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Abstract

To reduce the adverse effects of climate change, decarbonization efforts are required across all

sectors. The energy and transportation sectors play an important role in this effort but the

high investment costs of low carbon technologies can lead to challenges in cost competitiveness.

Subsequently, in the energy sector the Levelized Cost of Electricity (LCOE), which aggregate

investment expenditures and operating costs, have emerged as the dominant unit cost measure

to assess the cost-competitiveness of different electricity generation technologies. The first essay

of this dissertation reviews the literature on Levelized Cost (LC). It shows that today, LC is

mostly applied in electricity generation and -storage, hydrogen, and carbon capture, and suggests

further use cases, e.g. in transportation. In the transportation sector, high purchase cost driven

by battery prices are an important barrier to the widespread adoption of Electric Vehicles (EVs).

This challenge is addressed by the second essay which introduces a bottom-up cost model for

EV batteries and compares the production cost of two state-of-the-art battery designs. It also

introduces the Levelized Cost of Battery Production (LCBP) and shows that they can be a more

accurate cost measure compared to Full Cost (FC) and Marginal Cost (MC). Besides differences

in production cost, different battery designs also have different performance characteristics, e.g.

their capacity degradation. The third essay takes these performance characteristics into account

and analyzes their influence on the optimal system size and cost competitiveness of residential

rooftop Solar Photovoltaic (PV) and Battery Electricity Storage (BES) systems. It finds that

modern lithium- and sodium-based batteries are significantly more economical than traditional

sodium-calcium or lead-based batteries and shows that a large-scale roll-out of residential PV and

BES systems could reduce the electricity produced from fossil fuels in Germany. The three essays

contribute to existing literature by highlighting the importance of cost models and -measures to

select technologies for a cost-efficient decarbonization of the energy and transportation sector.
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1 | Introduction

1.1 Motivation

Climate change is one of the biggest challenges of the 21st century. It describes changes in

the Earth’s climate system, such as global warming or shifts in precipitation and wind patterns.

Climate change is primarily the result of human activities that lead to the emission of Greenhouse

Gases (GHG) into the atmosphere, for example, from burning fossil fuels for electricity generation

or in the Internal Combustion Engines (ICEs) of cars (Intergovernmental Panel on Climate

Change, 2023). As shown in Figure 1.1a, GHG emissions from human activity have increased

materially since 1850 with a notable acceleration after 1950. As a result of these emissions,

the atmospheric concentrations of some of the most important GHGs, carbon dioxide (CO2),

methane (CH4), and nitrous oxcide (N2O), have increased, as depicted in Figure 1.1b. In the

same time frame, the global surface temperature has increased by around 1.1°C in 2011-2020

compared to 1850-1900 levels (Intergovernmental Panel on Climate Change, 2023). To put this

temperature increase into perspective and highlight its magnitude, it can be compared with the

estimated temperature during the warmest multi-century period in the last 100,000 years which

was around 0.2 to 1.0°C above the 1850-1900 levels and occurred ca. 6,500 years ago. Overall,

detection and attribution studies show that the best explanation for the temperature increases

is human activity (Intergovernmental Panel on Climate Change, 2023). Apart from increases in

temperature levels, other effects of climate change that can already be seen today are increasing

amounts of extreme weather events such as heatwaves, droughts, floods, or wildfires.

In the future, climate change could lead to rising sea levels, water scarcity, and the disruption

of entire ecosystems. Therefore, as depicted in Figure 1.2, the World Economic Forum (WEF)

expects climate-related risks to be the predominant and highest-ranked risk factors both in the

short- and long-term (World Economic Forum, 2023).

1



1 Introduction 2

(a) GHG emissions (from human activity) since 1850.

(b) Concentration of CO2, CH4, and N2O since 1850.

(c) Increase in global surface temperatre since 1850.

Figure 1.1: The relation between human caused CO2 emissions and global warming (own representation after
Intergovernmental Panel on Climate Change, 2023)



1 Introduction 3

Figure 1.2: Global risks ranked by severity over the short and long term (own representation after World
Economic Forum, 2023)

In addition to the magnitude of the challenge, several factors make climate change a complex

and hard-to-tackle problem: (1) Climate change is a global problem that requires all countries

to collectively reduce their GHG emissions, regardless of geopolitical conflicts and international

competition. (2) It includes many interrelated factors across sectors. For example, electrification

could help reduce direct emissions in the transport sector, but the additional electricity demand

could increase emissions in the energy sector, and the need for batteries could increase emissions

from mining and manufacturing. (3) In many sectors, there are already viable low-carbon tech-

nologies, such as solar PV, wind energy, or hydrogen, but implementing them requires significant

investments. (4) Many actions necessary to tackle climate change could lead to significant eco-

nomic and social challenges. For instance, the introduction of carbon prices could increase the

cost of energy and goods and place a serious burden on low-income households. Furthermore,

they could increase the production cost of companies from energy-intensive industries and re-

duce their competitiveness compared to companies in areas that are not subject to such policies.

(5) Even though the first effects of climate change can already be seen today, many of its more

severe implications will only be fully visible in the future.
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Local and regional solutions to a global problem

Due to the scale and complexity of the problem, in 1992, the UN Framework Convention on

Climate Change was adopted. It stipulates that the signing parties should meet regularly to

address climate change at the Conference of Parties (COP). After a series of failed attempts

to negotiate a global agreement on GHG emissions reductions, during the 2015 United States

Climate Change Conference (COP21) in Paris, the so-called Paris Agreement was negotiated

to find a global solution to climate change. The Paris Agreement is an international treaty

signed by 195 countries and the European Union (EU) to keep global warming to well below

2°C above pre-industrial levels and to preferably limit the temperature increase to 1.5°C above

pre-industrial levels, which would substantially reduce the adverse effects of climate change.

Limiting global warming to 1.5°C requires GHG emissions to peak in the early 2020s, to decline

by at least 43% by 2030, and to achieve net zero emissions in the early 2050s (Intergovernmental

Panel on Climate Change, 2023). To achieve this goal, each country that has signed the Paris

Agreement must regularly determine individual, Nationally Determined Contributions (NDCs)

for decarbonization, set up a plan to achieve them and report on their progress. In this process,

each update of the NDCs should be more ambitious than the previous one, but there are no

rules to set specific emission targets and no mechanism to ensure that the collective NDCs

suffice to achieve the goals of the Paris Agreement. Subsequently, current NDCs likely do not

suffice to limit global warming to 1.5°C and make it hard to limit global warming to 2 °C

(Intergovernmental Panel on Climate Change, 2023).

One signatory that has been very vocal about its ambitions to limit climate change is the EU.

Despite being only the third largest GHG emitter (after China and the United States) with a

contribution of 8% of global GHG emissions (European Environment Agency, 2020), the EU has

set ambitious GHG reduction targets. After an initial NDC pledging a 40% reduction of GHG

emissions1, the EU submitted an updated and enhanced NDCs in December 2020, pledging to

reduce GHG emissions by 55% in 20301. To support this effort, in 2020, the EU approved the

European Green Deal, a set of policy initiatives by the European Commission, aiming to reduce

GHG emissions by at least 55% by 20301 and to become the first climate-neutral continent by

2050. To deliver the Green Deal, multiple initiatives with sector-specific targets, for example,

for energy and transportation, were launched. In the energy sector, a binding target of at least

1 Compared to 1990 levels.
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40% renewables in the energy mix and a reduction of 36-39% for final and primary energy

consumption by 2030 were set (Council of the European Union, 2022). In the transport sector,

a 55% emission reduction target is set for cars in 2030. In addition, from 2035 on, all new cars

must be EVs or use combustion engines fueled by zero-emission fuels (European Parliament,

2023).

Germany is the largest GHG emitter in the EU (Statista GmbH, 2022a). Therefore, to achieve

the EUs NDCs, it is crucial to reduce German emissions significantly. Notably, climate protection

is anchored in Article 20a of the German Basic Law which the German Federal Constitutional

Court interprets as achieving the targets of the Paris Agreement (Bundesverfassungsgericht,

2021). In 2021, the Federal Constitutional Court ruled that the previous climate law, which

aimed to reduce GHG emissions by at least 55% by 2030, was incompatible with fundamental

rights because it did not provide sufficient specifications for emissions reductions from 2031 on-

wards. More specifically, the court reasoned that the challenged climate law would postpone

severe emissions reductions into periods after 2030 which would then affect the basic freedom

rights of the, in some cases, still very young complainants. This is because achieving the emis-

sions reductions necessary to comply with the Paris Agreement after 2030 could require severe

restrictions in every aspect of human life (Bundesverfassungsgericht, 2021). Reacting to this,

the governing centre-left-green-liberal coalition increased and pulled forward the GHG reduction

targets to a reduction of 65% by 2030, 88% by 2040, and net zero by 2045, compared to 1990

levels (KSG, 2021). For the transport sector, this is translated into a reduction of 49% until

2030. To achieve this, among others, the number of registered EVs is planned to increase from

one million in 2022 to between seven and ten million in 2030 (ADAC, 2023, Bundesministerium

für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz). For the energy sector, a

reduction of 65% until 2030 needs to be achieved. To do so, a significant expansion of solar PV

and wind energy to 215 GW and 145 GW2 respectively is planned to aid in achieving an 80%

share of Renewable Energy Sourcess (RESs) (Die Bundesregierung, 2023) in the electricity mix.

Decarbonization is a cross-sectoral task

As depicted in Figure 1.3, significant efforts to reduce GHG emissions must be made across

all sectors to achieve net zero emissions by 2050 to limit global warming to 1.5 °C. Depend-

ing on the sector, these efforts include transitioning to RES, increasing circularity, or replacing

2 30 GW of offshore and 115 GW of onshore wind capacity.
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Figure 1.3: Net Zero 2050 pathway based on Network for Greening the Financial System scenario (own
representation after McKinsey & Company, 2022)

GHG emissions-intensive processes with sustainable ones. The transition often requires large

investments, for example, into wind turbines, electrolyzers for hydrogen production, or the de-

velopment and production of new, low-emission products like EVs. McKinsey & Company (2022)

estimates that in a 1.5 °C scenario 3.5 trillion $ additional annual investment in physical assets

for energy and land-use systems3 are required between 2021 and 2050.

Even though all sectors need to reduce their carbon emissions, some sectors, such as the energy

and transportation sector, will transition earlier than others. In both cases, an earlier transition

is facilitated by the availability of competitive decarbonization technologies such as RES or EVs,

making the transition easier and cheaper compared to, for example, steel production, where

potential decarbonization technologies such as hydrogen are much less established (McKinsey &

Company, 2022). A swift transformation of the energy sector is also necessary due to the elec-

trification of other sectors, such as transportation, heating, or industry4, where the availability

of low or zero emission energy is a pre-requisite.

3 Includes energy supply, e.g., power systems, hydrogen, and biofuel, energy demand, e.g., for vehicles, or alternate
methods of steel and cement production, and various forms of land use, such as GHG-efficient farming practices.

4 For example, green steel production, which uses green hydrogen produced from RES.



1 Introduction 7

Renewable generation and storage can help decarbonize the energy sector

In the energy sector, which has accounted for about 30% of CO2 emissions in 2019 (McKinsey &

Company, 2022), a substantial increase in RES combined with the phase-out of fossil fuels such as

hard coal or lignite is required to reduce GHG emissions while satisfying the additional demand

from the electrification of other sectors and economic growth. In the past, RES costs have fallen

dramatically, often making them the most economical type of electricity generation (Kost et al.,

2021). However, because the sun does not always shine and the wind does not always blow, a

high share of RES in the power system can create challenges due to their inherent intermittency.

To create a stable generation that can satisfy demand and lead to stable prices, flexibility options

are required to increase supply during times of low renewable generation or to increase demand

during times of oversupply5. Flexibility options include dispatchable generation that can be

ramped up or down when demand exceeds or subceeds supply, or electricity storage that can be

charged and discharged to balance supply and demand.

A frequently used option for dispatchable generation capacity are gas-fired power plants. Their

short ramp-up and -down times and lower CO2 emissions compared to other technologies, such

as coal-fired power plants, have made them popular in countries like Germany. But even though

emissions from gas-fired power plants are lower than from other fossil fuels, they are not zero and

cannot lead to an entirely decarbonized energy system. Therefore, additional gas-fired power

must be either paired with Carbon Capture and Sequestration (CCS) / Carbon Capture and

Utilization (CCU) or operated with hydrogen. Furthermore, geopolitical crises like the war in

Ukraine have highlighted the supply risks that a significant dependence on energy imports can

cause. Due to the high cost of carbon capture and hydrogen production, as well as the potential

supply risks from energy imports, to enable large shares of renewable generation, it is crucial to

not only rely on dispatchable generation capacity but to also leverage electricity storage.

Similar to dispatchable generation, electricity storage can be used to create additional demand

by charging electricity during periods of oversupply, for example, midday, when solar generation

is high, and to create additional supply by discharging electricity, for instance, in the evening,

when demand often peaks but renewable generation from solar PV is decreasing. Due to the

importance of electricity storage, multiple technologies with different cost profiles and applica-

tions have emerged. Pumped-Hydro Storage (PHS) or Compressed Air Energy Storage (CAES)

5 When renewable generation is high due to favorable weather conditions but demand is low, for instance during
vacations.
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in salt caverns are economical options for long-term storage due to their low relative investment

cost (Schmidt et al., 2019). However, their implementation in many countries is limited due

to geographic requirements. Other technologies, such as hydrogen storage, could also be used

for long-term electricity storage, but the low Round-Trip Efficiency (RTE) of today’s systems

makes them costly in the near term. Furthermore, hydrogen is essential for decarbonizing many

industrial applications, such as chemicals or green steel production. Therefore, supply shortages

of green hydrogen are likely, and it is expected that it will first be used for applications outside

of electricity storage where there are no technological alternatives.

Batteries are increasingly researched and used for electricity storage. EV uptake has led to the

continued development of new, more efficient, durable, and cheaper batteries, and the significant

increase in production volume has reduced battery costs. But large-scale battery storage capacity

is still expensive compared toPHS and CAES. Therefore, they are often employed in short-term

use cases, for example, to shift overgeneration from the day to the night. And while grid-scale

examples of BES are still rare, many households in developed countries such as Germany have

already adopted small-scale BES systems.

Cheaper batteries can support the uptake of EVs to decarbonize the trans-

portation sector

The transportation sector is the third largest emitting sector globally. It has contributed 19% of

CO2 emissions in 2019, out of which about 75% are caused by road transportation (McKinsey

& Company, 2022). To decrease the GHG emissions from road transportation, ICE vehicles

powered by fossil fuels must be replaced by EVs6, fuel cell EVs, or vehicles that run on zero-

emission fuels. Today, BEVs comprise the largest share of low-emissions vehicles, and most major

automotive Original Equipment Manufacturers (OEMs) offer multiple BEV models. Therefore,

many countries aim to reduce GHG emissions by increasing the share of EVs in their passenger

car fleets.

The Total Cost of Ownership (TCO) is an important adoption factor for EVs. In literature and

industry, there are conflicting results on the TCO of EVs compared to traditional ICE vehicles.

For instance Burnham et al. (2021) estimates that the TCO sports utility vehicles in the United

States are higher than the ones of comparable EVs. In contrast, Liu et al. (2021) acknowledge

6 For simplicity, in this thesis, EVs refer to battery electric vehicles if not specified otherwise



1 Introduction 9

that many recent studies come to a similar conclusion, but argue that this can be attributed to

the restriction of those comparisons to a limited number of EV classes (e.g., compact vehicles

with short-mid driving ranges). Furthermore, they find, that when comparing vehicles with

similar weight and power characteristics, EVs are cost-competitive with ICE vehicles. Similarly,

Wu et al. (2015) highlight the dependence of the TCO comparison on vehicle classes and driving

range. They find that conventional cars remain cost-efficient in short-distance cases, while EVs

become cost-efficient in medium- and long-distance cases. Element Energy (2021) argue that

the lifetime TCOs of EVs are already lower than those of ICE vehicles in the EU. Similarly

McKinsey Center for Future Mobility (2021) estimates that EVs will become more economical

than ICE vehicles globally by 2025 at the latest7. Important factors for the TCO of EVs are

lower fuel and maintenance costs that can outweigh higher initial investment costs. However,

despite a potential lifetime cost advantage, the high price of EVs remains a key adoption barrier

for many customers (Liao et al., 2017). This price is mainly driven by the high manufacturing

cost of batteries, which comprise roughly 30% of total EV production cost (BloombergNEF,

2017). In politics and industry, a battery cost level of 100 $ (kWh)−1 is often presented as an

important threshold after which cost-parity with ICE vehicles should be widely achieved, and

adoption is expected to significantly increase (Bajolle et al., 2022). Despite strong cost declines

of 79%, as depicted in Figure 1.4, BloombergNEF (2022) still estimates current market prices of

battery packs considerably higher at 151 $ (kWh)−1 in 2022.

Figure 1.4: Volume-weighted average lithium-ion battery pack and cell price split, 2013-2022 (own representa-
tion after BloombergNEF, 2022)

7 Liu et al. (2020), Element Energy (2021) and McKinsey Center for Future Mobility (2021) do not include subsidies
in their TCO calculation.
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In addition to their influence on EV cost, the battery’s durability, energy density, and charging

speed strongly influence important performance metrics of EVs, such as their lifetime and range.

Therefore, OEMs and their suppliers are continuously working on developing new batteries and

production processes to improve performance and costs.

1.2 Research objectives and methodology

This dissertation explores research questions at the intersection of accounting theory, the elec-

trification of transport, and renewable electricity generation and storage. This overarching topic

is addressed by three essays. The following chapter provides an overview of each essay’s research

objectives and methodology.

The first essay provides a literature review on the LC concept. LC reflect the average price

an investor needs to realize to generate a zero Net Present Value (NPV) for an investment

in a production facility and can be equated with the long-run marginal cost (Reichelstein and

Rohlfing-Bastian, 2015). They are widely used in academia and practice in the energy sector,

where the LCOE has become the predominant metric to compare the cost of generating electricity

with different technologies (for example hard coal plants, solar PV or wind power, Tran and

Smith, 2018).

Despite its widespread use in the energy sector, LC is not incorporated into most cost account-

ing textbooks such as Datar and Rajan (2018). Furthermore, there is potential to extend its

application beyond the energy sector to more industries such as transportation or quantum- and

high-performance computing. The objective of this essay is therefore threefold: (1) it provides

an overview of the LC concept including its comparison to other frequently used cost measures

such as FC and a discussion of its decision relevance including its advantages and limitations,

(2) it provides an overview of the four most prevalent LC literature streams: LCOE, Levelized

Cost of Energy Storage (LCOS), Levelized Cost of Hydrogen (LCOH), and Levelized Cost of

Carbon (LCOC), and (3) it identifies potential future applications of the LC concept.

To provide an overview on the LC concept, the essay first explains the mathematical formulation

of LC which is grounded in a verbal definition from Massachusetts Institute of Technology

(2007), chapter 3: LC is the constant dollar price that would be required over the life of the
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investment project to cover all operating costs, payment of debt and accrued interest on initial

project expenses and the payment of an acceptable return to investors.

It then relates LC to FC. The calculation of FC can vary and the relation to LC depends

on assumptions, for example, on the nature of capacity degradation. Therefore, the results

of multiple authors such as Rogerson (2008) or Reichelstein and Rohlfing-Bastian (2015) who

have compared the two cost measures in different scenarios are structured and summarized.

Furthermore, the essay analyzes the relation between LC and a FC measure that includes taxes

and calculates capital cost based on linear depreciation and the assumption that on average, half

of the initial capital investment is tied up. Finally, accounting theory papers from Mahlert (1976),

Swoboda (1979), Küpper (1985), Joskow (2011), Hirth (2013) and others, on cost measures and

their relation to the investment theoretic approach, are presented, and the advantages and

limitations of the LC concept are assessed.

After the first recorded application of LCOE by Rosenthal et al. (1965) further literature streams

in the energy sector on LCOS, LCOH, and LCOC have emerged. To provide an overview of

all four literature streams, seminal and recent papers have been summarized. Within each

literature stream, different sub-streams, for example on cost comparisons, policy implications, or

methodological extensions of the LC concept have been identified and the literature is structured

accordingly. The summary of each literature stream also includes a summary of its current and

potential future relevance as well as potential future topics. Furthermore, a condensed overview

of very small literature streams such as levelized cost of heating or water is given.

LC have become the predominant cost metric in many energy applications. It is plausible that

other industries with similar characteristics could also benefit from the application of LC. To

identify potential future use cases for LC, different industries are assessed based on their potential

use of LC. In some cases, such as in mobility, a first LC measure has already been introduced

(Comello et al., 2021) and could be used in more literature in the future. In others, such as

patent licensing, nutrition, or cloud storage, the applicability of the LC concept is assessed based

on the similarity of the applications to the energy sector.

The second essay presents a bottom-up cost model that enables the user to compare the

cost competitiveness of different battery chemistries, cell designs, and manufacturing processes.

Batteries make up about 30% of the production cost of EVs (BloombergNEF, 2017). Therefore,
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reducing battery production costs can help to reduce the production cost and the purchase price

of EVs for end customers and facilitate their large-scale adoption.

Today, cost estimates for current and future battery prices from literature and industry vary

significantly and do not provide a good reference for true production cost. Tesla, on one hand,

announced on their first battery day in September 2020 that they plan to reduce the cost per

kWh of a battery pack by about 56 % compared to the current state of art (Frazelle, 2021),

resulting in battery cost between 48 and 53 $ (kWh)−1. Assuming battery cell costs to account

for 75 % of the battery pack costs, final cell costs would have to be between 36 and 40 $ (kWh)−1.

These cost assumptions have been met with scepticism from established OEMs because such a

low cost level can only be achieved through significant and as-yet-unseen technical and material-

based advancements. Literature, on the other hand, estimates prices much higher, and usually

significantly above the 100 $ (kWh)−1 level (see, e.g., Patry et al., 2015, Ciez and Whitacre,

2017, Philippot et al., 2019, Schneider, 1961, Nemeth et al., 2020, and others). As illustrated in

Figure 1.5, due to the large variances in price estimates and a lack of convergence of cost over

time, these estimates do not provide a clear answer to the level of battery prices.

In addition to a high variance in price estimates, most battery cost models also lack the ability

for detailed and adjustable modeling of the production process including changes to individual

production process steps, the sequence of production steps, and the battery design. For exam-

ple, one of the most frequently used tools for battery cost estimation, the Argonne National

Laboratories Battery Performance and Cost Model (BatPac), does not consider energy cost or

individual scrap rates per process step and does not allow for changes of the sequence of pro-

duction steps. However, all of these options for customization would be desirable, as energy and

scrap can be significant cost factors, and the ability to model changes to the production process

is important to be able to evaluate the cost potential of new production technologies and battery

designs.

Finally, most of the presented cost models lack standardized and clearly defined cost measures.

While most papers present a FC measure, its calculation is not clearly defined. For instance,

capital costs are often not included and if they are, their calculation differs. Most models also

do not include taxes. While this is understandable due to regional differences in corporate

income taxes, it also means that an important cost factor is neglected. Therefore, most cost

models do not calculate the true long-run marginal cost that would, for example, be reflected

by LC (Reichelstein and Rohlfing-Bastian, 2015). Furthermore, it is possible that very low-cost
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Figure 1.5: Battery cell production cost reported by literature and announced by Tesla.

estimates such as the announcement from Tesla refer to MC instead of FC . Since most authors

do not present MC, this hypothesis can not be tested with existing literature.

To address the above-mentioned challenges, this essay presents a comprehensive extension to a

model published by Schünemann (2015). It enables the user to calculate the FC, LC, and MC of

different cell formats, cell chemistries, and production processes. The model consists of six stages:

(1) The selection of the cell design including its format (for example, cylindrical or prismatic), its

chemistry (for example, if silicon (Si) is used in the anode), and the annual production capacity

of the factory producing the batteries. (2) The definition of the production process chain, i.e.

the selection of the required manufacturing steps and their sequence. (3) The calculation of

the required throughput of each manufacturing step to produce the defined annual capacity,

considering the scrap rates of the machines used within the individual production steps. (4)

The calculation of the number of required machines per production step, based on the required

throughput from the previous step. (5) The calculation of the total manufacturing costs based

on the required number of machines, personnel, material, factory size, energy, etc. (6) The

calculation of FC , MC, and LC per kWh of the produced batteries.

To address the lack of reliable cost estimates and to assess how realistic Tesla’s future cost claims

are, the model is then applied to two state-of-the-art EV battery cells. The cylindrical 4680 (i.e.,

as used by Tesla) and for comparison the prismatic PHEV2 (i.e., as used by VW). For both cell

formats, three different industry-relevant cell chemistries are evaluated: one with graphite and

two with silicon-containing (3 and 5wt.%) graphite as the active anode material. To provide
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realistic cost estimates, all parameters are collected and calibrated via literature and interviews

with industry experts.

The third essay explores the influence of different battery chemistries on the fossil fuel re-

duction potential from residential rooftop solar PV and BES systems. In order to achieve their

decarbonization goals, countries worldwide are transitioning to clean energy sources. In the en-

ergy sector, fossil fuels are burned to generate electricity, for example in natural gas or hard coal

power plants. Replacing fossil fuels for electricity production could reduce global GHG emissions

and increase countries’ resilience during supply shocks such as the Russian invasion of Ukraine

which has resulted in an increase in natural gas prices and spiking electricity prices in Europe

(Arnold et al., 2022).

In the current literature, most authors focus on calculating the NPV-optimal solar PV-BES

system size for a household. Depending on the authors, variations to models (e.g., stochastic vs.

deterministic), markets (e.g., flat vs. time-of-use electricity tariffs), and countries are made (see,

for example, Erdinc et al., 2015, Khalilpour and Vassallo, 2016, Khawaja et al., 2017, Cervantes

and Choobineh, 2018, O’Shaughnessy et al., 2018, Javeed et al., 2021). None of the mentioned

authors analyze the effects of different, state-of-the-art battery types on the optimal system size

and NPV. However, the rise of electric mobility has triggered a rapid increase in global battery

production, leading to declining battery costs due to learning and economies of scale (see e.g.

Nykvist and Nilsson (2015), Matteson and Williams (2015), Nykvist et al. (2019)). Fluctuating

raw material prices and technical advancements in energy density have lead to the develop-

ment of new cathode chemistry combinations in Lithium-Ion Batteriess (LIBs). Historically,

Sodium-Calcium Exchanger (NCX) batteries have been used predominantly in residential BES

applications as well as in most EVs in the Western world. Lithium-Iron-Phosphate (LFP) bat-

teries have rapidly gained market share in recent years, especially in China. While LFP batteries

have a lower energy density than NCX batteries, they are cheaper, more thermally stable, and

more durable (Li et al., 2020 and Preger et al., 2020). The volatility in lithium prices in recent

years has also supported the development of lithium-free batteries. For example, Sodium-Ion

Batterys (SIBs) that do not contain lithium are being developed and produced by two of the

biggest LIB manufacturers: BYD (Batteries News, 2022) and CATL (Yingzhe, 2022). These

changing market dynamics make it imperative to examine the effects on sizing and profitability

of different battery types on residential solar PV and BES systems.
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While some authors such as Weniger et al. (2013, 2016), Zhang et al. (2017), and Liu et al.

(2020) include electricity independence, self-consumption and CO2 emissions associated with

solar PV and BES systems in their analysis, none of the reviewed literature assesses the fossil fuel

reduction potential of a large-scale roll-out of such systems. In light of ambitious solar expansion

targets and associated subsidies programs, for example, in Germany, it is important to be able

to determine if such programs can support a significant reduction of fossil fuel consumption or

if they would merely result in increased curtailment during times of peak generation and low or

average consumption.

The fossil fuel reduction potential of a widespread roll-out of residential solar PV-BES systems

is analyzed in a case study for Germany. The analysis consists of four steps: (1) In the first step,

the NPV-optimal solar PV-BES system size for a private household is calculated. The results

are generated for four battery types that reflect the historically most widespread battery types

(NCX and LA) as well as recently developed battery types from e-mobility (LFP and SIB).

(2) In the second step, the hourly electricity flows within the household8 are simulated and the

amount of electricity that could be used to substitute electricity generation from fossil fuels is

calculated. In the following, this is referred to as the Net Additional Electricity (NAE) supply.

(3) In the third step, the hourly data from one household is scaled towards a national level,

represented by the market potential of residential rooftop solar PV in Germany from EUPD

Research (2021). (4) In the fourth step, the national NAE supply is used to calculate the fossil

fuel savings potential for each hour and the yearly average. To do so, it is assumed that in each

hour, the electricity generation sources are substituted in descending order by their LCOE.

1.3 Findings and contribution

The first essay reviews the application of the LC concept in accounting and energy literature.

It analyzes the decision relevance of LC, creates an overview of the LCOE, LCOS, LCOH, and

LCOC literature, and identifies use cases where LC could be applied in the future.

LC is well suited for use in long-term capital allocation problems. Compared to traditional prof-

itability measures such as the return on investment, NPV, or internal rate of return which require

predictions about future revenues and costs, LC can rely solely on (current and future) cost data.

This is an advantage because future revenues are often hard to predict due to uncertainties on

8 I.e. how much electricity is generated, charged, discharged, fed into the grid, or used from the grid.
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pricing power. Compared to traditional cost measures such as FC, LC is usually larger or equal

because it also includes taxes and an appropriate allocation of depreciation and capital cost.

Specifically, it is shown that LC is larger than FC if FC is calculated with two assumptions that

are frequently used in industry: (1) Linear depreciation over an asset’s lifetime and (2) capital

cost based on the assumption that, on average, half of the initial capital is tied up.

LC can support capital allocation decisions through break-even calculations and cost compar-

isons, i.e., ranking and selecting different investment opportunities by their LC. A common

example of this are investments in electricity generation capacity, where multiple production

technologies such as wind, solar PV, or hard coal power plants are compared based on their

LC. Using LC for cost comparisons, however, requires that all regarded technologies produce an

identical homogenous good.

LC is suited for a single round of capacity investments with a finite horizon. Therefore, in settings

with multiple overlapping capacity investments other or adapted models are necessary. Jorgenson

(1963), Arrow (1964), Rogerson (2008), Rajan and Reichelstein (2009), Nezlobin (2012) and

Nezlobin et al. (2012) present suitable models in these settings, both for finite and infinite

horizon models. Furthermore, in such settings, the capacity investment and subsequently the

LC can change over time. A prominent example of this is the reduction of solar PV prices in

recent years. Here, LC does not provide guidance on how market participants should behave

because it does not assess the option of postponing an investment.

An important limitation of LC is its disregard for variability in unit revenues. This is especially

important for the application to RES where the generation of electricity is often correlated with

lower market prices. Therefore, comparing LC to the average market price is not sufficient

to assess the economic viability of an investment. Glenk and Reichelstein (2022b) propose a

solution to tackle this limitation with the introduction of the levelized revenue of electricity and

the levelized profit margin concept.

LC is widely used in both academia and practice, especially in the energy sector. Most no-

table are the literature streams on LCOE, LCOS, LCOH, and LCOC. The LCOE has been a

commonly used performance measure to benchmark electricity generation technologies for more

than 50 years (Tran and Smith, 2018, Aldersey-Williams and Rubert, 2019). Three distinct

literature streams using the LCOE methodology have emerged. They (1) provide cost compar-

isons of electricity generation technologies, (2) evaluate policy implications and (3) develop more
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advanced cost measures based on the LCOE concept. The cost comparisons represent the origin

of the LCOE, providing the largest and most mature stream, with multiple papers being pub-

lished every year. This sub-stream will likely continue to offer more research avenues since new

technologies emerge and the competitive landscape of electricity generation changes frequently.

The second sub-stream of policy evaluations will provide further policy recommendations for a

more cost-efficient clean energy transition since preventing climate change will likely remain a

focus of many governments for the next decades. In the third stream, most papers extending

the LCOE framework have been published in the last five years with many of them as recent

as 2021. Hence, further academic projects in the next years are likely, e.g., on the LCOE of

combined renewable and energy storage systems.

LCOS turned into a frequently used metric to assess the cost of energy storage. The literature

stream emerges in the 2000s and has been highly active during the last 5-10 years. Two distinct

literature streams are visible, which employ the LCOS for (1) cost comparisons of new storage

technologies (e.g., Poonpun and Jewell (2008), Jülch (2016), Smallbone et al. (2017)) and (2) to

further develop the methodology (e.g., Pawel (2014), Lai and McCulloch (2017), Comello and

Reichelstein (2019)). Both streams appear to evolve simultaneously as new technologies emerge

and are assessed in the cost comparison stream. At the same time, the methodological stream

extends the LCOS framework, e.g., to consider capacity degradation of the storage technology

(Rodby et al., 2020) or to evaluate combined storage and generation technologies (Lai and

McCulloch, 2017). In both streams, many papers are published each year and this trend will

likely continue, driven by the development of new storage technologies and the need for energy

storage due to an increasing share of RES in the electricity mix. Potentially, a third stream may

emerge on policy evaluation (similar to the LCOE stream) as the adoption of energy storage will

be supported by legislation and subsidies.

LCOH is a novel and comparatively small research stream applying the LC framework. Most

papers have been published in the last 5 years and the application of the LC measure is less

dominant than in the LCOE or LCOS literature, as there are multiple papers that employ other

(however similar) measures such as lifecycle costs (e.g., Guerra et al., 2019, Khzouz et al., 2020,

Lee et al., 2009). Due to the increasing popularity of hydrogen, the LCOH literature stream

will likely continue to grow and extend the application of LCOH not only to assessments of the

economic viability of hydrogen but potentially to policy evaluations and more complex scenarios,

similar to the LCOE and LCOS literature.
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Similar to LCOH, the LCOC literature stream is much smaller than the LCOE or LCOS liter-

atures. However, with the increasing relevance of carbon capture, it is expected to grow in the

future as more policies and technologies arise.

Besides the existing literature streams, there is a significant potential for LC to be applied to

other use cases, for example, in mobility where LC could calculate the cost per mile traveled,

in nutrition where a levelized cost of calories measure could help identify cost-efficient food

production technologies, or in cloud computing where a levelized cost of cloud storage measure

could calculate the cost of storing a gigabyte over a certain amount of time.

This essay is the first review of LC known to the author and contributes to the existing literature

in three ways: (1) It presents an extensive discussion on the advantages and disadvantages of LC

and provides guidance on situations where LC can be a suitable cost measure. (2) It summarizes

the literature of the four most widespread literature streams, introduces seminal papers, and

gives an outlook on how these streams might develop in the future. (3) It identifies use cases

where LC could be a useful cost measure and thus provides direction for further research.

The second essay shows that within the regarded scenarios both the cylindrical 4680 and the

prismatic PHEV2 cell have similar production costs but that the distribution of costs differs.

While material costs make up the largest share of the FC in both cases, the 4680 cell requires

more machines and production personnel which in turn increases investment and depreciation

costs and decreases the share of material costs.

The three cell chemistries differ by the used anode material. One variant uses graphite and

two variants use Si-containing (3 and 5wt.%) graphite as the active anode material. Adding

Si increases the energy density of both cells due to its higher specific capacity. Because of the

higher energy density, less material can be used on a per kWh basis which reduces the material

and subsequently the FC slightly. However, a much larger effect is found when reusing scrap

material which reduces cost by ca. 5%.

The results of 110-112 $ (kWh)−1 for the PHEV2 cell and 112-113 $ (kWh)−1 for the 4680 cell

are in line with other literature-reported values of ca. 100-150 $ (kWh)−1 but they are still

higher then industry reports that often claim production cost of around or below 100 $ (kWh)−1.

This could be explained by multiple reasons: (1) Industry might report MC instead of FC or

LC. The MC of the PHEV2 and 4680 cell are estimated between 103-104 $ (kWh)−1 which

is much closer to media-reported values and could explain part of the difference. However,



1 Introduction 19

this is still significantly above estimates of 48 to 53 $ (kWh)−1. (2) Reports from the media

are often based on rumors and unconfirmed sources inside the companies. This leaves the

possibility that companies leak lower than actual values to boost their perceived competitiveness

and put pressure on their competitors or suppliers. (3) Large companies could be able to achieve

significantly lower material and production costs than the models in most papers assume. This

could be due to economies of scale that are not reflected by most models’ input parameters,

including the one in this essay.

The essay shows that detailed cost models are useful for assessing the production cost of different

battery designs and production processes. Results are calibrated with literature and industry,

however, as industry reports are usually slightly lower than literature values it would be worth-

while to further explore the gap. It is also shown that the prismatic PHEV2 and the cylindrical

4680 cells have similar cost performance. Due to different cost structures driven by different

shares of material and initial investment costs, the cells have a different exposure to changes in

material costs. I.e., rising or falling material costs would have a stronger impact on the produc-

tion cost of the PHEV2 cell. It is also shown, that clear and consistent cost measure definitions

are important. The difference between cost measures can be up to 16% 9 and thus can mask

other differences. For example, in the presented case, the differences between FC and LC are

much larger than the differences between different cell chemistries within one cost measure.

This essay contributes to the existing literature by presenting a flexible bottom-up cost model

for modern battery production which is calibrated with state-of-the-art battery designs and

production processes based on current literature and expert interviews. The calculation logic of

the model as well parameters will be made publicly available. This enables potential users to

estimate the production cost of new battery chemistries and different production technologies

and processes and to adapt the model if needed.

Furthermore, the essay provides a realistic production cost estimation and comparison of two

battery cells: the PHEV2 and the 4680 cells. It contributes to the existing literature on battery

production cost by adding a current cost estimate for two state-of-the-art battery cells and

helps to ground skepticism on highly ambitious cost targets in facts, by showing that significant

reductions across all cost dimensions including material costs would be necessary to achieve such

cost reductions.

9 For example 103.30 $ (kWh)−1 MC vs 120.33 $ (kWh)−1 LC for the 4680 cell without Si and scrap material
recovery.
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Finally, it contributes to the battery cost literature by highlighting inconsistencies in current cost

calculation, providing a standardized and transparent cost measure framework, and introducing

the levelized cost of battery production. Battery production requires large investments and the

exclusion of taxes and improper accounting for capital cost can lead to the underestimation of

actual production cost. In a time where significant investments into battery manufacturing are

made, LC is a highly relevant cost measure because it can support capital allocation decisions

through break-even calculations.

The third essay analyzes the optimal sizing of household solar PV and BES systems and their

potential to reduce fossil fuel consumption on a national level. In a case study for Germany, the

essay shows that residential solar PV-BES systems can reduce electricity consumption from fossil

fuels in Germany by up to 35%. To achieve this, a net investment of 21-22 ke per household

would be required for a system with an LFP battery10, generating an NPV of ca. 6 ke per

household.

The analysis highlights the importance of battery degradation and lifetime, as well as investment

cost, as central factors for the usefulness of BES. It shows that the better durability of LFP

batteries and SIBs makes installing larger PV and BES systems economical. Therefore, the

achievable reduction of electricity from fossil fuels is ca. 9 percentage points higher when using

LFP and SIB systems compared to systems with NCX or Lead Acid (LA) batteries while also

increasing the household NPV by ca. 3.5 ke.

The results suggest that increasing the use of state-of-the-art LFP batteries and SIBs in house-

hold solar PV-BES systems could reduce fossil fuel consumption. Future research should focus

on including further parameters such as ramp-up and ramp-down times of fossil power plants

and more fine granular analysis on the potential for additional PV systems.

The essay contributes to the existing literature because it is, to the author’s knowledge, the first

comprehensive framework for analyzing the influence of different battery types on the system

dimensions and economics of solar PV and BES systems. Therefore, it provides guidance for

industry, consumers, and politicians on which battery types are most economically attractive

in the context of a solar PV-BES system. Furthermore, to the author’s knowledge, this is the

first analysis of the fossil fuel reduction potential of a large-scale roll-out of residential solar PV

and BES systems. This makes it highly relevant for governments that can use the model to

10 While sodium batteries need lower investments and achieve a higher NPV, the more developed and available
technology of LFP is discussed as a main result.
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assess the cost and benefits of an increased roll-out of such systems and analyze the influence

of subsidies and policies, such as different Feed-In Tariffs (FITs) or direct payments, to reduce

initial capacity cost.

1.4 Structure of the Thesis

The remainder of this dissertation is structured as follows: chapter 2 presents the first essay

on the decision relevance of the LC concept, its applications, and potential future use cases.

Chapter 3 consists of the second essay, which introduces a bottom-up model for automotive

battery production, and the levelized cost of battery production and conducts a case study on

the production cost of two state-of-the-art batteries. Chapter 4 proceeds with the third essay

on the fossil fuel reduction potential of residential solar PV-BES systems and the influence of

different battery types on the system’s performance. Finally, chapter 5 provides a summary

and conclusion of the findings of the three essays, outlines implications for research, industry,

and politics, and discusses potential avenues for future research. Supplementary information on

input variables and mathematical proofs can be found in the appendix of this dissertation.



2 | Applications of the levelized cost

concept

Levelized cost is a life-cycle cost measure that aggregates investment expenditures and operating

costs into a unit cost figure. So far, most applications of this concept have originated in relation to

energy technologies. This paper describes the role of the levelized cost concept in cost accounting

and synthesizes multiple research streams in connection with electricity, energy storage, hydrogen

and carbon capture. Finally, we sketch multiple potential future applications of the levelized

cost concept.

Keywords: Levelized cost, Full cost, Levelized cost of energy, Levelized cost of energy storage,

Levelized cost of hydrogen, Levelized cost of carbon.
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2.1 Introduction

The concept of levelized cost has a long history in the field of energy, frequently referred to as

LCOE (Farrar and Woodruff, 1973). The main use of this concept has been to provide a unit

cost measure, e.g., euro per kilowatt hour, to compare alternative energy sources in terms of

their cost competitiveness. As a life-cycle cost measure, LCOE aggregates a share of the capital

expenditures required for the initial capacity investment with operating expenditures required

for the periodic energy generation. Thus, the unit cost of capacity is not a cash outflow, but

an allocated cost. For many energy sources, e.g., nuclear, solar, and wind power, this cost

component is in fact the dominant part of the overall LCOE.

A commonly accepted verbal definition of the LCOE dates back to a study by MIT on the

future of coal (Massachusetts Institute of Technology, 2007, Chapter 3). In their study, LCOE is

calibrated as the break-even value that must be achieved on average by the energy sold in order

to adequately compensate a project’s suppliers, employees and investors for their contributions.

This article adopts the formal and generic LC concept in Reichelstein and Rohlfing-Bastian

(2015). Accordingly, LC is calibrated as the average unit revenue that allows an investment

project to break even (achieve a net present value of zero) over its entire life cycle.

Earlier studies have shown that the LC exceeds the measure of full cost, as usually defined in

the cost accounting literature. The reason is that the standard definition of full cost does not

include charges for interest, nor those that arise from corporate income taxes. In contrast, these

types of expenditures are included in the LC metric in order to make the cost metric compatible

with the net present value criterion. Here, we show that even if interest charges are accounted

for in an approximate manner, as advocated in some cost accounting textbooks (Friedl et al.,

2022), the resulting full cost metric will again be consistently below the levelized product cost.

Conceptualized as a life-cycle cost measure, LC is generally not the relevant cost for short run

decisions, such as pricing or production volume decisions. Once an investment decision has

been made, the LC metric carries significant sunk cost components. Under certain conditions,

however, LC emerges as the relevant unit cost measure for long run decisions such as irreversible

capacity investments. In the context of electricity generation, LCOE does allow for an “apples-to-

apples" cost comparison of any two similar generation technologies, e.g., nuclear versus coal-fired

power plants. In order to assess the competitiveness of electricity obtained from renewable energy
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sources versus that obtained from fossil fuel sources, however, the LCOE metric is by itself not

sufficient. Instead, it must be supplemented with other metrics that effectively summarize the

pattern of power generation and power pricing in real time.

Moving beyond electricity, we review multiple applications and variants of the levelized cost

concept. In particular, this article covers unit cost measures that have been used to assess im-

provements in the economic viability of emerging technologies such as energy storage, hydrogen,

and carbon capture and sequestration.

The remainder of the paper is organized as follows. Section 2.2 presents a formal LC framework

and relates this metric to the incumbent cost accounting literature. Section 2.3 reviews specific

applications of the levelized product cost concept in connection with different energy related

technologies. Section 2.4 describes potential future applications. We conclude in section 2.5.

2.2 Levelized Cost Concept

2.2.1 Model Framework

The levelized cost of a product is a unit cost measure that aggregates the expenditures result-

ing from an upfront capacity investment and subsequent periodic operating expenditures. A

commonly known verbal definition has been provided in a 2007 study by MIT on the future of

coal. The MIT study defines LC as the constant dollar price that would be required over the

life of the investment project to cover all operating costs, payment of debt and accrued interest

on initial project expenses and the payment of an acceptable return to investors (Massachusetts

Institute of Technology, 2007, Chapter 3). According to this definition, LC is a break-even value

insofar as it yields the minimum price per unit of output that an investor would need in order

to break even over the life-cycle of an initial capacity investment. Importantly, the cost measure

is to be aligned with present value considerations, as the cost measure requires an acceptable

return to both equity and debt investors. While the above definition does not explicitly mention

taxes, in particular corporate income taxes, these can be included in the category of operating

costs.11 Reichelstein and Rohlfing-Bastian (2015) provide a formalization of the MIT (2007)

definition. They represent the levelized cost as the unit cost of a product associated with an
11 Earlier studies have also adopted a simplified version of the levelized cost concept, for instance, by calculating LC

as the annualized initial investment and the total annual cost divided by the total units of output. Clearly, this
approach does not presume the payment of a return to investors (Tegen et al., 2012; Brown and Foley, 2015).
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initial investment that allows k units of the product to be produced initially and xt · k units to

be produced in period t. Here, xt ≤ 1 is a degradation factor to reflect the possibility that the

initial production capacity may diminish over time. Formally,

LC(k) = w + f(k) + c(k) ·∆. (2.1)

In this definition of the levelized cost, the time-averaged unit variable cost is given by:

w ≡
k ·
∑T

t=1wt · xt · (1 + r)−t

L(k)
.

The numerator represents the total discounted future variable cost, assuming xt · k units are

produced in period t, with 1 ≤ t ≤ T , wt represents the unit variable cost in period t, and

r denotes the applicable cost of capital. To obtain the time averaged unit variable cost, the

numerator is divided by the levelization factor L(k) ≡ L ·k ≡
∑T

t=1 xt · (1 + r)−t ·k. It measures

the total discounted output that is attainable from the initial capacity investment over the entire

planning horizon of T periods.

The second component of LC is the time-averaged unit fixed cost, given by:

f(k) ≡
∑T

t=1 Ft(k) · (1 + r)−t

L(k)
,

where Ft(k) is the total fixed operating cost in period t that is required for a facility scaled to

size of k units of production capacity. Finally, the unit cost of capacity is defined as:

c(k) ≡ ν(k)

L(k)
,

with ν(k) denoting the initial capacity investment expenditure for a facility scaled to size of k

units of production capacity. To reflect the payment of income taxes, the LC needs to include a

tax factor that acts as a multiplier on the unit cost of capacity:

∆ =
1− α ·

∑T
t=0 d̂t · (1 + r)−t

1− α
.

Here, α represents the effective corporate income tax rate and d̂t is the share of the initial invest-

ment that can be written off in period t as a depreciation expense for income tax purposes. The

possibility of d̂0 > 0 reflects that the tax code may allow for partial initial expensing. Assuming

the d̂t sum up to one, the tax factor will exceed 1, unless the entire capacity investment can be
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fully depreciated in the initial year of acquisition. In general, a more accelerated depreciation

schedule will increase the depreciation tax shield and lower the LC through a smaller tax factor

∆.

Suppose next that the firm produces xt · k units of output in period t and furthermore sells each

unit at the constant price p. This would result in after-tax cash flows of CFL0 = −ν(k)[1−α·d̂0]

and

CFLt = (p− wt) · xt · k − Ft(k)− α · It.

Here, It denotes the firm’s taxable income:

It = (p− wt) · xt · k − Ft(k)− d̂t · ν(k).

When discounted at the interest rate r, the present value of the stream of after-tax cash flows

CFLt from 0 to T becomes:

NPV (k) = −ν(k)[1− α · d̂0] +
T∑
t=1

((p− wt) · xt · k − Ft(k)− α · It) · (1 + r)−t .

By definition, LC is the unit revenue (p) that yields NPV (k) = 0. Solving the above linear

equation, one obtains p = LC(k), thus establishing LC(k) as the critical price at which the

investor breaks even on an investment in k units of capacity that allows xt · k units of output to

be produced in subsequent time periods.

In concluding this section, we note that in the special case of a constant returns to scale tech-

nology, i.e., ν(k) = ν · k and Ft(k) = Ft · k, the levelized cost measure, LC(k), reduces to a

constant unit cost, denoted by LC, as it is independent of the scale of the investment. A further

simplification is obtained in a stationary environment where Ft = F , wt = w and xt = 1. In that

case, the above levelization factor, L, reduces to A(r, T ), where A(r, T ) is the annuity factor,

which makes an investor (with cost of capital of r) indifferent between receiving 1 Euro in each

of the next T years, or receiving A(r, T ) Euro today.

2.2.2 Relation to Full Cost

While the levelized product cost concept, as introduced above, is a comprehensive life-cycle

cost measure that aggregates fixed and variable costs incurred over time, this cost measure
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can generally not be equated with the full cost of a product, as commonly defined in the cost

accounting literature. To establish the relationship between these two cost concepts, consider

a setting with constant returns to scale in a stationary environment. In such settings, cost

accounting books (Datar and Rajan, 2018) typically define the unit full cost of a product, of

which qt have been produced in period t as:

FCt(qt | k) = w +
f · k
qt

+
dt · ν · k

qt
.

Here qt denotes the quantity of the product produced in period t and {dt}Tt=0 denotes a depre-

ciation schedule that the firm uses for internal, and possibly also external, reporting purposes.

Assuming full capacity utilization, i.e., qt = k in a stationary environment, we note that if the

initial investment is depreciated according to the straight-line rule, that is dt = 1
T for 1 ≤ t ≤ T ,

then LC > FCt(k | k) for all t. This observation follows directly because the tax factor ∆

exceeds 1, and further:

c ≡ ν∑T
t=1 (1 + r)−t

>
ν

T
.

The preceding inequality essentially reflects that the above measure of full cost does not include

interest expenses. To account for the time value of money, it is useful to consider the following

extended full cost measure:

FC1
t (qt | k) = w +

f · k
qt

+

[
dt + r ·

(
1−

∑t−1
i=1 di

)]
· ν · k

qt
·∆.

Once the cost of capacity includes interest charges on the remaining book value of the capacity

asset and the cost measure also includes the tax factor ∆, the extended cost measure FC1
t (qt | k)

becomes compatible with the levelized cost measure LC. Key to this compatibility is that

the chosen depreciation schedule reflects the intertemporal degradation of the asset, i.e., the

pattern of the parameters {xt}t=T
t=1 (Reichelstein and Rohlfing-Bastian, 2015). Specifically, given

a stationary environment (xt = 1) and the assumption of full capacity utilization (qt = k), it

follows that LC = FC1
t (k | k) for all t, provided the dt are calculated according to the annuity
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method.12 Furthermore, for any given pattern of degradation factors {xt}t=T
t=1 , there always exists

a corresponding depreciation factor such that LC = FC1
t (k | k) for all t (Rogerson, 2008).

Given an arbitrary degradation pattern {xt}t=T
t=1 and depreciation schedule {dt}t=T

t=1 , it is still true

that the stream of extended full costs FC1
t (k | k) will be equal to LC, on average. Specifically,

it follows from the conservation property of residual income (Preinreich 1938 and Lücke 1955)

that:

T∑
t=1

FC1
t (k | k) · (1 + r)−t = LC.

Some cost accounting textbooks (Friedl et al., 2022) account for interest charges corresponding

to the initial capacity investment by adopting straight-line depreciation and imputing an inter-

est charge equal to half of the initial investment in each period. This approach results in an

unambiguous relationship between LC and the full cost measure:

FC2
t (qt | k) = w +

f · k
qt

+

(
1

T
+

r

2

)
· ν · k

qt
·∆.

Proposition 2.1. Suppose a stationary environment with constant returns to scale. Given full

capacity utilization, i.e., qt = k,

LC > FC2(k | k)

for all 1 ≤ t ≤ T .

The preceding result shows that while it is true that with straight-line depreciation the asset’s

remaining book value is, on average, equal to half of the initial investment, the resulting approx-

imation of the imputed interest charges creates a systematic bias such that the resulting full cost

measure FC2(k | k) is less than the levelized product cost measure LC. The intuition for this

result is that the underlying approximation understates the applicable book value for the first T
2

years, yet the interest charges in these years receive relatively large weights due to discounting.

12 Under the annuity method, the dt satisfy dt+1 = dt · (1 + r), and d1 is determined by the balancing requirement
that the sum of all dt is equal to 1.
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2.2.3 Decision Relevance

Managerial accounting textbooks emphasize that for different types of managerial decisions,

pertaining, for instance, to investments, product pricing and production volume, different cost

measures are relevant. For short-run decisions, for instance, managerial accounting textbooks

recommend the use of incremental costs rather than full cost measures, due to the fact that full

cost measures generally include sunk costs. For long-run decisions, most managerial accounting

textbooks do not point to a single unit cost measure, but instead recommend a corporate finance

approach that focuses on the discounted stream of future cash flows (Hotelling, 1925, Schneider,

1961, Mahlert, 1976, Swoboda, 1979, Luhmer, 1980, Kistner and Luhmer, 1981, Küpper, 1984,

Schweitzer et al., 2015, Datar and Rajan, 2018). In contrast, Mahlert (1976) and Swoboda (1979)

advocate for the use of unit cost measures that are consistent with a corporate finance approach

seeking to maximize the net present value of the long-run decision under consideration. In that

vein, Küpper (1985) develops guidelines for cost measures grounded in investment theory. A

recent synthesis is provided in Ewert et al. (2023).

As a unit cost measure, LC has been shown to be the relevant cost for certain long-run decisions

involving capacity investments. Consider, for example, a setting where a firm has to choose

between two production technologies that differ in both their required initial capital expenditures

as well as their periodic operating costs. The two technologies would result in the same capacity

level, k and be subject to the same degradation pattern {xt}t=T
t=1 . Suppose further that in each

subsequent period, the sales revenue attainable for each unit of output exceeds the variable cost

and therefore the firm will always exhaust the available production capacity, that is qt = xt · k.

In such specific settings, the LC measure then provides the relevant cost in the sense that the

technology with lower the LC always generates the higher net present value. This claim also

applies in environments where the decision maker faces uncertainty regarding the attainable

future sales revenues. The argument here builds directly on the reasoning provided in Section

2.1 above, showing that the LC measure is the effective unit cost measure in a net-present value

calculation.

Earlier literature has pointed out that LC is not the relevant cost metric for ranking the com-

petitiveness of power generation technologies based on fossil fuels, such as coal or natural gas, in

comparison to renewable energy sources, such as wind and solar photovoltaic (PV) installations
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(Joskow (2011) and Hirth (2013)). While both technologies generate the same output (electric-

ity), they differ substantially in their cost structure. Renewable electricity requires a relatively

high upfront capital expenditure but, in contrast to fossil fuel based generation, entails almost

no variable cost. Nonetheless, a simple comparison of the levelized cost would be misleading

in evaluating the profitability and competitiveness of these technologies. Contrary to the argu-

ments provided in the previous paragraph, the renewable power generation source is restricted

in producing electricity and revenues during those hours of the year when the natural resource,

i.e., the sun or the wind, is available. Electric power generated from fossil fuels, on the other

hand, is essentially dispatchable allowing the plant to tailor its output to the revenues available

at different hours of the year.

To obtain a relevant cost measure for comparing dispatchable and intermittent power sources,

Reichelstein and Sahoo (2015) argue that the levelized cost metric should be adjusted by a

co-variation coefficient. As the name suggests this coefficient captures the covariance between

electricity generated and the market prices available for electricity at different points in time.

The co-variation coefficient is always greater than zero and exceeds one only if there is a positive

correlation between the hours of high output generation and above average market prices for

electricity. Investment in a renewable power generation source is shown to be profitable, in the

sense of a non-negative net present value, if the average price of electricity is at least as large as

the LC divided by the co-variation coefficient.13

In the economics literature, marginal cost is arguably the most common measure of relevant cost,

at least in connection with decisions concerning production volume and pricing. Under certain

conditions, LC can be identified with the long-run marginal cost of a product. Reichelstein and

Rohlfing-Bastian (2015) argue this point in a model setting of a competitive industry in which

a large number of firms have access to the same stationary constant returns to scale technology.

Demand in each period is subject to random shocks. Given initial capacity investments, firms

act as price takers with the consequence that the product price in any given period is either equal

to the short-run marginal (variable) cost in case there is excess capacity, or, if the industry’s

aggregate capacity is fully utilized, the equilibrium price is equal to consumers’ willingness to

pay at the aggregate capacity level. The main result then is that in equilibrium the initial

aggregate capacity level will be chosen such that the expected market price is equal to the LC

13 One implication of this result is that if electricity is sold at a constant price under a so-called Power Purchasing
Agreement (PPA), then the technology that has the lower LC is more profitable, regardless of whether the
generation technology is dispatchable or intermittent.



2 Applications of the levelized cost concept 31

in each subsequent period. This finding identifies the LC as the long-run marginal cost to the

extent that in a competitive equilibrium the (expected) market price “must" be equal to firms’

long-run marginal cost.

The LC concept presented here assumes one upfront capacity investment. In the earlier literature

on capital accumulation, e.g., Jorgenson (1963) and Arrow (1964), firms make a sequence of

overlapping capacity investments in an infinite horizon setting.14 In these models the cost of

one unit of capacity made available for one period of time can be identified unambiguously. It

can be shown to be equal to:

c =
ν∑T

t=1 xt · (1 + r)−t
,

which aligns with the definition of the capacity cost component of the LC in Section 2.1 above.

Some microeconomics textbooks, e.g., Carlton and Perloff (2005), define the long-run marginal

cost of a product as:

LMC = w + ν · (r + δ),

where δ is introduced as a parameter that reflects “economic depreciation". If economic depreci-

ation is equated with capacity degradation, which furthermore is proportional to the remaining

capacity in each period, then δ = 1 − x and xi = xi. Finally, if the planning horizon is set at

T = ∞, then

c =
ν∑∞

t=1 x
t · (1 + r)−t = ν · (r + 1− x) = ν · (r + δ).

Thus, the microeconomic operationalization of LMC coincides with the levelized product cost,

subject to suitable parametric specification and the absence of fixed operating costs and income

tax effects.

LC can also be established as the relevant cost for a monopolist seeking to determine an optimal

expansion of capacity. Suppose, for simplicity, the monopolist faces an identical demand curve in

each of the next T periods, and furthermore has access to a stationary constant returns to scale

technology. A central result in Reichelstein and Rohlfing-Bastian (2015) shows that the optimal

capacity level is such that the marginal revenue at the production volume corresponding to full

14 More recent studies on capital stock accumulation by firms have examined the impact of the choice of depreciation
schedules on the relation between historical and long-run marginal cost (Rogerson, 2008, Rajan and Reichelstein,
2009, Nezlobin, 2012, Nezlobin et al., 2012).
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capacity utilization in each period is equal to the LC for the product in question. Thus, this

result extends the standard textbook prescription of a monopolist choosing the optimal output

level such that marginal revenue is equal to marginal cost.

The preceding result can be extended to environments where demand in future periods is subject

to random shocks and therefore the monopolist will not exhaust the entire capacity available

unless the marginal revenue at the capacity limit exceeds the short-run variable (marginal) cost.

In such settings with demand uncertainty it can be shown that the optimal capacity investment

is such that the expected marginal revenue evaluated at the sequentially optimal output quantity

(given the optimal investment) is equal to the LC. Uncertainty about future demand essentially

entails a call option. This real option becomes more valuable with a higher level uncertainty,

thus resulting in larger capacity investments.

2.3 Energy Related Applications

Dating back to Rosenthal et al. (1965), the concept of levelized product costs appears to have

emerged from the literature on electricity generation. In the intervening years, the Levelized

Cost of Electricity has become a standard metric approach for benchmarking the economics

of different electricity generation technologies (Tran and Smith, 2018, Aldersey-Williams and

Rubert, 2019). Variants of the original LCOE have been adapted and expanded in energy

subfields other than electricity. For instance, the LCOS presents a life-cycle cost measure of

electricity storage services provided by batteries, pumped-hydro, or mechanical storage devices.

For hydrogen, the LCOH provides a cost metric that is increasingly used to assess the prospects

for a hydrogen economy. Since hydrogen offers multiple applications beyond energy storage, we

view it as a separate research stream in this section. Finally, we cover several recent studies

that have calculated a LCOC in connection with facilities that can capture and sequester CO2.

Figure 2.1 provides a graphic overview of the history of these literature streams.

2.3.1 Levelized Cost of Electricity

The term “Levelized Cost of Electricity” goes back at least to the 1973 publication by Farrar and

Woodruff (1973). Since then, the LCOE metric has been widely relied on to compare and rank

the cost of producing electricity with alternative generation technologies (Short et al., 1995).
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Figure 2.1: Emergence of the levelized cost metric for electricity, energy storage, hydrogen and carbon

Power generation provides a natural use case for a life-cycle cost concept that seeks to assess the

unit economics of alternative generation technologies that differ substantially in terms of their

fixed and variable cost structure; see, for instance, Reichelstein and Yorston, 2013, Hernández-

Moro and Martínez-Duart, 2013, Branker et al., 2011, Massachusetts Institute of Technology,

2007.

As a unit cost measure, LCOE is usually expressed in terms of dollars (or Euro) per kWh. The

expenditure required for the capacity investment in power generation is expressed in dollars per

kilowatt. Of critical importance for the unit cost of capacity (the variable c in Section 2) is the

levelization factor L, which in electricity related applications typically takes the form:

L =

T∑
t=1

xt · (1 + r)−t · 8, 760 · CFt.

Here, 8,760 refers to the number of hours in the year, while CFt denotes the average capacity

utilization factor in year t. For dispatchable power generation sources, CFt could in principle

be close to one, i.e., the power plant is a base-load generation facility capable of running at full

capacity around the clock (except for select hours of scheduled maintenance). For renewable



2 Applications of the levelized cost concept 34

energy sources, such as solar PV and wind power, the capacity factor CFt is exogenously deter-

mined by the availability of the underlying natural resource. For these technologies, the capacity

factors are usually below 0.5, and sometimes as low as 0.15, thereby increasing the unit cost of

the corresponding LCOE.

A fundamental drawback of wind and solar PV power is not only their relatively low capacity

factors, but also their intermittency, that is, the plant’s inability to deliver energy during certain

hours of the year. For this reason, it would not be appropriate to conclude that a renewable

energy source, which has a lower LCOE than its dispatchable counterpart running on fossil

fuels, will also be more profitable in terms of a higher net present value (Joskow, 2011, Hirth,

2013). Recent studies seek to provide a unified economic assessment framework by introducing

the concept of a levelized profit margin that takes into account the correlations between hourly

electricity prices and capacity factors (Reichelstein and Sahoo, 2015, Glenk and Reichelstein,

2022b). The study by Glenk and Reichelstein (2022b) concludes that in both California and

Texas the levelized profit margin of natural gas power plants has remained roughly constant

despite the tangible decline in the capacity utilization factor of these plants. Yet, this effect

has effectively been compensated by higher sales revenues during hours of high electricity prices,

typically when renewable energy sources do not feed electricity to the grid. In contrast, both

wind and solar PV have seen improved levelized profit margins in large part due to falling

life-cycle costs.

For individual power generation technologies, the LCOE metric has been used to gauge the mag-

nitude of cost declines due to learning-by-doing. For example, Hernández-Moro and Martínez-

Duart (2013) estimate the LCOE trajectory of solar PV and concentrated solar power using

learning rates. They find that in comparison to concentrated solar power, solar photovoltaic

power generation exhibited a stronger LCOE decline. In the context of wind power, Glenk et al.

(2021) find that for the years 1990-2020, the LCOE of wind power has declined at a rate of

approximately 23% with every doubling of cumulative deployments. While the capacity acqui-

sition cost of wind turbines (the parameter ν in Section 2) has not declined nearly that quickly,

the overall drop in the LCOE of wind power reflects a significant “denominator effect." Specifi-

cally, the capacity factor, CF , of wind turbines has improved substantially, owing to improved

materials that entail lower frictions in the rotation of the turbines.

The LCOE metric has also been prominent in studies seeking to evaluate the effect of new

regulations, including subsidies and charges for carbon emissions. These studies are important
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in the context of the global energy transition as governments around the world seek to accelerate

the expansion of new low-emission power sources through targeted subsidies. For example,

Reichelstein and Yorston (2013) found that in 2013 the LCOE of solar PV in the U.S. would

have increased by approximately 70% in the absence of the Investment Tax Credit (ITC) and

the availability of an accelerated tax depreciation schedule. Taken together, these two incentive

provisions lowered the tax factor (the variable ∆ in Section 2) from approximately 1.3 to 0.8.

Anticipating the reduction in the ITC for solar PV in the US from 30% to 10%, as specified

in the regulations at the time, Comello and Reichelstein (2016) calculated a gradual step-down

in the ITC that would leave the LCOE unchanged, provided the investment cost in solar PV

systems would continue on its historical decline path. Similarly, Ouyang and Lin (2014) estimate

the LCOE for solar PV, wind and biomass in China in order to project the subsidies required

to support further expansion of renewables. Simsek et al. (2018) conduct a related study in the

context of concentrated solar projects in Chile. Finally, Comello et al. (2018) examine solar PV’s

competitive position in the U.S. and its potential evolution through technological advances and

supportive public policies, including federal ITCs.

In concluding this subsection, we mention several papers that have sought to embed the LCOE

metric in a broader context. Xu et al. (2021) adopts a modified LCOE approach in evaluating

policies for additional offshore wind production in six Chinese provinces. Darling et al. (2011)

focus on highlighting sensitivity and uncertainty in LCOE calculations by proposing a new

method for solar PV that relies on parameter distributions of instead of point estimates. Bruck

et al. (2018) introduce an expanded LCOE framework, which considers penalty payments for

violating contractual minimum or maximum purchase limits.

2.3.2 Levelized Cost of Energy Storage

The intermittency of renewable electricity generation has created a growing need for energy

storage, in particular the storage of electric power. The LCOS is a generic unit cost measure

that allows for a comparison of alternative energy storage services that can be provided, for

instance, by a battery, a closed loop pumped hydro system or a mechanical storage device.

In terms of the system acquisition, every energy storage system requires both a power and an

energy storage component. The power component relates to the amount of energy that can be

charged or discharged at any given point in time. Its capacity is typically measured in kW. The
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size of the energy storage component, in contrast, is measured in kWh. It indicates the total

amount of energy that can be charged and discharged in one cycle. Combining these two system

components, Comello and Reichelstein (2019) decompose the overall levelized cost of energy

storage as follows:15

LCOS = LCOEC +
1

D
· LCOPC.

Here, LCOEC represents the levelized cost of the energy storage component and LCOPC the

levelized cost of the power component. The power component is multiplied by the inverse of the

duration, D, which indicates the time required to fully charge or discharge the storage device,

assuming the charge or discharge function is performed at maximum capacity. Formally, the

duration of the storage device is given by:

D =
kp
ke

where kp and ke represents the size of the power and energy component, respectively. To illustrate

the duration concept, batteries that are sold off-the shelf for residential applications frequently

have a duration of either two, four or six hours.

The LCOS metric is calibrated as the minimum service fee per unit of energy discharged that

an investor will need to receive in order to break even on the initial acquisition of the storage

system. This calculation is critically dependent on the number of charge and discharge cycles per

year and the round-trip efficiency of the storage device. The round-trip efficiency factor (denoted

by η, with 0 ≤ η ≤ 1) gives the percentage of the energy that can ultimately be discharged.

Conversely, 1− η is the percentage of the energy lost in the charge and discharge process. If the

service fee per kWh discharged is po, the overall net present value of the investment becomes:

NPV (kp, ke) =
T∑
t=1

N · po · η · xt · ke · (1 + r)−t − νp · kp − νe · ke.

Here, the variables xt and T are as introduced in Section 2, N is the number of annual charge

and discharge cycles, while νe and νp represent the unit acquisition costs for the energy storage

and power component, respectively. Setting the above equation for the NPV (kp, ke) equal to

zero, Comello and Reichelstein (2019) show that po = LCOS is the break-even service fee per

15 Comello and Reichelstein (2019) abbreviate the levelized cost of energy storage as LCOES.
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kWh for a storage device that initially can store at most ke kWh of energy in N cycles per year,

subject to the device (dis)charging at most kp kW of power at any given point in time.

The above definition of LCOS as the break-even service fee per unit of energy discharged is

consistent with existing studies (Jülch et al., 2015, Pawel, 2014, Smallbone et al., 2017, Rodby

et al., 2020). In addition to LCOS, several papers discuss related metrics (Belderbos et al.,

2017). Lai and McCulloch (2017) proposes a metric labelled levelized cost of delivery for a

combined solar PV and energy storage system. In connection with battery storage, Rodby et al.

(2020) construct a model that allows for storage capacity degradation with the possibility of

rebalancing. They find that investors can reduce the overall resulting LCOS by oversizing the

battery in the first place. In connection with behind-the-meter battery installations, Comello

and Reichelstein (2019) examine the optimal size of a battery system for households with a solar

PV rooftop system. Storing the electricity generated by the rooftop system allows the household

to economize on grid electricity purchases. An optimally sized battery must balance the benefits

of reduced electricity purchases against the LCOS of the battery system.

As a generic unit cost measure, LCOS allows for a comparison of competing storage technologies

that can be deployed for alternative use cases. While multiple factors ultimately shape this cost

comparison, recent studies have focused on roundtrip efficiency, discharge cycles per period and

recycling costs (Mostafa et al., 2020, Rahman et al., 2020, Schmidt et al., 2019). In terms of

alternative storage technologies, recent studies have compared li-ion batteries, lead-acid batter-

ies, vanadium redox flow batteries, flywheels, supercapacitors, pumped hydro-storage, pumped

heat, power-to-gas (hydrogen), liquid air and compressed air (Jülch et al., 2015, Poonpun and

Jewell, 2008, Schmidt et al., 2019, Steckel et al., 2021, Smallbone et al., 2017, Xie et al., 2019).

2.3.3 Levelized Cost of Hydrogen

In the transition towards a decarbonized energy economy, hydrogen is increasingly viewed as

a potentially valuable energy carrier. The list of potential use cases for hydrogen comprises

fuel for transport (Jones, 2012, Van Renssen, 2013, Goodall, 2017), energy storage for indus-

trial heat and power (Jacobson, 2016, Zakeri and Syri, 2015, Evans et al., 2012, Nat Energy,

2016), or a feedstock for chemicals processing (Schulze et al., 2017). At the same time, some

observers question the economic viability of hydrogen on account of its considerable primary

energy requirements and its high production cost.
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Recent discussions about the emergence of a hydrogen-based energy economy have focused on

electrolytic hydrogen, where the H2 molecule is obtained by infusing electric current into water.

In contrast, traditional “gray" hydrogen is obtained from natural gas (methane) through a steam

methane reforming process. If the CO2 emissions that arise in connection with steam methane

reforming (amounting to about 2% of global emissions) are captured and sequestered, the re-

sulting hydrogen is usually labeled “blue". In subsidizing the production of “green" hydrogen,

the European Union mandates that the required electricity come from renewable power sources.

Regardless of the applicable color scheme, the levelized cost of hydrogen is usually defined as the

break-even value per kilogram of H2 that an investor would need to obtain in the marketplace

in order to recover the expenditures associated with the initial capacity investment as well as all

subsequent operating costs.16

Parkinson et al. (2019) calculate the LCOH of twelve different hydrogen production technolo-

gies. Their research indicates that while fossil-fuel-based hydrogen production remains the most

affordable option, it only provides a modest level of carbon reduction. Grimm et al. (2020)

use the LCOH to compare the production costs of two solar-assisted hydrogen production tech-

nologies. Minutillo et al. (2021) investigate the costs of different water electrolysis plant sizes

and electricity configurations to re-fuel hydrogen with smaller on-site production units. Franco

et al. (2021) rely on the LCOH metric to assess the costs of different offloading pathways for

hydrogen production with offshore wind farms. Glenk and Reichelstein (2019) demonstrate that

the economics of green hydrogen improves considerably if the initial investment is structured

as a hybrid system that combines electrolyzer capacity with a renewable energy source. With

electricity prices fluctuating increasingly across the hours of the year, electric power obtained

from the renewable power source can then be dispatched to the grid during hours of relatively

high prices, or alternatively converted to hydrogen through electrolysis during off-peak hours for

electricity prices. The key to favorable LCOH values is that the size of the electrolyzer is chosen

optimally in relation to the size of the power generation facility. Such hybrid energy systems

will be eligible for significant subsidies under both the Inflation Reduction Act in the U.S. and

the green hydrogen initiative of the EU.

Electrolyzer technologies have also experienced significant learning effects in recent years. These

gains have resulted in both substantial savings on the system prices for electrolyzers and higher

16 Some studies have considered closely related life-cycle cost measures; see, for instance, Guerra et al., 2019, Khzouz
et al., 2020, Lee et al., 2009.



2 Applications of the levelized cost concept 39

conversion efficiencies for electrolytic processes. So-called reversible fuel cells have seen particu-

larly steep learning effects (Glenk and Reichelstein, 2022a). A significant advantage of reversible

fuel cells is that they can run bi-directionally, that is, they can either convert water and elec-

tricity to hydrogen, or, in the opposite direction, hydrogen and oxygen can be converted back

to water and electricity. As a consequence, these types of electrolyzers can achieve particularly

high capacity factors resulting in lower LCOH values. A recent study by (Glenk et al., 2023b)

projects that, assuming continued learning effects for electrolyzer technologies, the variable cost

of electricity will account for almost 80% of the overall LCOH of electrolytic hydrogen by the

year 2030.

2.3.4 Levelized Cost of Carbon

There is widespread agreement that in order to slow, and ultimately stop, climate change,

economies around the world will not only need to reduce their CO2 emissions but also need to

deploy negative emission technologies by means of CO2 removals from the atmosphere. CCS

technologies enable the capture of CO2 from point sources, e.g., power plants and manufacturing

facilities, or alternatively from the ambient air, e.g., direct air capture and photosynthesis by

trees. The levelized cost concept has been applied to comparing alternative CCS technologies

in terms of a Levelized Cost of Carbon metric that yields the minimal price per ton of CO2 that

would be required in order for a particular capture technology to deliver an acceptable return

to investors.

For CO2 capture from point sources, Psarras et al. (2017) break the overall levelized cost of

capture into three components corresponding to flue gas separation, compression and transport

to the ultimate carbon sink, e.g., a geological storage site. As one would expect, higher con-

centrations of CO2 in an industrial flue gas is known to decrease the cost of separation. This

concentration tends to be relatively high in manufacturing processes such as ethanol, fossil fuel

power generation or Portland cement (Rubin and Zhai, 2012, Psarras et al., 2017). Several alter-

native point source capture technologies are principally known and understood today, including

Calcium Looping, Oxyfuel, and Amine Scrubbing (İşlegen and Reichelstein, 2011, MacKenzie

et al., 2007, Friedmann et al., 2020, Glenk et al., 2023a). However, because relatively few large-

scale CCS systems have been deployed to date, there is no consensus on which one of these
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technologies achieves the lowest levelized cost per ton captured.17

In the context of the cement industry, Glenk et al. (2023a) conclude that a future CO2 emis-

sion charge of around €100 per ton would be required in order for cement producers to have

incentives to install the so-called LEILAC capture technology. LEILAC, which stands for Low

Emissions Lime and Cement, refers only to the capture of the process emissions that arise when

calcium carbonate is converted to clinker, the main ingredient in Portland cement. In order for

cement manufacturers to have incentives for comprehensive decarbonization through other CCS

technologies, such as calcium looping, the prevailing CO2 price would have to be at least in the

range of €160 per ton of CO2.

Direct Air Capture (DAC) is one prominent negative emissions technology. It has the obvious

disadvantage that the concentration of CO2 in the atmosphere is (still!) relatively low in com-

parison to that of industrial flue gases. At the same time, DAC facilities are entirely flexible in

terms of their location, allowing them to economize on both energy costs and CO2 transportation

costs. While early studies put the corresponding LCOC in excess of $300 per ton (Simon et al.,

2011), more recent projections by European and North American companies suggest that a unit

cost in the range of $ 95-240 per ton might be attainable once additional DAC plants experi-

ence the anticipated effects of learning-by-doing (Keith et al., 2018). Finally, the emissions that

result from decomposing biomass can be avoided (and therefore yield negative emissions) if the

biomass is combusted and the corresponding emissions are captured and sequestered (Lehtveer

and Emanuelsson, 2021, Cheng et al., 2021). Alternatively, the biomass is directly sequestered

before it decomposes and emits CO2. With carbon removal of biomass still at an early stage, the

levelized cost of these processing technologies appears to be still relatively high Clifford (2023).

Nonetheless, corporate buyers are willing to pay for these removals in order to acquire carbon

offsets in the voluntary carbon markets.

2.3.5 Other Environmental Applications

In addition to the research highlighted above, the LC concept has been applied in other environ-

mental contexts. For instance, LC has been employed to assess the unit cost for heating (usually

measured by thermal energy output) in order to compare the cost competitiveness of different

technologies. Gabbrielli et al. (2014) compare the levelized cost of heat from solar collectors

17 McCoy and Rubin (2009) analyze the variability and impact of storage costs on the LCOC. They find that the
type of storage reservoirs has considerable impact on the required capital investment and the resulting LCOC.
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with heat from natural gas, Welsch et al. (2018) and Tian et al. (2018) analyze and optimize

district heating systems, Kim et al. (2019) conduct an economic and environmental assessment

of a hybrid renewable energy system. Finally, Yang et al. (2021) calculate the levelized cost of

heat that is stored as thermal energy.

Similarly, as air conditioning or cooling become more widespread, a developing research stream

investigates and utilizes the levelized cost of cooling. Most papers in this field conduct economic

analysis of different cooling technologies. For example, Bellos and Tzivanidis (2017), Li et al.

(2017) and Altun and Kilic (2020) conduct economic analysis of solar cooling systems and Sadi

et al. (2021) calculate the LC of a biomass-based cooling system for buildings.

With globally decreasing freshwater resources, a new research stream investigating the levelized

cost of water emerged. For example, Loutatidou and Arafat (2015) and Behnam et al. (2018)

calculate the levelized cost of water in combined power, heating and desalination systems. Chong

et al. (2019) assess the economic feasibility of specific desalination technologies. It should be

noted that all these authors focus on desalination. However, the levelized cost of water can also

be applied in other contexts, such as water purification.

In the context of mobility and transport, Comello et al. (2021) have introduced the Levelized

Cost per X-mile (LCXM) concept. This cost metric is closely related to the TCO model, which

has been widely used in transportation studies (Lebeau et al., 2015 and Lajunen and Lipman,

2016). The “X" in LCXM refers to alternative cost objects, for instance, ton- or passenger miles.

In contrast to the TCO metric, LCXM is a unit cost measure aimed at the cost of transporting

one ton of cargo or one passenger for one mile on a particular route. Comello et al. (2021)

apply the LCXM metric to optimize the composition of a fleet of transit buses that can either

be equipped with Diesel or battery electric transit buses.

2.4 Potential Future Applications

In addition to energy-related applications, the LC concept may gain traction in several other

contexts. In this section, we sketch potential future LC applications in settings with competing

generation technologies or managerial options that may differ in both their required initial capital

expenditures as well as their periodic operating costs.
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Agricultural commodities: Climate change, supply shocks, and technological advances affect

the global agricultural sector. The LC concept can support decisions concerning competing

agricultural food commodities by conducting a comparison of the per-unit nutritional value. In

addition, LC can support managerial decisions regarding different production technologies for

one agricultural product, for example, by comparing traditional food production methods, such

as genetically modified crops, vertical farming, or investments in automated farming vehicles

and artificial intelligence solutions.

Network industries: Friedl and Küpper (2011) show that adequate cost measures based on

the annuity method for calculating depreciation and capital costs can improve the efficiency of

investments in regulated markets such as network markets. The LC of network usage could help

companies to determine the long-term unit prices in network industries with different production

technologies, for example, by comparing the LC of internet access in different regions between

a physical fiber network, cell phone towers, and satellite-based solution. In addition, in cases of

monopolistic power, LC calculations can determine optimal capacity and output levels.

Cloud storage and computing: Tech companies such as Amazon, Alibaba, Alphabet, Mi-

crosoft, SAP, and Tencent generate increasing revenues from cloud storage and computing so-

lutions. In this competitive field, companies need to choose between in-house sourcing or pur-

chasing storage and power. LC can support this decision between a high-upfront investment

in in-house capacity or purchasing storage and power on a predominantly variable cost-based

structure.

Patent licensing: Intellectual property for patents is associated with ongoing R&D costs or

high upfront investments to purchase patent portfolios externally. However, the usage and

licensing of intellectual property itself do not require any significant variable costs. From the

perspective of an investor deciding between buying or developing a portfolio of patents to use and

license, the LC provide a metric to assess which option yields lower life-cycle costs. Historically,

licensing fees for patents have often been calculated based on revenues from the associated

products (Friedl and Ann, 2018). However, there is an ongoing discussion about whether cost-

based valuation approaches for intellectual property rights could be a valid alternative (Parr,

2018 and Gamarra and Friedl, 2023). LC could be a suitable metric to implement as a cost-based

approach.
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Other potential applications: In addition to the aforementioned potential applications of

LC. there is a wide range of other fields where LC could be used, e.g., E-Commerce, FinTechs,

or DNA sequencing. For E-Commerce companies, LC can be used to evaluate the size and

geographical spread of investments in new facilities. In the case of FinTechs, LC can support

technological investment or in-sourcing decisions. Lastly, for DNA sequencing, different produc-

tion technologies determining the order of nucleotides in a DNA can be compared based on their

LC.

2.5 Conclusion

Levelized cost is a generic life-cycle cost product metric that aggregates capacity related invest-

ment expenditures and ongoing operating costs into a unit cost figure. Essential to the economic

interpretation of this concept is that the allocation of upfront fixed costs to individual product

units is consistent with the net present value criterion. Provided this allocation is made judi-

ciously, the LC can be interpreted as the long-run marginal cost of a product, or alternatively,

as a break-even product price at which the required investment becomes marginally profitable.

This calibration makes the LC the unit cost measure metric relevant for long-run decisions.

As of today, most applications of the levelized product concept have originated in relation to

energy technologies. This essay has synthesized multiple research streams relying on levelized

cost measures in connection with electricity, energy storage, hydrogen and carbon capture. The

widespread use of the LC metric in energy related fields suggests multiple other future applica-

tions. In general, we envision future potential for this cost concept whenever decision makers

seek to capture the unit economics of projects with a long planning horizon.



3 | Production cost modelling of

Lithium-Ion batteries

Battery production cost models play a central role in evaluating and optimising the cost com-

petitiveness of different battery cells and production technologies. They are essential to reduce

the cost of EVs to increase their adoption. This essay presents a detailed bottom-up cost model

that enables users to calculate the production cost of different cell formats, chemistries, and

production processes. The flexible and modular nature of the model makes it easy to analyse

the production cost implications of changes to the cell or the production process. The produc-

tion cost is presented as FC, MC and LC to compare the results with literature and industry

and properly reflect capital and imputed interest costs. The model is validated with two case

studies: the production of a cylindrical 4680 cell and a prismatic PHEV2 hardcase cell. For

both cell formats, three different chemistries are evaluated. NMC811 cathodes are combined

with graphite and silicon anodes with 0wt.%, 3wt.% and 5wt.% Si. The parameters for both

cells and production processes are compiled from literature and expert interviews.

Keywords: Lithium-Ion Battery, Battery Production, Battery Cost, Levelized Cost, Electric

Vehicles.
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3.1 Introduction

To tackle climate change, countries worldwide take measures to foster the electrification of

mobility. A key barrier to this endeavour is the cost markup of EVs compared to ICE vehicles.

This markup is predominantly caused by the high production cost of EV batteries which make

up roughly 30% of EV production cost (BloombergNEF, 2017). Therefore, it is essential to

reduce battery production costs to enable a substantial increase in EV adoption.

Battery cost models such as the BatPac can help to reduce battery costs by enabling researchers

and engineers to analyse and subsequently optimise the cost implications of different battery

cell formats, chemistries, and production processes. In the past, a wide variety of models from

authors such as Gallagher et al. (2014), Sakti et al. (2014), Schünemann (2015), Philippot et al.

(2019), Wentker et al. (2019), Nelson et al. (2019), and Duffner et al. (2021) has emerged. How-

ever, these models lack either the flexibility to model different battery designs and production

processes or omit important cost factors such as energy cost or individual scrap rates. Further-

more, most models lack standardised and clearly defined cost measures. While most models

present FC, they often lack a clear definition of its calculation, for example, if capital costs are

included and how they are calculated. Finally, the results of the cost models vary significantly.

Besides the large variability of cost estimates in the literature, there are also significant dis-

crepancies between literature-reported values and some industry reports. For example, Tesla

announced on their first battery day in September 2020 that they plan to reduce the cost per

kWh of a battery pack by about 56 % compared to the current state of art (Frazelle, 2021), re-

sulting in battery cost between 48 and 53 $ (kWh)−1. Assuming battery cell costs to account for

75 % of the battery pack costs, final cell costs would have to be between 36 and 40 $ (kWh)−1.

Established OEMs have met these cost assumptions with scepticism because such a low-cost

level can only be achieved through significant and as-yet-unseen technical and material-based

advancements. Such ambitious cost targets raise the question if they are realistic and can be

supported by cost models. Furthermore, they raise the question if such low targets can be due

to differences in cost accounting methods, for example, if they only reflect MC.

This essay presents an extension to a battery cost model published by Schünemann (2015) and

Schünemann et al. (2016). The model enables the user to calculate the FC, LC, and MC of

different battery designs and to adjust the sequence of production steps and the parameters
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of each step. This allows for comparing different cell designs and production methods and

understanding how each design decision can impact the cost of cell production.

The application of the model is demonstrated on two state-of-the-art battery designs: a cylin-

drical 4680 cell (as used, for example, by Tesla) and a prismatic PHEV2 hardcase cell (as used,

for example, by VW). For both cell formats, NMC811 cathodes are combined with graphite and

silicon anodes with 0wt.%, 3wt.% and 5wt.% Si. Furthermore, two cases with and without

the recovery of scrap material are compared.

The remainder of this assay is structured as follows: section 3.2 provides a brief introduction

into the typical production process for modern EV batteries, an overview of existing battery

cost models and their limitations, the typical cost structure of battery cells, and introduces FC,

MC as well as the LCBP that is used in the cost modelling. Section 3.3 describes the developed

cost model, the two cell designs, and the corresponding production processes. Finally, section

3.4 presents and discusses the calculated production costs for the 4680 and PHEV2 cells, and

section 3.5 provides a conclusion.

3.2 Production costs of lithium-ion batteries

The production of battery cells requires a sequence of complex production steps, often conducted

in a controlled environment such as a dry room. It requires high investments into machines and

production facilities and is energy intensive. Combined with high raw material cost, e.g., for

lithium, it makes battery cells the most cost-intensive component of EVs. Therefore, accurately

calculating their cost is of significant importance to OEMs. Bottom-up cost models calculate

production cost based on calculations of the required material, machines, labour, etc., for pro-

ducing a specified factory output. With the help of these cost models, companies can evaluate

and optimise their battery cell design and production processes and allow for benchmark studies

to compare with competitors.

3.2.1 Modern battery production processes

The specific battery production process depends on multiple parameters such as the battery cell

design, its chemistry, and the used production processes, which are often part of the proprietary

knowledge of the producers (Schünemann, 2015). Therefore, there is not universally applicable
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or standardized production process, but rather many different ones with slight variations. In

the following, the key steps of the process depicted in Figure 3.4, which is used in the model

presented in this essay, are explained. The process has been chosen based on literature examples

(e.g., Schünemann, 2015) and in consultation with industry experts.

In the first steps of the battery production process, the electrodes are produced. This is an

important part of the overall cell production because the electrodes are responsible for a large

share of the cell cost (Schünemann, 2015). The electrode production consists of the component

handling, mixing, coating and drying, calendering, and post-drying.

Component handling describes the initial handling of the required raw materials such as

lithium.

In the mixing step, the powdered raw materials are processed into a slurry. Today’s industrial

mixing processes mainly use batch processes, e.g., in planetary mixers that take up to six hours

to complete with a capacity of up to 2000L per pass (CHARGED Electric Vehicles Magazine).

More recent developments are moving towards continuous processes, where a throughput of up

to 2500Lh−1 could be possible (Bühler Group). A key challenge within the mixing step is

to maintain a high slurry quality while increasing the required scale of production (Keppeler

et al., 2021), but various studies have shown that continuous mixing processes can deliver a

similar slurry quality compared to batch processes and that large scale production is possible

(Schünemann et al., 2016, Dreger et al., 2015, Haarmann et al., 2021).

After mixing, during the coating and drying, the electrode slurries are coated onto their

respective current collector foil. A key performance indicator for coating is the coating speed

which is often around 80mmin−1, but successful production has also been reported at higher

speeds of up to 100mmin−1 (Keppeler et al., 2021). The subsequent removal of the solvent from

the wet film (i.e., the drying) has a significant impact on the resulting electrode quality (Westphal

and Kwade, 2018) and is the process step with the highest energy consumption (Thomitzek

et al., 2019). Process parameters must be selected in such a way that no segregation occurs

in the particulate system, so that, for example, the mechanical properties of the coating are

not negatively affected, since these also determine the further processability (Zhang et al., 2022,

Westphal and Kwade, 2018).
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During the calendaring, the dry electrode is compacted (often by a two-roll calender) to increase

its energy density. Typically, the process speeds are similar to those of the coating step and are

usually between 30 and 100mmin−1 (Kwade et al., 2018, Meyer et al., 2017).

Calendering also leads to a moisture uptake (Huttner et al., 2021), requiring a reduction of water

content of the electrodes prior to the transfer into dry or inert atmosphere (Stich et al., 2017).

This post-drying step is conducted, for example, by infrared belt dryers (Huttner et al., 2020).

After the post-drying, during the cell production phase, the electrodes and the other components

of the cells (separator, casing, auxiliaries) are assembled (Kwade et al., 2018). Today, there are

three main principles to assemble lithium-ion battery electrodes: winding, stacking and Z-folding

(Kwade et al., 2018). Both cell designs presented in this essay use winding (see Figure 3.3).

Therefore, the cell production described in the following consists of the steps slitting, winding,

contacting, inserting and closing of the lid, electrolyte filling, and wetting. It is conducted in a

so-called dry room with a defined, dry atmosphere. Commonly, the dry room has an ambient

temperature of 20 °C and dew points between -40 and -60 °C. Creating these conditions represents

a significant cost factor due to the high energy consumption of the used air conditioning systems

(Yuan et al., 2017, Thomitzek et al., 2019, Vogt et al., 2021). The high cost of the dry room are

necessary, however, because of the aforementioned sensitivity of cells to moisture.

In the first step of the cell assembly, the electrode coil is slitted, meaning it is cut into smaller

webs (Pettinger, 2018). Common cutting systems using blades or lasers achieve speeds above

100mmin−1 and are usually not a limiting factor of the cell production throughput, but excellent

cut edge quality is required to produce the high performance batteries required for EVs (Kriegler

et al., 2021). In the case of stacking or Z-folding of electrodes, the electrodes must first be

separated out of the web into individual sheets which can be done using different technologies

such as punching dies or lasers (Pettinger, 2018, Kwade et al., 2018, Kriegler et al., 2021).

Afterwards, for the winding step, there are different processes for cylindrical cells (such as the

modeled 4680 cell) and prismatic cells (such as the modeled PHEV2 cell). For cylindrical cells,

the electrodes and the separator are wound around a nail-shaped winding mandrel, resulting

in a round winding. For prismatic cells, the webs are wound around a flat winding mandrel

resulting in a flat winding of similar dimensions to a cell of stacked electrodes (see Figure 3.3)

(Pettinger, 2018). In both cases, the anode sheet is usually larger than the cathode sheet. In all

stacking processes, the deposition accuracy of the electrodes with the separator is an important
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parameter. Even small deviations can lead to a significant reduction in cell performance or

reproducibility (Leithoff et al., 2020).

The wound cell stack is then inserted into the cell housing, leaving an unsealed opening for the

filling process (Knoche and Reinhart, 2015). The cell housing of LIBs can be made of flexible

pouch foil or rigid materials such as steel or aluminium casings. Pouch cells usually consist of

two pieces of aluminum composite foil, of which at least one, and often both, are thermoformed

to accommodate the prismatically wound or stacked cell stack. A gas pouch is integrated into

the setup to absorb excess electrolyte and gases produced during the electrochemical activation.

Metal casings are usually deep-drawn from aluminum or stainless steel panels (Pettinger, 2018).

During the filling and wetting steps, the cell stack is soaked or wet with liquid through the

unsealed opening. For industrially produced large-format battery cells, this process may involve

multiple filling and wetting cycles and can lead to a duration of several hours to days (Wood

et al., 2019). Options to improve the economic efficiency of the process (and thus reduce the cell

production cost), are via the acceleration of wetting by means of vacuum application (Weydanz

et al., 2018) or targeted structuring of the electrodes (Habedank et al., 2019).

After the filling and wetting, the forming and degasing of the cell is performed. Forming

describes the first charging and discharging of the cell during which the electrolyte forms the

so called Solid Electrolyte Interface (SEI). The SEI is composed of decomposition products of

the electrolyte, lithium ions and the anode surface due to the resulting reaction in the anode

potential operating window (An et al., 2016). Since the SEI-formation consumes lithium-ions, a

capacity loss which amounts to roughly 10 % of capacity for graphite anodes occurs (An et al.,

2017). Nevertheless, the SEI is essential for a long and stable operation of the cell as it prevents

any further reactions with the electrolyte (Wood et al., 2019). Usually, the first charging and

discharging cycle is carried out at a low current which is increased in the subsequent steps. Due

to the many steps, the whole process can last up to several days (An et al., 2017). However,

the exact formation protocols are typically undisclosed by the cell manufacturers (Wood et al.,

2019). From a cost perspective, the formation step poses the second biggest cost factor after

the cost of raw materials (Wood et al., 2015). This can be explained by the high number of

required charging- and discharging cycles, which lead to a considerable production footprint and

associated investment cost. Consequently, it is of great interest to lower the overall formation

time in order to increase the throughput and, hence, reduce the production cost (Mao et al.,

2018).
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During the first charging of the battery material, a certain amount of gas is created (especially in

larger cells), which needs to be removed from the cells before they can be closed. The degasing

process depends on the cell type. For pouch cells, a separate gas bag which is vacuumized and

cut off once the pouch bag is completely sealed, is used. For hardcase cells, a small opening

on the top of the case is left so that the resulting gas can be removed before the cell is closed

(Heimes et al., 2018, Pettinger, 2018).

When the cells are closed, the aging process, which is the most time-consuming production

step, is conducted. The cells are stored in aging shelves and towers for two to three weeks to

analyze their self-discharging performance (Heimes et al., 2018, Kwade et al., 2018). During the

aging process, Open-Circuit-Voltage (OCV)-measurements are carried out at regular intervals

to forecast the cell’s lifetime (Michaelis et al.). Due to the long storage time, aging requires

considerable equipment and space (Wood et al., 2019), and a change of the aging duration has

direct cost-implications (Schünemann et al., 2016, Michaelis et al.).

Finally, the End-of-Line testing, which consists of two steps, takes place. First, the cells are

removed from the aging shelves and put into the testing modules where tests like OCV-tests,

pulse tests, or internal resistance measurements are conducted. Second, based on the test results,

the cells are graded in different classes based on the customer requirements (Heimes et al., 2018,

Pettinger, 2018).

3.2.2 Review of existing cost models and further relevant studies

Due to the increasing importance of EVs and battery cells, the literature on cost estimations of

battery cells is growing rapidly. This section provides a brief overview of the most commonly

used cost models. More detailed reviews of battery cost models can be found in Duffner et al.

(2020) and Mauler et al. (2021).

One of the most frequently used tools for battery cost estimation is the BatPac. It was first

released in 2011 by Nelson et al. (2019) and has since been updated several times. This work

mostly focuses on version 5.0 from 2022, which is currently the newest version available. The

Microsoft Excel-based bottom-up model enables users to calculate battery cell and pack costs

for different chemistries under a specified production volume within a pre-defined factory layout

and manufacturing process.
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The model is frequently used, adapted or extended by various authors, such as Gallagher et al.

(2014), Eroglu et al. (2015), Nelson et al. (2015), Patry et al. (2015), Ciez and Whitacre (2016),

Ahmed et al. (2017), Safoutin et al. (2018), Philippot et al. (2019), Nemeth et al. (2020), Wang

et al. (2020), Zang et al. (2021). Some of the model’s limitations are, for example, the disregard

of energy cost. In energy-intensive industries such as battery production, energy can become a

major cost factor, especially in times of high electricity prices. Furthermore, the model does not

account for individual manufacturing steps (e.g. calendering, drying, etc.) but only provides

scrap rates on a high level (mixing, coating, electrode sitting, cell stacking, and electrode filling).

However, more granular scrap rates would be necessary to measure the overall impact of im-

proving the productivity of individual manufacturing processes. Besides, the model does neither

allow to adjust the sequence of production steps in the manufacturing process nor to tailor the

individual steps towards different cell designs (e.g. pouch, prismatic or cylindrical cells). These

limitations reduce the tool’s applicability when comparing and optimising different cell designs

and production processes.

A frequently used modelling technique is Process-Based-Cost-Modelling (PBCM). PBCM is

a widely accepted approach using technical parameters to calculate manufacturing cost in a

bottom-up cost model (Field et al., 2007). PBCMs translate product characteristics (e.g., bat-

tery capacity) into technical parameters (e.g., required materials) which are then translated into

operational parameters (e.g., required machines) and finally translated into manufacturing cost

(e.g., material costs, machine investments, etc.) (Field et al., 2007). They are frequently used in

battery literature, e.g. by Sakti et al. (2014), Berckmans et al. (2017), Ciez and Whitacre (2017),

Sakti et al. (2017), Duffner et al. (2021) and Mauler et al. (2021). Most of these approaches are

similar to the BatPac in using a bottom-up model to calculate manufacturing costs. However,

they usually model manufacturing costs more accurately than the BatPac by including instal-

lation costs, machine downtimes, lead times and individual scrap rates for each manufacturing

step. Most authors tailor their models to answer specific research questions (e.g., Ciez and

Whitacre, 2017 compare cylindrical and prismatic cells) and resign from making their models

available to the public. Therefore, it is difficult to use many of these PBCM models as generic

tools for the cost estimation of different battery cells and manufacturing processes.

Finally, some authors use models without reference to PBCM, such as Kalhammer et al. (2007),

Hagen et al. (2015), Petri et al. (2015), Schünemann (2015), Berg et al. (2015), Wood et al. (2015),

Schmuch et al. (2018), Schnell et al. (2019), Wentker et al. (2019), Schneider et al. (2019) and
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Schnell et al. (2020). For example, Amirault et al. (2009) developed a Battery-Weight-Model

that estimates the weight of the battery based on the weight of the car it is used in. The model

then estimates the battery production costs based on the battery’s weight using assumptions

on the relationship between battery weight and production costs. Like the mentioned PBCM

models, these models are often neither publicly available nor designed to model cost for specific

cell designs or manufacturing processes. Therefore, they are not meant to be used as generic

tools for cost estimation of battery cells and manufacturing processes.

When analysing cost estimations made in previous literature, the high spread of the results

between different authors is remarkable, especially in the earlier works between 2015 and 2019.

For example, Petri et al. (2015) report cell costs between 104 to 122 $ (kWh)−1, whereas Sakti

et al. (2017) report a range of 138 to 1.210 $ (kWh)−1. This can partially be attributed to the

technological advances in battery manufacturing and cost differences associated with different

cell designs. However, it also shows that there is not sufficient convergence in models and

technologies towards an achievable price for a best-in-class design so far.

Notably, most cost estimations within academic literature state significantly higher costs than

what can be assumed from companies like Tesla who report 110 to 120 $ (kWh)−1 in 2020 and

48 to 53 $ (kWh)−1 in 2025 for battery packs (Nextmove, 2020 and Frazelle, 2021), which would

imply cell cost of as low as 36 to 40 $ (kWh)−1 in 2025.

When summarising previous literature, it becomes apparent that current cost models are not

precise enough. They frequently state significant variances in price estimations and deviate from

industry-reported numbers. They often lack critical cost factors (e.g. electricity costs or scrap)

and do not enable the user to quickly model different technologies for individual production

steps. Therefore, further research should establish detailed and flexible bottom-up cost models

calibrated with industry-reported costs. These models would allow OEMs and other researchers

to estimate costs for different cell designs and manufacturing processes accurately.

3.2.3 Cost structure of battery cell production

The major share of battery cell cost is due to materials accounting for 58 to 77 % of total cost

(Berckmans et al., 2017, Kwade et al., 2018, Philippot et al., 2019, Duffner et al., 2021). Depre-

ciation and labor costs usually account for 6 to 16 % and 2 to 12 % respectively (Schünemann,

2015, Kwade et al., 2018, Philippot et al., 2019, Duffner et al., 2021).
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Capital costs on the required investments, energy costs and other costs such as maintenance

make up smaller shares of the total cost (ca. 3 % according to Kwade et al., 2018). Figure 3.1

illustrates the share of cost factors according to Kwade et al. (2018).

Figure 3.1: Battery production cost breakdown (own representation after Kwade et al., 2018)

.

Due to the significant shares of material, depreciation and labour costs, modelling approaches

should consider individual scrap rates, machine performance, capital investments, labour re-

quirements etc., per manufacturing step to enable more accurate cost estimations. This would

also allow users to estimate the cost-effectiveness of new manufacturing processes for individual

manufacturing steps.

3.3 Cost Model Approach

The presented model comprises six distinct stages (cf. Figure 3.2): (1) and (2) establish the cell

design, properties, and process chain, along with the overall production volume. (3) calculates

the required material throughput for each selected process based on individual scrap rates. (4)

determines the resource requirements. (5) calculates the individual process costs followed by the

calculation of full, marginal, and levelized cost in (6).

We adapt the model structure from Schünemann (2015) and Schünemann et al. (2016) and extend

it with a more detailed cost calculation, two state-of-the-art battery cell formats and updated
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process parameters collected via literature review and expert interviews. In the following, we

provide a brief explanation of the cell designs and the production processes.

Figure 3.2: Calculation procedure of the battery cost model used in this essay

3.3.1 Cell design

Two cell formats are investigated based on their relevance within the automotive sector: A

cylindrical cell with modern dimensions (4680, as used by Tesla) and a standard prismatic hard

case cell (PHEV2) with flat cell winding. Both cells are depicted in Figure 3.3.

Figure 3.3: Illustration of the two modelled state-of-the-art battery cells including the type of jelly roll
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For each format, three industry-relevant cell chemistries are compared. Each of the three cell

configurations uses NMC811 cathode active material. For the anode, one variant with Graphite

(G) and two variants with silicon-containing (3 and 5wt.%) graphite as the active anode material

are chosen. We assume common materials for inactive electrode components, such as the binder,

conductive additive, and solvent, and for the inactive cell components, such as the electrolyte and

separator (Kwade et al., 2018). Table 3.1 provides a summary of the electrode property inputs

and Table 3.2 lists the corresponding performance parameters of the cells. For the material costs

of the individual cell components, we gathered price estimations from a material price study by

Pillot (2020) and combined them with the values from other cost models such as Schnell et al.

(2020) and Knehr et al. (2022).

Table 3.1: Key parameters for the electrode design

Cathode
(NMC811)

Graphite G + 3wt.%
Si

G + 5wt.%
Si

Specific capacity, in mAhg−1 200a 360b 475** 522**

Areal capacity, in mAhcm−2 5.00c 6.00 6.00 6.00
Solvent NMP Water Water Water
Slurry solid content, in wt.% 70 55 55 55
Current collector, in µm Al / 12 Cu / 8 Cu / 8 Cu / 8
Porosity, in % 22.0c 22.0c 28.2*** 32.3***

SEI loss*, in % - 7.29d 8.50d 9.51d

* Capacity loss at cathode due to solid electrolyte interphase (SEI) formation at the anode
** Calculated based on the specific capacity of Si, G, and respective mass fractions
*** Calculated based on Si expansion
a, b, c, d Heck et al. (2020), Andre et al. (2017), Günter and Wassiliadis (2022), and Moyassari
et al. (2022) respectively

Table 3.2: Resulting performance parameters for each cell

Parameter PHEV2 4680
Graphite G +

3wt.%
Si

G +
5wt.%

Si

Graphite G +
3wt.%

Si

G +
5wt.%

Si
Capacity* / Ah 53.05 56.29 58.00 26.71 28.34 29.21
Nominal voltage / V 3.7 3.6 3.6 3.7 3.6 3.6
Energy content* / Wh 196.29 202.64 208.80 98.83 102.02 105.16
Cell weight / g 892.40 898.97 903.34 400.25 403.48 405.64
Energy density* / Whkg−1 219.96 225.40 231.14 246.95 252.88 259.19
* After cell formation (including losses due to SEI formation); no losses at the anode assumed
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3.3.2 Production processes

We assume a yearly production volume of 10GWh. The factory is located in Germany and

operates 360 days a year, with a 3 shift operation lasting 8 hours each (including a 1-hour

break). The modelled plant incorporates an excess capacity of 25 % (Nelson et al., 2019),

providing a buffer against potential production interruptions. Table 3.3 presents the overarching

production parameters used in the case study.

Table 3.3: General factory parameters for the production scenarios

Parameter Value Unit Comment
Location Germany - Influences labour, construc-

tion, and energy costs
Yearly production capacity 10 GWh
Operating days 360 d/y
Employee working days 208 d/y
Working hours per shift 8 h/shift Including 1 hour break
Shifts per day 3 shifts/d
Excess capacity 25 % Additional capacity to reduce

downtime

The process chain used in this case study was chosen based on literature sources such as (Schüne-

mann, 2015) and industry experts. It is shown schematically in Figure 3.4. The figure illustrates

the flow of materials and by-products in the light blue path. The dark blue path illustrates the

sequence in which the required throughput and subsequently the required amount of material,

number of machines, personnel, etc., are calculated. This is the so-called anterograde calculation

which starts from the last step of the production process and then moves backwards to account

for the individual scrap rates within each production step18.

It consists of a batch mixing process, continuous coating and drying, and subsequent calendering.

The electrode coils are post-dried before they are transferred to the dry room. These process

steps (up to slitting) can be modelled identically for both cell types, except for minor differences

such as the coating width. The electrode slitting process varies due to differences in electrode

and cell dimensions. The winding process differs significantly between the two cell formats, as

the PHEV2 cell utilises a flat wound jelly roll instead of the round winding of the 4680.

The main difference in the process sequences of the cell designs lies in the contacting step. For

the PHEV2, the current collectors are contacted before case inserting and lid closing. Meanwhile,
18 I.e., the occurrence of scrap in a production process forces the previous production step to have a higher output

to meet the final required output of the factory.
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for the 4680, this step happens after inserting. The rest of the process chain is the same for

both cell types. After electrolyte filling through an opening at the top of the case and a wetting

step, the cells are charged and discharged during the formation process, which builds the SEI

on the anode surface. Simultaneously, the cells are degassed through the filling hole. Once the

formation and degassing are completed, the cells are closed and rested in the ageing step to track

the self-discharge behaviour. Afterwards, the end-of-line test serves as quality assurance before

packaging and shipping the cells.

Figure 3.4: Production processes for the modelled PHEV2 and 4680 cells

3.3.3 Factory size and cost calculation

Before the full, marginal, and levelized cost can be calculated, it is necessary to calculate the

overall factory dimensions and the resulting investment, fixed, and variable cost (i.e., steps 3−5

from Figure 3.2).

First, the number of cells that need to be produced is calculated by dividing the specified factory

output (ot = 10GWh in the case study) by the energy content of the cells.

Next, in step 3, the required throughput per process step is calculated in the anterograde material

flow calculation, using the individual scrap rates per process scrap. This enables us to account
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for a compounding effect of losses from scrap over the entire production process. For example, if

a production process consisting of three production steps with scrap rates of 10%, 5%, and 7%

should produce 100 units of output, then the required input into the last step is 100·(1− 7%)−1 ≈

108, the required input for the second to last step is 108 · (1− 5%)−1 ≈ 114, and the required

input for the first step is 114 · (1− 10%)−1 ≈ 127. Conversely, the amount of scrap per process

step is calculated by multiplying the input with the individual scrap rate. With the throughput

and scrap per process step we can also calculate the required material input per process step as

well as the material waste that can be avoided with scrap reduction.

Afterwards, in step 4, the calculation of the required number of machines NUnits,j per process

step j is conducted based on the throughput per process step, the throughput per machine, and

the defined overcapacity which accounts for machine downtimes. It is then used to calculate the

shopfloor space, energy consumption, and personnel per process step.

Finally, in step 5, the total production cost are calculated19. In this model, we take the following

eight cost factors into account: Direct material, direct personnel, personnel overhead, direct

energy, energy overhead, investment, maintenance, and ramp-up cost.

The direct material cost, CMat =
∑

m∈M mM · CM , are calculated based on the required

amount of material mM and material cost per kg CM . We differentiate the material cost by the

following cell components: Anode solvent, Cathode solvent, Anode coating, Cathode coating,

Anode current collector, Cathode current collector, Separator, Electrolyte, and Casing (i.e. M =

{Anode solvent, Cathode solvent, ..., Casing}).

Direct personnel cost consists of skilled and assistant workers. The number of employed skilled

and assistant workers

Nj =
NShift,Day ·NWorkdays

NWorkdays,Empl
·
∑
k

Nj,k ·NUnits,k

j ∈ {Skilled, Assistant}, k ∈ {Process Steps}

consist of the number of required skilled/assistant worker per machine and process step Nj,k,

the number of machines per process step NUnits,k, the number of shifts per day NShift,Day, the

number of work days per employee NWorkdays,Empl, and the number of days the factory is running

per year NWorkdays. The yearly direct personal cost is then calculated as CDP =
∑

j Cj ·Nj , j ∈

{Skilled, Assistant} with Cj = NWorkdays,Empl ·NShift,Hour · cj , the cost per employee.
19 This step is also called the retrograde value flow calculation.
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The number of indirect personnel is calculated by applying an overhead charge to the total

number of direct personal. We differentiate between leadership overhead and cleaning staff and

use differentiated overhead factors, xj , and cost factors, Cj , for both to calculate the overall

indirect personnel cost CIP =
∑

j Cj · xj · (NSkilled +NAssistant) , j ∈ {Leadership, Cleaning}.

The parameters for direct and indirect personnel cost can be found in appendix A.2.

Direct energy cost, CDE = CE ·
∑

k Ek · NUnits,k, k ∈ {Process Steps}, are calculated by

multiplying the electricity consumption per machine Ek
20 by the number of machines per process

step and an electricity price CE .

Indirect energy cost, CIE = CE ·
∑

j Pj ·Aj , j ∈ {Basic, Dry room, Lab space}, are calculated

based on the size of the basic, dry, and laboratory areas in the factory, Aj , annual their electricity

consumption per m2, Pj , and the electricity price CE .

Investment cost consist of two components: the cost of buying and replacing the production

machines as well as the cost to build the factory including buying its property. The cost of

buying machines, CMach =
∑

k CMach,k · NUnits,k, k ∈ {Process Steps} are calculated based

on the number of machines and the price per machine CMach,k. The cost for building the

factory CF =
∑

j CF,j · Aj , j ∈ {Basic, Dry room, Lab space, Property} depend on the

dimensions Aj of the different areas (basic, dry room, lab space), and the property, as well

as a building / acquisition cost per m2, CF,j. We calculate the required areas based on the

number of machines and the size of the machines. Afterwards, we apply additional factors for

machine operators, intermediate storage, and other administrative areas on the shopfloor. The

resulting total production area21 is further marked up by administrative, social, and shipping

areas and the size of the property is calculated by multiplying the resulting factory size by a

factor that describes the usual ratio of property to factory. For the periodic investments it

follows I0 = CMach + CF and It = CMach with t ∈ {10, 20, 30, 40} for a 50 year factory lifetime

and a 10 year replacement cycle for the machines (Knehr et al., 2022)

Maintenance cost CMaint = 1.5% · I0 are calculated as 1.5% of the total investment costs

(Schünemann, 2015).

Ramp-up cost are calculated as proposed by Knehr et al. (2022) as a 5% surcharge on the

material cost and a 10% surcharge on direct personnel and overhead and personnel. With

20 There is always one type of machine used per process step
21 the sum of the basic, dry room, lab space and additional production areas
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overhead consisting of indirect personnel, energy overhead and maintenance it follows CRU =

5% · CMat + 10% · (CDP + CIP + CIE + CMaint).

Finally, we calculate the periodic variable cost wt = CMat+CDP+CDE, fixed cost Ft = CIP+CIE,

and linear depreciation cost dt = CF · T−1
F + CMach · T−1

Mach with the lifetime of the factory TF

and the lifetime of the machines TMach
22.

3.3.4 Cost calculation for battery cell production

Essential metrics for measuring battery production costs are full, levelized, and marginal costs.

FC is calculated by dividing the total yearly production cost by the total yearly production

output in kWh (Datar and Rajan, 2018). Several studies (e.g. Gallagher et al., 2014, Hagen

et al., 2015, Vaalma et al., 2018 and Wentker et al., 2019) have analysed the FC of battery

production, offering benchmarks for researchers and the industry. However, as the components

of FC are not clearly defined, they also provide room for misinterpretation.

One example of this is capital cost, where authors often use different calculation methodologies.

Some, like Duffner et al. (2021), use the annuity method, which calculates capital cost based on

the tied-up capital in each period, while others, like Schünemann (2015) use a simplified approach

based on the assumption that on average half of the initial investment is tied-up capital. The

BatPac model presumably includes capital cost in a yearly cost measure called ”profit" as a

fixed percentage on the total initial investment and working capital (Knehr et al., 2022). This

is, however, oversimplified as it neglects the depreciation reducing the amount of tied-up capital

and also neglects interaction effects between depreciation and taxes. Since depreciation payments

can change over time (depending on the depreciation schedule), the taxes that must be paid can

also change. Finally, a large share of authors in our literature review does not mention capital

cost in their work at all (i.e., Hagen et al., 2015, Berg et al., 2015, Petri et al., 2015, Ciez and

Whitacre, 2016, 2017, Zang et al., 2021 and Mauler et al., 2021). For comparability with these

authors and since there is no consistent calculation method used by the other authors, this essay

omits capital cost in the FC calculation.

Furthermore, in many cases, full cost neglect taxes and their interaction with depreciation (de-

preciation reduces the taxable profits). Only the BatPac model considers taxes in their General,

22 In this work we assume stationarity, i.e. wt = w, .... However, since the following cost measures also work in
non-stationary settings we keep a notation with a year t
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Sales and Administration cost component which is calculated as 25% of direct labour and vari-

able overhead plus 25% of depreciation cost (Knehr et al., 2022). Since this is a simplified

calculation and no other authors mention taxes in their work, we also do not include taxes in

the full cost calculation and use the following formula:

FC =
I0 +

∑TF
t=1 (It + wt + Ft + dt)∑TF

t=1 ot
.

LC is a more complete and more clearly defined metric. It describes the average price an

investor needs to realise from selling a product to achieve a zero NPV. This includes covering all

operating expenses, payment of debt and imputed capital cost on the initial project expenses,

and an acceptable return to the investor (Massachusetts Institute of Technology, 2007, Chapter 3

and Friedl et al., 2022). This essay follows the formal definition of LC from Reichelstein and

Rohlfing-Bastian (2015), but adapts the calculation logic to include recurring investments, e.g.,

into machines that must be replaced before the end of the factory lifetime. To receive the

levelized cost, the formula to calculate the NPV of an investment in a battery factory is set to

zero and solved for the price. The NPV is defined as

NPV =−
TF∑
t=0

It · γt (Discounted yearly investments)

+

TF∑
t=1

p · ot · γt (Discounted revenues)

−
TF∑
t=1

wt · ot · γt (Discounted yearly variable cash flows)

−
TF∑
t=1

Ft · γt (Discounted yearly fixed cash flows)

−
TF∑
t=1

α · (p · ot − wt · ot − Ft − dt) γ
t (Discounted yearly tax payments)

(3.1)

with γ ≡ (1+ r)−1 a discount factor where the cost of capital is defined by r, p the price realised

from selling one unit of output, and α the effective corporate income tax rate.

Setting formula 3.1 to zero and solving for p yields the LCBP

LCBP = p =

∑TF
t=1wt · ot · γt∑TF

t=1 ot · γt
+

∑TF
t=1 Ft · γt∑TF
t=1 ot · γt

+

∑TF
t=0 It · γt − α

∑TF
t=1 dt · γt

(1− α)
∑TF

t=1 ot · γt
. (3.2)
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The relation between FC and LC depends on the definition of FC. If FC Reichelstein and

Rohlfing-Bastian (2015), including taxes and the annuity method for depreciation and capital

cost, then FC and LC are equal. However, as indicated above, most papers do not use the

annuity method for calculating capital costs and do not include taxes. Therefore, as shown in

proposition 2.1, FC is lower than LC.

Another important cost measure is the MC. MC reflect the costs to produce another unit of

output. Hence, they are an important measure for short-term production decisions. I.e., the

battery production should be stopped if the selling price of a battery cell drops below its MC

(Datar and Rajan, 2018). In the case of battery cells, MC includes all material, variable energy,

and direct labour necessary to produce another kWh of battery capacity23 but neglects fixed

costs like investments in the production facility. From a company’s point of view, MC can be

a useful cost measure after an investment decision has been made when the investment can be

considered a sunk cost. It is possible that reports of very low battery production costs, such as

Nextmove (2020) refer to MC instead of FC. Therefore, we also report marginal cost to test this

hypothesis.

MC is calculated by dividing the yearly material, variable energy and variable personal costs

by the yearly factory output (in kWh)24. For energy and personal costs, only electricity and

personnel directly required to operate the machines on the shopfloor are considered (i.e. overhead

such as managers or electricity for heating are not considered in the MC). To calculate the

marginal cost we use the following formula:

MC =

∑TF
t=1wt∑TF
t=1 ot

.

Because MC do not include any fixed cost or depreciation, they are significantly lower than FC

or LC.

A summary of the calculation and cost factors included in the full costs, levelized costs and

marginal costs can be found in Table 3.4. When interpreting the results, it is important to

note that all calculated cost measures purely reflect the production cost of different battery

cell designs. They do not consider differences in the battery quality (which, for example, can

23 Note that battery factories produce their output on a cell or pack basis and not based on individual kWh.
However, for comparability, this essay relates costs to kWh instead of individual battery cells or packs

24 As all these costs are linearly increasing with the production output, these average yearly variable costs are equal
to the MC
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influence its lifetime) or their end-of-life value (for example, from second-life usage or recycling)

which can affect the lifecycle cost of producing, using, and disposing of a battery.

Table 3.4: Cost factors included in marginal cost, full cost, and levelized cost.

Cost measure Included cost factors

Full cost Variable cost: Direct material, personal and energy
Fixed cost: Personal overhead, energy overhead and maintenance
Depreciation: On factory and machine investments

Levelized cost (LCBP) Variable cost: See above
Fixed costs: See above
Depreciation: See above
Capital cost: On factory and machine investments
Taxes: On yearly profits after depreciation

Marginal cost Variable cost: See above

3.4 Results

The case study covers twelve cases: two cell formats (4680 and PHEV2), three cell chemistries,

and the option to recover scrap material. Figure 3.5 presents the FC, LC, and MC for each

configuration. The calculations are based on the production processes shown in Figure 3.4,

assuming a factory output of 10GWh per year.

When analysing the FC and cost shares, several effects become apparent:

(1) The costs of the cylindrical 4680 and the prismatic PHEV2 cell format barely differ. The

small differences (around 1% between formats) cannot be interpreted as one cell design

being superior because of the model’s sensitivity to changes in input parameters.

(2) Reducing material costs has a high potential for reducing overall costs, as the material

cost accounts for over 80% of the overall cell costs. Similarly, it becomes apparent that

reaching a material cost reduction through efficient scrap recovery can significantly impact

the total costs. This underlines the need for the scale-up of efficient recycling processes.

(3) The addition of Si to the cell chemistry increases the energy density of both the PHEV2

and the 4680 cell, as Si has a higher specific capacity (cf. Table 3.2). This is because adding

Si to the anode active material increases the energy density of the anode. Therefore, if the

energy capacity (in kWh) of the cell is kept constant, less anode active material is required
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Figure 3.5: FC, LC, and MC cost breakdown of the PHEV2 and the 4680 cells with and without the recovery
of scrap material

which reduces the material cost. Furthermore, less material for passive components is

required because a thicker application of active material to the passive components is

possible, further reducing the material costs. These effects are slightly counteracted by the

increased SEI loss associated with adding Si which slightly increases the amount of required

cathode active material25 which increases material costs. In total, the cost reductions from

reducing anode active material and passive material slightly outweigh the cost increases

from increasing cathode active material.

(4) The material expansion during cycling causes an accelerated cycle life ageing of silicon-

containing anodes (Kalaga et al., 2018). Even though this does not influence the produc-

tion costs, the effect should be considered since it increases the life cycle cost of silicon-

containing cells. Regarding the current EV mileage requirements of 200,000 km, a lifetime

of around 1,000 cycles would be necessary for a single range of 200 km, which reduces

with increasing energy densities (Thielmann et al., 2020). Therefore, in particular, for a

second-life scenario, the impact of cycle life on life cycle cell costs becomes crucial.

25 To put it simply, SEI loss ”traps" lithium from the cathode at the anode and thus requires more lithium-containing
cathode active material.
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(5) LC are 5 − 7% higher than FC. While it is no surprise that LC are higher than FC, it

is important to recognize the extent of the difference and its implications. I.e., a firm

that would set their prices to FC would not be able to recover their capital cost and tax

payments. In contrast, LC, can be identified as the long-run marginal cost under certain

conditions and include the payment to all involved parties (suppliers and employees, the

state via taxes, investors via an acceptable return to their investment, etc.). Therefore,

it is natural that the LC are also closer to the reported market values by BloombergNEF

(2022) and we argue that LC should be included in future cost models.

Capital and space requirements

Figure 3.6 highlights a notable difference in the investment and space requirements of factories

producing 10 GWh of the investigated cells. The overall investment cost and the factory size for

the 4680 cell is 16-19% higher compared to the PHEV2 cell. This is because a higher throughput

of 4680 cells is required to achieve an annual output of 10 GWh. Since the machines for both

cell formats are assumed to have the same throughput per cell, more machines are necessary for

the 4680 cell. Even though the machines for the PHEV2 cell production are more expensive,

this results in higher investments and space requirements for the 4680 factory. Despite those

higher investments, the FC (in $ (kWh)−1) of both cells are similar because the higher energy

density of the 4680 cell reduces its required material and material costs. In total, both effects

even each other out.

Figure 3.6 also illustrates that machines make up about 67% of the overall investment costs

for both cell formats, highlighting the importance of developing more efficient or less expensive

manufacturing technologies. The remaining 33% of investment consists of the acquisition of

property, construction of the factory, and ramp-up costs. Of these, ramp-up costs and the

construction of lab space and dry rooms are the most significant cost factors. They underline

the necessity for further optimisation to achieve smoother and cheaper ramp-ups with less waste

and to reduce the required lab space and dry rooms. For the latter, the model presented in this

essay provides a fine-granular overview of the factory’s space requirements (cf. Figure 3.7) that

can help identify process steps responsible for large portions of the dry room and lab space and

analyse the effectiveness of measure to reduce those spaces (e.g., by using smaller machines).
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Figure 3.6: Investment, ramp-up cost, and space requirements of the graphite-based PHEV2 and 4680 cells

Discrepancy of research and industry reported values

Figure 3.8 shows that the results of the 4680 and PHEV2 cells are comparable to previously re-

ported values from the literature. Authors like Schnell et al. (2020), Zang et al. (2021), Duffner

et al. (2021) and Mauler et al. (2021), estimate cell production costs around 100-150 $ (kWh)−1.

Notably, the material cost share in this study is higher than in older publications (e.g., Schüne-

mann, 2015). A reason for this could be that production processes have been optimized (espe-

cially with regard to process speeds) and made more cost-efficient in the past (Duffner et al.,

2021). In contrast, no considerable changes to material costs have occurred26, resulting in a

higher material cost share of the total cost. Another effect could be the weak USD-to-Euro-

exchange rate (1.054 USD per Euro from Exchange Rates UK, 2022). As the prices for several

machines were gathered in Euro, a weak exchange rate reduces the converted USD prices. This

can reduce the depreciation cost and increase the share of material cost of the FC.

26 Lithium prices have actually increased in recent years (Statista GmbH, 2022b).
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(a) Prismatic PHEV2 cell

(b) Cylindrical 4680 cell

Figure 3.7: Required areas and number of machines for a 10 GWh factory for the prismatic PHEV2 and the
cylindrical 4680 cells with graphite anodes
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When looking at the calculated cell production FC of 110-113 $ (kWh)−1, it becomes apparent

that these values are still higher than the lowest industry-reported values of around 100 $ (kWh)−1

from Kane (2019) and Nextmove (2020). We find three potential explanations for this:

(1) The industry reports marginal instead of full or levelized cost because they consider the ini-

tial factory investments as sunk cost. The MC calculated in this essay of 103-104 $ (kWh)−1

are only slightly higher than the values reported in the media and could explain a significant

part of the difference.

(2) The values reported in the media are often based on rumours or unconfirmed sources inside

the companies. This leaves the chance that companies circulate lower than actual values to

increase their perceived competitiveness and put pressure on their competitors or suppliers.

(3) Large companies can achieve significantly lower material and production costs than the

models in most papers assume. This could be due to economies of scale that are not

reflected by the input parameters of most models.

OEMs like Tesla, e.g., try to build up in-house component manufacturing for the cathode active

material, one of the cell’s most expensive components. For this purpose, they aim to run their

own lithium production near the production site so that the supply of low-priced materials is

Figure 3.8: Comparison of results with literature reported values
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ensured (Nextmove, 2020 and Stanek and Konersmann, 2020). Furthermore, the operation of

recycling plants by the battery manufacturer could contribute to advantages on material prices

and supply security (Scheller et al., 2020). In academic modelling, these aspects cannot be

considered since their economic benefits are kept highly confidential by OEMs . The material

prices in this essay were gathered from material price studies such as Pillot (2020) and other

cost models such as Knehr et al. (2022) and Schnell et al. (2020). Potential economies of scale

are therefore not considered.

Acquiring validated industry data (e.g., on machine specifications and material prices) and con-

ducting sensitivity analyses on factors such as cell chemistries, production processes, and material

prices could help test the existing hypotheses and identify further reasons for the gap between

current literature and industry-reported values.

When comparing our results to overall market price data instead of cost claims from individual

OEMs , however, our results appear very reasonable. For example, as depicted in figure 1.4,

BloombergNEF (2022) reports average battery cell prices of ca 108-112 $ (kWh)−1 in 2020 and

2021, and 120 $ (kWh)−1 in 2019 and 2022. These values are much closer to our results and

would, for instance, in the case of the 2022 data allow for a ca. 10 $ margin per kWh. Notably,

these values are also very close to our LCBP of 118-120 $ (kWh)−1 which supports the accuracy

of our model as well as the usefulness of the LCBP metric for price setting.

Currently, the model assumes a fixed construction cost and energy consumption per m2 for the

dry room. However, these parameters depend on factors such as the location of the factory and

the number of people in the dry room. Implementing an external dry room model could enable

a more flexible investigation of different scenarios. The model structure could be modularised

to include other peripheral models (e.g., for energy consumption) as well. This would enable an

even more comprehensive and concise calculation of energy and cost.

3.5 Conclusion

This essay presents a battery cost calculation model that enables users to customize the bat-

tery format, chemistry and production processes, including both the parameters of individual

production steps and the sequence of production steps itself. In a case study, the model is used

to calculate the FC, MC and LC of a cylindrical 4680 cell and a prismatic PHEV2 hardcase
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cell with three different cell chemistries (with 0wt.%, 3wt.% and 5wt.% Si). We highlight the

differences between the three cost measures and the lack of standardised cost measures in the

literature. The resulting FC of 110-112 $ (kWh)−1 for the PHEV2 cell and 112-113 $ (kWh)−1

for the 4680 cell are in line with literature-reported values and slightly above current reports

from OEMs . We show that both cells have similar costs and that no significant cost reduction

occurs when adding Si to the anode active material. As material costs are responsible for over

80% of FC our analysis also highlights, that production costs of 36-40 $ (kWh)−1 can only be

achieved with significant reductions in material costs.



4 | The impact of battery technology

on residential solar PV and storage

systems and their fossil fuel reduc-

tion potential

Decentralized electricity generation and storage systems are key to decarbonizing the electricity

sector. In this essay, we compare the technical and economic attributes of different battery

chemistries (LFP, SIB, NCX, and LA) and identify optimally-sized solar and storage combi-

nations for individual households. Applying the model with current parameters to residential

households in Germany, we find that LFP and SIB batteries can improve the system NPV by

4000 ke while NCX and LA batteries are not economical. Installing such systems in all suitable

one- and two-family households could reduce fossil fuel consumption in the electricity sector by

up to 35% compared to 26% when installing systems with solar PV only. We find that 7% points

of the difference can be attributed to the larger solar PV systems that become economical when

installing a battery and 2% points can be attribute to the electricity supply shifting effect of

batteries. However, the latter effect only becomes relevant when a sufficient amount of additional

solar PV capacity is installed so that curtailment occurs.

Keywords: Solar PV, Fossil Fuel Reduction, Battery Electricity Storage.

I would like to thank Amadeus Bach for contributing data on the performance of different battery

chemistries.
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4.1 Introduction

Countries worldwide aim to reduce their electricity generation from fossil fuels to combat climate

change and to increase their resilience to supply shocks such as the war in Ukraine. RES, such as

residential solar PV, can substitute electricity generated from fossil fuels, but their intermittency

poses challenges to grid stability. BES has the potential to solve these challenges by shifting

electricity from times of oversupply, for example, during the day, to times of undersupply, for

example, in the evening. However, historically high initial investment costs combined with low

round-trip efficiencies27 and short lifetimes remain a challenge to the extensive adoption of BES.

The advent of electrified mobility has led to the development of more durable battery chemistries

that are also suited for BES. While extensive literature exists on the application of such battery

systems in EVs and commercial grid-scale electricity storage (e.g., Schmidt et al., 2019, Guerra

et al., 2021, Hunter et al., 2021, Sepulveda et al., 2021 and Darling, 2022), it is unclear which

battery type is best suited for household electricity storage. Furthermore, it remains to be

determined if private households’ solar PV and BES systems can significantly contribute to

reducing the share of electricity from fossil fuels on a national scale.

This essay provides a combined solar PV-BES optimisation framework to determine the NPV-

optimal system sizes for different battery chemistries. Based on the individual households’ system

optimisation, we determine the potential to substitute electricity from fossil fuels for a national

roll-out of such systems in an exemplary German setting. We disentangle the effects of additional

solar PV generation capacity and additional flexibility from BES on fossil fuel replacement and

contextualise the results within the current solar PV strategy of the German Federal Ministry for

Economic Affairs and Climate Action. Our findings are particularly important for households,

solar PV and BES providers, and policymakers when designing regulatory measures for the

uptake of decentralised renewable generation and storage systems.

Closely related to our study are Comello and Reichelstein (2019) who calculate the optimal

BES system size for an individual household in Germany and California with existing residential

solar power. Similarly, Mulleriyawage and Shen (2020) show that adding BES to an Australian

household increases the return on investment and reduces PV curtailment and greenhouse gas

emission. In addition to both studies, an extensive literature body investigates different optimi-

sation approaches for solar PV and BES system combinations (Erdinc et al., 2015, Khalilpour
27 The electricity lost from charging and discharging the battery.
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and Vassallo, 2016, Khawaja et al., 2017, Cervantes and Choobineh, 2018, O’Shaughnessy et al.,

2018 and Javeed et al., 2021). We add to this literature stream by exploring emerging battery

chemistries. Comparing different battery technologies is important, as the global battery market

is shifting towards mass-produced electric batteries with multiple cathode chemistries. The rise

of e-mobility has accelerated the global output of LIB, especially for high-nickel content batteries

with high energy density. In recent years, cheaper and more durable nickel- and cobalt-free LIB

gained rapid market share. Furthermore, a new generation of lithium-free batteries has been

announced to be mass-produced in China (Yingzhe, 2022 and Batteries News, 2022). Hence, the

battery landscape is rapidly changing, potentially impacting the EV and BES markets. Prior

literature, however, largely neglects the differences in the economic potential of new battery

chemistries despite significant cost and performance differences.

We further contribute to the literature by estimating the fossil fuel reduction potential from a

large-scale roll-out of residential solar PV and BES systems. In its efforts to decarbonise its

electricity system, Germany aims to build 22GW of additional solar PV capacity annually until

it reaches 215GW in 2030 (Die Bundesregierung, 2023). Since half of the additional capacity

should come from rooftop PV, it is important to analyse the potential contribution towards

reducing the use of fossil fuels for electricity generation of such a build-out28. While some

authors such as Weniger et al. (2013, 2016), Zhang et al. (2017), Liu et al. (2020), and Ren et al.

(2021) include self-consumption, CO2 reduction, and peak-load reduction in their analysis, none

of them provide a granular analysis of the fossil fuel reduction potential of a large-scale roll-out

of solar PV-BES systems. However, since solar PV systems mainly produce electricity during

the day, when the share of renewables is often already high, it must be analysed if a significant

addition of solar PV capacity can substantially replace electricity from fossil fuels or if it would

instead increase the curtailment of RES. In this context, we also assess the role of residential

BES capacity, which can shift renewable electricity to hours with high fossil fuel shares and thus

increase the potential substitution.

In this essay, we consider four different battery types: Lithium-Iron-Phosphate, sodium-ion,

Sodium-Calcium Exchanger, and Lead Acid batteries. LA batteries are the oldest and cheapest

(on a (kWh)−1 basis) chemistry but they also have significantly lower round-trip efficiencies and

lifetimes compared to LFP, NCX, and SIBs. NCX batteries are frequently used inEVs but are

also the most expensive. Newer LFP batteries are 10-20% cheaper than NCX batteries and have

28 The 22GW include both residential and commercial solar rooftop PV. In this essay, we focus on the effects of
residential PV.
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significantly higher lifetimes29. SIBs are still in development but will most likely cost up to 30%

less than LFP batteries while employing similar performance parameters (apart from a slightly

lower RTE).

Our results show that state-of-the-art LFP and SIBs are economically superior to NCX or LA

batteries when used with a solar PV system in a household setting. Currently, NCX and LA

batteries have high market shares based on a long market presence. In contrast to current market

volumes, we find that profit-maximising households will increase their NPV with LFP and SIBs.

With those batteries, the optimal system size also increases. The NPV increase stems from lower

degradation losses and, to some extent, smaller purchasing prices than NCX batteries.

If all 10.4mn suitable German one and two-family households (EUPD Research, 2021) would

install an optimised solar PV and BES system, this would lead to an additional 56 - 96GW of

solar PV capacity and up to 82GWh additional battery storage capacity. Notably, the potential

additional solar PV capacity represents more than half of the required additional 148GW to

achieve Germanies goal of 215GW by 2030 (Die Bundesregierung, 2023) and would require

each household to invest 13,184-21,742e. Such an investment scenario could lead to a 26-35%

reduction in fossil fuel consumption for electricity generation in Germany.

This essay is structured as follows. Section 4.2 describes the optimisation model and our results

and section 4.3 provides a discussion.

4.2 Model and results

4.2.1 Improvements in modern battery storage

The rise of e-mobility triggered a rapid increase in global battery production, leading to declining

battery costs due to learning and economies of scale (see, e.g., Nykvist and Nilsson, 2015, Mat-

teson and Williams, 2015 and Nykvist et al., 2019). These cost declines made many stationary

BES applications both on a grid-level scale30 and for private households31 commercially feasible.

Fluctuating raw material prices and technical advancements in energy density supported the

development of new cathode chemistry combinations in LIBs. Historically, NCX batteries have
29 A downside of LFP batteries compared to NCX is the lower energy density, however, while this is a relevant

performance criterion for EVs, it is irrelevant for household BES.
30 e.g., https://hornsdalepowerreserve.com.au/
31 e.g., https://www.tesla.com/powerwall
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been used predominantly in residential BES applications and in most EVs in the Western world.

LFP batteries have rapidly gained market share in recent years, especially in China. While LFP

batteries have a lower energy density than NCX batteries, they are cheaper, more thermally

stable, and more durable (Li et al., 2020 and Preger et al., 2020). In early 2022, LFP cells

were only used in 3% of EV batteries in the United States and Canada and only in 6% in the

European Union. Still, they were utilised in 44% of new EVs in China (Jin and Lienert, 2022)

and are expected to capture a large part of the global EV market in the future (IEA, 2022).

The volatility of lithium prices in recent years has also supported the development of lithium-free

batteries. For example, sodium-based SIBs are being developed and will soon be mass-produced

by two of the biggest LIB manufacturers: BYD (Batteries News, 2022) and CATL (Yingzhe,

2022). These changing market dynamics make it imperative to examine the economic viability

of different battery chemistries for BES applications.

Besides the initial investment cost ν (including terminal recycling profits), round-trip efficiency

ηb and capacity degradation xi
32 are the main parameters for an economic evaluation of BES

systems. These parameters determine how much electricity the battery may charge and discharge

over the investment’s lifetime. In practice, the available capacity of a battery decreases with

usage and time due to degradation up to the point of rapid capacity decline (the so-called ageing

knee), rendering the battery unusable. We model the battery capacity by defining a theoretical

number of Equivalent Full Cycles (EFC) which we call EFC′ during which the battery degrades

normally from charging and discharging until it hits a capacity threshold x. At this point, the

battery is assumed to have reached the ageing knee and its capacity drops to zero. The battery

is typically charged and discharged 365 times a year for common household applications. The

capacity (measured in percent of the initial battery capacity) in each year can be described as

the ratio of remaining theoretical EFCs at the start of the year divided by the total number of

theoretical EFCs.

To limit the degradation of the battery33, we model the range of the Depth of Discharge (DOD)

of NCX batteries to be between 90% to 10% and of LA batteries to be between 80% to 50%

of their remaining capacities. LFP batteries have shown to be much less sensitive to a higher

DOD (Viswanathan et al., 2022), and similar behaviour is assumed for SIBs. Therefore, no limit

to the DOD is assumed for both chemistries. The resulting amplitude ζ of 80% (NCX), 30%

32 The remaining capacity in year i as a percentage of the battery’s initial capacity.
33 Capacity degradation accelerates significantly by approaching the charging or discharging limit specifically for

nickel-based LIBs and LA batteries.
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(LA), or 100% (LFP and SIBs) is then considered in the calculation of EFCs in each year. If an

NCX battery would be charged and discharged daily in the first year, the EFC = ζ · 365 = 292.

With this information, the theoretical capacity of the battery in year i can be modelled as

x′i =
(
1− 365·ζ

EFC′

)i−1
. The practical capacity, accounting for the ageing knee, is then

xi =


x′i, if x′i > x

0, otherwise.
(4.1)

Figure 4.1 depicts the different degradation profiles.

The resulting number of practical EFCs, EFC∗, and the remaining performance and battery cost

parameters used in this essay are summarised in Table 4.1. We note that the cost of the batteries

power component, which determines the charging- and discharging speed of the battery, stay

constant at νp = 220e (kW)−1 while the cost of the energy component νe differs based on the

battery chemistry. We also note that a recycling profit of νR = 20e (kWh)−1 is only assumed

for NCX batteries, mainly due to their Nickel, Cobalt, and Lithium content.34 In contrast, the

metals in LFP, SIBs, and LA batteries are likely less valuable than the corresponding recycling

costs.

Figure 4.1: Capacity degradation of NCX, LA, sodium-ion, and LFP batteries.

34 This estimate is based on comments from Redwood Materials and 2023 market prices for the metals. Changing
market prices and economies of scale in the recycling industry can yield significant differences in recycling profits.
For an overview of potential recycling profits, see Lander et al. (2021).
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Table 4.1: Battery cost and performance parameters

Battery νe, in ηb, ζ, x, EFC′, EFC∗,
Type e (kWh)

−1 in % in % in % in EFCs in EFCs

LFP 507 97 100 50 20,000 10,067
SIB 365 93.5 100 50 15,000 7,658
NCX 579 96 80 60 5,000 2,091
LA 315 82.5 30 20 1,500 1,217

4.2.2 Optimally sized solar PV and BES systems

Our optimisation framework follows the basic ideas of Comello and Reichelstein (2019) who

consider a household with a (seasonally varying) load, generation, and storage profile as depicted

in Figure 4.2.

They calculate the optimal energy and power component sizes of a battery supplementing a

solar PV system based on the amount of electricity that can be used from the battery35, derived

from areas (1) - (3) in Figure 4.2. While we follow their approach for calculating the amount

Figure 4.2: Pattern of daily electricity generation, consumption, charging, and discharging (own representation,
after Comello and Reichelstein, 2019).

35 The amount of electricity that can be used from the battery depends on both the power and energy component
as the power component influences the speed at which electricity can be charged and discharged and the energy
component determines the overall capacity of the battery.
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of electricity charged and discharged, we extend the optimisation framework by conducting a

combined optimisation of the dimensions of the battery capacity ke, the batteries power compo-

nent ks, and the size of the solar PV panels kpv of a solar PV and BES system. Furthermore,

our analysis includes additional cost factors such as a terminal recycling value and a more fine

granular battery degradation model.

We consider a rational household that will optimise the NPV of an investment in a solar PV and

BES system. When the solar PV panels generate electricity, the household has three options:

direct consumption, indirect consumption (via charging the battery and discharging it later),

and feeding it into the grid36. Direct consumption is the economically preferable option in

most countries as retail electricity prices are usually higher than the FIT. Furthermore, direct

consumption avoids round-trip-efficiency losses from charging and discharging the battery.

Revenues are generated by direct consumption, which avoids buying electricity from the grid

at a price p, by indirect consumption, which also yields p, but where the round-trip efficiency

of the battery reduces the output of the battery, and by feeding electricity into the grid at a

national FIT of pFIT < p which is paid for TFIT years. In year i and season s, let ED
s (kpv, i) be

the electricity used for direct consumption (area 4), EI
s (ke, kp, kpv, i) the electricity stored in the

BES for indirect consumption (area 1, before RTE losses), and EG
s (ke, kp, kpv, i) the electricity

fed to the grid (area 5), all accounting for an annual degradation of ηpv per cent of the solar PV

system. Then the revenue in year i and season s will be

Revs(ke, kp, kpv, i) = p ·
(
ED

s (kpv, i) + ηb · EI
s (ke, kp, kpv, i)

)
+ pFIT · EG

s (ke, kp, kpv, i) · 1i≤TFIT
.

(4.2)

Formula 4.2 also shows that a kWh used directly (ED
s ), indirectly (EI

s ), and for feeding it

into the grid (EG
s ) has a different value to the household due to differences in the associated

prices (i.e., p for ED
s and EI

s and pFIT < p for EG
s ) and round-trip efficiency losses when using

electricity indirectly (i.e. ηb < 1 in case of using the battery storage EI
s ). Therefore, the amount

of electricity used within the three components ED
s , EI

s , and EG
s of the revenue formula must

be calculated individually.

36 Depending on the country, there are different remuneration schemes for electricity that is not used by the gener-
ating household. In this essay, we assume a constant feed-in tariff.
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The amount of electricity used directly from a solar PV system can be described by

ED
s (kpv, i) =

∫ 24

0
min{kpv · ηipv ·Gs(t), Ls(t)}dt (4.3)

with ηpv the degradation factor of the solar PV panels, Gs(t) the seasonal generation capac-

ity factor, and Ls(t) the seasonal demand curve. To calculate the amount of electricity used

indirectly, we define

E+
s (kp, kpv, i) =

∫ 24

0
[ min{Ls(t) + kp, kpv · ηipv ·Gs(t)}

−min{Ls(t), kpv · ηipv ·Gs(t)}]dt

as the amount of electricity that can be stored in the battery and

E−
s (kp, kpv, i) =

∫ 24

0
[ max{Ls(t), kpv · ηipv ·Gs(t)}

−max{Ls(t)− kp, kpv · ηipv ·Gs(t)}]dt

as the maximum amount of electricity that the household could use from any given battery. In

both cases, the actual quantity depends purely on the battery’s power component, i.e., its ability

to charge and discharge electricity.

EI
s (ke, kp, kpv, i) = ζ · xi ·min{E+

s (kp, kpv, i), E
−
s (kp, kpv, i), ke}dt (4.4)

is then the electricity that can be used indirectly, accounting for DOD, the batteries capacity

decline, and the limitation of the battery capacity ke, which is not included in E+ and E−.

Finally

EG
s (ke, kp, kpv, i) = kpv · ηipv ·

∫ 24

0
Gs(t)dt− ED

s (kpv)− EI
s (ke, kp, kpv, i) (4.5)

describes the amount of electricity fed into the grid, consisting of the total generation less the

direct and indirect demand.
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Substituting the formulas (4.3) to (4.5), as well as formula (4.2) into the NPV calculation yields

NPV (ke, kp, kpv) =

T∑
i=1

12∑
s=1

∆s · (p ·
(
ED

s (kpv, i) + ηb · EI
s (ke, kp, kpv, i)

)
+ pFIT · EG

s (ke, kp, kpv, i) · 1i≤TFIT
) · γi

− (νe · ke + νp · kp + Fb + νpv · kpv · (1 + Vpv) + Fpv)

+ min{ke · νs, νs}+ ke · νR · γTR .

(4.6)

We constrain the size of the solar PV to 0 ≤ kpv ≤ z where z is the maximum size of the solar

PV that can be installed on the roof. To optimise the NPV in our case study, we implement the

model in Python and use the L-BFGS-B algorithm for the constrained optimisation.

Furthermore, the household will be compensated in the form of subsidies for installing a battery

and the recycling value at the end of the battery’s useful life. Subsidies are often paid as a fixed

purchase premium. In this essay, we assume a subsidy of νs e (kWh)−1 storage capacity with a

limit of νs e (kWh)−1 leading to a subsidy payment of Sub(ke) = min{ke · νs, νs}.

The recycling value Rec(ke, TR) = ke · νR · γTR depends on the energy capacity of the battery,

the recycling profit of the materials, the time TR at which the battery capacity drops to zero

and the battery is recycled, and the discount factor γ = (1 + r)−1 with a discount rate r.

The investment cost of a solar PV and BES system depends on the purchase and installation

cost of the battery and the solar PV system. The cost of BES systems scales linearly at a

rate of νpe (kWh)−1 and νee (kWh)−1 for the battery’s power and energy components, plus a

fixed installation cost of Fbe. The cost of the PV system also scales linearly at νpve (kWp)−1.

However, the installation cost contains a fixed component Fpve as well as a variable component

Vpv per cent that is applied on top of the cost of the panels. The total investment cost is modelled

by

Invest(ke, kp, kpv) = νe · ke + νp · kp + Fb + νpv · kpv · (1 + Vpv) + Fpv.



4Residential solar PV and storage systems 81

Following the definition of revenues, subsidies, recycling value, and investment cost, the NPV of

the solar PV-BES system is

NPV (ke, kp, kpv) =

T∑
i=1

12∑
s=1

∆s ·Revs(ke, kp, kpv, i) · γi

+ Sub(ke)

+Rec(ke, TR)

− Invest(ke, kp, kpv)

(4.7)

where ∆s is a weighting factor for the season, and T denotes the lifetime of the solar PV system.

The used parameters for an exemplary German setting can be found in Table 4.2.

To calculate the optimal system size for a representative household in Germany, we calculate the

optimal system sizes for one household in each of Germany’s 16 federal states and compute the

weighted average based on the number of suitable one and two-family households per state from

EUPD Research (2021). Figure 4.3a shows the optimal system dimensions of the representative

households.

It shows that both LFPs and SIBs lead to similarly sized systems with about 9 kWp solar PV

Table 4.2: Model parameters for an exemplary German setting

Parameter Value Unit Description

p 0.33 e (kWh)
−1 Average electricity market price

pFIT 0.082 e (kWh)
−1 FIT*

TFIT 20 years Number of years for which the FIT is paid
νs 200 e (kWh)

−1 BES capacity subsidy
νs 45, 000 e Maximum subsidy
r 4.45 % Cost of capital**

νpv 1.136 e (kWp)
−1 Solar PV purchase cost

Fpv 4.971 e (kWp)
−1 Fixed solar PV installation cost

Vpv 34 % Variable solar PV installation cost
Fb 526 e Fixed battery installation cost
T 30 years Lifetime of the solar PV system
ηpv 0.5 % Annual degradation of the solar PV system

* The FIT is reduced to 0.071e (kWh)
−1 for each kWp above 10 kWp. However, as most systems are

below 10 kWp we assume a constant FIT of 0.082e (kWh)
−1

** The cost of capital r is based on a 100 per cent funding through a governmental lending program of
the KfW: "KfW- Programm Erneuerbare Energien Standard"
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(a) Optimal battery capacity (kWh), power (kW), and solar PV (kWp) system size

(b) NPV of the optimal system size compared to a system with the same solar PV capacity but no battery

(c) Investment of the optimal system size compared to a system with the same solar PV capacity but no battery

Figure 4.3: Optimal system sizes
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and 7 - 8 kWh BES at a duration37 of ca. 5 hours. By contrast, NCX and LA batteries are

not economical. In both cases, a smaller solar PV system of ca. 5 kWp is installed because

less electricity can be used at the higher price p. These dynamics are also reflected by the

economics depicted in Figures 4.3b and 4.3c. While the larger LFP and SIB systems also require

a higher 21-22 ke net investment38 by the household, they lead to significantly higher NPVs of

about 6 ke compared to NPVs of about 2.5 ke that can be achieved from the systems without

batteries (NCX and LA) that require investments of ca. 13 ke.

Notably, the ca. 30% lower capacity cost of SIBs leads to a slightly larger installed capacity (8

vs 7 kWh compared to LFP) but does not significantly change the size of the power component,

the solar PV system, and the system economics. This can partly be explained by the slightly

lower durability and RTE of the SIB that reduce the economic value of the battery and partly

by the decreasing marginal value of additional battery capacity, which increases the NPV of the

system compared to the LFP system but does so only slightly.

Figure 4.3b also underlines the additional economic value of LFP and SIBs. When removing

the battery from the systems but keeping the size of the solar PV system constant, the NPV

decreases by nearly 4 ke.

The NPV of the solar PV-BES system is characterised by a high initial investment and recurrent

returns over a comparably long lifetime of 30 years. Therefore, as depicted in Figure 4.4, the

household’s cost of capital has a significant influence on the optimal system size and its eco-

nomics: (1) For values of r of up to 2%, the levelized cost (LC) of the solar PV system is below

the FIT so that the maximum permittable size, which we set to 20 kWp, will be built. The

battery is dimensioned at 9-10 kWh for LFP and SIB systems and 3-4 kWh for NCX and LA

systems, respectively and independent of r, indicating the existence of an optimal ratio between

solar PV and BES system sizes. (2) When r increases above 2%, the LC of the solar PV system

increase above the FIT. Subsequently, both the solar PV and the BES system sizes decrease,

but the initial decrease is significantly more substantial for the solar PV system. This is be-

cause after the solar PV system’s size surpasses a threshold, an increasing share of the electricity

generated by the marginal solar PV panel is sold to the grid. When the LC increase above the

FIT, these panels become uneconomical, and the size of the solar PV system is quickly reduced.

Opposed to this, the electricity stored in the battery will only be used for indirect consumption,

37 The duration describes the ratio of the energy component and the power component, i.e., the time the battery
can be charged/discharged at full capacity.

38 The cost of purchasing and installing the solar PV-BES system less subsidies for the BES .
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which has a much higher achievable profit. Therefore, the marginal value of the battery is still

positive, and its size is reduced rather due to the smaller solar PV system39 than due to a lack

of economics of the battery. (3) When r increases above 6.5%, the solar PV system is not a

viable investment when using NCX, LA, or no batteries. When using LFP or SIBs, this point is

reached later when r rises above 8% because the batteries enable more electricity to be used to

avoid buying electricity from the grid, thereby improving the system’s LC compared to a solar

PV-only system.

4.2.3 Fossil fuel reduction potential

Residential solar PV-BES systems can contribute to substituting electricity from fossil fuels in

two ways. First, when the household consumes electricity from the solar PV system directly or

indirectly, it can reduce the demand for electricity from the grid. Because electricity generated

from fossil fuels usually has a higher LC than electricity generated from RES, this can reduce

the amount of electricity produced from fossil fuels. Second, when the household produces more

electricity than it can consume, it can feed the surplus into the grid, reducing the amount of

electricity that needs to be produced from fossil fuels. We call the sum of these effects, i.e. the

amount of electricity used directly, indirectly, or fed into the grid, the NAE supply.

To calculate the NAE supply and, subsequently, the fossil fuel reduction potential, we follow the

four steps illustrated in Figure 4.5: (1) We calculate the optimal solar PV and BES system size

for each battery type for one household in each federal state. (2) We simulate the hourly NAE

supply from the solar PV-BES system of each household and battery type. (3) We multiply each

household’s hourly NAE supply by the number of potential new solar PV-BES systems in the

respective federal state and sum the results up to a national total hourly NAE. (4) On a national

level, we calculate the hourly amount of electricity from fossil fuels that could be substituted by

the NAE and calculate the national average reduction potential of electricity from fossil fuels

over the lifetime of the solar PV-BES systems.

Step (1) uses the model described in section 4.2.2. In contrast to the results of section 4.2.2,

which show a national weighted average optimal system40, the individual results of each federal

state are kept for the calculation of the hourly NAE supply within each state.
39 While the largest share of electricity from the latest added solar PV panels is fed into the grid, a smaller share

can still be used for charging the battery.
40 The dimensions and economics of the optimal systems of each federal state are weighted based on the number of

potential new systems per state.
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Figure 4.4: Sensitivity of system size and economics to the cost of capital, shown for a system with an LFP
battery and a system without battery. Results for a system with a SIB are similar to a LFP battery; results for
NCX and LA batteries are equal to a system without battery.

Because the electricity mix and, therefore, the amount of electricity from fossil fuels that can

be substituted varies during the day, the fossil fuel reduction potential must be computed based

on hourly data. Hence, in step (2), we simulate the hourly electricity flows of the households in

each federal state across the solar PV systems lifetimes of 30 years. While we use the same solar

radiation and electricity mix patterns each year, this enables us to account for battery and solar

PV degradation. The electricity flows consist of the household’s demand, generation, direct use,

the State of Charge (SOC) from charging/discharging the battery, indirect use, and electricity
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Figure 4.5: Model framework to calculate the fossil fuel reduction potential

fed into the grid. Based on these flows, we can calculate the NAE supply from the household in

each hour as the sum of direct and indirect use as well as electricity fed into the grid.

To calculate the electricity flows, an iterative procedure is used. For each representative house-

hold, for each year and each month, a representative day is simulated. In case of a system

without battery, the NAE is purely based on the additionally generated electricity from the

solar PV system. In case of a system with a battery, the simulation first calculates the first

point in time when generation of the solar PV system supersedes the households demand. This

will be the starting point for the simulation which will then simulate a 24 hour cycle of the

households electricity flows. It is important to start the simulation at this point in time (which,

e.g., could be at 7am in the morning), because it enables the simulation to account for cases

where the battery might be fully charged over the day and could be used for indirect use during

the night, up until the next morning (e.g., 4am). If the simulation would start earlier, it would

need to either assume that the battery is empty and might neglect the potential for indirect use

of electricity, or make an assumption on the state of charge of the battery for which it would

not have any basis.

If the simulation determines that supply does not supersede demand at any point during the

day (e.g., in the winter), meaning that the battery is never charged, then the direct use is equal

to the generation of the solar PV, the indirect use and the electricity fed into the grid are both

set to zero, and the electricity consumed from the grid (which is calculated in the model for
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illustration purpose to show the entire electricity flows of the household) is calculated as the

households’ demand less its generation.

If the simulation determines that there are any hours where the battery can be charged, it

proceeds with a 24-hour simulation starting at the first point in time where the battery is

charged. For each hour the simulation then checks if generation supersedes demand41.

If this is the case, then the direct use is equal to the households electricity demand. Furthermore,

the amount of electricity that is used to charge the battery is calculated as

eCharge = min{generation− demand, k∗p, k
∗
e · ζ − SOC}

with demand, and generation, the households electricity demand and generation in the sim-

ulated hour, k∗p the dimension of the power component of the battery in kW, k∗e the energy

component of the battery, and SOC the state of charge of the battery. The second and third

component of the minimum operator model the limitations of charging the battery due to the

size of the power component (i.e., in one hour the battery can not be charged with more than k∗p

kWh) and the energy component (i.e., the maximum amount of electricity that can be charged

into the battery is based on its total capacity multiplied by the used amplitude ζ less the current

state of charge). Naturally, the amount of electricity fed into the grid is then the remainder of

electricity produced by the solar PV system that is neither used directly or indirectly, meaning

eToGrid = generation− demand− eCharge.

If generation does not supersede demand, meaning that the household discharges the battery

(or does not use it in the rare case of generation = demand) instead of charging it, then the

calculation changes. The direct use is equal to the generation and there is no electricity flow to

charge the battery. However, there is now indirect use of electricity that is discharged from the

battery which is calculated by

eIndirect = min{(demand− generation) · η−1
b , kp, SOC} · ηb.

41 Naturally, this is always the case for the first hour of the simulation but can change afterwards
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Here, the first component of the minimum shows the limitation of indirect use by the gap between

the households demand and the generation from the solar PV system, implying that only the

unfulfilled demand can be serviced from indirect use. The second and the third component of

the minimum model the limitations of indirect use by the power component of the battery and

the state of charge. These last two components are reduced by the round trip efficiency of the

battery ηb which, in this model, is applied at the discharging of the battery. This means that,

e.g., if the battery is charged at a certain SOC, then the electricity available for indirect use

after discharging it from the battery is SOC · ηb. After calculating the amount of electricity

discharged from the battery, its new SOC is calculated by

SOCNew = SOCOld − eIndirect · η−1
b .

Here, the amount of electricity discharged from the battery for indirect use is divided by the

round-trip efficiency to model that, in order to receive an amount of eIndirect kWh from the

battery, a higher amount of eIndirect · η−1
b needs to be discharged from it.

An illustration of the resulting electricity flows from the simulation can be found in Table 4.3.

According to an analysis by EUPD Research (2021), 11.7mn one- and two-family households

in Germany are suitable to install rooftop solar PV. 1.3mn of those had installed solar PV

capacity by the end of 2020, leaving a potential of an additional 10.4mn households. In step

(3), we calculate the total NAE supply by scaling the NAE supply of the individual solar PV-

BES systems to these 10.4mn households. To account for differences in solar radiation across

Table 4.3: Exemplary electricity flows in kWh of a system with an LFP battery during a representative day in
April.

Hour De-
mand

Gene-
ration

Direct
Use

Indirect
Use

Char-
ging SOC To

grid
NAE

10 0.58 5.56 0.58 - 1.58 6.27 3.40 3.98
11 0.58 5.91 0.58 - 1.08 7.35 4.25 4.84
12 0.59 5.96 0.59 - - 7.35 5.37 5.96
13 0.58 5.67 0.58 - - 7.35 5.08 5.67
14 0.56 4.93 0.56 - - 7.35 4.37 4.93
15 0.54 3.84 0.54 - - 7.35 3.30 3.84
16 0.54 2.44 0.54 - - 7.35 1.91 2.44
17 0.56 1.04 0.56 - - 7.35 0.48 1.04
18 0.61 0.13 0.13 0.48 - 6.85 - 0.61
19 0.68 - - 0.68 - 6.15 - 0.68
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Germany, we calculate the national NAE supply as the sum of the 16 federal states’ NAE

supply based on the household NAE supply calculated in step (2) and the number of potential

households for additional solar PV and BES systems in each state. While a scenario where all

10.4mn potential households install a solar PV-BES system can be considered unlikely, it is a

worthwhile analysis as some German federal states are moving towards making rooftop solar PV

mandatory (ENBW, 2022). To reflect the influence of the penetration of the mentioned 10.4mn

households, we provide a sensitivity analysis on the fossil fuel reduction in Figure 4.7.

In step (4), the total hourly NAE supply is deducted from the electricity generation from fossil

fuels to calculate the reduction potential of electricity from fossil fuels. When doing so, the

merit order effect must be considered, which implies that different generation technologies are

substituted in order of their descending cost. In the case of Germany, gas is the most expensive

generation technology, followed by hard coal, lignite, other conventional sources (for example,

biogas), etc. Figure 4.6 shows the generation from fossil fuels and the NAE supply on an

exemplary day in April.

It illustrates that during the night when the NAE supply comes from electricity used indirectly

from the battery, a substantial amount of electricity from gas could be substituted. Still, a

significant share of fossil fuel generation from hard coal, lignite, and other conventional sources

remains. During the day, however, the NAE supply supersedes the electricity generated from

Figure 4.6: Fossil fuel generation and NAE supply from a system with LFP BES on a representative day in
April
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fossil fuels, implying that, theoretically, all generation from fossil fuels could be substituted.

Averaging over a time horizon of 30 years, Figure 4.7 shows that a reduction of electricity from

fossil fuels of up to 35% is possible.

Furthermore, the comparison of systems with LFP battery (referred to as case A), systems

with equally sized solar PV panels but no battery (case B), and systems optimised for use

without battery42 (case C) enables us to entangle the effects of overall household penetration,

the addition of BES, and the increase of the size of the solar PV system. With an increasing

share of additional households, the fossil fuel reduction potential increases to up to 35%. While

initially, the fossil fuel reduction potential increases linearly in the household penetration, it

starts to flatten beyond penetrations of 60% in cases (A) and (B) and 90% in case (C). This is

due to curtailment, which means that an increasing amount of the NAE supply occurs at times

when 100% of fossil fuels are already substituted. The flattening occurs later in case (A) than

in case (B) because the BES shifts NAE from peak times during the day into the night, which

reduces curtailment. It occurs latest in case (C) because, due to the smaller solar PV systems,

the NAE supply is not large enough to lead to significant curtailment. Overall, the results show

that solar PV-BES systems have the potential to reduce electricity generated from fossil fuels

significantly. While NCX and LA batteries are not economical from a household perspective,

Figure 4.7: Fossil fuel reduction potential of a system with an LFP battery (results similar to an SIB system),
a system with the same solar PV size but no battery, and a system optimised for use without battery (equal to
NCX / LA systems where batteries are not economical).

42 Resulting in smaller solar PV panels.
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using BES with LFP batteries or SIBs is economical. It can increase the fossil fuel reduction

potential by up to 9% points compared to systems optimised for use without BES. The difference

can mainly be attributed to larger solar PV systems that become economical with the addition

of BES, which contribute at least 7% points to the difference. However, when the penetration of

potential additional households increases beyond 70%, the BES also contributes to the fossil fuel

reduction potential by shifting NAE supply from peak times during the day, where curtailment

can occur, to the night, when a larger share of generation from fossil fuels can be substituted.

In Germany, the roll-out of solar PV-BES systems sized according to section 4.2.2 with LFP

or SIBs to all of the 10.4mn potential additional households would add a total of 93-94GW of

solar PV capacity. This represents over 60% of the additional 148GW required to meet the

target of 215GW in 2030 (Die Bundesregierung, 2023). Notably, in the current PV strategy of

the German government, residential and commercial rooftop PV is planned to make up about

half of the 148GW additional capacity, meaning that a roll-out to all potential households

would over satisfy that goal and enable the addition of less capacity on commercial buildings

or open land. While it is unrealistic to achieve such a capacity addition in a few years, a

build-out until 2030 would require the addition of ca. 13GW annually, which is closer to the

current government’s targets of 11GW from 2026 onwards (Bundesministerium für Wirtschaft

und Klimaschutz (BMWK), 2023). Based on a share of 45% of electricity from fossil fuels in

2021 and a reduction of 35%, this would reduce the share of fossil fuels to 29% and therefore

significantly contribute to the target of 80% renewable electricity generation while providing

a positive NPV to the investing households. In reality, however, multiple limitations to this

analysis exist and will be discussed in the following section.

4.3 Discussion

Reducing carbon emissions in the electricity sector is essential to achieve decarbonisation goals

and improving electricity systems’ resilience. This essay shows that residential solar PV and

BES systems equipped with state-of-the-art LFP and SIBs can significantly contribute to this

endeavour.

We develop a model to determine the NPV-optimal dimensions of a residential solar PV and BES

system. We show that LFP and SIBs are equally attractive and provide a ca. 4 ke improvement

of the NPV compared to systems without batteries because they enable the household to use a
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higher share of the generated electricity for self-consumption. In contrast, NCX and LA batteries

do not improve the system economics compared to a system without BES. This is most likely

due to their higher degradation, which increases the cost per kWh of stored electricity.

We find that the cost of capital, r, significantly influences the results of the optimisation, in

particular, the size of the solar PV system. At r ≤ 2%, the LC of the solar PV system falls below

the FIT, and the largest possible system will be installed. With increasing r, the dimension of the

solar PV system decreases quickly until a large share of the generated electricity is used for self-

consumption, after which the rate of decline slows until r surpasses 8.5% and the systems become

uneconomical. In contrast, the battery capacity is much less sensitive to the cost of capital. It

stays nearly constant until the cost of capital starts making the entire system unprofitable. At

this point, the battery capacity decreases with a similar trajectory as the solar PV panels.

On a national level, we find that the installation of NPV-optimally sized solar PV and BES

systems in all 10.4mn suitable one- and two-family households could reduce fossil fuel consump-

tion by up to 35% when using systems with LFP or SIBs compared to 26% when using systems

without batteries. We disentangle the effect into two components: 7% points of the difference

can be attributed to the larger solar PV system size that becomes economical when using a

battery. 2% points of the difference are due to the battery’s supply-shifting effect, which enables

the households to substitute more electricity during the night when a larger share of electricity

is produced from fossil fuels. The latter effect becomes only relevant when a sufficient number of

households have installed such systems leading to curtailment during peak solar PV generation

hours.

While the results are encouraging, some limitations need to be considered. For instance, we

assume a constant electricity price over the 30-year lifetime of the investment. However, in

reality, electricity prices change constantly, and a significant addition of renewable electricity

from residential solar PV-BES systems might even reduce the electricity price and, therefore, the

NPV of the systems. However, it is unclear in which direction customer electricity prices would

change due to competing factors: Lower energy generation costs of renewable power should

decrease electricity prices. Contrary, higher grid costs due to the intermittency of renewable

energy sources could increase electricity prices. Furthermore, trends like the electrification of

transport could increase the overall electricity demand, and counter price decreases from more

generation capacity.
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Furthermore, in the calculation of the fossil fuel reduction potential, we use the 2021 hourly

electricity mix for the entire 30-year time horizon. However, the electricity mix will most likely

change, for example, by adding more RES capacity. This could increase the importance of the

supply-shifting ability of batteries for fossil fuel reduction.

Finally, we assume that the NAE can always substitute produced electricity from fossil fuels.

However, while some power plants, such as gas-fired, can be ramped up and down quickly,

others, for example, using lignite, are usually not designed to be ramped up and down that

quickly. Therefore, it is possible that, in some cases, NAE can not be used to substitute fossil

fuels because the powerplants can not be ramped down quickly enough. Future research should

address these limitations by including more factors such as a changing electricity mix and prices

and a continuous build-out of residential solar PV capacity over time into the fossil fuel reduction

analysis.

Our results provide valuable insights for households, policymakers, and solar PV-BES system

providers. We determine the economics and dimensions of an NPV-optimal solar PV-BES system

and highlight the influence of different battery chemistries on both. Furthermore, we show the

fossil fuel reduction potential of a national scale-up of such systems.
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Climate change is one of the fundamental challenges of our time. In order to limit its effects,

countries worldwide need to collectively reduce GHG emissions. This dissertation has scrutinized

the energy and transport sector, representing two of the most relevant sectors for reducing carbon

emissions in order to achieve the goals of the Paris Agreement and limit global warming to 2 °C,

or ideally to 1.5 °C.

Both sectors are responsible for a significant amount of global GHG emissions and both can

be largely decarbonized with existing technologies. In the case of the energy sector, RES and

electricity storage such as batteries or hydrogen as well as fossil-fuel based electricity generation

combined with carbon capture technologies can be used to reduce carbon emissions. In the case

of the transportation sector, EVs can be used to substitute ICE vehicles which could also lead

to a reduction of carbon emissions, depending on the carbon intensity of the electricity used for

fueling the EV and the carbon emissions associated for producing both types of vehicles. In both

cases, transitioning to low carbon technologies would require significant additional investment

and could be associated with increasing costs of energy and mobility. For example in electricity

generation, the development cost of renewable energy such as wind farms and the cost for adding

sufficient flexibility, for example via electricity storage, to the grid is often higher than the in-

vestments required to build new gas-fired power plants which typically have lower investment

cost but higher operating costs from buying gas to fuel the plant. Furthermore, most renew-

able electricity has a volatile generation pattern that is often uncorrelated with typical demand

patterns and can lead to price spikes and higher average electricity prices. Similarly, EVs are

often more expensive than ICE vehicles and can also increase (at least the investment) cost of

mobility. Therefore, the development of cost-competitive technologies is crucial to facilitate an

economical transition to decarbonized industries.

94
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Against this background, all three essays address the costs of decarbonizing the energy and trans-

portation sector. The first essay discusses the levelized cost concept, a life-cycle cost measure

that aggregates investment expenditures and operating costs to units of output. After providing

a verbal and formal definition that follows Massachusetts Institute of Technology (2007, Chap-

ter 3) and Reichelstein and Rohlfing-Bastian (2015), LC is compared to FC and its relevance for

managerial decision making is discussed, including an outline of important limitation of the LC.

Afterwards, the essay provides an overview of some of the most prominent literature streams of

LC, the LCOE, LCOS, LCOH, and LCOC, as well as a short summary of other environmental

applications such as heating, cooling, or water. Finally, it highlights potential future applications

of LC such as patent licensing, cloud and quantum computing, or within network industries.

The essay highlights that the LC allocate fixed costs to individual units of a product in a

way that is consistent with the NPV criterion and can be interpreted as the long-run marginal

costs. Accordingly, the LC can also be seen as the break-even price at which a product becomes

marginally profitable and is thus the unit cost measure relevant for long-run decisions. Important

limitations of LC are its focus on a single round of capacity investments and its incapacity to

capture the effects of the correlation between electricity prices and generation patterns of RES.

When comparing LC to FC, the essay shows that LC is larger or equal than FC. This is because

in practice and literature, FC are often calculated using the assumption that the applicable book

value for the calculation of imputed interest charges is, on average, half of the initial investment.

This approximation underestimates the book value in the first half of the depreciation period

but these years receive relatively large weighting in the LC and NPV calculation. Finally, the

essay shows that LC is a frequently and often predominantly used cost measure in the literature

on electricity generation, energy storage, hydrogen, carbon capture, and other environmental

applications where it is often used to compare the cost competitiveness of different technologies

(for example for electricity generation or energy storage) and the influence on policy-decisions

such as tax credits on the life-cycle cost of producing electricity, hydrogen, etc. Based on these

applications of LC, the essay also sketches out potential future applications, for example in

network industries, where LC could be used to determine the long-run unit prices of different

technology networks such as fiber networks, cell phone towers, or satellite-based solutions.

In the transportation sector, EVs could contribute to the reduction of carbon-emissions but

high vehicle purchase prices driven by high battery production costs are an important adoption-

barrier for many potential customers. In order to reduce production cost, cost models can
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be used to identify cost efficient battery designs and to analyze the effects of changes to the

production process. Therefore, the second essay presents a bottom-up cost model for state-of-

the-art batteries for EVs. It addresses shortcomings of existing cost models by enabling the user

to freely adjust the sequence of production steps, the individual parameters of each production

step such as scrap rates, and by including frequently neglected cost factors such as energy cost.

To enable accurate comparisons of the cost competitiveness of different battery designs, three

cost measures are defined. FC, MC and the levelized cost of battery production. In a case

study, the FC, MC and LCBP of two industry-relevant battery cell formats (4680 and PHEV2)

and three cell chemistries (with 0wt.%, 3wt.% and 5wt.% Si) in scenarios with and without

the recovery of scrap material are calculated and compared to existing literature and industry

reports.

The results of the analysis show that the difference in production costs of both cell formats

is ca. 1% and thus insignificant. Furthermore, adding Si to the cell chemistries reduces the

production cost slightly (ca. 1-2%) but introducing the recovery of scrap material has a more

significant influence and can reduce production cost by ca. 6%. This is because material costs are

responsible for over 80% of the cell costs. The FC of both batteries of 110-113 $ (kWh)−1 are in

line with results from the literature. LC are ca. 5−7% larger than FC because they also include

capital cost and taxes, making them a more complete cost measure. This is also supported by

the fact that they are significantly closer to reported market prices, e.g., by BloombergNEF

(2022). However, both FC and LC are significantly higher than reports by VW and Tesla of

100 $ (kWh)−1. One explanation could be that both OEMs report MC.

Apart from differences in production processes and costs, different battery chemistries also posses

different performance characteristics, e.g., with respect to their capacity degradation or round-

trip efficiency. Therefore, the third essay presents a model that calculates the optimal system

dimensions for a solar PV and BES system. It highlights the performance differences of LFP,

SIB, NCX, and LA batteries with respect to capacity cost, durability, and round-trip efficiency

and analyses their influence on the system dimensions and household economics. Furthermore,

for the case of Germany, it estimates the electricity savings potential on a national scale. This

enables an estimation of the effectiveness of a large-scale roll-out of residential solar PV and

BES systems to all suitable one- and two-family houses. To account for uncertainty, sensitivity

analyses are conducted on the cost of capital, the electricity price, and the share of suitable

houses that install new systems.
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The results show that modern battery chemistries such as LFP and SIBs can significantly improve

the household economics of solar PV and BES systems. They improve the household NPV by ca.

4 ke compared to systems without BES. In contrast, NCX and LA systems are not economical

meaning that solar PV systems without BES yield a larger NPV than systems with NCX and

LA batteries. Furthermore, a large-scale roll-out of such systems on all 10.4mn suitable one-

and two-family households could reduce fossil fuel consumption by up to 35% compared to

26% when using systems without BES. The difference in the potential can be attributed to two

factors: (1) that the addition of BES makes it economical for households to install larger solar

PV systems because they can use a larger share of electricity directly or indirectly which yields

higher returns than feeding the electricity into the grid, and (2) a demand shifting effect that

moves the consumption of electricity generated from the solar PV systems into the night when

more electricity from fossil fuels can be substituted. The latter effect, however, only appears

when a large enough number of households install solar PV systems, leading to curtailment

during hours with peak generation. Then, the BES systems can help reduce the amount of

curtailment during the day by shifting the electricity supply to the night.

The essays highlight the importance of economic analysis and the use of suitable cost measures

to facilitate a cost competitive decarbonization of industry. In particular, the first and the

second essay discuss the levelized cost concept as a suitable cost measure not only for electricity

generation but also in other use cases such as battery production. They show that classical cost

measures such as full cost often do not reflect the true long run marginal cost of products. This

is highly relevant in the context of decarbonization technology that often requires high upfront

investments (for example, for building a battery manufacturing plant) and in times of high capital

cost because the full cost measures used in practice often underestimate the imputed interest

charges. Furthermore, essays two and three highlight the influence of different technologies on

the cost of decarbonization and show that accurate cost models can help select the most cost

efficient technologies. Especially in the context of batteries, they show that different battery

designs and chemistries can lead to large differences in production costs and the economics of

solar PV and battery storage systems. The recommendation for a cost measure that enables

a comprehensive comparison of different technologies can be linked back to essay one which

discusses the suitability of levelized cost as such a cost measure.

The findings of this dissertations raise important implications for industry and politics. For in-

dustry, especially in contexts with large upfront capital expenditures, companies should consider
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using levelized cost for unit costing. As discussed in the first essay, LC can be the relevant cost

measure for capacity investments. Furthermore, it is shown that LC are larger or equal to the

standard full cost measures used in industry. This means that pricing decisions based on such

FC measures could lead to companies not recovering their true production costs. Essay three

suggests that battery electricity storage for residential solar PV systems should adopt modern

battery chemistries such as LFP or SIB which are much more economical than established NCX

or LA chemistries and could be a unique selling point and justify higher product prices. Fol-

lowing this line of argumentation, essay three highlights the potential of residential solar PV

and BES systems to reduce the usage of fossil fuels for electricity generation. It shows that

a large-scale roll-out of such systems could substantially (up to 35% in the case of Germany)

reduce electricity from fossil fuels such as gas, lignite, or hard coal. While the systems are often

economical for the investing households, the cost of capital has a major influence on the prof-

itability and also the optimal sizing of such systems. Therefore, to facilitate significant private

investments, politics could consider providing loans with low and stable interest rates, as, for

example, done by the KfW, to reduce the cost and risk for households and to incentivize private

investment.

While these results are encouraging, there are also important limitations to consider. In battery

production, material costs are the largest cost factor and often constitute over 80% of the full

production cost. Since commodity prices, for example, lithium, have proven volatile and hard

to predict, overall battery prices can also change regardless of technological advancements. This

is illustrated by BloombergNEF (2022) which shows an increase in battery pack prices in 2022

after years of decreasing prices, likely driven by increasing lithium prices. Furthermore, large

companies could be able to buy large amounts of lithium at lower-than-average market prices

due to economies of scale. Since most large battery producers do not disclose their material

purchase prices, these cost reductions can also not be captured by the model presented in the

second essay. Finally, detailed bottom-up models inherently require a variety of parameters

which should frequently be updated, as, for example, new and more cost-efficient production

technologies are developed.

Future research could address these assumptions by trying to generate empirical data on mate-

rial prices paid by large companies, for example by conducting anonymous interviews with the

purchase departments from large OEMs to create a benchmark database for material prices paid

for battery production. While there might be barriers for companies to disclose such data, it
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is possible that they would agree if in turn for providing their own data, they would also get

access to the data from the other interviewed companies which could help them negotiate lower

prices with their suppliers. Furthermore, additional battery chemistries such as LFP or SIB

could be integrated into the model to enable the estimation of the production cost of these new

battery chemistries that are gaining more traction in the EV market. As shown in essay three,

these chemistries often show lower purchase prices compared to the chemistries from essay two.

Therefore, it would be interesting to confirm these price differences based on the differences in

production cost and to understand their drivers. If, for example, the differences would be driven

mainly by material prices, it would be interesting to analyze how they might develop (and if

they would persist) based on individual material price forecasts. Finally, as part of a periodic

update of the used parameters to reflect changes in material cost, wages, productivity, etc.,

further sensitivity analysis and the integration of a separate / more detailed dry room model

could further test and increase the robustness of the results. Currently, the model assumes fixed

construction cost and energy consumption parameters for the dry room, regardless of the loca-

tion of the factory and the number of people in the dry room. Since these factors can have a

significant influence on aforementioned parameters, a separate / more detailed dry room model

could enable the investigation and comparison of more scenarios (e.g., the production in different

countries) and further increase the accuracy of the results.

Electricity grids and markets are highly complex systems that involve a large number of producers

and consumers. Therefore, the analysis in the third essay of the effects of additional residential

solar PV and BES systems on the generation mix should be considered a reasonable estimate of

the overall impact, rather than a highly precise forecast. This is because a top-down calculation,

as used in the essay, cannot account for the individual influence of grid capacity or the ramp-up

and -down times of individual power plants. Furthermore, the essay uses the current average

electricity price and the 2022 electricity mix as a prediction for the future. This is a pragmatic

assumption but electricity prices have proven highly volatile in the past and could both fall (e.g.,

due to an increasing share of renewables with lower LCOE in the electricity mix) or increase

(e.g., due to increasing demand for electricity from the electrification of industry) in the future.

Similarly, changes to the electricity mix are likely. I.e., an increasing share of renewables in the

mix is expected, however the exact trajectory is influenced by the development of the LCOE

of different technologies which is, among others, driven by fossil fuel prices, material prices,

political decisions, e.g. subsidy prices, etc.
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Based on these limitations, future research should aim at analyzing the fossil fuel reduction

potential using a fundamental electricity market model to incorporate changes of the electricity

price and generation mix to increase the precision of the estimated fossil fuel reduction potential.

I.e., this could be done using an agent-based simulation of the German electricity market, sim-

ulating the stochastic electricity demand during each hour and day and the volatile generation

pattern of renewable electricity sources, and calculating the resulting behavior of the market

participants (e.g., the decision of power plant operators to ramp their plants up and -down) and

the realizing market prices. Such models are generally considered more accurate than top-down

estimations as presented in the third essay and could also account for the influence of a signifi-

cant addition of solar power and battery electricity storage on the realizing market price which

could have an effect on the profitability and thus the optimal dimensioning of such systems.

Furthermore, it should estimate the deviation of cost calculated with the current approach form

the results calculated with a fundamental electricity market model. A small deviation would

validate the simpler approach used in the essay in this dissertation and could be used as a

justification to use the simpler top-down approach to more quickly test further scenarios, for

example, the cost-competitiveness of new solid state batteries or the implications of different

subsidies on the optimal BES dimensions. The latter could be intersting to politics to design

incentive schemes that maximise private investment into BES systems and could help stabilize

the German electricity grid. Finally, it would be interesting to establish a levelized cost metric

for the residential solar PV and BES system and to decompose it to understand the cost of elec-

tricity used directly and indirectly and the individual contributions of the solar PV and the BES

system. Especially understanding the additional cost of the BES system could help to make the

economics of residential battery storage more transparent and develop simpler analytical models

to calculate the optimal system size (vs. the algorithmic optimization approach used in essay

three).



Appendix

A.1 Proof on the relation of LC and FC

Proof of Proposition 2.1. Given the assumptions of constant returns to scale, stationarity and

full capacity utilization, we have

LC − FC2
t (k | k) = ν ·∆ ·

(
1∑T

t=1 (1 + r)−t
− 1

T
− r

2

)
.

Hence, it remains to be shown that 1∑T
t=1(1+r)−t − 1

T − r
2 > 0. Using the formula for the sum of

the geometric series, we can rewrite

1∑T
t=1 (1 + r)−t

=
r · (1 + r)T

(1 + r)T − 1

and
1∑T

t=1 (1 + r)−t
− 1

T
− r

2
=

(1 + r)T · (r · T − 2) + 2 + r · T

2 · T ·
[
(1 + r)T − 1

] . (A.1)

Since 2 ·T ·
[
(1 + r)T − 1

]
> 0, the right-hand side of equation (A.1) is positive if the numerator

is positive. We define g(T ) := (1+r)T ·(r ·T −2)+2+r ·T and h(r, T ) := −1−r ·T +(1+r)T+1.

We note h(r, T ) ≥ 0 because h(0, T ) = 0 and ∂
∂rh(r, T ) = (1 + r)T + T ·

[
(1 + r)T − 1

]
> 0. For

T + 1, it follows that

g(T + 1) = (1 + r)T+1 · (r · (T + 1)− 2) + 2 + r · (T + 1)

= g(T ) + r · [g(T ) + h(r, T )] .

Thus g(2) > g(1) = r2, and more generally g(T + 1) > g(T ) > 0, yielding the claim that

LC(k) > FC2
t (k). ■
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A.2 General parameters of the battery cost model

Table A.1: Employee and logistics cost parameters

Parameter Description Value Unit Reference
NWorkdays Operating days 360 Days/Year Schünemann (2015)
NWorkdays,Empl Employee working days 280 Days/Year Braun and Walch (2017)
NShift,Hour Working hours per shift 7 Hours/Shift Schünemann (2015)
NShift,Day Shifts per day 3 Shifts/Day Schünemann (2015)
xLeadership Lead span 10 1/x Schünemann (2015)
xCleaning Span cleaning staff 10 1/x Expert estimate
cAssistant Hourly rate supporting staff 37.628 USD*/h IG Metall (2018)
cSkilled Hourly rate specialists 47.398 USD*/h IG Metall (2018)
cLeadership Hourly rate indirect staff 61.385 USD*/h IG Metall (2018)
cCleaning Hourly rate cleaning staff 26.35 USD*/h Expert estimate
*Average annual exchange rate Euro to US Dollar in 2022 of 1.054 Exchange Rates UK (2022)



Bibliography

Bundes-Klimaschutzgesetz (KSG). BGBl. I S. 3905, 2021. Germany.

ADAC. Pkw-Bestand in Deutschland: Erstmals mehr als eine Million E-Autos, 2023. URL

https://www.adac.de/news/pkw-bestand-deutschland/. Accessed on April 26, 2023.

S. Ahmed, P. A. Nelson, K. G. Gallagher, N. Susarla, and D. W. Dees. Cost and energy demand

of producing nickel manganese cobalt cathode material for lithium ion batteries. Journal of

Power Sources, 342:733–740, 2017. ISSN 03787753.

J. Aldersey-Williams and T. Rubert. Levelised cost of energy – a theoretical justification and

critical assessment. Energy Policy, 124:169–179, 2019. ISSN 03014215.

A. F. Altun and M. Kilic. Economic feasibility analysis with the parametric dynamic simula-

tion of a single effect solar absorption cooling system for various climatic regions in turkey.

Renewable Energy, 152:75–93, 2020. ISSN 09601481.

J. Amirault, J. Chien, S. Garg, D. Gibbons, B. Ross, M. Tang, J. Xing, I. Sidhu, P. Kaminsky,

and B. Tenderich. The electric vehicle battery landscape: opportunities and challenges. Center

for Entrepreneurship & Technology (CET) University of California at Berkeley, Technical

Brief, 1, 2009.

S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III. The state of understand-

ing of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship

to formation cycling. Carbon, 105:52–76, 2016. ISSN 00086223.

S. J. An, J. Li, Z. Du, C. Daniel, and D. L. Wood. Fast formation cycling for lithium ion

batteries. Journal of Power Sources, 342:846–852, 2017. ISSN 03787753.

103

https://www.adac.de/news/pkw-bestand-deutschland/


Bibliography 104

D. Andre, H. Hain, P. Lamp, F. Maglia, and B. Stiaszny. Future high-energy density anode

materials from an automotive application perspective. Journal of Materials Chemistry A, 5

(33):17174–17198, 2017. ISSN 2050-7488.

F. Arnold, J. Junkermann, and P. A. Kienscherf. Energy crisis 2022: Gas price drives electricity

price to record levels, 2022. URL https://www.ewi.uni-koeln.de/en/aktuelles/mo-tool-

2022-update/. Accessed on August 10, 2023.

K. J. Arrow. Optimal capital policy, the cost of capital, and myopic decision rules. Annals of

the Institute of Statistical Mathematics, 16(1):21–30, 1964.

H. Bajolle, M. Lagadic, and N. Louvet. The future of lithium-ion batteries: Exploring ex-

pert conceptions, market trends, and price scenarios. Energy Research & Social Science, 93:

102850, 2022. ISSN 2214-6296. URL https://www.sciencedirect.com/science/article/

pii/S221462962200353X.

Batteries News. BYD plans to mass-produce sodium-ion batteries in Q2 2023, report says. 2022.

URL https://batteriesnews.com/byd-plans-mass-produce-sodium-ion-batteries-q2-

2023-report-says/. Accessed on January 28, 2024.

P. Behnam, A. Arefi, and M. B. Shafii. Exergetic and thermoeconomic analysis of a trigeneration

system producing electricity, hot water, and fresh water driven by low-temperature geothermal

sources. Energy Conversion and Management, 157:266–276, 2018. ISSN 01968904.

A. Belderbos, E. Delarue, K. Kessels, and W. D’haeseleer. Levelized cost of storage — introduc-

ing novel metrics. Energy Economics, 67:287–299, 2017. ISSN 01409883.

E. Bellos and C. Tzivanidis. Energetic and financial analysis of solar cooling systems with single

effect absorption chiller in various climates. Applied Thermal Engineering, 126:809–821, 2017.

ISSN 13594311.

G. Berckmans, M. Messagie, J. Smekens, N. Omar, and L. Vanhaverbeke. Cost Projection of

State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies, 10(9):1314,

2017.

E. J. Berg, C. Villevieille, D. Streich, S. Trabesinger, and P. Novák. Rechargeable Batteries:

Grasping for the Limits of Chemistry. Journal of The Electrochemical Society, 162(14):A2468–

A2475, 2015. ISSN 1945-7111.

https://www.ewi.uni-koeln.de/en/aktuelles/mo-tool-2022-update/
https://www.ewi.uni-koeln.de/en/aktuelles/mo-tool-2022-update/
https://www.sciencedirect.com/science/article/pii/S221462962200353X
https://www.sciencedirect.com/science/article/pii/S221462962200353X
https://batteriesnews.com/byd-plans-mass-produce-sodium-ion-batteries-q2-2023-report-says/
https://batteriesnews.com/byd-plans-mass-produce-sodium-ion-batteries-q2-2023-report-says/


Bibliography 105

BloombergNEF. Projected battery costs as a share of medium battery electric vehicle costs from

2016 to 2030, 2017. URL https://www.statista.com/statistics/797614/battery-share-

of-medium-electric-vehicle-cost/. Accessed on April 27, 2023.

BloombergNEF. Lithium-ion battery pack prices rise for first time to an average of $151/kwh,

2022. URL https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-

first-time-to-an-average-of-151-kwh/. Accessed on April 27, 2023.

K. Branker, M. Pathak, and J. M. Pearce. A review of solar photovoltaic levelized cost of

electricity. Renewable and Sustainable Energy Reviews, 15(9):4470–4482, 2011. ISSN 13640321.

D. Braun and M. Walch. Prozesskostenrechnung — was bisher fehlte. Controlling & Management

Review, 61(4):64–70, 2017. ISSN 2195-8262.

C. Brown and B. Foley. Achieving a cost-competitive offshore wind power industry: What is the

most effective policy framework? 2015.

M. Bruck, P. Sandborn, and N. Goudarzi. A levelized cost of energy (LCOE) model for wind

farms that include Power Purchase Agreements (PPAs). Renewable Energy, 122:131–139, 2018.

ISSN 09601481.

Bühler Group. Efficient continuous electrode slurry production. URL https:

//www.buhlergroup.com/content/buhlergroup/global/en/industries/batteries/

Continuous-electrode-slurry-production.html. Accessed on May 11, 2022.

Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucher-

schutz. Förderung der Elektromobilität. URL https://www.bmuv.de/themen/luft-laerm-

mobilitaet/verkehr/elektromobilitaet/foerderung. Accessed on April 26, 2023.

Bundesministerium für Wirtschaft und Klimaschutz (BMWK). Photovoltaik-Strategie:

Handlungsfelder und Maßnahmen für einen beschleunigten Ausbau der Photovoltaik,

2023. URL https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/photovoltaik-

stategie-2023.pdf?__blob=publicationFile&v=4. Accessed May 21, 2023.

Bundesverfassungsgericht. Verfassungsbeschwerden gegen das Klimaschutzgesetz teil-

weise erfolgreich, 2021. URL https://www.bundesverfassungsgericht.de/SharedDocs/

Pressemitteilungen/DE/2021/bvg21-031.html. Accessed on May 24, 2023.

https://www.statista.com/statistics/797614/battery-share-of-medium-electric-vehicle-cost/
https://www.statista.com/statistics/797614/battery-share-of-medium-electric-vehicle-cost/
https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh/
https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh/
https://www.buhlergroup.com/content/buhlergroup/global/en/industries/batteries/Continuous-electrode-slurry-production.html
https://www.buhlergroup.com/content/buhlergroup/global/en/industries/batteries/Continuous-electrode-slurry-production.html
https://www.buhlergroup.com/content/buhlergroup/global/en/industries/batteries/Continuous-electrode-slurry-production.html
https://www.bmuv.de/themen/luft-laerm-mobilitaet/verkehr/elektromobilitaet/foerderung
https://www.bmuv.de/themen/luft-laerm-mobilitaet/verkehr/elektromobilitaet/foerderung
https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/photovoltaik-stategie-2023.pdf?__blob=publicationFile&v=4
https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/photovoltaik-stategie-2023.pdf?__blob=publicationFile&v=4
https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/DE/2021/bvg21-031.html
https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/DE/2021/bvg21-031.html


Bibliography 106

A. Burnham, D. Gohlke, L. Rush, T. Stephens, Y. Zhou, M. A. Delucchi, A. Birky, C. Hunter,

Z. Lin, S. Ou, et al. Comprehensive total cost of ownership quantification for vehicles with

different size classes and powertrains. 2021.

D. W. Carlton and J. M. Perloff. Modern Industrial Organization. Pearson Addison Wesley,

New York, 2005.

J. Cervantes and F. Choobineh. Optimal sizing of a nonutility-scale solar power system and its

battery storage. Applied Energy, 216:105–115, 2018. ISSN 03062619.

CHARGED Electric Vehicles Magazine. Revolutionary continuous mixing process for producing

Li-ion electrode slurries: Lower costs and higher quality. URL https://chargedevs.com/

newswire/the-tech/lower-costs-and-higher-quality-revolutionary-continuous-

mixing-process-for-producing-li-ion-electrode-slurries/. Accessed on May 11,

2022.

F. Cheng, A. A. Small, and L. M. Colosi. The levelized cost of negative CO2 emissions from

thermochemical conversion of biomass coupled with carbon capture and storage. Energy

Conversion and Management, 237:114115, 2021. ISSN 0196-8904.

Z. R. Chong, T. He, P. Babu, J.-n. Zheng, and P. Linga. Economic evaluation of energy efficient

hydrate based desalination utilizing cold energy from liquefied natural gas (LNG). Desalina-

tion, 463:69–80, 2019. ISSN 00119164.

R. E. Ciez and J. F. Whitacre. The cost of lithium is unlikely to upend the price of Li-ion

storage systems. Journal of Power Sources, 320:310–313, 2016. ISSN 03787753.

R. E. Ciez and J. F. Whitacre. Comparison between cylindrical and prismatic lithium-ion cell

costs using a process based cost model. Journal of Power Sources, 340:273–281, 2017. ISSN

03787753.

C. Clifford. Charm gets $53 million to turn corn leftovers into oil and inject it into abandoned

oil and gas wells. 2023. URL https://www.cnbc.com/2023/05/18/frontier-signs-first-

co2-removal-deal-with-charm-worth-53-million.html. Accessed on July 29, 2024.

S. Comello and S. Reichelstein. The U.S. investment tax credit for solar energy: Alternatives

to the anticipated 2017 step-down. Renewable and Sustainable Energy Reviews, 55:591–602,

2016. ISSN 13640321.

https://chargedevs.com/newswire/the-tech/lower-costs-and-higher-quality-revolutionary-continuous-mixing-process-for-producing-li-ion-electrode-slurries/
https://chargedevs.com/newswire/the-tech/lower-costs-and-higher-quality-revolutionary-continuous-mixing-process-for-producing-li-ion-electrode-slurries/
https://chargedevs.com/newswire/the-tech/lower-costs-and-higher-quality-revolutionary-continuous-mixing-process-for-producing-li-ion-electrode-slurries/
https://www.cnbc.com/2023/05/18/frontier-signs-first-co2-removal-deal-with-charm-worth-53-million.html
https://www.cnbc.com/2023/05/18/frontier-signs-first-co2-removal-deal-with-charm-worth-53-million.html


Bibliography 107

S. Comello and S. Reichelstein. The emergence of cost effective battery storage. Nature commu-

nications, 10(1):2038, 2019.

S. Comello, S. Reichelstein, and A. Sahoo. The road ahead for solar PV power. Renewable and

Sustainable Energy Reviews, 92:744–756, 2018. ISSN 13640321.

S. Comello, G. Glenk, and S. Reichelstein. Transitioning to clean energy transportation services:

Life-cycle cost analysis for vehicle fleets. Applied Energy, 285:116408, 2021. ISSN 03062619.

Council of the European Union. "Fit for 55": Council agrees on higher targets for renew-

ables and energy efficiency, 2022. URL https://www.consilium.europa.eu/en/press/

press-releases/2022/06/27/fit-for-55-council-agrees-on-higher-targets-for-

renewables-and-energy-efficiency/. Accessed on May 28, 2023.

R. M. Darling. Techno-economic analyses of several redox flow batteries using levelized cost of

energy storage. Current Opinion in Chemical Engineering, 37:100855, 2022. ISSN 22113398.

S. B. Darling, F. You, T. Veselka, and A. Velosa. Assumptions and the levelized cost of energy

for photovoltaics. Energy & Environmental Science, 4(9):3133–3139, 2011. ISSN 1754-5692.

S. M. Datar and M. V. Rajan. Horngren’s cost accounting: a managerial emphasis. Pearson,

2018.

Die Bundesregierung. Mehr energie aus erneuerbaren quellen, 2023. URL https://

www.bundesregierung.de/breg-de/themen/klimaschutz/energiewende-beschleunigen-

2040310. Accessed on April 27, 2023.

H. Dreger, H. Bockholt, W. Haselrieder, and A. Kwade. Discontinuous and Continuous Process-

ing of Low-Solvent Battery Slurries for Lithium Nickel Cobalt Manganese Oxide Electrodes.

Journal of Electronic Materials, 44(11):4434–4443, 2015. ISSN 1543-186X.

F. Duffner, M. Wentker, M. Greenwood, and J. Leker. Battery cost modeling: A review and

directions for future research. Renewable and Sustainable Energy Reviews, 127:109872, 2020.

ISSN 13640321.

F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter, and R. Schmuch. Post-lithium-ion

battery cell production and its compatibility with lithium-ion cell production infrastructure.

Nature Energy, 6(2):123–134, 2021. ISSN 2058-7546.

https://www.consilium.europa.eu/en/press/press-releases/2022/06/27/fit-for-55-council-agrees-on-higher-targets-for-renewables-and-energy-efficiency/
https://www.consilium.europa.eu/en/press/press-releases/2022/06/27/fit-for-55-council-agrees-on-higher-targets-for-renewables-and-energy-efficiency/
https://www.consilium.europa.eu/en/press/press-releases/2022/06/27/fit-for-55-council-agrees-on-higher-targets-for-renewables-and-energy-efficiency/
https://www.bundesregierung.de/breg-de/themen/klimaschutz/energiewende-beschleunigen-2040310
https://www.bundesregierung.de/breg-de/themen/klimaschutz/energiewende-beschleunigen-2040310
https://www.bundesregierung.de/breg-de/themen/klimaschutz/energiewende-beschleunigen-2040310


Bibliography 108

Element Energy. Electric Cars: Calculating the Total Cost of Ownership for Consumers: Final

report for BEUC (The European Consumer Organisation), 2021.

ENBW. Solarpflicht: Kommt die solarpflicht für alle? https://www.enbw.com/blog/

energiewende/solarenergie/solarpflicht-kommt-die-solarpflicht-fuer-alle/, 2022.

Accessed on April 11 2023.

O. Erdinc, N. G. Paterakis, I. N. Pappi, A. G. Bakirtzis, and J. P. Catalão. A new perspective

for sizing of distributed generation and energy storage for smart households under demand

response. Applied Energy, 143:26–37, 2015. ISSN 03062619.

D. Eroglu, K. R. Zavadil, and K. G. Gallagher. Critical link between materials chemistry and

cell-level design for high energy density and low cost lithium-sulfur transportation battery.

Journal of The Electrochemical Society, 162(6):A982–A990, 2015. ISSN 0013-4651.

EUPD Research. 89 percent of the solar potential for german single- and two-family houses is still

unexploited. https://www.eupd-research.com/en/89-percent-of-the-solar-potential-

still-unexploited/, 2021. Accessed on April 11, 2023.

European Environment Agency. Eu greenhouse gas emissions kept decreasing in 2018, largest

reductions in energy sector, 2020. URL https://unfccc.int/process-and-meetings/the-

paris-agreement. Accessed on May 3, 2023.

European Parliament. "Fit for 55": zero CO2 emissions for new cars and vans in 2035,

2023. URL https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/

fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035. Accessed on May 28,

2023.

A. Evans, V. Strezov, and T. J. Evans. Assessment of utility energy storage options for increased

renewable energy penetration. Renewable and Sustainable Energy Reviews, 16(6):4141–4147,

2012.

R. Ewert, A. Wagenhofer, and A. Rohlfing-Bastian. Interne Unternehmensrechnung. Springer-

Gabler, 9 edition, 2023.

Exchange Rates UK. Euro to US Dollar Spot Exchange Rates for 2022, 2022. URL https://

www.exchangerates.org.uk/EUR-USD-spot-exchange-rates-history-2022.html. Accessed

on November 25, 2022.

https://www.enbw.com/blog/energiewende/solarenergie/solarpflicht-kommt-die-solarpflicht-fuer-alle/
https://www.enbw.com/blog/energiewende/solarenergie/solarpflicht-kommt-die-solarpflicht-fuer-alle/
https://www.eupd-research.com/en/89-percent-of-the-solar-potential-still-unexploited/
https://www.eupd-research.com/en/89-percent-of-the-solar-potential-still-unexploited/
https://unfccc.int/process-and-meetings/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement
https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035
https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035
https://www.exchangerates.org.uk/EUR-USD-spot-exchange-rates-history-2022.html
https://www.exchangerates.org.uk/EUR-USD-spot-exchange-rates-history-2022.html


Bibliography 109

D. L. Farrar and F. Woodruff. A model for the determination of optimal electric generating

system expansion patterns, 1973.

F. Field, R. Kirchain, and R. Roth. Process cost modeling: Strategic engineering and economic

evaluation of materials technologies. JOM, 59(10):21–32, 2007. ISSN 1543-1851.

B. A. Franco, P. Baptista, R. C. Neto, and S. Ganilha. Assessment of offloading pathways for

wind-powered offshore hydrogen production: Energy and economic analysis. Applied Energy,

286:116553, 2021. ISSN 03062619.

J. Frazelle. Battery day. Communications of the ACM, 64(5):52–59, 2021. ISSN 0001-0782.

G. Friedl and C. Ann. A cost-based approach for calculating royalties for standard-essential

patents (seps). The Journal of World Intellectual Property, 21(5-6):369–384, 2018. ISSN

14222213.

G. Friedl and H.-U. Küpper. Historische Kosten oder Long Run Incremental Costs als Kosten-

maßstab für die Preisgestaltung in regulierten Märkten? Zeitschrift für betriebswirtschaftliche

Forschung, 6(64):98–128, 2011.

G. Friedl, C. Hofmann, and B. Pedell. Kostenrechnung: Eine entscheidungsorientierte Ein-

führung. Vahlen, 4 edition, 2022. ISBN 978-3-8006-6814-4.

J. Friedmann, Z. Fan, Z. Byrum, E. Ochu, A. Bhardwaj, and H. Sheerazi. Levelized Cost of

Carbon Abatement: An Improved Cost-Assessment Methodology for a Net-Zero Emissions

World. 2020.

R. Gabbrielli, P. Castrataro, F. Del Medico, M. Di Palo, and B. Lenzo. Levelized cost of heat

for linear fresnel concentrated solar systems. Energy Procedia, 49:1340–1349, 2014. ISSN

18766102.

K. G. Gallagher, S. Goebel, T. Greszler, M. Mathias, W. Oelerich, D. Eroglu, and V. Srinivasan.

Quantifying the promise of lithium–air batteries for electric vehicles. Energy & Environmental

Science, 7(5):1555, 2014. ISSN 1754-5692.

Y. L. Gamarra and G. Friedl. Declared essential patents and average total R&D expenditures

per patent family. Telecommunications Policy, 2023. ISSN 0308-5961.

G. Glenk and S. Reichelstein. Economics of converting renewable power to hydrogen. Nature

Energy, 4(3):216–222, 2019.



Bibliography 110

G. Glenk and S. Reichelstein. Reversible Power-to-Gas systems for energy conversion and storage.

Nature Communications, 13(1):2010, 2022a.

G. Glenk and S. Reichelstein. The economic dynamics of competing power generation sources.

Renewable and Sustainable Energy Reviews, 168:112758, 2022b. ISSN 13640321.

G. Glenk, R. Meier, and S. Reichelstein. Cost dynamics of clean energy technologies. Schmalen-

bach Journal of Business Research, 73(2):179–206, 2021.

G. Glenk, K. Anton, R. Meier, and S. Reichelstein. Cost-efficient pathways to decarbonizing

Portland cement production. 2023a.

G. Glenk, P. Holler, and S. Reichelstein. Advances in Power-to-Gas technologies: cost and

conversion efficiency. 2023b.

C. Goodall. Fuels from air and water, 2017. URL https:

//www.carboncommentary.com/blog/2017/12/13/fuels-from-air-and-

water?utm_source=Carbon+Commentary+latest+posts&utm_campaign=81ca6225cb-

Carbon_Commentary_latest_posts11_29_2014&utm_medium=email&utm_term=

0_f81f6d4f31-81ca6225cb-500845613. Accessed on April 25, 2022.

A. Grimm, W. A. de Jong, and G. J. Kramer. Renewable hydrogen production: A techno-

economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. International

Journal of Hydrogen Energy, 45(43):22545–22555, 2020. ISSN 03603199.

O. J. Guerra, J. Eichman, J. Kurtz, and B.-M. Hodge. Cost competitiveness of electrolytic

hydrogen. Joule, 3(10):2425–2443, 2019. ISSN 25424351.

O. J. Guerra, J. Eichman, and P. Denholm. Optimal energy storage portfolio for high and

ultrahigh carbon-free and renewable power systems. Energy & Environmental Science, 14

(10):5132–5146, 2021. ISSN 1754-5692.

F. J. Günter and N. Wassiliadis. State of the Art of Lithium-Ion Pouch Cells in Automotive

Applications: Cell Teardown and Characterization. Journal of The Electrochemical Society,

2022. ISSN 1945-7111.

M. Haarmann, D. Grießl, and A. Kwade. Continuous Processing of Cathode Slurry by Extrusion

for Lithium–Ion Batteries. Energy Technology, 9(10):2100250, 2021. ISSN 2194-4288.

https://www.carboncommentary.com/blog/2017/12/13/fuels-from-air-and-water?utm_source=Carbon+Commentary+latest+posts&utm_campaign=81ca6225cb-Carbon_Commentary_latest_posts11_29_2014&utm_medium=email&utm_term=0_f81f6d4f31-81ca6225cb-500845613
https://www.carboncommentary.com/blog/2017/12/13/fuels-from-air-and-water?utm_source=Carbon+Commentary+latest+posts&utm_campaign=81ca6225cb-Carbon_Commentary_latest_posts11_29_2014&utm_medium=email&utm_term=0_f81f6d4f31-81ca6225cb-500845613
https://www.carboncommentary.com/blog/2017/12/13/fuels-from-air-and-water?utm_source=Carbon+Commentary+latest+posts&utm_campaign=81ca6225cb-Carbon_Commentary_latest_posts11_29_2014&utm_medium=email&utm_term=0_f81f6d4f31-81ca6225cb-500845613
https://www.carboncommentary.com/blog/2017/12/13/fuels-from-air-and-water?utm_source=Carbon+Commentary+latest+posts&utm_campaign=81ca6225cb-Carbon_Commentary_latest_posts11_29_2014&utm_medium=email&utm_term=0_f81f6d4f31-81ca6225cb-500845613
https://www.carboncommentary.com/blog/2017/12/13/fuels-from-air-and-water?utm_source=Carbon+Commentary+latest+posts&utm_campaign=81ca6225cb-Carbon_Commentary_latest_posts11_29_2014&utm_medium=email&utm_term=0_f81f6d4f31-81ca6225cb-500845613


Bibliography 111

J. B. Habedank, F. J. Günter, N. Billot, R. Gilles, T. Neuwirth, G. Reinhart, and M. F. Zaeh.

Rapid electrolyte wetting of lithium-ion batteries containing laser structured electrodes: in situ

visualization by neutron radiography. The International Journal of Advanced Manufacturing

Technology, 102(9-12):2769–2778, 2019. ISSN 0268-3768.

M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, and J. Tübke. Lithium-sulfur

cells: The gap between the state-of-the-art and the requirements for high energy battery cells.

Advanced Energy Materials, 5(16):1401986, 2015. ISSN 16146832.

C. A. Heck, M.-W. von Horstig, F. Huttner, J. K. Mayer, W. Haselrieder, and A. Kwade.

Review—Knowledge-Based Process Design for High Quality Production of NCM811 Cathodes.

Journal of The Electrochemical Society, 167(16):160521, 2020. ISSN 1945-7111.

H. H. Heimes, A. Kampker, C. Lienemann, M. Locke, C. Offermanns, S. Michaelis, and

E. Rahimzei. Lithium-ion battery cell production process, 2018.

J. Hernández-Moro and J. M. Martínez-Duart. Analytical model for solar PV and CSP electricity

costs: Present LCOE values and their future evolution. Renewable and Sustainable Energy

Reviews, 20:119–132, 2013. ISSN 13640321.

L. Hirth. The market value of variable renewables. Energy Economics, 38:218–236, 2013. ISSN

01409883.

H. Hotelling. A general mathematical theory of depreciation. Journal of the American Statistical

Association, 20(151):340–353, 1925. ISSN 0162-1459.

C. A. Hunter, M. M. Penev, E. P. Reznicek, J. Eichman, N. Rustagi, and S. F. Baldwin. Techno-

economic analysis of long-duration energy storage and flexible power generation technologies

to support high-variable renewable energy grids. Joule, 5(8):2077–2101, 2021. ISSN 25424351.

F. Huttner, W. Haselrieder, and A. Kwade. The Influence of Different Post–Drying Procedures

on Remaining Water Content and Physical and Electrochemical Properties of Lithium–Ion

Batteries. Energy Technology, 8(2):1900245, 2020. ISSN 2194-4288.

F. Huttner, A. Diener, T. Heckmann, J. C. Eser, T. Abali, J. K. Mayer, P. Scharfer, W. Schabel,

and A. Kwade. Increased Moisture Uptake of NCM622 Cathodes after Calendering due to

Particle Breakage. Journal of The Electrochemical Society, 168(9):090539, 2021. ISSN 1945-

7111.



Bibliography 112

IEA. Press release: Global electric vehicle outlook 2022. 2022.

IG Metall. Tariftabellen Metall- und Elektroindustrie: ERA - monat-

sentgelte (in euro), 2018. URL https://www.igmetall.de/download/

MuE_ERA_Entgelte_Juni2018_78d3e1848939887f53dcf9506907870bb637c493.pdf. Ac-

cessed on December 10, 2022.

Intergovernmental Panel on Climate Change. Synthesis report: Of the ipcc sixth assessment

report (ar6), 2023.

Ö. İşlegen and S. Reichelstein. Carbon capture by fossil fuel power plants: An economic analysis.

Management Science, 57(1):21–39, 2011.

M. Z. Jacobson. Clean grids with current technology. Nature Climate Change, 6(5):441–442,

2016.

I. Javeed, R. Khezri, A. Mahmoudi, A. Yazdani, and G. M. Shafiullah. Optimal sizing of rooftop

pv and battery storage for grid-connected houses considering flat and time-of-use electricity

rates. Energies, 14(12):3520, 2021.

H. Jin and P. Lienert. Iron man elon musk places his tesla battery bets. Reuters,

2022. https://www.reuters.com/business/autos-transportation/iron-man-elon-musk-places-

his-tesla-battery-bets-2022-04-27/.

N. Jones. Liquid hydrogen. Nature Climate Change, 2(1):23, 2012.

D. W. Jorgenson. Capital theory and investment behavior. American Economic Review, 53(2):

247–259, 1963. ISSN 0002-8282.

P. L. Joskow. Comparing the costs of intermittent and dispatchable electricity generating tech-

nologies. American Economic Review, 101(3):238–241, 2011. ISSN 0002-8282.

V. Jülch. Comparison of electricity storage options using levelized cost of storage (lcos) method.

Applied Energy, 183:1594–1606, 2016. ISSN 03062619.

V. Jülch, T. Telsnig, M. Schulz, N. Hartmann, J. Thomsen, L. Eltrop, and T. Schlegl. A holistic

comparative analysis of different storage systems using levelized cost of storage and life cycle

indicators. Energy Procedia, 73:18–28, 2015. ISSN 18766102.

https://www.igmetall.de/download/MuE_ERA_Entgelte_Juni2018_78d3e1848939887f53dcf9506907870bb637c493.pdf
https://www.igmetall.de/download/MuE_ERA_Entgelte_Juni2018_78d3e1848939887f53dcf9506907870bb637c493.pdf


Bibliography 113

K. Kalaga, M.-T. F. Rodrigues, S. E. Trask, I. A. Shkrob, and D. P. Abraham. Calendar-life

versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes. Elec-

trochimica Acta, 280:221–228, 2018. ISSN 00134686.

F. R. Kalhammer, B. M. Kopf, D. H. Swan, V. P. Roan, and M. P. Walsh. Status and prospects

for zero emissions vehicle technology. Report of the ARB Independent Expert Panel, 1(1):

12–36, 2007.

M. Kane. Rumor mill: VW paying less than $100 per kWh of battery capacity, 2019.

URL https://insideevs.com/news/369923/rumor-mill-vw-cheap-battery/. Accessed on

November 19, 2022.

D. W. Keith, G. Holmes, D. S. Angelo, and K. Heidel. A process for capturing CO2 from the

atmosphere. Joule, 2(8):1573–1594, 2018.

M. Keppeler, H.-Y. Tran, and W. Braunwarth. The Role of Pilot Lines in Bridging the Gap

Between Fundamental Research and Industrial Production for Lithium–Ion Battery Cells Rel-

evant to Sustainable Electromobility: A Review. Energy Technology, 9(8):2100132, 2021. ISSN

2194-4288.

K. R. Khalilpour and A. Vassallo. Technoeconomic parametric analysis of PV-battery systems.

Renewable Energy, 97:757–768, 2016. ISSN 09601481.

Y. Khawaja, D. Giaouris, H. Patsios, and M. Dahidah. Optimal cost-based model for sizing

grid-connected PV and battery energy system. In 2017 IEEE Jordan Conference on Applied

Electrical Engineering and Computing Technologies (AEECT), pages 1–6. IEEE, 2017.

M. Khzouz, E. Gkanas, J. Shao, F. Sher, D. Beherskyi, A. El-Kharouf, and M. Al Qubeissi. Life

cycle costing analysis: Tools and applications for determining hydrogen production cost for

fuel cell vehicle technology. Energies, 13(15):3783, 2020.

M.-H. Kim, D. Kim, J. Heo, and D.-W. Lee. Techno-economic analysis of hybrid renewable

energy system with solar district heating for net zero energy community. Energy, 187:115916,

2019. ISSN 03605442.

K.-P. Kistner and A. Luhmer. Zur Ermittlung der Kosten der Betriebsmittel in der statischen

Produktionstheorie. Zeitschrift für Betriebswirtschaft, 51:165–180, 1981.

https://insideevs.com/news/369923/rumor-mill-vw-cheap-battery/


Bibliography 114

K. W. Knehr, J. J. Kubal, P. A. Nelson, and S. Ahmed. Battery performance and cost modeling

for electric-drive vehicles: A manual for batpac v5.0. 2022.

T. Knoche and G. Reinhart. Electrolyte Filling of Large-Scale Lithium-Ion Batteries: Challenges

for Production Technology and Possible Approaches. Applied Mechanics and Materials, 794:

11–18, 2015.

C. Kost, S. Shammugam, V. Fluri, D. Peper, A. Davoodi Memar, and T. Schlegl. Levelized cost

of electricity: Renewable energy technologies, 2021.

J. Kriegler, M. Binzer, and M. F. Zaeh. Process strategies for laser cutting of electrodes in

lithium-ion battery production. Journal of Laser Applications, 33(1):012006, 2021. ISSN

1042-346X.

H.-U. Küpper. Investitionstheoretische Fundierung der Kostenrechnung. Zeitschrift für betrieb-

swirtschaftliche Forschung, 37(1):26–46, 1985.

A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich, and K. Droeder. Current

status and challenges for automotive battery production technologies. Nature Energy, 3(4):

290–300, 2018. ISSN 2058-7546.

H.-U. Küpper. Kosten-und entscheidungstheoretische Ansatzpunkte zur Behandlung des

Fixkostenproblems in der Kostenrechnung. Zeitschrift für betriebswirtschaftliche Forschung,

36:794–811, 1984.

C. S. Lai and M. D. McCulloch. Levelized cost of electricity for solar photovoltaic and electrical

energy storage. Applied Energy, 190:191–203, 2017. ISSN 03062619.

A. Lajunen and T. Lipman. Lifecycle cost assessment and carbon dioxide emissions of diesel,

natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy, 106:329–342,

2016. ISSN 0360-5442.

L. Lander, T. Cleaver, M. A. Rajaeifar, V. Nguyen-Tien, R. J. Elliott, O. Heidrich, E. Kendrick,

J. S. Edge, and G. Offer. Financial viability of electric vehicle lithium-ion battery recycling.

Iscience, 24(7):102787, 2021.

P. Lebeau, C. Macharis, J. v. Mierlo, and K. Lebeau. Electrifying light commercial vehicles

for city logistics? a total cost of ownership analysis. European Journal of Transport and

Infrastructure Research, 15(4), Sep. 2015.



Bibliography 115

J.-Y. Lee, M. Yoo, K. Cha, T. W. Lim, and T. Hur. Life cycle cost analysis to examine the

economical feasibility of hydrogen as an alternative fuel. International Journal of Hydrogen

Energy, 34(10):4243–4255, 2009. ISSN 03603199.

M. Lehtveer and A. Emanuelsson. BECCS and DACCS as negative emission providers in an

intermittent electricity system: Why levelized cost of carbon may be a misleading measure for

policy decisions. Frontiers in Climate, 3, 2021.

R. Leithoff, A. Fröhlich, and K. Dröder. Investigation of the Influence of Deposition Accuracy of

Electrodes on the Electrochemical Properties of Lithium–Ion Batteries. Energy Technology, 8

(2):1900129, 2020. ISSN 2194-4296.

Q. Li, C. Zheng, A. Shirazi, O. Bany Mousa, F. Moscia, J. A. Scott, and R. A. Taylor. Design and

analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning

applications. Applied Energy, 190:1159–1173, 2017. ISSN 03062619.

W. Li, Y.-G. Cho, W. Yao, Y. Li, A. Cronk, R. Shimizu, M. A. Schroeder, Y. Fu, F. Zou,

V. Battaglia, et al. Enabling high areal capacity for co-free high voltage spinel materials in

next-generation li-ion batteries. Journal of Power Sources, 473:228579, 2020.

F. Liao, E. Molin, and B. van Wee. Consumer preferences for electric vehicles: a literature

review. Transport Reviews, 37(3):252–275, 2017.

J. Liu, X. Chen, H. Yang, and Y. Li. Energy storage and management system design optimization

for a photovoltaic integrated low-energy building. Energy, 190:116424, 2020. ISSN 03605442.

Z. Liu, J. Song, J. Kubal, N. Susarla, K. W. Knehr, E. Islam, P. Nelson, and S. Ahmed.

Comparing total cost of ownership of battery electric vehicles and internal combustion engine

vehicles. Energy Policy, 158:112564, 2021. ISSN 03014215.

S. Loutatidou and H. A. Arafat. Techno-economic analysis of med and ro desalination powered

by low-enthalpy geothermal energy. Desalination, 365:277–292, 2015. ISSN 00119164.

W. Lücke. Investitionsrechnungen auf der Grundlage von Ausgaben oder Kosten. Zeitschrift für

handelswissenschaftliche Forschung, 7(3):310–324, 1955.

A. Luhmer. Fixe und variable Abschreibungskosten und optimale Investitionsdauer - Zu einem

Aufsatz von Peter Swoboda. Zeitschrift für Betriebswirtschaft, 50(8/1980):898–903, 1980.



Bibliography 116

A. MacKenzie, D. L. Granatstein, E. J. Anthony, and J. C. Abanades. Economics of CO2 capture

using the calcium cycle with a pressurized fluidized bed combustor. Energy & Fuels, 21(2):

920–926, 2007. ISSN 0887-0624.

A. Mahlert. Die Abschreibungen in der entscheidungsorientierten Kostenrechnung. Opladen:

Westdeutscher Verlag, 1976.

C. Mao, S. J. AN, H. M. Meyer, J. Li, M. Wood, R. E. Ruther, and D. L. Wood. Balancing

formation time and electrochemical performance of high energy lithium-ion batteries. Journal

of Power Sources, 402:107–115, 2018. ISSN 03787753.

Massachusetts Institute of Technology. The future of coal, 2007. URL http://web.mit.edu/

coal/.

S. Matteson and E. Williams. Learning dependent subsidies for lithium-ion electric vehicle

batteries. Technological Forecasting and Social Change, 92:322–331, 2015. ISSN 00401625.

L. Mauler, F. Duffner, W. G. Zeier, and J. Leker. Battery cost forecasting: a review of methods

and results with an outlook to 2050. Energy & Environmental Science, 14(9):4712–4739, 2021.

ISSN 1754-5692.

S. T. McCoy and E. S. Rubin. Variability and uncertainty in the cost of saline formation storage.

Energy Procedia, 1(1):4151–4158, 2009. ISSN 18766102.

McKinsey & Company. The net-zero transition: What it would cost, what it could bring, 2022.

McKinsey Center for Future Mobility. Why the automotive future is electric, 2021.

C. Meyer, H. Bockholt, W. Haselrieder, and A. Kwade. Characterization of the calendering

process for compaction of electrodes for lithium-ion batteries. Journal of Materials Processing

Technology, 249:172–178, 2017. ISSN 09240136.

S. Michaelis, E. Rahimzei, A. Kampker, and H. Heimes. Roadmap Batterie-Produktionsmittel

2030 - Update 2020.

M. Minutillo, A. Perna, A. Forcina, S. Di Micco, and E. Jannelli. Analyzing the levelized cost of

hydrogen in refueling stations with on-site hydrogen production via water electrolysis in the

Italian scenario. International Journal of Hydrogen Energy, 46(26):13667–13677, 2021. ISSN

03603199.

http://web.mit.edu/coal/
http://web.mit.edu/coal/


Bibliography 117

M. H. Mostafa, S. H. Abdel Aleem, S. G. Ali, Z. M. Ali, and A. Y. Abdelaziz. Techno-economic

assessment of energy storage systems using annualized life cycle cost of storage (LCCOS) and

levelized cost of energy (LCOE) metrics. Journal of Energy Storage, 29:101345, 2020. ISSN

2352152X.

E. Moyassari, T. Roth, S. Kücher, C.-C. Chang, S.-C. Hou, F. B. Spingler, and A. Jossen.

The role of silicon in silicon-graphite composite electrodes regarding specific capacity, cycle

stability, and expansion. Journal of The Electrochemical Society, 169(1):010504, 2022. ISSN

1945-7111.

U. Mulleriyawage and W. Shen. Optimally sizing of battery energy storage capacity by opera-

tional optimization of residential PV-Battery systems: An Australian household case study.

Renewable Energy, 160:852–864, 2020.

Nat Energy. Editorial: Hydrogen on the rise. Nature Energy, 1:16127, 2016.

P. A. Nelson, S. Ahmed, K. G. Gallagher, and D. W. Dees. Cost savings for manufacturing

lithium batteries in a flexible plant. Journal of Power Sources, 283:506–516, 2015. ISSN

03787753.

P. A. Nelson, S. Ahmed, K. G. Gallagher, and D. W. Dees. Modeling the performance and cost

of Lithium-ion batteries for electric-drive vehicles: Third edition. ANL/CSE-19/2, (2), 2019.

T. Nemeth, P. Schröer, M. Kuipers, and D. U. Sauer. Lithium titanate oxide battery cells

for high-power automotive applications – electro-thermal properties, aging behavior and cost

considerations. Journal of Energy Storage, 31:101656, 2020. ISSN 2352152X.

Nextmove. Battery day: Tesla stellt 4680er zelle und model s plaid vor, 2020. URL

https://nextmove.de/battery-day-tesla-stellt-neue-4680er-zelle-und-das-model-

s-plaid-vor/. Accessed on July 29, 2022.

A. Nezlobin. Accrual accounting, informational sufficiency, and equity valuation. Journal of

Accounting Research, 50(1):233–273, 2012.

A. Nezlobin, M. V. Rajan, and S. Reichelstein. Dynamics of rate-of-return regulation. Manage-

ment Science, 58(5):980–995, 2012.

B. Nykvist and M. Nilsson. Rapidly falling costs of battery packs for electric vehicles. Nature

Climate Change, 5:329–332, 2015. ISSN 17586798.

https://nextmove.de/battery-day-tesla-stellt-neue-4680er-zelle-und-das-model-s-plaid-vor/
https://nextmove.de/battery-day-tesla-stellt-neue-4680er-zelle-und-das-model-s-plaid-vor/


Bibliography 118

B. Nykvist, F. Sprei, and M. Nilsson. Assessing the progress toward lower priced long range

battery electric vehicles. Energy Policy, 124:144–155, 2019. ISSN 03014215.

E. O’Shaughnessy, D. Cutler, K. Ardani, and R. Margolis. Solar plus: Optimization of dis-

tributed solar PV through battery storage and dispatchable load in residential buildings.

Applied Energy, 213:11–21, 2018. ISSN 03062619.

X. Ouyang and B. Lin. Levelized cost of electricity (LCOE) of renewable energies and required

subsidies in China. Energy Policy, 70:64–73, 2014. ISSN 03014215.

B. Parkinson, P. Balcombe, J. F. Speirs, A. D. Hawkes, and K. Hellgardt. Levelized cost of CO2

mitigation from hydrogen production routes. Energy & Environmental Science, 12(1):19–40,

2019. ISSN 1754-5692.

R. L. Parr. Intellectual Property: Valuation, Exploitation, and Infringement Damages. John

Wiley & Sons, 5 edition, 2018.

G. Patry, A. Romagny, S. Martinet, and D. Froelich. Cost modeling of lithium–ion battery cells

for automotive applications. Energy Science & Engineering, 3(1):71–82, 2015. ISSN 2050-0505.

I. Pawel. The cost of storage – how to calculate the levelized cost of stored energy (LCOE) and

applications to renewable energy generation. Energy Procedia, 46:68–77, 2014. ISSN 18766102.

R. Petri, T. Giebel, B. Zhang, J.-H. Schünemann, and C. Herrmann. Material cost model for

innovative li-ion battery cells in electric vehicle applications. International Journal of Precision

Engineering and Manufacturing-Green Technology, 2(3):263–268, 2015. ISSN 2288-6206.

K.-H. Pettinger. Production test procedures. In R. Korthauer, editor, Lithium-Ion Batteries:

Basics and Applications, pages 237–246. Springer-Verlag, Berlin and Heidelberg, 2018. ISBN

978-3-662-53069-6.

M. Philippot, G. Alvarez, E. Ayerbe, J. van Mierlo, and M. Messagie. Eco-Efficiency of a Lithium-

Ion Battery for Electric Vehicles: Influence of Manufacturing Country and Commodity Prices

on GHG Emissions and Costs. Batteries, 5(1):23, 2019.

C. Pillot. The worldwide rechargeable battery market 2010 – 2025, avicenne energy, 2020.

P. Poonpun and W. T. Jewell. Analysis of the cost per kilowatt hour to store electricity. IEEE

Transactions on Energy Conversion, 23(2):529–534, 2008. ISSN 0885-8969.



Bibliography 119

Y. Preger, H. M. Barkholtz, A. Fresquez, D. L. Campbell, B. W. Juba, J. Romàn-Kustas, S. R.

Ferreira, and B. Chalamala. Degradation of commercial lithium-ion cells as a function of

chemistry and cycling conditions. Journal of The Electrochemical Society, 167(12):120532,

2020.

G. A. D. Preinreich. Annual survey of economic theory: The theory of depreciation. Economet-

rica: journal of the econometric society, 6(3):219–241, 1938.

P. C. Psarras, S. Comello, P. Bains, P. Charoensawadpong, S. Reichelstein, and J. Wilcox.

Carbon capture and utilization in the industrial sector. Environmental science & technology,

51(19):11440–11449, 2017.

M. M. Rahman, A. O. Oni, E. Gemechu, and A. Kumar. Assessment of energy storage tech-

nologies: A review. Energy Conversion and Management, 223:113295, 2020. ISSN 01968904.

M. V. Rajan and S. Reichelstein. Depreciation rules and the relation between marginal and

historical cost. Journal of Accounting Research, 47(3):823–865, 2009.

S. Reichelstein and A. Rohlfing-Bastian. Levelized product cost: Concept and decision relevance.

The Accounting Review, 90(4):1653–1682, 2015. ISSN 0001-4826.

S. Reichelstein and A. Sahoo. Time of day pricing and the levelized cost of intermittent power

generation. Energy Economics, 48:97–108, 2015.

S. Reichelstein and M. Yorston. The prospects for cost competitive solar pv power. Energy

Policy, 55:117–127, 2013. ISSN 03014215.

M. Ren, C. R. Mitchell, and W. Mo. Managing residential solar photovoltaic-battery systems

for grid and life cycle economic and environmental co-benefits under time-of-use rate design.

Resources, Conservation and Recycling, 169:105527, 2021. ISSN 09213449.

K. E. Rodby, T. J. Carney, Y. Ashraf Gandomi, J. L. Barton, R. M. Darling, and F. R. Brushett.

Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalanc-

ing. Journal of Power Sources, 460:227958, 2020. ISSN 03787753.

W. P. Rogerson. Intertemporal cost allocation and investment decisions. Journal of Political

Economy, 116(5):931–950, 2008.

M. Rosenthal, R. Adams, and L. Bennett. A comparative evaluation of advanced converters.

Technical report, Oak Ridge National Lab., Tenn., 1965.



Bibliography 120

E. S. Rubin and H. Zhai. The cost of carbon capture and storage for natural gas combined cycle

power plants. Environmental science & technology, 46(6):3076–3084, 2012.

M. Sadi, K. H. Chakravarty, A. Behzadi, and A. Arabkoohsar. Techno-economic-environmental

investigation of various biomass types and innovative biomass-firing technologies for cost-

effective cooling in india. Energy, 219:119561, 2021. ISSN 03605442.

M. Safoutin, J. McDonald, and B. Ellies. Predicting the future manufacturing cost of batteries

for plug-in vehicles for the u.s. environmental protection agency (epa) 2017–2025 light-duty

greenhouse gas standards. World Electric Vehicle Journal, 9(3):42, 2018.

A. Sakti, J. J. Michalek, E. R. Fuchs, and J. F. Whitacre. A techno-economic analysis and

optimization of li-ion batteries for light-duty passenger vehicle electrification. Journal of

Power Sources, 273:966–980, 2014. ISSN 03787753.

A. Sakti, I. M. Azevedo, E. R. Fuchs, J. J. Michalek, K. G. Gallagher, and J. F. Whitacre. Con-

sistency and robustness of forecasting for emerging technologies: The case of li-ion batteries

for electric vehicles. Energy Policy, 106:415–426, 2017. ISSN 03014215.

C. Scheller, K. Schmidt, C. Herrmann, and T. S. Spengler. Decentralized planning of lithium-ion

battery production and recycling. Procedia CIRP, 90:700–704, 2020. ISSN 22128271.

O. Schmidt, S. Melchior, A. Hawkes, and I. Staffell. Projecting the Future Levelized Cost of

Electricity Storage Technologies. Joule, 3(1):81–100, 2019. ISSN 25424351.

R. Schmuch, R. Wagner, G. Hörpel, T. Placke, and M. Winter. Performance and cost of materials

for lithium-based rechargeable automotive batteries. Nature Energy, 3(4):267–278, 2018. ISSN

2058-7546.

D. Schneider. Die wirtschaftliche Nutzungsdauer von Anlagegütern als Bestimmungsgrund der

Abschreibungen. Köln und Opladen, 1961.

S. F. Schneider, C. Bauer, P. Novák, and E. J. Berg. A modeling framework to assess specific

energy, costs and environmental impacts of Li-ion and Na-ion batteries. Sustainable Energy

& Fuels, 3(11):3061–3070, 2019.

J. Schnell, F. Tietz, C. Singer, A. Hofer, N. Billot, and G. Reinhart. Prospects of production

technologies and manufacturing costs of oxide-based all-solid-state lithium batteries. Energy

& Environmental Science, 12(6):1818–1833, 2019. ISSN 1754-5692.



Bibliography 121

J. Schnell, H. Knörzer, A. J. Imbsweiler, and G. Reinhart. Solid versus liquid—a bottom–up

calculation model to analyze the manufacturing cost of future high–energy batteries. Energy

Technology, 8(3):1901237, 2020. ISSN 2194-4288.

P. Schulze, J. Holstein, A. van den Noort, and J. Knijp. Power-to-Gas in a decarbonized Euro-

pean energy system based on renewable energy sources. DNV GL, 2017.

J.-H. Schünemann. Cost Model to Validate Production Cost of Lithium-Ion Batteries. PhD

thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, 2015.

J.-H. Schünemann, H. Dreger, H. Bockholt, and A. Kwade. Smart Electrode Processing for

Battery Cost Reduction. ECS Transactions, 73(1):153–159, 2016. ISSN 1938-5862.

M. Schweitzer, H.-U. Küpper, G. Friedl, C. Hofmann, and B. Pedell. Systeme der Kosten-und

Erlösrechnung. Vahlen, 2015.

N. A. Sepulveda, J. D. Jenkins, A. Edington, D. S. Mallapragada, and R. K. Lester. The design

space for long-duration energy storage in decarbonized power systems. Nature Energy, 6(5):

506–516, 2021.

W. Short, D. J. Packey, and T. Holt. A manual for the economic evaluation of energy efficiency

and renewable energy technologies, 1995.

A. J. Simon, N. B. Kaahaaina, S. Julio Friedmann, and R. D. Aines. Systems analysis and cost

estimates for large scale capture of carbon dioxide from air. Energy Procedia, 4:2893–2900,

2011. ISSN 18766102.

Y. Simsek, C. Mata-Torres, A. M. Guzmán, J. M. Cardemil, and R. Escobar. Sensitivity and

effectiveness analysis of incentives for concentrated solar power projects in Chile. Renewable

Energy, 129:214–224, 2018. ISSN 09601481.

A. Smallbone, V. Jülch, R. Wardle, and A. P. Roskilly. Levelised cost of storage for pumped

heat energy storage in comparison with other energy storage technologies. Energy Conversion

and Management, 152:221–228, 2017. ISSN 01968904.

R. Stanek and B. Konersmann. Tesla battery day 2020 - Technology announcement analysis,

2020.



Bibliography 122

Statista GmbH. Carbon dioxide (CO2) emissions in the European Union in 2000, 2010 and 2021,

by country (in million metric tons), 2022a. URL https://www.statista.com/statistics/

1171389/co2-emissions-european-union.

Statista GmbH. The Great Lithium Boom, 2022b. URL https://www.statista.com/chart/

28037/lithium-carbonate-price-timeline/.

T. Steckel, A. Kendall, and H. Ambrose. Applying levelized cost of storage methodology to

utility-scale second-life lithium-ion battery energy storage systems. Applied Energy, 300:

117309, 2021. ISSN 03062619.

M. Stich, N. Pandey, and A. Bund. Drying and moisture resorption behaviour of various electrode

materials and separators for lithium-ion batteries. Journal of Power Sources, 364:84–91, 2017.

ISSN 03787753.

P. Swoboda. Die Ableitung variabler Abschreibungskosten aus Modellen zur Optimierung der

Investitionsdauer. Zeitschrift für Betriebswirtschaft, 4(7/1979):563–580, 1979.

S. Tegen, M. Hand, B. Maples, E. Lantz, P. Schwabe, and A. Smith. 2010 cost of wind energy

review. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United

States), 2012.

A. Thielmann, M. Wietschel, S. Funke, A. Grimm, T. Hettesheimer, S. Langkau, A. Loibl,

C. Moll, C. Neef, P. Plötz, L. Sievers, L. T. Espinoza, and J. Edler. Batteries for electric cars:

fact check and need for action, 2020.

M. Thomitzek, N. von Drachenfels, F. Cerdas, C. Herrmann, and S. Thiede. Simulation-based

assessment of the energy demand in battery cell manufacturing. Procedia CIRP, 80:126–131,

2019. ISSN 22128271.

Z. Tian, B. Perers, S. Furbo, and J. Fan. Thermo-economic optimization of a hybrid solar

district heating plant with flat plate collectors and parabolic trough collectors in series. Energy

Conversion and Management, 165:92–101, 2018. ISSN 01968904.

T. T. Tran and A. D. Smith. Incorporating performance-based global sensitivity and uncertainty

analysis into lcoe calculations for emerging renewable energy technologies. Applied Energy,

216:157–171, 2018. ISSN 03062619.

https://www.statista.com/statistics/1171389/co2-emissions-european-union
https://www.statista.com/statistics/1171389/co2-emissions-european-union
https://www.statista.com/chart/28037/lithium-carbonate-price-timeline/
https://www.statista.com/chart/28037/lithium-carbonate-price-timeline/


Bibliography 123

C. Vaalma, D. Buchholz, M. Weil, and S. Passerini. A cost and resource analysis of sodium-ion

batteries. Nature Reviews Materials, 3(4), 2018.

S. Van Renssen. A business case for green fuels. Nature Climate Change, 3(11):951–952, 2013.

V. Viswanathan, K. Mongird, R. Franks, X. Li, V. Sprenkle, and R. Baxter. 2022

grid energy storage technology cost and performance assessment, 2022. URL

https://www.pnnl.gov/sites/default/files/media/file/ESGC%20Cost%20Performance%

20Report%202022%20PNNL-33283.pdf. Accessed on May 26, 2023.

M. Vogt, K. Koch, A. Turetskyy, F. Cerdas, S. Thiede, and C. Herrmann. Model-based energy

analysis of a dry room HVAC system in battery cell production. Procedia CIRP, 98:157–162,

2021. ISSN 22128271.

F. Wang, Y. Deng, and C. Yuan. Design and Cost Modeling of High Capacity Lithium Ion

Batteries for Electric Vehicles through A Techno-economic Analysis Approach. Procedia Man-

ufacturing, 49:24–31, 2020. ISSN 23519789.

B. Welsch, L. Göllner-Völker, D. O. Schulte, K. Bär, I. Sass, and L. Schebek. Environmental and

economic assessment of borehole thermal energy storage in district heating systems. Applied

Energy, 216:73–90, 2018. ISSN 03062619.

J. Weniger, T. Tjaden, and V. Quaschning. Sizing and grid integration of residential pv battery

systems. In 8th International Renewable Energy Storage Conference and Exhibition (IRES

2013), Berlin, 2013.

J. Weniger, T. Tjaden, J. Bergner, and V. Quaschning. Sizing of battery converters for residential

PV storage systems. Energy Procedia, 99:3–10, 2016. ISSN 18766102.

M. Wentker, M. Greenwood, and J. Leker. A Bottom-Up Approach to Lithium-Ion Battery Cost

Modeling with a Focus on Cathode Active Materials. Energies, 12(3):504, 2019.

B. G. Westphal and A. Kwade. Critical electrode properties and drying conditions causing com-

ponent segregation in graphitic anodes for lithium-ion batteries. Journal of Energy Storage,

18:509–517, 2018. ISSN 2352152X.

W. J. Weydanz, H. Reisenweber, A. Gottschalk, M. Schulz, T. Knoche, G. Reinhart, M. Masuch,

J. Franke, and R. Gilles. Visualization of electrolyte filling process and influence of vacuum

during filling for hard case prismatic lithium ion cells by neutron imaging to optimize the

production process. Journal of Power Sources, 380:126–134, 2018. ISSN 03787753.

https://www.pnnl.gov/sites/default/files/media/file/ESGC%20Cost%20Performance%20Report%202022%20PNNL-33283.pdf
https://www.pnnl.gov/sites/default/files/media/file/ESGC%20Cost%20Performance%20Report%202022%20PNNL-33283.pdf


Bibliography 124

D. L. Wood, J. Li, and C. Daniel. Prospects for reducing the processing cost of lithium ion

batteries. Journal of Power Sources, 275:234–242, 2015. ISSN 03787753.

D. L. Wood, J. Li, and S. J. AN. Formation challenges of lithium-ion battery manufacturing.

Joule, 3(12):2884–2888, 2019. ISSN 25424351.

World Economic Forum. Global risks report 2023, 2023.

G. Wu, A. Inderbitzin, and C. Bening. Total cost of ownership of electric vehicles compared to

conventional vehicles: A probabilistic analysis and projection across market segments. Energy

Policy, 80:196–214, 2015. ISSN 03014215.

C. Xie, Y. Li, Y. Ding, and J. Radcliffe. Evaluating levelized cost of storage (LCOS) based

on price arbitrage operations: With liquid air energy storage (LAES) as an example. Energy

Procedia, 158:4852–4860, 2019. ISSN 18766102.

Y. Xu, K. Yang, and J. Yuan. Levelized cost of offshore wind power in China. Environmental

Science and Pollution Research, 28(20):25614–25627, 2021. ISSN 16147499.

T. Yang, W. Liu, G. J. Kramer, and Q. Sun. Seasonal thermal energy storage: A techno-

economic literature review. Renewable and Sustainable Energy Reviews, 139:110732, 2021.

ISSN 13640321.

G. Yingzhe. CATL aims to mass produce sodium-ion batteries in 2023, 2022.

URL https://www.caixinglobal.com/2022-10-25/catl-aims-to-mass-produce-sodium-

ion-batteries-in-2023-101955814.html. Accessed on July 29, 2024.

C. Yuan, Y. Deng, T. Li, and F. Yang. Manufacturing energy analysis of lithium ion battery

pack for electric vehicles. CIRP Annals, 66(1):53–56, 2017. ISSN 00078506.

B. Zakeri and S. Syri. Electrical energy storage systems: A comparative life cycle cost analysis.

Renewable and Sustainable Energy Reviews, 42:569–596, 2015. ISSN 13640321.

G. Zang, J. Zhang, S. Xu, and Y. Xing. Techno-economic analysis of cathode material production

using flame-assisted spray pyrolysis. Energy, 218:119504, 2021. ISSN 03605442.

Y. Zhang, A. Lundblad, P. E. Campana, F. Benavente, and J. Yan. Battery sizing and rule-based

operation of grid-connected photovoltaic-battery system: A case study in sweden. Energy

Conversion and Management, 133:249–263, 2017. ISSN 01968904.

https://www.caixinglobal.com/2022-10-25/catl-aims-to-mass-produce-sodium-ion-batteries-in-2023-101955814.html
https://www.caixinglobal.com/2022-10-25/catl-aims-to-mass-produce-sodium-ion-batteries-in-2023-101955814.html


Bibliography 125

Y. S. Zhang, N. E. Courtier, Z. Zhang, K. Liu, J. J. Bailey, A. M. Boyce, G. Richardson,

P. R. Shearing, E. Kendrick, and D. J. L. Brett. A Review of Lithium–Ion Battery Electrode

Drying: Mechanisms and Metrology. Advanced Energy Materials, 12(2):2102233, 2022. ISSN

1614-6832.


	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Research objectives and methodology
	1.3 Findings and contribution
	1.4 Structure of the Thesis

	2 Applications of the levelized cost concept
	2.1 Introduction
	2.2 Levelized Cost Concept
	2.2.1 Model Framework
	2.2.2 Relation to Full Cost
	2.2.3 Decision Relevance

	2.3 Energy Related Applications
	2.3.1 Levelized Cost of Electricity
	2.3.2 Levelized Cost of Energy Storage
	2.3.3 Levelized Cost of Hydrogen
	2.3.4 Levelized Cost of Carbon
	2.3.5 Other Environmental Applications

	2.4 Potential Future Applications
	2.5 Conclusion

	3 Production cost modelling of Lithium-Ion batteries
	3.1 Introduction
	3.2 Production costs of lithium-ion batteries
	3.2.1 Modern battery production processes
	3.2.2 Review of existing cost models and further relevant studies
	3.2.3 Cost structure of battery cell production

	3.3 Cost Model Approach
	3.3.1 Cell design
	3.3.2 Production processes
	3.3.3 Factory size and cost calculation
	3.3.4 Cost calculation for battery cell production

	3.4 Results
	3.5 Conclusion

	4 Residential solar PV and storage systems
	4.1 Introduction
	4.2 Model and results
	4.2.1 Improvements in modern battery storage
	4.2.2 Optimally sized solar PV and BES systems
	4.2.3 Fossil fuel reduction potential

	4.3 Discussion

	5 Conclusion
	Appendix
	A.1 Proof on the relation of LC and FC
	A.2 General parameters of the battery cost model

	Bibliography

