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Abstract: Background/Objectives: We present a software package called reflimR (Version 1.0.6),
which enables rapid and transparent verification of reference intervals from routine laboratory
measurements. Our method makes it easy to compare the results with specified target values and
facilitates the interpretation of deviations using traffic light colors. Methods: The algorithm includes
three procedural steps: (a) definition of an appropriate distribution model, based on Bowley’s quartile
skewness, (b) iterative truncation, based on a modified boxplot method to obtain the central 95% of
presumably inconspicuous results, and (c) extrapolation of reference limits from a truncated normal
quantile–quantile plot. Results: All algorithms have been combined into one consolidated library,
which can be called in the R environment with a single command reflim (x). Using an example dataset
included in the package, we demonstrate that our method can be applied to mixed data containing a
substantial proportion of pathological values. It leads to similar results as the direct guideline ap-
proach as well as the more sophisticated indirect refineR software package. As compared to the latter,
reflimR works much faster and needs smaller datasets for robust estimates. For the interpretation of
the results, we present an intuitive color scheme based on tolerance ranges (permissible uncertainty
of laboratory results). We show that a relatively high number of published reference limits require
careful reevaluation. Conclusions: The reflimR package closes the gap between direct guideline
methods and the more sophisticated indirect refineR method. We recommend reflimR for the rapid
routine verification of large amounts of reference limits and refineR for a careful analysis of unclear
or doubtful results from this check.

Keywords: reference interval; verification; indirect method; reflimR; refineR; color coding

1. Introduction

Reference intervals play a crucial role in the medical interpretation and statistical
evaluation of laboratory results [1]. By definition, reference intervals include the central
95% of results measured in non-diseased reference individuals [2]. It is mandatory that
laboratories verify the reference limits obtained from external sources such as assay inserts
or handbooks before using them for routine clinical care [2,3]. In principle, this requirement
is independent of the size of the laboratory, but it is clear that small laboratories with
low test numbers and higher economic pressure are more challenged here than large
laboratory institutions.

In conventional approaches, the lower and upper limits of reference intervals are
determined using direct methods that involve collecting laboratory results from apparently
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healthy individuals and calculating the 2.5th and 97.5th percentiles with parametric or non-
parametric methods [2]. Although direct methods are currently considered the guideline-
compliant “gold standard”, their practical application is challenging due to the cost and
time issues for recruiting a sufficient number of well-defined reference individuals, as
well as ethical restrictions, especially in small children, and difficulties in excluding “non-
healthy” outliers [3–5].

This is the reason why the gold-standard procedure is only binding for the de novo
definition of reference limits, while for the mere verification of otherwise defined limits,
the guideline recommends a simplified approach, which just verifies that no more than
two out of twenty values measured in healthy individuals fall outside the given limits [2].
However, this alternative approach is neither representative nor reproducible, nor is it able
to detect reference intervals that are too wide [4].

To overcome these issues, so-called indirect methods [3] have been proposed that can
be applied to larger numbers of routine laboratory results. They rely on statistical models
rather than clinical measures for the definition of an apparently healthy population and
attempt to derive the above percentiles from datasets containing an unknown proportion of
pathological results [6–11]. The most recent of these methods has also been provided as a
free software package called refineR [9], which can be downloaded from the Comprehensive
R Archive Network (https://cran.r-project.org/web/packages/refineR (accessed on 2
May 2024)).

The major advantages of an R package compared to “home-brew” programs are the
access via the official CRAN website, the standardized package-type documentation, and
the ease of use in the R software environment. As a disadvantage of refineR, some authors,
including our group, mention the relatively long computation time of the algorithm and
the uncertainty of finding the right statistical model when the number of cases is below
1000 [9,10].

Therefore, we have developed an alternative R package called reflimR as refinement of
our previously published, Excel-based indirect method [7]. Our main goal was to provide a
much-needed tool that would allow rapid serial verification of reference intervals under
routine clinical laboratory conditions [4]. To effectively support this intent, we integrated
into the package an algorithm that uses traffic light colors to indicate how well the estimated
reference intervals match the predefined limits used in one’s own laboratory.

In this article, we explain the functions included in reflimR, present results for the
example data of the package, and compare them with those of refineR and the guideline-
compliant direct method. As a special feature, the example data offer the possibility to
test our method both in a direct and an indirect mode so that the influence of pathological
outliers can be assessed.

2. Materials and Methods

All calculations and graphics were made with the free statistical software R (www.r-
project.org (accessed on 2 May 2024)). Eight analytes were measured in 456 healthy controls
and 156 patients with different stages of hepatitis C ranging from mild infection without
histological signs to severe liver damage in the form of fibrosis and cirrhosis [12].

Table 1 exemplifies four rows from the livertests dataset included in the reflimR
package. They illustrate typical values for controls and patients. The first and third rows
represent a female and a male person from the healthy control group. The female patient in
row 200 is an example of mild early-stage hepatitis with largely unremarkable results except
for a significantly elevated GGT. The male patient in row 610, on the other hand, represents a
typical cirrhotic stage with increased AST, BIL, and GGT but decreased ALB, ALT, and CHE.
For the full names of the analytes see the list of abbreviations. The package also includes
a list of target values (see Section 3), which were derived from the publicly available
handbook of L. Thomas (https://www.clinical-laboratory-diagnostics.com (accessed on
2 May 2024)). The missing lower limits for ALT, AST, and GGT were supplemented from
the manufacturer’s assay sheet.

https://cran.r-project.org/web/packages/refineR
www.r-project.org
www.r-project.org
https://www.clinical-laboratory-diagnostics.com
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Table 1. Excerpt from the livertests dataset included in the reflimR package.

Row Category Age Sex ALB ALT AST BIL CHE CREA GGT PROT

1 reference 32 f 39.9 22.0 29.8 6.3 8.16 60 4.5 72.5
200 patient 51 f 41.4 33.2 20.0 5.0 10.27 77.0 106.7 72.2
444 reference 54 m 46.4 54.1 39.6 10.6 6.59 85 73.2 75.2
610 patient 59 m 31.0 5.4 95.4 117.0 1.57 60.5 53.6 68.5

The reflimR method falls into the category of so-called “modified Hoffmann ap-
proaches” [7,13,14], which are based on the original work of Robert G Hoffmann (1963) [15].
Their common element is that they evaluate the linear part of a regression line, which
is obtained by comparing the distribution of the (eventually transformed) values with
a standard normal distribution. While in the original method a probability–probability
plot is generated [15], most of the newer modifications, including ours, use a normal
quantile–quantile plot [7].

The complete list of ten functions included in the reflimR package can be displayed
with the command help (package = reflimR). The reflim function is on the highest level and
represents the main function of the package. It can be called with a single command reflim
(x), where x is the vector of positive numbers to be analyzed. The output of this function
is a set of numeric and text results as well as a graphical representation of the calculated
reference limits with colored tolerance ranges (Figure 1). The reflim function also includes
a total of ten arguments with default values defining the appearance of the output. It calls
the other nine functions that can be arranged as follows:

Group 1: ri_hist, permissible_uncertainty, interpretation
Group 2: lognorm, iboxplot, truncated_qqplot
Group 3: adjust_digits, bowley, conf_int95
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Figure 1. Graphical output of the reflim function. The vertical lines represent the observed and
theoretical reference limits with their respective tolerance ranges.

Group 1 comprises three higher-level functions that provide the user with the final
results: ri_hist creates a graphical output, permissible_uncertainty calculates the tolerance
limits of the results [1,2], and interpretation assesses the medical significance of deviations
from given target values. Group 2 performs the three underlying statistical operations (see
Section 3), and group 3 contains auxiliary functions for miscellaneous tasks like rounding
to a plausible number of digits, calculating Bowley’s quartile skewness and determining
95% confidence intervals. The details of each function are available in the respective help
files, which can be addressed with a question mark followed by the function name.
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Figure 1 shows an example for the graphical output of the evaluation of 1000 realistic
laboratory results (e.g., blood glucose in mg/dL), simulated as three Gaussian distributions
representing 80% normal values as well as 10% low and 10% high values (mean values 100,
70, and 125 and standard deviations 10, 15, and 15, respectively). The vertical lines represent
the observed and theoretical reference limits. The respective tolerance ranges surrounding
these vertical lines were derived from the permissible uncertainty of quantitative laboratory
results [16] in a special application serving as an equivalence test for reference limits [17].

Arbitrary target values of 120, 130, and 140 were set for the upper limit in Figure 1
to illustrate the traffic light metaphor of the ReflimR approach. Green bars mean that the
predicted target values lie inside the tolerance ranges of the reflim calculation. Yellow bars
mean that the target values lie outside but the tolerance ranges overlap, whereas red bars
mean that the tolerance ranges are completely separated. The respective interpretation
outputs of the reflim function are “within tolerance” (green), “slightly increased/decreased”
(yellow), and “markedly increased/decreased” (red).

A Shiny application with a graphical user interface is available to facilitate the use of
reflimR for those who are not familiar with calling R functions. It can be downloaded from
GitHub and installed in the R environment as described on the website (https://github.
com/SandraKla/reflimR_Shiny (accessed on 2 May 2024)).

For a method comparison, the refineR package was used as a published reference [9].
This package includes two main functions that are called sequentially:

result1 <- findRI (x)
result2 <- getRI (result 1)

Briefly, the algorithm is based on the assumption that the non-pathological fraction
of the data can be modeled with a Box–Cox transformed normal distribution with three
parameters (mean, standard deviation, and exponent lambda). In contrast to our method,
refineR starts with a sophisticated analysis of the density of the original data aiming to find
a lambda value that fits a continuum of right-to-left skewed distributions rather than just
our two types, i.e., Gaussian (λ = 1) and lognormal (λ = 0). In a series of complex analytical
steps, the roughly transformed values are then transferred to a histogram with optimized
bin width, from which a cost-based final model is obtained under various assumptions
about the most likely distribution in each bin as well as in the presumably non-pathological
fraction. For a more detailed description of the algorithm see Ref. [9].

Finally, we applied two direct methods to the values of the healthy control group
to compare our method with the established CLSI/IFCC guideline. The “gold standard”
procedure determines the 2.5th and 97.5th percentiles in healthy individuals without
making any assumptions regarding the underlying distribution [2]. A simplified “20-
person approach” rejects the specified reference interval if more than two out of twenty
reference values fall outside its limits [2].

3. Results

Exploration of the livertests dataset revealed significant sex differences (p < 0.001 in
the Wilcoxon test) but no notable age trends. Therefore, we split the data by gender into
238 women and 374 men and analyzed all age groups from 19 to 77 years collectively. The
direct methods were applied to the subset of healthy blood donors, whereas the whole
dataset was used for analyses with indirect methods.

Figure 2 shows two typical distribution curves for the reference and patient values.
CHE represents an analyte with a quite symmetric distribution of the reference values,
whereas the respective curve for GGT is clearly right skewed. In the patient cohort,
pathological values had an accent on the left side for CHE and on the right side for GGT.
In both cases, the reference and patient groups showed a large overlap, particularly at
the critical border between normal and pathological values. Estimates of the percentage
of non-pathological results in the mixed data ranged from 82 to 99% (median 90%) for
reflimR and from 74 to 97% (median 88%) for refineR. Both figures are higher than the real

https://github.com/SandraKla/reflimR_Shiny
https://github.com/SandraKla/reflimR_Shiny
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percentage of healthy controls in our study group (75%). This seeming discrepancy is due
to the high amounts of “normal” results in the patient group.
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3.1. Step-by-Step Explanation of the reflimR Algorithm

Figures 3–5 illustrate the three main steps performed by the reflim function. The
algorithm includes three procedural steps: (a) definition of an appropriate distribution
model, based on Bowley’s quartile skewness, (b) iterative truncation, based on a modified
boxplot method to obtain the central 95% of presumably inconspicuous results, and (c)
extrapolation of reference limits from a truncated normal quantile–quantile plot.
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Table 2. Bowley’s skewness calculated with the lognorm function for the normally and lognormally
distributed values shown in Figure 3.

Normal Distribution Lognormal Distribution

original values 0.014 0.133
logarithms −0.018 −0.007

delta 1 0.032 0.140
1 delta is the difference of the calculated Bowley’s skewness of the respective original values and their logarithms.

In step 1 (Figure 3), a suitable distribution model is defined by calculating Bowley’s
quartile skewness coefficients (i.e., the skewness of the central 50% of all values) for the
measured values and their logarithms. In short, this algorithm (called lognorm) checks
whether the difference of the two skewness coefficients exceeds an empirical threshold of
0.05 [18]. On the left side of Figure 3, both the black and the blue curves are about equally
symmetric, so that their skewness delta is below 0.05. On the right side, the black curve is
clearly right skewed and the blue density curve of the logarithms is much more symmetric.
Due to this marked difference in shape, the delta is greater than 0.05.
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The rationale for this algorithm is that analytes in blood can be roughly divided
into two physiologically defined classes [1], one of which has physiological functions
in blood and is therefore tightly regulated (e.g., albumin, hemoglobin, sodium). The
values of this group show little variation. The second group has no specific function in
blood (e.g., AST, ALT) and therefore varies widely. The distribution of the first group is
quite symmetric (skewness ≈ 0), so that the Gaussian distribution model fits them well
within the range of the assumed reference limits. The distribution of the second group is
usually right skewed (skewness >> 0) and becomes substantially more symmetric after log
transformation (skewness difference > threshold). In this case, a lognormal distribution
should be assumed, which becomes normal after a log transformation of the data [18,19].

In step 2, the (possibly transformed) dataset is truncated in an iterative way such
that the presumably pathological values are removed as best as possible and the central
95% of the presumably non-pathological values remain without substantial losses. To
achieve this, we adopt the iboxplot algorithm [18], which is based on Tukey’s boxplot
method. Starting with the central 50 percent of the data (i.e., the first and third quartiles),
the theoretical 2.5th and 97.5th percentiles of a Gaussian distribution are calculated and
values beyond these limits are removed. This algorithm is repeated until the length of
the vector remains constant, i.e., no more values are removed. After the first truncation
step, the calculation of the 2.5th and 97.5th percentiles is adapted to the fact that the vector
has already been truncated. For more details, we refer to the original publication on the
iBoxplot95 algorithm [20].

Figure 4 illustrates the outcome of the step 2 iboxplot function for the same data as in
Figure 1. The left graphic shows the histogram of the original values with the corresponding
boxplot (white). The blue curve represents the density of the truncated values with the
corresponding boxplot in blue. The majority of the pathological values are removed in
the first truncation step (drop from n = 1000 to n = 859) (Figure 4, right). The following
iterations very slowly approach the target interval of 80 to 120, which is reached at a total
number of n = 828.

In the third and final step (Figure 5), a normal quantile–quantile plot (Q-Q plot) is gen-
erated as described earlier [7], with an important modification: in the original version, the
linear part of the curve was identified visually and then replotted against the quantiles of a
standard normal distribution, whereas in the present package version, the truncated_qqplot
function plots the quantiles of the truncated vector against the respective quantiles of a
standard normal distribution truncated between the 2.5th and 97.5th percentiles. A total
of 39 quantiles between equidistant probabilities from p = 0 to p = 1 are calculated from
the truncated sample and plotted against 39 quantiles of a standard normal distribution
with equidistant probabilities between p = 0.025 and p = 0.975. This function determines
the mean and standard deviation from the intercept and slope of the regression line and
extrapolates the reference limits from mean ± 1.96 sd.

3.2. Verification of Reference Limits and Method Comparison

The reflimR algorithm, which calls these three functions consecutively, was tested
both in a direct and in an indirect mode (see Section 2). For a comprehensive method
comparison, we also applied the two direct guideline methods and the indirect refineR
method. The results are summarized in Figure 6 and in Table 3.

The figure provides a concise visualization of the results obtained with reflimR (hori-
zontal solid lines) performed either on the healthy controls or on the whole dataset. Except
for 3 out of 32 reference limits (i.e., upper limits for BIL, CREA, and GGT in men), the
results are in excellent agreement, confirming that under typical routine conditions our
indirect method is largely unaffected by pathological values. A similarly good agreement
is achieved with the results of refineR (horizontal dashed lines), whereby the latter method
performs slightly better for the three exceptions mentioned above.
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Figure 6. Comparison of results obtained with reflimR (solid lines) and refineR (dashed line). The
reflimR method is applied to healthy controls (thick line) and to all individuals (thin line). The
green boxes indicate the target values determined with the direct quantile-based CLSI/IFCC method
applied to the healthy controls, and the empty rectangles represent the target values derived from
the literature. * = slight deviation from the literature. ** = marked deviation from the literature.
The terms slight and marked refer to the yellow and red traffic light colors shown in Figure 1. For
analyte-specific units on the x-axis, see Table 2.

Table 3. Target reference intervals and verification results obtained from two verification methods.
a = accept (green), c = check (yellow), r = reject (red), f = female, m = male, ll = lower limit, ul = upper
limit. reflimR was applied to the whole dataset, whereas for the guideline method, three random
samples with n = 20 each (f1, 2, 3 and m1, 2, 3) were drawn from the healthy control group.

Reference Interval reflimR Guideline Method

f m ll f ul f ll m ul m f1 f2 f3 m1 m2 m3
ALB (g/L) 35–53 35–53 c r a a a r a a a a
ALT (U/L) 10–35 10–50 a c a r r a a a r a
AST (U/L) 10–35 10–50 r a r r a a a a a a

BIL (µmol/L) 2–21 2–21 a r r a a a a a a a
CHE (kU/L) 3.9–10.8 4.6–11.5 r c a c a a a a a a

CREA (µmol/L) 41–88 50–104 r c r r a a a a a a
GGT (U/L) 6–40 10–60 c a a a a r a a r r
PROT (g/L) 66–83 66–83 a c a a a a a a a r

In addition, Figure 6 compares the results of all three methods with target values
calculated with the direct “gold standard method” (green boxes) and with those derived
from the literature (empty boxes). The degree of deviation from the literature values is
indicated by one or two asterisks for “slight” or “marked” discrepancies, which correspond
exactly to the yellow and red colors, respectively, in the reflim function. No systematic
differences are observed here between the two indirect methods (reflimR and refineR):
sometimes both result in reference ranges that are wider than expected from the boxes (e.g.,
AST in women and ALT in men) and sometimes both yield narrower intervals (e.g., BIL
and CREA in women).
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In essence, the differences between the two indirect methods (solid versus dashed lines)
are much smaller than the discrepancies among the corresponding intervals obtained from
the gold-standard method and the literature (green versus empty boxes). Most remarkably,
the gold standard is not beyond all doubt either. For example, here the upper limit for
GGT in men appears to be significantly too high. The reason becomes apparent from
Figure 2, where the GGT values measured in the apparently healthy reference collective
include several moderately elevated values (e.g., due to undocumented alcohol or drug
consumption), which may contribute to a 97.5th percentile that is too high.

This brings us to the final and crucial question of this work: does the reflimR method
fulfill the goal formulated at the beginning of this article, namely, to provide an instrument
that enables reference intervals from external sources to be verified quickly on the basis
of easily interpretable traffic light colors? For this purpose, we transformed the results
depicted in Figure 6 into ordinal decisions “accept” (green = within tolerance), “check”
(yellow = slightly increase/decreased), and “reject” (red = markedly increase/decreased).
Then, we compared these categories with the “20-person” verification method described in
the CLSI/IFCC guideline [2]. Table 2 shows that reflimR rejects 11 of 32 reference limits
and suggests another 7 for review, whereas the guideline method does not differentiate
between exceeding the lower or upper reference limits and accepts almost all reference
intervals from the literature (see discussion). In our experiment, it rejects only 0 to 2 out of
16 reference intervals both in women and men. This means that our method assesses the
specified reference intervals much more strictly than the simplified guideline method.

An important side finding from our method comparison is the enormous difference in
computing times under the conditions of the livertests dataset (Figure 6): for reflimR, the
time was 0.006 to 0.017 s, whereas for refineR, the corresponding time was 47 to 99 s. On
average, reflimR was more than 6000 times faster than refineR.

To examine whether this statement can be generalized, we tested the computation
times as a function of the number of observations using a very simple normally distributed
dataset. Figure 7 shows that with increasing size, reflimR becomes slightly slower, whereas
refineR becomes remarkably faster. Nevertheless, even at n > 20,000, reflimR was more
than 3000 times faster than refineR in this example.
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4. Discussion

The indirect reflimR method presented here is suitable for a quick and easy-to-interpret
verification of specified reference intervals. It works well with mixed datasets containing
up to 25% patients with confirmed disease. Taking the livertests dataset included in the
package as example, reflimR accepts less than 50% of the literature-derived limits: 34% are
rejected and 22% are classified as worth reviewing.

The color system presented here makes it easier to quickly assess the agreement of the
reflimR results with reference limits from handbooks or assay package inserts. The traffic
light colors are intuitive but not subjective, as they are determined by the specifications
of the permissible uncertainty [16,17] and cannot be influenced by the user. In contrast
to statistical confidence intervals [2], the permissible uncertainty is independent of the
number of observations. The confidence intervals provided by reflimR are a valuable
reproducibility measure in cases with low numbers of values but become extremely narrow
when several thousand values are analyzed.

If we take a closer look at the red and yellow fields in Table 3, it is noticeable that more
limits are affected in women than in men. Among them are ALB and BIL, where the target
values make no difference between both genders, whereas our data indicate a significant
difference in the medians (p < 0.001). A brief literature search shows that men do indeed
have higher albumin and bilirubin concentrations than women [21,22], a fact that is rarely
considered by assay manufacturers and clinical laboratories.

The results of our method are similar to those of the direct CLSI/IFCC method [2] as
well as the more complex refineR method [9]. No notable differences are observed when
our method is applied to the healthy controls only, i.e., omitting the patient values. In
this latter case, reflimR and refineR may even outperform the so-called gold standard in
specific situations, i.e., where the healthy control group contains individuals with slightly
pathological results (see the green density curve in Figure 2 and the green boxes for GGT
in Figure 6). Such borderline values are reliably eliminated by the three-stage procedure
used here, whereas they are fully reflected in the results when calculating quantiles alone
without any model assumptions.

With older methods [6,15,23], an IFCC working group found that the application of
indirect methods to mixed populations resulted in some bias as compared to carefully
selected healthy reference individuals [24]. This limitation may also apply to reflimR and
refineR (see for example CREA for men in Figure 6), but does not seem to be too serious if
these methods are just used for verification of already existing reference intervals rather
than for establishing them de novo.

Compared to refineR, the much higher speed is an outstanding advantage of our
method. Figure 7 shows that the computation time of refineR decreases as a function of
the number of observations. This counterintuitive behavior can probably be explained
by the complex statistical algorithm, which leads to faster convergence for larger sample
sizes [9]. Nevertheless, reflimR is several thousand times faster and therefore qualifies for
the rapid verification of reference limits. The long calculation times of refineR may not play
a role in individual analyses but can quickly become a problem if the algorithm has to be
run repeatedly.

This is particularly the case when confidence intervals are calculated with simulation
or bootstrap techniques [2,25]. The conf_int95 function of reflimR is based on 100,000 Monte
Carlo simulations for each sample size from 200, 400, 600 . . . to 2000 (see conf_int95 in the
package documentation). While this experiment with a total of one million simulations
takes about two hours, the corresponding duration with refineR would be roughly a year
on the same computer. Very long computation times may also be a reason why refineR does
not output any confidence intervals in the default setting. The documentation only contains
very rough calculation examples with 30 bootstraps that already take several minutes. For
a standard lognormal distribution with 10,000 values, refineR returns plausible reference
limits of 0.13 (CI95 0.10 to 0.14) and 6.94 (CI95 4.50 to 7.21) after about three minutes. The
same simulation performed with reflimR takes 50 milliseconds and yields almost identical
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reference limits of 0.14 (CI95 0.10 to 0.19) and 6.88 (CI95 6.05 to 7.70). The reflimR algorithm
is so fast because here the confidence intervals are calculated with closed formulas that are
based on the 100,000 simulations mentioned above. Such formulas do not exist for refineR.

Several publications have dealt with the minimum sample size required for the dif-
ferent methods. Due to the specifications in the guideline [2], it has become common
practice to consider a sample size of 120 values as a minimum [9,25,26]. A critical IFCC
document published in 2010 states that this number is far from optimal and at least 400
healthy individuals are desirable [27]. The reflimR algorithm issues a warning if there are
less than 200 presumably inconspicuous values remaining after truncation of the original
data. For a very clean sample without pathological outliers, reflimR even works with
only 40 values, from which the 39 quantiles of the Q-Q plot can be calculated (see step 3
visualized in Figure 5). This number is considered the absolute minimum for the reflimR
method if performed in a direct mode with healthy subjects only.

In contrast, refineR warns if there are less than 1000 values in the total dataset. The
latter figure has been confirmed by Anker et al. [10], who found that reflimR is unable to
estimate plausible lambda values at sample sizes below 1000. Our results, summarized
in Figure 6, suggest, however, that there are no notable differences between reflimR and
refineR even for sample sizes below 1000.

Finally, and most importantly, our method is clearly superior to the simplified guide-
line approach, which uses just twenty values from healthy controls and counts how many
of them fall outside the specified reference interval [2,4,26]. The poor reproducibility of
the results (see Table 3) shows that twenty individuals are not enough for a representative
sample of the healthy population and, in addition, the simplified guideline method is
inherently flawed because it cannot recognize reference intervals that are too wide [4]. In
our study, this severe limitation applies to ALB and BIL in women and AST in men, as well
as CREA in both genders (see empty boxes in Figure 6). On the other hand, the guideline
method tends to reject reference intervals erroneously if the seemingly healthy population
includes sick individuals with slightly pathological values (see GGT for men).

Limitations of the Study and Outlook

As a rule, the results of reflimR do not differ significantly from those of refineR and
it makes no difference whether reflimR is applied to data from healthy individuals or to
mixed populations (see Figure 6). Slight deviations from this rule, such as for GGT or
CREA for men, are probably due to an accumulation of borderline pathological values,
which are difficult to separate from the values of healthy individuals using our algorithm
(Figure 2). Such borderline cases are identified by visual inspection of the quantile–quantile
plot (Figure 5). Deviations from linearity indicate the need for analyses using methods like
refineR as part of quality assessment. However, objective criteria for non-linearity are still
lacking [7,10].

Other questions that can be addressed with real-world data include handling small
amounts of data in specialty testing [10], determining the lower reference limits below
the detection level of an assay [8], or integrating reflimR and refineR into laboratory
information systems.

Noteworthily, it was demonstrated that reflimR in its indirect version produces results
comparable to more sophisticated direct methods and the more time-consuming refineR
method. Previous studies have shown similar concordance for the precursor methods of
reflimR [10,11]. Independent multi-center studies with real laboratory data are needed to
validate the performance of reflimR under all conceivable routine conditions and to define
when other methods such as refineR need to be used as a control. This also applies to the
question of whether the high rate of rejections of predefined reference intervals (see Table 3)
by reflimR is also confirmed by other methods.

The general applicability of indirect methods for testing reference intervals is still a
matter of debate [3,24,27], but as direct methods also have their limitations (see Figure 6 and
Table 3), clear criteria for the use of healthy reference subjects versus mixed populations
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need to be defined. We hope that our simple, intuitive, and fast method will pave the way
for comprehensive investigations and foster collaboration between scientists in laboratory
medicine and statistics.

5. Conclusions

In conclusion, we recommend reflimR for the rapid, routine verification of large
numbers of reference limits and refineR for a careful analysis of unclear results of this
examination. If the results from the two methods are doubtful or do not coincide, a direct
approach should be considered. The simplified direct guideline method should, however,
no longer be used for verifying external sources, as it accepts too many false reference
intervals (Table 3) and lulls the user into a false sense of security.
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