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Kurzfassung

Das rasante Wachstum der Anzahl internetfähiger Geräte und der erwartete Anstieg der globalen Da-
tenübertragung stellen erhebliche Herausforderungen für bestehende drahtlose Netze dar. Neue An-
wendungen wie Mobile Metaverse, Augmented Reality (AR), Virtual Reality (VR) und High Definiti-
on (HD) Streaming belasten diese Netzwerke weiter, da sie Latenzzeiten im Sub-Millisekundenbereich
und hohe Bandbreiten erfordern. Diese Arbeit befasst sich mit diesen Herausforderungen, indem sie
das Potenzial des gemeinsamen Betriebs von Light-Fidelity (LiFi) und Wireless-Fidelity (WiFi) unter-
sucht, um die Quality of Service (QoS) Anforderungen moderner drahtloser Kommunikationssysteme
zu erfüllen.

LiFi arbeitet im sichtbaren Licht- und Infrarotspektrum und bietet ein viel größeres Spektrum im
Vergleich zu traditionellem WiFi. Zur Einrichtung eines Hochgeschwindigkeits-Kommunikationssystems
für die drahtlose optische Übertragung zwischen mehreren Nutzern nutzt LiFi bestehende Beleuch-
tung mittels Leuchtdioden (LEDs). Trotz Vorteilen wie hohen Datenraten, Einsatzmöglichkeiten in
Umgebungen, die empfindlich auf elektromagnetische Strahlung reagieren, und inhärenter Sicher-
heit, steht LiFi Herausforderungen wie Lichtkegelüberlagerungen und Schattenwürfen durch Objekte
gegenüber.

Um die Vorteile beider Technologien zu nutzen, wurde der gemeinsame Betrieb von LiFi und
WiFi als heterogenes Netzwerk vorgeschlagen. Die bestehende Literatur konzentriert sich jedoch
hauptsächlich entweder auf das Ressourcenmanagement oder auf Designaspekte von LiFi bzw. WiFi
getrennt voneinander. Diese Dissertation argumentiert, dass ein ganzheitlicher Ansatz, der sowohl
Designaspekte als auch das Ressourcenmanagement gleichzeitig berücksichtigt, entscheidend ist, um
das volle Potenzial heterogener LiFi-WiFi-Netzwerke auszuschöpfen.

Unsere Arbeit beginnt mit der optimalen Platzierung von Access Points (APs) in LiFi-WiFi Netzwer-
ken. Die begrenzte Reichweite von LiFi und die Abhängigkeit von Verbindungen in Sichtlinie (Line-
of-Sight (LoS)) stellen spezifische Herausforderungen dar. Mit der Einführung eines Multi-Objective
Optimization Frameworks betrachten wir die AP-Platzierung im dreidimensionalen Raum, um Kos-
ten zu minimieren, die Netzleistung zu maximieren und gleichzeitig eine angemessene Beleuchtung
zu gewährleisten. Dieser Ansatz wird auf heterogene Netzwerke ausgeweitet, um die Abdeckung,
Kosteneffizienz und Nutzeranforderungen durch verschiedene Optimierungsmethoden, einschließ-
lich genetischer Algorithmen und heuristischer Ansätze, auszubalancieren. Das Ergebnis ist eine
Netzwerkarchitektur, die nicht nur technische Spezifikationen erfüllt, sondern sich auch an prakti-
sche Einschränkungen und Nutzerbedürfnisse anpasst, was einen bedeutenden Fortschritt gegenüber
isoliert betrachteten AP-Platzierungsstrategien darstellt.

Neben der Planung untersucht diese Arbeit auch den Echtzeitbetrieb im Hinblick auf ein dynami-
sches Ressourcenmanagement, um Latenzen zu minimieren und eine hohe Netzstabilität sicherzu-
stellen. Zu diesem Zweck formulieren wir ein Optimierungsproblem zur Minimierung der Netzlaten-
zen, während gleichzeitig die QoS-Anforderungen erfüllt werden. Für dieses Problem schlagen wir
anschließend verschiedene Ressourcenoptimierungsstrategien vor. Unsere Methoden gewährleisten
die Stabilität des Systems, indem sie sowohl die Kanaleigenschaften als auch die Bewegungsmuster
der Nutzer berücksichtigen. Dies ermöglicht wiederum eine robuste Übergabe bestehender Verbin-
dungen ohne erneute TCP-Verbindung zwischen den Technologien. Darüber hinaus entwickeln wir
ein bewegungs- und anforderungsbasiertes Framework, das verschiedene Netzressourcen auf der
Grundlage von Echtzeit-Netzeigenschaften und Nutzeranforderungen zuweist. Dieser ganzheitliche
Ansatz stellt sicher, dass das Netzwerk sowohl robust als auch effizient bleibt, sich dynamisch an
veränderliche Kanaleigenschaften anpasst und gleichzeitig höchste QoS für die Benutzer bietet.
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Um die Leistung des Netzwerks langfristig zu verbessern, schlagen wir MobiFi vor, ein proakti-
ves Ressourcenmanagement-Framework, entwickelt um Benutzerbewegungen und Kanaländerungen
vorherzusagen. Durch den Einsatz fortschrittlicher Optimierungstechniken, wie etwa Branch-and-
Bound-basierter Solver und Evolutionary Game Theory (EGT)-basierter Algorithmen, weist MobiFi
Ressourcen effizient zu, mit dem Ziel die Netzleistung über einen langen Zeitraum stabil zu halten. Wir
zeigen, durch Simulationen, die verschiedene Vorhersagefehler berücksichtigen, dass MobiFi auch
unter sich ändernden Bedingungen zuverlässig bleibt. MobiFi bietet somit eine proaktive Lösung, die
Serviceunterbrechungen deutlich verringert und die Ressourcennutzung maximiert.

Zum Abschluss präsentieren wir ComputiFi, ein Framework, dass das Task-Offloading in industri-
ellen Umgebungen in einem LiFi-WiFi-Netzwerk optimiert. Dabei wird der Anteil des Datenstroms
bestimmt, der über LiFi und jener, der über WiFi übertragen wird. Zudem wird festgelegt, an welchem
Ort die Aufgaben verarbeitet werden – dies kann lokal, an den APs, den Routern oder in der Cloud
geschehen. Hierbei kommen verschiedene dynamische Strategien zum Einsatz, die eine effiziente
Zuordnung von Rechenressourcen sicherstellen und somit niedrige Latenzzeiten für latenzkritische
Anwendungen wie Ultra Reliable Low Latency Communications (URLLC), Fabrikautomatisierung
und Künstliche-Intelligenz-Bildklassifikation gewährleisten. Durch die Optimierung des Ortes der
Task-Verarbeitung reduziert ComputiFi sowohl die Latenz als auch den Energieverbrauch und wird
somit zu einem unverzichtbaren Werkzeug für moderne, hochanspruchsvolle Anwendungen.

Zusammenfassend tragen die vorgestellten Beiträge zu erheblichen Fortschritten im Netzdesign
und Ressourcenmanagement von LiFi-WiFi-Netzwerken bei. Durch die Verbindung von Design und
Ressourcenmanagement präsentieren wir eine ganzheitliche Lösung, die sowohl die Effizienz des
Netzwerks als auch die Qualität in Umgebungen mit hoher Nutzerdichte optimiert. Unsere Er-
gebnisse bieten praktische Ansätze für die nahtlose Integration von LiFi und WiFi Technologien,
positionieren diese als zentrale Bausteine der 6G-Technologie und bereiten den Weg für die nächs-
te Generation drahtloser Kommunikationssysteme in Innenräumen. Diese Erkenntnisse werden die
Weiterentwicklung von 6G beschleunigen, die Verbreitung von internetfähigen Geräten unterstützen
und den wachsenden Anforderungen datenintensiver Anwendungen gerecht.
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Abstract

The rapid growth in the number of internet-connected devices and the anticipated increase in global
data transmission pose substantial challenges to existing wireless networks. Emerging applications
like mobile metaverse, Augmented Reality (AR), Virtual Reality (VR), and high-definition stream-
ing further strain these networks, requiring sub-millisecond latency and high capacity. This thesis
addresses these challenges by exploring the potential of integrating Light-Fidelity (LiFi) and Wireless-
Fidelity (WiFi) technologies to meet the Quality of Service (QoS) demands of modern wireless com-
munications.

LiFi, operating in the visible light and infrared spectrum, offers a much larger spectrum compared to
traditional WiFi. Utilizing existing lighting infrastructure, LiFi employs Light Emitting Diodes (LEDs)
to create a high-speed, multi-user optical wireless communication system. Despite its advantages,
such as high data density, suitability for Radio Frequency (RF)-sensitive environments, and inherent
security, LiFi faces challenges as a standalone technology due to signal outages in overlapping cell
regions and sensitivity to signal blockages.

The integration of LiFi with WiFi has been proposed to form heterogeneous networks, leveraging
the strengths of both technologies. However, existing literature has primarily focused on either the
resource management or the design aspects of these networks in isolation. This thesis argues that a
holistic approach, considering both design and resource management simultaneously, is essential for
fully realizing the potential of LiFi-WiFi integration.

This thesis begins with addressing the optimal placement of Access Points (APs) in LiFi-WiFi
networks. LiFi’s limited range and dependence on Line-of-Sight (LoS) connections present unique
challenges. By introducing a multi-objective optimization framework, we consider three-dimensional
AP placement to minimize costs, maximize network performance, and ensure adequate illumination.
This approach is extended to heterogeneous networks, balancing coverage, cost efficiency, and user
requirements through various optimization methods, including genetic algorithms and heuristic
approaches. The result is a network design that not only meets technical specifications but also
adapts to practical constraints and user needs, offering a significant advancement over isolated AP
placement strategies.

Moving from design to real-time operations, our thesis explores dynamic resource management
to ensure minimal delay and high network stability. We propose delay-aware resource optimization
strategies, formulating an optimization problem to minimize network delays while meeting QoS
requirements. Our stability-ensuring methods address transient channel conditions and user mobil-
ity, ensuring seamless vertical handovers without requiring TCP re-connections. A mobility-aware
resource allocation framework is developed to optimize resource distribution based on real-time net-
work conditions and user demands. This comprehensive approach ensures that the network remains
robust and efficient, adapting dynamically to changing channel conditions, and thus providing a
superior user experience.

To further enhance long-term network performance, we introduce MobiFi, a proactive resource
management framework designed to anticipate user mobility and channel variations. By employing
advanced optimization techniques, such as Branch and Bound-based solvers and Evolutionary Game
Theory (EGT)-based algorithms, MobiFi effectively allocates resources to maintain long-term network
performance. Through simulations incorporating potential prediction errors, we ensure that MobiFi
remains reliable even under uncertain conditions, offering a proactive solution that significantly
reduces service interruptions and maximizes resource utilization.

Finally, we present ComputiFi, recognizing the potential of integrating LiFi and WiFi networks for
optimized task offloading in industrial environments. This task offloading framework optimizes the
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distribution of tasks between LiFi and WiFi access technologies, managing data processing across
local devices, APs, routers, and cloud servers. ComputiFi’s dynamic strategy ensures efficient com-
putational resource allocation, providing guaranteed low latency for latency-sensitive applications
like Ultra Reliable Low Latency Communications (URLLC), factory automation, and Artificial Intelli-
gence (AI) image classification. By optimizing the destination for task processing, ComputiFi reduces
both latency and energy consumption, making it an invaluable tool for modern, high-demand appli-
cations.

In summary, the contributions of this thesis significantly advance the network design and re-
source management of LiFi-WiFi networks. By integrating design and resource management, we
offer a holistic solution that enhances network efficiency and user experience in high-density envi-
ronments. Our findings provide practical solutions for the integration of LiFi and WiFi technologies,
establishing them as cornerstones for 6G technology and paving the way for the next generation of
indoor wireless communication systems. These outcomes will drive forward the evolution of 6G
connectivity, supporting the growing demands of data-intensive applications and the proliferation of
internet-connected devices.
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Chapter 1

Introduction

The number of internet-connected devices is projected to reach 125 billion globally by 2030 [Mar17].
Additionally, global data transmission is anticipated to grow at an average annual rate of 50% over
the next 15 years [Mar17]. Mobile metaverse Augmented Reality (AR)/Virtual Reality (VR) traffic
is forecasted to hit 62 EB per month by 2030 [Nok23]. As VR, AR, 4K and 8K videos, and High
Definition (HD) streaming proliferate over wireless links, networks are under pressure to deliver
sub-millisecond latency and high capacity per user. This places immense strain on existing wireless
networks to meet the Quality of Service (QoS) requirements.

To address this growing demand, the shift is towards higher frequency bands like Terahertz (THz)
frequencies. Terahertz communications (0.1 - 10 THz) promise vast transmission bandwidths and
high capacity [Ela+20]. However, higher path loss at these frequencies necessitates sophisticated
beamforming techniques [Sha+23] to enhance power in the Line-of-Sight (LoS). Consequently, smaller
cell sizes are required, leading to increased infrastructure demands.

Continuing this trend towards higher frequencies, Light-Fidelity (LiFi), operating in the 300 THz
visible light and infrared spectrum, offers a spectrum size 2600 times that of the 300 GHz radio
frequency spectrum [Haa18]. LiFi leverages existing lighting infrastructure, using Light Emitting
Diodes (LEDs) prevalent in homes, offices, and other indoor environments, to provide a high-speed,
networked, multi-user optical wireless communication system. It employs light sources that emit
power directionally, leveraging existing lighting infrastructure to mitigate the challenges faced by
Terahertz Radio Frequency (RF) communications.

Key advantages of LiFi include:

• High data density: LiFi can utilize the extensive available bandwidth to provide high capac-
ity. Data rates exceeding 15 Gb/s have been demonstrated using off-the-shelf LEDs [BTH19],
compared to the 11 Gb/s theoretical maximum data rate of 802.11ax with a channel bandwidth
of 160 MHz. LiFi also offers high data density due to the small cell radius of 1-4 m [Haa+16],
wherein the capacity of a cell is shared by fewer users.

• Utilization of existing infrastructure: With Power over Ethernet (PoE) and Power Line Com-
munication (PLC), LiFi can leverage existing data or power infrastructure for connectivity.
Streetlights, home, and office lighting can potentially offer wireless internet access.

• Suitability for RF-sensitive environments: LiFi can be safely used in hospitals and airplanes,
where RF interference is undesirable.

• Inherent security: The inability of light waves to penetrate walls ensures high physical layer
security.

Despite these benefits, LiFi faces challenges as a standalone technology, including complete signal
outage in overlapping cell regions and sensitivity to LoS blockages. Therefore, the adoption of LiFi
is envisioned in heterogeneous LiFi-RF networks [Ayy+16], which offer the advantage of no interfer-
ence between RF and LiFi, potentially providing greater aggregate throughput than the standalone
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technologies. Since Wireless-Fidelity (WiFi) is a complementary indoor technology to LiFi, this thesis
focuses on LiFi-WiFi networks.

The optimal design of such networks involves challenges due to cost differences in placing the
Access Points (APs) of the two technologies, rate coverage area discrepancies, and the need for
adequate illumination provided by LiFi APs operating on visible light. Existing research on AP
placement primarily addresses either WiFi or LiFi networks separately [DBS18; DBS20; VB19; MS23;
Yan+20; Gop+22], with no works addressing the integration of both technologies.

The differing characteristics of LiFi and WiFi technologies and their interaction with each other
brings forth the need for a global perspective on the design of these networks. The short range as well
as the directional nature of LiFi implies a heavy dependence of the channel quality and coverage area
on the height of the APs. Therefore, an investigation of the third dimension of placement is necessary
to deploy networks with LiFi APs.

Following the design and deployment of a LiFi-WiFi heterogeneous network, users have multiple
options of WiFi or LiFi APs to associate to at any time necessitating sophisticated resource man-
agement to efficiently manage resources across multiple wireless access technologies. This resource
management must ensure network resilience in case of a link failure. There is an existing body of work
on load balancing in LiFi-RF networks [WH15; WWH17; WH19a]. However, these works approach
the problem from the perspective of load balancing, focusing on maximizing network throughput by
using only the channel quality as input.

The potentially huge data rates of LiFi imply that it should serve as a complementary technology
rather than just for offloading from a congested RF network. This implies a resource management
framework that pools resources from all wireless access technologies, allocating them based on user
requirements, rate fairness, and latency goals, not merely network throughput. By considering
all these metrics we can fully utilize the potential of a LiFi-WiFi network. Therefore, resource
management must take a holistic view in order to utilize the full potential of LiFi as a 6G technology.

A key application area for a heterogeneous LiFi-WiFi network is the factory environment where high
data rate transmission and low latency are crucial. LiFi’s RF-interference-free communication is ideal
for such high user density settings where WiFi struggles with bandwidth saturation and security con-
cerns [Haa+16]. Additionally, LiFi’s capability to provide localization services aligns with the needs
of a smart manufacturing environments. Such environments demand latency-sensitive applications
like Ultra Reliable Low Latency Communications (URLLC), factory automation, and Artificial Intel-
ligence (AI) image classification, requiring efficient computational task offloading [3GP22a; 3GP22b].
Integrating LiFi and WiFi ensures optimal task offloading, balancing speed, coverage, and reliability
[Wu+21a]. Thus, designing a task offloading solution in multipath LiFi-WiFi networks presents an
opportunity to reduce latency. This involves managing not only wireless resources but also compu-
tational resources, ensuring efficient performance for latency-sensitive applications.

This thesis aims to address the design and resource management of LiFi-WiFi networks, establishing
them as a cornerstone for the next generation of networks. By developing novel methodologies for
optimal AP placement, wireless and computational resource allocation strategies, and comprehensive
performance analysis in heterogeneous networks, this research contributes significantly to advancing
the capabilities and integration of LiFi and WiFi technologies. The outcomes of this thesis will not only
enhance network efficiency and user experience but also pave the way for practical implementation
of next-generation indoor wireless communication systems, thereby driving forward the evolution of
6G connectivity.

1.1 Research Questions and Contributions

This section presents the main research questions and challenges addressed in this thesis and explains
the contributions made towards resolving these questions.



1.1 Research Questions and Contributions

3

1.1.1 RQ1: How can access points be effectively placed in a LiFi-WiFi network to optimize
cost efficiency, coverage, and illumination quality in various indoor environments?

The core research question explores the optimal placement of APs in a LiFi-WiFi network, focusing on
maximizing cost efficiency, coverage, and illumination quality in various indoor environments. This
question stems from the unique challenges presented by LiFi technology, characterized by its limited
range and dependence on LoS connections. These constraints necessitate ultra-dense AP deployments
to ensure effective communication coverage and adequate indoor lighting. However, optimizing the
placement of APs in such environments raises issues: How can we minimize costs while maximizing
network performance and ensuring adequate illumination? What strategies can effectively balance
coverage requirements, avoiding both excessive overlap and coverage gaps? How can the integration
of LiFi and WiFi be optimized to leverage the strengths of each technology? Additionally, considering
the expected user distribution within these environments is crucial for tailoring AP placement to
actual usage patterns.

Addressing these complex questions, our research introduces two major contributions that leverage
multi-objective optimization strategies to optimize AP placement in both LiFi-only and heterogeneous
LiFi-WiFi environments. These contributions not only aim to enhance the theoretical framework for
network design but also offer practical guidelines tailored to the demands of users and network
operators in modern indoor wireless networks.

1. C1a: Optimized 3D Placement in LiFi Networks: The first contribution addresses the three-
dimensional placement of APs in LiFi-only networks through a multi-objective optimization
framework. This approach minimizes the number of APs to reduce costs while maximizing the
network’s sum rate and ensuring both a minimum guaranteed rate and sufficient illumination.
The research considers the APs’ height as a variable which significantly affects the network’s
performance metrics. A Genetic Algorithm (GA) is applied to resolve this complex optimization
scenario, demonstrating the effectiveness of considering three-dimensional space in network
planning.

2. C1b: Comprehensive Placement Strategy in LiFi-WiFi Networks: Extending the methodolo-
gies from LiFi-only scenarios, the second contribution develops a holistic framework for the
placement of APs in heterogeneous LiFi-WiFi networks. This integrated approach is crucial
for meeting the diverse requirements of modern indoor environments, combining visible light
communication and infrared in LiFi with traditional WiFi. By formulating a multi-objective
optimization problem, the framework seeks to significantly improve average network rates and
ensure uniform illumination across the covered area. It considers varying costs of APs and tech-
nological needs of users, employing a variety of solution methods — ranging from heuristics to
meta-heuristics and sophisticated solvers — to achieve optimal outcomes.

1.1.2 RQ2: How can resource management in a LiFi-WiFi network take a holistic view,
dynamically adjusting to changing user demands, ensuring minimal delay and high
network stability?

Research Question 2 explores the dynamics of resource management in a LiFi-WiFi network, focusing
on a holistic approach that dynamically adjusts to changing user demands to ensure minimal delay
and high network stability. This question addresses the challenge of effectively managing network
resources in environments where user demands fluctuate frequently and require rapid adjustments.
The goal is to optimize resource allocation in such a way that the network can handle these variations
without significant delays or stability issues, which are crucial for delay-sensitive applications like
live video streaming and Voice over Internet Protocol (VoIP).

For a deeper understanding of this challenge, we must consider the unique aspects of both LiFi
and WiFi technologies and their integration. LiFi, often constrained by LoS requirements and limited
range, and WiFi, with its broader coverage but potentially more congested channels, must be managed
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in tandem to exploit their respective strengths without allowing their limitations to degrade overall
network performance. Dynamic resource management becomes essential in such settings, where user
mobility and varying communication needs can drastically affect the QoS. The critical performance
metrics here are the minimization of packet delays and the enhancement of network stability, ensuring
that the network remains robust even under instantaneous channel changes, high traffic conditions
and frequent changes in user location and service requirements.

Addressing the challenges of dynamic resource management, our research introduces three signifi-
cant contributions that enhance network performance and stability in LiFi-WiFi hybrid environments.

1. C2a: Delay-aware Resource Optimization: The first contribution focuses on optimizing network
resource allocation specifically for delay-critical applications in LiFi-WiFi heterogeneous net-
works. We develop a strategy that not only minimizes network delays but also meets diverse
user requirements for data rate and latency. This involves formulating a Mixed Integer Nonlin-
ear Programming (MINLP) problem aimed at minimizing average network packet delay while
ensuring quality of service requirements for each user. Our approach expands to accommodate
multi-homing user devices, enabling simultaneous resource allocation across both LiFi and WiFi
technologies. For precise solutions, we employ a Branch and Bound-based solver and propose
a Genetic Algorithm for scenarios requiring faster, near-optimal solutions.

2. C2b: Stability Enhancement amidst Channel Challenges: Our second contribution proposes
methods to maintain a stable LiFi-WiFi network amidst transient channel conditions caused
by light path blockages, instantaneous receiver orientation changes, and user mobility. This
includes a system approach to manage unavoidable vertical handovers, ensuring seamless
interface switching. This approach has been implemented and tested on hardware in a LiFi-WiFi
network setup, with performance evaluated through practical measurements, demonstrating
that vertical handover overhead can be significantly minimized, thus maintaining network
stability without requiring TCP re-connections.

3. C2c: Mobility- and Demand-aware Resource Allocation: Lastly, we introduce a framework for
mobility-aware resource allocation in mobile LiFi-WiFi networks. This framework adapts to
currently observed network conditions and optimizes resource allocation by solving an opti-
mization problem using the weighted alpha-fair throughput. This method balances individual
user needs with overall network efficiency, aiming to achieve a balanced distribution of resources
that considers both user satisfaction and network performance.

1.1.3 RQ3: How can predictive technologies be utilized to proactively manage network
resources, anticipating congestion and changing channel quality to sustain
long-term network performance?

Research Question 3 investigates proactively managing wireless resources in LiFi-WiFi heterogeneous
environments, aiming to anticipate congestion and dynamically adjust to changing user channel con-
ditions. This question addresses the essential challenge of maintaining optimal long-term network
performance in the face of fluctuating channel conditions and user mobility. The transition from
reactive to proactive resource management can significantly enhance network efficiency, reduce ser-
vice interruptions, and maintain consistent QoS. This approach relies on forecasting user movements
and upcoming network conditions, optimizing wireless resource allocation in advance to align with
expected channel conditions. Such a strategy not only improves the overall user experience but also
maximizes the utilization of network resources. This shift raises several crucial questions: How can
a balance between user rate and fairness be optimized for long-term network performance? What
strategies can be implemented to adapt resource allocation in real-time based on predicted channel
changes? Moreover, what are the implications of potential inaccuracies in user position prediction on
overall network performance?
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In response to RQ3, we introduce MobiFi, a proactive wireless resource management framework
for LiFi-WiFi networks.

1. C3: Proactive Wireless Resource Management Framework: MobiFi is designed to enhance
long-term network performance by proactively managing wireless resources in anticipation
of user mobility and variable channel conditions. The framework establishes an optimization
problem that uses an alpha-fairness objective to allocate resources effectively and fairly over
time. Advanced solution techniques such as Branch and Bound-based solvers and iterative
algorithms based on evolutionary game theory are employed to address the complexity of these
optimization challenges. Additionally, MobiFi tests the robustness of its proactive strategies
through simulations that incorporate potential errors in predicting user positions, ensuring
that the framework remains reliable even when predictions do not perfectly match real-world
scenarios.

1.1.4 RQ4: How can task offloading in LiFi-WiFi networks be optimized to minimize
latency and energy consumption, while dynamically adapting to changes in network
topology and user requirements?

Research Question 4 explores how latency-critical tasks can be processed in LiFi-WiFi networks
while minimizing latency and energy consumption. This investigation is crucial for supporting
latency-sensitive applications such as URLLC, factory automation, and AI image classification. These
applications demand not only minimal latency for effective real-time processing but also high energy
efficiency to reduce operational costs and environmental impacts.

The challenge lies in developing a framework that effectively integrates and manages multiple
network technologies to meet these stringent requirements. Traditional single-path offloading meth-
ods often fail to fully utilize available network resources, resulting in increased latency and higher
energy consumption. The integration of LiFi with WiFi in a multipath network architecture offers a
unique opportunity to leverage the strengths of both technologies, where LiFi provides a high data
rate communication channel and WiFi offers extensive coverage.

In response to RQ4, we introduce ComputiFi, a comprehensive task offloading framework designed
for multipath, multihop LiFi-WiFi networks. This framework aims to reduce both latency and energy
consumption by optimizing how tasks are offloaded and processed across the network.

1. C4: Task Offloading Framework: ComputiFi enables the efficient offloading of latency-sensitive
tasks across multipath, multihop LiFi-WiFi networks. It determines the most efficient offloading
destinations and manages data distribution between LiFi and WiFi, optimizing both network
and user device energy consumption. ComputiFi implements a dynamic strategy for allocating
resources across a diverse range of network devices—local devices, LiFi and WiFi APs, routers,
and cloud servers. This strategy is tailored to minimize energy consumption at both the network
and user device while providing guaranteed latency and minimizing task completion latency.

1.2 Thesis Organization

An overview of the structure of the thesis is given in Figure 1.1. The forthcoming chapters are
structured as follows:
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Network Design and Resource Management
for LiFi-WiFi Heterogeneous Networks

Background
Chapter 2: Network, Channel, Blockage, and Mobility Models

Optimization Algorithms, Statistical Tests

Main Contributions

Chapter 3

3D Access Point
Placement

cost minimization and
coverage maximization

Main References:
[Vĳ+22; Vĳ+23]

Chapter 4

Reactive Wireless
Resource Allocation

delay, fairness, and
throughput optimization

Main References:
[Vĳ+21; VK21]

Chapter 5

Proactive alpha-fair
Wireless Resource

Allocation

Main References:
[VK24]

Chapter 6

Task Offloading
in Multipath Multihop

Networks

delay and energy
minimization

Main References:
[VMK24]

Methodologies

Mixed Integer Non-Linear Programming - Chapter 3,4,5,6

Multi-objective optimization - Chapter 3

Transformation and Linearization - Chapter 3,4 Convex optimization - Chapter 4

Evolutionary game theory - Chapter 4,5 Deep reinforcement learning - Chapter 6

Meta-heuristics - Chapter 3,4,6 Lagrangian multipliers method - Chapter 4

Simulations - Chapter 3,4,5,6 Measurements - Chapter 4

Chapter 7: Summary, Conclusions, and Future Work

Figure 1.1 Thesis outline, including the main contributions, methodologies, and references of each chapter
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Chapter 2: Essential Concepts and Models for LiFi-WiFi Network Design and Management pro-
vides a comprehensive background for understanding the thesis. It covers the fundamental models
and concepts of LiFi-WiFi heterogeneous networks, detailing the network model, channel models,
and blockage and illuminance models specific to LiFi. Additionally, it describes mobility models,
commonly used optimization techniques, and methods for statistically evaluating results.

Chapter 3: Designing LiFi-WiFi Networks with a focus on Access Point Placement introduces two
major contributions using multi-objective optimization to place APs in LiFi-only and heterogeneous
LiFi-WiFi environments. The first contribution focuses on optimizing 3D placement of APs in LiFi net-
works to minimize costs and maximize network performance, using a Genetic Algorithm to handle the
complexity. The second contribution extends this approach to heterogeneous networks, developing a
comprehensive framework that balances average network rates, illumination, costs, and technological
needs through various optimization methods. This chapter is based on the following publications:

• Hansini Vĳayaraghavan et al. “Optimized 3D Placement of LiFi Access Points towards maximiz-
ing Wireless Network Performance”. In: GLOBECOM 2022 - 2022 IEEE Global Communications
Conference. 2022, pp. 1278–1283. doi: 10.1109/GLOBECOM48099.2022.10000893

• Hansini Vĳayaraghavan et al. “PlaciFi: Orchestrating Optimal 3D Access Point Placement for
LiFi-WiFi Heterogeneous Networks”. In: IEEE Access 11 (2023), pp. 115415–115429. doi: 10.
1109/ACCESS.2023.3325097

Chapter 4: Wireless Resource Allocation in LiFi-WiFi Networks introduces three significant contri-
butions to enhance network performance and stability in LiFi-WiFi heterogeneous environments. The
first contribution optimizes resource allocation for delay-critical applications, employing strategies
like Mixed Integer Nonlinear Programming solvers and a Genetic Algorithm to minimize delays and
meet QoS requirements. The second contribution focuses on maintaining network stability amidst
challenges such as light path blockages and user mobility, implementing methods to ensure seamless
vertical handovers. The third contribution develops a mobility-aware weighted alpha-fair resource
allocation framework that adapts to network conditions and balances user needs with overall network
performance. This chapter is based on the following publications:

• Hansini Vĳayaraghavan and Wolfgang Kellerer. “Delay-aware Wireless Resource Allocation and
User Association in LiFi-WiFi Heterogeneous Networks”. In: 2021 IEEE Global Communications
Conference (GLOBECOM). 2021, pp. 01–06. doi: 10.1109/GLOBECOM46510.2021.9685276

• Hansini Vĳayaraghavan et al. “Algorithmic and System Approaches for a Stable LiFi-RF HetNet
Under Transient Channel Conditions”. In: 2021 IEEE 32nd Annual International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC). 2021, pp. 1048–1054. doi: 10.1109/
PIMRC50174.2021.9569271

Chapter 5: Mobility-aware Proactive Wireless Resource Allocation in LiFi-WiFi Networks intro-
duces MobiFi, a proactive wireless resource management framework for LiFi-WiFi networks. MobiFi
enhances long-term network performance by anticipating user trajectory and future channel con-
ditions, employing advanced optimization techniques like Branch and Bound-based solvers and
Evolutionary Game Theory algorithms. The framework’s robustness is tested through simulations
accounting for potential prediction errors, ensuring reliable performance in real-world scenarios. This
chapter is based on the following paper:

• Hansini Vĳayaraghavan and Wolfgang Kellerer. “MobiFi: Mobility-Aware Reactive and Proac-
tive Wireless Resource Management in LiFi-WiFi Networks”. In: IEEE Transactions on Network
and Service Management 21.6 (2024), pp. 6597–6613. doi: 10.1109/TNSM.2024.3455105

Chapter 6: Task Offloading in Multipath Multihop LiFi-WiFi Networks introduces ComputiFi, a
comprehensive task offloading framework for multipath, multihop LiFi-WiFi networks. ComputiFi
optimizes task offloading to reduce latency and energy consumption, determining efficient offloading

https://doi.org/10.1109/GLOBECOM48099.2022.10000893
https://doi.org/10.1109/ACCESS.2023.3325097
https://doi.org/10.1109/ACCESS.2023.3325097
https://doi.org/10.1109/GLOBECOM46510.2021.9685276
https://doi.org/10.1109/PIMRC50174.2021.9569271
https://doi.org/10.1109/PIMRC50174.2021.9569271
https://doi.org/10.1109/TNSM.2024.3455105
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destinations and managing data distribution between LiFi and WiFi. The framework employs a Deep
Reinforcement Learning-based algorithm to allocate computational resources across various network
devices, ensuring minimal network and user device energy consumption with guaranteed low latency
for task completion. This chapter is based on the following publication:

• Hansini Vĳayaraghavan, Jörg von Mankowski, and Wolfgang Kellerer. “ComputiFi: Latency-
Optimized Task Offloading in Multipath Multihop LiFi-WiFi Networks”. In: IEEE Open Journal
of the Communications Society 5 (2024), pp. 4444–4461. doi: 10.1109/OJCOMS.2024.3426278

Finally, Chapter 7: Conclusions and Future Research summarizes the key findings and contri-
butions of this thesis, highlighting the advancements in LiFi-WiFi heterogeneous network design,
resource management, and task offloading. Additionally, the chapter outlines potential areas for fu-
ture research, such as exploring new optimization techniques, integrating emerging technologies, and
further improving the adaptability and robustness of LiFi-WiFi networks in dynamic environments.

https://doi.org/10.1109/OJCOMS.2024.3426278
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Chapter 2

Essential Concepts and Models for LiFi-WiFi
Network Design and Management

This chapter provides the necessary background to understand the subsequent chapters in this thesis.
It begins by introducing the fundamental technologies and concepts relevant to the design and
management of Light-Fidelity (LiFi)-Wireless-Fidelity (WiFi) heterogeneous networks. The network
model, channel models for both LiFi and WiFi technologies, and blockage and illuminance models
for LiFi are discussed in detail. Additionally, this chapter explores mobility models, some commonly
used optimization techniques, and methods to statistically evaluate the results presented.

2.1 Overview of LiFi Technology

This section provides a concise overview of the LiFi technology, focusing on concepts to aid the
understanding of the rest of the thesis. While not intended as a comprehensive tutorial, it covers key
aspects necessary to understand the integration and operation of LiFi within heterogeneous networks.
We also discuss the current state of LiFi hardware, highlighting its capabilities and limitations. For a
detailed picture of the history and functioning of the technology, we point the readers to [DH15].

LiFi, is an emerging wireless communication technology that utilizes the visible light or infrared
spectrum [CBH18] to transmit data. It operates by modulating the intensity of light emitted by
light sources such as Light Emitting Diode (LED) bulbs to encode data, which is then received by
photodetectors and converted back into electronic form. LiFi’s operation within the visible light
spectrum, enables its use in environments such as museums and conference rooms where both
lighting and data transmission are essential. This dual-use capability of LiFi in visible light settings
adds a layer of utility, as it serves both functional and data transmission roles.

In designing LiFi networks, particularly in indoor settings like museums or conference rooms, the
placement of Access Points (APs) is crucial for achieving optimal coverage and efficient resource
management. The challenge of ensuring adequate illumination while maintaining reliable data
transmission capabilities requires strategic placement of these APs. This is a challenge that is tackled
in this thesis as a step towards designing and planning such networks before their deployment.

Unlike traditional Radio Frequency (RF) communication, LiFi leverages the light spectrum, which
offers several unique advantages. LiFi can achieve exceptionally high data transfer rates, surpassing
those of conventional WiFi in many scenarios [BTH19]. The vast bandwidth available in the light
spectrum allows for the transmission of large amounts of data [Haa18]. In industrial environments,
such as factories, the high data rates provided by LiFi enable efficient task offloading requiring
large data transfers and real-time data handling, crucial for automation and smart manufacturing
processes. LiFi’s inherent limitation of signal penetration through solid objects translates to enhanced
security. Data transmission is confined to the illuminated area, preventing unauthorized access
from outside the coverage zone. Another key advantage is reduced interference. LiFi operates
on a different spectrum than radio-based technologies, eliminating interference with sensitive RF
equipment commonly used in hospitals and airplanes.
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However, LiFi also faces limitations that our thesis aims to address. LiFi signals require a clear
path between the transmitter and receiver. Blockages by objects or people can significantly attenuate
the signal strength, impacting data transmission. Our thesis models these blockages to evaluate the
robustness of our proposed resource allocation strategies. Furthermore, our chapter on proactive
resource allocation anticipating potential obstructions or channel quality issues that could impact
connectivity is crucial in addressing this challenge.

The current state of LiFi hardware has seen significant advancements, yet it also faces certain
limitations. A significant limitation in the field is the lack of open-source hardware solutions for LiFi
that provide access to the Medium Access Control (MAC) layer, which is essential for implementing
and testing the resource allocation algorithms that we propose in this thesis. This issue is well-
documented in the literature [Wu+21b]. Despite this hurdle, our LiFi testbed, based on available
market technology, validates aspects of our simulation models used in this thesis. We are optimistic
that the recent release of the IEEE 802.11bb standard [IEE23] will catalyze the development of new
open-source hardware. This development will enable future implementations and proof of concept
for our resource allocation strategies, facilitating more robust testing and refinement of our algorithms
in practical scenarios.

Our testbed provides a controlled environment to experiment with and evaluate the performance of
LiFi technology in real-world scenarios. The setup includes several key components such as multiple
LiFi APs, user equipment, and a network management system. Each AP is equipped with an optical
front end operating on infrared for data transmission and photodetectors from [Gmb] for receiving
signals. The user equipment comprises devices with integrated photodetectors and infrared LEDs to
communicate with the LiFi APs. These devices are plugged in to PCs running a Linux system for
performance measurements.

LiFi
AP

User

d
h

y
z
xField of

View

 ϕ = angle of irradiance

 θ = angle of incidence

Figure 2.1 Architecture of a LiFi system showing the dependence of the signal quality on the distance, device
orientation, Field of View, and beam angle of the AP

Figure 2.1 shows an example architecture of a LiFi system with one AP and one user. As can be
observed, the signal between the two communicating devices depends on the distance between the
two, the orientation of the user device which affects the angle of incidence, the beam angle of the
transmitter which affects the angle of irradiance, and the Field of View of the receiver. To measure the
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practical rate coverage affected by all these components, we conduct a series of experiments within
the testbed environment.

The testbed is set up in a room with controlled lighting conditions to minimize interference from
external light sources. Multiple data collection points within the coverage area are defined to measure
the data rate at various locations. The methodology for measuring rate coverage involves initial
calibration of the APs and user devices to start bidirectional iperf data streams. Static measurements
are taken at each data collection point while the user remains stationary, providing a baseline for
coverage performance. The measurements were taken in three slices along the z-axis. The orientation
of the user device was flat, with infrared being used in both uplink and downlink, representing just
one type of device available in the market [Gmb], though there are more with varying capabilities.
The collected data is then analyzed to evaluate the rate coverage across the testbed area and identify
the range at which the LiFi channel falls to zero due to the Field of View of the receiver device.

The results of the rate coverage measurements are summarized in Figure 2.2. The z-axis represents
the vertical distance from the AP, with the AP located at coordinates (0,0,0). This summary shows
the average data rate at each collection point in the uplink and downlink.
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(b) Uplink rate coverage

Figure 2.2 LiFi Rate Coverage as experienced in the testbed

The results indicate symmetric uplink and downlink rates, with the highest rates occurring closest
to the AP. As the distance increases, the data rate decreases, eventually cutting off to zero after a
diameter of 2 m along the x and y directions due to the Field of View of the receiver. These results
are obtained with a fixed transmission power. Increasing the power saturates the receiver at vertical
distances around 1 m, leading to lower rates at this range. However, increased power does result in
higher rates at larger vertical distances. Despite the power adjustment, the x and y range remains the
same due to angle cutoffs, while the z range increases because of the enhanced power.

To address the limitations of LiFi and enhance network robustness, integrating LiFi with WiFi
has been proposed [Ayy+16]. This hybrid approach allows the network to leverage the high data
rates and low latency of LiFi while utilizing the seamless coverage of WiFi. Such integration is
essential in creating multipath transmission scenarios, which are useful in industrial settings where
task offloading and real-time data processing are critical.

2.2 Hybrid LiFi-WiFi Network Model

This thesis focuses on deploying and managing a LiFi-WiFi heterogeneous network, integrating these
wireless technologies for enhanced indoor communication. The network consists of a maximum of
𝑀𝐿 LiFi APs and a maximum of 𝑀𝑊 WiFi APs strategically placed throughout the environment.
Throughout this thesis, the APs of both technologies are assumed to be non-colocated and operate
independently. Physical infrastructure constraints, such as the need for LiFi APs to be integrated
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with lighting systems, may necessitate their placement in locations that are not the same as WiFi
APs. Additionally, the distinct architectures of the two technologies in most commercially available
devices further justify their separate placement.

Figure 2.3 Example architecture of a LiFi-WiFi communication and illumination network in a Museum, one
among several application scenarios

LiFi APs operate on the visible light or infrared spectrum and are generally installed above the user
plane, oriented downwards. In our case, this is depicted by the white LED panels shown in Figure 2.3.
When using visible light, they offer both illumination and data transmission capabilities. They are
also equipped with photodiodes to receive uplink signals. The coordinates for each LiFi and WiFi
AP are represented by 𝒄𝑙 = (𝑥, 𝑦, 𝑧)𝑙 and 𝒄𝑤 = (𝑥, 𝑦, 𝑧)𝑤 , respectively. Since all LiFi APs share the
same frequency channel, co-channel interference occurs where their coverage areas overlap, unlike
the WiFi network.

The system supports a total of 𝑀𝑈 users, each equipped with both LiFi and WiFi transmitters and
receivers for both uplink and downlink traffic. Each user position 𝑢 ∈ 𝒰 is given by the coordinates
𝒄𝑢 = (𝑥, 𝑦, 𝑧)𝑢 . The orientation of the receivers is indicated by𝚯𝒖 = (Θ𝑌 ,Θ𝑃 ,Θ𝑅)𝑢 , which corresponds
to the device’s yaw, pitch, and roll angles. A value of 𝚯𝒖 = (0, 0, 0) signifies that the user device is
parallel to the floor and facing the ceiling.

2.3 LiFi Channel Model

Our work adapts the LiFi channel model detailed in [WWH17]. This model accounts for the three-
dimensional positions of APs and users, as well as the orientation of user devices. The three-
dimensional distance between a user 𝑢 and an AP 𝑙 is defined as follows:

d𝑢,𝑙 = ∥𝒄𝑙 − 𝒄𝑢 ∥2 (2.1)

The cosines of the angles of irradiance (𝜙𝑢,𝑙) at the AP and the angle of incidence (𝜃𝑢,𝑙) at the user are
defined as follows:

cos 𝜙𝑢,𝑙 =
𝑧𝑙 − 𝑧𝑢

𝑑𝑢,𝑙
(2.2)

cos𝜃𝑢,𝑙 =
(𝑥𝑙 − 𝑥𝑢)�̂�𝑢,𝑥 + (𝑦𝑙 − 𝑦𝑢)�̂�𝑢,𝑦 + (𝑧𝑙 − 𝑧𝑢)�̂�𝑢,𝑧

𝑑𝑢,𝑙
(2.3)
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where �̂�𝑢 is the normal vector of the rotated user device. Equations (2.1), (2.2), and (2.3) combine to
determine the Line-of-Sight (LoS) gain, HLoS:

HLoS𝑢,𝑙 =


𝐻0
𝑑2
𝑢,𝑙

· cos 𝜙𝑚
𝑢,𝑙
· cos𝜃𝑢,𝑙 if 𝜃𝑢,𝑙 ≤ Θ 𝑓

and 𝜙𝑢,𝑙 ≤ Φ 𝑓

0 elsewhere

(2.4)

where 𝐻0 is a constant given by ((𝑚 + 1)𝐴𝑝𝜒2𝑇𝑠)/2𝜋. Here, 𝑚 is the Lambertian order of the AP, 𝐴𝑝

is the area of the photodiode receiver, 𝜒 is the refractive index, and 𝑇𝑠 is the gain of the optical filter.
The gain exists only when both the uplink and downlink signals are within the Field of View (FoV)
of the transmitter (Φ 𝑓 ) and receiver (Θ 𝑓 ). The received signal power is calculated as:

𝑃𝑢,𝑙 = (HLoS𝑢,𝑙 · 𝑃𝑙 · 𝑘)2 (2.5)

where𝑃𝑙 is the optical transmission power of the AP in Watts and 𝑘 is the optical to electrical conversion
efficiency. If we assume that the user connects to the AP offering the highest signal strength, then the
signal power is given by

𝑆𝐿
𝑢 = max

𝑙
𝑃𝑢,𝑙 . (2.6)

Therefore, the Signal to Interference and Noise Ratio (SINR) at the receiver is given by:

SINR𝐿
𝑢 =

𝑆𝐿
𝑢∑

𝑙 𝑃𝑢,𝑙 − 𝑆𝐿
𝑢 + noise

(2.7)

The link data rate between a user 𝑢 and a LiFi AP 𝑙 is calculated using the modified Shannon formula
[WH20]:

𝑅𝐿
𝑢 = min

(
𝐵𝐿 · log2

(
1 + 𝑒

2𝜋 · SINR𝐿
𝑢

)
, 𝑅𝐿

max

)
(2.8)

where 𝐵𝐿 denotes the LiFi modulation bandwidth of an LED. We assume a maximum data rate of
250 Mb/s for a LiFi AP, denoted by 𝑅𝐿

max. We also introduce the normalized rate �̃�𝐿
𝑢 :

�̃�𝐿
𝑢 =

𝑅𝐿
𝑢

𝑅𝐿
max

. (2.9)

where �̃�𝐿
𝑢 represents the ratio of the achieved rate to the technology’s maximum capacity.

Figure 2.4 illustrates the LiFi data rate distribution on a user plane located at a height of 1.4 m, with
four LED panels arranged in a lattice grid at a height of 3 m.

0 1 2 3 4 5
x dimension (m)

0

1

2

3

4

5

y 
di

m
en

sio
n 

(m
)

LiFi AP

0

50

100

150

200

250

Ra
te

 (M
b/

s)

(a) Flat device orientation
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(b) Walking device orientation

Figure 2.4 LiFi Rate Coverage in a 5 x 5 m room
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The Figure 2.4a shows the data rate coverage for a user device positioned flat, parallel to the ceiling,
like a laptop. This results in a circular coverage area, typical for APs. In contrast, Figure 2.4b displays
the data rate coverage for a user device tilted with a pitch angle of approximately 28°, simulating
the use of a mobile phone while walking [Sol+19]. In this case, the coverage area is no longer
circular. Understanding how device orientation affects LiFi coverage is vital for optimizing network
performance and ensuring reliable communication.

2.4 Blockage Models for LiFi Networks

One of the significant challenges in LiFi systems is their susceptibility to blockages. Understanding
and modeling these blockages is crucial for designing robust and efficient LiFi networks. LiFi relies
heavily on LoS communication between the transmitter (light source) and receiver (photodetector).
Any obstruction in the path can lead to significant signal degradation or complete loss of communi-
cation. In typical indoor environments, where LiFi is deployed, objects and people move constantly,
creating dynamic and unpredictable blockages. Additionally, changes in the orientation of the re-
ceiver, such as a user moving with a mobile device, can easily disrupt the light path. Accurately
modeling these dynamics is essential to ensure consistent and reliable performance.

This section describes three blockage models used in our simulations: the instantaneous blockage
model, the correlated blockage model, and the geometric blockage model.

2.4.1 Instantaneous Blockage Model

The instantaneous blockage model assumes that blockages occur suddenly and without prior indi-
cation. This model is characterized by abrupt transitions between blocked and unblocked states. It
is useful for scenarios where obstacles appear and disappear quickly, such as people moving in and
out of a LoS path. This model can also be used to capture the effect of fast changes in user device
orientation. The instantaneous blockage model is based on a Bernoulli random variable, representing
blockage events as probabilistic occurrences. The blockage event, 𝐵inst, is defined as:

𝐵inst ∼ Bernoulli(𝑝) (2.10)

where 𝑝 is the probability of a human body obstructing the LoS path at any given instant and is set
at 0.1.

2.4.2 Correlated Blockage Model

The correlated blockage model incorporates temporal correlation. This model assumes that blockages
are not purely random but have some temporal dependency. For instance, if a blockage is detected, the
likelihood of the blockage persisting in subsequent time intervals is higher. This approach provides a
more realistic representation of environments where obstacles, such as furniture or stationary objects,
influence the blockage pattern over time. The correlated blockage model incorporates memory, where
the probability of blockage depends on the previous state:

𝑃block(𝑡) =
{

probone if 𝐵prev(𝑡 − 1) = 0
probtwo if 𝐵prev(𝑡 − 1) = 1

(2.11)

where 𝐵prev(𝑡 − 1) indicates the blockage state at the previous time step. probone is the probability
of blockage if previously unblocked, and probtwo (with probtwo > probone) is the probability of
continued blockage if already blocked. In our thesis, probone = 0.1 and probtwo = 0.7.
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2.4.3 Geometric Blockage Model

The geometric model represents users as cylindrical obstructions, impacting the LoS paths between
ceiling-mounted APs and user devices, based on the work in [Fir+21]. This cylindrical model is
chosen for its accuracy in reflecting the height and width of a typical user, making it effective in
evaluating signal blockage. This approach is applicable not only to humans but also to robots or other
machines. The focus is on modeling users as blockages due to their dynamic nature, which presents
a complex challenge for maintaining reliable connections. In contrast, stationary obstacles are not
modeled, as they can be strategically positioned or removed through careful environment planning,
thereby minimizing their impact on signal transmissions.

Each cylinder is defined by a height of 1.8 m and a radius of 0.2 m, with the height aligning with the
vertical axis between the user device and the AP. The position of the cylinder’s base is represented by
coordinates (𝑥𝑐 , 𝑦𝑐) on the horizontal plane. A LoS path is blocked when the line segment connecting
an AP and a user device intersects the cylindrical volume of a user.

Mathematically, the LoS blockage is formulated by considering the geometric relationship between
the AP, user device, and cylindrical obstruction. Given an AP positioned at (𝑥𝑎 , 𝑦𝑎 , 𝑧𝑎) and a user
device at (𝑥𝑢 , 𝑦𝑢 , 𝑧𝑢), the LoS path is the line segment joining these points. The blockage condition
occurs when this line segment intersects the cylindrical volume of a human body, determined by the
cylinder’s height ℎ, radius 𝑟, and base coordinates (𝑥𝑐 , 𝑦𝑐).

In all these blockage models, when a user’s connection to an AP is blocked, the user’s rate offered
by that AP is 0. Blockage models are integral to the channel model, simulating blockages in the LoS of
LiFi links. It influences channel quality and, consequently, the wireless LiFi data rate experienced by
the user during transmission or reception. By incorporating the blockage model, we aim to simulate
a realistic channel for users, ensuring an accurate representation of the impact on data rates.

2.5 Illumination Model

When LiFi operates using Visible Light Communication (VLC), the APs also provide illumination
for the indoor area. Similar to the user grid, the room is divided into an illuminance grid. Each
illuminance grid point 𝑣 is positioned at 𝒄𝑣 = (𝑥, 𝑦, 𝑧)𝑣 , with a total of 𝑀𝑉 grid positions. The
illuminance at grid position 𝑣 from a single LiFi AP 𝑙 is defined as:

𝐼𝑣,𝑙 = 𝐼0
1
𝑑2
𝑣,𝑙

cos 𝜙𝑚
𝑣,𝑙
· cos𝜃𝑣,𝑙 (2.12)

where 𝐼0 is the luminous efficacy of the LED in lumens/Watt. The total illuminance at grid position
𝑣 from all LiFi APs is the sum of the individual contributions

𝐼𝑣 =
∑
𝑙

𝐼𝑣,𝑙 . (2.13)

The total illuminance achieved using this model is shown in Figure 2.5
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Figure 2.5 Illuminance in lux achieved in a 5 m x 5 m x 3 m room

Furthermore, the illumination uniformity (I) is given by the ratio of the minimum and the average
illumination intensity [IAY20]:

𝐼 =
min𝑣 𝐼𝑣∑

𝑣 𝐼𝑣
𝑀𝑉

. (2.14)

The summary of parameters related to the LiFi channel used in the rest of the thesis is given in
Table 2.1.

Table 2.1 LiFi Channel Parameters

Parameter Notation Value

Optical Power of a LiFi AP 𝑃𝑙 5 W
Half power beam width 𝜃1/2 60°
Physical area of the receiver 𝐴𝑝 1 cm2

FoV of the receiver Θ 𝑓 90°
FoV of the transmitter Φ 𝑓 90°
Optical filter gain 𝑇𝑠 1
Refractive index 𝜒 1
Lambertian order 𝑚 1
Modulation bandwidth of LED 𝐵𝐿 20 MHz
Noise power spectral density noise 10−21 A2/Hz
Maximum capacity LiFi 𝑅𝐿

max 250 Mb/s

2.6 WiFi Channel Model

We model the WiFi network according to the IEEE 802.11n standard with a channel bandwidth of
40 MHz and a total capacity of 160 Mb/s per AP, denoted by 𝑅𝑊

max. Similar to the LiFi channel model,
the three-dimensional distance between user 𝑢 and AP 𝑤 is defined as:

d𝑢,𝑤 = ∥𝒄𝑤 − 𝒄𝑢 ∥2 (2.15)

The channel gain is adapted from [WWH17], rewritten here in linear terms for ease of comparison
with the LiFi model. The gain is expressed as: Hence, the gain is given by

𝐻𝑢,𝑤 =
1

𝑑2
𝑢,𝑤

· 1
𝑓 2
𝑊

· 1014.45 · ℎ𝑟 (2.16)

where ℎ𝑟 is the small scale fading gain, with an average power of 2.46 dB, and 𝑓𝑊 is the carrier
frequency of transmission. The received signal power is calculated as:

𝑃𝑢,𝑤 = (𝐻𝑢,𝑤 · 𝑃𝑤)2 (2.17)



2.7 Mobility Models

17

where 𝑃𝑤 is the transmission power of the AP in Watts. Similar to the LiFi model, assuming that the
user connects to the AP offering the highest signal strength, the received signal is:

𝑆𝑊𝑢 = max
𝑤

𝑃𝑢,𝑤 . (2.18)

Assuming frequency reuse and no interference between WiFi APs, the Signal to Noise Ratio (SNR) at
the receiver is given by:

SNR𝑊
𝑢 =

𝑆𝑊𝑢
noise (2.19)

The link data rate between a user 𝑢 and a WiFi AP 𝑤 is calculated using the Shannon formula:

𝑅𝑊
𝑢 = min

(
𝐵𝑊 · log2

(
1 + SNR𝑊

𝑢

)
, 𝑅𝑊

max

)
(2.20)

where 𝐵𝑊 denotes the transmission bandwidth. As with LiFi, the normalized rate for WiFi is
introduced as:

�̃�𝑊
𝑢 =

𝑅𝑊
𝑢

𝑅𝑊
max

. (2.21)
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Figure 2.6 WiFi rate coverage achieved in a 5 m x 5 m x 3 m room

Figure 2.6 illustrates the WiFi data rate distribution on a user plane located at a height of 1.4 m,
with one WiFi AP placed at the center of the ceiling at a height of 3 m.

The summary of parameters related to the WiFi channel used in the rest of the thesis is given in
Table 2.2.

Table 2.2 WiFi Channel Parameters

Parameter Notation Value

Small-scale fading gain ℎ𝑟 2.46 dB
Transmission Power of a WiFi AP 𝑃𝑤 0.1 W
Bandwidth of WiFi 𝐵𝑊 40 MHz
Noise power spectral density noise 10−15 A2/Hz
Frequency of WiFi 𝑓𝑊 2.45 GHz
Maximum capacity WiFi 𝑅𝑊

max 160 Mb/s

2.7 Mobility Models

Simulating user movements is essential for accurately assessing the performance of LiFi-WiFi net-
works, especially when evaluating resource allocation methods. In real-world environments, user
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mobility significantly influences network dynamics, affecting connectivity, signal quality, and overall
system performance. Properly modeling mobility in simulations enables us to predict and optimize
network behavior, leading to more reliable and efficient resource allocation strategies.

User mobility plays a critical role in the handover processes between LiFi and WiFi networks. In
hybrid LiFi-WiFi systems, users frequently switch between networks to maintain optimal connectivity
[Wu+20]. Effective mobility models simulate these transitions, allowing us to evaluate and optimize
handover mechanisms to minimize latency and packet loss, which is crucial for maintaining seamless
resource allocation. Mobility models are also vital for studying network coverage and capacity. By
simulating various movement patterns, we can identify areas with poor coverage or high congestion
and develop strategies to improve resource allocation. This is particularly important in environments
like offices, campuses, and public spaces, where user density and movement can vary significantly.

Given these considerations, this section discusses four mobility models used in our simulations to
assess the performance of resource allocation methods: Random Waypoint (RWP) with and without
pauses, Truncated Levy Walk [Rhe+11], Self-Similar Least Walk (SLAW) [Lee+09], and Reference
Point Group (RPG) [Hon+99].

2.7.1 Random Waypoint Model

The RWP model is one of the most widely used mobility models due to its simplicity and suitability
for indoor scenarios. In this model, users move randomly from one waypoint to another within the
simulation area. Each user selects a random destination and moves towards it with the chosen speed.
Once the destination is reached, a new waypoint is selected, and the process repeats. The RWP model
can be implemented in two versions: with and without pauses.

In the version with pauses, after reaching a waypoint, the user pauses for a random duration
before selecting the next waypoint. This pause time introduces variability in the movement patterns,
simulating realistic scenarios where users stop occasionally. In the version without pauses, users
continuously move from one waypoint to another without any pause. The RWP model with pausing
is particularly useful for simulating mobile users in wireless communication scenarios. This model
introduces moments of stationary activity, making it more realistic for environments where users
might pause, such as indoors or at specific points of interest. The pausing condition is typically
determined by factors such as user behavior, environment characteristics, or application requirements.
The distribution governing the pausing duration can be chosen based on the desired characteristics
of the model.
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Figure 2.7 Trajectory of two exemplary users following the RWP Mobility model overlaid on the rate coverage
of 4 LiFi APs along with one WiFi AP positioned at the center of the room
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Figure 2.7 illustrates the trajectories of two users simulated using the RWP model without pausing.
The users’ movements are depicted over time, showcasing their paths in the LiFi-WiFi network
environment. AP positions are overlaid on the trajectory, highlighting cases where users move into
interference regions of LiFi APs, necessitating support from the WiFi AP for reliable connectivity. In
the rest of this thesis the term RWP refers to the model without pausing unless otherwise specified.

2.7.2 Truncated Levy Walk Mobility Model

The Truncated Levy Walk model captures more complex and realistic human movement patterns
compared to the RWP model. This model is based on the observation that human movements often
consist of many short trips interspersed with occasional long-distance travels. The model uses a step
length distribution that follows a power-law for small distances, transitioning to an exponential decay
for larger distances. This truncation prevents excessively long steps that are unrealistic in natural
settings. Each step in the walk is followed by a change in direction, which is uniformly distributed.
This truncated Levy distribution helps maintain a balance between long and short steps, effectively
capturing the intermittent nature of human mobility. This model is particularly useful for simulating
scenarios where user movements exhibit heavy-tailed distributions, such as in urban environments.

Let the user’s position at time 𝑡 be denoted as (𝑥(𝑡), 𝑦(𝑡)) in a 2D space. The levy walk model
describes the movement of a user by defining random steps of varying lengths and directions. The
position update is given by:

Δ𝑠 ∼ 𝑃(𝑠)
Δ𝜃 ∼ 𝑈(0, 2𝜋)

𝑥(𝑡 + 1) = 𝑥(𝑡) + Δ𝑠 cos(Δ𝜃)
𝑦(𝑡 + 1) = 𝑦(𝑡) + Δ𝑠 sin(Δ𝜃)

where Δ𝑠 is the step length, drawn from a Power-law distribution 𝑃(𝑠) ∼ 𝑠−𝜇 exp
(
− 𝑠

𝑠max

)
where 𝜇 is

the exponent characterizing the power-law regime, and 𝑠max is the truncation length. Δ𝜃 is the step
direction, drawn from a uniform distribution 𝑈(0, 2𝜋).

2.7.3 Self-similar Least Action Walk (SLAW) Model

The SLAW model incorporates both fractal-like (self-similar) properties and least-action principles
observed in human mobility. This model is based on the observation that human movements exhibit
self-similarity over different time scales. For example, the way people move around a city on a
daily basis is similar to how they might move around within a neighborhood over a shorter period.
The SLAW model replicates this fractal-like behavior, ensuring that the movement patterns remain
consistent whether observed over short or long duration. Humans tend to minimize their effort when
moving, choosing the shortest or easiest paths to reach their destinations. This is the least-action
principle. The SLAW model captures this by generating movement paths that favor shorter, more
direct routes, while still allowing for occasional longer trips. Other than these aspects, the model
incorporates aspects of Levy walks, where the step sizes (distances between consecutive waypoints)
follow a heavy-tailed power-law distribution. This property allows the model to efficiently cover
large areas with a minimal number of long jumps, interspersed with many shorter, more localized
movements.

It is particularly effective in simulating realistic human mobility patterns where users frequently
visit a set of preferred locations, such as in urban and campus environments. These preferred
locations as represented by waypoints that are clustered together following a Hurst parameter. The
waypoints are generated such that the density of waypoints decreases with distance, emulating the
fractal nature of human mobility. A simplistic description of the working of the SLAW model is given
in Algorithm 1.
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Algorithm 1 Self-Similar Least Walk (SLAW) Model

1: Input: Number of waypoints 𝑁 , Hurst parameter 𝐻, Power-law parameter 𝜇
2: Output: Sequence of waypoints and paths
3: Initialize starting location 𝑥0
4: Generate 𝑁 waypoints {𝑥1 , 𝑥2 , . . . , 𝑥𝑁 } using fractal distribution with parameter 𝐻
5: for 𝑖 ← 1 to 𝑁 do
6: Generate flight length 𝑠𝑖 ∼ 𝑠−𝜇

7: Choose direction randomly
8: Set 𝑥𝑖 ← 𝑥𝑖−1 + 𝑠𝑖
9: end for

10: Compute initial action 𝑆← 0
11: for 𝑖 ← 1 to 𝑁 − 1 do
12: Calculate cost 𝑐(𝑥𝑖 , 𝑥𝑖+1) considering total distance to travel
13: Update action 𝑆← 𝑆 + 𝑐(𝑥𝑖 , 𝑥𝑖+1)
14: end for
15: Optimize path to minimize total action 𝑆

2.7.4 Reference Point Group (RPG) Mobility Model

The RPG model simulates scenarios where users move in groups, such as at conferences, events, or
guided tours at museums. Each group has a logical center or reference point that moves according
to the RWP model or another mobility model. Individual users within the group move around
this reference point, maintaining cohesion with the group while exhibiting individual variability.
The RPG model effectively captures the dynamics of group mobility, where users show correlated
movements but also maintain some level of individual movement.

Let 𝐺 = {𝐺1 , 𝐺2 , ..., 𝐺𝑁 } be the set of reference point groups, where 𝑁 is the total number of groups.
Each group 𝐺𝑖 consists of 𝑀𝑖 reference points, denoted as 𝑃𝑖 , 𝑗 for 𝑗 = 1, 2, ..., 𝑀𝑖 . The position of a
reference point 𝑃𝑖 , 𝑗 at time 𝑡 is defined as (𝑥𝑖 , 𝑗(𝑡), 𝑦𝑖 , 𝑗(𝑡)), representing its coordinates in a 2D space.
The movement of reference points is determined by:

𝑥𝑖 , 𝑗(𝑡 + 1) = 𝑥𝑖 , 𝑗(𝑡) + Δ𝑥𝑖 , 𝑗(𝑡)
𝑦𝑖 , 𝑗(𝑡 + 1) = 𝑦𝑖 , 𝑗(𝑡) + Δ𝑦𝑖 , 𝑗(𝑡)

where Δ𝑥𝑖 , 𝑗(𝑡) and Δ𝑦𝑖 , 𝑗(𝑡) are the displacements of 𝑃𝑖 , 𝑗 in the 𝑥 and 𝑦 directions, respectively. These
displacements can be modeled using various methods, such as random walks, correlated movements,
or predefined trajectories.

The overall movement of the group 𝐺𝑖 is influenced by the movements of its constituent reference
points. The center of mass of the group, denoted as (𝑋𝑐,𝑖(𝑡), 𝑌𝑐,𝑖(𝑡)), is calculated as:

𝑋𝑐,𝑖(𝑡) =
1
𝑀𝑖

𝑀𝑖∑
𝑗=1

𝑥𝑖 , 𝑗(𝑡)

𝑌𝑐,𝑖(𝑡) =
1
𝑀𝑖

𝑀𝑖∑
𝑗=1

𝑦𝑖 , 𝑗(𝑡)

This center of mass represents the collective movement of the group.
For all these mobility models, the height of the user device over time follows a Gaussian distribution,

with a mean height of 1.4 m for mobile users and 0.8 m for stationary users, and a standard deviation of
5 cm. The orientation generation for these devices is consistent across all models. After determining
the x and y positions using the respective mobility model, the direction of movement is calculated to
determine the yaw angle of the user’s orientation, as described in [Sol+19]. The pitch angle follows
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a truncated Laplace distribution with a mean of 28° for moving users and 0° for stationary or sitting
users. The roll angle also follows a truncated Laplace distribution, with a mean of -1.35°. The overall
user orientation evolves over time as a correlated random process, as described in [Sol+19].

2.8 Optimization Algorithms

In our research on LiFi-WiFi networks, we frame optimization problems to enhance network per-
formance, particularly in the placement of APs and resource allocation. We employ a variety of
optimization techniques to find optimal or near-optimal solutions and compare these tools to find
the best approach to solving these problems. This chapter provides an overview of the common
algorithms used in our work, focusing on their fundamental concepts and their relevance to our
specific research context. Detailed problem-specific tuning of these algorithms will be discussed
in the respective chapters. The techniques covered include Meta-heuristics, Black-box optimizers,
Evolutionary Game Theory, Lagrangian Multipliers Method, Branch and Bound, and the deep rein-
forcement learning-based Proximal Policy Optimization.

Branch and Bound is an algorithmic method for solving integer programming and combinatorial
optimization problems. It systematically explores the solution space by dividing it into smaller
subproblems and using bounds to eliminate those that cannot yield better solutions than the current
best solution. Branch and Bound is particularly effective for solving large-scale optimization problems
with discrete variables, such as the optimal placement of APs in a network.

The Lagrangian Multipliers Method is a powerful technique for solving constrained optimization
problems. By transforming a constrained problem into an unconstrained one, this method allows us to
incorporate various network constraints into the optimization process. This technique is particularly
useful for finding optimal solutions that satisfy all necessary constraints while maximizing network
performance.

Evolutionary Game Theory (EGT) applies the principles of game theory to evolving populations,
providing a framework for modeling and solving optimization problems where multiple agents
interact and adapt over time. In our research, EGT is used to model competitive and cooperative
interactions among and users, enabling us to develop strategies that model users competing for
shared bandwidth resources at APs.

Meta-heuristics are high-level procedures designed to generate good-enough sub-optimal solutions
to optimization problems, especially those that are too complex for exact methods. In our research,
the primary focus within meta-heuristics is on Genetic Algorithms (GAs). Inspired by the process of
natural selection, GAs are particularly effective for solving complex optimization problems involving
large search spaces. In the context of AP placement and resource allocation, GAs help in exploring
various configurations by simulating the evolutionary processes of selection, crossover, and mutation.
This iterative approach enables us to identify high-quality solutions that balance network performance
and efficiency.

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm that has gained signifi-
cant popularity due to its robustness and ease of implementation. PPO falls under the class of policy
gradient methods, which optimize the policy directly by adjusting the policy parameters to maximize
the expected return. Unlike traditional policy gradient methods that can be sensitive to step sizes,
PPO uses clipping mechanisms that constrain the policy updates, preventing them from deviating
too far from the current policy. PPO has been effectively used in various domains, including robotics,
game playing, and autonomous driving, demonstrating strong performance and sample efficiency. Its
balance between complexity and performance makes PPO a widely adopted choice for reinforcement
learning tasks. PPO is especially effective in high-dimensional, continuous action spaces, making it
suitable for dynamic resource allocation in LiFi-WiFi networks. By learning optimal policies through
interactions with the environment, PPO helps in adapting to changing network conditions and user
behaviors.
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Black-box optimizers are algorithms that do not require explicit knowledge of the underlying
objective function’s structure or derivatives, making them ideal for optimizing complex and non-
differentiable functions. In our research, we focus on Bayesian Optimization, Random Forests, and
Extra Trees. Bayesian Optimization is particularly useful for optimizing expensive-to-evaluate func-
tions. It builds a probabilistic model of the objective function and uses this model to select the
most promising points for evaluation. In the context of AP placement, Bayesian Optimization helps
efficiently explore the configuration space, reducing the number of evaluations needed to find op-
timal solutions. Random Forests and Extra Trees are ensemble learning techniques used to model
the relationship between input parameters and network performance metrics. These methods pro-
vide insights into the importance of different parameters and help identify optimal configurations.
Their ability to handle large datasets and complex interactions makes them valuable tools in our
optimization framework.

2.9 Statistical testing

In our research, statistical testing is fundamental to validate our findings. This section outlines the
statistical methods employed across all evaluations presented in this thesis, focusing on the Mann-
Whitney U test [MW47] and the Benjamini-Hochberg procedure [BH95]. The motivation behind these
testing methods is to find out whether observed differences in performance metrics are statistically
significant or merely due to random variation. To compare two independent samples and determine
whether they come from the same distribution, we employed the Mann-Whitney U test. This non-
parametric test is particularly suitable for our data, which may not adhere to the normal distribution
assumptions required by parametric tests such as the t-test.

The Mann-Whitney U test operates under the null hypothesis that there is no difference in the
distributions of the two parameters being compared. This test ranks all the values from both groups
together, then compares the sum of ranks between the groups. A significant p-value indicates that
one group tends to have higher or lower values than the other. The significance level applied in this
thesis is 5% or 0.05.

The results of the Mann-Whitney U test are annotated in the corresponding result figures with
symbols based on the p-values, using the following star notation:

ns : p > .05
∗ : .01 < p <= .05
∗∗ : .001 < p <= .01
∗ ∗ ∗ : .0001 < p <= .001
∗ ∗ ∗∗ : p <= .0001

When conducting multiple statistical tests on the same dataset, there is an increased risk of Type
I errors (false positives). To address this, we applied the Benjamini-Hochberg procedure to control
the false discovery rate (FDR). The Benjamini-Hochberg procedure adjusts the p-values obtained
from multiple hypothesis tests to account for the number of tests being performed. By applying this
method, we ensure that the overall rate of false discoveries remains controlled, thereby enhancing the
reliability of our statistical inferences.

2.10 Summary

This background section provides a comprehensive foundation for the advanced concepts discussed
in this thesis, covering essential topics such as LiFi technology, LiFi-WiFi heterogeneous networks,
channel models, blockage models, illuminance models, mobility models, optimization algorithms,
and statistical testing of results. We began with an introduction to LiFi technology, highlighting its
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high data transfer rates, enhanced security, and abundant bandwidth. The integration of LiFi with
existing RF-based networks to create heterogeneous networks was then explored, emphasizing the
benefits of seamless connectivity and optimized performance.

We discussed the specifics of channel modeling for both LiFi and WiFi, which is crucial for pre-
dicting signal behavior and optimizing network performance. The discussion on blockage models
for LiFi focused on the impact of physical obstructions and user movements, presenting various
models to simulate real-world scenarios. The illuminance model for LiFi addressed the dual function
of providing adequate lighting while maintaining high data transmission rates. Mobility models
were introduced to simulate user movements and assess resource allocation methods. We explored
optimization algorithms, such as Meta-heuristics, Black-box optimizers, Evolutionary Game Theory,
Lagrangian Multipliers Method, Branch and Bound, and Proximal Policy Optimization, which are
crucial for solving complex optimization problems in LiFi-WiFi networks. Lastly, statistical testing
methods like the Mann-Whitney U test and Benjamini-Hochberg procedure are described to ensure
the accuracy and reliability of our findings

Building on this foundational knowledge, the rest of the thesis will present strategies to design
and manage LiFi-WiFi networks. By leveraging the concepts and methods discussed in this back-
ground section, we aim to offer solutions that enhance the integration and operation of LiFi within
heterogeneous networks, ultimately leading to reliable, efficient, and high-performing heterogeneous
systems.
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Chapter 3

Designing LiFi-WiFi Networks with a focus on
Access Point Placement

Wireless communication technologies have seen significant advancements driven by the increasing
demand for fast and reliable connectivity. While Wireless-Fidelity (WiFi) networks have long been
the dominant communication means, the emergence of Visible Light Communication (VLC) and
Infrared (IR) communication networks, such as Light-Fidelity (LiFi), presents a promising alternative.
LiFi offers advantages like higher bandwidth and enhanced security compared to WiFi.

Integrating multiple wireless technologies becomes essential as the demand for high data rates, low
latency, and ubiquitous coverage grows. One emerging combination is the LiFi-WiFi heterogeneous
network, which efficiently utilizes available resources, enhances coverage and capacity, and provides
flexibility to accommodate diverse user demands. Designing such networks, however, is challenging
due to cost constraints, rate coverage requirements, and the need for adequate illumination.

A critical aspect of both LiFi-only and LiFi-WiFi heterogeneous network design is the placement
of Access Points (APs). The LiFi channel’s rapid degradation with distance confines communication
to short ranges, necessitating ultra-dense deployment of LiFis cells. Optimal placement of LiFi APs
is essential for providing optimal communication coverage and proper illumination indoors. In
heterogeneous networks, the complexity increases as the distinct characteristics of LiFi and WiFi
technologies must be considered.

This chapter integrates insights from a conference [Vĳ+22] and journal publication [Vĳ+23]. These
combined insights address complementary aspects of the same challenge: placement of APs to achieve
optimal network performance and infrastructure cost-efficiency in next-generation indoor wireless
networks. The first section of the chapter focuses on AP placement in LiFi-only networks, based on
[Vĳ+22]. This section lays the groundwork by addressing the fundamental issues and strategies for
optimizing the placement of LiFi APs, operating on visible light, to ensure robust communication
coverage and adequate illumination. The second section builds on this foundation by addressing
the more complex scenario of AP placement in LiFi-WiFi heterogeneous networks, as published
in [Vĳ+23]. Here, the integration of WiFi introduces additional variables and challenges due to
the differing properties of LiFi and WiFi channels, necessitating more sophisticated optimization
techniques.

Each section presents a unique contribution, beginning with an introduction and motivation,
followed by a state-of-the-art review for the specific contribution. Subsequently, methodologies and
results are discussed, ending in a concluding summary.

3.1 Optimized 3D Placement of LiFi Access Points towards Maximizing
Wireless Network Performance

The unique characteristics of LiFi, such as its short range where the channel degrades rapidly with
distance and sensitivity to Line-of-Sight (LoS) conditions, pose challenges for effective network de-
ployment. Therefore, LiFi cells are typically deployed ultra-densely. In such networks, the placement
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of LiFi APs or Light Emitting Diodes (LEDs) is crucial for providing optimal communication coverage
and indoor illumination. In this work, the terms LiFi AP and LED are used interchangeably.

While several studies analyze LiFi cell coverage, they often overlook optimizing the number of
APs. Deploying more LEDs can ensure adequate illumination but can lead to network interference in
overlapping coverage areas and increase the number of handovers. Conversely, using fewer LEDs can
create coverage gaps and fail to meet user and illumination requirements. When optimizing AP po-
sitions, the height of each access point from the user plane significantly affects communication range
and Signal to Interference and Noise Ratio (SINR) at user devices, impacting overall network perfor-
mance. Additionally, the expected user distribution in an indoor environment must be considered
to optimize placement effectively. Although some studies optimize LiFi AP placement for objectives
like minimizing the number of APs or maximizing network throughput, they do not address both
objectives simultaneously. Considering both objectives simultaneously like as in Multi-Objective Op-
timization (MOO) is essential because these objectives are contradictory and must be balanced for
optimal placement.

This section focuses on the optimized 3D placement of LiFi APs to maximize network performance
while ensuring adequate illumination. Unlike traditional 2D placement approaches, this research con-
siders the height of the APs as a critical factor, formulating the placement problem as a multi-objective
optimization. By addressing the trade-offs between minimizing the number of APs, maximizing data
rates, and providing sufficient illumination, this work aims to enhance the overall performance and
efficiency of LiFi networks.

3.1.1 State-of-the-art Analysis

In [Yan+20], the authors address an LED array with a fixed number of LEDs, deriving the optimal x,y
positions to minimize power consumption while meeting data rate and illumination constraints. In
[VB19], the authors consider a variable number of LEDs, optimizing their 2D placement along the x
and y coordinates to minimize the number of LEDs. However, these approaches did not consider the
height of the AP as a variable.

While [VB19] accounts for expected user distribution in a room, it does not optimize for network
performance in terms of throughput. Reference [DBS20] focuses on maximizing average throughput,
incorporating the stationary distribution of users based on the Random Waypoint (RWP) mobility
model. However, this model may not accurately represent many indoor scenarios. Our analysis
includes multiple indoor scenarios with varying user distributions. Additionally, the authors in
[DBS20] assume dedicated APs for specific regions, which raises issues in interference-prone areas
and ignores user device orientation, although orientation is crucial in LiFi communication, as receivers
have a Field of View (FoV) outside of which signals are not received. The works mentioned do not
simultaneously optimize the number and position of APs nor consider height as a variable.

In contrast, works like [Pan+19] and [UUC19] propose solutions for the 3D placement of Unmanned
Aerial Vehicles (UAVs) for wireless communication resource allocation, assuming known user posi-
tions. This assumption is invalid for our problem since LED placement optimization should occur
during the network planning stage before deployment in a user environment.

3.1.2 Key Contributions

This section focuses on optimizing the 3D placement of APs in LiFi-only networks. Our contribution
builds on foundational works in network planning by framing a complex multi-objective optimization
problem tailored to the unique characteristics of LiFi communication and illumination in indoor
environments. The primary objectives of this research include minimizing the number of APs to
reduce costs, while maximizing the sum rate and ensuring a minimum guaranteed achievable rate and
adequate illumination. To achieve these goals, we incorporate several approaches and methodologies,
as detailed below:
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1. Multi-Objective Optimization: This research analyzes the planning of a LiFi communication
and illumination network in an indoor environment, framing an optimization problem with
multiple objectives: minimizing the number of APs (thereby reducing costs), and maximizing
the sum rate while ensuring a minimum guaranteed achievable rate and minimum illumination
level. Additionally, we consider the expected user distribution to calculate expected rates.

2. 3D Placement Framework: Among the optimization variables is the height of each AP, which
we allow to be either freely placed (3D free-height) or constrained such that all APs share the
same height (3D fixed-height). This approach highlights the impact of AP height on network
performance.

3. Optimization Algorithm: To solve this 3D placement problem, we propose using a genetic
MOO algorithm. We evaluate the solutions for varying system parameters and scenarios,
demonstrating the validity of our optimization framework.

3.1.3 System Model

Table 3.1 summarizes the notation used throughout this section. We use bold lowercase letters for
vectors and cursive capital letters for sets.

Table 3.1 List of Notations used in the 3D Placement of LiFi APs

Notation Description

𝑙, 𝑀𝐿 Index, size of LiFi APs
𝑢, 𝑀𝑈 ,𝒰 Index, size, set of all user positions
𝑣, 𝑀𝑉 Index of, total positions on the illuminance grid
𝒄 = (𝑥, 𝑦, 𝑧) Vector of 3D coordinates
𝚯𝒖 = (Θ𝑌 ,Θ𝑃 ,Θ𝑅)𝑢 Vector of yaw, pitch and roll of user device
𝑝𝐿𝑢 Probability of occurrence of LiFi
𝑅𝑢 , �̃�𝑢 Achievable and normalized achievable rate
𝐼𝑣 Illuminance at the grid position
𝐼0 Luminous efficacy of the LED
𝛼 Binary existence variable for AP
�̃�thresh Normalized Rate requirement
𝐼thresh Illumination requirement

This work considers an indoor LiFi network designed to provide data communication and illumi-
nation. The network consists of a maximum of 𝑀𝐿 APs, which can be positioned in three dimensions,
with the coordinates 𝒄𝑙 = (𝑥, 𝑦, 𝑧)𝑙 . The horizontal coordinates are confined to the dimensions of the
room, and the vertical coordinate ranges from a minimum height 𝑧mindim, at least one meter above
the user plane to prevent receiver saturation, to a maximum height 𝑧maxdim, which corresponds to
the ceiling height. This flexibility in height allows the optimization framework to exploit the vertical
dimension to minimize interference and enhance signal coverage.

The user plane, where users are expected to be, is quantized into a grid with a resolution of 0.25 m,
and each grid position is represented by 𝒄𝑢 = (𝑥, 𝑦, 𝑧)𝑢 , totaling 𝑀𝑈 positions. The orientation of
each user at a grid position is given by angles 𝚯𝒖 = (Θ𝑌 ,Θ𝑃 ,Θ𝑅)𝑢 representing Yaw, Pitch, and Roll.
Since the exact positions of users are unknown and can vary dynamically, we model the user location
with a probabilistic distribution. Each grid position 𝑢 is associated with a weight 𝑝𝐿𝑢 representing
the likelihood of a user being present at that location. Users connect to the AP offering the highest
SINR which is dependent on where the APs are placed, adding flexibility to our model as there are
no dedicated APs pre-associated to the users. The 3D placement of LiFi APs is optimized during the
network planning phase, after which the LiFi-enabled LEDs are deployed indoors.
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The LiFi channel model is detailed in Section 2.3. The LiFi LEDs, operating on the visible light
spectrum, also provide environmental illumination. The area where we expect a certain illumination
level is quantized into the illuminance grid which is not necessarily identical to the user grid. One
quantized grid position is denoted by (𝑥, 𝑦, 𝑧)𝑣 with 𝑀𝑉 such positions. The illuminance 𝐼𝑣 at grid
position 𝑣 is described in Section 2.5. The simulation parameters for the LiFi channel are consistent
with those listed in Table 2.1, in addition to the luminous efficacy of the LED, 𝐼0, set at 525 lm/Watt.

3.1.4 3D Placement Problem Formulation

This section outlines the formulation of the 3D placement optimization problem. The objective is to
determine the optimal 3D placement of LED APs to minimize the number of APs (and thus the cost)
and maximize the sum rate on the user plane, weighted by the user occurrence probability 𝑃𝑢 . The
optimization problem is constrained by a minimum guaranteed rate requirement �̃�thresh at all user
grid positions, ensuring reliable coverage across the user plane. Since the exact number of users is
unknown at the planning stage, wireless resource sharing is not considered; instead, the focus is on
overall user plane performance. To ensure the model’s applicability to future technology generations
with higher capacities, rate constraints are expressed as a ratio of the maximum supported rate rather
than absolute values. Additionally, LEDs must provide a minimum required illumination level 𝐼thresh.
This illumination constraint can apply to different planes, such as floor level or desk height, and is
separate from the user plane.

The optimization problem can be formulated as follows

min
𝒄𝑙 ,𝛼𝑙

𝑀𝐿∑
𝑙=1

𝛼𝑙 (3.1)

max
𝒄𝑙 ,𝛼𝑙

𝑀𝑈∑
𝑢=1

�̃�𝐿
𝑢𝑝

𝐿
𝑢 (3.2)

s.t. �̃�𝐿
𝑢 ≥ �̃�thresh ∀𝑢 = 1, 2, . . . , 𝑀𝑈 (3.3)

𝐼𝑣 ≥ 𝐼thresh ∀𝑣 = 1, 2, . . . , 𝑀𝑉 (3.4)

The objective function in (3.1) focuses on minimizing the cost, while the function in (3.2) aims to
maximize the sum rate for the 3D placement problem. The constraint in (3.3) ensures that every
position on the user grid meets a minimum guaranteed rate, expressed as a ratio of the maximum
supported rate. The constraint in (3.4) mandates a minimum illumination level at each position on
the illumination grid.

The optimization variable 𝛼𝑙 represents the presence of an AP, a binary variable set to 1 if the AP is
placed and 0 otherwise. To highlight the impact of AP height on network performance, we consider
two different height models in the optimization:
3D free-height: This model allows the height of each AP to be independently selected within specified
bounds. The AP position variables are:

𝑥𝑙 ∈ [0, 𝑥dim] 𝑦𝑙 ∈ [0, 𝑦dim] , 𝑙 = 1, 2, . . . , 𝑀𝐿

𝑧𝑙 ∈ [𝑧mindim , 𝑧maxdim] , 𝑙 = 1, 2, . . . , 𝑀𝐿

3D fixed-height: This model constrains all AP heights to be the same, but this value is freely selected
within the bounds. The AP position variables are:

𝑥𝑙 ∈ [0, 𝑥dim] 𝑦𝑙 ∈ [0, 𝑦dim] , 𝑙 = 1, 2, . . . , 𝑀𝐿

𝑧𝑙 = 𝑧𝐿 ∀𝑙 = 1, 2, . . . , 𝑀𝐿 ,

𝑧𝐿 ∈ [𝑧mindim , 𝑧maxdim] .
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Figure 3.1 An exemplary Pareto-front for the 3D Placement Optimization

The described optimization problem is a MOO problem. MOO problems involve multiple conflict-
ing objective functions, resulting in a set of solutions that offer the best trade-offs between objectives,
known as Pareto-optimal solutions [MA03]. Unlike single-objective optimization, where the value
of the objective function determines the superiority of a candidate solution, in MOO problems, a
solution’s superiority is judged by its dominance. All non-dominated solutions within the feasible
space form the Pareto-optimal front. Our optimization problem is an Mixed Integer Nonlinear Pro-
gramming (MINLP) problem involving integer variables 𝛼𝑙 and real variables (𝑥, 𝑦, 𝑧)𝑙 . Typically,
MINLP problems are mathematically challenging and often intractable.

3.1.5 Method to solve the 3D Placement Problem

To solve this MINLP, a genetic algorithm is employed. Genetic Algorithms (GAs), or evolutionary
algorithms, are meta-heuristic algorithms that operate on a set of candidate solutions. They select the
fittest candidates from each generation, which are then reproduced to create candidates for the next
generation. A standard and powerful MOO algorithm based on GA is the Non-dominated Sorting
Genetic Algorithm (NSGA-II) [Deb+02], which classifies solutions into multiple non-dominated sets.

The proposed solution method consists of the following components.

1. Population: The population comprises all possible solutions, where each individual represents
a set of AP placements with their 3D coordinates. The algorithm starts with an initial population
randomly sampled from within the bounds described by the optimization problem. The initial
population size is set to 100 candidate solutions.

2. Selection: Individuals are grouped into fronts by their fitness values, determined by evaluating
the objective functions. The fronts are ranked by their level of non-domination. The best
individuals are selected by comparing their rank and a second metric called the crowding
distance, which is determined by the density of solutions around each candidate. Individuals
that violate constraints are made undesirable, as their objective function values (and hence their
fitness) are penalized.

3. Crossover: Selected individuals are combined using the Simulated Binary Crossover [DA+95]
operator to produce offspring that will form part of the next generation.

The algorithm converges when the constraints are satisfied, and the solutions belong to the Pareto-
optimal front. The optimization terminates upon convergence.

An exemplary run with two solutions in the Pareto-front is shown in Figure 3.1. Two objective
functions define the objective space: minimizing the number of APs and maximizing the weighted
normalized sum rate (which can also be formulated as minimizing the negative sum rate). A Multi-
Criteria Decision Making (MCDM) method is employed to select a unique solution from the Pareto
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front. The two objectives are weighted according to their importance. In this case, we set the weights
to 0.8 for the cost minimization objective and 0.2 for the rate maximization objective, prioritizing
the number of access points used. Each solution in the Pareto front is assigned a pseudo weight
corresponding to its normalized distance to the worst solution of each objective function. The solution
with pseudo weights closest to the objective weights is considered optimal.

3.1.6 Evaluation Methods

To evaluate the proposed 3D placement optimization framework, we consider various application
areas that reflect common indoor environments. Each scenario is designed to test the framework
under different user distributions and layout configurations, as illustrated in Figure 3.2.
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Figure 3.2 Floor plans of indoor scenarios with LiFi user occurrence probability

The selected scenarios include an office, conference room, museum, and corridor, each with unique
characteristics and requirements as summarized in Table 3.2. These include two distinct illumination
requirements: one for work desks and another for other areas. The pitch angle Θ𝑃 of the user is
set to either 0° for seated users or 28° for standing users. The pitch angle of 28° is based on typical
measurements for standing users [Sol+19].

Table 3.2 Scenario parameters to evaluate the proposed LiFi AP Placement

Scenario Size �̃�thresh 𝐼thresh (𝑧mindim , 𝑧maxdim)
Regular 5.0 m x 5.0 m 0.01 300 lux (2.5 m, 3.5 m)
Office 6.0 m x 3.5 m 0.01 500, 200 lux (2.5 m, 3.5 m)
Museum 8.5 m x 5.5 m 0.01 200 lux (2.5 m, 3.5 m)
Conference 9.5 m x 7.5 m 0.01 500, 200 lux (2.5 m, 3.5 m)
Corridor 30 m x 2.5 m 0.01 300 lux (2.5 m, 3.5 m)

All results presented are based on 1000 simulation runs. To validate our claims, we performed
hypothesis testing using the Mann–Whitney U test [MW47]. The alternative hypothesis states that
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the distribution underlying the left box plot is stochastically less than that of the right box plot. The
test results are annotated on the relevant figures [Cha+22], following the notation provided.

ns : p > .05
∗ : .01 < p <= .05
∗∗ : .001 < p <= .01
∗ ∗ ∗ : .0001 < p <= .001
∗ ∗ ∗∗ : p <= .0001

Since we perform multiple tests on the dataset, we also apply the Benjamini–Hochberg procedure to
control the false discovery rate [BH95].

3.1.7 Results and Comparative Analysis

To validate the necessity of our optimization approach, we compare it against several baseline scenar-
ios where LEDs are placed in a deterministic pattern on the ceiling. One such pattern is a lattice grid
with four LEDs, as illustrated in Figure 2.4. We also compare lattice grid patterns with 5 and 6 LEDs.
The optimization is conducted for a standard 5 m x 5 m room scenario, with a rate ratio requirement
of 0.01 and an illumination requirement of 300 lux. The average rate in the room after optimization
is presented in Figure 3.3a, alongside the results from the deterministic models.
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Figure 3.3 Results for varying placement models in a Regular room showing the need for optimization

In the deterministic model, increasing the number of access points leads to lower rates due to
increased interference. This demonstrates the clear need for optimization, as the average achievable
rate is significantly higher than the deterministic models. To further analyze these results, we divide
the data into four rate groups and plot the area of the room covered by each rate range. This analysis
for the different strategies is shown in Figure 3.3b. The optimized placement results in substantially
larger areas achieving data rates higher than 25 Mb/s.

Examining the results for the free and fixed height models in the regular scenario, as shown in
Figure 3.4, we observe that the fixed-height model places all APs near the ceiling to maximize the
rate. In contrast, the free-height model utilizes varying heights for the APs, which helps minimize
interference regions and achieve a higher overall rate.
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Figure 3.4 3D Positions of APs and Rate coverage in a regular room
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Figure 3.5 Results for varying minimum rate requirements in a regular room

Figure 3.5a shows the average rate achieved in Mb/s for various minimum rate requirements in a
regular room. In all cases, the free-height model outperforms the fixed-height model. This finding is
statistically confirmed with hypothesis tests, annotated in the figure.

Figure 3.5b illustrates that the free-height model consistently provides coverage as the minimum
rate requirement increases, resulting in a negligible outage area. When the minimum requirement
is set to 12.5 Mb/s (0.05 rate ratio), both height models fail to meet the constraint. However, the
free-height model achieves a significantly lower outage area and a higher average rate of 132 Mb/s.
These results highlight the critical role that AP height plays in enhancing network performance.

Next, we analyze the effect of user occurrence probabilities in an indoor environment. For this
purpose, the regular room is modified so that half of the user plane has a low probability of 0.2 while
the other half has a higher probability of 0.8. To ensure robustness in the results, we also examine a
scenario where the user plane is flipped, starting with a probability of 0.8 and ending with 0.2. The
average rate achieved in each probability group is shown in Figure 3.6.

Our proposed 3D placement framework consistently maximizes the rate in areas with higher
user occurrence probabilities. This demonstrates the importance of incorporating user occurrence
probabilities in optimizing LED placement, ensuring optimal performance in regions where users are
most likely present.



3.1 Optimized 3D Placement of LiFi Access Points towards Maximizing Wireless Network Performance

33

0.2 0.8
Probability of User occurrence

50

75

100

125

150

175

Av
er

ag
e 

Ra
te

 (M
bp

s)

fixed-height
free-height

(a) User Occurrence (0.2, 0.8)

0.2 0.8
Probability of User occurrence

40

60

80

100

120

140

160

180

Av
er

ag
e 

Ra
te

 (M
bp

s)

fixed-height
free-height

(b) User Occurrence (0.8, 0.2)

Figure 3.6 Rate achieved per user probability group in regular rooms where the first half of the user plane is
weighted with the first probability value in the tuple and the second half with the second value of the tuple

To understand the planning required for various indoor scenarios, we optimize the 3D placement
for each scenario and plot the number of APs needed and the average achievable rate in such rooms.
The parameters for these scenarios are detailed in Table 3.2, and the results are presented in Figure 3.7.
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Figure 3.7 Comparing the various application scenarios optimized with our proposed 3D placement

These results indicate that the number of APs placed is very similar for both the free-height and
fixed-height models. However, the free-height model consistently achieves a higher average rate,
sometimes with even fewer APs than the fixed-height model. This demonstrates the significance of
considering AP height in the optimization process. Therefore, the proposed optimized 3D placement
framework effectively plans LiFi networks in various indoor scenarios with different user distribution
patterns.

3.1.8 Summary

In this section, we addressed the LiFi AP 3D placement problem with the dual objectives of minimizing
the number of APs and maximizing the user occurrence probability-weighted sum rate. Both free-
height and fixed-height models were analyzed, with constraints on data rates and illumination.
Using an NSGA-II-based algorithm, we demonstrated that allowing free selection of AP heights
results in better network performance, and considering user distribution enhances coverage in high
user likelihood areas.

Building on the insights gained from optimizing LiFi-only networks, the next section extends these
principles to the more complex scenario of LiFi-WiFi heterogeneous networks. While the current
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section focused on minimizing the number of LiFi APs and maximizing the sum rate with constraints
on data rate and illumination, the upcoming section expands the scope to WiFi APs and introduces
cost considerations.

Both sections employ MOO techniques and consider user distribution; however, the next section
incorporates distinct user occurrence probabilities for LiFi and WiFi. This allows for a more tailored
placement strategy that accounts for the specific requirements and characteristics of each technology.

3.2 PlaciFi: Orchestrating Optimal 3D Access Point Placement for LiFi-WiFi
Heterogeneous Networks

In this section, we extend the methodologies and insights from optimizing LiFi-only networks to
encompass the integration of WiFi with LiFi, presenting a more complex and holistic optimization
problem for designing a heterogeneous network. Designing networks in indoor heterogeneous wire-
less environments is crucial for achieving optimal performance and user satisfaction. A key factor in
designing a LiFi-WiFi heterogeneous network is the strategic placement of APs. However, positioning
APs in such a network is challenging due to the differing characteristics of LiFi and WiFi technologies.

Current research on AP placement mainly addresses either WiFi or LiFi networks individually
[DBS18; DBS20; VB19; MS23; Yan+20; Gop+22], with little focus on the integration of both tech-
nologies. Consequently, there is a need for a systematic and efficient methodology to determine the
optimal AP placement in a LiFi-WiFi heterogeneous network, taking into account the specific require-
ments and interactions of both systems. This section introduces PlaciFi, a comprehensive framework
for the optimal 3D placement of APs in LiFi-WiFi heterogeneous networks. By addressing the unique
challenges of such networks, PlaciFi aims to optimize AP placement to enhance network performance
and cost efficiency.

3.2.1 State-of-the-art Analysis

In this section, we provide an overview of relevant literature related to the placement of APs in LiFi
and Radio Frequency (RF) networks, highlighting gaps that motivate our research.
Placement in LiFi Networks
In [DBS18], the authors explore optimal AP placement in LiFi networks by considering the stationary
distribution of user mobility. They analyze the stationary distribution of users following a Random
Waypoint model in an indoor environment. This initial work demonstrates feasibility using a small
Fixed-cell Single-user environment with four APs.

In [DBS20], the initial work is extended to optimize average throughput in an indoor environment by
considering the stationary distribution of users, placing APs in a 2D space using an adaptive gradient
projection algorithm. Unlike these works, our approach does not assume the actual positions of
users. Instead, it considers coverage on a user plane and various user occurrence patterns, which is
advantageous when user positions or numbers are unknown during the planning stage. Furthermore,
these studies do not address the optimal number of APs to be placed.

The work in [VB19] focuses on minimizing the number of LEDs based on the expected user
distribution in a room. However, it does not optimize for network performance in terms of throughput.
Instead, it aims to maximize the number of users served or minimize the number of APs placed. Their
approach uses an exhaustive search method, impractical for our problem.

The previously mentioned works ensure only a minimum illumination level in the room, which
could lead to uneven illumination since the positions or powers of the APs are optimized for maxi-
mizing the rate. Our objective is to ensure a minimum uniformity of illumination.

In [MS23], the authors aim to improve the arrangement of a fixed number of LEDs in LiFi systems
by minimizing outage probability, addressing 2D placement using a heuristic approach. Similarly,
[Yan+20] also addresses the limitations of exhaustive search by solving the 2D placement problem
for an LED array through successive convex sub-problems. They propose a power-efficient LED
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placement algorithm for indoor VLC networks, aiming to reduce power consumption while ensuring
reliable communication. However, their approach is limited to 2D placement with a fixed number of
LEDs. Both studies also consider achieving uniform illumination.

In contrast, our research considerably advances the existing literature by incorporating the distinct
characteristics and constraints of both LiFi and WiFi technologies. We introduce an optimization
framework that positions APs in a 3D space and accounts for various user occurrence patterns.
Placement in WiFi and Heterogeneous RF Networks
In the field of RF placement research, [Gop+22] presents a modified vector quantization method
for small-cell WiFi networks. Their optimization strategy focuses on minimizing interference and
optimizing the placement of APs within the network. This evaluation is conducted for single-user
networks and includes a discussion on the limitations of their approach in small-scale networks.

In a different work, [Pas+17] tackles the issue of colocated and non-colocated node placement in
Long Term Evolution (LTE)-WiFi aggregation networks by formulating it as an MINLP problem. This
work is particularly relevant to our work as it examines heterogeneous networks.

Similarly, [EAE19] proposes an optimal deployment strategy for heterogeneous wireless nodes in
integrated LTE-WiFi networks. They also frame the problem as an MINLP and introduce a genetic
algorithm to achieve near-optimal solutions. We also employ a genetic algorithm to demonstrate its
effectiveness in solving placement problems.

While these works focus on optimizing AP placement in WiFi or LTE-WiFi networks, our research
addresses the unique challenges of integrating LiFi with WiFi in a heterogeneous network. This
integration is particularly complex due to the orientation dependency of the LiFi channel, which
complicates formulating a mathematically convex optimization problem.
3D Placement
Previous works have primarily focused on the 2D placement of APs. To address 3D placement
optimization, we extend our review to include the placement of UAVs.

In their survey, [MM22] examine various methods for optimizing UAV placement and flight path
design. One section of their work investigates different placement optimization strategies. Their focus
on UAV placement is relevant to our work due to the 3D spatial considerations, though it differs as it
involves actual users during optimization.

Another work by [Gha+18] introduces an efficient strategy for 3D aerial base station placement,
taking user mobility into account through reinforcement learning. This work marks the beginning of
more recent research utilizing machine learning.

The authors in [WZZ18] explore joint trajectory and communication design for multi-UAV enabled
wireless networks. They tackle a non-convex problem by solving approximate convex sub-problems,
providing an interesting mathematical formulation.

An AP placement approach for UAV-terrestrial small-cell networks is proposed in [GRV21]. Their
work aims to optimize AP placement by considering UAVs as small cells while minimizing interfer-
ence, using a vector quantization approach similar to [Gop+22].

Previous research has examined various aspects of AP placement in homogeneous and hetero-
geneous networks. While some studies have concentrated on WiFi-based networks and others on
LiFi-based networks, there has been limited focus on integrating these technologies and optimiz-
ing AP placement in LiFi-WiFi heterogeneous networks. Our work addresses this gap by tackling
the unique challenges of LiFi-WiFi heterogeneous networks. We introduce novel optimization tech-
niques and adopt a comprehensive approach considering multiple objectives and the placement of
three-dimensional AP.

3.2.2 Key Contributions

We introduce a novel framework for the optimal three-dimensional placement of APs in a LiFi-WiFi
heterogeneous network, addressing key factors such as cost, rate coverage, user distribution, and
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illumination. This approach provides a comprehensive network plan considering the indoor layout
and strategically positions the APs.

1. Holistic Network Optimization: Our framework offers a comprehensive strategy for the opti-
mal placement of APs in a LiFi-WiFi heterogeneous network, incorporating both VLC and IR
communication for LiFi.

2. Multi-Objective Optimization: We tackle the challenge of optimal AP placement in three dimen-
sions by formulating a MOO problem, which achieves significantly higher average rates than
state-of-the-art 2D power optimization models. Our primary objective is to minimize the cost of
placing APs while maximizing network rate coverage. The results demonstrate the effectiveness
of MOO techniques in addressing multiple objectives simultaneously. Additionally, we incor-
porate constraints to ensure uniform and adequate illumination throughout the coverage area.
We refine our objective to minimize placement costs by accounting for the different expenses
associated with APs for LiFi and WiFi, thereby optimizing the network economically. To meet
the diverse needs of users, we include distinct user technology occurrence probabilities for each
technology (LiFi and WiFi), allowing us to tailor AP placement to the specific requirements of
each user group.

3. Versatile Solution Methods: We explore a range of solution methods, including heuristics, meta-
heuristics, and off-the-shelf solvers, consistently outperforming the baseline random approach.
Additionally, we examine various strategies to combine multiple objectives to obtain a single
optimal solution. This flexibility in solution approaches allows network planners to select the
most appropriate method based on the specific requirements of their deployment scenario.

3.2.3 System Model

Table 3.3 List of Notations used in the 3D Placement of LiFi and WiFi APs

Notation Description

𝑙, 𝑀𝐿 Index, size of LiFi APs
𝑤, 𝑀𝑊 Index, size of WiFi APs
𝑢, 𝑀𝑈 ,𝒰 Index, size, set of all user positions
𝑣, 𝑀𝑉 Index of, total positions on the illuminance grid
𝒄 = (𝑥, 𝑦, 𝑧) Vector of 3D coordinates
Δ𝒄 Grid spacing in 3 dimensions
𝛼 Binary existence variable for AP
𝐶 Cost of placing an AP
𝚯𝒖 = (Θ𝑌 ,Θ𝑃 ,Θ𝑅)𝑢 Vector of yaw, pitch and roll of user device
�̂�𝑢 Normal vector of the rotated user device
𝑝𝐿𝑢 , 𝑝𝑊𝑢 Probability of occurrence of LiFi, WiFi user
𝒅𝑢,𝑙 , 𝒅𝑢,𝑤 3D Euclidean distance between user and AP
𝜙 Angle of irradiance of LiFi signal
𝜃 Angle of incidence of LiFi signal
𝑃𝑙 , 𝑃𝑤 Transmission power of the APs
𝑃𝑢 Received power at the user
𝑅𝑢 , �̃�𝑢 Achievable and normalized achievable rate
𝐼𝑣 Illuminance at the grid position
𝐼 Illumination uniformity
�̃�thresh Normalized Rate requirement
𝐼thresh Illumination uniformity requirement
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Table 3.3 summarizes the notation used throughout this section. Specifically, we use bold lowercase
letters for vectors, cursive capital letters for sets, and 1 to represent indicator functions.

This work focuses on deploying a LiFi-WiFi heterogeneous network, integrating wireless technolo-
gies for indoor communication. The network comprises up to 𝑀𝐿 LiFi APs and up to 𝑀𝑊 WiFi APs,
strategically positioned throughout the environment.

The LiFi APs operate on the visible light or Infrared spectrum and are mounted above the user
plane facing downwards. When operating on visible light, they provide both illumination and
data transmission. The three-dimensional coordinates of each LiFi and WiFi AP are denoted by
𝒄𝑙 = (𝑥, 𝑦, 𝑧)𝑙 and 𝒄𝑤 = (𝑥, 𝑦, 𝑧)𝑤 , respectively. The maximum height of the APs is indicated by
𝑧maxdim, corresponding to the ceiling height in the indoor environment. The minimum height,
denoted by 𝑧mindim, is assumed to be at least one meter above the user plane to prevent receiver
saturation.

The user plane, where users are expected to be located, is represented by a grid with a spacing of
Δ𝒄𝑢 = 0.25 m at a height of 1.4 m. Each position 𝑢 ∈ 𝒰 on this grid is specified by the coordinates
𝒄𝑢 = (𝑥, 𝑦, 𝑧)𝑢 , with 𝑀𝑈 such positions. The orientation of these receivers is indicated by 𝚯𝒖 =

(Θ𝑌 ,Θ𝑃 ,Θ𝑅)𝑢 , representing the device’s Yaw, Pitch, and Roll angles. A (0, 0, 0) value signifies that
the user device is parallel to the floor and facing the ceiling. Given the dynamic and unknown exact
user locations, each grid position 𝑢 is assigned a weight 𝑝𝐿𝑢 or 𝑝𝑊𝑢 , corresponding to the expected
probability of a LiFi or WiFi user being in that position. Users connect to the AP offering the strongest
signal strength within the same technology, providing flexibility in the model as there are no dedicated
APs for specific users. If users can access both technologies, they choose the one with the highest link
rate.

The LiFi channel model is described in Section 2.3, while the WiFi channel model is detailed in
Section 2.6. In this work, we aim to ensure a minimum level of illumination uniformity. Building
upon the illumination model discussed in Section 2.5, illumination uniformity is quantified by the
ratio of the minimum to the average illumination intensity, as outlined in [IAY20].

𝐼 =
min𝑣 𝐼𝑣∑

𝑣 𝐼𝑣
𝑀𝑉

. (3.5)

The simulation parameters for the LiFi channel are the same as in the previous section, except for the
luminous efficacy of the LED, 𝐼0, set at 200 lm/Watt. The illumination uniformity threshold is defined
as 𝐼thresh = 0.7. The specific simulation parameters for the WiFi channel are detailed in Table 2.2.

3.2.4 3D Placement Problem Formulation

The primary focus of our 3D placement model is to determine the optimal number and positions of
LiFi and WiFi APs within a given environment. This optimization aims to minimize the deployment
cost of the APs while maximizing the network coverage, as reflected in the sum rate over the user
grid. This sum rate is weighted by the user occurrence probabilities for LiFi and WiFi, denoted as 𝑝𝐿𝑢
and 𝑝𝑊𝑢 , respectively. The cost associated with the placement is calculated based on the number of
APs deployed and their respective unit costs, 𝐶𝐿 for LiFi and 𝐶𝑊 for WiFi.

To ensure reliable coverage across the entire user plane, we impose a constraint on the minimum
guaranteed rate, defined in terms of a normalized rate threshold �̃�thresh. This constraint varies
depending on the technology used by the user. Specifically, if a user position 𝑢 has a zero probability
of a LiFi user (𝑝𝐿𝑢 = 0), the minimum rate must be provided by WiFi. Conversely, if both technologies
have a non-zero probability at position 𝑢, at least one must meet the minimum rate requirement.

Furthermore, we differentiate between the use of VLC and IR for LiFi. For the VLC model, we
introduce an additional constraint to ensure minimum illumination uniformity, denoted by 𝐼thresh,
across the illumination grid.

The decision variables in this 3D placement problem include the presence and positions of both
LiFi and WiFi APs. The presence of a LiFi AP 𝛼𝑙 ∈ {0, 1} is a binary variable indicating whether AP



Chapter 3 Designing LiFi-WiFi Networks with a focus on Access Point Placement

38

𝑙 is deployed. Similarly, 𝛼𝑤 ∈ {0, 1} indicates the presence of a WiFi AP. The positions of these APs
are defined within specific bounds as follows:

For WiFi APs:

𝑥𝑤 ∈ [0, 𝑥dim], 𝑦𝑤 ∈ [0, 𝑦dim], 𝑤 = 1, 2, . . . , 𝑀𝑊

𝑧𝑤 ∈ [𝑧mindim , 𝑧maxdim], 𝑤 = 1, 2, . . . , 𝑀𝑊

For LiFi APs:

𝑥𝑙 ∈ [0, 𝑥dim], 𝑦𝑙 ∈ [0, 𝑦dim], 𝑙 = 1, 2, . . . , 𝑀𝐿

𝑧𝑙 ∈ [𝑧mindim , 𝑧maxdim], 𝑙 = 1, 2, . . . , 𝑀𝐿

The room size constrains the x and y dimensions, while the z dimension is bounded by a minimum
of 2.5 m and a maximum at the ceiling height of 3.5 m.

The optimization problem can be mathematically formulated as follows:

min
𝒄𝑤 ,𝒄𝑙 ,𝛼𝑤 ,𝛼𝑙

𝐶𝑊
𝑀𝑊∑
𝑤=1

𝛼𝑤 + 𝐶𝐿
𝑀𝐿∑
𝑙=1

𝛼𝑙 (3.6)

max
𝒄𝑤 ,𝒄𝑙 ,𝛼𝑤 ,𝛼𝑙

∑
𝑢

(
�̃�𝑊
𝑢 𝑝𝑊𝑢 + �̃�𝐿

𝑢𝑝
𝐿
𝑢

)
(3.7)

s.t. max
(
�̃�𝐿
𝑢 ⌈𝑝𝐿𝑢⌉ , �̃�𝑊

𝑢 ⌈𝑝𝑊𝑢 ⌉
)
≥ �̃�thresh ∀𝑢 ∈ {𝒰 | 𝑝𝐿𝑢 > 0 ∨ 𝑝𝑊𝑢 > 0} (3.8)

min𝑣 𝐼𝑣∑
𝑣 𝐼𝑣
𝑀𝑉

≥ 𝐼thresh (3.9)

The first objective function (3.6) aims to minimize the deployment cost, while the second objective
(3.7) seeks to maximize the sum rate. The constraint in (3.8) ensures a minimum guaranteed rate at
each user grid position, and the constraint in (3.9) enforces illumination uniformity in the VLC mode.

This problem is categorized as an MINLP problem due to both integer and continuous variables, and
it is non-convex due to the nature of the second objective function. Consequently, it is mathematically
intractable and computationally complex. Additionally, this is a MOO problem involving multiple
conflicting objectives. In such scenarios, the optimal solution comprises a set of Pareto-optimal
solutions, representing the best trade-offs between the objectives [MA03].

In addition to the 3D Placement formulation, we also consider the "2D Pow" formulation. This
problem shares the same optimization framework, but instead of optimizing the height of the APs, it
optimizes their transmission power. This formulation aligns more closely with existing state-of-the-
art methods. The literature on LiFi-WiFi heterogeneous networks is scarce, so we draw comparisons
with LiFi-only studies. For instance, [Yan+20] addresses a similar problem in the "2D Pow" context,
focusing on power minimization rather than our multi-objective approach. By providing this alterna-
tive, we highlight the advantages and limitations of our model in relation to current state-of-the-art
methodologies.

3.2.5 Methods to solve the 3D Placement Problem

To address the MINLP and MOO problem outlined in Section 3.2.4, we have developed a comprehen-
sive orchestration framework featuring various solution methods. These methods include a random
optimizer as a baseline, an analytical approach suitable for off-the-shelf solvers, and a novel heuristic
called Dynamic Grid Explorer (DGE). Additionally, we adapt existing meta-heuristic and black-box
optimization algorithms to solve our specific problem.
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3.2.5.1 Random Baseline

To benchmark and validate the effectiveness of our optimization framework for AP placement in
LiFi-WiFi heterogeneous networks, we implement a random optimizer as a baseline. This involves
generating random candidate solutions within the defined 3D search space of potential AP locations.
These candidate solutions represent different configurations for the network’s AP placements. This
approach helps establish a baseline for comparing the effectiveness of our optimization framework
can be measured.

3.2.5.2 Optimizer

To tackle the MINLP nature of the 3D placement problem, the Gurobi optimization software [Gur23]
is employed. Gurobi efficiently handles Linear Programming (LP) relaxations for MINLP problems.

The nonlinear aspects of the problem are approximated through transformations to make them
solvable by Gurobi. The first objective function is a linear sum of binary variables representing the
presence of APs. The second objective, involving user rate calculations, is a non-convex, nonlinear
function of the optimization variables.

To calculate the rate for LiFi, we first determine the distance using auxiliary variables and the
convex Euclidean norm function. Next, we calculate the cosine of the irradiance and incidence angles
using auxiliary variables and bilinear transformations for the multiplications and divisions. These
terms are combined with additional bilinear constraints to obtain the gain HLoS. Recalling (2.4), the
gain is non-zero only within the FoV of the receiver. This results in adding indicator constraints. The
indicator variables for the incidence angles at the receiver and transmitter are expressed as

10≤𝜃𝑢,𝑙≤Θ 𝑓
(3.10)

10≤𝜙𝑢,𝑙≤Φ 𝑓
(3.11)

where 1 is the indicator variable that takes the value of 1 if the condition in the subscript is satisfied
and is 0 otherwise. Thus, the gain can be formulated as:

HLoS𝑢,𝑙 =
𝐻0

𝑑2
𝑢,𝑙

cos 𝜙𝑚
𝑢,𝑙

cos𝜃𝑢,𝑙10≤𝜃𝑢,𝑙≤Θ 𝑓
10≤𝜙𝑢,𝑙≤Φ 𝑓

(3.12)

The SINR for the user is calculated by considering the AP offering the maximum signal strength as
the connected AP. The max function is replaced with binary variables, which have the value of 1 for
the AP connected to the user. An additional constraint is included such that the sum of these binary
variables equals one, ensuring each user connects to only one AP. The signal at the receiver is given
by,

𝑆𝐿
𝑢 =

∑
𝑙

𝑔𝑢,𝑙𝑃𝑢,𝑙 . (3.13)

where 𝑔𝑢,𝑙 is the binary association variable, constrained by∑
𝑙

𝑔𝑢,𝑙 = 1 ∀𝑢 = 1, 2, . . . , 𝑀𝑈 (3.14)

The rate calculation involves converting the division in the SINR formula to subtraction using the log2
function, which converts the SINR to the rate as in (2.8). In contrast to the equation, we do not limit
the rate to the maximum capacity of the technology since that would involve a Piecewise function.
This transformation is applied to both LiFi and WiFi rates. The second objective function (3.7) is then
computed.

We set a lower bound on an auxiliary rate variable to ensure that users achieve the necessary data
rates. This constraint applies when a user can connect to only one technology. However, when a user
can utilize both LiFi and WiFi, we require that at least one technology meets the minimum guaranteed
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rate. To implement this, we introduce binary variables to choose between the two technologies,
ensuring their sum equals one for each user.

To address illumination uniformity constraint within the VLC model, we need to calculate the min-
imum illuminance in the room, recalling (3.9). We introduce an auxiliary variable, 𝐼min, representing
the minimum illuminance. We then add a constraint ensuring this variable is less than or equal to
the illuminance at every grid position:

𝐼min ≤ 𝐼𝑣 ∀𝑣 = 1, 2, . . . , 𝑀𝑉 . (3.15)

This approach leverages the lower bound on the uniformity constraint to maximize 𝐼min. In contrast,
the above constraint (3.15) ensures 𝐼min does not exceed any grid position’s illuminance value 𝐼𝑣 .

By introducing these auxiliary variables and constraints, we simplify the problem, though the non-
convexity persists due to the interactions of the optimization variables in calculating the LiFi gain.
Single Objective Optimization: Weighted Sum: The optimization problem can be simplified by
combining the two primary objectives — cost minimization and rate maximization — into a single
objective function using the weighted sum method. Here, the cost objective is given a weight of 60%,
and the rate maximization objective is given a weight of 40%. This results in the following combined
objective function:

𝐹 = 0.6 · 𝑓1(𝒄𝑤 , 𝒄𝑙 , 𝛼𝑤 , 𝛼𝑙) + 0.4 · 𝑓2(𝒄𝑤 , 𝒄𝑙 , 𝛼𝑤 , 𝛼𝑙).
Multi-objective Optimization: Epsilon-constraint: To handle MOO problems, the epsilon-constraint
method is employed. This approach converts the MOO problem into a series of single-objective sub-
problems by introducing an epsilon constraint on one of the objectives. The epsilon constraint sets a
threshold, ensuring the first objective does not exceed a specified value. By varying the epsilon value,
we generate a set of solutions that represent trade-offs between the objectives.

Maximize: 𝑓2(𝒄𝑤 , 𝒄𝑙 , 𝛼𝑤 , 𝛼𝑙)
Subject to: 𝑓1(𝒄𝑤 , 𝒄𝑙 , 𝛼𝑤 , 𝛼𝑙) ≤ 𝜖

Solving these sub-problems individually results in Pareto-optimal solutions for the different epsilon
values, enabling us to choose the solution that most effectively balances the combined objectives.
Single Objective Optimization: Simplified: While Gurobi is effective for finding precise optimal
solutions in smaller, less complex instances, it faces limitations in larger, more complex scenarios
typical in real-world LiFi-WiFi network deployments. To simplify the problem, the 3D AP space is
quantized into a grid with half the spacing of the user grid in the x and y dimensions (Δ𝑥 = Δ𝑥𝑢/2
and Δ𝑦 = Δ𝑦𝑢/2) and one-fourth the spacing in the z dimension (Δ𝑧 = Δ𝑧𝑢/4).

Signal powers 𝑃𝑢,𝑙 , 𝑃𝑢,�̃� between each AP grid point (𝑙, �̃�) and user grid point (𝑢) are pre-calculated.
During optimization, binary variables 𝛼𝑙 and 𝛼�̃� are used to select which grid points should be
occupied by APs.

𝛼𝑙 =

{
1 if LiFi AP is placed at grid point 𝑙
0 otherwise

𝛼�̃� =

{
1 if WiFi AP is placed at grid point �̃�
0 otherwise

The modified objective functions become

min
𝛼�̃� ,𝛼𝑙

𝐶𝑊
∑̃
𝑤

𝛼�̃� + 𝐶𝐿
∑̃
𝑙

𝛼𝑙

max
𝛼�̃� ,𝛼𝑙

∑
𝑢

(
�̃�𝑊
𝑢 𝑝𝑊𝑢 + �̃�𝐿

𝑢𝑝
𝐿
𝑢

)
.
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While this grid-based approach reduces computational complexity, it still requires significant memory
due to the number of potential AP positions. However, it performs well in smaller scenarios, such as
rooms up to 5 x 5 m with a grid spacing of Δ𝒄𝑢 =1 m.

3.2.5.3 Dynamic Grid Explorer

The DGE algorithm is introduced to efficiently explore the 3D placement space. It begins by fixing
the number of APs, similar to the epsilon-constraint method. Once the number of APs is set, let 𝑁
represent the total number of APs available for placement, and let 𝒞 = {𝒄0 , . . . , 𝒄𝑁 } denote the set of
all coordinates. These APs are initially randomly placed within the search space.

In the next step, the set of positions is updated according to predefined movement directions. Let
Δ be the set of possible movement directions for an AP

Δ = {(±𝑑, 0, 0), (0,±𝑑, 0), (0, 0,±𝑑), (0, 0, 0)} (3.16)

Here, 𝑑 represents a multiple of the grid size; for instance, 𝑑 = 2 indicates two steps on the grid. The
possible movement directions are illustrated in Figure 3.8.

Figure 3.8 Possible movement directions for LiFi and WiFi APs in the DGE algorithm

The coordinates of a single AP are then updated as follows:

𝒄 = 𝒄 + 𝛿 | 𝛿 ∈ Δ. (3.17)

Each AP is moved in all possible directions, and the value of the objective function is calculated for
each of these movements. Let 𝑓dge : 𝑓 (𝒞) → ℝ denote a function that maps a set of coordinates to a
real value representing our objective

𝑓dge =
∑
𝑢

(
�̃�𝑊
𝑢 𝑝𝑊𝑢 + �̃�𝐿

𝑢𝑝
𝐿
𝑢

)
. (3.18)

The objective function is penalized for any constraint violations to ensure compliance with both rate
and illumination constraints. Specifically, if any user position violates the rate constraint, the objective
is penalized by the worst violation:

𝑓 corr
dge =

{
𝑓dge(1 −min𝑢(�̃�thresh − �̃�𝑢)) if ∃𝑢 : �̃�𝑢 < �̃�thresh

𝑓dge otherwise
(3.19)

A similar penalty is applied for violations of the illumination uniformity constraint

𝑓 corr
dge =

{
𝑓dge

(
1 − 𝐼thresh−𝐼

2

)
if 𝐼 < 𝐼thresh

𝑓dge otherwise
(3.20)
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Here, 𝐼 represents the achieved illumination uniformity.
Based on the objective value, the best combination of coordinates is selected, and the APs are

moved to this new position. This process is repeated until the objective value no longer increases,
indicating that either a global optimum has been found or the algorithm is stuck in a local optimum.
To avoid local optima, the step size is increased incrementally as 𝑑← 𝑑 + 1, and the search continues
until no further movements are possible and the entire grid has been explored. Once a solution for a
fixed number of APs is found, the process is repeated for the next higher number of APs. Finally, the
optimal solution is selected using a weighted sum of the two objectives, considering only solutions
with the least constraint violations.

3.2.5.4 Meta-heuristics

The NSGA-II [Deb+02] is a widely used MOO technique that employs a genetic algorithm framework
to efficiently discover Pareto-optimal solutions. In MOO problems, scalarization functions [Chu20;
Wie82] can be used to break down the objectives and convert them into a single-objective problem
that can be addressed using standard optimization algorithms. The scalarization functions utilized
in this approach include:

• Weighted Sum: This method linearly combines multiple objectives with predefined weights,
transforming the multi-objective problem into a single-objective problem. For 𝑛 objectives 𝑓𝑖(𝑥)
with weights 𝑤𝑖 , the weighted sum objective 𝐹(𝑥) is represented as:

𝐹(𝑥) =
𝑛∑
𝑖=1

𝑤𝑖 · 𝑓𝑖(𝑥)

• Tchebicheff: This function evaluates the objectives by considering the maximum weighted
deviation from an ideal point, focusing on the worst-case scenario. For 𝑛 objectives 𝑓𝑖(𝑥) with
weights 𝑤𝑖 and an ideal point ideal(𝑥), Tchebicheff is represented as:

𝑇(𝑥) = max
𝑖
{𝑤𝑖 · | 𝑓𝑖(𝑥) − ideal𝑖(𝑥)|}

• Achievement Scalarization Function (ASF): ASF aims to minimize the weighted sum of devia-
tions from predefined aspiration levels for each objective. For 𝑛 objectives 𝑓𝑖(𝑥)with weights 𝑤𝑖

and reference points ref𝑖(𝑥), ASF is represented as:

ASF(𝑥) =
𝑛∑
𝑖=1

𝑤𝑖 · | 𝑓𝑖(𝑥) − ref𝑖(𝑥)|

• Penalty-Based Boundary Intersection (PBI): PBI uses a penalty function to combine the objec-
tives, encouraging convergence to the Pareto front while penalizing deviations. For 𝑛 objectives
𝑓𝑖(𝑥)with weights 𝑤𝑖 , and a penalty parameter 𝜌, PBI is represented as:

PBI(𝑥) =
𝑛∑
𝑖=1

𝑤𝑖 · 𝑓𝑖(𝑥) + 𝜌 ·

√√
𝑛∑
𝑖=1
( 𝑓𝑖(𝑥))2

Applying these scalarization functions allows the GA to handle the multi-objective AP placement
problem effectively. These decomposition techniques also serve as MCDM tools to select a single
optimum from a Pareto set. Additionally, Pseudo-Weights [BD20] can be used as an alternative
scalarization method. All meta-heuristics in this work are implemented using the Pymoo framework
[BD20], which has been adapted for our specific purposes.
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3.2.5.5 Black-box

We investigate the use of black-box optimization techniques, such as Bayesian optimization [Moc89],
Random Forest [Bre01], and Extra Trees[GEW06], to solve the AP placement problem. These methods
do not require explicit mathematical formulations of the objective functions or constraints. Instead,
they treat the optimization problem as a black box, relying on objective function evaluations without
needing gradient information or access to the underlying problem structure. This approach is par-
ticularly useful for handling complex, nonlinear optimization problems where traditional methods
may be less effective.

3.2.6 Evaluation Methods

Our proposed PlaciFi framework for optimal placement of APs in LiFi-WiFi heterogeneous networks
is evaluated through extensive simulations using a custom simulation environment implemented in
Python.
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Figure 3.9 Floor plans of indoor scenarios with WiFi user occurrence probability. The pattern for LiFi probability
is the same as WiFi in Conference and Corridor, while it is the opposite for Office and Museum.

To assess the performance of our proposed 3D placement algorithm, we simulate various typical
indoor environments, visualized in Figure 3.9. This figure also shows the user occurrence probability
for WiFi users. It is important to note that the LiFi user probability is also considered and may differ
from the WiFi user probability. For instance, the patterns for LiFi and WiFi are identical in Conference
and Corridor scenarios but opposite in Office and Museum scenarios.

• Office: This scenario represents a typical office setting where users need reliable, high-speed
wireless connectivity. The environment includes multiple workstations where users primarily
use LiFi for communication, while WiFi is valuable in areas with more movement.

• Museum: Museums frequently use wireless technologies to enhance visitor experiences. In this
scenario, LiFi APs are strategically placed to provide information and interactive content, with
WiFi APs supplementing coverage for mobile users.

• Conference: Conferences and large events require robust wireless connectivity to support nu-
merous participants. This scenario involves deploying a dense network of LiFi and WiFi APs to
ensure high-capacity coverage and seamless connectivity for attendees.
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• Corridor: Corridors serve as critical pathways in buildings. This scenario considers deploying
LiFi and WiFi APs along corridors to provide continuous wireless connectivity for users moving
through these areas

While we do not focus on a minimum illumination level, we ensure uniform illumination across all
scenarios. Apart from these application-specific scenarios, we evaluate a standard 5 x 5 m room with
a uniform user occurrence probability throughout. The additional simulation parameters used to
generate results are listed in Table 3.4.

Table 3.4 Simulation Parameters used to evaluate our implementation of PlaciFi

Parameter Notation Value

Normalized Rate threshold �̃�thresh 1%
Illumination Uniformity threshold 𝐼thresh 0.7
Cost of placing WiFi AP 𝐶𝑊 10 cost units
Cost of placing LiFi AP 𝐶𝐿 5 cost units

All collected results are based on 1000 simulation runs to ensure robustness. To validate our
findings, we employ hypothesis testing.

3.2.7 Results and Comparative Analysis
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Figure 3.10 Deterministic and optimized placements for the VLC model showing the need for optimization

In the following analysis, we primarily focus on results obtained using meta-heuristic methods unless
otherwise specified. We begin by examining the regular room scenario to evaluate the algorithm’s
performance independently of any real-world scenario-specific effects.

Figure 3.10a presents a comparison of the average data rates achieved in a regular room using
LiFi and WiFi technologies with three different AP placement techniques: deterministic placement,
2D power optimization (2D Pow), and our proposed 3D optimized placement. The deterministic
placement involves using a fixed lattice grid configuration with either 4 or 5 LiFi APs and one WiFi
AP placed at the center of the room, all positioned at a height of 3.5 m on the ceiling. In this scenario,
APs are deployed based on predefined positions without any optimization strategy, resulting in
sub-optimal data rate coverage and areas with poor signal quality and lower average data rates.

Compared to the deterministic placement, the 2D Pow optimized placement approach enhances
average overall data rate coverage. Deploying 3 or 4 LiFi APs results in a wider rate spread than other
methods. In contrast, our proposed 3D optimized placement technique consistently utilizes four
LiFi APs, as seen in Figure 3.10b. This consistency is due to the illumination uniformity constraint,
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which would be violated if fewer APs were used. The 3D technique also manages interference more
effectively than other strategies. By fully utilizing the three-dimensional space for AP placement, this
strategy outperforms the deterministic and 2D Pow methods in terms of overall performance.
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Figure 3.11 Rate Coverage achieved by the meta-heuristic NSGA-II for the VLC model with our proposed
optimized placement

The superior performance of our proposed 3D optimization technique is illustrated in Figure 3.11,
which shows a representative result from the simulation. The APs utilize height differences to achieve
varied coverage areas, effectively minimizing regions of interference and leading to significantly
improved network performance.
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Figure 3.12 Performance achieved using 3D VLC and 3D IR models showing the need to constrain the uniformity
when using visible light.

Figure 3.12a compares illumination uniformity achieved using two techniques: 3D IR and 3D VLC.
The key difference between these methods is the inclusion of the illumination uniformity constraint in
the 3D VLC approach. The results indicate that the 3D VLC technique provides superior illumination
uniformity, effectively distributing light evenly across the coverage area. This demonstrates the
necessity of including the illumination uniformity constraint, as optimizing solely for data rate does
not ensure uniform lighting.

In contrast, the 3D IR model, which lacks this constraint, is still appropriate for scenarios where LiFi
relies on IR communication and the APs do not contribute to illumination. Thus, the choice between
the 3D VLC and 3D IR techniques should be based on the specific requirements of the LiFi system.
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Furthermore, as shown in Figure 3.12b, the 3D IR model achieves a lower average data rate because
it reduces the number of APs placed while still optimizing the overall objective function. Despite this
reduction, the data rate remains significantly above the minimum guaranteed rate.
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Figure 3.13 Comparing the proposed 3D model and extended State of Art 2D Pow model for both VLC and
IR models of LiFi. The figure is annotated with the significance levels of p-values achieved using hypothesis
testing, indicating the better performance of the proposed 3D optimization.

Understanding the distinctions between the two LiFi models, we compare their performance when
utilizing our proposed 3D optimization against the extended state-of-the-art 2D Pow Model. As
illustrated in Figure 3.13a, our 3D optimization method consistently achieves a significantly higher
average data rate than the 2D Pow model for both LiFi models. The results of the significance tests
are indicated by star notation on the figure. This improvement in data rate does not come at the
expense of solving time. As shown in Figure 3.13b, the difference in solving time between the models
is negligible, indicating that our 3D optimization method is efficient and effective.
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Figure 3.14 Comparing the solutions obtained with the Gurobi optimizer and meta-heuristic approaches for
smaller rooms of size 3 x 2 m. The figure displays close rate values indicating the competitive performance of
the meta-heuristic solver. The complexity of the full Gurobi models is also evident.

With the efficacy of our proposed 3D optimization approach established, we now evaluate the
performance of various solvers within our optimization framework. We first compare the optimality
of the proposed meta-heuristic techniques against solutions produced by different implementations
using the Gurobi solver. These simulations are conducted in a smaller version of the regular room,
measuring 3 x 2 m. The Figure 3.14a shows that the average data rates achieved by the meta-heuristic
techniques and the Gurobi solver differ by a maximum of 7 Mb/s. This narrow range of differences
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is encouraging, indicating that both approaches can deliver competitive results for smaller scenarios.
Upon closer inspection, the meta-heuristic results are slightly higher than those obtained with the
Gurobi solver. This can be attributed to minor variations in combining the two objectives during
optimization. Despite these slight differences, the overall performance of our proposed meta-heuristic
techniques remains exceptionally close to that of the Gurobi solver, demonstrating the optimality of
our results for both the VLC and IR models. Figure 3.14b highlights the complexity of the MINLP
solution methods. Although the GurobiSimple method shows low solve time, it does not scale well
to larger scenarios.
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Figure 3.15 Comparing all proposed solvers of PlaciFi alongside a random solver as baseline focusing on the
VLC model of LiFi. The figure is annotated with the significance levels of p-values achieved using hypothesis
testing, indicating the higher achieved values of each solver than the previous.

Encouraged by these results, we compared the average data rates obtained using our proposed
heuristic, meta-heuristic, and black-box solvers against a random solver as a baseline. Our focus is
on VLC, given the increased challenge introduced by the illumination constraint. The rate results,
depicted in Figure 3.15a, show the performance of each solver. The plot demonstrates that all the
proposed solvers outperform the baseline random solver on average. Among the solvers, the DGE,
NSGA-II, and GA stand out, achieving the highest average rates. While the black-box optimization
performs slightly worse than the meta-heuristics, it still yields competitive results. Significance test
results are annotated on the plot to validate these findings.

Additionally, we conducted a time-to-solve comparison for all the solvers, as shown in Figure 3.15b.
The significance test results effectively represent the comparison. The DGE exhibits very competitive
performance. However, it is essential to note that DGE has relatively high memory requirements,
which grow with factorial complexity proportional to the number of APs, making it less scalable for
larger scenarios. In summary, the DGE is a highly effective solution for small scenarios, delivering
outstanding results. For larger scenarios, meta-heuristics like NSGA-II and GA are the preferred
choices, providing optimal performance with competitive solving times. The combined evaluation
highlights the strengths and limitations of each solver, enabling network planners to select the most
suitable approach based on their specific deployment requirements and constraints.
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Figure 3.16 Comparing single and multi-objective solution methods with the meta-heuristic solver focusing on
the VLC model of LiFi. The figure depicts the superior performance of the multi-objective methods.

Examining meta-heuristics further, we compare the average rates of LiFi and WiFi achieved by
different MOO and Single-Objective Optimization (SOO) techniques for the VLC model. These
solution methods employ various decomposition and MCDM approaches to handle the multiple
objectives. The results, as illustrated in Figure 3.16, demonstrate that, overall, the MOO methods
outperform the SOO methods. The SOO Weighted Sum method, while performing close to the MOO
techniques, highlights the difficulty of combining multiple objectives into a single one, as it tends to
place an extra WiFi AP. In summary, MOO methods demonstrate superior capability in handling
multiple objectives. However, the SOO Weighted Sum method also provides a compelling alternative
with competitive performance.
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Figure 3.17 Scalability of the meta-heuristic solvers for increasing room size

Finally, we assess the scalability of our meta-heuristic solution by analyzing the time required to
solve for increasing room sizes in a standard scenario. Both the VLC and IR models are considered
to identify any performance differences. The results of this analysis are displayed in Figure 3.17. As
anticipated, the average time to solve shows a linear trend, indicating a steady rise in computation time
with increasing room size. However, breakpoints in the slope are observed, attributed to changes in
various variables, such as the number of user positions and the maximum number of APs that can be
placed. The VLC and IR models exhibit similar trends, suggesting that the choice of communication
technology does not significantly impact the scalability of the meta-heuristic solution. To measure
uncertainty, the figure also includes a 95% confidence interval band. Although the band is not clearly
visible due to its narrow width, it widens as room size increases, reflecting greater variability in the
time-to-solve for larger scenarios.
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When examining the average rate achieved, as shown in Figure 3.17b, we observe a decrease with
increasing room sizes. This trend is due to the objective of placing as few APs as necessary while still
ensuring adequate rate coverage.
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Figure 3.18 Performance that can be achieved with the NSGA2 solver for the VLC model of LiFi for various
application scenarios

Having demonstrated the effectiveness of our optimization framework in a regular room, we now
evaluate its practical applicability in real-world use cases by conducting simulations across various
indoor scenarios. Each scenario incorporates different user occurrence distributions for both LiFi and
WiFi as detailed in Figure 3.9. Figure 3.18 highlights the challenges posed by the corridor scenario,
where achieving uniform coverage and higher data rates is more complicated. Consequently, this
scenario requires a higher number of APs compared to other use cases, resulting in a wider range of
data rates. In contrast, the office layout allows for more strategic placement of a smaller number of
APs, ensuring adequate coverage for users with fewer resources.
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Figure 3.19 Distribution of LiFi (red) and WiFi (blue) AP positions obtained with the NSGA-II solver over 1000
runs for various application scenarios

Figure 3.19 offers a detailed view of the distribution of LiFi and WiFi APs over the 1000 simulation
runs. The results reflect the users’ probability patterns. In the Office scenario, the APs are predom-
inantly placed where the occurrence of users for that technology is the highest. The LiFi APs are
positioned closer to the room’s outer edges to ensure uniform illumination for the VLC model. The
Conference scenario shows a broader distribution of APs due to the identical probability patterns for
both technologies. The Museum scenario highlights the differences between the VLC and IR models.
While both models place the APs near high-probability user areas, the placement patterns differ to
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achieve illumination uniformity. The LiFi APs are positioned close to artifacts, whereas WiFi APs are
placed nearer to areas with higher user mobility. Overall, our framework’s performance across these
diverse indoor scenarios demonstrates its versatility and effectiveness in tailoring AP placement to
accommodate various user occurrence distributions for both LiFi and WiFi.

These results highlight the strengths and limitations of the proposed optimization framework, pro-
viding valuable insights for network planners and designers when considering deployment scenarios
of different sizes.

3.3 Summary and Conclusions

This chapter has addressed the problem of optimizing 3D placement of APs in both LiFi-only and LiFi-
WiFi heterogeneous networks. We tackled the LiFi AP 3D placement problem with dual objectives:
minimizing the number of APs and maximizing the user occurrence probability-weighted sum rate.
Both free-height and fixed-height models were analyzed. The placement problem was formulated
as a multi-objective optimization problem, incorporating constraints on minimum data rates and
illumination levels. Key findings from this section include:

1. Height Variability in LiFi Networks: The research on LiFi AP placement highlights the pivotal
role of AP height in optimizing network performance. Allowing flexible height adjustments
significantly enhances data rates and coverage compared to fixed-height placements. This
flexibility helps in minimizing interference and maximizing the effective coverage area.

2. User Distribution Considerations: Incorporating expected user distribution into the optimiza-
tion process ensures that network performance is maximized in areas with high user likelihood.

Building on the principles established in the LiFi-only network optimization, we introduced PlaciFi,
a framework for the optimal 3D placement of APs in LiFi-WiFi heterogeneous networks. This frame-
work addresses the critical challenge of maximizing coverage and capacity while minimizing deploy-
ment costs through strategic AP placement. Key findings from this section include:

1. Holistic Network Optimization: PlaciFi incorporates both VLC and IR communication for LiFi,
and considers the distinct costs associated with LiFi and WiFi APs. This comprehensive ap-
proach ensures an economically viable network design.

2. User Distribution and Technology Integration: PlaciFi’s approach to considering user technol-
ogy occurrence probabilities is a significant advancement in heterogeneous network planning.
By tailoring AP placement based on the likelihood of users utilizing LiFi or WiFi, the network
can more effectively meet diverse user needs and improve overall performance.

3. Multi-Objective Optimization: Both studies employ MOO to balance competing goals such as
minimizing AP count and maximizing data rates. This approach is crucial for achieving an
optimal trade-off between infrastructure costs and network performance.

4. Solution Methods: The exploration of various solution methods, including genetic algorithms
and heuristics, demonstrates the suitability of each optimization technique in network plan-
ning. These methods provide network planners with tools to address complex AP placement
challenges effectively.

The work of this chapter not only advances the state-of-the-art in AP placement strategies but also
provides practical tools and methodologies for network planners to design efficient, reliable, and
cost-effective LiFi-WiFi indoor networks. With the network design phase completed, the next logical
step is to deploy these optimized networks and focus on their effective management post-deployment
to ensure that the designed networks not only meet initial performance expectations but also adapt
to changing conditions and continue to serve evolving user needs. The upcoming chapters will
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transition from the design aspects to addressing the challenges and strategies involved in managing
deployed networks.

We will explore resource management techniques, focusing on both wireless and computational
resources. This includes dynamic resource allocation and load balancing to optimize the utilization of
wireless resources with mobility and environment awareness. Additionally, we will analyze methods
for managing computational resources, such as in edge computing to support the growing demand
for data processing needs in advanced wireless networks.
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Chapter 4

Wireless Resource Allocation in LiFi-WiFi Networks

Wireless resource management is a critical aspect of modern communication networks, particularly in
the context of heterogeneous networks combining Light-Fidelity (LiFi) and Wireless-Fidelity (WiFi)
technologies. As these networks evolve, they are expected to support a diverse range of applica-
tions, from bandwidth-intensive streaming services to latency-sensitive real-time communications.
Effective resource management strategies are essential to meet the stringent Quality of Service (QoS)
requirements of these applications while ensuring optimal utilization of available network resources
[WO22].

In LiFi-WiFi heterogeneous networks, the unique characteristics of each technology can be leveraged
to enhance overall network performance. LiFi, with its high data rates and low latency capabilities, is
well-suited for scenarios requiring rapid data transmission and minimal delay [Sol+23]. WiFi, on the
other hand, offers broader coverage and robust connectivity, making it indispensable for maintaining
seamless communication in diverse environments [Wu+21b]. Integrating these technologies presents
both opportunities and challenges in wireless resource management.

This chapter explores the complexities of wireless resource management in LiFi-WiFi networks,
presenting novel contributions aimed at optimizing network performance. The first contribution
focuses on delay minimization optimization. Given the critical importance of minimizing packet
delay for applications such as live video streaming and Voice over Internet Protocol (VoIP) [Est+24],
this section explores strategies to allocate resources efficiently, ensuring that delay-sensitive traffic is
prioritized without compromising overall network throughput. This work, based on our conference
publication [VK21], addresses these gaps by proposing methods that account for network delay and
data rate requirements, considering both singlepath and multipath scenarios.

The second contribution addresses the stability of LiFi-WiFi networks. Transient channel condi-
tions, such as light path blockages and changes in receiver orientation, pose significant challenges to
maintaining stable connections [ASS23]. This section introduces methods to enhance network stabil-
ity, ensuring consistent performance even in the face of dynamic and unpredictable environmental
factors. The enhancements in network stability introduced by our handover management strategies
have been documented in a published conference paper [Vĳ+21].

The final contribution examines the weighted alpha-fair utility maximization. Fairness in resource
allocation is crucial to prevent scenarios where certain users monopolize bandwidth, leading to
degraded service for others [Lan+10]. By implementing a weighted alpha-fairness approach, this
section aims to balance the trade-offs between efficiency and equity, ensuring that all users receive
a fair share of the network resources while maximizing overall utility. Our network optimization
through alpha-fair utility maximization is partly detailed in a journal manuscript [VK24].

Through these contributions, this chapter provides a comprehensive framework for wireless re-
source management in LiFi-WiFi networks. By addressing delay minimization, network stability, and
fairness in resource allocation, the proposed strategies aim to enhance the performance and reliability
of heterogeneous networks, paving the way for the future of wireless communications.
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4.1 Delay-aware Wireless Resource Allocation and User Association in
LiFi-WiFi Networks

To optimally leverage the heterogeneity of access technologies in a LiFi-WiFi network, it is essential to
develop intelligent methods for user association and resource allocation. While a significant body of
work [WSH17; WWH17; WWH16] has addressed resource management in LiFi-Radio Frequency (RF)
heterogeneous networks, these works primarily focus on optimizing resource allocation for maximum
throughput or data rate while ensuring proportional fairness among users. However, most of these
works overlook the critical aspect of network delay requirements.

Future wireless networks are expected to support a wide range of communication applications
with varying QoS requirements. Applications such as live video streaming and VoIP are highly
delay-sensitive and require a minimum guaranteed bandwidth. Therefore, it is crucial to optimize
resource allocation with network packet delay as a key performance metric for QoS flows.

Additionally, most existing works assume that users in a heterogeneous network can be served by
only one technology at a time, reflecting the limitations of conventional user equipment that lacks
support for Multi-Homing. However, with the growing adoption of multipath transport protocols
like Multipath Transmission Control Protocol (MPTCP), it is becoming increasingly important to
consider Multi-Homing user devices, which can be served by multiple wireless access technologies
simultaneously. This capability enables the aggregation of wireless resources and better utilization
of the diverse technologies available.

In this work, which is based on a conference publication [VK21], we address these gaps by proposing
methods that account for network delay and data rate requirements, considering both singlepath and
multipath scenarios. Our approach not only ensures efficient resource allocation and user association
but also enhances the overall network performance by accommodating the unique requirements of
delay-sensitive applications and leveraging the potential of Multi-Homing devices.

4.1.1 State-of-the-art Analysis

In their research, [WWH17], the authors utilize the data rate QoS metric as a critical element in the
optimization objective for resource allocation within a LiFi-RF heterogeneous network, employing
an Evolutionary Game Theory (EGT)-based algorithm for resolution. Despite this advancement,
their work overlooks delay-related metrics, which are pivotal for applications requiring timely data
transmission.

The concept of effective capacity, as introduced by [WN03], offers a sophisticated method to model
the channel with respect to various QoS metrics, specifically accommodating the analysis of delay
constraints alongside throughput. Building upon this, [Jin+17] effectively employ effective capacity
to maximize resource utilization within a homogeneous RF network. This approach was further
explored by [Jin+16] within the context of a homogeneous LiFi network and subsequently extended
to a LiFi-RF network in [JZH15]. These studies collectively advance the understanding of effective
capacity as a tool for enhancing network performance under QoS constraints. Despite these develop-
ments, there remains a noticeable gap in the literature concerning user association in heterogeneous
networks with explicit consideration of delay constraints. Our work seeks to bridge this gap by not
only aiming to reduce overall network latency but also ensuring that each user meets specific delay
requirements.

In parallel research, [Luo17] focus on minimizing network packet delays in an RF-only heteroge-
neous network. Their strategy involves a distributed algorithm that addresses network efficiency
without explicitly imposing constraints on delay or bandwidth. However, their model does not ac-
commodate devices with more than one network connection (Multi-Homing), which can significantly
influence network dynamics and user experience by allowing devices to maintain multiple network
connections simultaneously.
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Our work extends these concepts by incorporating a comprehensive analysis of network packet
delays, specifically focusing on heterogeneous network environments where both LiFi and RF tech-
nologies coexist. We develop an algorithmic approach that not only optimizes for low latency and
meets stringent delay requirements but also effectively integrates the capabilities of Multi-Homing
devices, thus offering a solution for contemporary network challenges.

At the time of publication of this work, the previously mentioned works were the state-of-the-art.
Currently another work [WO22] must be mentioned due to its similarity in goal. The authors aim to
optimize the resource allocation to minimize packet losses and delay as QoS metrics for single- and
multi-homing devices. However, the difference to our work is that they do not provide any latency
or data rate guarantees as we do.

4.1.2 Key Contributions

In this work, we address the optimization of network resource allocation in LiFi-WiFi heterogeneous
networks with a focus on delay-critical applications. We develop a comprehensive strategy that not
only minimizes network delays but also meets diverse user requirements for data rate and latency.
Our contributions are summarized as follows:

1. Formulation of a Mixed Integer Nonlinear Programming (MINLP) Problem: We introduce a
MINLP problem aimed at minimizing average network packet delay while ensuring delay and
data rate QoS requirements for each user.

2. Extension to multipath networks: Our model is expanded to accommodate Multi-Homing user
devices, allowing for simultaneous resource allocation across both LiFi and WiFi technologies.

3. Solution Methods: We employ a Branch and Bound-based solver for precise solutions and
propose a genetic algorithm for scenarios requiring faster, near-optimal solutions.

4. Simulation-Based Evaluation: All proposed solution methods are rigorously evaluated through
simulations and results indicate that our delay-optimized algorithm consistently achieves an
average packet delay of less than 1 ms even in high traffic scenarios.

4.1.3 System Model

This work explores delay-aware resource management in a singlepath and multipath LiFi-WiFi het-
erogeneous network with a total of 𝑀𝐴 Access Points (APs), consisting of both LiFi and WiFi. The LiFi
APs, which are Light Emitting Diodes (LEDs) mounted at the ceiling, operate at the same frequency,
leading to co-channel interference in overlapping areas. Conversely, the WiFi APs operate on distinct,
non-overlapping frequencies. This AP network serves a total of 𝑀𝑈 users, each equipped with both
LiFi photodiode and WiFi receivers for downlink communication. These users are served by one
access technology in the singlepath configuration of the network and simultaneously served by both
technologies in the multipath configuration of the network.

Each user generates its own QoS traffic that must be served in the downlink. The inter-arrival times
of these data packets follow an exponential distribution with a mean of 1/𝜆𝑢 seconds, independently
for each user. Similarly, packet lengths follow an exponential distribution with a mean of 𝐿𝑢 bits. In
addition to these QoS flows, we assume the presence of Best Effort (BE) traffic or delay-tolerant traffic,
which primarily has bandwidth constraints. A representation of the network architecture is depicted
in Figure 4.1.
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Figure 4.1 Architecture of a LiFi-WiFi heterogeneous network with QoS traffic

APs are assumed to be always active to serve continuous BE traffic. To manage this traffic, each
AP 𝑎 allocates a resource proportion 𝑦𝑢,𝑎 to each user 𝑢. The resulting data rate is the product of this
resource proportion and the link data rate 𝑅𝑢,𝑎 . Consequently, the service time for QoS packets to
each user is exponentially distributed with a mean of 1/(𝑦𝑢,𝑎 𝑅𝑢,𝑎

𝐿𝑢
). Thus, the traffic to each user can

be modeled as an M/M/1 queue.
For resource allocation, all LiFi and WiFi APs are connected to a central controller. This controller

has comprehensive wireless channel state information for all users in the network, enabling centralized
resource allocation. This allocation must be updated regularly to reflect changing channel conditions.
The process involves determining both the resource proportions and the appropriate AP for each
user to associate with in a singlepath network. In the next section, the problem formulation for the
resource allocation minimizing network delay for a LiFi-WiFi network is described for both single and
multipath configurations. For this purpose we use the average network packet delay as the metric to
minimize.

The channel models for LiFi and WiFi are elaborated in Section 2.3 and Section 2.6. To analyze
the performance of the system under Line-of-Sight (LoS) blockages to the LiFi signal, we use several
different blockage models like transient blockages, correlated blockages and the geometric blockage
models as explained in Section 2.4. To evaluate the performance of our resource allocation strategy
with mobile users, we include the Random Waypoint (RWP) mobility model. Further details about
the mobility model are provided in Section 2.7. Table 4.1 provides a summary of the notations used
in this section.

Table 4.1 List of Notations used in Delay-aware Resource Allocation

Notation Description

𝑎, 𝑀𝐴,𝒜 Index, number, and set of total APs
𝑢, 𝑀𝑈 ,𝒰 Index, number, and set of users
𝜆𝑢 Arrival rate of QoS packets of user 𝑢 in packets per second
𝐿𝑢 Size of a QoS packet of user 𝑢 in bits
𝜏𝑢,𝑎 Network packet delay
𝜏thresh,𝑢 Delay requirement for user 𝑢
𝑅𝑢,𝑎 Achievable rate of user 𝑢 connected to AP 𝑎
𝑅thresh,𝑢 Rate requirement for 𝑢
𝑥𝑢,𝑎 Optimization variable indicating association
𝑦𝑢,𝑎 Optimization variable indicating resource proportion
𝒜𝑢 Set of the best APs one of each technology for user 𝑢
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4.1.4 Delay Minimization Problem Formulation for Singlepath Networks

In a singlepath network, each user can connect to only one AP at any given moment. Therefore, the
resource allocation process must determine both the user’s association with an AP, represented by
𝑥𝑢,𝑎 , and the proportion of resources allocated by that AP, denoted as 𝑦𝑢,𝑎 . Here, 𝑥𝑢,𝑎 is a binary
variable equal to 1 when user 𝑢 is connected to AP 𝑎.

The network packet delay in a singlepath network, 𝜏𝑢,𝑎 , is described by:

𝜏𝑢,𝑎 =
1

𝑦𝑢,𝑎
𝑅𝑢,𝑎

𝐿𝑢
− 𝑥𝑢,𝑎𝜆𝑢

(4.1)

where 𝑦𝑢,𝑎𝑅𝑢,𝑎/𝐿𝑢 is the service rate for the user 𝑢.
The objective of the resource allocation is to minimize the average network packet delay while

ensuring that each user’s data flow meets the maximum delay and minimum data rate requirements.
The optimization problem can be formulated as

min
𝑥𝑢,𝑎 ,𝑦𝑢,𝑎

1∑𝑀𝑈

𝑢=1 𝜆𝑢

𝑀𝐴∑
𝑎=1

𝑀𝑈∑
𝑢=1

𝑥𝑢,𝑎𝜆𝑢𝜏𝑢,𝑎 (4.2)

subject to
∑
𝑎

𝑥𝑢,𝑎 = 1 ∀𝑢 = 1, 2, . . . 𝑀𝑈 (4.3)∑
𝑢

𝑥𝑢,𝑎𝑦𝑢,𝑎 ≤ 1 ∀𝑎 = 1, 2, . . . 𝑀𝐴 (4.4)∑
𝑎

𝑥𝑢,𝑎𝜏𝑢,𝑎 ≤ 𝜏thresh,𝑢 ∀𝑢 = 1, 2, . . . 𝑀𝑈 (4.5)∑
𝑎

𝑥𝑢,𝑎𝑦𝑢,𝑎𝑅𝑢,𝑎 ≥ 𝑅thresh,𝑢 ∀𝑢 = 1, 2, . . . 𝑀𝑈 (4.6)

𝑥𝑢,𝑎 ∈ {0, 1} ∀𝑢, 𝑎 (4.7)
0 < 𝑦𝑢,𝑎 ≤ 1 ∀𝑢, 𝑎 (4.8)

The equality constraint in (4.3) ensures that each user can only be associated with a single AP. The
constraint in (4.4) sets a limit on the maximum capacity of each AP. The constraints in (4.5) and (4.6)
specify the requirements for delay and data rate, respectively. Additionally, we consider that besides
the QoS packets, there is other traffic directed to the user that contributes to fulfilling each user’s data
rate requirement.

4.1.5 Delay Minimization Problem Formulation for Multipath Networks

In a multipath network, each user can be served simultaneously by two different technologies, with
one AP per technology. Consequently, the resource allocation process must determine the resource
proportions 𝑦𝑢,𝑎 allocated by the APs of both technologies. The optimal APs are pre-determined
based on the highest Signal to Interference and Noise Ratio (SINR) they offer. For each user 𝑢, the set
𝒜𝑢 includes the LiFi AP with the highest SINR among all LiFi APs and the best of the WiFi APs. The
network packet delay for user 𝑢, denoted as 𝜏𝑢 , is then described by:

𝜏𝑢 =
1∑

𝑎∈𝒜𝑢
𝑦𝑢,𝑎

𝑅𝑢,𝑎

𝐿𝑢
− 𝜆𝑢

(4.9)

where
∑

𝑎∈𝒜𝑢
𝑦𝑢,𝑎

𝑅𝑢,𝑎

𝐿𝑢
represents the total service rate provided to user 𝑢 by both technologies com-

bined.
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The objective is the same as in the singlepath network which is to minimize the average network
packet delay while satisfying specific delay and data rate requirements for each user. Therefore, the
optimization problem is formulated as follows:

min
𝑦𝑢,𝑎

1∑𝑀𝑈

𝑢=1 𝜆𝑢

𝑀𝑈∑
𝑢=1

𝜆𝑢,𝑎𝜏𝑢 (4.10)

subject to
∑
𝑢

𝑦𝑢,𝑎 ≤ 1 ∀𝑎 = 1, 2, . . . 𝑀𝐴 (4.11)

𝜏𝑢 ≤ 𝜏thresh,𝑢 ∀𝑢 = 1, 2, . . . 𝑀𝑈 (4.12)∑
𝑎∈𝒜𝑢

𝑦𝑢,𝑎𝑅𝑢,𝑎 ≥ 𝑅thresh,𝑢 ∀𝑢 = 1, 2, . . . 𝑀𝑈 (4.13)

0 < 𝑦𝑢,𝑎 ≤ 1 ∀𝑢, 𝑎 (4.14)

The constraint in (4.11) specifies the maximum capacity limit for each AP. Meanwhile, the constraints
in (4.12) and (4.13) set the requirements for maximum allowable delay and minimum data rate,
respectively.

4.1.6 Resource Allocation schemes for delay minimization

The singlepath network optimization problem outlined in the previous section is a MINLP problem,
as it involves both integer variables 𝑥𝑢,𝑎 and real valued 𝑦𝑢,𝑎 , with the multipath problem exhibiting
non-linearity. The constraints for both problems define their feasible regions. Generally, MINLP
problems are mathematically complex and challenging to solve. Branch and bound algorithms are
widely employed to address mixed integer problems. These algorithms recursively decompose the
optimization problem into smaller sub-problems until they become manageable. To avoid exhaus-
tively exploring all variable combinations, the algorithm efficiently prunes the search space. In this
research, we utilize the Gurobi solver [Gur23], which solves MINLP problems using a spatial branch
and bound algorithm. For comparative purposes, we also apply this solver to the multipath problem.

In addition to the branch and bound-based solver, we propose a Genetic Algorithm (GA) meta-
heuristic [Gol89] to solve the problem with reduced complexity while maintaining solution quality.
Genetic algorithms are inspired by the theory of natural selection, where the fittest individuals are
chosen for reproduction to form the next generation’s population. A standard genetic algorithm
typically involves the following stages

1. Initial Population: The initial population comprises a set of potential solutions to the optimiza-
tion problem, randomly generated to include both integer and real-valued variables.

2. Fitness Evaluation: The fitness function, or objective function, assigns a fitness score to each
individual solution. This score determines the suitability of each individual for reproduction.
The fitness functions we utilize are the objective functions described in (4.2) and (4.10).

3. Selection: In this stage, individuals with the highest fitness scores are selected for reproduction,
ensuring that the best solutions are carried forward to the next generation.

4. Crossover: During crossover, selected parent individuals are combined to produce offspring,
which will form part of the next generation. The generation of offspring adheres to the variable
bounds specified in (4.7), (4.8), and (4.14). For this process, we employ the Simulated Binary
Crossover operator [DA+95], to handle both integer and real variables.

5. Mutation: To maintain genetic diversity and prevent premature convergence to a local optimum,
some offspring undergo mutation with a certain probability. The mutation process follows the
same probability distribution as the crossover.
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6. Termination: The algorithm terminates when it converges to a solution, ensuring that the
variable solutions are feasible and optimal or near-optimal.

To ensure the feasibility of the solution, constraints must be incorporated into the model. Typically,
meta-heuristic algorithms are designed for unconstrained problems, so adding constraints requires
manipulation of the objective or fitness function. This is often achieved through a penalty function,
where any violation of a constraint penalizes the objective function value, making the corresponding
solution less desirable. In our approach, the genetic algorithm incorporates these constraints by
modifying the fitness function to include penalties for constraint violations. As a result, the algorithm
ranks all solutions based on their feasibility, prioritizing feasible solutions over those that do not meet
the constraints. The algorithm converges when it identifies solutions that satisfy all constraints while
minimizing the objective function. Figure 4.2 illustrates the average convergence time of the genetic
algorithm used in this work. The algorithm is observed to search around in the population space
until it finds the set of feasible solutions. Once it finds the feasible solution it then continues in this
feasible space to minimize the objective function until convergence.
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Figure 4.2 Convergence of the genetic algorithm

The meta-heuristic algorithm used in this work starts with an initial population of 100 and is
designed to run through a maximum of 200 generations. However, the algorithm may end earlier
if convergence is reached before the maximum number of generations and this is evidenced by the
termination of the algorithm in 61 generations as seen in Figure 4.2.

4.1.7 Evaluation Methods

Max-SNR Method for Benchmarking:
We develop a baseline model to benchmark the performance of our optimization framework for
minimizing delay in LiFi-WiFi networks. User association with APs is determined by selecting the
AP that provides the highest Signal to Noise Ratio (SNR) since this is the association strategy that
is currently implemented in market devices. The proposed resource allocation is evaluated using a
simulation framework implemented in Python 3.10.6 with Gurobi v11.0.0.

Table 4.2 Network Topology under evaluation for delay minimization

Dimension Users LiFi APs Position of LiFi APs WiFi APs Position of WiFi APs

5 x 5 x 3 m 10 4 (-1.4, 1.4, 3.0), (1.4,-1.4, 3.0) 1 (0, 0, 3.0)
(-1.4,-1.4, 3.0), (1.4, 1.4, 3.0)

To evaluate the effectiveness of the proposed resource allocation approach, we examine their
performance in an indoor network topology which includes 1 WiFi AP and 4 LiFi APs positioned at



Chapter 4 Wireless Resource Allocation in LiFi-WiFi Networks

60

a height of 3 m. The specific parameters of this topology are provided in Table 4.2. The proposed
framework is evaluated under varying LiFi channel parameters like blockage models and device
orientation.

Performance evaluations were performed using an 11th Generation Intel® Core™ i7-11700 16-Core
Processor. Each set of results was derived from 20 independent simulation runs, with each run
consisting of 120 time steps. To validate our findings comparing the solution methods proposed, we
use the Mann-Whitney U test [MW47], operating under the null hypothesis that there is no difference
in the distributions of the two parameters being compared. The outcomes of these tests are annotated
in the corresponding figures with symbols based on the p-values [Cha+22], using the star notation.

ns : p > .05
∗ : .01 < p <= .05
∗∗ : .001 < p <= .01
∗ ∗ ∗ : .0001 < p <= .001
∗ ∗ ∗∗ : p <= .0001

Furthermore, due to multiple hypothesis testing on the same dataset, we applied the Benjamini-
Hochberg procedure [BH95] to adjust for the false discovery rate, ensuring the reliability of our
statistical inferences.

4.1.8 Results and Comparative Analysis

We begin the evaluations by considering a high traffic system with packets arriving at a rate of
1500 pkts/s with a length of 9000 bits. The delay requirement is set to 1 ms and the data rate
requirement to 15 Mb/s for all users.
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Figure 4.3 Quality metrics for the Max-SNR benchmark and delay-optimized resource allocation solved with
the Expert for a single and multipath network showing the need for our delay-optimized perspective.

Figure 4.3a presents the Cumulative Distribution Function (CDF) of average user packet delay for
the baseline Max-SNR user association approach compared to our proposed delay-aware resource
allocation using singlepath and multipath technologies. The Max-SNR method, which neglects QoS
requirements, results in a wide range of delays due to sub-optimal AP allocations and an inability
to manage large traffic volumes. Consequently, it fails to meet the 1 ms latency requirement for
all users. In contrast, our delay-optimized algorithms efficiently handle high traffic, achieving an
average packet delay of under 1 ms for all users in the network. This emphasizes the benefit of
deploying small-range LiFi cells with high data rate density. Additionally, connecting users to both
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technologies further improves delay performance, as evidenced by the difference between singlepath
and multipath results.

For the same high traffic scenario, Figure 4.3b provides a detailed analysis of the proportion of
time each user is connected to a specific access technology. A user is considered connected when the
received data rate is greater than zero. The results indicate that users are predominantly connected
to LiFi, except during instances of light blockage, which renders LiFi connectivity impossible. In
the multi-homing scenario, although users have access to both LiFi and WiFi, they are not always
connected to WiFi. This lower proportion of connection time is attributed to the maximum capacity
constraints of the WiFi APs with a larger number of users sharing its bandwidth.
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Figure 4.4 CDF of the user average latency for varying LiFi LoS blockage models for our proposed delay-aware
resource allocation in a single and multipath network

The behavior of the network is then is evaluated under varying LiFi-specific parameters such
as receiver orientation and blockage models, while maintaining constant packet length (9000 bits),
arrival rate (20 packets/s), delay requirement (10 ms), and rate requirement (5 Mb/s) for all users.
Figure 4.4 illustrates the CDF of average user packet delay across different blockage models which
were described in Section 2.4. As the blocking probability increases, the likelihood of connecting
to a LiFi AP decreases, leading to more users sharing the resources of a WiFi AP and consequently
experiencing increased delays. The correlated blockage model, characterized by continuous periods
of blockages, results in the highest delays. Conversely, the geometric blockage model, which considers
blockages caused by other users, exhibits the lowest delays. This is because blockages only occur
when a user obstructs the direct LoS between another user and an AP , which is rare given that APs are
ceiling-mounted. Furthermore, the analysis shows that while multi-homing provides improved delay
performance, the improvement is not substantial. This suggests that the primary factor influencing
delay is the blocking probability and the resulting resource allocation rather than the mere presence
of multiple access technologies.
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Figure 4.5 CDF of the user average latency for varying LiFi user device orientations for our proposed delay-
aware resource allocation in a single and multipath network

Figure 4.5 illustrates the average network packet delay for different user device orientations, a
crucial parameter in LiFi systems. The orientation of a user device affects whether the received
signal falls within the receiver’s Field of View. When the user device is parallel to the ground and
facing upwards (elevation angle 0°), it receives the maximum signal from the AP, resulting in minimal
delay. This scenario is referred to as the flat device orientation. In contrast, the walk device orientation
represents a typical mobile user with an elevation angle of 28°. For this orientation, the singlepath and
multipath solutions exhibit similar performance. This similarity arises because the tilted orientation
disrupts the longer connection times to LiFi that were previously observed in Figure 4.3b, leading
to reduced signal reception and increased reliance on WiFi. This analysis highlights the challenges
faced by mobile users with tilted devices, emphasizing the need for adaptive strategies to maintain
low delay in varying user contexts.
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Figure 4.6 User average latency for all proposed solution methods to the delay-aware resource allocation in
a single and multipath network comparing them to the Max-SNR approach. Results of statistical tests of
significance comparing the Expert and other solution approaches are annotated.

While the Expert solver demonstrates effective delay optimization in a LiFi-WiFi network, its real-
time application is limited by the time required to solve the optimization problem. To address this,
we investigate an alternative approach using a meta-heuristic GA for high traffic scenarios with a
1 ms delay requirement. The results, depicted in Figure 4.6, show the average user latency for
different solution methods. The findings indicate that all proposed solutions outperform the Max-
SNR method, consistently maintaining user latency within the 1 ms bound. Although statistical tests
reveal significant differences between the Expert solver and the GA, these differences are practically
minor. However, in singlepath networks, the GA diverges in performance by relying more on WiFi
and less on LiFi compared to the Expert solver. This deviation suggests a sub-optimal tuning of link
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usage parameters by the GA. Despite this, the GA still achieves significantly lower latency than the
required threshold.

4.1.9 Summary

This work focuses on optimizing wireless resource allocation and user association to minimize average
network packet delay, necessary for delay-sensitive applications. We explored this optimization in
both singlepath and multipath LiFi-WiFi heterogeneous networks. The problem was formulated to
minimize delay while enforcing constraints on maximum allowable delay and achievable data rate
for each user. To tackle this problem, we implemented a Branch and Bound algorithm-based solver,
Gurobi, and proposed a meta-heuristic GA for comparison. Extensive simulations were carried out
to assess the effectiveness of these approaches. Our results indicate that the proposed methods
significantly reduce network delay compared to existing max-SNR-based techniques. Additionally,
they consistently meet strict delay and data rate requirements, even in scenarios with heavy QoS traffic.
Our findings also suggest that LiFi-WiFi networks are highly effective for low-latency applications,
achieving sub-millisecond latency, particularly when multi-homing user devices are utilized. This
work underscores the potential of advanced optimization strategies in improving the performance of
heterogeneous networks for applications requiring stringent delay constraints.

In the next section, we extend this delay-aware perspective to resource allocation to include the
metrics of throughput and fairness. By integrating these metrics, we aim to provide a more com-
prehensive evaluation of resource management strategies in LiFi-WiFi heterogeneous networks. We
also address the challenges posed by frequent handovers, which can lead to temporary disruptions in
communication, affecting both delay and overall network performance. To mitigate these disruptions,
we evaluate various strategies designed to manage resources more effectively in the face of frequent
handovers.

4.2 Weighted Alpha-fair Wireless Resource Allocation towards Stability
and Utility Maximization

In the previous section of this chapter, we explored initial strategies for managing a heterogeneous
LiFi-WiFi network aimed at minimizing latency and ensuring diverse QoS requirements. By leverag-
ing the unique capabilities of this network configuration, we addressed the resource allocation needs
of users, with multi-homing capabilities [VK21]. The potential of multi-homing to enhance network
reliability and throughput has been clearly shown [WH19a], although its benefits are currently re-
stricted due to the limited multi-homing support in prevalent devices. Most contemporary devices,
such as smartphones, do not support multi-homing, which could significantly enhance reliability and
throughput by allowing simultaneous connections to multiple networks. With the absence of multi-
homing, increased handovers [WSH17], including ping-pong handovers in areas where LiFi and WiFi
networks overlap, can occur. Frequent handovers are also caused due to rapid connection changes
due to transient blockages of the LiFi signal and changes in the orientation of the user device [Sol+17].
Such frequent handovers not only disrupt service but also degrade the network performance, causing
packet losses and delays. These challenges unique in LiFi-WiFi networks necessitates more research
to ensure stability compared to handovers in RF networks [LCW16].

In this section, we explore methods to ensure the stability of LiFi-WiFi heterogeneous networks by
addressing the challenges posed by handover overheads. We introduce a low-complexity algorithm
designed to optimize resource allocation, accounting for the data rate loss due to handover overhead.
In the presence of mobility and complete LiFi signal outages, handovers cannot be avoided and soft
handover protocols for LiFi-only network have been analyzed in [DEA15] and [VL12]. To mitigate
the overhead of unavoidable handovers in LiFi-WiFi heterogeneous networks, we propose a system
approach to managing vertical handovers, which we implement and evaluate on a hardware setup.
Vertical handovers have the additional challenge of having to manage multiple network interfaces
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[ABG14]. Our results indicated that vertical handover overhead can be minimized to negligible
levels, thus maintaining network stability without requiring Transmission Control Protocol (TCP)
re-connections.

Having established a stable network foundation, we then turn our attention to further optimizing
network performance. The objective of this section is to maximize the utility function based on alpha-
fairness principles, assigning access points to users and allocating wireless bandwidth resources
in an optimal manner. By employing alpha-fair resource allocation, we aim to achieve a balanced
distribution of resources that considers both individual user needs and overall network efficiency.
This approach not only enhances user satisfaction but also pushes the performance boundaries of the
network, ensuring that resources are utilized in the most effective way possible.

The enhancements in network stability introduced by our handover management strategies have
been documented in a published conference paper [Vĳ+21]. Additionally, our network optimization
through alpha-fair utility maximization is partly detailed in a journal manuscript currently under re-
vision [VK24]. In the upcoming subsections, we introduce relevant state of art and system model for
handover management and resource allocation towards throughput maximization. Then we present
the weighted alpha-fair resource allocation problem formulation of which a simplified version is
initially used to enhance network stability. This optimization formulation, including considerations
for handover losses, is then solved for alpha-fair utility maximization using EGT and Lagrangian
optimization techniques. The performance evaluation is split into three parts where the first ana-
lyzes the stability evaluations, the second evaluates the alpha-fairness aspect in detail, and the third
presents and evaluates a vertical handover protocol that aims to minimize the overhead of unavoidable
handovers.

4.2.1 State-of-the-art Analysis

In the analysis presented in [WH19b], user trajectory data is used to strategically skip unnecessary
handovers in mobile networks. This approach optimizes network performance by reducing the
frequency of handover procedures, which can degrade user experience due to increased latency and
potential service interruption. However, the method does not address the needs of stationary users
who may experience transient signal blockages, such as those caused by building construction or
temporary obstructions.

Expanding on the theme of network optimization, [WSH17] tackle load balancing with a focus on
integrating handover management to improve overall network throughput. Their algorithm assigns
users to APs and allocates resources to maximize the throughput of the network. This approach,
while effective in theory, suffers from high computational costs and necessitates centralized control,
which may introduce bottlenecks and scalability issues in larger network deployments.

To address these computational challenges, [WWH17] introduce a novel heuristic algorithm based
on EGT. This method reduces processing overhead by simplifying decision-making processes in
the face of dynamic network conditions, such as light path blockages caused by intermittent physical
barriers. Although it considers the impacts of such blockages, the algorithm stops short of integrating
these blockages into its resource allocation.

In another contribution, [WWH16] explore a low-complexity approach using fuzzy logic to manage
AP allocation with a focus on the handover processes. Their framework prioritizes reduced compu-
tational demands, making it suitable for real-time applications and smaller networks. However, this
scheme does not address the optimization of wireless resource allocation.

Extending beyond handover considerations [WWH17] perform alpha-fair resource allocation for
load balancing in LiFi-WiFi networks using an EGT-based algorithm which is similar to our approach.
However, their model does not account for the heterogeneous resource demands of different users —
a gap our research addresses through a weighted alpha-fairness approach.

The principle of alpha-fairness has been thoroughly investigated in RF networks [SHI+14; JY22;
Xu+22]. However, it does not address the unique challenges prevalent in LiFi-WiFi heterogeneous
networks, such as signal blockages and the density of placement of LiFi APs. Moreover, existing
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models often overlook the necessity of tailoring resource allocation to individual user needs and
priorities.

In summary, our work differs from the state-of-the-art by specifically tailoring resource allocation
strategies to the challenges posed by LiFi-WiFi heterogeneous networks, thereby ensuring network
stability and optimizing resource distribution. We adapt our approach to meet the diverse transmis-
sion requirements of users by assigning varying priorities or weights based on their specific resource
needs. Consequently, our framework promotes efficient and prudent resource allocation, minimizing
the potential for resource wastage.

4.2.2 Key Contributions

In this section, we present a comprehensive framework to ensure stability and optimize resource
allocation in LiFi-WiFi heterogeneous networks, considering transient channel conditions, mobility,
and fairness.

1. We propose methods to maintain a stable LiFi-WiFi network amidst transient channel conditions
caused by light path blockages, instantaneous receiver orientation changes, and mobility.

2. We propose a system approach to manage unavoidable vertical handovers, ensuring seamless
interface switching. This approach has been implemented and tested on hardware in a LiFi-WiFi
network setup, with performance evaluated through practical measurements.

3. We then propose a framework for mobility-aware resource allocation in mobile LiFi-WiFi net-
works, considering user positions, LoS blockages, and channel quality. This framework adapts
to current network conditions, addressing the challenge of optimal resource allocation by formu-
lating an optimization problem that performs AP assignment and wireless resource allocation
using the weighted alpha-fairness objective.

4. We propose an EGT-based solution that is benchmarked against a state-of-the-art baseline
allocation strategy.

4.2.3 System Model

This work explores resource management in a LiFi-WiFi heterogeneous network comprising 𝑀𝐿 LiFi
APs and 𝑀𝑊 WiFi APs, with a combined total of 𝑀𝐴 APs. The LiFi APs, which are LEDs mounted
at a height of 3 m, operate at the same frequency, leading to co-channel interference in overlapping
areas. Conversely, WiFi APs operate on distinct, non-overlapping frequencies.

The network serves a total of 𝑀𝑈 users, each equipped with both LiFi photodiode and WiFi
receivers, although connectivity to only one AP is possible at any time. All APs are connected to a
central network controller that facilitates instantaneous, error-free communication and monitors the
load on each AP by collecting and analyzing the wireless Channel State Information (CSI) from all
users. Resource allocation decisions are made by a centralized algorithm that operates at intervals
denoted by 𝜏=500 ms. This algorithm uses global network data to allocate resources and communicate
these decisions back to the users. Table 4.3 provides a summary of the notations used in this section.
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Table 4.3 List of Notations used in Weighted Alpha-fair Resource Allocation

Notation Description

𝑙, 𝑀𝐿 Index and number of LiFi APs
𝑤, 𝑀𝑊 Index and number of WiFi APs
𝑎, 𝑀𝐴 Index and number of total APs
𝑢, 𝑀𝑈 ,𝒰 Index, number, and set of users
𝜏 Length of one time slot
𝜂𝑎′ ,𝑎 Handover efficiency when switching from AP 𝑎′ to 𝑎
𝑅𝑢,𝑎 Achievable rate of user 𝑢 connected to AP 𝑎
𝑇loss Time loss incurred due to a handover
�̃�𝑢,𝑎 Handover-reduced rate for user 𝑢 to AP 𝑎
𝑓𝛼() Alpha-fairness function
𝛼 Parameter to control the alpha-fairness
𝑤𝑢 Weights assigned to user for a weighted alpha-fairness
𝑥𝑢,𝑎 Optimization variable indicating association
𝑦𝑢,𝑎 Optimization variable indicating resource proportion
𝑈𝛼(𝑥𝑢,𝑎 , 𝑦𝑢,𝑎) Utility function to be maximized
𝐿, 𝜆, 𝜔 Lagrangian function and multipliers
𝑁𝑎 ,𝒰𝑎 Number and set of users associated to AP 𝑎
𝑖 Index of iteration of the EGT algorithm
𝐹𝑢,𝑎 Payoff for user 𝑢 to AP 𝑎

�̄� 𝑖 Global average Payoff in 𝑖th iteration
𝑝 𝑖𝑢 Mutation probability of user 𝑢

The channel models for LiFi and WiFi are elaborated in Section 2.3 and Section 2.6. To analyze
the stability of the system under LoS blockages to the LiFi signal, we use several different blockage
models like transient blockages, correlated blockages and the geometric blockage models as explained
in Section 2.4. To evaluate the performance of our resource allocation strategy with mobile users, we
include four mobility models: RWP, Truncated Levy Walk, Self-Similar Least Walk (SLAW) [Lee+09],
and Reference Point Group (RPG) [Hon+99] which also capture the changing orientation of a user
device. Further details are provided in Section 2.7.

4.2.4 Handover losses

Due to the limited coverage area of LiFi APs, user mobility can necessitate handovers, which can be
either horizontal (within the same technology) or vertical (between different technologies).

In indoor scenarios, handover overhead typically occurs in the range of milliseconds, leading to
a reduction in the data rate for users undergoing handovers. The handover efficiency when a user
moves from AP 𝑎′ to 𝑎 is represented as 𝜂𝑎′,𝑎 . This efficiency decreases as handover loss increases.
Consequently, the maximum achievable link rate 𝑅𝑢,𝑎 for user 𝑢 associated with AP 𝑎 in the current
time slot and 𝑎′ in the previous time slot is reduced to �̃�𝑢,𝑎 = 𝑅𝑢,𝑎𝜂𝑎′,𝑎 . This efficiency can also be
viewed as a weighting factor that reduces the data rate. So this weighting factor is defined as a
function of the delay incurred due to AP switches. Specifically, 𝑒𝑡𝑎𝑎′,𝑎 can be defined as

𝜂𝑎′,𝑎 =

{
1 − 𝑇loss

𝜏 𝑎 ≠ 𝑎′

1 otherwise
(4.15)

where 𝑇loss is the time loss incurred due to performing the handover procedure, and 𝜏 is the time
interval between optimization states.

In this work and all the following chapters, we consider a handover overhead of 200 ms for
horizontal handovers and 300 ms for vertical handovers. This results in 60% and 40% handover
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efficiency respectively. The vertical handover overhead of 300 ms is validated by experiments on our
in-house testbed and will be further discussed in Section 4.2.10.

4.2.5 Optimization Problem Formulation for Weighted Alpha-Fair Resource Allocation

Our resource management framework incorporates the alpha-fairness function [MW00], which pro-
vides a method for balancing network efficiency and fairness in resource allocation. We examine
cases with 𝛼 = 0, 𝛼 = 1, 𝛼 = 2, and 𝛼 = ∞. For the heterogeneous network stability analysis, only
𝛼 = 1 is analyzed in greater detail.

The weighted alpha-fairness function, 𝑓𝛼(𝑅𝑢), for a user achieved rate 𝑅𝑢 , user weight 𝑤𝑢 , and
fairness coefficient 𝛼 is defined as follows:

𝑓𝛼(𝑅𝑢) =
{
𝑤𝑢 log(𝑅𝑢) 𝛼 = 1
𝑤𝑢

𝑅1−𝛼
𝑢

1−𝛼 𝛼 ≥ 0, 𝛼 ≠ 1
(4.16)

The user weights 𝑤𝑢 indicate the priority or ordering for these users. These weights can be tuned
based on user priorities or users’ resource demands. By including these weights into the optimization
problem, we offer a flexible framework that differentiates user needs according to these weights. A
higher weight indicates a larger user demand or priority.

The implication of the different 𝛼 values are as follows:

• Maximizing Total Throughput (𝛼 = 0) The focus is on maximizing the total throughput of the
network, often leading to a more efficient but potentially less fair allocation.

• Proportional Fairness (𝛼 = 1) The utility function becomes the sum of the logarithms of the
allocated resources, aiming to achieve proportional fairness, where each user’s relative benefit
is equalized.

• Delay Fairness (𝛼 = 2) This represents delay fairness, focusing on minimizing the sum of the
inverse of the allocated resources, effectively prioritizing users with higher delays.

• Max-Min Fairness (𝛼 = ∞) The objective is to maximize the minimum allocated resource,
achieving max-min fairness and ensuring the best possible allocation for the worst user.

By varying 𝛼, we can customize the resource allocation strategy to align with specific network goals.
Using the alpha-fairness function, the optimization problem is formulated as follows:

max
𝑥𝑢,𝑎 ,𝑦𝑢,𝑎

𝑈𝛼(𝑥𝑢,𝑎 , 𝑦𝑢,𝑎) (4.17)

subject to
∑
𝑎

𝑥𝑢,𝑎 = 1 ∀𝑢 (4.18)∑
𝑢

𝑥𝑢,𝑎𝑦𝑢,𝑎 ≤ 1 ∀𝑎 (4.19)

𝑥𝑢,𝑎 ∈ {0, 1} ∀𝑢, 𝑎 (4.20)
0 < 𝑦𝑢,𝑎 ≤ 1 ∀𝑢, 𝑎 (4.21)

where 𝑥𝑢,𝑎 is a binary variable that indicates whether user 𝑢 is associated to AP 𝑎, and 𝑦𝑢,𝑎 is a
continuous variable representing the proportion of bandwidth allocated from AP 𝑎 to user 𝑢.

The utility 𝑈𝛼 for different values of 𝛼 is expressed as:

𝑈𝛼(𝑥𝑢,𝑎 , 𝑦𝑢,𝑎) =
{∑

𝑢

∑
𝑎 𝑤𝑢𝑥𝑢,𝑎 log

(
𝑦𝑢,𝑎 �̃�𝑢,𝑎

)
if 𝛼 = 1∑

𝑢

∑
𝑎 𝑤𝑢𝑥𝑢,𝑎

(𝑦𝑢,𝑎 �̃�𝑢,𝑎)1−𝛼
1−𝛼 if 𝛼 ≥ 0, 𝛼 ≠ 1

(4.22)
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To represent 𝛼 = ∞, we approximate it using 𝛼 = 20. �̃�𝑢,𝑎 denotes the achievable link rate from AP
𝑎 to user 𝑢, which is influenced by the user’s previous association 𝑎′. The handover efficiency factor
is applied to adjust the link rate, accounting for the potential reduction in achievable rates resulting
from handovers. In the initial network stability analysis we evaluate this optimization problem with
and without consideration for this handover efficiency factor.

4.2.6 Proposed Resource Allocation with Lagrangian Optimization

To simplify the MINLP presented in the previous section, we convert the problem into a convex form,
by relaxing the binary variable 𝑥𝑢,𝑎 to take fractional values in the range [0, 1]. This relaxed problem
is a concave optimization problem for 𝛼 > 0 since the objective is concave and the constraints are
affine. The Lagrangian multiplier method can now be used to find the optimal solution to this relaxed
problem.

The Lagrangian function is given by:

𝐿 =
∑
𝑢

∑
𝑎

𝑤𝑢𝑥𝑢,𝑎

(
𝑦𝑢,𝑎 �̃�𝑢,𝑎

)1−𝛼

1 − 𝛼
−

∑
𝑢

𝜆𝑢

(∑
𝑎

𝑥𝑢,𝑎 − 1

)
−

∑
𝑎

𝜔𝑎

(∑
𝑢

𝑥𝑢,𝑎𝑦𝑢,𝑎 − 1

)
(4.23)

where 𝜆𝑢 is the Lagrangian multiplier for the constraint (4.18) and 𝜔𝑎 the multiplier for (4.19). By
re-writing this equation and since

∑
𝑎 𝑥𝑢,𝑎 − 1 = 0 we get

𝐿 =
∑
𝑢

∑
𝑎

𝑥𝑢,𝑎

(
𝑤𝑢

(
𝑦𝑢,𝑎 �̃�𝑢,𝑎

)1−𝛼

1 − 𝛼
− 𝜔𝑎𝑦𝑢,𝑎

)
−

∑
𝑎

𝜔𝑎 (4.24)

The optimal variables can be found by setting the partial derivation of the Lagrangian function 𝐿 with
respect to those variables to 0. Setting the partial derivation with respect to 𝑦𝑢,𝑎 to 0 and solving for
it gives

𝜕𝐿

𝜕𝑦𝑢,𝑎
= 𝑥𝑢,𝑎

(
𝑤𝑢

�̃�𝑢,𝑎(
𝑦𝑢,𝑎 �̃�𝑢,𝑎

)𝛼 − 𝜔𝑎

)
= 0 (4.25)

As 𝑦𝑢,𝑎 increases from 0 to 1 𝜕𝐿
𝜕𝑦𝑢,𝑎

monotonically decreases since 𝑥𝑢,𝑎 is non-negative. Therefore, the
optimal 𝑦∗𝑢,𝑎 is calculated as

𝑦∗𝑢,𝑎 =


1, 𝜕𝐿

𝜕𝑦𝑢,𝑎

���
𝑦=1
≥ 0(

𝑤𝑢 �̃�𝑢,𝑎

𝜔𝑎

) 1
𝛼 1

�̃�𝑢,𝑎
, else

(4.26)

To obtain the optimal association 𝑥𝑢,𝑎 , we calculate the derivative of the Lagrangian function with
respect to it.

𝜕𝐿

𝜕𝑥𝑢,𝑎
= 𝑤𝑢

𝑦𝑢,𝑎 �̃�𝑢,𝑎

1 − 𝛼
− 𝜔𝑎𝑦𝑢,𝑎 (4.27)

By substituting the optimal 𝑦∗𝑢,𝑎 as found in (4.26) into (4.27) and maximizing it gives the optimal 𝑥∗𝑢,𝑎
as

𝑥∗𝑢,𝑎 =

1, 𝑎 = arg max𝑎′
𝜕𝐿

(
𝑦∗
𝑢,𝑎′

)
𝜕𝑥𝑢,𝑎′

0, else
(4.28)
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To update the Lagrangian multiplier in each iteration, the dual optimum 𝑦∗𝑢,𝑎 and 𝑥∗𝑢,𝑎 are substituted
back into the Lagrangian function 𝐿 and the partial derivative with respect to the multiplier 𝜔𝑎 is
calculated as

𝜕𝐿

𝜕𝜔𝑎
= 1 −

∑
𝑢

𝑥∗𝑢,𝑎𝑦
∗
𝑢,𝑎 (4.29)

Therefore, the update of the multiplier for the 𝑖 + 1th iteration is given by:

𝜔(𝑖+1)
𝑎 = 𝜔𝑖

𝑎 − 𝜖𝜔

(
1 −

∑
𝑢

𝑥∗𝑢,𝑎𝑦
∗
𝑢,𝑎

)
(4.30)

where 𝜖𝜔 is the step size in the direction of the negative gradient of 𝜔𝑎 .

Algorithm 2 Lagrangian-based algorithm for alpha-fair wireless resource allocation

1: Initialization: 𝜔𝑖
𝑎 , 𝜖𝜔, stop_threshold, 𝑖 = 0, 𝐿(𝑖+1) = ∞, 𝐿𝑖 = 0.

2: while |𝐿(𝑖+1) − 𝐿𝑖 | ≥ stop_threshold do
3: for each user 𝑢 and AP do
4: Calculate 𝑦∗𝑢,𝑎 as per (4.26).
5: Calculate 𝑥∗𝑢,𝑎 as per (4.28).
6: end for
7: for each AP 𝑎 do
8: Update Lagrangian multiplier 𝜔𝑎 as per (4.30).
9: end for

10: Calculate Lagrangian function 𝐿(𝑖+1) by using 𝑦∗𝑢,𝑎 , 𝑥∗𝑢,𝑎 , and 𝜔(𝑖+1)
𝑎 in (4.24)

11: 𝑖 ← 𝑖 + 1
12: end while
13: Result: 𝑦∗𝑢,𝑎 and 𝑥∗𝑢,𝑎

A summary of this algorithm is given in Algorithm 2. This iterative Lagrangian optimization algo-
rithm could take many iterations until convergence and we have also shown that the objective function
is only concave when the association variable 𝑥𝑢,𝑎 is continuous, which could lead to longer solve
times. Therefore, in the next section we present another solution approach based on Evolutionary
Game Theory (EGT).

4.2.7 Proposed Resource Allocation with Evolutionary Game Theory

EGT is particularly well-suited for wireless resource allocation challenges [WWH17], because it mod-
els user interactions as a competitive game for the shared resources. Evolutionary games are ad-
vantageous for distributed implementations, requiring minimal signaling in a user-driven system.
However, in this work, the algorithm is executed at the central controller. This approach ensures that
the controller maintains a global understanding of the entire network and can communicate decisions
to users after the algorithm’s convergence. The algorithm converges to an evolutionary equilibrium,
representing a stable state achieved by the users [NH09].

The association of users to APs is managed by an EGT-based algorithm, which includes the follow-
ing key components:

• Players: The users participating in the network.

• Population: The population 𝒰𝑎 represents the set of users associated to an AP 𝑎, where the
number of users assigned to AP 𝑎 is denoted as 𝑁𝑎 .

• Strategy: Players can choose one among all the LiFi and WiFi APs available to serve them.
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• Payoff: Players adjust their strategy in each iteration to maximize their payoff. The payoff for a
user 𝑢 is based on the link rate 𝑅𝑢,𝑎 offered by the AP 𝑎 that it is associated to. The payoff is
given by:

𝐹𝑢,𝑎 =
𝑦𝑢,𝑎 �̃�𝑢,𝑎

𝑤𝑢
(4.31)

where �̃�𝑢,𝑎 = 𝑅𝑢,𝑎𝜂𝑎′,𝑎 when the handover overhead is considered in the proposed optimiza-
tion. If the handover overhead is not considered, �̃�𝑢,𝑎 = 𝑅𝑢,𝑎 . We use this as a comparative
formulation to establish the benefits of considering the handover losses.

The AP association that maximizes the payoff is selected for each user using the game process.
During the game, each player selected the AP to which it associates based on its own payoff and the
global average payoff of all players. The global average payoff of users in the 𝑖th iteration is calculated
as:

�̄� 𝑖 =
1

𝑀𝑈

∑
𝑢

𝐹𝑢,𝑎 . (4.32)

where 𝑀𝑈 is the total number of users in the system. Users with lower payoff values compared to
the global average have a higher probability of switching their association to another AP (mutation).
This switching probability is determined by:

𝑝 𝑖𝑢 =

{
1 − 𝐹𝑢,𝑎

(𝑖−1)

�̄�(𝑖−1) 𝐹
(𝑖−1)
𝑢,𝑎 < �̄�(𝑖−1)

0 otherwise.
(4.33)

If the user is selected to mutate, the new AP for association is the one that is estimated to offer the
maximum payoff i.e., 𝑎 = arg max𝑎′ 𝐹𝑢,𝑎′.

After the AP association is complete with the iterative game, the AP allocates wireless resources
to the users based on the alpha-fairness rule. For a given AP assignment, the optimal resource
proportion 𝑦𝑢,𝑎 for a user 𝑢 associated with AP 𝑎 is determined by:

𝑦𝑢,𝑎 =



{
1 if 𝑢 = arg max𝑢′ 𝑤𝑢′�̃�𝑢′,𝑎

0 elsewhere
if 𝛼 = 0

𝑤
1
𝛼
𝑢 �̃�

1
𝛼 −1
𝑢,𝑎∑

𝑢′∈𝒰𝑎 𝑤
1
𝛼
𝑢′ �̃�

1
𝛼 −1
𝑢′ ,𝑎

if 𝛼 > 0
(4.34)

For 𝛼 > 0, it can be shown that selecting the resource proportion 𝑦𝑢,𝑎 as in (4.34) is optimal for a
given AP assignment. With the AP association 𝑥𝑢,𝑎 fixed by the result of the game, the optimization
problem is formulated as:

max
𝑦𝑢,𝑎

∑
𝑎

∑
𝑢∈𝒰𝑎

𝑓𝛼(𝑦𝑢,𝑎) (4.35)

subject to
∑
𝑢∈𝒰𝑎

𝑦𝑢,𝑎 ≤ 1 ∀𝑎 (4.36)

𝑥𝑢,𝑎 ∈ {0, 1}, 𝑦𝑢,𝑎 ∈ (0, 1] ∀𝑢, 𝑎 (4.37)

Here, 𝒰𝑎 represents the set of all users associated with AP 𝑎, and the alpha-fairness function 𝑓 () is
defined as:

𝑓𝛼(𝑦𝑢,𝑎) =
{
𝑤𝑢 log(𝑦𝑢,𝑎 �̃�𝑢,𝑎) 𝛼 = 1
𝑤𝑢(𝑦𝑢,𝑎 �̃�𝑢,𝑎)1−𝛼

1−𝛼 𝛼 ≥ 0, 𝛼 ≠ 1
(4.38)



4.2 Weighted Alpha-fair Wireless Resource Allocation towards Stability and Utility Maximization

71

After fixing the AP assignment, the resource allocation can be independently performed at each AP
for its associated users, transforming the problem for a single AP into:

max
𝑦𝑢,𝑎

∑
𝑢∈𝒰𝑎

𝑓𝛼(𝑦𝑢,𝑎) (4.39)

subject to
∑
𝑢∈𝒰𝑎

𝑦𝑢,𝑎 ≤ 1 (4.40)

The objective function (4.39) is concave and can be solved using the Lagrangian multiplier method.
The Lagrangian is given by

𝐿 =
∑
𝑢∈𝒰𝑎

𝑓𝛼(𝑦𝑢,𝑎) − 𝜆
( ∑
𝑢∈𝒰𝑎

𝑦𝑢,𝑎 − 1

)
(4.41)

where 𝜆 is the Lagrangian multiplier. The optimal 𝑦𝑢,𝑎 can be calculated by setting the gradient of
the Lagrangian to 0 and solving for 𝑦𝑢,𝑎 :

𝜕𝐿

𝜕𝑦𝑢,𝑎
=

𝑤𝑢 �̃�𝑢,𝑎

(𝑦𝑢,𝑎 �̃�𝑢,𝑎)𝛼
− 𝜆 = 0 (4.42)

𝑦𝑢,𝑎 =
𝑤

1
𝛼
𝑢 �̃�

1
𝛼−1
𝑢,𝑎

𝜆
1
𝛼

(4.43)

Since
∑

𝑢∈𝒰𝑎
𝑦𝑢,𝑎 → 1 if the objective is to be maximized,

𝜆
1
𝛼 =

∑
𝑢∈𝒰𝑎

𝑤
1
𝛼
𝑢 �̃�

1
𝛼−1
𝑢,𝑎 (4.44)

This results in the optimal resource proportion being

𝑦∗𝑢,𝑎 =
𝑤

1
𝛼
𝑢 �̃�

1
𝛼−1
𝑢,𝑎∑

𝑢′∈𝒰𝑎
𝑤

1
𝛼
𝑢′�̃�

1
𝛼−1
𝑢′,𝑎

for 𝛼 > 0. (4.45)

In the case of 𝛼 = 1, which corresponds to proportional fairness, 𝑦𝑢,𝑎 = 1
𝑁𝑎

, where 𝑁𝑎 is the number
of users connected to the same AP.

To implement this algorithm, the central controller collects wireless channel statistics from users,
assuming these statistics remain constant within an optimization state. Initially, users are allocated
to AP based on the highest available link rate. During each iteration, users select a new AP with a
probability defined by (4.33). Once an AP is chosen, resources are allocated according to (4.34). This
iterative process continues until the algorithm converges. The entire procedure is centrally managed
by the controller, which then relays the final decision back to the network upon convergence. An
overview of this algorithm can be found in Algorithm 3.
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Algorithm 3 EGT-based algorithm for alpha-fair wireless resource allocation
1: Users send their channel statistics and positions to the controller, which then predicts the future channels.
2: Initialization: 𝑖 = 0. Assign each user to the AP offering the best link rate. Allocate resources to the

connected users using (4.34). Calculate the initial global average payoff �̄�0 as in (4.32).
3: repeat
4: for each user 𝑢 do
5: The controller calculates the probability 𝑝 𝑖𝑢 for each user to switch APs as in (4.33).
6: The user 𝑢 is assigned to the AP that offers the maximum payoff 𝐹𝑢,𝑎 with this probability. The

controller updates the number of users connected to each AP as 𝑁𝑎 .
7: end for
8: for each AP 𝑎 do
9: The controller allocates the wireless resources 𝑦𝑢,𝑎 for each user connected to the AP as in (4.34)

10: end for
11: 𝑖 ← 𝑖 + 1
12: until no user changes their AP assignment
13: The controller communicates the final allocation decisions to the APs, which then re-associate the users

accordingly.

The complexity of the algorithm scales with the total number of users and APs, described by
𝑂(𝑀𝑈𝑀𝐴𝐼), where 𝐼 is the number of iterations needed for convergence. Due to the independence
of many operations, parallel processing can be utilized to further reduce complexity. Typically, the
algorithm converges within a few tens of iterations in a 10 x 10 m scenario.

4.2.8 Evaluation Methods and Quality Metrics

Baseline Method for Benchmarking:
We develop a baseline model to benchmark the performance of our optimization framework for
wireless resource allocation in LiFi-WiFi networks. User association with APs is determined by
selecting the AP that provides the highest link rate, as given by 𝑎 = arg max𝑎′ �̃�𝑢,𝑎′. This process is
executed locally at the user level, eliminating the need for a central controller. After association, the
resource proportion 𝑦𝑢,𝑎 is allocated according to (4.34) and can be managed locally at each AP with
knowledge of its associated users. The proposed resource allocation is evaluated using a simulation
framework implemented in Python 3.10.6 with Gurobi v11.0.0.

To evaluate the effectiveness of the proposed resource allocation approach, we examine their
performance in various indoor environments classified by size: Small, Medium, and Large. Each
topology includes a centrally mounted WiFi AP located at coordinates (0,0,3) m, with all LiFi APs also
positioned at a height of 3 m. The specific parameters for these scenarios are provided in Table 4.4.
The Small topology is the focus of the stability analysis of the evaluations. The effectiveness of these
architectures is visualized through data rate coverage maps, as depicted in Figure 4.7, showcasing
the reach and efficiency of both LiFi and WiFi across the various scenarios. The WiFi coverage area is
shown only for the Large topology since the AP is always positioned at the center of the room across
all scenarios.
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Table 4.4 Network Topologies under evaluation for the weighted alpha-fair utility maximization

Topology Dimension Users LiFi APs Position of LiFi APs

Small 5 x 5 x 3 m 10 4 (-1.4, 1.4), (1.4,-1.4),
(-1.4,-1.4), (1.4, 1.4)

Medium 10 x 5 x 3 m 15 8 (-1.4, 1.4), (1.4,-1.4),
(-1.4,-1.4), (1.4, 1.4),
(-1.4, 4.2), (1.4,-4.2),
(-1.4,-4.2), (1.4, 4.2)

Large 10 x 10 x 3 m 20 16 (-3.6,-3.6), (-3.6,-1.2),
(-3.6, 1.2), (-3.6, 3.6),
(-1.2,-3.6), (-1.2,-1.2),
(-1.2, 1.2), (-1.2, 3.6),
( 1.2,-3.6), ( 1.2,-1.2),
( 1.2, 1.2), ( 1.2, 3.6),
( 3.6,-3.6), ( 3.6,-1.2),
( 3.6, 1.2), ( 3.6, 3.6)
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Figure 4.7 Data rate coverage achieved for various network architectures under evaluation

Performance testing was conducted using an 11th Generation Intel® Core™ i7-11700 16-Core
Processor. Each set of results was derived from 40 independent simulation runs, with each run
consisting of 240 time steps. To validate our findings, we employed the Mann-Whitney U test
[MW47], operating under the null hypothesis that there is no difference in the distributions of the two
parameters being compared. The outcomes of these tests are annotated in the corresponding figures
with symbols based on the p-values. Furthermore, due to multiple hypothesis testing on the same
dataset, we applied the Benjamini-Hochberg procedure [BH95] to adjust for the false discovery rate,
ensuring the reliability of our statistical inferences. Simulation results are evaluated using various
quality metrics to analyze the performance of the resource allocation framework.
Utility:
This represents the alpha-fair utility objective that the optimization problem aims to maximize

Utility =

{
1

𝑀𝑈

∑
𝑢

∑
𝑎 log (𝑅𝑢) if 𝛼 = 1

1
𝑀𝑈

∑
𝑢

∑
𝑎
𝑅1−𝛼
𝑢

1−𝛼 if 𝛼 ≥ 0, 𝛼 ≠ 1
(4.46)

where 𝑅𝑢 is the rate achieved by the user 𝑢 after optimization.
We present "All-time" quality metrics that offer a long-term view of the network performance by

considering the quality metric during the entire duration of a user’s trajectory.

All-time Average Rate (Mb/s):
This metric is calculated as the average of the user rate across all time steps in the simulation duration.
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All-time Minimum User Rate (Mb/s):
This metric is calculated as the worst of the user rates across all time steps in the simulation duration.

All-time Fair-rate:
This metric is calculated as the product of the Jain Fairness index [JCH84] and average rate metrics.

% of Handovers per User:
This metric measures the frequency of handovers, reflecting the percentage of time slots in which a
handover occurs for each user.

Time to solve (s):
The efficiency of the optimization algorithms, specifically the Expert, Lagrangian, and EGT solvers,
is gauged by the time required to solve the optimization problem.

The evaluations first begin with the analysis of the resource allocation with and without handover
considerations for the goal of providing a stable LiFi-WiFi heterogeneous network. The stability
analysis is followed by detailed evaluations of weighted alpha-fair resource allocation with a focus
on 𝛼 = 1 proportional fairness, for the special case of equal weights assigned to all users. Finally, we
end the evaluation with resource allocation where the users are assigned varying weights based on
their resource requirements.

4.2.9 Stability Analysis

In all stability analysis simulations, we focus on the Small topology with 10 users, 𝛼=1-fairness
with equal weights assigned to all users. We evaluate the proposed Expert solver with and without
handover considerations and compare it to the other proposed solvers - EGT and Lagrangian. We
benchmark evaluations with the baseline algorithm without handover considerations.
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Figure 4.8 Quality metrics for baseline and optimized resource allocation solved with the Expert with and
without handover considerations showing the better performance of the Expert in general and even further
improvements by considering the loss due to handovers. The significance of the differences are annotated into
the figures with the results of the statistical tests.

Figure 4.8 compares the baseline algorithm with the Expert algorithm with and without considering
the losses in data rate due to handovers. The Expert solver differs from the Baseline solver in the
way that it assigns users to APs and this brings a significant improvement to the average rates of
the users. Further gains can be achieved by considering the handover losses which leads to a more
accurate prediction of the rates that would be experienced by a user and, hence, a better allocation
of resources. Handovers both vertical and horizontal lead to losses in rate and overhead due to
additional signalling, with vertical handovers incurring larger losses. Therefore, we look into this
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metric for the users in Figure 4.8b under the condition of instantaneous blockages. We observe that
the Expert with no handover considerations causes increased handovers because it greedily aims
to increase the rate for the users while not being aware of the losses that these handovers would
introduce. When the handover efficiency is considered, the Expert significantly reduces the number
of handovers by 24.6%, thus leading to a more stable network. In this way, we can ensure stability in
link connectivity for users in a heterogeneous network even without the support of multi-homing (or
multi-path) devices.
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Figure 4.9 Quality metrics for various proposed solvers showing the comparable network performance of all
solvers and the real-time implementation potential of EGT

While the Expert solver has proven its capability in maintaining a stable network, it may not be
practical for a real-time implementation due to the time it takes to solve the optimization problem.
Therefore, we explore alternative approaches such as the EGT and Lagrangian approaches and
compare them to the Expert solver in Figure 4.9. The results show remarkable similarity in the average
rate performance of all the solvers with non-significant differences. The EGT solver, additionally,
displays the least average time to solve the optimization problem with the lowest variance as well.
This highlights the suitability of this solver for a real-world implementation. Therefore, we continue
the rest of the evaluations with this solver.
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Figure 4.10 Quality metrics for varying blockage models with the EGT solver with and without handover
considerations showing the better performance when considering the loss due to handovers across all types of
blockages

The previously discussed results were all considering the instantaneous blockage models. To under-
stand the impact of the blockage models on the network performance we compare the instantaneous,
correlated and geometric blockage models, as explained in Section 2.4. We observe improvements



Chapter 4 Wireless Resource Allocation in LiFi-WiFi Networks

76

in average rates across all blockage models when considering the effects of handover overhead. The
instantaneous blockage model shows the highest number of handovers while the blockage model
shows the least since it only considers other users as blockages. The correlated model shows the low-
est potential for improvement by considering the overhead of handovers since it is the most difficult
model for preventing handover. When the blockages last for a continuous period of time as they do
in the correlated model, handovers become unavoidable.
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Figure 4.11 Quality metrics for varying user device orientations with the EGT solver with and without handover
considerations

Apart from blockages, user device orientation also causes handovers, so we evaluate the stability
of the network when no blockages are present and the instability is only caused due to the changing
orientation of the user devices. We compare the flat device orientation which is when the user device
is parallel to the ceiling facing up, and the walk orientation which is when the user device is tilted at
an angle of 28°, a typical orientation for handheld devices. The evaluation in Figure 4.11 shows that
although improvements can be achieved, it is more difficult to do so for the walk orientation of the
user device since it is more difficult to avoid the handovers that are due to the APs just being out of
the Field of View of the user device.
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Figure 4.12 Quality metrics for varying user speeds in the RWP mobility model with the EGT solver with and
without handover considerations

Another factor that causes instability in the network, is the user movement. So we evaluate the
stability of the network when no blockages are present and the instability is only caused due to the
changing positions of the users. We compare different speeds of the users following the RWP mobility
model in Figure 4.12. With increasing speed, more handovers occur and the potential for reducing the
handovers by considering the losses decreases. This decreasing potential is evident by the increasing
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gap between the % of handovers with and without handover considerations, as the speed increases.
In situations like these, when the handovers cannot be avoided, it becomes even more important to
reduce the overhead caused by the handover procedure.

In summary, this analysis shows the necessity of considering the losses associated with handovers
to improve network performance in terms of the average rate achieved by users and number of user
handovers. We can also conclude that it is not always possible to avoid handovers like scenarios
with fast moving users or blockages that extend over time. This brings forth the need to reduce the
overhead due to handovers, especially vertical handovers, and we address in the next section.

4.2.10 System Approach to reducing handover overhead

This section presents the proposed system approach to mitigating handover overhead when han-
dovers are unavoidable. Previously, we established that high-speed user movement results in nu-
merous unavoidable handovers. Additionally, the overhead from vertical handovers is significantly
higher due to the interface switch [ABG14]. This motivates the need for an efficient interface switch-
ing protocol to minimize handover overhead and ensure seamless connectivity, thus maintaining a
stable network. Designing such an approach is challenging, particularly in networks where APs are
not open for control, which can occur when different technologies have separate operators.

Our approach assigns the same IP address to both LiFi and WiFi interfaces on user devices, altering
the routes between the source and destination at the user device and in the downlink to direct traffic
through the desired interface. By changing routes at the network layer, the TCP continues to send data
to the destination without resetting the connection, ensuring seamless connectivity. Although MPTCP
[BPB11] offers a method for seamless connectivity by splitting data flow between two wireless paths
and serving the user via both technologies simultaneously, this paper focuses on scenarios where user
devices do not support MPTCP. This includes many devices, such as those on-board aircraft, which
currently lack MPTCP support. Our goal is to provide an approach that can be readily integrated
with all existing user devices.

To manage vertical handovers, a central controller, which can operate on the data server, com-
municates with agents on the user device and downlink. The agents establish a connection with
the controller by exchanging Hello messages at startup. Users are assigned the same IP address
on both LiFi and WiFi interfaces. The agents then await the handover command. Upon receiving
this command, the agent on the user device selects a new route through a different interface while
maintaining the same IP destination. Simultaneously, the downlink switches to the new interface.
Because the user’s IP address remains unchanged after the switch, downlink data traffic is redirected
without requiring a TCP re-connection. The vertical handover protocol is detailed in Algorithm 4.

Algorithm 4 Vertical Handover Protocol
1: Initial configuration: Assign a fixed IP address to one initial interface on the user device.
2: The controller communicates control information to the agents via an out-of-channel connection.
3: The user agent and downlink agent establish a connection with the controller.
4: repeat
5: if the user or downlink agent receives a handover command from the controller then
6: The agent assigns the fixed IP address to the new interface (LiFi or WiFi) and remove it from the old

interface
7: The agent updates the routing table, replacing the current route with the desired interface
8: else
9: The agent continues to wait for a command from the controller

10: end if
11: until termination
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Figure 4.13 Measurement setup with a data server/controller, LiFi and WiFi APs and a user with two network
interfaces

The measurement setup for evaluating the proposed protocol is shown in Figure 4.13 where the
vertical distance between the APs and the user is 1 m, and the elevation or pitch angle of the user
device is 0°.

A TCP iPerf3 server is configured on the user device to continuously receive data. The iPerf3 is
set to maintain a constant packet rate with Nagle’s algorithm disabled. To gather handover results,
the controller enforces a handover every 5 seconds. Wireshark [Wir] is used to analyze the incoming
and outgoing packets on each interface. The overhead is measured as the time interval between the
last packet on the old interface and the first packet on the new interface following the switch. We
name our approach the "Same IP" approach in the results and compare it to a baseline approach
where the new interface comes up at the user device when the old interface goes down and the data
switches to the new IP address after the Address Resolution Protocols (ARPs) messages are re-sent
on the new interface. This baseline approach is named the "Iface Down" approach and represents the
default behavior of user devices. This approach, however, leads to TCP disconnections and a failed
handover as we have observed in our testbed. Therefore, we also include another approach to vertical
handovers that changes the routing table at the user device like the "Change IP" approach but does
not transfer the IP address to the new interface. We name this the "Change Route" approach.
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Figure 4.14 Vertical handover overhead comparing our proposed "Same IP" approach and the baseline approach
"Change Route" when switching from WiFi to LiFi or vice versa during TCP data transfers

Figure 4.14 presents the vertical handover overhead measured for our proposed "Same IP" approach
and the baseline "Change Route" approach for TCP data streams. A total of 1000 measurements were
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obtained for both WiFi to LiFi and LiFi to WiFi switches. To ensure the reliability of the data, the same
measurements were repeated on multiple days to mitigate any environmental effects.

The results indicate that the overhead is considerably reduced, as TCP re-connections were not
observed. When an upper-layer application sends data, the packets are first copied to a kernel write
queue. The kernel then transfers the packets from the write queue to the network interface controller,
which finally sends them. TCP queues packets to the driver’s queue (write buffer), transmitting them
sequentially. Each interface, in this case, LiFi and WiFi, has its own queue. During a handover, the
interfaces switch, and the new interface’s queue is filled. The average of 300 ms of overhead as seen
for the "Change Route" approach is the value that we consider in our simulations of handover losses
since this approach to vertical handovers can be implemented on user devices without any special
requirements from the IP address.

We perform the same analysis for User Datagram Protocol (UDP) data streams which would incur
a much lower handover overhead and in this case, the "Iface Down" approach manages to complete
the handover at a very high cost. We visualize the results for the vertical handover overhead in
Figure 4.15. The overhead time is presented in the log scale due to the large range of values.
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Figure 4.15 Vertical handover overhead comparing our proposed "Same IP" approach and the baseline approach
"Change Route" when switching from WiFi to LiFi or vice versa during TCP data transfers

Once again, we see that the proposed "Same IP" approach results in the least overhead while the
default "Iface Down" approach takes up to 10 s to complete the handover. In summary, our proposed
vertical handover technique does not necessitate TCP re-connections, as opposed to the default "Iface
Down" approach, ensuring the stability of a LiFi-WiFi network during unavoidable handovers.

Now that we have established stability in a heterogeneous network, we perform detailed evaluations
of the effects of the alpha-fair utility maximization on the network performance. In all the forthcoming
evaluations, we include the consideration of handover losses and the blockage model under test is
the geometric model where all other interfering users are modeled as cylindrical blockages.

4.2.11 Equally weighted alpha-fair resource allocation

In Section 4.2.9, we have already shown the benefits of an optimized resource allocation over the
baseline approach considering an instantaneous blockage model for the Small network topology, here
we show the same result for all network topologies with the geometric blockage model in Figure 4.16.
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Figure 4.16 Quality metrics for baseline and optimized resource allocation solved with Expert for various
network topology showing the need for optimization

In LiFi-WiFi networks, the availability of diverse AP association options creates potential for better
load balancing that can be achieved by our proposed alpha-fair resource allocation approach. Our
proposed model significantly outperforms the baseline, with average user rate increases of 398%,
98.9%, and 52.9% for Small, Medium, and Large topologies, respectively, while the worst user rates
improve by 431%, 201%, and 102% for Small, Medium, and Large topologies, respectively.
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Figure 4.17 Quality metrics for baseline and optimized resource allocation solved with Expert for various
alpha-fair objectives

Our analysis turns to the performance implications of various alpha-fair objectives, focusing on
average rate and minimum rate for the Small topology as shown in Figure 4.17. The metrics here
are per time slot of optimization, since that gives the best picture of how the 𝛼 parameter can tune
the objective of the optimization towards network goals. The results show that the worst user rate
increases at the cost of the average user rate as the 𝛼 value increases. This is in accordance with the
goal of the 𝛼 parameter. In all cases, we see that the proposed approach performs better than the
baseline approach. The exception is the minimum user rate when 𝛼 = 0 which is due to the fact that
this objective only aims to improve the network sum rate which means that it would allocate all the
wireless resources to the user with the best channel quality to utilize the full capacity at the AP.
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Figure 4.18 Fair-rate metric for baseline and optimized resource allocation solved with Expert for various indoor
mobility models under consideration

Since the pattern of user movements highly affects the association of users to APs, we evaluate the
performance of our proposed resource allocation approach for different mobility models in the Large
topology. For this we compare the fair-rate metric, which combines the user average rate and user
rate fairness, in Figure 4.18. Mobility models incorporating pausing periods (e.g., RWP with Pausing)
or group movement tendencies (e.g., RPG or SLAW) typically result in lower rates. Pausing intervals
cause users to linger in sub-optimal channel conditions for a longer duration. Group movements
concentrate resource demands at specific APs, reducing overall network performance. Despite these
challenges, the proposed approach consistently outperforms the baseline method, optimizing network
performance even under unfavorable conditions.
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Figure 4.19 Quality metrics for baseline and optimized resource allocation solved with Expert for various
network topology showing the need for optimization

Similar to the stability analysis, we still need to find the solver that can reduce the solve time further
than the Expert solver while still showing comparable performance. For the Small topology we
showed that this is the EGT solver. To confirm that finding for all the network sizes we compare them
in Figure 4.19. Instead of the average rate metric, we directly look at the alpha-fair utility objective
function that is being optimized as this gives the best comparison between the solvers. While the utility
metric shows a statistically significant difference between the Expert and EGT solvers, practically this
difference is very small and still shows a considerable improvement over the baseline approach. The
solve time of the EGT in the order of a few milliseconds furthers cements it as the best choice for a
real-world implementation.
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Figure 4.20 Quality metrics for baseline and optimized resource allocation solved with Expert for varying
number of users showing the scalability of the proposed solution approaches

To analyze the impact of the network performance of the various proposed solvers when the number
of users in the network scales higher, we increase the number of users in a Medium network size
from 10-25 and visualize the results in Figure 4.20. The average rate of the users shows no significant
different amongst the proposed solvers while showing a significant improvement compared to the
baseline approach across all user counts. This confirms that our proposed alpha-fair wireless resource
allocation approach can be easily scaled to larger networks while maintaining network optimization
benefits. The scalability is also evident in the solve times needed by each approach. The EGT solver,
again, displays the least needed time to solve the optimization problem while the Lagrangian and the
EGT show less steep slopes in solve time compares to the Expert solver.

Now that we have clearly shown the need for using our proposed wireless resource allocation
approach when all users are equally weighted, we turn to analyzing the behavior of the network
under varying user weights.

4.2.12 Weighted alpha-fair resource allocation

To accommodate the varying transmission/reception data rate needs of users, the weighted-alpha
fair utility integrates different weights or priorities for each user based on their resource demands.
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Figure 4.21 Quality metrics for weighted alpha-fair resource allocation with users assigned weights of 5, 25,
and 50 with higher weight indicating the demand for more resources

Figure 4.21 shows the results when users are assigned weights of 5, 25, and 50, representing their
varying resource requirements with the higher weight indicating a higher demand for data rate.
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Figure 4.21a shows an increase in data rate corresponding to user weight, effectively meeting indi-
vidual user needs. Figure 4.21b displays the network’s utility function, indicating that our proposed
strategy consistently outperforms the baseline, even under weighted conditions. This finding applies
for all proposed solvers. Adjusting user weights allows prioritization based on resource demands
and priorities, enabling targeted optimizations that align with various user objectives.

In summary, a stable LiFi-WiFi network is established by considering the losses due to handovers
and minimizing the number of handovers that occur in the network. After this, the proposed
optimization problem can be solved to optimize the network according to various user needs and
network requirements resulting in quality metrics that are better than for the baseline approach. The
EGT-based solution approach emerges as best compromise between network performance and solve
times suitable for real-world implementations.

4.3 Summary and Conclusions

This chapter has addressed the complex issue of optimizing wireless resource allocation in LiFi-WiFi
heterogeneous networks. Our research focused on three primary objectives: minimizing average
network packet delay, ensuring network stability, and maximizing alpha-fair utility.

We tackled the problem of wireless resource allocation and user association to minimize average
network packet delay, which is crucial for delay-sensitive applications. We explored this optimization
in both singlepath and multipath LiFi-WiFi heterogeneous networks. Our key finding from this work
is that our proposed methods not only significantly reduce delay compared to existing max-SNR-
based techniques but also demonstrate that LiFi-WiFi networks are highly effective for low-latency
applications. A key finding is that these networks can achieve sub-millisecond latency, particularly
when multi-homing user devices are utilized.

Next, we addressed the stability of heterogeneous networks by incorporating handover losses due
to mobility, changes in receiver orientation, and signal blockages into a throughput maximization
resource allocation problem. Our proposed approach successfully reduces the number of handovers
by 24.6%. To minimize the overhead caused by unavoidable handovers, we proposed a system protocol
for managing vertical handovers or interface switches, which typically incur significant overhead. This
protocol was implemented on a hardware setup and evaluated through measurements, demonstrating
that our approach effectively avoids TCP re-connections.

After establishing network stability, we focused on further improving network performance using a
weighted alpha-fair utility maximization model. Our proposed model significantly outperforms the
baseline, with average user rate increases of 398%, 98.9%, and 52.9% for Small, Medium, and Large
topologies, respectively. Additionally, the worst user rates improved by 431%, 201%, and 102% for
Small, Medium, and Large topologies, respectively.

In summary, we have demonstrated the challenges in wireless resource allocation in LiFi-WiFi
networks and proposed various resource management approaches that address these challenges and
enhance network performance. These resource allocation strategies have proven useful for managing
immediate network conditions.

In the next chapter, we will build on these findings to explore the potential for improving long-term
network performance. We aim to develop proactive resource allocation strategies that can adapt to
changing user behaviors and network environments. This approach will involve the integration of
predicted future positions and channels of users, enabling more efficient and dynamic management
of network resources over time.
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Chapter 5

Mobility-aware Proactive Wireless Resource
Allocation in LiFi-WiFi Networks

Resource management in a Light-Fidelity (LiFi)-Wireless-Fidelity (WiFi) heterogeneous network of-
fers unprecedented data transmission capabilities but also faces challenges, as outlined in the previous
chapter. Challenges stem from multiple factors including the possibility of assigning from among
multiple Access Points (APs) to a user [Wan+17], an increased load on WiFi APs, frequent handovers
between densely located LiFi cells [WSH17], and the risk of ping-pong handovers posing a threat to
network stability and efficiency. In response to these challenges, strategies for reactive resource allo-
cation were discussed in the previous chapter. These strategies adapt AP assignments and bandwidth
share based on current network and user demands [Vĳ+21; VK21; Ahm+22].

Reactive allocation strategies, while useful for managing immediate network conditions, fail to
leverage predictive technologies that could improve efficiency. With advancements in LiFi-based
indoor positioning [Arf+21], it is possible to foresee user movements and upcoming network condi-
tions [Bui+17] rather than react upon their occurrence. Proactive resource allocation, thus emerges as
important especially in scenarios with LiFi blockages or reduced channel quality due to user mobility.
By predicting the trajectory of user movements, it becomes possible to optimize resource allocation,
aligning the bulk of data transfers with better channel conditions, and reducing service interruptions,
thereby maintaining consistent service quality.

This chapter introduces a proactive resource allocation framework for LiFi-WiFi networks that
considers rate fairness, user mobility, Line-of-Sight (LoS) blockages, and different models for poten-
tial errors in the prediction of user positions. The content of this chapter is based on the journal
contribution [VK24].

Proactive allocation enhances user satisfaction and presents as a vital area of study in heterogeneous
network environments. Nevertheless, it is important to recognize the limitations due to inaccuracies
in predicting user location, which could diminish the benefits of proactive strategies. This recognition
drives the need to explore various models of prediction errors and assess the effectiveness of proactive
resource allocation amidst these uncertainties.

Through these discussions, the chapter sets the stage for a deep dive into the architecture and
methodology of MobiFi, the proposed proactive wireless resource management framework that
represents a significant step towards fully autonomous LiFi-WiFi heterogeneous networks that can
adapt to user behaviors and environmental changes.

5.1 State-of-the-art Analysis

The body of research on wireless resource allocation in LiFi and Radio Frequency (RF) networks
has made substantial strides, particularly in anticipatory mobile networking and proactive resource
allocation. Nevertheless, challenges specific to LiFi-WiFi networks remain inadequately addressed.



Chapter 5 Mobility-aware Proactive Wireless Resource Allocation in LiFi-WiFi Networks

86

A comprehensive survey by [Bui+17] examines prediction and optimization within anticipatory
mobile networking but fails to address the unique issues of LiFi-WiFi networks, such as blockages
and AP density. This gap shows the need for targeted research in this area.

In the field of indoor LiFi systems, [Arf+24] focuses on proactive optimization using deep learning,
specifically considering channel aging. The work introduces a Long Short-Term Memory (LSTM)
network to predict the positions, orientations, and channel coefficients of mobile users, allowing
for the optimal precoding matrix for sum rate maximization. However, this research is limited to
beamforming, while our work also includes AP assignment and wireless resource allocation. Their
primary focus was on prediction accuracy and time which leaves a gap in understanding its overall
impact on resource allocation.

In the Visible Light Communication (VLC) domain, [Zha+18] explores anticipatory association for
user-to-AP connections, utilizing predicted user locations and traffic dynamics to prepare APs in
advance. However, it does not address proactive wireless resource allocation for mobility awareness.
Our research emphasizes both wireless resource allocation and user-to-AP association, essential for
load balancing in heterogeneous networks.

Reference [Das+18] introduces mobility-aware resource optimization using a look-ahead policy in
VLC networks, proposing a resource allocation algorithm based on anticipated Channel State Infor-
mation (CSI) from predicted user locations. However, it does not consider the impact of prediction
errors on resource allocation. Our work addresses this by modeling prediction errors and analyzing
their effects on proactive resource allocation.

Several works have focused on proactive optimization in RF-only heterogeneous networks. [CDS18]
develops a deep learning method for resource allocation in Long Term Evolution (LTE)-License
Assisted Access (LAA) small base stations, ensuring fair coexistence with WiFi. This method relies
on traffic history to predict resource allocation actions but does not account for predicted channel
conditions, crucial for optimizing short-range LiFi networks susceptible to blockages. Our approach
includes predicted channel conditions to enhance long-term network performance.

Another important contribution is from [Li+20], which introduces a dynamic, proactive resource
allocation approach using deep reinforcement learning in heterogeneous networks. While the work
emphasizes robustness, it focuses on traditional RF heterogeneous networks. Our research comple-
ments this by proposing resource allocation strategies in LiFi-WiFi networks, addressing prediction
uncertainties and improving network performance across different technologies. Unlike [Li+20],
which optimizes wireless resource allocation with fixed AP association, our approach optimizes AP
association for maximum benefits.

In the context of LiFi-WiFi network management, both [Fró+24] and our work incorporate user
trajectory predictions for effective handover strategies. They optimize handovers by selecting the best
LiFi or WiFi AP or maintaining the current connection based on future channel conditions predicted
using reinforcement learning, aiming to maximize user rate satisfaction. [TQS23] also addresses
proactive handovers based on blockage prediction using beam tracking. However, our research ex-
tends beyond single AP choices, considering all potential allocations, and integrates wireless resource
allocation with AP selection. Additionally, our optimization extends to future time blocks rather than
just current time slot allocations.

In conclusion, while existing research has significantly advanced proactive handovers and mobility-
aware networking, our proposal distinguishes itself by presenting a unified resource allocation
framework tailored to LiFi-WiFi heterogeneous networks. By addressing anticipatory allocation,
incorporating predictive modeling, and utilizing advanced optimization techniques, our work makes
a substantial contribution to the evolving field of heterogeneous network optimization.
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5.2 Key Contributions

We introduce the architecture and methodology of MobiFi, a proactive wireless resource management
framework for LiFi-WiFi heterogeneous networks. Specifically this chapter makes the following
significant contributions:

1. We develop a proactive resource allocation framework that specifically considers mobility of
users, LoS blockages, and variations in channel quality. This approach is designed to proactively
manage wireless resources in both LiFi-only and LiFi-WiFi networks.

2. We propose tackling the challenge of proactive resource allocation by setting up an optimization
problem that assigns AP and allocates wireless resources using an alpha-fairness objective over
time. This approach not only optimizes network efficiency but also consistently outperforms
traditional reactive models in terms of average data rates.

3. To solve this complex optimization problems, we utilize advanced solution techniques, including
a Branch and Bound-based Mixed Integer Nonlinear Programming (MINLP) solver and iterative
Evolutionary Game Theory (EGT)-based algorithms.

4. We incorporate models that simulate errors in predicting user positions to test the robustness of
our proactive allocation strategy. This simulation is necessary to evaluate how well the proactive
strategy performs under the uncertainty of user position predictions, ensuring the reliability of
the resource management processes.

5.3 System Model

This work explores resource management in a LiFi-WiFi heterogeneous network comprising 𝑀𝐿

LiFi APs and 𝑀𝑊 WiFi APs, with a combined total of 𝑀𝐴 APs. The LiFi APs, which are Light
Emitting Diodes (LEDs) mounted at a height of 3 m, operate at the same frequency, leading to co-
channel interference in overlapping areas. Conversely, WiFi APs operate on distinct, non-overlapping
frequencies.

The network serves a total of 𝑀𝑈 users, each equipped with both LiFi photodiode and WiFi
receivers, although connectivity to only one AP is possible at any time. All APs are connected to a
central network controller that facilitates instantaneous, error-free communication and monitors the
load on each AP by collecting and analyzing the wireless CSI from all users.

Resource allocation decisions are made by a centralized algorithm that operates at intervals denoted
by 𝜏. This algorithm uses global network data to allocate resources and communicate these decisions
back to the users. Additionally, a positioning system captures user locations, which the controller uses
to predict future movements and channel conditions over a defined period. Users’ devices typically
come equipped with GPS receivers that can share location data with the centralized controller.
Alternatively, an AP-based positioning system can also be used, requiring the user to be within the
coverage area of multiple APs simultaneously. While our network design approach in Chapter 3 does
not incorporate this consideration, the resource allocation method discussed in this chapter remains
independent of the source of user position data. We assume a proactive resource allocation window
spanning five service time slots (𝑇win = 5). This setup means the resource allocation algorithm is
executed once at the beginning of this window, managing network resources across the specified
slots.

The channel model and geometric blockage model for LiFi are elaborated in Section 2.3 and Sec-
tion 2.4.3, respectively, while the channel model for WiFi is described in Section 2.6. To evaluate
the performance of our proactive resource allocation strategy with mobile users, we include four
mobility models: Random Waypoint (RWP), Truncated Levy Walk, Self-Similar Least Walk (SLAW)
[Lee+09], and Reference Point Group (RPG) [Hon+99] which also capture the changing orientation of
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a user device. Further details are provided in Section 2.7. The user experiences losses due to vertical
(inter-technology) and horizontal (intra-technology) handovers that occur when the user changes its
AP association from one time slot 𝜏=500 ms to the next. Further details are provided in Section 4.2.4.

Table 5.1 provides a summary of the notations used in this chapter, where bold lowercase letters
represent vectors and cursive capital letters denote sets.

Table 5.1 List of Notations used in Proactive Resource Allocation

Notation Description

𝑙, 𝑀𝐿, ℒ Index, number, and set of LiFi APs
𝑤, 𝑀𝑊 ,𝒲 Index, number, and set of WiFi APs
𝑎, 𝑀𝐴,𝒜 Index, number, and set of total APs
𝑢, 𝑀𝑈 ,𝒰 Index, number, and set of users
𝑁𝑎 ,𝒰𝑎 Number and set of users associated to AP 𝑎

𝑡, 𝑇win Index and length of Optimization/Future window
𝒑(𝑡), �̂�(𝑡) Real and predicted (x, y, z) user position
𝚯(𝑡), �̂�(𝑡) Real and predicted (yaw, pitch, roll) user orientation
𝜎 Standard deviation of error in user prediction
𝜏 Length of one time slot
𝜂𝑎′ ,𝑎 Handover efficiency when switching from AP 𝑎′ to 𝑎

𝑅
(𝑡)
𝑢,𝑎 Achievable rate of user 𝑢 connected to AP 𝑎 at time 𝑡

�̃�
(𝑡)
𝑢,𝑎 Handover-reduced rate for user 𝑢 to AP 𝑎 at time 𝑡

𝑅
(𝑡)
𝑢 , 𝑅win

𝑢 Achieved rate of user 𝑢 at time slot t and in a window
𝑓𝛼() Alpha-fairness function
𝛼 Parameter to control the alpha-fairness
𝑥
(𝑡)
𝑢,𝑎 Optimization variable indicating association

𝑦
(𝑡)
𝑢,𝑎 Optimization variable indicating resource proportion

𝑈𝛼(𝑥(𝑡)𝑢,𝑎 , 𝑦(𝑡)𝑢,𝑎) Utility function to be maximized
𝑖 Index of iteration of the EGT algorithm
𝐹𝑢,𝒂 Payoff for user 𝑢 to APs 𝒂 over time
�̄� 𝑖 Global average Payoff in 𝑖th iteration
𝑝 𝑖𝑢 Mutation probability of user 𝑢
𝐿, 𝜆 Lagrangian function and multiplier
𝑤𝑢 Weights assigned to user for a weighted alpha-fairness

5.3.1 Models for Errors in User Position Prediction

The accuracy of user position predictions is essential for effective proactive resource allocation. To
assess our strategy’s resilience to prediction inaccuracies, we use several models to simulate prediction
errors.
Known Position Model
The known position model assumes perfect knowledge of users’ future locations, representing an ideal
scenario with zero prediction error. This model serves as a benchmark for evaluating the performance
of more realistic error models.
Assumed Position Model
The assumed position model adopts a basic approach wherein only the initial location of the user is
known, with the presumption that the user remains stationary throughout the prediction period. If
the user’s initial position at time 𝑡0 is 𝒑(𝑡0), then the predicted position �̂�(𝑡) for any subsequent time
𝑡 within the prediction window is expressed as:

�̂�(𝑡) = 𝒑(𝑡0), ∀𝑡 > 𝑡0
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This assumption also applies to the orientation of the user’s device, represented as:

�̂�(𝑡) = 𝚯(𝑡0), ∀𝑡 > 𝑡0

Error Model
The error model incorporates prediction errors based on the statistical characteristics of typical errors.
Drift Error Model: The drift error model introduces prediction errors that accumulate and drift over
time, based on previous predictions. For a 2D position vector 𝒑(𝑥, 𝑦, 𝑡) at time 𝑡, the error is modeled
as a normal distribution where the mean is the error at time 𝑡 − 1 and the standard deviation remains
constant. The mathematical representation is as follows:

𝚫𝒑𝑡 = 𝚫𝒑𝑡−1 + 𝜖𝑡 , 𝜖𝑡 ∼ 𝒩(𝚫𝒑𝑡−1 , 𝜎)

�̂�(𝑥, 𝑦, 𝑡) = 𝒑(𝑥, 𝑦, 𝑡) + 𝚫𝒑𝑡

where 𝚫𝒑𝑡 is the error at time 𝑡 with 𝚫𝒑0 = 0, 𝜖𝑡 is a random error drawn from a normal distribution
with a standard deviation 𝜎, and �̂�(𝑥, 𝑦, 𝑡) is the predicted (x,y) position at time 𝑡 and 𝒑(𝑥, 𝑦, 𝑡) is the
actual (x,y) position at time 𝑡.
Standard Deviation Error Model: The std error model generates prediction errors where the standard
deviation of the error increasing over time. Each time step’s error is independent and normally
distributed, with a mean of zero and a standard deviation that increases with the time step. The error
model is given by:

�̂�(𝑥, 𝑦, 𝑡) = 𝒑(𝑥, 𝑦, 𝑡) + 𝜖𝑡 , 𝜖𝑡 ∼ 𝒩(0, 𝜎
𝑡

𝑇win )

where 𝑇win is the total duration of the prediction window, and 𝜎 is the scaling factor for the standard
deviation.

In both error models, the predicted (x,y) positions are utilized to determine the direction of move-
ment, which provides the predicted yaw angle of orientation. The z position and the pitch and roll
orientations of the user device are assumed to remain constant throughout the prediction window,
using the values from the initial time step within the window.
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Figure 5.1 Real (or known) and predicted trajectories for 2 exemplary users following the RWP mobility model
for the drift and std error models

Figure 5.1 shows the impact of prediction errors on user trajectories. The ground truth for user
movements is represented by the known trajectory, which is derived from the RWP model. The figure
also depicts the trajectories generated by two prediction error models: the drift error model and the
std error model.
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5.4 Optimization Problem Formulation for the Proactive Resource
Allocation

The proactive resource allocation strategy for LiFi-WiFi heterogeneous networks incorporates a future
time dimension to predict user positions and network conditions. This approach seeks to optimize the
allocation of wireless resources over a specified time window, aiming to maximize the alpha-fairness
utility function, as detailed in Section 4.2.5 and based on the principles outlined in [MW00].

The optimization problem is formulated as follows:

max
𝑥
(𝑡)
𝑢,𝑎 ,𝑦

(𝑡)
𝑢,𝑎

𝑈𝛼(𝑥(𝑡)𝑢,𝑎 , 𝑦(𝑡)𝑢,𝑎) (5.1)

subject to
∑
𝑎

𝑥
(𝑡)
𝑢,𝑎 = 1 ∀𝑢, 𝑡 (5.2)∑

𝑢

𝑥
(𝑡)
𝑢,𝑎𝑦

(𝑡)
𝑢,𝑎 ≤ 1 ∀𝑎, 𝑡 (5.3)

𝑥
(𝑡)
𝑢,𝑎 ∈ {0, 1} ∀𝑢, 𝑎, 𝑡 (5.4)

0 < 𝑦
(𝑡)
𝑢,𝑎 ≤ 1 ∀𝑢, 𝑎, 𝑡 (5.5)

where 𝑥
(𝑡)
𝑢,𝑎 is the binary association variable that is 1 if the user 𝑢 is associated to AP 𝑎 at time slot 𝑡

and 𝑦
(𝑡)
𝑢,𝑎 is the continuous resource proportion variable that denotes the fraction of wireless resources

allocated to the user. Constraint (5.2) requires that each user is associated to a single AP per time slot.
Constraint (5.3) prevents the resource load at any AP from exceeding its capacity.

The utility function of alpha-fairness 𝑈𝛼 considering different values of 𝛼 is:

𝑈𝛼(𝑥(𝑡)𝑢,𝑎 , 𝑦(𝑡)𝑢,𝑎) =


∑

𝑢

∑
𝑡

∑
𝑎 𝑥
(𝑡)
𝑢,𝑎 log

(
𝑦
(𝑡)
𝑢,𝑎 �̃�

(𝑡)
𝑢,𝑎

)
if 𝛼 = 1∑

𝑢

∑
𝑡

∑
𝑎 𝑥
(𝑡)
𝑢,𝑎

(
𝑦
(𝑡)
𝑢,𝑎 �̃�

(𝑡)
𝑢,𝑎

)1−𝛼

1−𝛼 if 𝛼 ≥ 0, 𝛼 ≠ 1
(5.6)

Here, �̃�(𝑡)𝑢,𝑎 represents the predicted link rate from AP 𝑎 to user 𝑢 at time 𝑡. This rate accounts for
handover efficiency, denoted as 𝜂(𝑡)𝑎′,𝑎 , which affects the handover-reduced rate. The value of 𝜂(𝑡)𝑎′,𝑎 is
known at 𝑡 = 0 within the window, and for subsequent slots, it depends on the optimization variable
of the user-AP association from the previous time slot, 𝑡 − 1.

�̃�
(𝑡)
𝑢,𝑎 = 𝑅

(𝑡)
𝑢,𝑎

∑
𝑎′

𝑥
(𝑡−1)
𝑢,𝑎′ 𝜂𝑎′,𝑎 (5.7)

Therefore, the rate �̃�
(𝑡)
𝑢,𝑎 for 𝑡 ≥ 2 is treated as an auxiliary optimization variable. The alpha value of

1 represents a proportional fairness objective among the users and has a special form. Each of the
other alpha values represent varying degrees of fairness among the user achieved rates.

This formulation is applicable to both LiFi-only and LiFi-WiFi networks. The difference lies in the
source set for user association: ℒ for LiFi-only networks and𝒜 for LiFi-WiFi networks. Additionally,
handover efficiency considerations vary, with potential vertical handovers in LiFi-WiFi networks. Both
optimization formulations result in MINLP problems due to the presence of binary and continuous
variables, rendering them NP-hard and mathematically intractable.
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5.4.1 Convex relaxation

To convert the problem into a convex form, the binary variable 𝑥
(𝑡)
𝑢,𝑎 can be relaxed to take fractional

values in the range [0, 1]. This relaxation transforms the problem formulation as follows:

max
𝑥
(𝑡)
𝑢,𝑎 ,𝑦

(𝑡)
𝑢,𝑎

∑
𝑢

∑
𝑡

∑
𝑎

𝑥
(𝑡)
𝑢,𝑎

(
𝑦
(𝑡)
𝑢,𝑎 �̃�

(𝑡)
𝑢,𝑎

)1−𝛼

1 − 𝛼
(5.8)

s.t. �̃�
(𝑡)
𝑢,𝑎 = 𝑅

(𝑡)
𝑢,𝑎

∑
𝑎′

𝑥
(𝑡−1)
𝑢,𝑎′ 𝜂𝑎′,𝑎 ∀𝑢, 𝑎, 𝑡 ≥ 2 (5.9)∑

𝑎

𝑥
(𝑡)
𝑢,𝑎 = 1 ∀𝑢, 𝑡 (5.10)∑

𝑢

𝑥
(𝑡)
𝑢,𝑎𝑦

(𝑡)
𝑢,𝑎 ≤ 1 ∀𝑎, 𝑡 (5.11)

𝑥
(𝑡)
𝑢,𝑎 ∈ [0, 1], 𝑦(𝑡)𝑢,𝑎 ∈ (0, 1] ∀𝑢, 𝑎, 𝑡 (5.12)

This relaxed problem can be proven to be a concave optimization problem for 𝛼 > 0 since the objective
is concave and the constraints are affine. Let the objective function be denoted as 𝐹

(
𝑥
(𝑡)
𝑢,𝑎 , 𝑦

(𝑡)
𝑢,𝑎 , 𝑅

(𝑡)
𝑢,𝑎

)
which is a function of three variables. The Hessian matrix is written as

ℋ(𝐹) =


𝜕2𝐹

𝜕(𝑥(𝑡)𝑢,𝑎)2
𝜕2𝐹

𝜕𝑥(𝑡)𝑢,𝑎𝜕𝑦
(𝑡)
𝑢,𝑎

𝜕2𝐹

𝜕𝑥(𝑡)𝑢,𝑎𝜕𝑅
(𝑡)
𝑢,𝑎

𝜕2𝐹

𝜕𝑦(𝑡)𝑢,𝑎𝜕𝑥
(𝑡)
𝑢,𝑎

𝜕2𝐹

𝜕(𝑦(𝑡)𝑢,𝑎)2
𝜕2𝐹

𝜕𝑦(𝑡)𝑢,𝑎𝜕𝑅
(𝑡)
𝑢,𝑎

𝜕2𝐹

𝜕𝑅(𝑡)𝑢,𝑎𝜕𝑥
(𝑡)
𝑢,𝑎

𝜕2𝐹

𝜕𝑅(𝑡)𝑢,𝑎𝜕𝑦
(𝑡)
𝑢,𝑎

𝜕2𝐹

𝜕(𝑅(𝑡)𝑢,𝑎)2


(5.13)

where

𝜕2𝐹

𝜕𝑥(𝑡)
2

𝑢,𝑎

= 0 (5.14)

𝜕2𝐹

𝜕𝑦(𝑡)
2

𝑢,𝑎

= −𝛼
𝑥
(𝑡)
𝑢,𝑎𝑅

(𝑡)2
𝑢,𝑎(

𝑦
(𝑡)
𝑢,𝑎𝑅

(𝑡)
𝑢,𝑎

)𝛼+1 ≤ 0 (5.15)

𝜕2𝐹

𝜕𝑅(𝑡)
2

𝑢,𝑎

= 0, 𝑡 = 1 (5.16)

𝜕2𝐹

𝜕𝑅(𝑡)
2

𝑢,𝑎

= −𝛼
𝑥
(𝑡)
𝑢,𝑎𝑦

(𝑡)2
𝑢,𝑎(

𝑦
(𝑡)
𝑢,𝑎𝑅

(𝑡)
𝑢,𝑎

)𝛼+1 ≤ 0, ∀𝑡 > 1 (5.17)

Since the leading principal minors are non-positive, the Hessian matrix is negative semi-definite,
rendering the objective function concave with respect to the variables 𝑥

(𝑡)
𝑢,𝑎 , 𝑦

(𝑡)
𝑢,𝑎 , and 𝑅

(𝑡)
𝑢,𝑎 .

Consequently, this relaxed problem can be solved using any convex optimization technique, such
as the Lagrangian approach. The binary variables can then be recovered by associating the user with
the AP that has the highest value for the binary variable at each time step. However, in this chapter,
we employ the off-the-shelf solver Gurobi [Gur23], which utilizes the Branch and Bound algorithm
[LD10] and approximates non-linear functions with piecewise linear functions to solve the problem.
The Gurobi solver implementation is referred to as the “Expert" model from here on. Additionally, to
reduce computational complexity and ensure solutions within the specified optimization interval 𝜏,
we implement an algorithm using EGT.
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5.5 Proposed Resource Allocation with Evolutionary Game Theory

EGT models user interactions as a competitive game for the shared wireless resources. Evolutionary
games are advantageous for distributed implementations but, in this work, the algorithm is executed
at the central controller. This approach ensures that the controller maintains a global understanding
of the entire network and can communicate decisions to users after the algorithm’s convergence. The
algorithm converges to an evolutionary equilibrium, representing a stable state achieved by the users.

5.5.1 Algorithm Setup

The association of users to APs is managed by an EGT-based algorithm, which includes the following
key components:

• Players: The users participating in the network.

• Population: The population𝒰𝑎 represents the set of users associated to an AP 𝑎 at each time slot,
where the number of users assigned to AP 𝑎 is denoted as 𝑁𝑎 .

• Strategy: Players can choose one among all the LiFi and WiFi APs available to serve them in each
time slot within the window of optimization.

• Payoff: Players adjust their strategy in each iteration to maximize their payoff. The payoff for a
user 𝑢 is an aggregation of achievable rates �̃�

(𝑡)
𝑢,𝑎 over the window. Given an association vector,

𝒂 containing the user 𝑢’s associated AP for all time steps 𝑡 within the window, the payoff is
calculated as

𝐹𝑢,𝒂 =
∑
𝑡

𝑦
(𝑡)
𝑢,𝑎 �̃�

(𝑡)
𝑢,𝑎 . (5.18)

5.5.2 Access Point Association

Based on the previously given game setup, the algorithm identifies the AP association that maximizes
the payoff for all users. Each user adjusts their AP association strategy by considering the global
average payoff of all players. The global average payoff of users connected to APs 𝒂 in the 𝑖th iteration
is calculated as:

�̄� 𝑖 =
1

𝑀𝑈

∑
𝑢

𝐹𝑢,𝒂 . (5.19)

where 𝑀𝑈 is the total number of users in the system. Users with lower payoff values compared to
the global average have a higher probability of switching their association to another AP (mutation).
This switching probability is determined by:

𝑝 𝑖𝑢 =

{
1 − 𝐹𝑢,𝒂

(𝑖−1)

�̄�(𝑖−1) 𝐹
(𝑖−1)
𝑢,𝒂 < �̄�(𝑖−1)

0 otherwise.
(5.20)

When a user mutates, the new AP to be associated to is chosen by maximizing the estimated payoff
for the current iteration, i.e., 𝒂 = arg max𝒂′ 𝐹𝑢,𝒂′. This involves evaluating each AP for every time slot
𝑡 within the window as a potential choice for the user, and then choosing the optimal allocation 𝒂.
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5.5.3 Resource Allocation

After the AP association is completed, the AP allocates wireless resources to the users based on the
alpha-fairness rule. For a given AP assignment, the optimal resource proportion 𝑦

(𝑡)
𝑢,𝑎 for a user 𝑢

associated with AP 𝑎 at time slot 𝑡 is determined by:

𝑦
(𝑡)
𝑢,𝑎 =



{
1 if 𝑢 = arg max𝑢′ �̃�(𝑡)𝑢′,𝑎
0 elsewhere

if 𝛼 = 0

(
�̃�
(𝑡)
𝑢,𝑎

) 1
𝛼 −1

∑
𝑢′∈𝒰𝑎

(
�̃�
(𝑡)
𝑢′ ,𝑎

) 1
𝛼 −1

if 𝛼 > 0
(5.21)

The proactive strategy allocates resources according to (5.21), independently considering each time
slot in the window. Although resource allocation is carried out independently for each time slot, the
AP association process takes the entire window into account when calculating payoffs and reassigning
users.

5.5.4 Optimality of alpha-fair resource allocation strategy

For 𝛼 > 0, it can be shown that selecting the resource proportion 𝑦
(𝑡)
𝑢,𝑎 as in (5.21) is optimal for a

given AP assignment. When the AP assignment is fixed, the resource proportion allocation does not
depend on the time slot and can be separated into 𝑇win different sub-problems, allowing the time
index (𝑡) to be omitted. Consequently, resources are allocated independently in each slot. Therefore,
the proof follows exactly as previously explained in Section 4.2.7 for the reactive strategy by setting
all user weights 𝑤𝑢 to 1.

5.5.5 Algorithm Implementation

The controller collects wireless channel statistics from users, assuming these statistics remain constant
within an optimization state. Initially, users are allocated to APs based on the highest available link
rate. During each iteration, users select a new AP with a probability defined by (5.20). Once an
AP is chosen, resources are allocated according to (5.21). This iterative process continues until the
algorithm converges. The entire procedure is centrally managed by the controller, which then relays
the final decision back to the network upon convergence. An overview of this algorithm can be found
in Algorithm 5.

Algorithm 5 EGT-based Algorithm for Proactive Wireless Resource Allocation
1: Users send their channel statistics and positions to the controller, which then predicts the future channels.
2: Initialization: 𝑖 = 0. Assign each user to the AP vector 𝒂 offering the best link rate. Allocate resources to

the connected users using (5.21). Calculate the initial global average payoff �̄�0 as in (5.19).
3: repeat
4: for each user 𝑢 do
5: The controller calculates the probability 𝑝 𝑖𝑢 for each user to switch APs as in (5.20).
6: The user 𝑢 is assigned to the set of APs that offers the maximum payoff 𝐹𝑢,𝒂 with this probability.

The controller updates the number of users connected to each AP as 𝑁𝑎 .
7: end for
8: for each AP vector 𝒂 do
9: The controller allocates the wireless resources 𝑦

(𝑡)
𝑢,𝑎 for each user connected to the AP as in (5.21).

10: end for
11: 𝑖 ← 𝑖 + 1
12: until no user changes their AP assignment
13: The controller communicates the final allocation decisions to the APs, which then re-associate the users

accordingly.
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The complexity of the algorithm scales with the total number of users, APs, and window length,
described by 𝑂(𝑀𝑈𝑀𝐴𝑇win𝐼), where 𝐼 is the number of iterations needed for convergence. Due to the
independence of many operations, parallel processing can be utilized to further reduce complexity.
Typically, the algorithm converges within a few tens of iterations in a 10 x 10 m scenario.

5.6 Evaluation Methods and Quality Metrics

Our proposed MobiFi proactive resource allocation is evaluated through a simulation framework
implemented in Python 3.10.6 with Gurobi v11.0.0. To benchmark the performance of our proactive
resource allocation framework, we compare all the results to the reactive approach introduced in the
previous chapter Section 4.2. To recollect, the reactive approach manages the resources of a LiFi-WiFi
network through an alpha-fair utility optimization problem that considers the network slot-by-slot
with no knowledge of the users’ positions or channel conditions in the future.

Table 5.2 Network Topologies under evaluation

Topology Dimension Users LiFi APs Position of LiFi APs

Small 5 x 5 x 3 m 10 4 (-1.4, 1.4), (1.4,-1.4),
(-1.4,-1.4), (1.4, 1.4)

Medium 10 x 5 x 3 m 15 8 (-1.4, 1.4), (1.4,-1.4),
(-1.4,-1.4), (1.4, 1.4),
(-1.4, 4.2), (1.4,-4.2),
(-1.4,-4.2), (1.4, 4.2)

Large 10 x 10 x 3 m 20 16 (-3.6,-3.6), (-3.6,-1.2),
(-3.6, 1.2), (-3.6, 3.6),
(-1.2,-3.6), (-1.2,-1.2),
(-1.2, 1.2), (-1.2, 3.6),
( 1.2,-3.6), ( 1.2,-1.2),
( 1.2, 1.2), ( 1.2, 3.6),
( 3.6,-3.6), ( 3.6,-1.2),
( 3.6, 1.2), ( 3.6, 3.6)

To assess the efficacy of the algorithms we introduced, we analyzed their performance across a
range of indoor environments categorized by size — Small, Medium, and Large — which correspond
to different network topologies as already introduced in the previous chapter. To recall, each topology
features one WiFi AP mounted centrally on the ceiling at coordinates (0,0,3) m, with all LiFi APs also
positioned at the same height of 3 m. Additional parameters relevant to these scenarios are detailed
in Table 5.2. Performance testing was conducted using an 11th Generation Intel® Core™ i7-11700
16-Core Processor. Each set of results was derived from 40 independent simulation runs, with each
run consisting of 240 time steps. To validate our findings, we employed the Mann-Whitney U test
[MW47], operating under the null hypothesis that there is no difference in the distributions of the two
parameters being compared. As in the previous chapters, the outcomes of these tests are annotated
in the corresponding figures with symbols based on the p-values [Cha+22]. To recollect, the star
notation is given as:

ns : p > .05
∗ : .01 < p <= .05
∗∗ : .001 < p <= .01
∗ ∗ ∗ : .0001 < p <= .001
∗ ∗ ∗∗ : p <= .0001
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Furthermore, due to multiple hypothesis testing on the same dataset, we applied the Benjamini-
Hochberg procedure [BH95] to adjust for the false discovery rate, ensuring the reliability of our
statistical inferences.

Simulation results are evaluated using various quality metrics to analyze the performance of the
resource allocation framework. These metrics are grouped into two categories: windowed evaluations
and all-time evaluations.

Each windowed metric involves calculating the sum of rates for each user over the time window
𝑇win, termed as the windowed rate per user 𝑅win

𝑢 =
∑𝑇win

𝑡=1 𝑅
(𝑡)
𝑢 . Each window yields a single metric

value.

Windowed Fairness:
The Jain fairness index [JCH84], a measure of resource allocation fairness among users, is calculated
for each window as follows:

Jain Fairness =

(
1

𝑀𝑈

∑𝑀𝑈

𝑖=𝑢 𝑅win
𝑢

)2

1
𝑀𝑈

∑𝑀𝑈

𝑢=1 𝑅
win
𝑢

2 (5.22)

where 𝑀𝑈 is the total number of users.

Average Windowed Rate (Mb/s):

Average Rate =

∑𝑀𝑈

𝑢=1 𝑅
win
𝑢

𝑀𝑈𝑇win (5.23)

Windowed Fair-rate:
This metric integrates the fairness and average rate by multiplying them for each window.

Minimum Windowed Rate (Mb/s):

Minimum Rate = min
𝑢

𝑅win
𝑢

𝑇win (5.24)

Next, we look into "All-time" metrics that extend the windowed evaluations to the entire duration of
the simulation, offering a long-term view of the network performance.

All-time Fairness:
This metric is calculated as the average of the Windowed Jain Fairness across all windows in the
simulation duration.

All-time Average Rate (Mb/s):
This metric is calculated as the average of the Windowed Average Rate across all windows in the
simulation duration.

All-time Fair-rate:
This metric is calculated as the product of the all-time fairness and average rate metrics.

% of Handovers per User:
This metric measures the frequency of handovers, reflecting the percentage of time slots in which a
handover occurs for each user.
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Time to solve (s):
The efficiency of the optimization algorithms, specifically the Expert and EGT solvers, is gauged by
the time required to solve the optimization problem.

5.7 Results and Comparative Analysis

Small Medium Large
Network Topology

40

60

80

100

120

Av
er

ag
e 

Ra
te

 (M
b/

s) ****

****

****reactive
proactive

(a) LiFi-only Network

Small Medium Large
Network Topology

60

80

100

120

140

Av
er

ag
e 

Ra
te

 (M
b/

s) ****

****

****reactive
proactive

(b) LiFi-WiFi Network

Figure 5.2 Windowed Average rate for reactive and proactive optimized resource allocation solved with Expert
for various network topology showing the need for the proactive resource optimization

In Figure 5.2, we conduct a comparative analysis between the reactive resource allocation strategy
and our proposed proactive strategy, looking into the proportional fair objective with 𝛼 = 1. The
proactive model consistently outperforms the reactive approach in terms of average user rate across
both network types. This enhancement can be attributed to the proactive model’s ability to utilize
future channel predictions, thus providing improved Quality of Service (QoS) over a specified time
period without the shortsightedness of the reactive strategy. Specifically, in the LiFi-only network,
we can observe improvements of 8.6%, 7.4%, and 14.6% in the average rate per user for the Small,
Medium, and Large topologies, respectively. Similarly, in the LiFi-WiFi network, gains of 7.7%, 7.5%,
and 10.8% are observed for the Small, Medium, and Large topologies, respectively.

Within the LiFi-WiFi networks, our investigation moves to the performance implications of various
alpha-fair objectives, focusing on average rate, minimum rate, and Jain fairness for the Small topology
as illustrated in Figure 5.3. Setting 𝛼 = 2 optimizes fairness but adversely impacts other performance
metrics. In comparison, other objectives manage to maintain high fairness without degrading overall
network performance.

Our analysis consistently demonstrates the superiority of the proactive approach over the reactive
method across different objectives, showing its robustness even when the quality metric evaluated is
not directly the optimization objective. When 𝛼 = 0, which prioritizes maximizing the sum user rate,
the minimum user rate shows negligible difference, as this objective disregards individual user rates.

In the reactive strategy, an interesting finding is the sub-optimal minimum rate when 𝛼 = ∞. While
intuitively this should yield the best results for the worst-case user rate within each time slot, it fails to
translate these short-term gains into long-term benefits. In contrast, the proactive approach, with its
foresight into future conditions, achieves more favorable outcomes in enhancing long-term network
performance.
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Figure 5.3 Quality metrics for various alpha-fair objectives using the reactive and proactive resource allocation
strategies solved with Expert for the Small scenario in a LiFi-WiFi Network
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Figure 5.4 Quality metrics for various network topology using the reactive and proactive resource allocation
strategies solved with Expert for a LiFi-WiFi Network

We now move to a deeper analysis of the different network topologies in Figure 5.4 for which the
average rate metric was already discussed in Figure 5.2b. The box plots demonstrate the superior
performance of the proactive strategy over the reactive approach, regardless of network size. This
is evident as the proactive strategy consistently achieves a higher median fair-rate. Moreover, the
interquartile range for the proactive strategy is narrower, indicating less variance and more consistent
performance across measurements. The proactive approach also improves upon the reactive strategy
in terms of the minimum rate metric across all network configurations. Specifically, the improvement
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in the worst user rate when going from the reactive to the proactive strategy is significant, as indicated
by the annotation of the results of the tests for statistical significance. In the LiFi-WiFi network,
improvements are 63.3%, 64.3%, and 95.3% for the Small, Medium, and Large network topologies,
respectively. In the LiFi-only network (which is not shown in the figure), the respective gains are
69.2%, 82.9%, and 68.1% for the same topologies.
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Figure 5.5 Quality metrics for varying numbers of users using the reactive and proactive resource allocation
strategies solved with Expert for a 10 x 5 m scenario in a LiFi-WiFi Network

Our investigation now turns to the impact of varying each simulation parameter, starting with the
number of users in a fixed topology. We focus on a Medium scenario configured with a 10 x 5 m
room and 8 APs, where we analyze the effects of increasing the user count from 10 to 25. Figure 5.5a
plots the relationship between user fairness and the average rate achieved during each simulation
run. With the rise in user numbers, a decrease in average rates is observed due to bandwidth being
shared among more users. Despite this, the proactive allocation strategy achieves better results in
both average rate and fairness compared to the reactive approach, as evidenced by the positioning
of data points in the scatter plot which appear higher and further to the right for the proactive
strategy. This visualization highlights the proactive approach’s capability to effectively optimize
network performance, even under conditions of increased user density.

We evaluate the run time performance when the number of users are increased in Figure 5.5b. The
displayed trend lines indicate a monotonically increasing function, with the time required to solve
the problem increasing as the network accommodates more users. Although the absolute run time
values are manageable, they may present challenges in real-world implementation. These run times
exceed the optimization interval of 500 ms, suggesting the need for exploring alternative optimization
strategies that can satisfy the stringent real-time demands of practical deployments.

Integrating EGT into our optimization framework shows advantages, particularly in terms of run
time efficiency. As demonstrated in Figure 5.6b, the execution times with EGT remain within the
optimization interval, addressing the challenge associated with real-time deployment.

When evaluating the performance metrics, noticeable improvements in fairness are evident with the
proactive strategy over the reactive approach, as shown in Figure 5.6a. However, we do not observe
similar increases in the average rate metric. Although these improvements are less marked than those
achieved using the Expert solver, it is important to understand that this does not undermine the
value of the EGT solver. Rather, it emphasizes the practical trade-offs that must be considered when
implementing optimization solutions in real-world environments. In situations where the need for
a fast response is as important as the quality of the optimization, the advantages of employing EGT
become clear.
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Figure 5.6 Quality metrics for varying numbers of users using the reactive and proactive resource allocation
strategies solved with Evolutionary Game Theory (EGT) for a 10 x 5 m scenario in a LiFi-WiFi Network
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Figure 5.7 Quality metrics for varying user velocities in the RWP model using the reactive and proactive
resource allocation strategies solved with Expert for a Large scenario in a LiFi-WiFi Network

Having demonstrated the advantages of a proactive approach that anticipates future channel con-
ditions, it becomes necessary to explore how these benefits are influenced by the mobility model and
user speed, given that these factors determine future user positions. We first investigate the impact of
different user speeds on the effectiveness of our proactive strategy using the RWP model in the Large
network topology.

In Figure 5.7a, where we assess the trade-offs between Jain fairness and average rate, we note the
most significant gains at higher user speeds. This suggests a positive correlation between user speed
and the effectiveness of the proactive strategy. The rationale is that as user positions change more
rapidly over the evaluation window, the benefit of anticipating these changes increases. Specifically,
the average rate improvement ranges from 10.8% at 0.5 m/s to 19.6% at 1.5 m/s.

An interesting aspect to note is the apparent upper limit on proactive average rates, attributed to
the capacity limits at the APs. This indicates that the proactive strategy maximizes the potential
benefits from the capacity of APs. Moreover, as user speed increases, average rates begin to fall due to
the frequency of handovers and associated losses. Nonetheless, rate fairness among users improves
under these conditions, suggesting that the higher mobility levels out the channel conditions across
users on average, leading to more uniform rates.

Further, in our analysis of handover frequencies in Figure 5.7b, we observe that at the slowest
speed of 0.5 m/s, handovers per user increase from the reactive to the proactive approach. However,
this increase does not adversely affect the average rate. At higher speeds, the proactive model
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manages to reduce the number of handovers, particularly vertical handovers, which are known for
their substantial handover losses.
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Figure 5.8 Fair-rate for varying mobility models using the reactive and proactive resource allocation strategies
solved with Expert for a Large scenario in a LiFi-WiFi Network

Figure 5.8 provides a comparative analysis across different mobility models for the fair-rate metric.
The proactive strategy demonstrates better performance relative to the reactive approach across all
the mobility models examined. This highlights the adaptability of proactive resource allocation in
managing the varied movement patterns of users within indoor environments.

Mobility models that incorporate pausing periods (such as RWP with Pausing) or exhibit tendencies
for users to move in groups (such as RPG or SLAW) show a tendency towards lower rates. The
introduction of pausing intervals means that users may remain in sub-optimal channel conditions for
extended periods. Similarly, when users move as a group, it leads to concentrated resource demand
at specific AP, which can reduce the overall network performance. Despite these challenges, the
proactive strategy continues to outshine the reactive approach, maintaining its edge in optimizing
network performance even under less favorable conditions.
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Figure 5.9 Fair-rate for varying future position prediction models solved with Expert for a small scenario in a
LiFi-WiFi Network

The improvements observed with the proactive approach in all previous evaluations show the
importance of forecasting future positions and channel conditions to boost network performance. A
critical question arises: How precise must our predictions be to achieve benefits over the reactive
strategy? To address this, we evaluate various prediction models in Figure 5.9.

The assumed prediction model, which assumes same positions throughout the prediction window,
yields the lowest fair-rate. This highlights the need for more sophisticated prediction capabilities, even
in scenarios with low user mobility, to surpass the performance of the reactive model. Consequently,
our analysis shifts toward the error models that incorporate errors to simulate real-world prediction
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errors. The std model, which increases the standard deviation of the prediction error throughout the
window, performs better than the drift model, where errors cumulatively increase as the predicted
position gradually deviates over time. Despite the introduced errors in user positions, the proactive
strategies under both error models still outperform the reactive approach.
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Figure 5.10 Fair-rate for varying future position prediction errors solved with Expert for a small scenario in a
LiFi-WiFi Network

It is essential to recognize that the 𝜎 for both error models in Figure 5.9, as described in Section 5.3.1
is set at 0.05 m. This parameter setting leads us to explore the resilience of the benefits provided
by the proactive approach under worse predictions with varying 𝜎. As shown in Figure 5.10, the
required precision for prediction varies between models. In the std model, predictions with an error
margin of up to 0.3 m still yield advantages over the reactive strategy. Conversely, the drift model
indicates that an error margin beyond 0.1 m starts to negate the benefits.
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Figure 5.11 Average Rate for varying prediction windows solved with Expert for a small scenario in a LiFi-WiFi
Network

To evaluate whether a reduction in prediction window length could compensate for decreased
accuracy in user position prediction, we investigate the effects of shorter prediction windows on
performance benefits. In this analysis, various window sizes are compared, with a window size of 1
representing the reactive strategy, as shown in Figure 5.11.

The results reveal that, for this particular scenario, a window size of 2 already delivers the an-
ticipated benefits for the average rate metric, with larger window sizes failing to produce large
improvements. This indicates that in specific situations, shorter prediction windows could suffice to
preserve the advantages offered by a proactive resource allocation strategy.
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The findings across various scenarios demonstrate that the proactive approach to wireless resource
allocation significantly outperforms the reactive strategy in enhancing network performance metrics
in both LiFi-only and LiFi-WiFi networks.

5.8 Discussions on Feasibility of Real-World Implementation

Both the reactive and proactive resource allocation strategies would definitely benefit from a field test
on real hardware. In this section, we discuss how our simulations incorporate real-world parameters
while acknowledging the factors that challenge the direct implementation of a proof of concept. A
known limitation in the field is the scarcity of open-source LiFi hardware that permits access to the
Medium Access Control (MAC) layer, necessary for deploying and evaluating our scheduling algo-
rithms, as noted in existing literature [Wu+21b]. While our LiFi-WiFi testbed, detailed in Section 2.1
and constructed using commercially available technology, confirms aspects of our simulation models,
it does not support the direct application of our proposed resource allocation strategies. Nonetheless,
we remain hopeful that the recent introduction of the IEEE 802.11bb standard [IEE23] will stimulate
the creation of new open-source hardware, facilitating future implementations.

Our simulation of the LiFi channel incorporates realistic parameters, including a maximum data
rate of 250 Mb/s and limits the coverage based on the receiver’s field of view, with signal coverage
dropping to zero outside this range. These parameters stem from empirical data obtained through our
in-house hardware testbed, which corroborates that our simulations replicate real-world conditions.

The efficiency of vertical handovers, 𝜂, is established at 0.4, reflecting a handover time or associated
loss of 300 ms, a number also corroborated by results from our testbed as depicted in Figure 5.12.
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Figure 5.12 Vertical Handover Overhead observed when switching from WiFi to LiFi and vice versa

This specific result was further analyzed in the previous chapter (see Section 4.2.10). Addition-
ally, our simulations integrate realistic LoS blockages, modeling the loss of signal that significantly
impacts the LiFi channel. This ensures that our resource allocation strategies consider the realistic
environmental factors affecting signal quality.

In our simulations, we employ the SLAW mobility model, which draws on real-world human mobil-
ity patterns derived from GPS traces of pedestrian movements [Lee+09]. Furthermore, acknowledging
the inherent uncertainties in predicting future user positions, our simulations incorporate prediction
error models. These models replicate the inaccuracies typically encountered [PVK21] in real-world
prediction algorithms. By integrating these error models, we can assess the resilience of our proactive
optimization strategy in the face of such prediction errors.

Our proactive resource allocation strategy is particularly effective for real-world scenarios like video
streaming, where a full buffer model of transmission applies. In such use cases, data transmission
is ongoing and predictable, which supports the feasibility of proactive resource management. This
approach allows for the pre-emptive allocation of resources. Thus, when anticipated network condi-
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tions deteriorate, the strategy can adjust resource distribution to sustain a consistent quality of service
by pre-filling the receive buffer.

Although the full buffer model applies for the specific use case of continuous video data streaming,
our framework is designed with the flexibility to adapt to a variety of real-world conditions. It accom-
modates the diverse transmission needs of users by integrating different priorities or weights based
on their resource demands. This adaptability is facilitated through the use of the weighted alpha-
fair resource allocation method [MW00], which enables differentiated treatment of users according to
their specific requirements. Consequently, our framework ensures efficient and conservative resource
allocation, minimizing the potential for wasting radio resources.

Incorporating user-specific weights 𝑤𝑢 modifies the utility function in our proactive optimization
framework as outlined in (5.6) into

𝑈𝛼(𝑥(𝑡)𝑢,𝑎 , 𝑦(𝑡)𝑢,𝑎) =
∑
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∑
𝑡

∑
𝑎 𝑤𝑢𝑥

(𝑡)
𝑢,𝑎 log

(
𝑦
(𝑡)
𝑢,𝑎 �̃�
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∑
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(5.25)

With this redefinition, the resource allocation strategy executed by the EGT algorithm, as originally
described in (5.21) is adapted to accommodate these weighted user considerations.
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Figure 5.13 Quality metrics for weighted alpha-fair resource allocation in a LiFi-WiFi Network with users
assigned weights of 5, 25, and 50 with higher weight indicating the need for more resources

Figure 5.13 shows a exemplary outcome when users are assigned random weights of 5, 25, and
50, reflecting their different resource requirements. Figure 5.13a displays that the data rate increases
in accordance with the user weight, effectively responding to individual user needs. Furthermore,
Figure 5.13b presents the utility function for the entire network, demonstrating that our proactive
strategy surpasses the reactive even in this weighted scenario. These weights can be adjusted to
give precedence to users according to their resource demands and priorities, facilitating targeted
optimizations that align with different network objectives.

All the aspects presented here highlight the practical applicability of our resource allocation frame-
work, offering a realistic evaluation of their deployment potential in real-world environments.
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5.9 Summary and Conclusions

In conclusion, this chapter enhances the resource management of mobile LiFi-WiFi heterogeneous
networks through the adoption of proactive resource allocation strategies. Our approach not only
achieves an 7.7% increase in average rates but also a remarkable 63.3% improvement in the worst user
rates compared to the reactive approach, demonstrating its ability to deliver sustained QoS.

Challenges in scalability associated with the Branch and Bound solver run times are addressed
by incorporating EGT, which shows promise in enhancing run time efficiency and meeting the
demands of real-world deployments. Additionally, the proactive approach’s consistent superiority
across varying user densities, speeds, and mobility models attests to its adaptability in diverse indoor
network environments.

A pivotal element in proactive allocation is the accuracy of user position predictions. Our findings
indicate that inaccurate predictions can, in some scenarios, render the proactive strategy less effective
than reactive approaches. However, our evaluations of simulated prediction models demonstrate
the resilience of the proactive model to a degree, suggesting its practicality with realistic prediction
methods. A shorter prediction window, which typically yields better prediction accuracy, was also
investigated, confirming that our proactive resource allocation retains its benefits even with reduced
prediction windows.

In summary, this research strongly supports the implementation of proactive resource allocation
in LiFi-WiFi networks, advocating for its capacity to enhance long-term QoS despite challenges such
as blockages, sub-optimal channel conditions, and user mobility.

So far we have shown the challenges in wireless resource allocation in LiFi-WiFi networks and
proposed various resource management approaches that address these challenges and improve the
network performance for the various goals of minimizing network latency, achieving stability, and
maximizing the alpha-fair throughput of users in the network for both short term and long term
network performance. In future networks, which are increasingly becoming dependent on compu-
tational resources as part of Multi-access Edge Computing (MEC) systems, there is a need to also
manage the allocation of computational resources. The next chapter deals with the challenge of
managing wireless and computation resources towards task offloading in LiFi-WiFi networks.
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Chapter 6

Task Offloading in Multipath Multihop LiFi-WiFi
Networks

The previous chapter discussed proactive wireless resource allocation strategies in mobile Light-
Fidelity (LiFi)-Wireless-Fidelity (WiFi) heterogeneous networks, demonstrating significant improve-
ments in average and worst-user rates and mitigating the adverse effects of mobility and blockages.
This strategy demonstrated the potential of proactive wireless resource allocation approaches in
sustaining Quality of Service (QoS) over time and adapting to diverse network environments.

While addressing wireless resource allocation is crucial, the growing demand for computational
resources to process latency-critical tasks like Ultra Reliable Low Latency Communications (URLLC),
factory automation, and Artificial Intelligence (AI) image classification has introduced new challenges.
In response to these challenges, we propose a task offloading framework called ComputiFi, which
aims to minimize the task completion latency, network energy, and user device energy in multipath,
multihop LiFi-WiFi networks. This chapter, in part, is based on the contribution published in [VMK24]
which is a journal publication that aimed to minimize the task completion latency.

6.1 Introduction

The rapid evolution of wireless communications technologies is driven by the growing needs of
latency-sensitive applications such as URLLC, factory automation, and AI image classification [3GP22a;
3GP22b]. These applications have stringent requirements for low latency and uninterrupted data pro-
cessing, which are challenging for networks relying solely on traditional technologies like WiFi due to
their susceptibility to interference and bandwidth limitations [Ayy+16]. Apart from requiring mini-
mal latency for effective real-time processing, these applications also demand high energy efficiency
to reduce operational costs and environmental impacts. Addressing all these objectives is essential
as networks expand to accommodate a wide range of devices and data-intensive activities. Conse-
quently, there is a need to develop frameworks that can effectively integrate and manage multiple
network technologies.

LiFi, used alongside WiFi, is beneficial in environments such as manufacturing facilities, where
high data rates, low latency, and energy efficiency are crucial. Operating on the visible light and
infrared spectrum, LiFi provides an interference-free communication channel that offers advantages
in security over WiFi, which often suffers from bandwidth saturation in densely populated settings
[Haa+16].

The integration of LiFi with WiFi into a multipath network architecture is particularly advantageous
[Wu+21a]. Current offloading methods that rely on a singlepath approach [Fan+22; XS23] do not fully
utilize available network resources, often leading to increased latency and higher energy consumption.
This shows the importance of adopting multipath transmission techniques, which utilize several
simultaneous channels to improve the throughput and reliability of data transmission [Yun+22].
Such integration of technologies allows for the strategic routing of tasks through the most efficient
paths optimizing for latency. Network resources can also be dynamically allocated to minimize the
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transmission energy by selecting shorter or less congested paths and to optimize computation energy
by offloading tasks to the most efficient compute nodes available.

Traditional approaches to task offloading often overlook the energy dimensions involved in network
and device operations. Typically, these solutions focus on reducing latency by selecting single fixed
offloading destinations, which inadvertently increases network congestion and energy consumption
[Zha+20]. To overcome these limitations, a multi-tiered approach to Multi-access Edge Computing
(MEC) destinations is suggested. This includes processing tasks locally on user devices, offloading
to proximal LiFi and WiFi Access Point (AP)s, utilizing routers that link these access points, and
leveraging cloud servers through the network backbone. By doing so, it fosters a multihop network
infrastructure that not only reduces transmission distances [SKO23; Fan+22], but also conserves
energy.

The design of this multihop infrastructure necessitates continuous adjustments to routing strategies
and the dynamic allocation of resources, considering real-time network conditions, traffic volumes,
and computational demands at each node [Man+23]. Enabling local processing at user devices re-
duces the energy required for data transmission to distant centralized servers and decreases the
latency associated with such transfers. However, this is counter-intuitive for the energy consumption
of the battery operated mobile and Internet of Things (IoT) devices. Therefore, an optimization of both
energy consumption and latency is critical for sustainable wireless network operations. Although
many existing frameworks employ multihop architectures to improve network coverage and connec-
tivity, they often simplify latency assessments by merely summing transmission latencies across hops
without accounting for the complexities involved in handling multiple data packets and managing
data flows through intermediate nodes [Fan+22; Fen+21; Den+24]. Such methods fail to capture the
properties of the task’s traffic when it is composed of multiple data packets.

In response, we introduce ComputiFi, a task offloading framework designed to optimize latency
and improve energy efficiency in multipath, multihop LiFi-WiFi networks. ComputiFi intelligently
determines the most suitable offloading destinations, dynamically distributes data across available
technologies, and efficiently manages computational resources among all potential computing desti-
nations towards optimizing latency, network energy and user device energy consumption.

To achieve these objectives, ComputiFi incorporates a range of optimization tools including Mixed
Integer Nonlinear Programming (MINLP) solvers, meta-heuristics, Deep Reinforcement Learning
(DRL), and black-box optimization techniques. This array of solutions equips the framework to not
only fulfill the stringent performance requirements of latency-sensitive applications but also aligns
with the sustainability objectives crucial for future network operations.

6.2 State-of-the-art Analysis

Here, we provide an overview of relevant literature related to task offloading, highlighting gaps that
motivate our research.

In [Fen+22], a detailed survey on computation offloading in edge computing networks is provided.
This work reviews various objectives and methods for offloading, aiming to improve computational
efficiency, and identifies key trends, challenges, and open research questions. However, it does not
address the specific issues associated with LiFi-WiFi heterogeneous networks, such as blockages and
the density of placement of LiFi APs. Although it mentions some works on multipath task routing,
it does not evaluate this concept in depth.

Similarly, [Sal+21] proposes a mobility-aware framework for coordinating task scheduling and
resource allocation within a cooperative device-to-device computing network. While it does not
consider a multipath network, it does account for user mobility, which is pertinent to our research
where user mobility is also a factor for the dynamic nature of the network.

In [Liu+24a], a method leveraging deep learning for online task offloading is introduced, aiming to
minimize latency in heterogeneous mobile edge environments. This adaptive technique responds to
changing network conditions and user demands, focusing on latency reduction. Although this work
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does not explore multipath networks, its approach to using DRL for real-time implementation and
comparison with the Gurobi solver for optimality is aligned with our research methodology. While
the authors only focus on latency minimization, we also include the objective of energy minimization
for network sustainability.

Shifting the focus to heterogeneous networks, [Fan+22] presents a framework for task offloading
and service caching in WiFi-cellular heterogeneous networks. Their approach optimizes resource
and channel allocation while reducing latency and energy consumption. Despite considering diverse
technologies, it does not evaluate multipath transmissions in this context.

In [Yun+22], an approach using Genetic Algorithm (GA) and DRL is proposed for managing task
offloading and resource allocation across multiple Radio Access Technologies (RATs) for URLLC and
enhanced Mobile Broadband (eMBB). The model dynamically adapts to varying network conditions,
optimizing offloading success rates and maximizing spectral efficiency. While the authors investigate
multipath transmission for eMBB tasks, further research is needed to address the use of two tech-
nologies like LiFi and WiFi which exhibit stark differences in properties. Additionally, the work does
not consider multiple offloading destinations, which can further reduce latency by distributing tasks
across the network.

Taking a step towards multiple offloading destinations, [CL21] explores the collaboration between
adjacent MEC servers for task processing. Although this setup involves forwarding tasks to adjacent
servers due to resource constraints, it does not represent a true multihop architecture and lacks
support for multipath transmissions.

In [SKO23], the authors extend the concept of computing destinations to multiple edge and cloud
servers, using multi-agent DRL for cooperative computing offloading and route optimization. While
they explore multiple transmission paths, the work does not address scenarios involving mobile users
who frequently change their wireless associations.

Combining both multipath and multihop aspects, [Fen+21] investigates task offloading strategies
that balance communication latency and energy efficiency in mobile ad-hoc networks, utilizing an
adaptive path selection algorithm that accounts for drone mobility. However, their communication
model is not fully suitable for multi-packet tasks relayed across multiple hops.

In conclusion, unlike existing literature that typically focus on single-hop or single-path offloading
strategies, ComputiFi uses a set of optimization tools — including MINLP solvers, meta-heuristics,
DRL, and black-box techniques — to dynamically adjust offloading destinations and resource allo-
cations across various offloading destinations and wireless technologies. These tools are assessed
for their effectiveness in task offloading problems. While numerous state-of-the-art papers explore
reinforcement learning in edge computing, they often do not tackle the specific latency, energy and
resource allocation challenges presented by LiFi-WiFi systems.

6.3 Key Contributions

We introduce the architecture and methodology of ComputiFi, a task offloading framework, showcas-
ing its capabilities to reduce both the latency and energy consumption of tasks in multipath, multihop
LiFi-WiFi networks. Specifically this chapter makes the following significant contributions:

1. Comprehensive Task Offloading Framework: We present ComputiFi, a framework designed for
offloading latency-sensitive tasks across multipath, multihop LiFi-WiFi networks. The frame-
work not only determines the most efficient offloading destinations but also manages data
distribution between LiFi and WiFi. It optimizes both network energy usage and user device
energy consumption, employing a multihop latency formulation that is particularly suited for
handling tasks with multiple data packets.

2. Advanced Optimization Solvers: ComputiFi integrates a variety of sophisticated optimization
tools, including MINLP solvers, meta-heuristics, DRL, and black-box optimization techniques.



Chapter 6 Task Offloading in Multipath Multihop LiFi-WiFi Networks

108

These solvers are tailored to adapt dynamically to the fluctuating network conditions and
varying traffic demands, ensuring effective and efficient task offloading.

3. Resource Allocation Strategy: The framework implements a dynamic strategy for allocating
resources across a diverse range of network devices — local devices, LiFi and WiFi access
points, routers, and cloud servers. This strategy optimizes task routing to minimize energy
consumption at both the network and user device levels while providing guaranteed latency, as
well as minimizing task completion latency.

4. Benchmarking and Performance Validation: ComputiFi is rigorously benchmarked against var-
ious baseline solvers to validate its enhanced performance in reducing latency and energy
consumption. The results confirm the effectiveness of ComputiFi in managing latency-sensitive
and energy-intensive tasks, establishing its suitability for deployment in heterogeneous network
environments.

6.4 System Model
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Figure 6.1 Network architecture for a multipath multihop Task offloading system

The architecture of the network designed for task offloading in multipath, multihop LiFi-WiFi net-
works includes 𝑀𝐿 LiFi APs and 𝑀𝑊 WiFi APs. Within the network, LiFi APs experience co-channel
interference when their coverage areas overlap, while WiFi APs operate interference-free due to the
utilization of distinct frequency channels.

The network serves 𝑀𝑈 users, each equipped with LiFi and WiFi capabilities for both sending and
receiving data, with users denoted by 𝑢 ∈ {1, 2, . . . , 𝑀𝑈}. Every user is connected to one LiFi and one
WiFi AP simultaneously, based on the highest Signal to Interference and Noise Ratio (SINR) values
available, making a total of 𝑀𝑁 = 2 wireless connections per user.

Routers facilitate connectivity between APs, with one router serving every five APs. These routers
are also directly linked to cloud servers through wired connections, ensuring efficient backhaul
operations. The layout of this network is depicted in Figure 6.1, and all relevant terminology and
symbols used in this chapter are detailed in Table 6.1.
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Table 6.1 List of Notations used in Task Offloading in Multipath Multihop LiFi-WiFi Networks

Notation Description

𝑙, 𝑀𝐿 Index and number of LiFi APs
𝑤, 𝑀𝑊 Index and number of WiFi APs
𝑢, 𝑀𝑈 Index and number of users
𝑙𝑢 Index of LiFi AP associated to user
𝑤𝑢 Index of WiFi AP associated to user
𝑛, 𝑀𝑁 Index and number of technologies
𝑚,ℳ Index, and set of computing destinations
𝑅𝑢,𝑙 , 𝑅𝑢,𝑤 Achievable rate of user for LiFi and WiFi
𝑖 𝑗 Link between two nodes i and j in the network
BW𝑖 𝑗 Capacity of link 𝑖 𝑗 in bits per second
𝐹𝑚 Computing server’s capacity in instructions per second
𝐸𝑚 Computing server’s energy consumption in Joules per instruction
𝐹𝑢 User’s processing capacity in instructions per second
𝐸𝑢 User’s energy consumption in Joules per instruction
𝑡, 𝑁𝑇

𝑢 Type and number of tasks at a user
𝜏

req
𝑢 User’s task delay requirement in seconds
𝐶𝑢 Number of instructions to process user’s task
𝑆𝑢 Data size of user’s task in bits
𝑆

pkt
𝑢 Size of one packet of the user’s task in bits

𝑃𝑢,𝑛 Transmission Power of user device 𝑢 with technology 𝑛
𝜆𝑢,𝑛,𝑚
𝑖𝑗

Binary indicator of utilization of links
𝑥𝑢,𝑚 Optimization variable for the destination selected for user
𝑘𝑛𝑢 Optimization variable for data split proportion
𝑐𝑢,𝑚 Optimization variable for compute resource proportion
𝑝𝑢 Optimization variable to process the task locally or not
𝜏𝐿𝑢 Local computation latency
𝜏

compute
𝑢 Edge computation latency

𝜏Tx,𝑛
𝑢 Transmission latency over one technology

𝜏flow
𝑢,𝑛,𝑚 Auxiliary variable for the latency of the bottleneck link

𝜏Tx
𝑢 Total transmission latency

𝜏
prop
𝑖 𝑗

Propagation latency for a link 𝑖 𝑗

𝜏𝐸𝑢 Total latency when the task is offloaded
𝜏𝑢 Task completion latency
𝑒Tx
𝑢 Total transmission energy
𝑒𝐿𝑢 Local computation energy
𝑒

compute
𝑢 Edge computation energy
𝑒𝑢 Network energy consumption for task completion
𝑒Tx,𝐷
𝑢 Transmission energy consumed by user
𝑒𝐷𝑢 User device energy consumption for task completion
𝐺 Reward for DRL-based algorithm
𝑉𝜏𝑢 Latency Violation
𝑁𝑉

𝑢 Number of users violating the latency bound

In this network configuration, the bandwidth for each link 𝑖 𝑗 is specified as BW𝑖 𝑗 and is assumed to
be adequate, ensuring that the capacity of the backhaul connections either matches or exceeds that of
the fronthaul. Additionally, the capacity of each router is engineered to be at least equivalent to the
aggregate bandwidth of its associated links. Details of these capacities are presented in Table 6.2, with
the wireless capacities derived from channel models. Although the propagation delay is typically
negligible for most connections due to their proximity in indoor environments, the latency to the
cloud server is set at 7.5 ms, as documented in previous research [Bra+20].
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Table 6.2 Properties of Links between Network Nodes

From/To To/From Capacity Propagation Delay Transmission Power
(Mb/s) (ms) W

Router Router 500 – –
Router Cloud 2500 7.5 –
Router WiFi AP 500 – –
Router LiFi AP 500 – –
User LiFi AP max. 250 – 5
User WiFi AP max. 160 – 0.1

A central network controller is integral to the network’s architecture, facilitating the orchestration
of communication resources and data flows throughout the system. This controller is needed for
acquiring Channel State Information (CSI) from users and monitoring server load, thereby enabling
the implementation of a centralized resource allocation algorithm. This algorithm capitalizes on
comprehensive network data to optimize decisions regarding MEC server destinations, packet split
ratios, and the allocation of computational resources.

The channel model and geometric blockage model for LiFi are elaborated in Section 2.3 and Sec-
tion 2.4.3, respectively, while the channel model for WiFi is described in Section 2.6. These channel
models determine both the wireless link capacity as well as the transmission power 𝑃𝑢 of the user
device in the uplink. To assess the efficacy of our task offloading strategy in environments char-
acterized by user mobility, the Random Waypoint (RWP) mobility model is employed. This model
also considers changes in the orientation of user devices and is applicable to a variety of mobile
entities, including robots, automated systems, and manually operated machines, with further details
provided in Section 2.7.

6.4.1 Computing Server Model

In the ComputiFi framework, the MEC architecture is instrumental in minimizing latency by situating
computational resources proximate to the users. The processing server locations, represented as
𝑚 ∈ ℳ, encompass cloud servers, routers, and both LiFi and WiFi APs. While user devices also
participate in processing, they are not server nodes. The computational capabilities of each server
component, including processor speed in instructions per second and core count, are important for
enhancing network performance. The aggregate processing power of all cores within a component is
denoted as 𝐹𝑚 , whereas the processing capacity of a local user device is indicated by 𝐹𝑢 .

Table 6.3 displays the computational specifications for each server category within the network. The
processing capacity for user devices is taken from the Qualcomm Snapdragon 720G processor. APs
for both LiFi and WiFi incorporate processing capabilities as reported in literature [Zha+17]. Routers
are equipped with Ampere Altra Max M128-30 processors, which are capable of handling intensive
computational demands. The model for a cloud server includes five such processors, reflecting a
high-capacity computational environment.

Table 6.3 Computational Properties of Processing Servers

Component Processing Capacity Cores Energy Consumption
(Instructions per core per second) (Joules per instruction)

User 1.9 × 109 1 3.29 × 10−10

WiFi AP 5 × 109 8 1 × 10−9

LiFi AP 5 × 109 8 1 × 10−9

Router 3 × 109 128 6.51 × 10−10

Cloud 3 × 109 128 x 5 6.51 × 10−10
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6.4.2 Task Model

This section outlines the framework used for tasks that need to be offloaded and subsequently
processed within the system. Users encountering tasks are required to process these tasks locally or
offload them to a server for processing. Each user has interdependent tasks of a single application
that are collectively processed at a single designated server. Furthermore, each task is characterized
by a delay requirement that must be satisfied within the given optimization interval. Depending on
the network’s current conditions and the urgency of the task, users may utilize either LiFi or WiFi
technologies for transmitting these tasks to the server.

The task parameters, such as arrival rates, size, and delay requirements, differ among various
applications including eMBB like Video Streaming, URLLC, Factory Automation, and AI like Image
Classification. The task arrival rate is modeled using a Poisson distribution, with the mean rates
detailed in Table 6.4. Additional task characteristics such as size, latency requirements, and processing
instructions for each application are also provided in Table 6.4.

The task attributes for eMBB and URLLC are adapted from [Yun+22], while the specifications
for Factory Automation are sourced from [Jan+23], and those for AI/Image Classification are based
on [Liu+24b]. Moreover, the specific delay requirement for any given task is denoted as 𝜏

req
𝑢 , the

processing demand in terms of instructions is indicated by 𝐶𝑢 , the overall size of the task in bits is
denoted by 𝑆𝑢 , and the size of an individual packet of the task in bits is denoted as 𝑆pkt

𝑢 .

Table 6.4 Task Properties for Various Applications

App Arrival Rate Size Pkt. Length Processing Latency
(tasks/s) (pkts) (bytes) (Instructions) (ms)

eMBB 25 33 1500 16.5 × 106 500
URLLC 150 1 32 10 560 1
Factory 100 20 1500 1.25 × 106 100
AI 2 417 1500 569 × 106 500

6.5 Task Offloading Problem Formulation

This section develops the problem formulation for task offloading in LiFi-WiFi multipath, multihop
networks aiming to minimize latency and energy consumption.

6.5.1 Communication Model

Following the optimization process, when a destination 𝑚 is assigned to user 𝑢’s tasks, the system
supports 𝑛 potential pathways to this destination. The value 𝑛 specifies the wireless technology
determining the initial hop of the transmission. Once this initial hop is established, no additional
routing decisions are required due to the network’s tree topology configuration, which dictates a
predetermined route to the destination.

In the network, the usage of transmission links, represented by the binary indicators𝜆𝑢,𝑛,𝑚
𝑖𝑗

, specifies
whether link 𝑖 𝑗 is utilized for offloading tasks from user 𝑢 via technology 𝑛 to destination 𝑚. The
bandwidth BW𝑢,𝑛

𝑖𝑗
allocated to user 𝑢 on this link is influenced by the task’s data volume and the

number of users sharing the same link. The allocation of link capacity among users is expressed as
follows:

BW𝑢,𝑛
𝑖𝑗

=
BW𝑖 𝑗𝑘

𝑛
𝑢𝑆𝑢∑

𝑢′
∑

𝑚′ 𝑥𝑢′,𝑚′
∑

𝑛′ 𝜆
𝑛′,𝑢′,𝑚′

𝑖 𝑗
𝑘𝑛
′

𝑢′𝑆𝑢′
(6.1)

In this equation, BW𝑖 𝑗 represents the total capacity of the link, 𝑘𝑛𝑢 denotes the optimization decision
variable reflecting the fraction of user 𝑢’s data transmitted using technology 𝑛, and 𝑆𝑢 is the total size
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of the user’s data. The denominator aggregates the total data volumes across all tasks transmitted
over that link, where 𝑥𝑢′,𝑚′ is a binary decision variable indicating whether user 𝑢′ offloads their task
to destination 𝑚′.

This model shows that while the wireless resources themselves are not direct variables in the
optimization, the proportion of data routed through a specific technology is a decision variable
which determines how wireless resources are allocated to each user..
Multihop Transmission Latency for a Single Technology:
The latency involved in transmitting a user’s task 𝜏Tx,𝑛

𝑢 through a single technology 𝑛 from user 𝑢 to
the chosen offloading destination 𝑚 is expressed by the following equation:

𝜏Tx,𝑛
𝑢 =

∑
𝑚

𝑥𝑢,𝑚


∑
𝑖 𝑗

𝜆𝑛,𝑢,𝑚
𝑖𝑗

(
𝑆

pkt
𝑢

BW𝑢,𝑛
𝑖𝑗

)
+max

𝑖 𝑗

©«
𝜆𝑛,𝑢,𝑚
𝑖𝑗

(
𝑘𝑛𝑢𝑆𝑢 − 𝑆

pkt
𝑢

)
BW𝑢,𝑛

𝑖𝑗

ª®®¬ +
∑
𝑖 𝑗

𝜆𝑛,𝑢,𝑚
𝑖𝑗

𝜏
prop
𝑖 𝑗

 (6.2)

This equation decomposes the total latency 𝜏Tx,𝑛
𝑢 into three components:

1. Packet Transmission Latency: The first summation,
∑

𝑖 𝑗 𝜆
𝑛,𝑢,𝑚
𝑖𝑗

(
𝑆

pkt
𝑢

BW𝑢,𝑛
𝑖𝑗

)
, calculates the latency for

the transmission of a single packet across all utilized hops from the user to the destination. The
latency at each hop is influenced by the packet size 𝑆

pkt
𝑢 and the bandwidth BW𝑢,𝑛

𝑖𝑗
available on

that link.

2. Bottleneck Link Latency: The second term, max𝑖 𝑗

(
𝜆𝑛,𝑢,𝑚
𝑖𝑗

(
𝑘𝑛𝑢𝑆𝑢−𝑆

pkt
𝑢

)
BW𝑢,𝑛

𝑖𝑗

)
, quantifies the latency in-

duced by the bottleneck link, which is the link with the minimum bandwidth within the chosen
transmission route. This specific link establishes the upper limit on the time required to trans-
mit the remaining bulk of the task’s data, as it dictates the throughput of the entire path. The
expression 𝑘𝑛𝑢𝑆𝑢 − 𝑆

pkt
𝑢 quantifies the volume of data left to be sent following the initial packet.

When this remainder is divided by the bandwidth BW𝑢,𝑛
𝑖𝑗

of the bottleneck link, it yields the
duration needed to transmit this residual data. As this link operates at the slowest speed among
all, the total transmission duration is dependent on the time it takes for this link to transmit all
its data and clear its data queue.

3. Propagation Latency: The final term,
∑

𝑖 𝑗 𝜆
𝑛,𝑢,𝑚
𝑖𝑗

𝜏
prop
𝑖 𝑗

, includes the propagation delays over all
the links utilized in the task’s transmission path.

In our proposed framework, we proactively allocate both bandwidth and computational resources
to users, which helps in avoiding any queuing latency at the task level. However, at the packet
level, queuing might still occur, particularly at the destination computing server. Here, packets are
held until the entire task’s packets arrive, at which point processing begins. Additionally, queuing
latency is accounted for at the relay nodes within the network, as described in the Bottleneck Link
Latency section. These relay nodes serve as interim stations where packets are buffered before being
forwarded to their next hop. We ensure that these relay points have adequate buffering capacity
to efficiently manage any incoming packet traffic, thus mitigating potential queuing delays. Our
approach simplifies queuing management by assigning each user to a specific application, which
allows us to implement a First Come First Serve (FCFS) queuing mechanism at the user level rather
than the application level. These factors are incorporated into our latency model, which combines
transmission and computing latencies to reflect that processing starts only following the completion of
all packet transmissions. Furthermore, the queuing at relay nodes is managed within the framework
of Bottleneck Link Latency.
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Total Multipath Transmission Latency:
After computing the latency for each path using different technologies, the overall transmission
latency, 𝜏Tx

𝑢 , is defined by the latency of the slower path:

𝜏Tx
𝑢 = max(𝜏Tx,𝑛

𝑢 , 𝑛 ∈ {LiFi,WiFi}). (6.3)

This work focuses on uplink traffic resource management, based on the assumption that the data
transmitted upstream is substantially larger than the data received downstream after task processing.

6.5.2 Task Processing Model

For tasks processed on the user’s device, the local processing latency, denoted as 𝜏𝐿𝑢 , is calculated
using the formula:

𝜏𝐿𝑢 =
𝐶𝑢

𝐹𝑢
(6.4)

Here, 𝐶𝑢 represents the number of instructions required to process the task, and 𝐹𝑢 indicates the
processing power of the user’s device, measured in instructions per second.

For tasks processed at a server, the processing latency, 𝜏compute
𝑢 , is expressed as:

𝜏
compute
𝑢 =

𝐶𝑢∑
𝑚 𝑥𝑢,𝑚𝑐𝑢,𝑚𝐹𝑚

(6.5)

In this equation, 𝐶𝑢 again is the number of instructions needed for the task, 𝐹𝑚 is the aggregate
processing capacity of the server in instructions per second, and 𝑐𝑢,𝑚 denotes the fraction of the
server’s computing resources allocated to user 𝑢 at server 𝑚.

6.5.3 Task Completion Latency

The total task completion latency is the sum of the transmission and processing latencies. When
the task is processed on the user’s device, the completion latency is straightforwardly defined as
𝜏𝐿𝑢 . Conversely, if the task is offloaded for processing at the edge, the edge processing latency, 𝜏𝐸𝑢 , is
computed as follows:

𝜏𝐸𝑢 = 𝜏Tx
𝑢 + 𝜏

compute
𝑢 (6.6)

The overall task completion latency, denoted 𝜏𝑢 , is then determined by:

𝜏𝑢 = 𝑝𝑢𝜏
𝐿
𝑢 + (1 − 𝑝𝑢)𝜏𝐸𝑢 (6.7)

In this formula, 𝜏𝐿𝑢 is applied if the binary decision variable 𝑝𝑢 = 1, indicating local processing,
and 𝜏𝐸𝑢 is applied if 𝑝𝑢 = 0, indicating processing at the edge. In the ComputiFi framework, this task
completion latency is used as the objective to be minimized besides the energy consumption objective.
The task completion latency is also constrained to be less than or equal to the latency requirement of
an application, in all formulations of the optimization problem.

6.5.4 Network Energy Consumption Model

To address the sustainability of future task processing networks, we introduce the model for network
energy consumption with the goal of minimizing it.

The energy consumed by the network in transmitting a task from the source user to the destination
server, if the task is offloaded, is given by

𝑒Tx
𝑢 =

∑
𝑛

∑
𝑚

𝑥𝑢,𝑚


∑
𝑖 𝑗

𝑃𝑖 ,𝑛

(
𝜆𝑛,𝑢,𝑚
𝑖𝑗

(
𝑘𝑛𝑢𝑆𝑢

BW𝑢,𝑛
𝑖𝑗

)
+ 𝜏

prop
𝑖 𝑗

) (6.8)
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where the energy consumed per link 𝑖 𝑗 is power 𝑃𝑖 ,𝑛 used by node 𝑖 to transmit the task over the hop
multiplied by the time that the node is transmitting, which translates to the latency experienced by
the entire task on that link. The entire transmission energy is this per link energy summed over all
links in the path and all paths from the source to destination. However, since we only consider the
wireless transmission energy, only the first hop of the path is included in the energy calculations and
this link does not include a propagation latency. Therefore, the transmission energy consumed by
the network transforms to the wireless transmission energy consumed by the user device

𝑒Tx,𝐷
𝑢 =

∑
𝑛

∑
𝑚

𝑥𝑢,𝑚


∑
𝑢𝑗

𝑃𝑢,𝑛

(
𝜆𝑛,𝑢,𝑚
𝑢𝑗

(
𝑘𝑛𝑢𝑆𝑢

BW𝑢,𝑛
𝑢 𝑗

)) (6.9)

Besides the transmission energy, a task also consumes computation energy while being processed
and is given by

𝑒
compute
𝑢 = 𝐶𝑢𝐸𝑚 . (6.10)

where 𝐸𝑚 is the energy consumed by a MEC server 𝑚 to process one instruction. If the task is
processed entirely locally, then the computation energy consumption is given by

𝑒𝐿𝑢 = 𝐶𝑢𝐸𝑢 (6.11)

where 𝐸𝑢 is the energy consumed by a user 𝑢 to process one instruction. The total network energy
consumption 𝑒𝑢 can then be given by the local computation energy if the task is processed locally or
the transmission and edge computation energy if the task is offloaded,

𝑒𝑢 = 𝑝𝑢𝑒
𝐿
𝑢 + (1 − 𝑝𝑢)(𝑒Tx

𝑢 + 𝑒
compute
𝑢 ). (6.12)

6.5.5 User Device Energy Consumption Model

While aiming to reduce network energy consumption supports the overall sustainability of the net-
work, it may inadvertently lead to favoring local processing. This is because edge computing servers,
being more powerful, consume more energy. However, this approach is not suitable for user devices
that rely on battery power or are integral to emerging IoT applications. Therefore, we also consider
the goal to minimize energy consumption on these user devices while ensuring that task completion
meets required latency bounds. The energy to transmit the task as consumed by the user is the same
as in (6.8) and the energy process a task locally at the user device is as in (6.11). Therefore, the total
energy consumed by a user device 𝑒𝐷𝑢 is either the local processing energy or the transmission energy,
if the task is offloaded, and can be given by

𝑒𝐷𝑢 = 𝑝𝑢𝑒
𝐿
𝑢 + (1 − 𝑝𝑢)𝑒Tx,𝐷

𝑢 . (6.13)

6.5.6 Optimization Problem

This section presents the formulation of the optimization problem which seeks to minimize either la-
tency, network energy consumption or user device energy consumption within a multipath, multihop
LiFi-WiFi network, while guaranteeing the maximum latency of the tasks.
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The optimization problem formulated here aims to minimize the total task completion latency
across all users. The mathematical representation of this objective is:

min
𝑝𝑢 ,𝑥𝑢,𝑚 ,𝑘𝑛𝑢 ,𝑐𝑢,𝑚

∑
𝑢

𝜏𝑢 (6.14)

subject to 𝜏𝑢 <= 𝜏
req
𝑢 ∀𝑢 (6.15)∑

𝑚

𝑥𝑢,𝑚 = 1 ∀𝑢 (6.16)∑
𝑛

𝑘𝑛𝑢 = 1 ∀𝑢 (6.17)∑
𝑢

(1 − 𝑝𝑢)𝑥𝑢,𝑚𝑐𝑢,𝑚 <= 1 ∀𝑚 (6.18)

𝑝𝑢 ∈ {0, 1} ∀𝑢 (6.19)
𝑥𝑢,𝑚 ∈ {0, 1} ∀𝑢, 𝑚 (6.20)
0 < 𝑘𝑛𝑢 ≤ 1 ∀𝑢, 𝑛 (6.21)
0 < 𝑐𝑢,𝑚 ≤ 1 ∀𝑢, 𝑚 (6.22)

The decision variables within this formulation include 𝑝𝑢 , a binary indicator where 1 represents local
computing and 0 indicates edge computing; 𝑥𝑢,𝑚 , a binary variable where 1 indicates that the task of
user 𝑢 is offloaded to server 𝑚; 𝑘𝑛𝑢 ∈ [0, 1], the proportion of data split across the available wireless
technologies; and 𝑐𝑢,𝑚 ∈ [0, 1], the fraction of computational resources allocated to user 𝑢 at server 𝑚.

The constraint (6.15) sets an upper limit on the latency for each application’s task. Constraint (6.16)
requires that each user’s task is processed at a single destination, ensuring that all packets of the task
reach the same destination. Constraint (6.17) ensures that when a task is offloaded, the sum of the
data split across all available technologies equals one, confirming that the entire task is transmitted.
Finally, constraint (6.18) prevents the computational load at any server from exceeding its capacity.

To support network sustainability, we include the objective of minimizing network energy

min
𝑝𝑢 ,𝑥𝑢,𝑚 ,𝑘𝑛𝑢 ,𝑐𝑢,𝑚

∑
𝑢

𝑒𝑢 (6.23)

and user device energy
min

𝑝𝑢 ,𝑥𝑢,𝑚 ,𝑘𝑛𝑢 ,𝑐𝑢,𝑚

∑
𝑢

𝑒𝐷𝑢 (6.24)

For these objectives, we continue to uphold the latency bound constraint (6.15), as we are addressing
latency-critical tasks. Our goal is to maintain latency guarantees while also focusing on minimizing
the energy consumption. Besides the latency constraint, all constraints from (6.15) - (6.18) are still
part of the optimization problem. Considering the complex nature of MINLP problems, which arise
from the non-linear aspects of both the objective function and several constraints, and the extensive
scale of the network, it is necessary to employ advanced optimization techniques.

6.6 Methods to solve the Task Offloading Problem

6.6.1 Baselines

To evaluate the effectiveness of the ComputiFi framework, we compare it against various baseline
strategies designed to address the task offloading problem in heterogeneous LiFi-WiFi networks.
These baselines represent different un-optimized approaches to task distribution and provide a bench-
mark to assess the enhancements brought by specifically optimizing for the objectives of ComputiFi.
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1. Local-Only: This baseline processes all computational tasks entirely on the local device. While
it minimizes data transfer latency, this approach can lead to excessive processing delays due to
limited local computational resources as well as increased energy consumption on user devices.

2. AP-Only (Singlepath): In this strategy, all computational tasks are directed to a single AP
(either LiFi or WiFi) for processing. If a LiFi AP is available, it is prioritized over WiFi due to
lower user density associated to one LiFi AP which would lead to higher data rates and lower
latency. We also consider a variant that prefers WiFi over LiFi but this is only useful for energy
optimization since the transmission power over WiFi is lower.

3. AP-Only (Multipath): This variation of the AP-Only strategy takes advantage of both LiFi and
WiFi wireless interfaces by splitting data packets across both technologies. Data transmission is
divided equally among the available technologies to reduce processing delays and congestion
while maximizing the network’s multipath capabilities. However, the entire task has to reach
the same destination to be processed.

4. Local-First: The Local-First baseline attempts to process tasks on the local device initially.
However, if processing the task locally would violate latency requirements, it offloads the task
to an external AP following the AP-Only (Singlepath) strategy. This approach balances local
computing resources with external offloading to optimize latency while maintaining reliability.

5. URLLC-Local (Singlepath): The URLLC-Local baseline prioritizes URLLC tasks by processing
them locally on the user’s device, ensuring that critical latency requirements are met. Other
types of tasks are routed to a single AP following the AP-Only (Singlepath) strategy.

6. URLLC-Local (Multipath): Similar to the singlepath variant, this strategy ensures URLLC tasks
are processed locally but distributes the traffic of other tasks across multiple technologies via
a multipath approach. Data is split across LiFi and WiFi technologies to optimize resource
utilization while meeting URLLC latency requirements.

6.6.2 MINLP Optimizer

A key method for solving the task offloading problem is the use of MINLP solvers, such as Gurobi
[Gur23]. These solvers employ advanced branch-and-bound techniques to handle optimization prob-
lems involving both discrete and continuous variables. Gurobi systematically explores the solution
space by branching into subproblems based on variable constraints and bounding suboptimal solu-
tions to refine its search. This approach provides an optimal solution for the given problem.

However, due to the intrinsic complexity of MINLP formulations, solving the task offloading
problem with such methods becomes computationally expensive for larger network scenarios. The
branching process grows exponentially with the problem size, which makes MINLP solvers less
practical in large, real-world networks. Instead, Gurobi is used primarily to establish an optimal
solution for smaller scenarios, providing a benchmark for validating the optimality of our proposed
learning-based and meta-heuristic approaches in larger and more complex cases. By comparing
the results obtained from other approaches to the MINLP solution, we demonstrate the efficacy of
our framework while ensuring that the proposed solutions remain within an acceptable margin of
optimality.

The complexity of the full optimization formulation makes it impractical to solve directly; therefore,
we have modified the problem to render it more tractable by transforming functions into linear or
convex forms. Particularly, in the equations (6.2) and (6.3), we need to transform the max operations.
To handle this within a linear framework, we introduce an auxiliary variable, 𝜏flow

𝑢,𝑛,𝑚 , which represents
the maximum latency of data flow across all hops for a specific set of user 𝑢, technology 𝑛, and
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destination 𝑚. We also implement a constraint ensuring that this variable is at least as great as the
latency of each individual hop, expressed as:

𝜏flow
𝑢,𝑛,𝑚 ≥

©«
𝜆𝑛,𝑢,𝑚
𝑖𝑗

(
𝑘𝑛𝑢𝑆𝑢 − 𝑆

pkt
𝑢

)
BW𝑢,𝑛

𝑖𝑗

ª®®¬ ∀𝑖 𝑗 (6.25)

This adjustment is beneficial because the objective functions seek to minimize 𝜏flow
𝑢,𝑛,𝑚 , which naturally

drives it to the lowest possible value while this constraint (6.25) ensures that it is greater than or equal
to individual hop latency.

Similarly, we apply transformations to (6.3) to linearize the max operation. These transformations
ensure that the problem can be simplified without sacrificing the optimality of the model. Following
these modifications, the revised MINLP solver implementation is referred to as the "Expert" model.

6.6.3 Meta-heuristics

In addition to benchmarking with MINLP solvers, we implement multiple meta-heuristic algorithms
to solve the task offloading problem efficiently in larger and more complex network scenarios. These
solvers strike a balance between solution quality and computational efficiency, offering near-optimal
solutions without the prohibitive time costs of exact optimization methods. The following meta-
heuristic techniques are employed:

1. Genetic Algorithm (GA): GA [Gol89] is motivated by the principles of natural selection.
It evolves a population of candidate solutions over multiple generations through selection,
crossover, and mutation operations. This approach enables GA to explore a wide search space,
converging towards optimal solutions by favoring well-performing individuals.

2. Differential Evolution (DE): DE [PSL05] is an evolutionary algorithm that optimizes complex
functions by iteratively improving a set of candidate solutions. It uses vector differences to
generate new candidate solutions and maintains diversity within the population.

3. Pattern Search: This derivative-free optimization technique [HJ61] iteratively explores the
solution space by evaluating neighboring points based on a predefined pattern. It adjusts
the pattern size dynamically based on progress, allowing the search to adapt its exploration-
exploitation balance for faster convergence.

4. Particle Swarm Optimization (PSO): PSO [KE95] is a swarm-based algorithm where particles
represent candidate solutions moving through the search space based on their own experiences
and those of their neighbors. The particles adjust their velocity towards the best positions found,
leading to efficient convergence.

5. Stochastic Ranking Evolutionary Strategy (SRES): SRES [RY00] combines evolutionary princi-
ples with a ranking mechanism to handle constrained optimization problems. It ranks candidate
solutions based on objective values and constraint violations, allowing it to balance feasibility
and optimality.

All the meta-heuristic algorithms used in this work start with an initial population of 100 and are
designed to run through a maximum of 100 generations. However, these algorithms may end earlier
if convergence is reached before the maximum number of generations.

6.6.4 Black-box optimizers

Alongside meta-heuristic algorithms, we also utilize black-box optimization techniques, which are
advantageous for addressing problems characterized by complex or unknown structure. These
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techniques consider the optimization function as a black box, using statistical learning to map input-
output relationships effectively. Our framework integrates the following black-box optimization
methods:

1. Random Forest: Originating from ensemble learning theory, Random Forest, [Bre01] constructs
multiple decision trees and aggregates their predictions. Each tree is trained on a random subset
of the dataset, providing a diverse collection of decision rules that improve generalization.
This diversity allows Random Forest to effectively handle complex, nonlinear task offloading
problems.

2. Extra Trees: Extra Trees [GEW06], also known as Extremely Randomized Trees. Unlike Random
Forest, where each tree is trained on a random data subset, Extra Trees uses the entire training set
and applies a randomized selection of split points. This method often leads to greater diversity
in tree structures and improved predictive accuracy.

Additionally, our framework proposes a Greedy method that uniformly samples within variable
bounds and iteratively repeats this selection process to obtain the solution.

6.6.5 Deep Reinforcement Learning

The task offloading challenge involves multiple decision variables and constraints, necessitating a
solution that adapts effectively to the changing dynamics of network conditions and diverse task
demands. DRL is employed to train an agent through repeated interactions with the network,
enabling the development of policies that optimize network performance. This approach achieves a
balance between optimal solutions and practical real-time implementations.

Among various DRL techniques, Proximal Policy Optimization (PPO) [Sch+17], is recognized for
its reliability and stability. PPO maintains policy updates within a small range to prevent significant
changes in performance after updates. Its capability to handle complex decision-making in environ-
ments with high-dimensional action spaces makes it well-suited for managing multipath, multihop
network configurations.

This section outlines the problem formulation used in the DRL model, including the state space,
action space, and reward function.
State space 𝒮 comprises a set of features that capture the current status of the network and the
attributes of the tasks involved:

𝒮 = {𝑙𝑢 , 𝑤𝑢 , 𝑅𝑢,𝑙 , 𝑅𝑢,𝑤 , 𝑡𝑢 , 𝑁
𝑇
𝑢 } (6.26)

In this formulation: 𝑤𝑢 and 𝑙𝑢 indicate the WiFi and LiFi APs, respectively, to which each user
is connected. 𝑅𝑢,𝑤 and 𝑅𝑢,𝑙 represent the data rates of WiFi and LiFi connections for each user.
𝑡𝑢 identifies the type of task being handled (e.g., eMBB, URLLC, factory automation, AI/image
classification). 𝑁𝑇

𝑢 specifies the total number of tasks generated by each user.
Action space𝒜 defines the possible actions taken by the learning agent:

𝒜 = {𝑥𝑢 , 𝑘𝑊𝑢 , 𝑐𝑢} (6.27)

Here, 𝑥𝑢 determines the computational destination for each user’s task. Rather than using a binary
variable or action for each possible user-destination pair (𝑥𝑢,𝑚), we simplify this by directly specifying
the destination index for each user (𝑥𝑢). This approach reduces the complexity of the variable space
and facilitates learning. Consequently, the need for the single destination per user constraint (6.16) is
made unnecessary.

𝑘𝑊𝑢 represents the fraction of data transmitted via the WiFi connection, with the remainder (1− 𝑘𝑊𝑢 )
either transmitted through LiFi or solely via WiFi if LiFi connectivity is not available. This setup
removes the requirement for the sum over technologies constraint (6.17).
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𝑐𝑢 indicates the proportion of computing resources allocated to each user at the server. After an
action is chosen, the proportion of computing resources allocated is normalized manually to ensure
that the total does not exceed the server’s capacity, effectively making constraint (6.18) redundant.

In the discrete model, these proportions are quantized into 20 distinct values, while in the contin-
uous model, they vary continuously from 0 to 1.
Reward function 𝐺 is designed to minimize either latency or energy consumption and impose penal-
ties for exceeding latency limits. Latency violations are quantified by

𝑉𝜏𝑢 = max(0, 𝜏𝑢 − 𝜏
req
𝑢 ) (6.28)

Here, 𝜏𝑢 represents the actual task completion latency for a user, and 𝜏
req
𝑢 denotes the latency threshold.

The reward for each user, 𝐺𝑢 , inversely correlates with their task completion latency, network energy
consumption, or user device energy usage, defined as follows:

𝐺𝑢 =
1
𝜏𝑢

(6.29)

=
1
𝑒𝑢

(6.30)

=
1
𝑒𝐷𝑢

(6.31)

These rewards are normalized to a scale of [0, 10] to facilitate a stable and efficient learning process:

𝐺𝑠
𝑢 =

𝐺𝑢

max(𝐺𝑢)
× 10 (6.32)

Normalizing the reward helps balance the agent’s exploration and exploitation, enhancing overall
performance and accelerating convergence.

In scenarios with latency violations, the overall reward, 𝐺, is adjusted by penalizing based on the
number of users who exceed their latency limits:

𝐺 = −𝑁𝑉
𝑢 × 10 (6.33)

where 𝑁𝑉
𝑢 indicates the number of users with latency violations. Conversely, if there are no violations,

the total reward is the sum of all individual scaled rewards:

𝐺 =
∑
𝑢

𝐺𝑠
𝑢 (6.34)

To summarize, the reward is:

Reward =

{
−𝑁𝑉

𝑢 × 10 if latency violation∑
𝑢 𝐺

𝑠
𝑢 else

(6.35)

This reward framework is designed to motivate the agent to minimize the objective effectively through
optimal task distribution and resource allocation while complying with latency constraints of each
task.

The algorithm operates by first gathering experiences from the environment under the existing
policy, and calculating the advantages of these experiences using Generalized Advantage Estimation
(GAE). PPO then updates the policy network by aiming to maximize these computed advantages
while keeping the adjustments within a small range. This control is achieved through a clipping
parameter set at 0.2. Furthermore, PPO updates a value network that estimates the expected returns,
which are used in determining the advantages. Optimization of both the policy and value networks
is conducted through gradient descent using the Adam optimizer. For this implementation, the
networks for the actor (policy) and the critic (value function) are structured as a MultiInputPolicy with
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a three-layer neural network configuration, consisting of [64, 128, 64] neurons in each layer respectively.
The PPO algorithm was executed using the stable-baselines3 package [Raf+21], version 2.3.0, and the
environment was configured using the gymnasium library version 0.29.1. All hyperparameters
involved in training the model were fine-tuned with the aid of the Optuna framework [Aki+19]. The
training process involved a total of 2.34 × 105 samples, employing a learning rate of 0.0001. A detailed
explanation of the PPO algorithm’s operation is provided in Algorithm 6.

Algorithm 6 Optimization using the PPO Algorithm

1: Initialize: Policy network 𝜋𝜃, value network 𝑉𝜙, replay buffer ℬ, learning rate 𝛼 = 0.0001,
discount factor 𝛾 = 0.9, PPO clipping parameter 𝜖 = 0.2, Factor for trade-off of bias vs variance
for GAE 𝜆 = 0.985

2: Input: State space 𝒮, action space𝒜, reward 𝐺

3: while not converged do
4: Reset environment, get initial state 𝑠0
5: for each episode do
6: for each time step 𝑡 do
7: Select action 𝑎𝑡 ∼ 𝜋𝜃(𝑠𝑡)
8: Execute action 𝑎𝑡 , observe reward 𝐺𝑡 and next state 𝑠𝑡+1
9: Store (𝑠𝑡 , 𝑎𝑡 , 𝐺𝑡 , 𝑠𝑡+1) in ℬ

10: end for
11: end for
12: Compute advantages �̂�𝑡 using GAE:

�̂�𝑡 =

𝑇∑
𝑙=0
(𝛾𝜆)𝑙𝛿𝑡+𝑙

𝛿𝑡 = 𝐺𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1) −𝑉𝜙(𝑠𝑡)
13: Update policy network 𝜃 by maximizing:

𝐿CLIP(𝜃) = �̂�𝑡

[
min

(
𝜋𝜃(𝑎𝑡 |𝑠𝑡)
𝜋𝜃old(𝑎𝑡 |𝑠𝑡)

�̂�𝑡 ,

clip
(
𝜋𝜃(𝑎𝑡 |𝑠𝑡)
𝜋𝜃old(𝑎𝑡 |𝑠𝑡)

, 1 − 𝜖, 1 + 𝜖

)
�̂�𝑡

)]
14: Update value network 𝜙 by minimizing:

𝐿value(𝜙) = �̂�𝑡

[
(𝐺𝑡 + 𝛾𝑉𝜙(𝑠𝑡+1) −𝑉𝜙(𝑠𝑡))2

]
15: Perform gradient descent on 𝜃 and 𝜙 using Adam optimizer
16: Clear replay buffer ℬ
17: end while
18: Return: Optimized policy network 𝜋𝜃 and value network 𝑉𝜙

6.7 Evaluation Methods and Quality Metrics

The ComputiFi framework is evaluated through detailed simulations conducted using Python 3.10.12.
The framework is tested across three distinct network architectures — Small, Medium, and Large —
each differing in size and configuration to reflect various potential deployment environments. The
user and AP configurations of these architectures are as already presented in the wireless resource
allocation chapters. The network setups are detailed in Table 6.5, where the task offloading capabilities
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are explored in terms of network layout, the number of users, and AP distribution. Each setup includes
LiFi APs installed at a ceiling height of 3 m, and a single WiFi AP centrally located on the ceiling
at coordinates (0,0,3) m. Additionally, each architecture integrates a cloud server with all network
devices equipped with processing capabilities.

Table 6.5 Task offloading architectures under evaluation

Scenario Size Users LiFi (x,y) Coordinates Routers
APs LiFi AP

Small 5 x 5 x 3 m 10 4 (-1.4, 1.4), (1.4,-1.4), 1
(-1.4,-1.4), (1.4, 1.4)

Medium 10 x 5 x 3 m 15 8 (-1.4, 1.4), (1.4,-1.4), 2
(-1.4,-1.4), (1.4, 1.4),
(-1.4, 4.2), (1.4,-4.2),
(-1.4,-4.2), (1.4, 4.2)

Large 10 x 10 x 3 m 20 16 (-3.6,-3.6), (-3.6,-1.2), 4
(-3.6, 1.2), (-3.6, 3.6),
(-1.2,-3.6), (-1.2,-1.2),
(-1.2, 1.2), (-1.2, 3.6),
( 1.2,-3.6), ( 1.2,-1.2),
( 1.2, 1.2), ( 1.2, 3.6),
( 3.6,-3.6), ( 3.6,-1.2),
( 3.6, 1.2), ( 3.6, 3.6)

The evaluations were performed using an 11th Generation Intel® Core™ i7-11700 16-Core Processor
and an NVIDIA GeForce RTX 3070 GPU. Each set of results was derived from 20 independent
simulation runs, with each run consisting of 120 time steps. To validate our findings, we employed
the Mann-Whitney U test [MW47], operating under the null hypothesis that there is no difference in
the distributions of the two parameters being compared. As in the previous chapters, the outcomes of
these tests are annotated in the corresponding figures with symbols based on the p-values [Cha+22],
using the following star notation:

ns : p > .05
∗ : .01 < p <= .05
∗∗ : .001 < p <= .01
∗ ∗ ∗ : .0001 < p <= .001
∗ ∗ ∗∗ : p <= .0001

Furthermore, due to multiple hypothesis testing on the same dataset, we applied the Benjamini-
Hochberg procedure [BH95] to adjust for the false discovery rate, ensuring the reliability of our
statistical inferences.

Simulation results are assessed using a variety of quality metrics to analyze the performance of the
offloading framework comprehensively. For latency-related metrics, we calculate the task completion
latency for each user’s task, denoted as 𝜏𝑢 .
Task Latency (ms):

Task Latency =
1

𝑀𝑈

𝑀𝑈∑
𝑢=1

𝜏𝑢 (6.36)

Latency QoS: This metric is derived by comparing the required latency against the actual latency for
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each user, averaging these ratios across all users. This metric serves as an indicator of how well the
system meets the latency expectations of its users.

Latency QoS =
1

𝑀𝑈

𝑀𝑈∑
𝑢=1

𝜏
req
𝑢

𝜏𝑢
(6.37)

A higher Latency QoS score indicates superior system performance, showing that the latencies expe-
rienced are close to or lower than the expected latencies, thereby fulfilling user expectations. On the
other hand, a lower Latency QoS score points to deficiencies in meeting latency demands, potentially
affecting the user experience.
Latency QoS per application: We also calculate the Latency QoS for different types of applications
by categorizing users based on their specific applications. For instance, for URLLC tasks,

Latency QoSURLLC =
𝜏

req
𝑢′

𝜏𝑢′
∀𝑢′ ∈ 𝒰URLLC (6.38)

For the energy-related metrics we first calculate the energy consumed by the network 𝑒𝑢 in completing
the task and also the user device energy consumed 𝑒𝐷𝑢 .
Task Energy (J):

Task Energy =
1

𝑀𝑈

𝑀𝑈∑
𝑢=1

𝑒𝑢 (6.39)

User Device Energy (J):

User Device Energy =
1

𝑀𝑈

𝑀𝑈∑
𝑢=1

𝑒𝐷𝑢 (6.40)

Additional metrics are provided to assess the functionality of the optimization algorithms used:
MEC destination: We track the MEC server destination to which each user’s task is offloaded to
understand the distribution and usage of network resources.
Proportion of data flow: To gauge the effectiveness of utilizing both LiFi and WiFi in a multipath
setting, we examine the proportion of each user’s data that is offloaded via each technology, with
values ranging from 0 to 1. This analysis excludes local processing data which does not contribute to
the metric.
Time to solve (s): Lastly, we measure the time required to solve the optimization problem with the
implemented algorithms.

6.8 Results and Comparative Analysis

The first part of this evaluation deals with the results obtained from the latency minimization objective.



6.8 Results and Comparative Analysis

123

Loc
al-

on
ly

Loc
al-

firs
t

AP-o
nly

sin
gle

pa
th

AP-o
nly

mult
ipa

th

URLLC
-lo

cal

sin
gle

pa
th

URLLC
-lo

cal

mult
ipa

th
Com

pu
tiFi

100

200

300

400

Ta
sk

 la
te

nc
y 

(m
s)

****

****
****

****
****

****

(a) Task completion latency

Loc
al-

on
ly

Loc
al-

firs
t

AP-o
nly

sin
gle

pa
th

AP-o
nly

mult
ipa

th

URLLC
-lo

cal

sin
gle

pa
th

URLLC
-lo

cal

mult
ipa

th
Com

pu
tiFi

0

5

10

15

20

25

30

La
te

nc
y 

Qo
S

eMBB
Factory
AI

(b) Latency QoS per application where a QoS of 1 (green
dotted line) indicates user’s latency requirement is exactly
satisfied

Figure 6.2 Network quality metrics for the baseline algorithms and ComputiFi’s optimized task offloading
solved with the Expert for the Small scenario with eMBB, Factory, and AI applications showing the need for
our proposed optimization

The analysis begins with Figure 6.2, comparing various baseline methods and the proposed opti-
mization employing the MINLP solver. This small network configuration assigns ten users randomly
across four applications: eMBB, URLLC, Factory, and AI. In this scenario, where random allocation
and limited user count are factors, only the eMBB, Factory, and AI applications are assigned.

In Figure 6.2a, the Expert optimizer provides the lowest latency for user tasks, highlighting the
effectiveness of our optimization strategy. It shows a 69.3% reduction in average latency compared to
the best baseline method. The inclusion of statistical annotations supports the significant performance
differences between ComputiFi and baseline approaches, affirming the optimization’s importance in
computational task offloading.

Further examination indicates that the Local-Only strategy experiences significant latency with
substantial variance, illustrating the drawbacks of processing all tasks locally. The Local-First strategy
marginally decreases this latency by offloading tasks only when local processing fails to meet latency
requirements. Examining singlepath and multipath strategies for both AP-only and URLLC-local,
a small decrease in average latency is observed with the singlepath approach, although the upper
limit remains higher than that of the multipath approach. This suggests that multipath transmission
reduces latency, although this is not consistently the case as part of the data flow must navigate
through the backhaul to the destination AP, adding extra delay. Additionally, in this instance, both
the URLLC-local and the AP-only strategies are identical due to the absence of URLLC application
users.

Upon evaluating the overall performance of different baseline strategies and the proposed Expert
solution in reducing task latency, we perform a per-application analysis by examining the QoS metric.
Figure 6.2b offers detailed insights into the latency performance for three specific application types:
eMBB, Factory, and AI. A QoS value of 1 or above indicates that latency requirements are met, with
the green line across the plot representing this threshold. For all applications, the Expert optimizer
consistently achieves a QoS value above 1, ensuring it meets the latency requirements. Typically, the
latency requirements for eMBB application are always satisfied even with the baseline approaches
due to its relatively lenient limit of 500 ms. For the Factory application, most baselines struggle to
reach the satisfaction level of 1. For the AI application, given its large task size, baseline approaches
often fail to consistently meet latency requirements. The Expert optimizer reliably maintains a QoS
value above 1 for all application types.
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(b) Latency QoS per application where a QoS of 1 (green
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Figure 6.3 Network quality metrics for the baseline algorithms and ComputiFi’s optimized task offloading
solved with the Expert for the Small scenario with URLLC, Factory, and AI applications showing the efficacy
of our proposed optimization for various application scenarios

To corroborate these findings in a network incorporating the more stringent URLLC application,
tasks for users are exclusively generated from URLLC, Factory, and AI, with results depicted in
Figure 6.3. Here again, the optimized approach achieves the lowest latencies as shown in Figure 6.3a,
with a 65.8% reduction in average latency compared to the top-performing baseline (URLLC-local
multipath).

Interestingly, multipath transmission enhances performance for the URLLC-local method com-
pared to the AP-only strategy. This advantage is better explained when examining the latency QoS
per application. Local processing of the strictly bounded URLLC application mitigates congestion
on wireless links, significantly benefiting the URLLC-local method via multipath transmission. This
also results in complete user satisfaction across almost all instances.
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Figure 6.4 A detailed look into the working of the baseline algorithms and ComputiFi’s optimized task offload-
ing solved with the Expert for the Small scenario with URLLC, Factory, and AI applications

An in-depth analysis of algorithm performance under the URLLC-focused scenario is presented
in Figure 6.4. Here, the chosen destinations for task processing by the algorithms are illustrated
in Figure 6.4a. The AI application, representing the largest task, is consistently offloaded except in
scenarios employing the Local-only strategy. The optimized solution efficiently leverages all categories
of MEC servers to process AI tasks, significantly reducing latency. Interestingly, the optimized
solution offloads URLLC tasks further, indicating that multipath LiFi-WiFi networks can reliably
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deliver ultra-low latency. The Factory task is entirely processed locally by the Expert algorithm, which
may appear counter-intuitive since both URLLC and Factory tasks could potentially be offloaded while
still adhering to latency constraints. Nonetheless, the primary goal of the optimization problem
extends beyond merely satisfying the latency requirement to minimizing it as much as possible.
The URLLC task, with a stringent 1 ms requirement, already operates at a minimal latency, thus no
further reduction is possible. In contrast, the Factory task’s 100 ms threshold allows for a reduction
to 20-30 ms, considerably lowering overall network delay. Therefore, our framework opts to process
Factory tasks locally to significantly conserve time, while strategically offloading some URLLC tasks
to maintain them just below the 1 ms threshold. Another factor influencing this decision is the data
stream size. The URLLC tasks comprise a single 32-byte packet, facilitating fast offloading without
overwhelming the link. Conversely, Factory tasks involve 20 packets of 1500 bytes each, making them
slower to offload. Coupled with a higher packet arrival rate, local processing of Factory tasks is
essential for optimal performance.

The usage of multiple paths for offloading is evidenced by the proportion of data flow shown
in Figure 6.4b. The baseline multipath algorithms always split the data equally between available
technologies. Due to the possibility of blockages in LiFi, the proportion of data flow through it is
not always exactly 0.5. The optimized solution balances the use of both LiFi and WiFi networks.
The median transmission is higher for LiFi due to its higher data rate, but the average is higher for
WiFi due to some samples with LiFi blockages and when the offered rate through LiFi is low. This
approach ensures stability and consistently low latency by using multipath offloading.
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Figure 6.5 Percentage of the individual components of latency per application using ComputiFi’s optimized
task offloading solved with the Expert for the Small scenario with URLLC, Factory, and AI applications

Figure 6.5 shows how latency is split between transmission and computation for URLLC, Factory,
and AI applications. For the URLLC, transmission latency varies from minimal percentages reflect-
ing local processing, with a median at zero percent, to a high of 99.7%, indicative of efficient task
offloading to remote servers with better computational power. For Factory applications, processed
solely locally, computation latency comprises the total delay. Conversely, the AI application, predom-
inantly offloaded, shows a significantly reduced computation latency. This analysis shows the need
for minimizing both transmission and computation delays to achieve the best performance balance
in real-time applications, a target ComputiFi successfully meets.

Despite confirming the advantages of our optimized task offloading approach, its practicality for
real-time applications is limited due to long solution times, typically spanning several minutes.
Therefore, we explore the performance of meta-heuristics as alternatives and evaluate their outcomes
against the optimal solver in Figure 6.6. The discrete versions of both the GA and DE algorithms
perform remarkably well, closely approaching the optimal solution. Upon detailed analysis, a slight
yet statistically significant difference is observed between the GA and DE in terms of the QoS metric.
Consequently, the GA is selected as the most effective algorithm, showing non-significant difference
in performance when compared to the Expert solver-based approach.
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Figure 6.6 Task completion latency achieved by all the meta-heuristic algorithms under test in comparison with
the optimal Expert solution for the Small scenario with URLLC, Factory, and AI applications
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Figure 6.7 Quality metrics for various network architectures using the discrete and continuous GA showing
the superiority of the model with discrete variables

Motivated by the performance of the GA algorithm, further investigations are conducted to assess
its efficiency across various network architectures as shown in Figure 6.7a. These evaluations confirm
that the discrete model of the GA surpasses the continuous one in performance. Nevertheless, both
models reliably meet user demands in every network configuration. Despite the better performance
of the discrete model, the continuous model may still be preferable in situations where faster solution
times are crucial, as it demands less computational effort.
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Figure 6.8 Quality metrics for increasing number of users using the discrete GA in a Medium architecture
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To assess the scalability of the proposed GA algorithm as the number of users increases, we
maintained the number of offloading destinations constant within a Medium network architecture
and visualize the results in Figure 6.8. With only 10 users, the URLLC application is not included due
to random application assignments. For URLLC and Factory applications, QoS remains stable even
as the number of users grows, as illustrated in Figure 6.8a. This stability indicates that the algorithm
manages additional workload efficiently without degrading these applications’ performance. In
contrast, eMBB and AI applications show a declining QoS trend as more users are added. This
decrease reflects the increasing demand on network resources. Despite this, the system continues to
meet all user requirements even with up to 25 users. Furthermore, analysis of the solution time in
Figure 6.8b shows a linear increase. This rise is due to more variables and constraints being added as
the user count grows, requiring the framework to handle more user demands with the same network
setup. The linear trend indicates that the GA’s performance scales effectively with user numbers.
However, this also suggests that a higher number of users might lead to much longer solution times,
possibly necessitating more efficient algorithms.
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Figure 6.9 Latency QoS per application for varying the number of compute destinations while keeping the
number of users fixed at 15 using the discrete GA

To further test ComputiFi’s performance with an increased number of computing destinations,
while keeping user numbers constant at 15, we conducted evaluations depicted in Figure 6.9. The
results show a rise in latency with more LiFi APs, even though the number of users and tasks
does not change. By expanding the number of compute destinations, we also had to enlarge the
indoor environment to reduce interference and allow a fair comparison. Consequently, the distance
between users and a WiFi AP grows, increasing transmission latency, especially when the LiFi signal
is obstructed. Moreover, having more APs increases the likelihood of users being within LiFi AP
interference zones.
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Figure 6.10 Latency QoS per application for varying the number of WiFi APs while keeping the number of
users fixed at 15 using the discrete GA
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Unlike LiFi APs, WiFi APs do not interfere with each other. We explore the impact of adding
more WiFi APs while keeping the user count at 15 in Figure 6.10. As anticipated, QoS improves with
more APs available, reducing latency due to increased offloading options. Additionally, the use of
frequency reuse techniques prevents interference, ensuring that users in overlapping AP regions are
not affected.

Although we have demonstrated that the meta-heuristic GA algorithm can scale effectively, its
processing time of several seconds is too long for scenarios requiring optimization within 500 ms. This
limitation has led us to consider a DRL-based strategy for more efficient task offloading. Initially, we
explore the training process’s convergence and present the training rewards in Figure 6.11, comparing
the performance of discrete and continuous action models within the DRL framework. The analysis
shows that the discrete model achieves a higher reward.
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Figure 6.11 The reward obtained during the training episodes of the DRL-based PPO algorithm with discrete
and continuous action space in the Small scenario with eMBB, Factory, and AI applications

Following the model’s successful convergence, we apply the cross-validated model to a test set
and assess the performance across various network architectures as shown in Figure 6.12. The results
confirm that, similar to the training rewards, the discrete model consistently surpasses the continuous
one in delivering higher QoS across all tested network layouts. This reinforces the discrete model’s
effectiveness in managing task offloading tasks better, while maintaining the necessary QoS for all
users.
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Figure 6.12 Latency QoS for various network architectures using the DRL-based algorithm with discrete and
continuous actions
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Figure 6.13 Latency for the URLLC, Factory, and AI applications comparing the DRL-based algorithm with the
baseline algorithms

Furthermore, we establish that the DRL-based algorithm outperforms the baseline algorithms, as
depicted in Figure 6.13. The DRL solution achieves the lowest latency, reducing the average latency
by 40.23% compared to the most effective baseline method, the URLLC-local multipath.

The solution time for the DRL-based algorithm, ranging from 7 ms to 12 ms across different
network sizes, illustrates its practicality for real-world hardware implementation. This rapid decision-
making capability of the DRL approach not only aligns with the QoS demands but also highlights its
appropriateness for mobile and time-critical network environments.
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In a detailed comparison of all evaluated optimization algorithms, illustrated in Figure 6.14, we
include an assessment of Blackbox algorithms, which have not been previously discussed. These
algorithms are crucial for determining whether a deep understanding of the problem or function
being tested is necessary.

Results from Figure 6.14a show that addressing the optimization problem or objective function as
a blackbox does not achieve optimal results. Additionally, apart from the basic greedy algorithm,
Blackbox methods tend to take significantly longer to solve problems. This shows the advantages of
employing specialized algorithms, such as the GA or DRL-based methods, which not only fulfill QoS
demands more efficiently but also operate within reasonable time frames.

As seen in Figure 6.14a, the three leading algorithms in terms of network performance are the
MINLP solver-based optimal solution, the meta-heuristic GA, and the DRL-based solutions. These
algorithms perform similarly well for URLLC and Factory applications. However, for the AI applica-
tion, the DRL solution exhibits a 47.03% reduction in QoS compared to the other two, yet it still meets
all user requirements.

To understand the behavior of these different approaches, Figure 6.14b visualizes the data transmis-
sion proportions over LiFi, if offloaded, for the URLLC, Factory, and AI applications. The proportion
of WiFi is the inverse of LiFi unless the task is processed entirely locally. Blackbox optimization
techniques show similar characteristics, supporting the notion that treating the objective function as
a blackbox leads to outcomes comparable to those of a simple greedy approach. The Expert strategy
primarily offloads URLLC tasks through WiFi, selecting this destination unless processed locally. In
contrast, AI tasks are offloaded to routers or cloud services due to their higher processing capabilities,
making greater use of the LiFi connection due to its faster data rate. Factory tasks are entirely pro-
cessed locally. The DRL method, meanwhile, processes URLLC and Factory tasks locally but offloads
AI tasks to various locations, differing from the Expert by primarily using WiFi for offloading, as
reflected in the lower latency QoS for the AI application.

While the top-performing algorithms in network performance have been identified as the MINLP
solver-based optimal solution, the meta-heuristic GA, and the DRL-based algorithm, it is necessary to
also evaluate them based on the time required to solve optimization problems. Figure 6.14c displays
these solve times in seconds, using a logarithmic scale to accommodate the broad range of durations.
The Expert algorithm, with its longest solve time, proves impractical for real-world applications. A
similar conclusion applies to the Extra Trees and Random Forest algorithms. Although the meta-
heuristic solutions, as shown in Figure 6.7 and Figure 3.17, resolve within a few seconds, they still fall
short of efficiency for practical deployment. Conversely, the Greedy algorithm, while faster, performs
inadequately in network efficiency as evidenced in Figure 6.14a. The DRL solution emerges as the
most time-efficient, significantly outperforming the other methods. This efficiency is confirmed by
statistical analyses comparing the DRL approach with other algorithms. This speed renders the DRL
solution particularly appealing as it offers an optimal balance between network performance and
processing time, making it an optimal candidate for real-time implementation on actual hardware.

Energy consumption is another critical factor in choosing an algorithm. Excluding the MINLP
solver-based and blackbox optimization methods due to their complexity and subpar network per-
formance respectively, we compare the GA and DRL solutions. The GA consumes approximately
4.244 × 10−6 kWh per optimization run, while the DRL uses 0.0674 kWh. However, most of the DRL
energy expenditure is associated with one-time training and validation. If the training and validation
can be implemented on a more powerful and less energy-restricted platform, the operational phase
of the DRL during runtime (on test data) consumes only about 3.989 × 10−7 kWh per run. Energy
measurements were made using the Running Average Power Limit interface on Intel processors and
NVIDIA-smi for GPU monitoring.

After examining the latency objective of our task offloading framework, our focus shifts to the energy
objectives, which are equally crucial for the sustainability and efficiency of network operations. We
compare the three objectives of minimizing task completion latency, network energy consumption
and user device energy consumption in Figure 6.15. Figure 6.15a clearly shows that optimizing for the
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energy consumption does not automatically result in the lowest task completion latency. This finding
carries over to the metrics of network and user energy as well. These results clearly show the need
to tune the objective function according to the needs of the network. However, in all these cases, the
latency QoS of all the applications are still met so the energy objectives still meet all user demands
while reducing the energy consumption.
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Figure 6.15 Quality metrics comparing all proposed objective functions in the Small scenario with URLLC,
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Figure 6.16 Quality metrics for all proposed algorithms in the Small scenario with URLLC, Factory, and AI
applications for the objective functions of minimizing network energy and user device energy
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While we have shown the need to tune the objective according to network needs, we still need to
compare these to the baselines to verify the need for optimization in the case of the energy objectives.
This comparison is made in Figure 6.16. As expected the Local-only approach shows the best per-
formance in terms of network energy consumption since the user devices have the low performance
processors, with the optimized approaches showing comparable performance in Figure 6.16a. How-
ever, it is important to note that the Local-only approach does not satisfy the latency QoS of all users
while the optimized approaches do so. Furthermore, none of the other baselines manage to always
satisfy the user requirements.

Looking into the user device energy consumption in Figure 6.16b, the best performing baseline
is the AP-only singlepath algorithm which prioritizes WiFi. This is because of the combination of
the single technology usage, low transmission power of WiFi and the low computational energy
consumption of an AP server. The Expert model still outperforms this baseline by 35.56%. However,
in this user device energy minimization objective, the DRL algorithm does not satisfy the QoS
requirement for the AI application in 0.6% of the cases while the average is still well above the
requirement. In congruence with the results of the latency objective, the GA and Expert algorithms
show non-significant differences in performance for both energy objectives.

6.9 Summary and Conclusions

This chapter has introduced ComputiFi, a framework developed to optimize task offloading within
LiFi-WiFi networks, particularly focusing on reducing latency, network energy, and user device energy
consumption in latency-sensitive applications. By integrating advanced optimization tools, dynamic
resource allocation across diverse computational servers, and multipath transmissions, ComputiFi
effectively tackles the complexities of heterogeneous network environments. Additionally, a multi-
hop latency model appropriate for data flows involving multiple packets was discussed.

The outcomes indicate that ComputiFi not only successfully meets its designated objectives but also
consistently upholds high QoS across different network configurations, highlighting its effectiveness.
Specifically, our approach significantly reduced latency by 69.3% compared to the most effective
baseline method in scenarios involving eMBB, Factory, and AI applications, and by 65.8% in setups
with URLLC, Factory, and AI applications. Moreover, it accomplished a 35.56% reduction in average
user device energy consumption against the best baseline in similar application contexts.

An extensive assessment of various optimization algorithms for task offloading within multihop,
multipath LiFi-WiFi networks revealed distinct advantages and limitations of each method. Among
them, the GA and DRL-based solutions stood out, with the DRL approach excelling particularly
in speed, achieving prediction times in the order of milliseconds. This rapid processing capability
renders it suitable for real-time applications while still managing to reduce user average latency
by 40.23% compared to the best baseline approach for latency-minimized scenarios with URLLC,
Factory, and AI applications. These insights highlight the importance of choosing an appropriate
optimization strategy that aligns with network demands and operational conditions, ensuring optimal
performance.
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Chapter 7

Conclusions and Future Research

The exponential growth in wireless communication demands has necessitated the exploration of new
technologies to supplement existing systems. Light-Fidelity (LiFi) technology, which uses visible
light and infrared for data transmission, has emerged as a promising complement to traditional
Wireless-Fidelity (WiFi) systems. The integration of LiFi and WiFi into a heterogeneous network can
significantly enhance network capacity, improve coverage, and reduce latency, thereby addressing
the increasing need for high-speed, reliable, and secure data transmission.

This thesis has explored the design and management of LiFi-WiFi heterogeneous networks, ad-
dressing several critical challenges like the placement of Access Points (APs) and the allocation of
wireless and computational resources through novel approaches. Each research question posed at
the beginning of this work has been thoroughly investigated, with solutions and methodologies
developed to advance the state of knowledge in this field.

7.1 Summary

To answer Research Question 1 on optimizing access point placement in LiFi-WiFi networks for cost
efficiency, coverage, and illumination quality, we presented two significant contributions. The first
contribution tackled the challenge of 3D LiFi AP placement, focusing on minimizing the number of
APs while maximizing the sum rate weighted by the probability of user occurrence. By formulating
this challenge as a multi-objective optimization problem with constraints on minimum data rates
and required illumination levels, we solved it using Non-dominated Sorting Genetic Algorithm
(NSGA-II). This analysis demonstrated that the free selection of AP heights significantly enhanced
network performance compared to fixed-height placements. Moreover, incorporating expected user
distribution into the sum rate evaluation was critical for optimizing network performance in densely
populated user areas.

Building upon these insights, the second contribution, PlaciFi, developed a comprehensive frame-
work for optimal 3D AP placement in LiFi-WiFi heterogeneous networks. PlaciFi aimed to maximize
rate coverage while minimizing the costs of AP deployment. By utilizing the third dimension in AP
placement, PlaciFi significantly improved interference management and data rate coverage over state-
of-the-art 2D power optimization models. Our extensive simulations showed that PlaciFi’s advanced
heuristic, meta-heuristic, and black-box optimization techniques outperformed baseline solutions,
particularly in scenarios with varied user distributions. This framework’s adaptability was validated
through its ability to tailor AP placement to different indoor application scenarios, demonstrating
its effectiveness across different deployment requirements. In answering this research question, we
produced the following guidelines that assist in optimizing AP placement:

1. Indoor Environment Analysis: Perform a detailed assessment of indoor spaces to pinpoint
specific needs and restrictions. Analyze factors such as room dimensions and user density for
both LiFi and WiFi technologies.
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2. Choosing Optimization Functions: Select suitable optimization functions that align with the
intended outcomes. Our work supports both Multi-Objective Optimization (MOO) and Single-
Objective Optimization (SOO) techniques, utilizing the former to handle multiple competing
objectives.

3. Three-Dimensional AP Deployment: Utilize our proposal’s feature of three-dimensional place-
ment of LiFi APs to optimize height variations, thereby minimizing interference and maximizing
data transmission rates, ultimately enhancing network effectiveness.

4. Optimal AP Configuration: Deploy our proposal to ascertain the most strategic number and
location of APs to create a balanced and effective network using different technologies.

5. Custom Deployment Strategies: Develop specific strategies for deploying technologies in varied
indoor environments such as offices, corridors, and museums, ensuring that each setup meets
the unique needs of the space.

6. Addressing Scalability and Complexity: Employ Dynamic Grid Explorer (DGE) for optimal
results in small to medium settings. For larger environments, evaluate the system’s compu-
tational intensity and storage demands, possibly incorporating meta-heuristic approaches to
handle larger scales efficiently.

To address Research Question 2 on optimizing resource management in a LiFi-WiFi network
to dynamically adapt to changing user demands while ensuring minimal delay and high network
stability, our work made substantial contributions across several areas of network optimization. We
focused on minimizing average network packet delay for delay-sensitive applications by formulating
and solving a problem to optimize wireless resource allocation in both singlepath and multipath
LiFi-WiFi heterogeneous networks. The optimization, constrained by maximum allowable delays
and required data rates for each user, was implemented using a Branch and Bound algorithm-based
solver, alongside a meta-heuristic genetic algorithm. Extensive simulations confirmed that these
methods significantly reduced network delay compared to existing max-SNR-based techniques and
consistently met strict delay and data rate requirements under heavy Quality of Service (QoS) traffic.

Further, we enhanced network stability by addressing handover losses associated with mobility,
changes in receiver orientation, and signal blockages. A low-complexity algorithm was developed
to consider data rate loss due to handover overhead, aiming to provide stability under transient
channel variations. This algorithm was extensively validated through simulations, showing a marked
improvement in sum throughput and up to 24.6% reduction in number of handovers over traditional
resource allocation methods. To manage unavoidable handovers, particularly in scenarios with
prolonged Line-of-Sight (LoS) blockages and user mobility, we introduced a system protocol for
managing vertical handovers. This protocol significantly reduced the overhead associated with these
handovers, as demonstrated on a hardware setup. The results indicated that the vertical handover
overhead could be minimized to avoid TCP re-connections and enhancing network stability.

Lastly, we focused on further improving the stable network’s performance using a weighted alpha-
fair utility maximization model, which dramatically outperformed the baseline, showing average
user rate increases of 398%, 98.9%, and 52.9% for a small, medium, and large network topology,
respectively.

To address Research Question 3 on utilizing user trajectory prediction for proactive network
resource management in LiFi-WiFi networks, our thesis developed the MobiFi framework. This
framework significantly enhanced network performance by implementing proactive wireless resource
allocation strategies that anticipate future network conditions, consistently outperforming reactive
methods. The proactive strategies show a 7.7% increase in average user rate and a 63.3% improvement
in the worst user rate. The MobiFi framework effectively demonstrated its adaptability and robustness
across various network scenarios characterized by differing user densities and mobility patterns. A
key aspect of this proactive approach is its reliance on accurate user position predictions. Our
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evaluation highlighted that while inaccuracies in predictions could challenge the effectiveness of
proactive strategies, the model displayed resilience to a degree, suggesting its viability with current
prediction technologies. Furthermore, the work explored optimization techniques like Evolutionary
Game Theory (EGT) to improve the feasibility of real-world applications by enhancing run time
efficiency.

In addressing Research Question 4 on optimizing task offloading in LiFi-WiFi networks, we de-
veloped the ComputiFi framework, aimed at minimizing latency and energy consumption while
dynamically adapting to network topology changes and user demands. ComputiFi integrates ad-
vanced optimization tools, dynamic resource allocation across various computing servers, and multi-
path transmissions, effectively tackling the challenges within heterogeneous network environments.
A specialized multi-hop latency model was particularly instrumental for capturing the behavior of
data flows involving multiple packets. The framework’s comprehensive approach not only met its
designated objectives but also upheld high QoS across various network configurations, significantly
enhancing performance in latency-sensitive applications like Ultra Reliable Low Latency Communi-
cations (URLLC), factory automation, and Artificial Intelligence (AI).

Through extensive evaluations, ComputiFi demonstrated a 65.8% improvement in latency and
35.6% reduction in user device energy consumption over the best performing baseline approach.
Among the different optimization algorithms assessed for task offloading, Genetic Algorithm (GA)
and Deep Reinforcement Learning (DRL)-based solutions stood out for their efficiency. The DRL
strategy stood out for its quick prediction times, making it suitable for real-time applications while
also achieving a significant reduction in user average latency. These results highlight the importance of
selecting optimization strategies that align well with the specific demands and operational conditions
of the network, ensuring optimal performance and contributing to more adaptive and energy-efficient
network operations in complex LiFi-WiFi environments.

Throughout this thesis, we have systematically addressed a series of complex challenges associ-
ated with the design and management of LiFi-WiFi heterogeneous networks, paving the way for
advanced 6G communications. From the strategic 3D placement of access points enhancing network
coverage and efficiency in Chapter 3, to sophisticated dynamic resource management strategies that
ensure minimal latency and enhance network stability in Chapter 4, each contribution has pushed
the boundaries of current network capabilities. Further exploration into proactive resource manage-
ment in Chapter 5 demonstrated how predictive technologies could significantly improve long-term
network performance, adapting seamlessly to user behavior and environmental changes. Finally, the
ComputiFi framework introduced in Chapter 6 revolutionized task offloading in multipath networks
by optimizing latency and energy consumption, proving essential for real-time, energy-efficient net-
work operations. Collectively, these contributions not only address the pressing needs of modern
wireless communication systems but also set a robust foundation for future innovations in network
design and management, highlighting the transformative potential of integrating LiFi and WiFi tech-
nologies in next-generation networks.

7.2 Future Work

The findings from this thesis on AP placement, resource allocation, and task offloading in LiFi-WiFi
networks have opened several avenues for future research that could further refine and expand the
current work in this thesis.

The optimization framework used for AP placement could be enhanced by incorporating dynamic
user mobility patterns to adapt to changing environmental conditions, especially useful in outdoor
scenarios. Additionally, integrating detailed energy consumption models into the optimization pro-
cess could further boost energy efficiency, aligning with the goals of sustainable network design.
Considering multi-operator scenarios, the framework could be expanded to accommodate the objec-
tives of various stakeholders, allowing for a balanced optimization of network performance across
different operators. There is also potential to extend the framework to include other advanced wire-
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less technologies such as 5G or millimeter-wave, broadening its applicability. The incorporation of
advanced machine learning techniques could significantly enhance the AP placement algorithm, en-
abling the system to learn from past deployments and make more intelligent decisions. This approach
could lead to more effective optimization strategies in real-time, adapting to the specific needs of each
deployment scenario.

The proposed resource allocation frameworks can benefit from practical implementations and real-
world validations. The advent of open-source hardware compliant with emerging standards like IEEE
802.11bb will facilitate real-world testing of our resource allocation schemes. Key to this testing will
be open-source LiFi modules that allow access to the Medium Access Control (MAC) layer, as well
as dual-interface devices that can seamlessly switch between LiFi and WiFi. Creating a controlled
lab environment with multiple LiFi and WiFi APs will enable simulation of various user scenarios,
including different mobility patterns and LoS blockages. This setup will help validate the effectiveness
of the resource allocation strategies through key performance metrics such as throughput and fairness.
Subsequent field trials in real-world settings like office buildings or campuses will provide further
insights into the strategies’ practical impacts on user QoS and network performance. Collaboration
with industry partners who are at the forefront of developing LiFi technology will be essential to
access state-of-the-art hardware and benefit from their technical expertise. Initiatives to build such
testbeds are already underway [Haa+20; Guz+23].

Looking ahead into future research in task offloading in LiFi-WiFi networks, integrating more
sophisticated machine learning models that adapt based on real-time network data could dynamically
adjust to changes in user behavior and network conditions. Further exploration into multi-objective
formulations that minimize both energy consumption and latency could benefit battery-dependent
devices and Internet of Things (IoT) applications. Enhancing bandwidth management within the
task offloading framework could ensure more efficient use of network resources, addressing both
throughput needs and congestion.

As we look to the future, the pathways outlined for advancing the design and optimization of
LiFi-WiFi networks hold the promise of transforming wireless communication landscapes.
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