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Perfusion imaging by arterial spin labeling
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Abstract

Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method for the assessment of cerebral

blood flow (CBF). This review summarizes recent ASL-based investigations in adult and pediatric patients with migraine

with aura, migraine without aura, and chronic migraine. A systematic search according to the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted within PubMed and reference sections of

articles identified from April 2014 to November 2022. Out of 236 initial articles, 20 remained after filtering, encompass-

ing data from 1155 subjects in total. Cross-sectional studies in adults showed inconsistent results, while longitudinal

studies demonstrated that cerebral perfusion changes over the migraine cycle can be tracked using ASL. The most

consistent findings were observed in ictal states among pediatric migraine patients, where studies showed hypoperfusion

matching aura symptoms during early imaging followed by hyperperfusion. Overall, ASL is a useful but currently

underutilized modality for evaluating cerebral perfusion in patients with migraine. The generalizability of results is

currently limited by heterogeneities regarding study design and documentation of clinical variables (e.g., relation of

attacks to scanning timepoint, migraine subtypes). Future MRI studies should consider augmenting imaging protocols

with ASL to further elucidate perfusion dynamics in migraine.
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Introduction

The current International Classification of Headache
Disorders (ICHD) describes migraine as a highly prev-
alent primary headache disorder.1 Current estimates
indicate that more than one billion patients are suffer-
ing from migraine worldwide, rendering it one of the
most prevalent diseases overall.2–4 This makes migraine
one of the top contributors to global disability by
accounting for roughly 1.9% of disability-adjusted
life years.4 Despite the resulting need to better under-
stand the mechanisms underlying migraine, migraine
pathophysiology remains insufficiently understood.

A variety of neuroimaging modalities have been
employed in the investigation of migraine.5,6 A preem-
inent role in this field has been occupied by magnetic
resonance imaging (MRI) due to its non-invasive and
multi-parametric imaging capabilities.5,6 In this context,
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both structural imaging investigating white matter

(WM) lesions,7 glymphatic system function,8 WM

streamlines,9 or muscular pathologies,10 as well as func-

tional imaging based on the blood oxygen level-

dependent (BOLD) effect11,12 have been utilized in

migraine patients.
However, the results have only partially contributed

to an improved understanding of the disease. Reasons

for this include the heterogeneity of pathophysiology,

symptoms, and imaging characteristics regarding

migraine (e.g., different subtypes including migraine

with aura [MwA], migraine without aura [MwoA],

chronic migraine [CM], or different lateralization pat-

terns, combined with oftentimes inconsistent imaging

intervals in relation to the attack cycle). Additional

complications arise from a lack of reproduction by

studies investigating representative cohort sizes with

homogeneous migraine characteristics.11,12

Convergent evidence implicates trigeminovascular

mechanisms in migraine pathophysiology.13 Neurogenic

inflammation with vasodilation of meningeal vessels can

cause perfusion abnormalities and contributes to the

characteristic migraine-related pain.13–17 Additionally,

both the involvement of central pain pathways as well

as phenomena such as cortical spreading depolarization

(CSD) likely result in changes of brain perfusion patterns

in migraine patients.13,18 Migraine patients have also been

shown to be subject to an increased risk for cerebrovas-

cular diseases such as ischemic19,20 or hemorrhagic

stroke,20 as well as subclinical WM hyperintensities

(WMH) as potential correlates of micro-vascular pathol-

ogy.7,21 While cerebral blood flow (CBF) can also be

influenced by other factors such as blood pressure,

blood oxygenation, or carbon dioxide levels,22 the above-

mentioned findings motivate the use of perfusion imaging

in investigations in migraine. Recent advantages have

enabled the progressive adoption of perfusion MRI

using arterial spin labeling (ASL) in scientific and clinical

neuroimaging.23,24 Specifically, ASL is a non-invasive

method for assessing CBF without the need for injection

of contrast media, radioactive tracers, or ionizing radia-

tion.24 Considering its range of applicability and increas-

ing use in migraine, the present review aimed to

summarize the current literature landscape of ASL appli-

cations to yield an overview of current strengths and

weaknesses of the method. We introduce technical aspects

of ASL, highlight relevant applications in investigations

of migraine, and put a special focus on findings that have

been replicated across studies. Herein, we section the

reviewed studies primarily according to whether scans

were conducted in adult or pediatric cohorts, and, sec-

ondarily, whether scans were conducted longitudinally or

cross-sectionally in adult cohorts.

Methods

Technical overview

Perfusion imaging by ASL uses water within blood as

an endogenous contrast tracer. The inflowing blood is

magnetically labeled within the so-called labeling plane

or labeling slab, usually placed onto a straight segment

of the brain-feeding arteries to ensure maximum label-

ing efficiency. The labeled water molecules travel along

the vessels to the intracranial space, where they change

the equilibrium magnetization of brain tissue during

perfusion (Figure 1). To account for the arterial transit

time (ATT), i.e. the time blood takes to pass from the

labeling to the imaging volume, the post-label delay

(PLD) is introduced prior to image acquisition.

Additionally, a control image is usually acquired,

where no effective labeling is performed. By subtracting

both images, perfusion data can be calculated and CBF

quantified (in ml/100 g/min). Recommendations for

setting up ASL sequences have been published

recently.25,26

Historically, there have been mainly two approaches

for labeling: continuous ASL (CASL27) and pulsed

ASL (PASL28). However, the state-of-the-art method

is pseudo-continuous ASL (pCASL), proposed as a

hybrid of both methods.29,30 This technique was intro-

duced to achieve both general availability on most clin-

ical MRI systems and sufficient signal intensities.

Search strategy

Our literature search was conducted according to a proto-

col previously registered in the International Prospective

Register of Systematic Reviews (PROSPERO) database

(CRD42021238822, SupplementaryMaterial 1), in compli-

ance with Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) standards.31 At

conception, we intended to cover both BOLD functional

MRI (fMRI) as well as ASL literature in migraine. Due to

the high volume of BOLD fMRI studies compared to

ASL, the review was split and the fMRI literature was

summarized separately.12

We searched the PubMed database (www.pubmed.

ncbi.nlm.nih.gov), as well as reference sections of

articles that passed our inclusion criteria. Initially, we

covered articles published between April 2014 and

January 2021. This was motivated by the initial fMRI

part of the review, following up on a previous fMRI

review that covered articles before April 2014.32 In

order not to miss relevant studies that have been pub-

lished since January 2021, we further extended our lit-

erature search until November 2022. Additionally, we

decided to also include pediatric studies after an initial

screening of studies performed in adults only, and
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lowered the participant threshold for adult cohorts to

10 investigated participants during the review process

as a modification to the initially registered protocol

(CRD42021238822, Supplementary Material 1).

Afterwards, the reference sections of the included

articles were screened for additional studies that may

have eluded our initial PubMed search. An overview of

the literature selection is presented in Figure 2.

Data extraction

Data extraction was performed by SS, supervised by

NS, and included the following characteristics: studied

population and control groups (including sex distribu-

tion and potential dropouts), description of imaging-

related task (if applicable), region of interest (ROI)

selection, details regarding statistical processing, statis-

tical tests underlying results, documentation of quality

control measures, scan timing in relation to ictality,

documentation of headache medication (whenever

applicable), and main findings.
Additionally, we extracted potential sources of bias

or heterogeneity, specifically whether patients were

recruited consecutively or randomly, whether more

than 90% of recruited patients were included in the

analyses, whether basic MRI parameters were docu-

mented (i.e., static field strength, labeling duration,

PLD, and readout method), and whether age, sex,

hematocrit, volumetry, blood pressure, and CO2 were

controlled or corrected for in each study (Table 1).

Evidence synthesis

After data extraction, the evidence was synthesized and

summarized in batches primarily sorted according to

cohort age (adult versus pediatric cohorts), and second-

arily according to study design (cross-sectional, longi-

tudinal, combined with other cerebrovascular imaging,

and other designs).

Results

After filtering 236 studies, 20 studies remained for the

evidence synthesis. Studies included on average 58� 49

participants, with a median of 40 participants for a

total of 1155 participants across all studies. Studied

populations included MwoA in 13 studies, MwA in

8 studies, migraine without further specification in

1 study, CM in 5 studies, and menstrual-related

migraine in 1 study.
In 12 studies, at least one ASL acquisition was con-

ducted within the interictal interval, with that interval

being subject to different definitions between studies

(e.g., 72 hours prior to the scan – 24 hours after

the scan versus 72 hours prior to the scan – no interval

after the scan). In 4 studies, ASL was collected

at least once during the migraine attack.

Figure 1. Concept of pseudo-continuous arterial spin labeling (pCASL). (a) Inflowing blood is magnetically labeled (indicated by the
yellow section of the internal carotid artery [ICA]) when passing the labeling plane (light yellow) using a train of short radiofrequency
pulses. The cerebral volume of interest (green box) is imaged, and the tissue signal is not influenced by any labeled blood (blue
overlay). (b) As the now labeled blood continues to travel towards the brain to perfuse the tissue, the tissue magnetization is altered
(blue/yellow overlay). The transit time is considered by introducing a post-label delay (PLD) prior to imaging. By subtracting from the
prior image with no effective labeling (a), perfusion can by quantified in terms of cerebral blood flow (CBF). Figure created with
BioRender.com.
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Furthermore, 5 studies did not document the timing of

their scans in relation to the migraine cycle. Medication

intake was documented and controlled to different

degrees. Specifically, 7 studies did not document

migraine-related medication in any way.
All studies except one were conducted using a

3-Tesla MRI scanner. The remaining study was con-

ducted on a 1.5-Tesla scanner. Furthermore, 4 studies

employed PASL, while 16 studies employed pCASL.

ASL in adult cohorts

Perfusion in cross-sectional studies with scans at one

time point within the migraine cycle

Cross-sectional designs have been used in a variety of

migraine populations and study designs to investigate

cerebral perfusion. The most commonly studied sub-

group of migraine patients was MwoA.33–36 An over-

view of cross-sectional studies with scans at one time

point within the migraine cycle is given by Table 2.

In one study, the authors reported increased CBF in
the left superior temporal gyrus in MwoA patients
during the interictal period compared to healthy con-
trols (HC).33 Furthermore, CBF within the left superi-
or temporal gyrus was positively correlated with
Hamilton Rating Scale for Depression (HAMD)
scores.33 However, the voxel-wise analysis between
groups has not been corrected for multiple compari-
sons.33 In another study of interictal MwoA, the
authors did not replicate this finding but observed
CBF increases in the bilateral primary somatosensory
cortices and left primary motor cortex, which correlat-
ed positively with attack frequency.34

In another approach, interictal MwoA compared to
HC demonstrated heightened CBF in the right orbito-
frontal gyrus and right middle frontal gyrus, lowered
CBF in the cerebellar vermis, and significant correla-
tions between right orbitofrontal cortex CBF and
attack frequency as well as results from the Visual
Light Sensitivity Questionnaire (VSLQ-8).35

Additionally, CBF connectivity analyses were con-
ducted by computing the correlation coefficient for

Figure 2. Literature selection. This figure shows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
flow chart for our literature search and demonstrates the number of studies excluded at different stages of the literature search
procedure. Examples for exclusion reasons: article types outside the inclusion criteria (e.g., literature reviews, case reports); false
topic, referring to articles not dealing with ASL investigations of migraine; too few participants. Literature search was conducted
according to a previously registered protocol (International Prospective Register of Systematic Reviews [PROSPERO] database,
CRD42021238822, Supplementary Material 1), with the following adaptions after the initial search: extension of surveyed timeframe
from January 2021 to November 2022; inclusion of studies in pediatric cohorts; longitudinal studies with a threshold of a minimum of
10 instead of 15 investigated participants.
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CBF values of regions that differed in the between-
group analysis and all other brain voxels.35 High cor-
relation coefficients were interpreted as demonstrating
CBF connectivity.35 The authors observed that in
MwoA compared to HC, the right orbitofrontal
gyrus demonstrated reduced CBF connectivity to the
right putamen, left superior frontal gyrus, right caudate
nucleus, as well as the right angular gyrus, contrasted
by heightened CBF connectivity to the left calcarine
cortex.35 Another publication investigated perfusion
differences between MwoA, MwA, and HC.36

Interictally, a group with MwoA plus MwA and
patients with only MwA demonstrated heightened
CBF within the right visual motion area (V5) compared
to HC.36 Additionally, MwA compared to HC demon-
strated hyperperfusion within the right superior tempo-
ral gyrus.36

Another subgroup prevalent in the identified litera-
ture was CM.37,38 In one comparison between interictal
CM and HC, patients with CM demonstrated reduced
CBF of the left nucleus accumbens that correlated with
pain intensity (PI).37 In another study, CM compared
to HC demonstrated heightened CBF in the bilateral
ventral lateral thalamus.38 Arterial cerebral blood
volume (aCBV, the volume of labeled arterial blood
measured within a specific voxel), calculated from
CBF maps and ATT maps based on methodology pre-
viously employed in HC,39 was higher in the left ventral
lateral thalamus.38 Additionally, CM patients were
compared to a cohort of new daily persistent headache
(NDPH), a subtype of primary headache disorders dis-
tinct from migraine but sharing some of its character-
istics.40 In this context, CM patients demonstrated
heightened CBF and aCBV compared to NDPH in
multiple brain regions (e.g., bilateral thalami, right
orbitofrontal cortex, right amygdala, or right anterior
cingulate cortex).38 Most perfusion differences were
right-hemispheric (15 right-hemispheric areas/19 total
areas), which the authors speculate as being connected
to hemispheric dominance.38

One study investigated menstrual-related migraine
patients.41 Compared to HC, patients with interictal
menstruation-related migraine demonstrated height-
ened CBF in the left insula and right supplementary
motor area.41 Disease duration correlated with CBF
in the right supplementary motor area.41

In one study, the authors investigated WMH load in
migraine patients and cerebral perfusion.42 The WMH
burden was identified on T2-weighted fluid-attenuated
inversion recovery (FLAIR) images as well as
T1-weighted images.42 For the assessment of WMH,
the authors counted the number of lesions and sorted
them in three categories by size, then multiplying the
number of lesions with a factor dependent on the
WMH size group.42 The authors found a significant

difference in global CBF between MwA patients with

no or low WMH load and MwA patients with high

WMH load, with the latter showing reduced CBF.42

No significant differences were found in MwoA or

HC.42 Interestingly, WMH load differences between
MwoA, MwA, and HC did not reach statistical signif-

icance,42 thus contrasting previous literature that has

identified migraine (especially MwA) as a potential risk

factor for WMH.7

Additionally, in a retrospective analysis, MwA
patients demonstrated a significantly higher curvature

of the basilar artery compared to HC as measured via

time-of-flight magnetic resonance angiography (TOF-

MRA), which correlated with attack frequency.43 The

authors discussed potential causal connections to

migraine symptoms, such as enhanced endothelial

shear stress, compression of surrounding structures,
or the curvature resulting from migraine attacks or

related medication (e.g., triptan intake).43 However,

CBF of the posterior cerebral artery territory did not

significantly differ between groups.43

Advanced statistical modeling has been applied to
ASL data to create classifier models.44 In a correspond-

ing study, the authors first demonstrated differences in

CBF in 6 regions between MwA, MwoA, and HC

(superior frontal gyrus, postcentral gyrus, cerebellum,

middle frontal gyrus, thalamus, and medioventral

occipital cortex).44 In a comparison of different

MwoA/MwA classifiers based on the CBF of the
abovementioned regions, a support vector machine

trained on the above data achieved the maximum

area under the curve (AUC) of 0.86 in an independent

testing set for discriminating patients with MwoA and

MwA.44 Furthermore, graph theoretical connectivity

analyses have been applied to ASL datasets.45 In the
corresponding study, the authors constructed brain

connectivity matrices based on an automated anatom-

ical labeling (AAL) template, defining connectivity via

the correlation of CBF between different AAL

regions.45 From the resulting matrix, the authors

extracted measures such as global efficiency, transitiv-

ity, or mean clustering coefficient for further analy-
ses.45 Herein, patients with MwA demonstrated

significantly lowered assortative coefficients compared

to MwoA.45 The assortative coefficient measures rep-

resented the tendency of nodes within a given network

to preferentially connect to similar nodes (e.g., high

assortativity is present when nodes with many connec-

tions preferentially connect to other nodes with
many connections).46 Information flow within low-

assortativity networks tended to be more easily dis-

rupted.45 Thus, the authors interpreted their results as

hyperresponsiveness that is inherent in cerebral net-

works of MwA patients.45
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Lastly, one study investigated the relationship

between migraine and tinnitus.47 The authors demon-

strated that tinnitus patients compared to patients

without tinnitus showed decreased CBF within the

right superior temporal gyrus, bilateral middle frontal

gyrus, and left superior frontal gyrus.47 Herein, CBF in

the right superior frontal gyrus and right middle frontal

gyrus was further lowered when the tinnitus patients

also had migraine.47 Additionally, the study reported

associations between Headache Impact Test (HIT-6)

scores and CBF in the right superior temporal gyrus,

as well as for PI and CBF in the right middle frontal

gyrus.47

Perfusion in longitudinal studies with several scans

throughout the migraine cycle

Some studies investigated cerebral perfusion dynamics

at multiple time points within the migraine cycle.48–51

An overview of longitudinal studies with more than

one scan acquired throughout the migraine cycle is pro-

vided by Table 3.
In one study recruiting mixed migraine subtypes

(MwA, MwoA, and CM), patients were scanned at

varying time points within their respective migraine

cycle, resulting in 22 interictal scans, 7 scans immedi-

ately preceding headache attacks (<24 h before head-

ache onset), and 13 scans shortly following a headache

attack (<72 h after headache end).48 Migraine patients’

CBF in the right hypothalamus, right retrosplenial

cortex, and left visual areas was decreased compared

to HC, but only <24 h before a migraine attack.48

Scanning 12 migraine subjects on an ictal day and

periodically acquiring images until the next attack,

another study demonstrated progressive hyperperfu-

sion in the right nucleus accumbens, right insula, and

right precentral gyrus prior to the migraine attack.49

This was interpreted as a sign of increasing sensitivity

of the patient’s brain to sensory input.49

Another study employed pharmaceutical migraine

triggers (i.e., calcitonin gene-related peptide and silden-

afil) to study provoked attacks in MwoA.50 During

these attacks, regional CBF increased in the ipsilateral

dorsolateral pons (respective to the most painful side)

compared to baseline.50 However, CBF did not change

in patients that did not develop migraine attacks after

trigger application.50

Contrasting those previous studies, one study

including 13 patients with MwoA who were scanned

during spontaneous attacks (4 patients scanned <5 h

after headache onset; 9 patients scanned >5 h after

headache onset; average time from onset to scanning:

16.2� 19.7 h) and interictally demonstrated no differ-

ence in CBF between the different states.51

Perfusion studies in pediatric cohorts

Overall, studies in pediatric populations were rarer

than studies in adults. An overview of the respective

studies in pediatric cohorts is given by Table 4.52–54

In one study, ASL has been used to investigate

effects of cognitive behavioral therapy (CBT).53 The

authors demonstrated higher brain perfusion in the

right orbitofrontal cortex, dorsolateral prefrontal

cortex, and ventrolateral prefrontal cortex in pediatric

migraine patients (MwoA, MwA, and CM) after CBT

(8 sessions about 45minutes each, once per week) when

compared to the condition before CBT (scanning one

week before and after the CBT block with 8 sessions).53

The authors also demonstrated lowered perfusion in

the bilateral cerebellum, which they noted could be

artificial due to susceptibility artifacts.53 Additionally,

an association between reduction in attack frequency

following CBT and perfusion of bilateral occipital

areas was observed.53

Another study in pediatric migraine patients (sub-

type unspecified) replicated a finding previously

observed in adult migraine patients.54 Compared to

HC, patients demonstrated heightened CBF in bilateral

primary somatosensory cortices during the interictal

period.54 For the right primary somatosensory cortex,

CBF was associated with attack frequency and cutane-

ous allodynia (assessed by a questionnaire derived from

the Allodynia Symptom Questionnaire55).54

A more consistent pattern of ASL alterations was

observed in ictal imaging of pediatric MwA.52,56 In one

study, the authors reported hypoperfusion of mostly

occipital and parietal areas in 11 out of 49 analyzed

patients.52 Notably, hypoperfusion was observed in

all 9 patients that were scanned within 24 hours of

symptom onset.52 Additionally, visually assessed

diffusion-weighted imaging (DWI) did not show any

hyperintense signal alterations, which would be sugges-

tive of cytotoxic edema (e.g., as a result of cerebral

ischemia).52

Adding further context to and replicating parts of

this finding, another study in pediatric MwA patients

retrospectively analyzed ASL imaging during migraine

attacks.56 The authors reported hypoperfusion in 16

out of 17 scans, with the hypoperfusion pattern visually

matching the expected brain area based on aura neu-

rological symptoms (e.g., right-sided motor deficit –

alterations within the left hemisphere) in 15 of these

cases, which was confirmed by CBF measurements.56

In 75% of the patients with perfusion abnormalities,

visually assessed TOF-MRA revealed vasospasms

matching the areas of hypoperfusion (e.g., left-

hemispheric hypoperfusion – vasospasm of the left

middle cerebral artery).56 Again, DWI did not show
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any alterations suggestive of diffusion restrictions

within the brain.56

Discussion

We conducted a review of 20 ASL studies in migraine

(16 in adult populations, 4 in pediatric populations)

published between April 2014 and November 2022.

Overall, ASL has been used in a variety of study

designs and migraine subgroups to investigate

disease-associated phenomena of cerebral perfusion.

State of the literature

Overall, ASL has found application in a variety of set-

tings and study designs. In cross-sectional designs,

studies demonstrated a variety of altered perfusion

patterns between different migraine subtypes and

HC.33–38,41 There was little overlap regarding the

results of the individual studies, as well as little overlap

with other known areas (e.g., parietal association areas,
retrosplenial cortex, ectorhinal cortex) implicated in
the perception of migraine pain (Figure 3).57

One notable replicated finding was reported in two
studies conducted by the same group, demonstrating
heightened interictal CBF of bilateral primary somato-
sensory cortices in migraine patients compared to HC,
one study recruiting adults and the other investigating
pediatric and adolescent patients.34,54 Both studies also
demonstrated associations between CBF of primary
somatosensory cortices and attack frequency.34,54

Hyperresponsiveness of the somatosensory cortex in
migraine patients has long been considered a
common phenomenon in migraine, resulting from
pathological habituation processes.58 In this context,
CBF increases could be considered an imaging-based
correlate due to increased metabolic needs arising from
hyperresponsiveness. However, more recent reports
aiming to reduce study biases (e.g., by blinding assess-
ing personnel) were unable to reproduce

Figure 3. Migraine pain matrix and cross-sectional perfusion changes in migraine patients compared to healthy controls (HC). This
figure depicts areas involved in the perception of migraine pain as reported by Ashina57 (a, green), vice versa the perfusion changes of
migraine patients compared to HC are shown as reported in the reviewed literature (b, red & blue). Red markers indicate hyper-
perfusion, and blue markers indicate hypoperfusion in patients compared to HC. Data visualized in b is taken from the cross-sectional
studies reviewed across all subtypes of migraine. Notably, while some overlap appears to exist (thalamus [Th], superior temporal
gyrus [STG], insula [Ins], visual cortex [VisC], precentral gyrus [PrCG], and postcentral gyrus [PoCG]), the observed perfusion
changes were mostly identified in different studies with no replication between different publications.
AuC: auditory cortex; CrbVerm: cerebellar vermis; ECT: ectorhinal cortex; MFG: middle frontal gyrus; NucA: nucleus accumbens;
OFC: orbitofrontal cortex; RspC: retrosplenial cortex; r: right; SpV: spinal trigeminal nucleus; SPL: superior parietal lobule; SSN:
superior salivatory nucleus; SMA: supplementary motor area; vl: ventrolateral; V5: visual motion area. Areas within the left hemi-
sphere are labeled with initial letter “l”, areas within the right hemisphere are labeled with initial letter “r”. Figure created with
BioRender.com.
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electrophysiological correlates of cortical hyperrespon-
siveness and thus called this hypothesis into question.59

Interestingly, in stimulation paradigms, BOLD signal
changes of somatosensory cortices were found reduced
in response to painful stimuli in migraine and
medication-overuse headache compared to HC, which
was interpreted as a correlate of reduced analgesic
activity.60–62 It should however be reminded that
stimulation-induced BOLD signal changes are funda-
mentally different from group differences in ASL sig-
nals, especially when no stimulation paradigm was
employed.

The concept of hyperresponsiveness has also been
used to explain the observation of migraine patients
having an increased risk of developing WMH.63

One recent study employed CO2 targeting to investi-
gate the relationship between cerebrovascular reactivity
and the presence of WMH.63 The authors found that
on a voxel-to-voxel basis, reduced cerebrovascular
reactivity (CRV) correlated with an increased likeli-
hood of WMH being present within the respective
voxels.63 This was explained as the result of a
hyperresponsivity-induced higher baseline metabolic
demand, leading to higher vulnerability during periods
of metabolic stress such as related to CSD.63 Higher
resting CBF velocity of migraine patients in both ante-
rior and posterior circulation was proposed in a recent
systematic review.18 However, the ASL results reviewed
apparently conflict with this hypothesis, indicating that
patients with higher WMH load exhibit reduced
CBF.42 One potential way to reconcile these findings
would be to consider whether the observed hypoperfu-
sion is in fact a consequence of decreased global met-
abolic demand due to progressive neuronal death and
replacement via WMH, as the authors discussed in
their work.42

Other studies conducted measurements across mul-
tiple timepoints within the migraine cycle in longitudi-
nal designs.48–51 Longitudinal studies may allow for
investigation and better control of potentially con-
founding variables inherent in a cyclical disease, specif-
ically scan timing in reference to the migraine cycle.
The observed results (e.g., failure to replicate certain
CBF alterations48,49,51) appear partially conflicting,
but reasons for these differences could be found
within the underlying designs (e.g., continuous scan-
ning of individuals versus acquisition of scans within
different individuals at varying timepoints within the
migraine cycle).46,47,49 Thus, while longitudinal designs
hold promise in migraine specifically, future studies
testing for reproducibility of the abovementioned find-
ings are much needed.

In this context, one should also consider the possi-
bility that inter-individual differences between patients
in migraine-related perfusion alterations could be so

particular so that they would not be necessarily observ-

able on the group comparison level, but only longitu-

dinally. This should be even more of a concern when

conducting studies in cohorts of mixed subtypes of

migraine (e.g., MwA, MwoA, or vestibular migraine),

and again speaks to the importance of longitudinal

measurements and their potential value over cross-

sectional approaches. Naturally, findings on a group

level would likely miss any processes with high spatial

variance between individuals. These would likely only

become visible in longitudinal imaging studies.

Furthermore, this line of thought highlights the key

importance of any generalizable, replicable and

robust cross-sectional findings as pointing towards

shared mechanisms in migraine.
More consistently replicated findings were found in

pediatric migraine imaging.52,56,64–66 Specifically, ASL

has repeatedly demonstrated early-phase hypoperfu-

sion matching the hemisphere of aura,52,56,64–66 with

unaltered DWI,56 vasospasm-like phenomena in

TOF-MRA,56 and subsequent hyperperfusion.52,56

This replicates analogous findings from case series

Figure 4. Cortical spreading depolarization (CSD) and perfu-
sion. This figure depicts a schematic representation of the
presumed connection between CSD and perfusion. (a) CSD
(right hemisphere, green) begins in occipital areas and spreads in
rostral direction. (b) Following initial depolarization, hyperpo-
larization (yellow) sets in, accompanied by initial hypoperfusion
(left hemisphere, blue). (c) Following initial hypoperfusion, a
relative hyperperfusion analogous to postischemic luxury perfu-
sion sets in (left hemisphere, gradient red). (d) In the subacute
phase, hyperperfusion has supplanted the initial hypoperfusion (left
hemisphere, red). Figure created with BioRender.com.
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demonstrating similar perfusion alterations in smaller
cohorts.64–66 This time-dependent hypo-/hyperperfu-
sion pattern could resemble the luxury perfusion seen
in ischemic stroke, where tissue subject to transitory
hypoperfusion is subsequently hyperperfused.67–69

These findings might be especially interesting for clini-
cians, since collectively they describe a plausible mech-
anistic timeline for perfusion abnormalities during the
migraine attack that may also relate to findings such as
heightened risks for WMH. Taken together, the
reviewed studies may imply cerebral hypoperfusion as
one consistent component of pediatric migraine aura,
fitting the concept of CSD as an important pathophys-
iological surrogate of aura (Figure 4).70,71

Extending our discussion to the adjacent modality
of fMRI, some of the areas of interest observed in our
ASL review (e.g., insula, brainstem nuclei, or central
region) have been reported as showing various BOLD
signal alterations compared to HC or other migraine
subgroups.12 For example, the insular cortex has dem-
onstrated altered BOLD functional connectivity with a
variety of other brain areas in fMRI,12 which could
plausibly be related to the hyperperfusion observed in
some of the present ASL studies.41,49 Analogous con-
clusions could be drawn for observed ASL signal
changes in the hypothalamus or thalamus.38,48

However, as recent reviews have pointed out, fMRI
literature of migraine is generally subject to many lim-
itations and partially contradictory findings, mostly
due to methodological inconsistencies (e.g., group
sizing, data preprocessing, statistical analyses) and
resulting lack of replications.11,12 Therefore, it stands
to reason whether the literature base of fMRI is at this
time truly robust enough to directly relate any specific
fMRI results to the ASL findings presented in this
review.

Perspectives for future research

Overall, ASL may have a valuable role in investigating
vascular mechanisms and pathologies in migraine relat-
ed to alterations of meningeal vessels and phenomena
of cerebral perfusion.13–17 Current recommendations
by the Perfusion Study Group of the International
Society for Magnetic Resonance in Medicine
(ISMRM) and the European Cooperation in Science
and Technology (COST) action for ASL in Dementia
may aid to harmonize ASL acquisition schemes, espe-
cially of pCASL-based imaging.25 Technical advances
may reveal additional information, which can be
derived from innovations such as multi-PLD, vessel-
selective ASL, velocity-selective ASL, or recent
blood-brain barrier modeling approaches.26,69,72–79

Such more advanced ASL-based techniques could aid
the investigation of perfusion- and vessel-related

phenomena in migraine by providing non-invasive

access to data that previously may have required inva-

sive procedures or may have not been delivered by any

other imaging technique.
To generate generalizable findings, larger datasets

are appealing, especially considering the rising preva-

lence of machine learning methodologies for functional

data.80 Data must however be available, adequately

structured, preferably labeled, as well as comparable

to other datasets. Tackling these challenges requires a

multi-faceted approach, including data sharing,81–83

data harmonization,84,85 data storage (e.g., using the

Brain Imaging Data Structure [BIDS]),86,87 and data

analyses (e.g., ExploreASL, ASLPrep, or Bayesian

Inference for ASL MRI [BASIL]).88–90

Regarding data labeling, migraine poses unique

challenges compared to many other disorders.

Specifically, migraine encompasses a variety of sub-

types with different clinical phenotypes that likely cor-

respond to different alterations demonstrable in

neuroimaging.5,6,12 This necessitates precise documen-

tation standards regarding cohort recruitment.

Additionally, some of the reviewed studies indicated

that cerebral perfusion is subject to considerable

changes over the course of the migraine cycle.48,49

Currently, most cross-sectional studies referred to

their scan timing (if documentation was present) as

either “ictal” or “interictal”, with interval definitions

varying between studies.34,36 While consistent nomen-

clature (e.g., by referring to prodrome and postdrome

intervals as defined by the ICHD1) would be one con-

tributor to higher inter-study comparability, a more

elegant solution could be found in a stronger focus

on longitudinal study designs. Some of the reviewed

studies modeled perfusion changes over the migraine

cycle by scanning subjects at different time points

within the migraine cycle.48,49 While these types of

studies tend to require more resources than cross-

sectional designs, they could potentially account more

easily for inter-individual differences confounding

cross-sectional designs.

Limitations

While we have searched both the Pubmed database and

reference sections from the included publications, we

have not searched other databases (e.g., Web of

Science, Scopus or similar) and therefore cannot

exclude the possibility of having missed isolated pub-

lications in our search process. Additionally, we have

not attempted a meta-analysis of the underlying image

data, both due to the technical issues inherent in

attempts at synthesizing heterogeneous MRI data, as

well as the underlying differences in study designs
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referred to above, both of which make data between
different studies difficult to compare.

Conclusion

Perfusion imaging by ASL has seen both numerous
validation studies and technical innovations contribut-
ing to its progressive adoption in research and clinical
frameworks. Despite this, ASL applications in
migraine studies appear sparse. In this context, it
needs to be emphasized that this technique does not
require intravenous contrast media, radioactive tracers,
or ionizing radiation, making it especially appealing for
longitudinal setups and pediatric cohorts. Newer devel-
opments such as vessel-selective perfusion mapping or
time-resolved 4D angiography have not yet found
application within migraine imaging. However, primar-
ily on the basis of pCASL in ictal imaging of pediatric
MwA, evidence converges on a common pattern of
perfusion alterations characterized by initial hypoper-
fusion shortly after symptom onset followed by subse-
quent hyperperfusion, which seems in line with the
pathophysiological concept of CSD.
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