Unique Identifier (UUID) is a

128-bit label used for information in computer systems, and the {modelUUID}

path parameter is essential, as it uniquely identifies the specific resource on the

Solibri server. It must be obtained through another request before the training

loop begins:

• /models (GET) - This request retrieves the current models, allowing us to

obtain the necessary UUID. The model UUID remains consistent

throughout the training process.

• /checking (POST) - This request initiates a model check, utilizing Solibri’s com-

prehensive rulesets and returns the results.

However, the response of REST API checking provide limited information, particularly

lacking the elements’ Globally Unique Identifier (GUID), which is essential for identify

elements within the IFC file. Due to the current limitation of the Solibri REST API func-

tions, we have employed the Solibri Java API to achieve seamless integration with the

Python and the Gym environment. This offers more detailed access to the model data

and allows us to extract the required information, including the GUIDs.

Implementation Details 39

5.1.3 Solibri Java API

To facilitate the extraction of necessary information from Solibri following each model

check, a Java file named “CHECKING EXPORTER” has been programmed based on

the official templates provided by Solibri. This file will be executed each time the model

is checked in Solibri, with the objective of retrieving essential data for the RL environ-

ment.

Following the installation of the Java file into the Solibri software via Maven, a prelimi-

nary configuration is necessary prior to the inaugural utilization of the software. To

commence the Solibri software, navigate to the VIEWS tab and select the CHECKING

EXPORTER. A new window with the same name will appear, indicating that the tool is

ready for use. Once configured, the CHECKING EXPORTER runs automatically with

each model check conducted in Solibri. The Java API extracts specific information re-

garding issues detected during the check and exports this data into a Comma-Sepa-

rated Values (CSV) file for subsequent analysis. This process guarantees the availa-

bility of all relevant conflict data for integration into the RL environment. Each clash

instance comprises the following details:

1. IFC GUID of conflicting components

2. name of the rule violated

3. severity of the conflict

A snippet of the exported CSV file, obtained after performing the check with the se-

lected rules, as illustrated in Figure 5.2, is displayed in Figure 5.3:

• Figure 5.3: An example of the extracted checking results

Implementation Details 40

Solibri automatically assigns a severity to every issue based on predefined criteria,

such as the specific category of the result (e.g., incorrect door opening direction), or

the degree of deviation from a given requirement (e.g., too close a column to a win-

dow). Additionally, it can be customized through the use of severity component filter

parameter tables within the rule parameters, allowing users to tailor the evaluation of

the severity according to their specific needs.

These three types of information are specifically selected for two primary purposes:

1. Extracting IFC model information: The data is exported to a CSV file, which is

readily readable and manipulable using Python’s pandas package. Each row in

the CSV file corresponds to a single conflict in the IFC model, providing a clear

indicator of the model's current state during the optimization process. The dis-

tinct rule names and severity levels indicate the extent of the rule violations and

are directly correlated to the reward module.

2. Retrieving element profiles: The GUIDs of the conflicting components are uti-

lized as input into the IfcOpenShell toolkit to extract comprehensive profiles of

the components. These profiles encompass the component’s IFC type, orienta-

tion state, and vertices. Based on the profiles, the proposed RL system can

observe the changes of the model, which are then applied to update the obser-

vation for the agent.

Prior to the commencement of training, the initial settings in Solibri must be completed

manually. These include the implementation of the Java API, the classification of build-

ing elements, and the selection of appropriate rulesets for checking. Once the initial

configuration is complete, the entire training process is automated through the use of

Python scripting. This automation handles model checks, model updates, and the ex-

portation of certain check results functionalities in the framework.

5.2 IfcOpenShell

To construct an RL environment for the BIM model that permits the programmatic read-

ing and modification of IFC files, we employ a library named IfcOpenshell. IfcOpenShell

serves as a versatile digital tool, spanning from design to construction, that supports

our objectives. This open-source C++ software library is designed for working with the

IFC file format, and it also provides good Python bindings to the core C++ system, as

well as high level analysis and authoring functions (IfcOpenShell-Python, 2024). The

full capabilities of the C++ core are available in Python, making IfcOpenShell an ideal

Implementation Details 41

choice for seamless integration into our environment. IfcOpenShell supports a wide

range of operations within IFC files. In this study, we employ it to achieve two core

goals:

• Accessing geometric and semantic Information: IfcOpenShell enables the ex-

traction of specific geometric and semantic details about building components,

utilizing the GUID obtained from Solibri APIs. This information is crucial for the

RL observation module.

• Manipulating components: The library provides the functionality to move and

rotate building components within the IFC model. This capability is essential for

implementing the actions chosen by the RL agent, allowing the system to modify

the environment in response to the agent’s decisions.

Through these functionalities, IfcOpenShell plays a critical role in bridging the gap be-

tween the BIM model and the RL environment, enabling dynamic interaction and real-

time updates within the system.

5.3 Stable Baselines3

Stable Baselines3 (SB3) is a set of reliable implementations of RL algorithms in

PyTorch. In comparison to developing PPO from scratch, the algorithms offered by

SB3 are highly optimized and well-tested, ensuring reliable and consistent perfor-

mance across various environments. Moreover, the library facilitates seamless inte-

gration with custom environments made using the Gym framework. This enables us to

prioritize research and practical applications over the low-level algorithm implementa-

tion details.

Furthermore, SB3 incorporates a multitude of wrappers and utilities that significantly

enhance the flexibility and efficiency of workflows. These facilitate a seamless custom-

ization of the environment or action, data processing, and monitoring and logging of

training process. The built-in support for TensorBoard is crucial for our research, as it

enables the easy storage, visualization, and assessment of training processes. During

training, a CustomCallback class, derived from the BaseCallback, is designed to mon-

itor and log a series of actions, rewards, done states and observations. The Eval-

Callback is responsible for evaluating the model at periodic intervals, which can then

be visualized using TensorBoard, and saves the best-performing model based on eval-

uation metrics. The CheckpointCallback ensures that the model is periodically saved,

thus facilitating recovery and analysis.

Implementation Details 42

In conclusion, the IFC file and Solibri APIs are employed in conjunction to construct

the RL environment. The IfcOpenShell library executes the selected resolution action

on the IFC model, with the actions guided by the PPO algorithm implemented by SB3.

Solibri then evaluates the new state of the IFC model using REST API to perform up-

dates and checks. Observation and reward are extracted using Java API, pandas and

IfcOpenShell to update the agent’s policy based on PPO. These implemented compo-

nents are tightly integrated, forming a complete and cohesive RL system.

The Experiments and Evaluation 43

This section first introduces the general experimental environment and configurations,

after which three proposed real cases are presented. In order to accommodate the

specific characteristics of different use cases, the settings in the RL environment and

in Solibri are adjusted accordingly. This approach facilitates a more streamlined train-

ing process.

6.1 The Experimental Environment and Configurations

The experiments were conducted in two distinct devices. The laptop is equipped with

a 12th Gen Intel(R) Core (TM) i5-12500H CPU and 16GB of RAM, while the operating

system and Solibri software are Windows 11 and Solibri Office 24.5.0.31, respectively.

The second computer is equipped with an Intel(R) Core (TM) i7-7700H CPU and 32

GB RAM, running the Windows 10 operating system and the Solibri Office 24.5.0.31

software. The simultaneous training of two distinct use cases is therefore possible.

However, a parallel environment was not constructed, as the vectorization of the RL

environment is not viable due to the integration of Solibri.

The employed PPO algorithm is implemented in the SB3 library. The neural network

architecture for the policy and value functions is a standard feedforward network, com-

monly designated as a Multilayer Perceptron (MLP). The network comprises two hid-

den layers, each comprising 64 units. The Rectified Linear Unit (ReLU) activation func-

tion is applied to each hidden layer, providing non-linearity and facilitating the learning

of complex patterns in the input data.

The policy network generates a set of action probabilities. In contrast, the value net-

work produces a single scalar representing the expected return from the current state.

The parameters of both networks are optimized using the Adam optimizer, with a learn-

ing rate of 𝟑 ∗ 𝟏𝟎−𝟒, which facilitates efficient learning while also balancing the trade-

off. A batch size of 64 is employed during training, which is a common choice to ensure

a balance between computational efficiency and the stability of gradient estimates. The

data was split into two batches, and the neural network was updated with 128 samples

per batch. The number of epochs was set to four, which helps ensure that the learning

process is thorough and that the updates are stable and effective.

6 The Experiments and Evaluation

The Experiments and Evaluation 44

It is important to acknowledge that the proposed methodology can be theoretically ap-

plied to any conflicts within IFC files that can, in practice, be resolved through the eight

available actions that can be performed by IfcOpenShell. However, for the purposes of

evaluating the feasibility of this approach, we have only implemented the RL algorithm

in three different specific use cases.

The training was conducted in a typical one-family house, as illustrated in Figure 6.1.

It comprises 8 entity types, 128 entities, and 659 relations. This standard IFC model is

an open-source model offered by IfcOpenShell. To create different conflicts in specific

use cases, this IFC file was imported and edited in Revit 2023. Subsequently, it was

exported back as an IFC file using the standard IFC 4 MVD: design transfer view.

Figure 6.1: The IFC model used for training

6.2 The Toilet-Wall Conflict

In bathrooms, the placement of the toilet seat in close proximity to the wall is regarded

as a conflict. The DIN 18040-2 standard specifies a minimum lateral distance of 30cm

between the toilet and the wall, as this distance is necessary to ensure accessibility

and comfort. Additionally, a shorter distance could lead to alignment issues with the

waste pipe of the plumbing system. This issue can be extended to many of the conflicts

of insufficient distance between furniture, and inadequate accessibility of spaces,

which are very common in the architectural discipline.

The Experiments and Evaluation 45

6.2.1 The Experiments

The training environment was initially established in Solibri, for the purpose of selecting

appropriate rulesets and modifying them to detect the toilet-wall conflicts and other

potential issues that may arise during the training process. These modifications were

made according to the specific requirements of our custom needs. For instance, if the

toilet is not moved in alignment with the wall, but rather at a perpendicular angel, it may

potentially resolve the conflict. However, this would result in the toilet being situated in

the center of the room, lacking any connection to the surrounding walls. This outcome

is clearly untenable. In other scenarios, the toilet may encounter interference from

other surrounding fixtures or furniture during its movement, or it may encroach upon

the designated bathroom space, even extending beyond the boundaries of the room.

Given these considerations, three distinct rulesets were especially selected within

Solibri, based on the pre-implemented rulesets:

1. § 26.15 & 26.17 Shower and Bathrooms. This rule was adjusted to check the

free space on both sides of the toilet seat. The parameter is set to 500mm on

both sides, thereby ensuring that the distance between the toilet seat and the

wall is at least 500mm.

2. # 222 Component Distance. A new rule is created under this ruleset in the Solibri

ruleset manager to ascertain the proximity of any IfcWall elements to the toilet

seat. The maximum distance permitted is 10mm, ensuring that the toilet is not

positioned in the center of the room.

3. § Object Intersections. The intersection of the toilet seat with other components

is checked with this rule.

The complete set of rules is displayed in Appendix A.1. In practice, this type of conflict

between a toilet and a wall is typically resolved by moving the toilet seat to an adjacent

position along the wall. Accordingly, the action space for this specific use case was

designed as a subset of the action space described in subsection 4.2. The available

actions are as follows: (1) positive x move, (2) negative x move, (3) positive y move,

and (4) negative y move. The distance traversed by each movement is 50 mm. This

number was selected because it allows for the resolution of the issue in 10 time steps,

assuming the policy is optimal, that is, the toilet seat is moved away from wall beside

it. In order to resolve a conflict by moving the element, it is preferable that the move-

ment be as minimal as possible to maintain the original design intent. Consequently,

The Experiments and Evaluation 46

for each conflict, the iteration lasts for a maximum of 30 steps (max_steps_per_epi-

sode).

It is also necessary to specify the observation space within the RL environment. In this

instance, the element type parameter is set to "IfcFlowTerminal" and "IfcSpace", which

indicate the classes of the two conflicting elements in Solibri. Although the conflicted

element is not a wall in Solibri, the space is constructed by four walls. And in this case,

the optimal policy is to move the toilet seat alongside the closest boundary of the space.

Consequently, the element with the type "IfcFlowTerminal" was designed to move

while the other remains stationary.

For the initialization of the environment, the toilet was positioned in eight distinct re-

gions within the bathroom of the house, as illustrated in Figure 6.2.

Figure 6.2: The initial placement regions of the toilet seat

The toilet is a pre-implemented plumbing fixture in Revit with a type of Toilet-Domestic-

3D. It is imperative that a toilet be placed in each region, connected with one wall while

with a distance smaller than 500 mm from another wall. The specific placement within

the region is also randomly generated, thus enabling the agent to learn all eight differ-

ent conflict scenarios with varying coordinates. In addition to the toilet, a Sink Vanity-

Square 20″ x 18″, was added in the bathroom. This allowed for the toilet to potentially

interact with the sink during the training process, thereby further enhancing the versa-

tility of the training environment.

The Experiments and Evaluation 47

6.2.2 Results and Analysis

The algorithm commences its operation without any prior knowledge of the environ-

ment. Figure 6.3 provides an illustration of the execution of episode 1, delineating each

step in a step-by-step manner. One unit in the scatterplot represents the movement

distance of one action, i.e. 50 mm. The arrow indicates the direction of the action. As

this is the inaugural instance of the algorithm processing each conflict, it attempts the

available actions randomly and reaches the truncated state after 30 time steps.

Figure 6.3: The illustration of the agent movement in the first training episode

Due to the training speed limit, the duration of the training of this use case is 10000

time steps. The training process itself takes approximately ten days. The most im-

portant evaluation diagram, which depicts the step and the reward, is presented in

Figure 6.4. As the training time step increases, the rewards received by the agent ex-

hibit oscillating behavior, indicating a lack of converge. An examination of the custom

training process loggings reveals that the agent has learned to consistently move in a

single direction, rather than randomly moving in all four directions. However, it has not

yet learned to move in one specific direction based on the observation space.

Figure 6.4: The training evaluation for the toilet-wall conflict

The Experiments and Evaluation 48

The underlying causes of the unsuccessful outcome can be attributed to two underlying

factors. The primary issue lies in the insufficient number of training steps. The integra-

tion of Solibri guarantees the completeness and thoroughness of the detection process;

however, it has also led to a decline in the training speed in comparison to training in

a simulated environment. The limited speed of API calls and the relatively slow pro-

cessing speed of the software are the primary contributing factors. One iteration of RL

training can be a time-consuming process. In particular, as the number of training iter-

ations increases, the time required for each round rises exponentially. The initial steps

may require only a few seconds, whereas after several hundred steps, the time needed

for the algorithm to run each iteration may increase to one minute and subsequently

decrease in efficiency. Despite this observation, a method of training 1,024 steps at a

time and then continuing the training manually was implemented to accelerate the pro-

cess. However, the total time remained considerable.

The second reason pertains to the tuning of hyperparameters, which are of critical

importance in the context of RL algorithms. While certain general guidelines exist, there

is currently no efficient method for hyperparameter tuning. Rather, the process is

largely based on trial and error. Despite the fact that several combinations of hyperpa-

rameters have been tested, the training effect has not been significantly enhanced,

particularly given the constraints imposed by the number of training steps.

6.3 The Column-Window Conflict

In the field of architectural design and structural engineering, the placement of a col-

umn too close to a window is a common conflict. This issue arises when structural

elements obstruct key architectural features, such as windows, which are crucial for

natural lighting and ventilation. The commonality of this conflict stems from constraints

in design, where the optimal placement of load-bearing columns coincides with window

locations. This practice contravenes principles of visibility, occupant comfort and day-

lighting standard in DIN 5034:2021-08.

6.3.1 The Experiments

In practice, the type of conflict between the column and the window requires the input

of architects and structural engineers. In order to determine which element should be

moved or even deleted in the event of an extreme scenario, it is necessary to consider

The Experiments and Evaluation 49

a number of factors, such as whether the column is load-bearing and whether the win-

dow constitutes a component of a specific façade design. For the purposes of training,

the process was simplified to entail the relocation of the column. The configuration is

analogous to that of the previous subsection. A comprehensive illustration of the

rulesets configuration in Solibri is provided in Figure 5.2 within subsection 5.1.1.

In accordance with the resolution assumption, the action space for this particular use

case was also designed as a subset of the action space described in subsection 4.2.

The available actions are as follows: The available actions are as follows: (1) positive

x move, (2) negative x move, (3) positive y move, and (4) negative y move. The dis-

tance of each movement is 100 mm, given that the distance tolerance before the win-

dow is 1 m. Consequently, the agent is capable of resolving the issue up to a maximum

of 10 time steps with the optimal policy, which entails moving the column in the oppo-

site direction of the window. For each conflict, the maximum of 30 steps is constrained.

Different from the previous conflict, the observation space for this use case is defined

as "IfcColumn" and "IfcWindow", which represent their IFC classes.

To the reset of the training environment, the column was positioned in nine distinct

areas distributed in front of each window in the house, as illustrated in Figure 6.5.

Figure 6.5: The initial placement area of the column

The length of the area is equivalent to the length of the window, while the width is 1 m.

The column placement within the area was also randomly generated, ensuring that a

column-window conflict was generated in the IFC file. The column that was added in

The Experiments and Evaluation 50

the original IFC file is a Concrete-Rectangular-Column 18 x 24 from Revit. In addition

to the column, three tables: Furniture_System-Standing_Desk-Rectangular 60″ x 30″,

were incorporated into the IFC model and situated in the office (Buero), living room

(Wohnen), and bedroom (Schlafzimmer). This allowed for the column to potentially

interact with the table during the training process, thereby emulating the actual sce-

nario. In this manner, the agent is capable of acquiring the requisite coordinates for a

multitude of potential conflict scenarios and the diversity of the training environment is

guaranteed.

6.3.2 Results and Analysis

The algorithm initiates its operation without any knowing of the environment, in a man-

ner analogous to that described in the preceding chapter. At the early stage of training,

the algorithm randomly attempts the available operations and gradually improves.

However, this use case presents the same issue as that observed in the first use case.

The reward obtained by the agent has demonstrated a similar fluctuating pattern and

has not reached a steady state as the training time step increases. As demonstrated

in the preceding example, the agent has similarly acquired the capacity to move multi-

ple steps in a single direction, as opposed to randomly in all four directions. However,

in lieu of learning to move in a particular direction based on the observation space.

To address this issue, an alternative approach was taken, whereby extensive experi-

mentation on hyperparameters tuning was conducted for this use case. This involved

runs extending to 2048 time steps, with the aim of ascertaining the impact of hyperpa-

rameters. The main hyperparameters that were adjusted included:

• ent_coef (the entropy coefficient) to control the exploration,

• learning_rate (the learning rate) to facilitate the agent's adaptation to the envi-

ronment,

• batch_size (the size of the batch to update the gradient) to stabilize the gradient

update

• n_steps (the rollout buffer size) to change the time steps of observation before

updating the policy

Moreover, given the discrete action space and the issue of insufficient data samples

resulting from the limited training speed, training with the DQN algorithm was also at-

tempted. As stated in Chapter 3, the DQN algorithm is an off-policy one, and thus

The Experiments and Evaluation 51

theoretically more suitable for situations where data is insufficient. Furthermore, for a

discrete space, the DQN algorithm is a relatively simple choice. Figure 6.6 illustrates

four of the training evaluation's diagrams.

Figure 6.6: The training evaluation for the column-window conflict

The training results obtained with PPO are marginally superior, though the difference

is not statistically significant. Another notable finding is that the training speed of the

PPO is approximately 50% faster than that of DQN. This result further corroborates the

hypothesis that the primary limitation for the training is the restricted number of training

steps.

6.4 The Air Terminal-Door Conflict

A common conflict that arises in the integration of MEP systems with architectural de-

sign is the placement of air terminals, whether supply or return, in proximity to door-

ways. Positioning an air terminal too close to a door is generally discouraged, as the

movement of the door can significantly disrupt the airflow, leading to inefficiencies in

air distribution and potential discomfort for occupants. This design consideration is of-

ten guided by standards DIN EN 13779.

6.4.1 The Experiments

In consideration of the two preceding experiments, we proceed to further simplify the

environment with the intention of attaining optimal training outcomes. Moreover, the

movement of MEP objects is generally more challenging than that of other disciplines

due to the fact that MEP elements, such as pipes, ducts and cables, are typically situ-

ated in specific systems and are all interconnected. The movement of a single element

often necessitates the coordinated movement of numerous other related elements.

Therefore, in this use case, we also seek to illustrate the versatility and capabilities of

manipulating elements within IFC files.

The Experiments and Evaluation 52

The selected rulesets in Solibri are presented in Appendix A.2. The primary two rules

are to check whether the air terminal is sufficiently distant from the frame of the doors

and to check the intersection between building services and other surrounding compo-

nents. The illustration of the conflict is shown in Figure 6.7. A simple mechanical sup-

ply-return air system was modeled in Revit to create conflicts. Four of the air terminals

within the red circles with different directions were purposely positioned in front of the

doors.

Figure 6.7: The illustration of the air terminal-door conflict

In this use case, it is assumed that the second floor is unoccupied and can be utilized

for the positioning of the duct systems. In practice, this type of conflict is typically re-

solved by relocating the air terminal, particularly when there is sufficient space above

the ceiling. Therefore, the action space comprises the same four actions required to

move the air terminal in the x and y directions. To accelerate the training process, two

modifications have been implemented:

• The distance of each movement was set to 200 mm, thus enabling the resolu-

tion of conflicts in a more efficient manner. Under the optimal policy, one conflict

can be resolved in five steps.

• A knowledge-based restriction was introduced into the action space, whereby

an action that does not result in an increase or decrease in the distance between

the door and the air terminal will not be performed. In this case, the agent is

given a penalty of 𝑟 = −0.5 directly, and advance to the next step.

Different from the other two use cases, in the case of air terminal-door conflict, the

requisite movement is contingent upon the corresponding movement of the related

ducts and fittings. The utilization of the “port” class and the relations defined in the IFC

The Experiments and Evaluation 53

model enables the systematic tracing of related elements. Ports serve as pivotal con-

nection points for defining the flow relationships between different building services

components. It facilitates the seamless interconnection of elements including ducts,

fittings, and air terminals. In this use case, the diffuser is connected to an inport with

the relation type of IfcRelNests, which indicates that the port is a subcomponent of the

air terminal. In this context, the IfcRelConnectsPorts relationship is employed to define

the connection between the port on the air terminal and the port on the duct, specifying

the direction of the airflow. These relationships facilitate accurate modeling and the

hierarchical structure of the IFC file, thereby enabling the retrieval of all related ele-

ments’ GUID in this use case: the short duct, the fitting and the long duct. In addition

to the air terminal, the first two connected elements should also be relocated, and the

long duct should be shortened or lengthened accordingly.

Figure 6.8: The illustration of the agent for the air terminal-door conflict

In total, four conflicts must be resolved with a total of 20 steps required to achieve this

under the optimal policy. The maximum step limit is set at three times the number of

necessary steps, as previously stated, equating to 60 steps. With regard to the action

space, it is assumed that the agent performs invalid moves half of the time; therefore,

the maximum step limit is finally set to 120 steps. The element type parameter is set

to "IfcAirTerminal" and "IfcDoor". The same IFC model was used to reset the RL envi-

ronment each time.

The Experiments and Evaluation 54

6.4.2 Results and analysis

The training speed of this experiment is evidently more rapid than that of the former

two experiments, primarily due to the presence of two invalid actions. In particular,

during the initial stages of training, the agent would consistently select the invalid action

until reaching the truncation state of this episode. As illustrated in Figure 6.8, following

a significant reduction in complexity, the agent demonstrated the capacity to effectively

address the four specific conflicts. After training, in ten subsequent tests employing the

trained RL model, the RL model exhibited an average of 32 steps to successfully re-

solve the four conflicts.

Figure 6.9: The training evaluation for the air terminal-door conflict

For a scenario with four fixed conflicts, the agent needs around 1600 training steps to

get a good result. It is reasonable to assume, that for the other two experiments with

much more variations of conflicts, the necessary training steps would increase expo-

nentially.

Conclusions and Future Works 55

7.1 Conclusions

The objective of this study was to investigate the approach of automating the conflict

resolution process through the implementation of a PPO-based RL algorithm within an

integrated BIM environment utilizing an IFC model checker. The main contributions are

as follows:

1. The integration of the IFC model checker, Solibri, with the Python-programmed

formulated RL environment.

2. The proposal of the PPO-based RL algorithm to interact with the environment.

3. The definition of different conflict types and checking rules that are common in

the AEC industry to test the feasibility of the proposed framework.

4. The training of the RL agent in three different environments separately to re-

solve the conflicts.

A conflict resolution RL algorithm based on PPO techniques was presented, which

does not require initial input data to identify the optimal sequence of available resolu-

tion actions for a list of conflicts. The Solibri software was employed to detect and

export the data pertaining to the conflicts within the IFC model, including the compo-

nents that are in conflict, as well as the severity of the conflicts. Based on this, the

agent is able to observe the integrated environment. The parameters selected for ob-

servation include the number of conflicts, the severity of the conflicts, the IFC type of

the components, the rotations of the components, and the vertices of the components.

Subsequently, the agent selects the optimal action in accordance with the current pol-

icy, which is based on the PPO algorithm. The action is executed directly within the

IFC file, which is integrated as a component of the RL environment. A bespoke reward

function has been devised for the agent in conjunction with the model checker, ena-

bling the provision of the feedback. The reward function comprises three key changes:

the number of conflicts, the number of newly created conflicts and the severity of the

conflicts. Its applicability is evaluated through three experiments, which consider con-

flicts in architectural sub-aspects, between architectural and structural elements, and

7 Conclusions and Future Works

Conclusions and Future Works 56

between architectural and MEP elements. The experiment was successful in a simpli-

fied environment. The specific inheritance structure of the IFC model allows for a wide

range of applications in different scenarios and the effective manipulation of different

actual IFC elements.

7.2 Limitations

As pioneering research into the use of RL for BIM conflict resolution automation, the

results of the experiments applying the proposed approach did not meet expectations.

The following section will discuss the potential explanations for these outcomes and

the associated limitations.

The inadequate training step is the primary factor contributing to the unsuccessful train-

ing outcomes, which is attributable to the sluggish training speed of the environment.

Model-free RL algorithms are relatively sample inefficient. They require a substantial

number of samples, often millions of interactions to achieve something meaningful,

which is the key reason why most of the successes in RL were achieved on games or

in simulation only (StableBaselines3, 2024). However, the integration of Solibri re-

sulted in a discernible reduction in training speed during the training process. It was

observed that initially, the training process exhibited a significantly faster runtime com-

pared to subsequent phases. Besides, the CPU usage is relatively low, generally below

10%, while the memory usage is considerably higher, at 80-90%. It seems reasonable

to posit that the accumulation of data and parameters over time may have increased

memory usage and processing overhead, thereby further slowing down the training

process. Furthermore, the iterative nature of RL, in conjunction with the necessity to

frequently access, update and check the IFC model via Solibri, may have introduced

delays due to the extensive I/O operations involved. The Solibri REST API calls are

made over a network, and the condition of the network may change over training pro-

cess, resulting in increased latency. These factors collectively contribute to the ob-

served reduction in training speed over time. However, throughout the training process,

the computer with the larger RAM capacity tends to complete the training process at a

slower rate than the computer with 16 GB of memory. One potential explanation for

this discrepancy is that larger memory systems are shared among multiple users, and

the lack of full administrative privileges on the computer with the larger RAM capacity

may have restricted certain optimizations and configurations that could enhance train-

ing efficiency. Additionally, the software updates and configurations on the computer

Conclusions and Future Works 57

with the 32 GB RAM may have been limited, which could also have contributed to the

observed slowness in training speed.

A further limitation to the generalizability the framework is that the model is trained

separately in three scenarios due to the lengthy training times involved. From a practi-

cal standpoint, it would be advantageous to merge the model into a single one, as this

would enable the model to resolve all conflicts. This is a theoretically feasible approach,

given that the three models share a common framework. However, to enhance the

efficiency of the agent’s learning process and facilitate the optimal policy, certain nec-

essary adjustments were made to the distance of each movement, the available ac-

tions, and the number of IFC types. If one model is trained for the three use cases,

with each move being 10mm and invalid z-axis moves or rotations included, the num-

ber of steps required to resolve the conflict would increases exponentially. It is there-

fore evident that the training process will be even more time-consuming.

Another limitation is associated with its applicability across different models. During the

training process, only a standard one-family house IFC model with relatively simple

geometry was utilized. Despite the random positioning of the conflicting components

at the initialization of the RL environment and the addition of other elements around to

ensure the diversity and complexity of the conflicts in a certain degree, the application

of the trained model to larger and more complex models still requires further testing

and evaluation even if the training results of the three use cases are successful.

The experiments conducted to tune hyperparameter tuning were insufficient. The se-

lection of hyperparameters in RL has a significant impact on the rate of convergence,

the stability of the learning process, and the overall success of the learning task.

Properly tuned hyperparameters has the potential to markedly improve the efficiency

of the learning process and reduce training time. Nevertheless, Tuning RL hyperpa-

rameter does not have clear and sufficient scientific principles to work with (Li, 2018)

and the process of tuning these hyperparameters is notoriously challenging due to the

high dimensionality of the hyperparameter space of PPO and the stochastic nature of

RL environments. As a result, the identification of the optimal set of hyperparameters

remains a time-consuming and computationally expensive task in RL.

Conclusions and Future Works 58

7.3 Future Works

In response to the discussions and limitations identified in the previous subsection, our

future work will focus on improving the training speed, expanding the framework to

encompass a broader range of use cases, and applying the trained model to a variety

of more complex situations.

The primary objective is to investigate the potential for enhancing the integration of

Solibri in order to facilitate a more expeditious training process, which serves as a

fundamental basis for the subsequent improvements. Solibri provides a Java API,

which is primarily utilized for the purpose of customizing rulesets. However, the poten-

tial for integrating its Java API and the Python RL environment directly could prove an

effective method for accelerating the training process. This eliminates the necessity for

REST API calls, thereby accelerating the training process. Moreover, it may be feasible

to examine a specific region of the IFC model surrounding the conflicting components,

as the significant portion of the model remains unchanged throughout the training pro-

cess. By reducing the number of components that require examination each time, the

training process could be made to proceed more rapidly. Furthermore, the use of par-

allel environments could facilitate more efficient training and utilization of the CPU. As

Solibri permits the inclusion of multiple models within a single SMC file, it may be fea-

sible to envisage a scenario in which disparate agents can be controlled across distinct

models simultaneously. It may also be beneficial to investigate the memory allocation

of the computer in order to achieve a more balanced usage of CPU and memory. This

could entail the fine-tuning of the system's resource allocation policies or the imple-

mentation of more efficient algorithms for the handling of large datasets in memory

during training. Furthermore, enhancing training efficiency may be achieved by utilizing

more powerful hardware.

The exploration of unify the separately trained RL into one model also represents a

significant avenue for future research. Although the current proposed framework is

theoretically feasible, it requires meticulous calibration of the agent's learning param-

eters and a more precise framework. Further refinement of the reward, action, obser-

vation module could prove beneficial. For example, breaking different rules in Solibri

could be subject to disparate penalties, which would be determined in accordance with

the applicable building regulations. Alternatively, the distance of the movement could

not be defined in accordance with the element’s IFC type and the broken rule, rather

Conclusions and Future Works 59

than a fixed value of 10mm. A more comprehensive RL system could prevent expo-

nential growth in the required training steps. Research could focus on refining these

parameters to maintain a balance between generalizability and training efficiency. Fur-

ther exploration of alternative RL algorithms, such as DQN, could also provide insights

into potentially more suitable methods for the specific problem at hand.

Moreover, future studies should include the testing and evaluation of the RL model

across a range of IFC models, encompassing varying degrees of conflicts complexity

and structural diversity, rather than relying exclusively on the standard one-family

house IFC model employed in the present study. The complexity of the model should

be incrementally augmented, commencing with the successful conflict resolution of

relatively simple environments and subsequently progressing to the testing or further

training in somewhat more complex models. The implementation of a gradual progres-

sion reduces the amount of unnecessary training time. This could ensure the robust-

ness and applicability of the model in a broader range of practical settings. It would

also be beneficial to investigate how to increase the diversity of the initialized conflicts

in different IFC models. In the current experiments, the conflicted components' type

and dimension are the same, only the placement and orientation are randomly gener-

ated. Implementing advanced techniques for automated generation of conflict scenar-

ios, such as GAN, could further enrich the diversity of training data.

Finally, with regard to hyperparameter optimization, future work should incorporate the

use of automated hyperparameter optimization tools, such as the Bayesian optimiza-

tion strategy or the Optuna optimization framework, for the systematic tuning of the

parameters of the PPO algorithm. A comprehensive analysis of the training parameters

throughout the training process should contribute to more effective hyperparameter

tuning.

References

Bellman, R. (1956). DYNAMIC PROGRAMMING AND LAGRANGE MULTIPLIERS.

Proceedings of the National Academy of Sciences, 42(10), 767–769.

https://doi.org/10.1073/pnas.42.10.767

Borrmann, A., Beetz, J., Koch, C., Liebich, T., & Muhic, S. (2018). Industry Foundation

Classes: A Standardized Data Model for the Vendor-Neutral Exchange of Digital

Building Models. In A. Borrmann, M. König, C. Koch, & J. Beetz (Eds.), Building

Information Modeling (pp. 81–126). Springer International Publishing.

https://doi.org/10.1007/978-3-319-92862-3_5

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., &

Zaremba, W. (2016). OpenAI Gym (arXiv:1606.01540). arXiv.

http://arxiv.org/abs/1606.01540

Building and Construction Authority (2013). Singapore BIM Guide Version 2.

https://www.corenet.gov.sg/media/586132/Singapore-BIM-Guide_V2.pdf

buildingsmart (2024). Annex D (informative) diagrams. Annex D (informative) Dia-

grams IFC4.3.2.0 Documentation. https://standards.buildingsmart.org/IFC/RE-

LEASE/IFC4_3/HTML/annex_d/IfcWindow.html#Figure-D.A

BuildingSMART technical (2024). Industry Foundation Classes (IFC) https://tech-

nical.buildingsmart.org/

Charehzehi, A., Chai, C., Md Yusof, A., Chong, H.-Y., & Loo, S. C. (2017). Building

information modeling in construction conflict management. International Journal

of Engineering Business Management, 9, 184797901774625.

https://doi.org/10.1177/1847979017746257

References

References

Chen, H.-M., & Hou, C.-C. (2014). Asynchronous online collaboration in BIM genera-

tion using hybrid client-server and P2P network. Automation in Construction,

45, 72–85. https://doi.org/10.1016/j.autcon.2014.05.007

Christopher Watkins. (1989, May). Learning from delayed rewards. Cambridge Univer-

sity of Cambrige.

García, C. E., Prett, D. M., & Morari, M. (1989). Model predictive control: Theory and

practice—A survey. Automatica, 25(3), 335–348. https://doi.org/10.1016/0005-

1098(89)90002-2

Gijezen, S., Hartmann, T., Veenvliet, K. T., Hendriks, H., & Buursema, N. (2010). Or-

ganizing 3D Building Information Models with the help of Work Breakdown

Structures to improve the Clash Detection process.

Harode, A., & Thabet, W. (2021). Investigation of Machine Learning for Clash Resolu-

tion Automation. 228–218. https://doi.org/10.29007/n223

Harode, A., Thabet, W., & Gao, X. (2022). An Integrated Supervised Reinforcement

Machine Learning Approach for Automated Clash Resolution. Construction Re-

search Congress 2022, 679–688. https://doi.org/10.1061/9780784483961.071

Harode, A., Thabet, W., & Gao, X. (2024). Developing a Machine-Learning Model to

Predict Clash Resolution Options. Journal of Computing in Civil Engineering,

38(2), 04024005. https://doi.org/10.1061/JCCEE5.CPENG-5548

Hasannejad, A., Shirzadi Javid, A. A., & Bitaraf, I. (2023). BIM-based Clash Resolution

Process Using Fuzzy AHP Methods. Iranian Journal of Science and Technol-

ogy, Transactions of Civil Engineering. https://doi.org/10.1007/s40996-023-

01238-z

References

Hsu, H.-C., Chang, S., Chen, C.-C., & Wu, I.-C. (2020). Knowledge-based system for

resolving design clashes in building information models. Automation in Con-

struction, 110, 103001. https://doi.org/10.1016/j.autcon.2019.103001

Huang, Y.-H., & Lin, W. Y. (2019, May 24). Automatic Classification of Design Conflicts

Using Rule-based Reasoning and Machine LearningAn Example of Structural

Clashes Against the MEP Model. 36th International Symposium on Automation

and Robotics in Construction, Banff, AB, Canada.

https://doi.org/10.22260/ISARC2019/0044

IBM (2024). What is an API (application programming interface)?.

https://www.ibm.com/topics/api?mhsrc=ibmsearch_a&mhq=API

IfcOpenShell (2024), IfcOpenshell-Python. https://docs.ifcopenshell.org/ifcopenshell-

python.html

Isikdag, U., & Underwood, J. (2010). Two design patterns for facilitating Building Infor-

mation Model-based synchronous collaboration. Automation in Construction,

19(5), 544–553. https://doi.org/10.1016/j.autcon.2009.11.006

Jeong, J., & Jo, H. (2021). Deep reinforcement learning for automated design of rein-

forced concrete structures. Computer-Aided Civil and Infrastructure Engineer-

ing, 36(12), 1508–1529. https://doi.org/10.1111/mice.12773

Kubicki, S., Guerriero, A., Schwartz, L., Daher, E., & Idris, B. (2019). Assessment of

synchronous interactive devices for BIM project coordination: Prospective ergo-

nomics approach. Automation in Construction, 101, 160–178.

https://doi.org/10.1016/j.autcon.2018.12.009

Lange, S., Riedmiller, M., & Voigtlander, A. (2012). Autonomous reinforcement learn-

ing on raw visual input data in a real world application. The 2012 International

References

Joint Conference on Neural Networks (IJCNN), 1–8.

https://doi.org/10.1109/IJCNN.2012.6252823

Lehmann, M. (2024). The Definitive Guide to Policy Gradients in Deep Reinforcement

Learning: Theory, Algorithms and Implementations (arXiv:2401.13662). arXiv.

http://arxiv.org/abs/2401.13662

Li, Y. (2018). Deep Reinforcement Learning: An Overview (arXiv:1701.07274). arXiv.

http://arxiv.org/abs/1701.07274

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., &

Wierstra, D. (2019). Continuous control with deep reinforcement learning

(arXiv:1509.02971). arXiv. http://arxiv.org/abs/1509.02971

Liu, J., Liu, P., Feng, L., Wu, W., & Lan, H. (2019, May 24). Automated Clash Resolu-

tion of Rebar Design in RC Joints using Multi-Agent Reinforcement Learning

and BIM. 36th International Symposium on Automation and Robotics in Con-

struction, Banff, AB, Canada. https://doi.org/10.22260/ISARC2019/0123

Liu, J., Liu, P., Feng, L., Wu, W., Li, D., & Chen, Y. F. (2020). Automated clash reso-

lution for reinforcement steel design in concrete frames via Q-learning and

Building Information Modeling. Automation in Construction, 112, 103062.

https://doi.org/10.1016/j.autcon.2019.103062

Liu, P., Qi, H., Liu, J., Feng, L., Li, D., & Guo, J. (2023). Automated clash resolution for

reinforcement steel design in precast concrete wall panels via generative ad-

versarial network and reinforcement learning. Advanced Engineering Informat-

ics, 58, 102131. https://doi.org/10.1016/j.aei.2023.102131

References

Liu, X., Zhao, J., Yu, Y., & Ji, Y. (2024). BIM-based multi-objective optimization of clash

resolution: A NSGA-II approach. Journal of Building Engineering, 89, 109228.

https://doi.org/10.1016/j.jobe.2024.109228

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning

(Second edition). The MIT Press.s

Postman API Platform. (2024). What is an API? A beginner’s guide to apis:

https://www.postman.com/what-is-an-api/#how-do-apis-work

Radke, A. M., Wallmark, T., & Tseng, M. M. (2009). An automated approach for iden-

tification and resolution of spatial clashes in building design. 2009 IEEE Inter-

national Conference on Industrial Engineering and Engineering Management,

2084–2088. https://doi.org/10.1109/IEEM.2009.5373167

Reinforcement Learning and Its Relationship to Supervised Learning. (2009). In J. Si,

A. G. Barto, W. B. Powell, & D. Wunsch, Handbook of Learning and Approxi-

mate Dynamic Programming. IEEE.

https://doi.org/10.1109/9780470544785.ch2

Rummery, G. A., & Niranjan, M. (1994). ON-LINE Q-LEARNING USING CONNEC-

TIONIST SYSTEMS.

Sacks, R., Eastman, C., Lee, G., & Teicholz, P. (2018). BIM Handbook: A Guide to

Building Information Modeling for Owners, Designers, Engineers, Contractors,

and Facility Managers (1st ed.). Wiley. https://doi.org/10.1002/9781119287568

Scherer, R. J. (2007). PRODUCT MODEL BASED COLLABORATION.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2017). Trust Region

Policy Optimization (arXiv:1502.05477). arXiv. http://arxiv.org/abs/1502.05477

References

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Pol-

icy Optimization Algorithms (arXiv:1707.06347). arXiv.

http://arxiv.org/abs/1707.06347

Sharbaf, M., Zamani, B., & Sunyé, G. (2022). Automatic resolution of model merging

conflicts using quality-based reinforcement learning. Journal of Computer Lan-

guages, 71, 101123. https://doi.org/10.1016/j.cola.2022.101123

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,

S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,

Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go

with deep neural networks and tree search. Nature, 529(7587), 484–489.

https://doi.org/10.1038/nature16961

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). De-

terministic Policy Gradient Algorithms.

Solibri office (2024). the core product for model checking and collaboration

https://www.solibri.com/solibri-office

Stable Baselines3 Reinforcement Learning Tips and Tricks. https://stable-base-

lines3.readthedocs.io/en/master/guide/rl_tips.html

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT

Press.

Tizani, W. (2010). Computing in civil and building engineering: Proceedings of the 13th

International Conference on Computing in Civil and Building Engineering and

the 17th International EG-ICE Workshop on Intelligent Computing in Engineer-

ing, 30 June - 2 July, Nottingham, UK. Nottingham University Press.

References

Wang, L., & Leite, F. (2016). Formalized knowledge representation for spatial conflict

coordination of mechanical, electrical and plumbing (MEP) systems in new

building projects. Automation in Construction, 64, 20–26.

https://doi.org/10.1016/j.autcon.2015.12.020

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning, 8(3–4), 229–256.

https://doi.org/10.1007/BF00992696

Xie, X., Zhou, J., Fu, X., Zhang, R., Zhu, H., & Bao, Q. (2022). Automated Rule Check-

ing for MEP Systems Based on BIM and KBMS. Buildings, 12(7), 934.

https://doi.org/10.3390/buildings12070934

Yang, C., Zheng, Z., & Lin, J.-R. (2023). Automatic Design Method of Building Pipeline

Layout Based on Deep Reinforcement Learning.

Appendix A 67

Appendix A

A.1 Predefined Rulesets in Solibri for Toilet-Wall Conflict

Appendix A 68

A.2 Predefined Rulesets in Solibri for Air Terminal-Door Conflict

I hereby affirm that I have independently written this Master’s thesis submitted by me

and have not used any sources or aids other than those indicated.

I also confirm that this thesis has not been the basis of any other examination proce-

dure.

During the preparation of this thesis, I used OpenAI’s tool, ChatGPT and DeepL’s tool

DeepL Write, in order to proofread the manuscript. After using the tools, I reviewed and

edited the content as needed and take full responsibility for the content of the thesis.

München, 29. August 2024 Yuye Jiang

Name Surname

Declaration

https://www.sciencedirect.com/topics/computer-science/chatgpt

