
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Exploring Fuzzy Tuning Technique for
Molecular Dynamics Simulations in

AutoPas

Manuel Lerchner

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Exploring Fuzzy Tuning Technique for Molecular
Dynamics Simulations in AutoPas

Untersuchung von Fuzzy Tuning Verfahren für
Molekulardynamik-Simulationen in AutoPas

Author: Manuel Lerchner

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisors: Manish Kumar Mishra, M.Sc. (hons) &

Samuel James Newcome, M.Sc.

Date: 10.08.2024

I confirm that this bachelor’s thesis is my own work and I have documented all sources and
material used.

Munich, 10.08.2024 Manuel Lerchner

Acknowledgements

I extend my sincere gratitude to my advisors, Sam and Manish, for their invaluable
guidance and feedback throughout this thesis. Their expertise and insights have been
instrumental in shaping the direction of this work, and I greatly appreciated our engaging
discussions.

I’m also grateful to the Chair of Scientific Computing and Professor Dr. Hans-Joachim
Bungartz for providing me with the opportunity to work on this project. Moreover, I would
like to thank the Leibniz Supercomputing Centre for providing the necessary computational
resources for this research.

Finally, I wish to express my heartfelt thanks to my family and friends. The unwavering
support of my family enabled me to fully focus on my studies, while my friends offered both
distractions when I needed breaks and inspiration when I needed motivation. Without them,
this journey would have been far less enjoyable.

vii

viii

Abstract

AutoPas is a high-performance, auto-tuned particle simulation library for many-body
systems, capable of dynamically switching between algorithms and data structures to
guarantee optimal performance throughout the simulation. This thesis introduces a novel
fuzzy logic-based tuning strategy for AutoPas, allowing users to guide the tuning process by
specifying custom Fuzzy Systems, which can be used to efficiently prune the search space of
possible parameter configurations. Efficient tuning strategies are crucial, as they allow for
discarding poor parameter configurations without evaluating them, thus reducing tuning
time and improving overall library performance.

We demonstrate that a data-driven approach can automatically generate Fuzzy Systems
that significantly outperform existing tuning strategies on specific benchmarks, resulting in
speedups of up to 1.96x compared to the FullSearch Strategy on scenarios included in the
training data and up to 1.35x on scenarios not directly included.

The Fuzzy Tuning Strategy can drastically reduce the number of evaluated configurations
during tuning phases while achieving comparable tuning results, making it a promising
alternative to the existing tuning strategies.

ix

x

Zusammenfassung

AutoPas ist eine hochperformante, selbstoptimierende Teilchensimulationsbibliothek für
Mehrkörpersysteme, welche in der Lage ist, dynamisch zwischen verschiedenen Algorithmen
und Datenstrukturen zu wechseln, um eine optimale Leistung während der Simulation zu
gewährleisten. In dieser Arbeit wird eine neuartige, auf Fuzzy-Logik basierende Tuning-
Strategie für AutoPas vorgestellt, die es dem Benutzer ermöglicht, Tuning-Phasen durch die
Vorgabe von benutzerdefinierten Fuzzy-Systemen zu steuern, um so den Suchraum möglicher
Parameterkonfigurationen effizient zu verkleinern. Solche effizienten Suchstrategien sind von
entscheidender Bedeutung für AutoPas, da sie es ermöglichen, schlechte Parameterkonfigura-
tionen auszuschließen, ohne sie zu evaluieren, wodurch die Tuning-Zeit reduziert und die
Gesamtleistung der Bibliothek verbessert wird.

Wir zeigen, dass ein datengesteuerter Ansatz zur automatischen Generierung von Fuzzy-
Systemen in bestimmten Tests eine deutlich bessere Leistung als bestehende Tuning-
Strategien erbringen kann. Im Vergleich zur FullSearch-Strategie kann die Fuzzy-Tuning-
Strategie eine Geschwindigkeitssteigerung von bis zu 1,96x bei Szenarien aus den Trainings-
daten und bis zu 1,35x bei Szenarien, die nicht direkt in den Trainingsdaten enthalten sind,
erzielen.

Die Fuzzy-Tuning-Strategie kann die Anzahl der evaluierten Konfigurationen während der
Tuning-Phasen drastisch reduzieren, während sie dennoch vergleichbare Tuning-Ergebnisse
erzielt, was sie zu einer vielversprechenden Alternative zu den bestehenden Tuning-Strategien
macht.

xi

xii

Contents

Acknowledgements vii

Abstract ix

Zusammenfassung xi

1. Introduction 1

2. Theoretical Background 3
2.1. Molecular Dynamics . 3

2.1.1. Quantum Mechanical Background 3
2.1.2. Classical Molecular Dynamics . 4
2.1.3. Potential Energy Function . 4
2.1.4. Numerical Integration . 5
2.1.5. Simulation Loop . 5

2.2. AutoPas . 6
2.2.1. Autotuning in AutoPas . 6
2.2.2. Tunable Parameters . 7
2.2.3. Tuning Strategies . 11

2.3. Fuzzy Logic . 12
2.3.1. Fuzzy Sets . 12
2.3.2. Fuzzy Logic Operations . 13
2.3.3. Linguistic Variables . 15
2.3.4. Fuzzy Logic Rules . 16
2.3.5. Fuzzy Inference . 16

3. Implementation 19
3.1. Fuzzy Logic Framework . 19
3.2. Rule Parser . 23
3.3. Fuzzy Tuning Strategy . 24

3.3.1. Component Tuning Approach . 24
3.3.2. Suitability Tuning Approach . 25

4. Proof of Concept 27
4.1. Data Driven Rule Extraction . 27

4.1.1. Decision Trees . 27
4.1.2. Conversion of Decision Trees to Fuzzy Systems 28

4.2. Fuzzy Systems for md flexible . 32
4.2.1. Data Collection . 32

xiii

4.2.2. Data Preprocessing . 33
4.2.3. Component Tuning Approach . 34
4.2.4. Suitability Tuning Approach . 37

5. Comparison and Evaluation 39
5.1. Exploding Liquid Benchmark (Included in Training Data) 39
5.2. Spinodal Decomposition MPI (Related to Training Data) 40
5.3. Further Analysis . 43

5.3.1. Quality of Predictions During Tuning Phases 43
5.3.2. Optimal Suitability Threshold . 45
5.3.3. Generalization of Rule Extraction Process 46

6. Future Work 47
6.1. Dynamic Rule Generation . 47
6.2. Improving Tuning Strategies . 47
6.3. Simplification of the Fuzzy System to Decision Trees 47

7. Conclusion 48

A. Appendix 49
A.1. TuningDataLogger Fields . 49
A.2. LiveInfoLogger Fields . 49
A.3. Density Plots of Relative Speed present in the Dataset 51

Bibliography 54

1. Introduction

Molecular Dynamics (MD) is a computational method used to simulate the behavior of
atoms and molecules over time. In recent years, MD simulations have become essential in
many scientific fields, including chemistry, physics, biology, and materials science. Such
simulations are used to study various systems, ranging from simple gases and liquids to
complex biological molecules and new materials.
MD simulations act on an atomic level and attempt to explain macroscopic properties

of a system from the interactions between the individual atoms and molecules. The
recent advances in computational power have made it possible to simulate systems with
millions of particles over long time scales, allowing researchers to study complex systems
in unprecedented detail. Contrary to experimental methods, MD simulations can provide
detailed information about the behavior of atoms and molecules, sometimes inaccessible to
experimental methods [PS17].
Two illustrations of such simulations are shown in Figure 1.1 and Figure 1.2. The first

image shows a simulation of the HIV-1 capsid, a protein shell that surrounds the genetic
material of the human immunodeficiency virus (HIV). Using a simulation-based approach,
researchers could study critical properties of the HIV-1 capsid, which would be difficult to
access using other methods [PS17]. The second image shows a simulation of shear band
formation around a precipitate in metallic glass. This simulation found evidence that
depending on the precipitate size, shear bands can either dissolve, wrap around, or be
blocked by the precipitate [BPR+16]. This information is crucial for understanding the
mechanical properties of metallic glasses and can be used to design new materials with
improved properties.

Figure 1.1.: MD simulation with 64,423,983
atoms of the HIV-1 capsid. Per-
illa et al. [PS17] investigated
properties of the HIV-1 capsid
at an atomic resolution.

Figure 1.2.: MD simulations of shear band
formation around a precipitate in
metallic glass, as demonstrated
by Brink et al. [BPR+16].

1

1. Introduction

Simulating such systems is very computationally demanding and typically requires the
use of high-performance computing (HPC) systems for large-scale simulations. Another
challenge is the development of efficient simulation software that can handle the complexity
of the systems and make optimal use of the available computational resources. This thesis
focuses on the development of AutoPas, a high-performance, auto-tuned particle simulation
library for many-body systems, which tries to address these challenges by dynamically
switching between algorithms and data structures to guarantee high performance throughout
the simulation.
This switching mechanism in AutoPas is guided by so-called tuning strategies, which

explore the space of available algorithms and data structures and attempt to find suitable
configurations for the current simulation state. The development of efficient tuning strategies
is crucial, as efficient choices can significantly reduce the total runtime of the simulation,
making MD simulations more accessible to researchers and enabling the study of more
complex systems.
In particular, we develop a novel fuzzy logic-based tuning strategy, which allows users

to encode their domain knowledge in the tuning process. Furthermore, we investigate
a data-driven approach to automatically generate fuzzy systems, and we will show that
the proposed fuzzy tuning strategy can outperform existing tuning strategies on specific
benchmarks.

2

2. Theoretical Background

2.1. Molecular Dynamics

2.1.1. Quantum Mechanical Background

Our current knowledge of physics suggests that the behavior of atoms and molecules is
governed by the laws of quantum mechanics, where particles are described by probabilistic
wave functions evolving over time. In 1926, Austrian physicist Erwin Schrödinger formulated
a mathematical model describing this concept, which has since gained widespread acceptance
and is now generally known as the Schrödinger equation. The Schrödinger equation is a
partial differential equation describing the time evolution of a quantum system and is given
by:

iℏ
∂Ψ(r⃗, t)

∂t
= ĤΨ(r⃗, t) (2.1)

Here Ψ(r⃗, t) is the system’s wave function, evolving over time t and space r⃗. Ĥ is the
Hamiltonian operator describing the system’s energy, i is the imaginary unit, and ℏ is the
reduced Planck constant.

The Schrödinger equation provides a way to calculate the future states of a quantum
system given the system’s current state. However, the computational complexity of solving
this equation increases dramatically with the number of particles involved and quickly
becomes infeasible for systems with more than a few particles [LM15]. To illustrate this
complexity, consider simulating a single water molecule. This molecule consists of three
nuclei (two hydrogen atoms and one oxygen atom) and 10 electrons. Each of these 13
objects requires three spatial coordinates to describe its position, resulting in a total of
(2 + 1 + 10)× 3 = 39 variables. Following [LM15], the Schrödinger equation for this system
can be written as:

iℏ
∂Ψ

∂t
= −ℏ2

13∑
i=1

1

2mi

(
∂2Ψ

∂x2i
+

∂2Ψ

∂y2i
+

∂2Ψ

∂z2i

)
+ Up(x1, y1, z1, . . . , x13, y13, z13)Ψ (2.2)

In this equation, mi is the mass of the i-th object, xi, yi, and zi are the spatial coordinates
of the i-th object, and Up is the potential energy function of the system.

As the Schrödinger equation is a partial differential equation, it is computationally
expensive to solve for systems with many particles, as one quickly runs into the curse of
dimensionality. Larger systems, such as the HIV-1 capsid shown in Figure 1.1 consisting
of millions of atoms, are practically impossible to simulate using the Schrödinger equation
directly.

3

2. Theoretical Background

Luckily, the Born-Oppenheimer approximation simplifies the Schrödinger equation so
that it becomes computationally feasible to simulate even large systems of particles. The
approximation exploits the significant mass difference between electrons and nuclei1, making
it possible to solve both motions independently [ZBB+13]. As the forces acting on the heavy
nuclei cause way slower movements compared to the same force acting on the electrons, it is
possible to approximate the position of the nuclei as entirely stationary. This simplification
yields a new potential energy function U combining all electronic and nuclear energies, which
only depends on the nuclei’s positions. Using this simplification, efficient simulations of
systems with many particles become possible.
As the Born-Oppenheimer approximation is based on simplifications of the full model,

it is not always accurate. Depending on the system under investigation and the chosen
potential energy function U , the Born-Oppenheimer approximation may neglect specific
quantum mechanical effects, resulting in inaccuracies in the simulation.

Despite these limitations, the Born-Oppenheimer approximation is widely used in molecular
dynamics simulations and is the best-known method to simulate systems with many particles.

2.1.2. Classical Molecular Dynamics

After applying the Born-Oppenheimer approximation and using Newton’s second law of
motion, the Schrödinger equation can be transformed into a system of ordinary differential
equations of the form:

mi
d2r⃗i
dt2

= −∇iU (2.3)

Where mi is the mass of the i-th particle, r⃗i is the position of the i-th particle, and U is
the potential energy function of the system. These equations precisely describe a classical
particle system, where particles are treated as point masses moving through space under
the influence of forces. The forces are derived from the potential energy function U and are
calculated using the negative gradient of the potential energy function ∇iU .

2.1.3. Potential Energy Function

The potential energy function U is a critical component of molecular dynamics simulations
as it fundamentally defines the properties of the system. MD simulations use many different
potential energy functions, all of which are tailored to describe specific aspects of the system.
Those potentials typically use a mixture of 2-body, 3-body, and 4-body interactions between
the particles, each used to describe different aspects of particle interactions. The 2-body
interactions typically express the effect of Pauli repulsion, atomic bonds, and coulomb
interactions, while higher-order interactions allow for asymmetric wave functions for atoms
in bound-groups [LM15].

A common choice for the potential energy function is the Lennard-Jones potential. This
potential can reproduce the potential energy surfaces of many biological systems [Phy] while
still being very simple and efficient to compute. It is a pairwise potential that describes the

1The mass ratio of a single proton to an electron is approximately 1836:1, illustrating the vast difference in
mass between nuclei and electrons.

4

2.1. Molecular Dynamics

interaction between two particles and mainly emulates the attractive Van-der-Waals forces
and the repulsive Pauli repulsion forces between the particles [Che].

The Lennard-Jones potential is given by:

ULJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6
]

(2.4)

Where r is the distance between the particles, ϵ is the depth of the potential well, and σ
is the distance at which the potential is zero. The parameters ϵ and σ can differ for each
type of particle interaction and are either determined from theoretical considerations of the
material or chosen to match experimental data [MAMM20] [Iri21].

2.1.4. Numerical Integration

Since the simulation domain potentially consists of a vast number of particles all interacting
with each other, it is generally not possible to solve the equations of motion analytically.
This problem is known under the N-body problem, and it can be shown that there are
no general solutions for systems with more than two particles. It is, however, possible to
approximate solutions of these equations of motion using numerical integration methods. A
widely used method for this purpose is the Velocity-Störmer-Verlet algorithm. It is defined
as follows:

r⃗i(t+∆t) = r⃗i(t) + ∆t · v⃗i(t) + (∆t)2
F⃗i(t)

2mi
(2.5)

F⃗i(t+∆t) = −∇U(r⃗i(t+∆t)) (2.6)

v⃗i(t+∆t) = v⃗i(t) + ∆t
F⃗i(t) + F⃗i(t+∆t)

2mi
(2.7)

Here r⃗i(t) is the position, v⃗i(t) is the velocity, F⃗i(t) is the force acting on the i-th particle
at time t. ∆t is the time step size, and mi is the mass of the i-th particle.

2.1.5. Simulation Loop

By using the ideas introduced above, it is possible to simulate the behavior of systems of
particles over time. The general simulation loop for a molecular dynamics simulation can be
divided into the following steps:

Algorithm 1: Molecular Dynamics Simulation Loop (Velocity-Störmer-Verlet)

1 Initialize particle positions and velocities based on initial conditions

2 while simulation time < desired time do
3 Update all particle positions using Equation 2.5

4 Calculate all forces F⃗i(t+∆t) at the new positions using Equation 2.6
5 Update all particle velocities using Equation 2.7

6 Apply external forces or constraints (if any)
7 Increment simulation time

8 end

5

2. Theoretical Background

Many different software packages exist to perform such simulations. Some widely used
examples are LAAMPS2 and GROMACS3. Both attempt to efficiently solve the underlying
N-body problem and provide the user with a high-level interface to specify the parameters
and properties of the simulation.
Different algorithms and implementation possibilities exist to simulate such systems

efficiently. Typically, no single best approach works well for all scenarios and environments,
as the optimal implementation heavily depends on the simulation state and the hardware
used to perform the simulation. LAAMPS and GROMACS use a single (though highly
optimized) implementation, which may result in suboptimal performance for some simulation
states.
In the following section, we will introduce AutoPas, a library designed to address this

issue by automatically switching between different implementations to guarantee optimal
performance.

2.2. AutoPas

AutoPas is an open-source library designed to achieve optimal node-level performance for
short-range particle simulations. On a high level, AutoPas can be seen as a black box
performing arbitrary N-body simulations with short-range particle interactions. However,
AutoPas differentiates itself from other libraries by providing many algorithmic implementa-
tions for the N-body problem, each with different performance and memory usage trade-offs.
AutoPas can automatically switch between these implementations to guarantee optimal
performance throughout the simulation.
Since AutoPas only provides the infrastructure to perform arbitrary N-body simula-

tions, the user is tasked with implementing the actual simulation logic on top of AutoPas.
Fortunately, AutoPas is equipped with some example applications, such as md flexible.
md flexible is a molecular dynamics framework built on top of AutoPas that allows users
to specify and run arbitrary molecular dynamics simulations.

In this thesis, we will primarily focus on the tuning of md flexible simulations, but the
concepts can be easily transferred to other applications built on top of AutoPas.

2.2.1. Autotuning in AutoPas

AutoPas internally alternates between two phases of operation. The first phase is the tuning
phase, where AutoPas tries to find the best configuration of parameters that minimize a
chosen performance metric, such as time or energy usage. This is achieved by trying out
different configurations of parameters and measuring their performance. The configuration
that optimizes the chosen performance metric is then used in the following simulation phase,
assuming that the optimal configuration found in the tuning phase still works well in the
following simulation steps.

As the simulation progresses and the characteristics of the system change, the previously
chosen configuration can drift away from the actual optimal configuration [GSBN21]. To

2https://lammps.sandia.gov/
3https://www.gromacs.org/

6

https://lammps.sandia.gov/
https://www.gromacs.org/

2.2. AutoPas

counteract this, AutoPas periodically alternates between tuning and simulation phases to
ensure that the used configuration remains close to optimal during the entire simulation.

The power of AutoPas comes from its vast amount of tunable parameters and the enormous
search space associated with them. In the following sections, we will discuss all currently
tunable parameters in AutoPas and briefly present the tuning strategies that are available
to efficiently explore the search space.

2.2.2. Tunable Parameters

AutoPas currently provides six tunable parameters, which can mostly4 be combined freely.
A collection of parameters is called a Configuration. Each configuration consists of the
following parameters:

1. Container Options:
The container options are related to the data structure used to store the particles.
The most important categories of data structures in this section are:

a) DirectSum
DirectSum does not use any additional data structures to store the particles.
Instead, it simply holds a list of all particles. Consequently, it needs to rely on
brute-force calculations of the forces between all pairs of particles and requires
O(N2) distance checks in each iteration. This inferior complexity renders it
completely useless for larger simulations.
Generally should not be used except for tiny systems or demonstration pur-
poses. [VBC08]

b) LinkedCells
LinkedCells segments the domain into a regular cell grid and only considers
interactions between particles from neighboring cells. This results in the trade-off
that particles further away are not considered for the force calculation. In practice,
this is not a big issue, as all short-range forces drop off quickly with distance
anyway. LinkedCells also provides a high cache hit rate as particles inside the
same cell can be stored contiguously in memory. Typically, the cell size is chosen
to equal the force cutoff radius rc, meaning each particle only needs to check
interactions between particles inside the 3× 3× 3 cell grid around the current cell.
All other particles are guaranteed to be further away than the cutoff radius rc
and cannot contribute to the acting forces. This reduction in possible interactions
typically results in a complexity of just O(N) distance checks in each iteration,
assuming the particles are spread evenly. However, there is room for improvement
as the constant overhead factor can be pretty high, as most distance checks
performed by LinkedCells still do not contribute to the force calculation when
using rcell = rc. This is caused by many particles inside the 3× 3× 3 cell grid
being still further away than the cutoff radius [GST+19].
However, still generally good for large, homogeneous5 systems.

4There are some exceptions as some choices of parameters are incompatible with each other.
5Homogeneous in this context, the particles are distributed evenly across the domain.

7

2. Theoretical Background

c) VerletLists
VerletLists are another approach to creating neighbor lists for the particles.
Contrary to LinkedCells, VerletLists do not rely on a regular grid but instead
use a spherical region around each particle to determine its relevant neighbors.
The algorithm creates and maintains a list of all particles present in a sphere
within radius rc · s around each particle, where rc is the cutoff radius and s > 1
is the skin factor allowing for a buffer zone around the cutoff radius. By choosing
a suitable buffer zone, such that no fast-moving particle can enter the cutoff
radius unnoticed, it is possible to only recalculate the neighbor list every few
iterations. This method can also result in a complexity of O(N) distance checks
in each iteration and can, depending on the skin size s, achieve a lower constant
overhead factor compared to LinkedCells, as a higher percentage of distance
checks contribute to the force calculation [GST+19]. Ideally, the buffer size
should be as small as possible, resulting in very few unnecessary distance checks.
This, however, means that the neighbor lists need to be updated more frequently,
or the simulation needs to be run at higher temporal precision to prevent particles
from entering or leaving the cutoff radius unnoticed. Finding a good skin factor
s is crucial for the performance of VerletLists.
Generally good for large systems with high particle density.

d) VerletClusterLists
VerletClusterLists differ from regular VerletLists in the way the neighbor lists are
stored. Instead of storing the neighbor list for each particle separately, ncluster

particles are grouped into a so-called cluster, and a single neighbor list is created
for each cluster. This reduces memory overhead as the neighbor list only needs to
be stored once for each cluster. Whenever two clusters are close, all interactions
between the particles in the two clusters are calculated. This also results in a
complexity of O(N) distance checks in each iteration but provides the advantage
of greatly reduced memory usage compared to regular VerletLists.
Generally suitable for large systems with high particle density

Figure 2.1.: Visualization of different container options. Source: Gratl et al. [GSBN21]

2. Load Estimator Options:
The Load Estimator Options relate to how the simulation behaves in a parallelized
setting. As this thesis primarily focuses on tuning single-node performance, we will
not go into detail about these options.

8

2.2. AutoPas

3. Traversal Options:
The Traversal options specify the order in which the particles are visited when cal-
culating the forces between them. Especially in parallelized settings, the traversal
options can significantly impact the simulation’s performance. Different settings can
allow more workers to work simultaneously, with varying synchronization overhead.
Some avaialble traversal options are:

a) Sliced Traversals
Sliced Traversals divide the domain into different slices, each processed by a
different thread. The iteration order inside the slices is ideally chosen so that two
threads are unlikely to work simultaneously on cells sharing common neighbors.
As data races can occur at boundaries, the slices must be synchronized using a
single lock, resulting in only a minor synchronization overhead [GSBN21].

b) Colored Traversal
Colored traversals assign a color to each cell in the container so that no same-
colored cells share a common neighbor. During the traversal, all threads work on
cells of the same color simultaneously, allowing for a high degree of parallelism
without the need for synchronization. Some available colorings are:

• C01
The C01 traversal only uses a single color. This method is embarrassingly
parallel but comes at the cost of being incompatible with the Newton 3
optimization, as there is no way of preventing data races between neighboring
cells. However, it provides perfect parallelism and no overhead.

• C18
The C18 traversal is a more sophisticated way of coloring the domain. The
domain is divided into 18 colors, as depicted in Figure 2.2. It is compatible
with the Newton 3 optimization, as the coloring prevents simultaneous access
to neighboring cells.

• C08
The C08 traversal is similar to the C18 traversal but only uses eight colors.
Due to the fewer colors, fewer passes are needed to complete the traversal,
resulting in a lower synchronization overhead. A high degree of parallelism
can still be achieved and is compatible with the Newton 3 optimization.

Figure 2.2.: Visualization of color-based traversal options. Source: Newcome et al. [NGNB23]

9

2. Theoretical Background

4. Data Layout Options:
The Data Layout Options determine how the particles are stored in memory. The two
possible data layouts are:

a) SoA
The SoA (Structure of Arrays) data layout stores the particles’ properties in
separate arrays. For example, all particles’ x-, y- and z-positions are stored in
separate arrays. This data layout is beneficial for vectorization as the properties
of the particles are stored contiguously in memory and can be loaded into vector
registers using a single instruction. However, the SoA data layout can lead to
inefficient cache utilization as the properties of the same particle are not stored
close to each other in memory.

b) AoS
The AoS (Array of Structures) data layout stores all particle properties in different
structures. This allows for efficient cache utilization when working on particles,
as all properties are close to each other in memory. Loading each particle’s
properties into vector registers is more complicated, as the properties are not
stored contiguously in memory. This can lead to inefficient vectorization of the
force calculations.

5. Newton 3 Options:
The Newton 3 option controls an optimization technique to reduce the number of force
calculations. Newton’s third law states that for every action, there is an equal and
opposite reaction, which means that the magnitude of the force between two particles
is the same, regardless of which particle is the source and which is the target. This
rule can be exploited to reduce the number of force calculations by a factor of 2, as
one particle can apply the negation of its experienced force to the other particle.

a) Newton3 Off
If Newton 3 is turned off, the forces between all pairs of particles are calculated
twice, once for each particle. This results in a constant overhead of factor 2.

b) Newton3 On
If Newton 3 is turned on, the forces between all pairs of particles are calculated
only once. There is no more overhead due to recalculating the forces twice, but
turning on Newton 3 requires additional bookkeeping, especially in multi-threaded
environments. This results in more complicated traversal algorithms.
Generally should be turned on whenever available.

6. Cell Size Factor:
The Cell Size Factor is a parameter that is used to determine the size of the cells
in the LinkedCells container6. If the cell size factor is set to high, many spurious
distance checks are performed, as many particles further away than the cutoff radius
are considered for the force calculation. Therefore, it is beneficial to reduce the cell
size factor. However, the increased overhead of managing more cells can quickly offset
the performance gain, and a trade-off between the two needs to be found.

6The option is also relevant for other containers such as VerletLists as those configurations internally also
build their neighbor lists using a Cell Grid

10

2.2. AutoPas

2.2.3. Tuning Strategies

Tuning strategies are the heart of AutoPas, as they fundamentally guide the tuning phases.
Their goal is to find a good combination of tunable parameters for the current simulation
state without spending too much time exploring the search space.
AutoPas provides a couple of different tuning strategies that are used to explore the

search space of possible configurations. The tuning strategies differ in how they explore the
search space and how they decide which configurations to test next. However, all strategies
follow the same general pattern: They first select a queue of promising configurations to
test. All those configurations are then evaluated for a few iterations in the actual simulation,
and relevant statistics are collected. In between the iterations, the tuning strategy can use
the intermediate performance data to update the configuration queue if desired. After all
worthwhile configurations have been tested, the best-performing configuration is chosen for
the following simulation phase.

The currently available tuning strategies in AutoPas are:

1. Full Search
The Full Search strategy is the default tuning strategy in AutoPas. It selects all
possible combinations for being tested. As all possible configurations are evaluated,
finding the best configuration for the current simulation state is guaranteed. However,
it is typically very costly in terms of time and resources as it has to spend a lot of time
simulating bad parameter combinations. This is a big issue as the number of possible
parameter combinations grows exponentially with the number of parameters, and
many of them potentially perform very poorly. This makes the full search approach
infeasible, especially if more tunable options are added to AutoPas.

2. Random Search
The Random Search strategy is a simple tuning strategy that randomly samples a
given number of configurations from the search space. This approach is faster than the
Full Search strategy as it does not need to test all possible combinations of parameters.
However, it does not guarantee to find the best parameters for the current simulation
state.

3. Predictive Tuning
The Predictive Tuning strategy attempts to extrapolate previous measurements to
predict how the configuration would perform in the current simulation state. It
filters the search space and only keeps configurations predicted to perform reasonably
well. The extrapolations are accomplished using methods such as linear regression or
constructing polynomial functions through the previous measurements.

4. Bayesian Search
Two implementations of Bayesian tuning exist in AutoPas. Those methods apply
Bayesian optimization techniques to predict suitable configurations using performance
evidence from previous measurements.

5. Rule Based Tuning
The Rule Based Tuning strategy uses a set of predefined rules to automatically filter
out configurations that are expected to perform poorly. The rules are built on expert
knowledge and could look like this:

11

2. Theoretical Background

if numParticles < lowNumParticlesThreshold:

[dataLayout="AoS"] >= [dataLayout="SoA"] with same

container, newton3, traversal, loadEstimator;

endif

The rule states that the data layout ”AoS” is generally better than ”SoA” if the
number of particles is below a certain threshold. The rule-based tuning method can
be very effective if the rules are well-designed.

This thesis aims to extend these tuning strategies with a new approach based on Fuzzy
Logic. Conceptually, this new fuzzy logic-based tuning strategy is very similar to the
rule-based tuning strategy as it uses expert knowledge encoded in fuzzy rules to prune the
search space. However, contrary to classical rules, fuzzy logic can deal with imprecise and
uncertain information, which allows it to only partially activate rules depending on the
degree of truth of the condition. All the suggestions can then be combined based on their
degree of activation rather than just following the binary true/false logic. This allows for a
more nuanced approach and allows the tuning strategy to interpolate the effect of many
different rules to choose the best possible configuration, even if there is no direct rule for
this specific case.

2.3. Fuzzy Logic

Fuzzy Logic is a mathematical framework that allows for reasoning under uncertainty. It
is an extension of classical logic and extends the concept of binary truth values (true and
false) to a continuous range of truth values in the interval [0, 1]. Instead of just having true
or false statements, it is now possible for statements to be, for example, 60% true. This
concept is beneficial when modeling human language, as the words tend to be imprecise. For
example, hot can mean different things to different people. For some people, a temperature
above 30° Celsius might be considered hot, while for others, only a temperature above 40°
Celsius might be considered hot. There is no clear boundary between what is considered
hot and what is not, but rather a gradual transition between the two. Fuzzy Logic allows
modeling such gradual transitions by assigning a degree of truth to each statement.

2.3.1. Fuzzy Sets

Mathematically, the concept of Fuzzy Logic is based on Fuzzy Sets. A Fuzzy Set is a
generalization of a classical set where an element can lie somewhere between being a set
member and not being a member. Instead of having a binary membership function that
assigns a value of 1 to elements that are members of the set and 0 to elements that are not,
elements in a fuzzy set have an arbitrary degree of membership in the set. This continuous
membership function extends the binary concepts of {0, 1} to the continuous interval [0, 1].

Formally a fuzzy set Ã over a crisp/classical set X is defined by a membership function

µÃ : X → [0, 1] (2.8)

which assigns each element x ∈ X a degree of membership in the interval [0, 1]. The
classical element-of operator could be written in this style as ∈A: X → {false, true}.

12

2.3. Fuzzy Logic

The shape of the membership function can be chosen freely and depends on the specific
application. However, typical choices involve triangular, gaussian, or sigmoid-shaped func-
tions, depending on whether the value represents an open or closed region. An example of
fuzzy sets for the age of a person is shown in Figure 2.3.

Figure 2.3.: Example of fuzzy sets for the age of a person. Fuzzy sets can be used to model
the gradual transition between age groups. The distributions could be derived
from survey data on how people perceive age groups. In this example, most
people would consider a person middle-aged if they are between 35 and 55.

2.3.2. Fuzzy Logic Operations

As fuzzy Sets are a generalization of classical sets, they also need to support adapted versions
of the classical set operations of union, intersection, and complement. Those operations
need to maintain the semantics of the operation on classical sets and extend them to the
continuous interval [0, 1].

The extension of classical operators to fuzzy sets uses so-called De Morgan Triplets. Such a
triplet (⊤,⊥,¬) consists of a t-norm ⊤ : [0, 1]× [0, 1] → [0, 1], a t-conorm ⊥ : [0, 1]× [0, 1] →
[0, 1] and a strong complement operator ¬ : [0, 1] → [0, 1]. Those operators generalize the
classical logical operators, which are only defined on the binary truth values {true, false} to
continuous values from the continuous interval [0, 1]. ⊤ generalizes the logical AND operator,
⊥ generalizes the logical OR operator, and ¬ generalize the logical NOT operator. Instead
of the binary functions used in classical logic, those new operators are continuous functions
implementing mappings between degrees of truth.
The binary operators ⊤ and ⊥ are often written in infix notation as a ⊤ b and a ⊥ b,

similar to how classical logical operators are written.

For a t-norm ⊤ to be valid, it needs to satisfy the following properties:

a ⊤ b = b ⊤ a (Commutativity)

a ⊤ b ≤ c ⊤ d if a ≤ c and b ≤ d (Monotonicity)

a ⊤ (b ⊤ c) = (a ⊤ b) ⊤ c (Associativity)

a ⊤ 1 = a (Identity Element)

13

2. Theoretical Background

A strong complement operator ¬ needs to satisfy the following properties:

¬0 = 1 (Boundary Conditions)

¬1 = 0 (Boundary Conditions)

¬y ≤ ¬x if x ≤ y (Monotonicity)

¬(¬x) = x (Involution)

The default negation operator in fuzzy logic is ¬x = 1 − x. This negation operator
satisfies all the abovementioned properties and is the most common choice in practice. In
the following sections, we will only consider this standard negation operator.
As in classical logic, the t-conorm ⊥ can be expressed using ⊤ when applying the

generalized De Morgan’s laws. De Morgan’s laws state that a ∨ b = ¬(¬a ∧ ¬b) for
classical logic, which results in ⊥(a, b) = 1−⊤(1− a, 1− b) for fuzzy logic. Consequently,
the properties of the t-conorm can be expressed using the t-norm’s properties and omitted
here for brevity.

Some common choices for t-norms and t-conorms used in practice are shown in Table 2.1.

Name t-norm a⊤b Corresponding t-conorm a⊥b

Min/Max min(a, b) max(a, b)

Algebraic a · b a+ b− a · b
Einstein a·b

2−(a+b−a·b)
a+b
1+a·b

Lukasiewicz max(0, a+ b− 1) min(1, a+ b)

Table 2.1.: Common t-Norms and corresponding t-Conorms concerning the standard negation
operator ¬x = 1− x

With these choices of t-norms, t-conorms, and negation operators, it is possible to define
the classical set operations of union, intersection, and complement for fuzzy sets. We will
only consider the minimum t-norm and maximum t-conorm in the following sections as they
are the most common choices in practice. However, we included a comparison of different
t-norms and their effect on the intersection operation in Figure 2.4.

• Intersection
By expanding the definition of the classical set operation ∩ using its boolean form
x ∈ A ∩ B ⇐⇒ x ∈ A ∧ x ∈ B, we can directly translate this to the fuzzy set
intersection operation using the t-norm ⊤. The resulting membership function is given
by µÃ∩B̃(x) = µÃ(x) ⊤ µB̃(x). Using the minimum t-norm, the intersection of two

fuzzy sets Ã and B̃ is described by the following membership function:

µÃ∩B̃(x) = min(µÃ(x), µB̃(x))

• Union
By expanding the definition of the classical set operation ∪ using its boolean form
x ∈ A ∪ B ⇐⇒ x ∈ A ∨ x ∈ B, we can directly translate this to the fuzzy set
union operation using the t-conorm ⊥. The resulting membership function is given

14

2.3. Fuzzy Logic

by µÃ∪B̃(x) = µÃ(x) ⊥ µB̃(x). Using the maximum t-conorm, the union of two fuzzy

sets Ã and B̃ is described by the following membership function:

µÃ∪B̃(x) = max(µÃ(x), µB̃(x))

• Complement
By again expanding the definition of the classical set operation Ac using its boolean
form x ∈ Ac ⇐⇒ ¬(x ∈ A), we can directly translate this to the fuzzy set
complement operation using the fuzzy negation operator ¬. The resulting membership
function is given by µÃc(x) = ¬µÃ(x). Using the standard negation operator, the

complement of a fuzzy set Ã is described by the following membership function:

µÃc(x) = 1− µÃ(x)

Figure 2.4.: Effect of different t-norms on the intersection of two fuzzy sets Ã (Blue) and B̃
(Orange). Each membership value is calculated as µÃ∩iB̃

(x) = µÃ(x) ⊤i µB̃(x)
for different t-norms ⊤i. We can see that the choice of t-norm significantly
affects the resulting membership function, with the minimum t-norm resulting
in the most generous intersection.

2.3.3. Linguistic Variables

Linguistic variables collect multiple fuzzy sets defined over the same crisp set X into a single
object. This variable then allows us to reason about the possible states of the variable
more naturally. Contrary to their classical counterparts, linguistic variables do not take a
precise numerical value but rather a vaguely defined linguistic term. For example, all fuzzy
sets depicted in Figure 2.3 form the linguistic variable age with the possible values young,
middle-aged, and old. Instead of precisely stating a person’s age using a numerical value,
we can now declare the age of a person to a mixture of those terms, with each term having
a degree of membership in the interval [0, 1]. For example, a person of age 35 would be
considered 20% young, 60% middle-aged, and 0% old.

15

2. Theoretical Background

2.3.4. Fuzzy Logic Rules

Fuzzy Logic Rules are a way to encode expert knowledge into a Fuzzy Logic system. The rules
specify the relationship between the system’s input and output variables. The rules are typi-
cally encoded in a human-readable way and are written as IF antecedent THEN consequent
where both the antecedent and the consequent are fuzzy sets. The antecedent is a condition
that must be satisfied for the rule to be applied, while the consequent is the action taken if
the rule is applied. Since we are not dealing with binary truth values, it is possible that the
antecedent is only partially satisfied, which causes the rule to be only partially activated.
Consequently, the effect of the consequent is also only partially applied.
The antecedent of the rule can be arbitrarily complicated and may consist of multiple

fuzzy sets connected with fuzzy logic operators. The consequent is typically a single fuzzy
but could theoretically also be arbitrarily complicated. For this thesis, we will only consider
rules with a simple assignment as their effect. Therefore, the general form of a fuzzy rule is:

FuzzyRule ::= IF FuzzySet THEN LinguisticVariable = Ã (Rule)

FuzzySet ::= (FuzzySet) (Parentheses)

| FuzzySet AND FuzzySet (Conjunction)

| FuzzySet OR FuzzySet (Disjunction)

| NOT FuzzySet (Negation)

| LinguisticVariable = Ã (Selection)

The boolean operators AND, OR, and NOT represent the fuzzy set operations of intersec-
tion, union, and complement. The selection operator LinguisticVariable = Ã states that we
are interested in the fuzzy set Ã part of the linguistic variable. It is not an assignment but
rather acts as syntactic sugar to make the rules more readable. A typical rule could look
like this:

IF (age = ”young” AND height = ”tall”) THEN fitness = ”good”

This rule states that if the state of the linguistic variable age is ”young” and the state of
the linguistic variable height is ”tall”, then the state of the linguistic variable fitness should
be ”good”. The actual ranges of the fuzzy sets ”young”, ”tall”, and ”good” are defined with
the corresponding membership functions and are not part of the rule itself.

2.3.5. Fuzzy Inference

The inference step can be seen as an extension of the boolean implication operator

IF antecedent THEN consequent ⇐⇒ (antecedent =⇒ consequent)

Instead of deriving the membership function of the implication operator from the t-conorm
and the negation operator as in classical logic, the Mamdani implication is typically used
in fuzzy logic. This particular implication is defined as the minimum t-norm operation
min(a, b). This choice is counterintuitive as it does not mimic its equivalent in classical logic;

16

2.3. Fuzzy Logic

however, in the context of fuzzy systems, it is a preferred choice, as instead of evaluating the
truthiness of the whole implication, it computes the degree to which the consequent should
be activated [BMK96].

Evaluation of Fuzzy Logic Rules

Consider the rule IF (a = Ã AND b = B̃) THEN c = C̃. To calculate the result of this rule,
we perform the following steps:

1. Fuzzification: Obtain the crisp input values (x1, x2, . . . , xn) ∈ XA occurring in the
crisp set of the antecedent and evaluate the degree of membership µi of each fuzzy set
Ãi contained in the antecedent for each fuzzy rule (Here: µÃ(x1) and µB̃(x2)).

2. Rule Activation : Calculate the total degree of activation µ by combining all member-
ship values with the appropriate fuzzy logic operators (Here: µ = min(µÃ(x1), µB̃(x2))).

3. Rule Evaluation: Define a new fuzzy set C̃new = C̃ ↑ µ as the result of the rule
activation, where C̃ is the the consequent and ↑ is the cut operator. The cut operator
is defined as µC̃↑µ(x) = min(µC̃(x), µ) following the Mamdani implication.

4. Aggregation: Combine the resulting fuzzy sets of each rule acting on the same
linguistic variable using the fuzzy union operator (maximum t-conorm). This ensures
all rules are considered when determining the final output.

5. Defuzzification: Calculate the defuzzified value of the fuzzy set C̃new to obtain the
crisp output value.

A visual depiction of these steps is shown in Figure 2.5.

Defuzzification

The final step in a Fuzzy Logic system is the defuzzification step. In this step, the resulting
fuzzy created by the aggregation step is converted back into a crisp, numeric value that can
be used as a concrete output or decision. There are different ways to defuzzify a fuzzy set,
but a common theme is finding a single representative value that maintains certain aspects
of the fuzzy set. In later sections, we will make use of the following two defuzzification
methods:

• Center of Gravity (COG)
The centroid method calculates the x-position of the center of mass of the fuzzy set for
defuzzification. This method tries to find a weighted interpolation of all the activated
fuzzy sets and tries to find an optimal compromise between all the possible terms. The
centroid method is the most common defuzzification method in practice due to its
simplicity and robustness. It considers every activated fuzzy set and thus makes full
use of all available information. It is defined as:

Center of Gravityx =

∫
X x · µC̃(x) dx∫
X µC̃(x) dx

(2.9)

17

2. Theoretical Background

• Mean of Maximum (MOM)
The Mean of Maximum method is simpler than the centroid method and only considers
values, resulting in the highest possible membership value. If multiple such values exist,
the arithmetic mean of those values is returned. Contrary to the centroid method,
there is usually no interpolation between the different fuzzy sets, as they usually have
different degrees of activation. Consequently, the result is often based on a single
linguistic term with the highest membership value. It is defined as follows:

Mean of Maximum =

∫
X′ x dx∫
X′ dx

(2.10)

where X ′ is the set of all x where µC̃(x) is maximal.

Figure 2.5.: Visualization of the full fuzzy logic inference process. The system consists of
three fuzzy rules connecting the linguistic variables service and food to the
linguistic variable tip. Applying each rule yields a resulting fuzzy set (depicted
on the rightmost column for each rule), which is then aggregated using the
fuzzy union operator to form the final output (depicted on the bottom right).
This final fuzzy set is then defuzzified to obtain a crisp output value. Source:
MathWorks - Fuzzy Inference Process

18

https://de.mathworks.com/help/fuzzy/fuzzy-inference-process.html

3. Implementation

This chapter describes the implementation of the Fuzzy Tuning technique in AutoPas. The
implementation is divided into three main parts: the generic Fuzzy Logic Framework, the
Rule Parser, and the Fuzzy Tuning Strategy. The Fuzzy Logic Framework is the core of
this implementation and implements the mathematical foundation of this technique. The
Rule Parser loads the supplied knowledge base from a rule file. Finally, the Fuzzy Tuning
Strategy implements the interface between the Fuzzy Logic Framework and the AutoPas
simulation.

3.1. Fuzzy Logic Framework

The Fuzzy Logic framework implements the mathematical foundation of the Fuzzy Tuning
technique. It consists of several classes:

• Crisp Set
The Crisp Set class models classical sets using k-cells1 in order to represent the universe
of discourse for the fuzzy sets. Therefore, it keeps track of the ranges of the input
variables, which are later used in the defuzzification step. Using k-cells, we can
only model continuous variables with a finite range of values. This is an acceptable
limitation for the current use case in AutoPas, as all relevant parameters either fulfill
this requirement or can be encoded as such (see Subsection 3.3.1). However, there
exist methods to directly use nominal values as described in [RdCC12] or [JPRS06],
but those are not implemented in this work.

• Fuzzy Set
As mentioned previously, fuzzy sets consist of a membership function µ : C → [0, 1],
assigning a degree of membership to each element of the associated Crisp Set C.
For the implementation in C++, we distinguish between two types of membership
functions: The BaseMembershipFunction and the CompositeMembershipFunction.
The BaseMembershipFunction implements membership functions over 1-dimensional
k-cells (1-cells), in particular intervals in the real numbers R. It represents conventional
membership functions and is implemented as a lambda function f : R → [0, 1] that
directly assigns the degree of membership to each input value. Commonly used
examples, such as triangular, trapezoidal, gaussian, and sigmoid-shaped membership
functions, are implemented this way and can be selected by the user via the rule file.

The CompositeMembershipFunction implements membership functions over higher
dimensional k-cells. This distinction is necessary, as we will use a recursive approach
to construct complex fuzzy sets from simpler ones, and those newly constructed fuzzy

1A k-cell is a hyperrectangle in the k-dimensional space constructed from the Cartesian product of k intervals
C = I1 × I2 × . . .× Ik where Ii = [xlow, xhigh] ⊂ R is an interval in the real numbers.

19

3. Implementation

sets should compose their children’s membership functions to calculate their own mem-
bership value, thus requiring a different interface than the BaseMembershipFunction.
The CompositeMembershipFunctions are automatically constructed when applying
logical operations to fuzzy sets. To demonstrate the concept, let us consider the fuzzy
set C̃ = Ã ∩ B̃. This new fuzzy set C̃ is defined over the Crisp Set C = A × B,
where A and B are the Crisp Sets of the fuzzy sets Ã and B̃, respectively. As
explained in previous chapters, the membership function µC̃ : C → [0, 1] can be
calculated as µC̃(x, y) = min(µÃ(x), µB̃(y)), thus recursively making use of the mem-

bership functions of the child fuzzy sets Ã and B̃. The only new information the
CompositeMembershipFunction needs to store is the function that should be used
to combine the membership values of the children. As these membership functions
need to provide multiple arguments to their child fuzzy sets, they are implemented as
lambda functions f : Rk → [0, 1]. Complex fuzzy sets, resulting from logical operations,
are implemented this way. The membership function primarily stores information on
how to combine the membership values of the children (e.g., min, max, 1− ·).
Internally, all fuzzy sets are represented using a tree data structure. The tree’s root
node represents the fuzzy set itself, and every internal node represents a fuzzy set
from a subexpression. In this tree structure, the CompositeMembershipFunctions

act as a link between existing fuzzy sets (the children) and leads to the definition
of a more complex fuzzy set (the parent). The Leaf nodes of a fuzzy set can no
longer be decomposed into simpler fuzzy sets and are consequently defined using the
BaseMembershipFunctions. Figure 3.1 shows a larger example of how complex fuzzy
sets can be constructed from simpler fuzzy sets using this recursive approach. The
Fuzzy Set class also provides methods for defuzzification and combining fuzzy sets
using logical operations.

• Linguistic Variable
Linguistic variables act as simple containers for fuzzy sets. Each Linguistic Variable
has a name (e.g., temperature) and stores linguistic terms, each consisting of a name
(e.g., hot) and a corresponding fuzzy set H̃ describing the distribution of the term.

• Fuzzy Rule
The Fuzzy Rule class stores an antecedent and a consequent fuzzy set (Ã and C̃).
Additionally, the class provides a method to apply the rule, producing a new fuzzy set
C̃new = C̃ ↑ µ consisting of the partially activated fuzzy set C̃ where µ is the degree of
membership of the supplied input values in the antecedent fuzzy set Ã.

• Fuzzy System
The Fuzzy System class combines all the concepts described above to create arbitrary
systems to evaluate a set of fuzzy rules and generate a final, defuzzified output value.
Such a system acts like a black box f : Rn → R mapping crisp input values to crisp
output values. Later sections make use of this class to implement the Fuzzy Tuning
Strategy.

The full implementation at the time of writing can be found in the AutoPas repository at
src/autopas/tuning/tuningStrategy/fuzzyTuning. A simplified class diagram of the Fuzzy
Tuning Strategy and the Fuzzy Logic Framework can be seen in Figure 3.2.

20

https://github.com/AutoPas/AutoPas/tree/f77f10f72c19a86d5471bce287ae3a4ae344c012/src/autopas/tuning/tuningStrategy/fuzzyTuning

3.1. Fuzzy Logic Framework

−5
5

−5

5
0.5

1

x

y

µ

FuzzySet
(x = low ∨ y = big) ∧ ¬(x = high)

min

−5
5

−5

5
0.5

1

x

y

µ

FuzzySet
x = low ∨ y = big

−5 50

1

x

µ

FuzzySet
¬(x = high)

max

1 − ·

−5 50

1

x

µ

FuzzySet
x = low

−5 50

1

y

µ

FuzzySet
y = big

−5 50

1

x

µ

FuzzySet
x = high

ftrapezoid ftrapezoid fgaussian

Figure 3.1.: Recursive construction of a complex fuzzy set from simpler fuzzy sets. Using the
linguistic variables x with the fuzzy sets {low, high} and y with the fuzzy sets
{big, small} we can construct the fuzzy set (x = low ∨ y = big) ∧ ¬(x = high)
by combining simpler fuzzy sets as shown in the figure.
The fuzzy sets at the leaf level can be directly evaluated using predefined
BaseMembershipFunctions (e.g., trapezoid, sigmoid, gaussian . . .) and provide
the foundation for the more complex fuzzy sets All other fuzzy sets are created
by combining existing fuzzy sets using CompositeMembershipFunctions. The
union operator between fuzzy sets corresponds to the max function, the inter-
section operator corresponds to the min function, and the negation operator
corresponds to the 1− · function.

21

3. Implementation

autopas::FuzzyLogic

CrispSet

std::map<std::string, Interval> kCell

CrispSet operator*(CrispSet rhs)

FuzzySet

std::string term
MembershipFunction membershipFunction
double centerOfGravity()
double meanOfMaximum()
double evaluateMembership(Data data)
double defuzzify(Method method)

FuzzySet operator||(FuzzySet lhs, FuzzySet rhs)
FuzzySet operator&&(FuzzySet lhs, FuzzySet rhs)
FuzzySet operator!(FuzzySet fuzzySet)

LinguisticVariable

std::string name
std::map<std::string, FuzzySet> terms

FuzzySet operator==(std::string term)

FuzzyRule

FuzzySet antecedent
FuzzySet consequent

FuzzySet apply(Data data)

FuzzySystem

FuzzyControlSettings settings
std::string outputDomain

void addRule(FuzzyRule rule)
FuzzySet applyRules(Data data)
double predict(Data data)

OutputMapper

std::map<double, Configurations> map

Configurations closestConfigs(double x)

FuzzyTuningStrategy

FuzzyFile parseFuzzyRuleFile(std::string path)
void evaluateSuitability(Configurations &configQueue)
void evaluateIndividual(Configurations &configQueue)
bool needsLiveInfo()
void receiveLiveInfo(LiveInfo value)
void reset(Configurations &configQueue)
void optimizeSuggestions(Configurations &configQueue)

TuningStrategyInterface

1

1

based on

parent 1

children 0..2

1

 *

1

2

1

 *

1

 *

1 *

Figure 3.2.: Simplified class diagram of the Fuzzy Tuning strategy. There is a clear separation
between implementing the Fuzzy Logic Framework and the tuning strategy.
This allows for an easy reuse of the Fuzzy Logic Framework in other parts of
AutoPas if desired.

22

3.2. Rule Parser

3.2. Rule Parser

The Rule Parser is responsible for parsing the knowledge base supplied by the user and
converting it into the internal representation used by the Fuzzy Logic Framework. It is based
on the ANTLR42 parser generator and makes use of a domain-specific language tailored
to the needs of the Fuzzy Tuning. The language is designed to be lightweight and directly
incorporates aspects of AutoPas, such as configurations, into the rule file. All supplied rules
predicting values for the same output variable are grouped to form a single Fuzzy System
responsible for this output variable.
The conversion between the generated parse tree and the internal representation is done by
a visitor pattern that traverses the parse tree generated by ANTLR4 and internally builds
the corresponding object hierarchy. A small example demonstrating the syntax of the rule
file can be seen in Listing 3.1.

Define the settings of the fuzzy systems

FuzzySystemSettings:

defuzzificationMethod: "meanOfMaximum"

interpretOutputAs: "IndividualSystems"

Define linguistic variables and their linguistic terms

FuzzyVariable: domain: "homogeneity" range: (-0.009, 0.1486)

"lower than 0.041": SigmoidFinite (0.0834 , 0.041 , -0.001)

"higher than 0.041": SigmoidFinite (-0.001, 0.041, 0.0834)

FuzzyVariable: domain: "threadCount" range: (-19.938, 48.938)

"lower than 18.0": SigmoidFinite (38.938 , 18.0, -2.938)

"lower than 26.0": SigmoidFinite (46.938 , 26.0, 5.061)

"lower than 8.0": SigmoidFinite (28.938 , 8.0, -12.938)

"higher than 18.0": SigmoidFinite (-2.938, 18.0, 38.938)

"higher than 26.0": SigmoidFinite (5.0617 , 26.0, 46.938)

"higher than 8.0": SigmoidFinite (-12.93, 8.0, 28.938)

FuzzyVariable: domain: "particlesPerCellStdDev" range: (-0.017, 0.072)

"lower than 0.013": SigmoidFinite (0.0639 , 0.038 , 0.012)

"higher than 0.013": SigmoidFinite (0.012 , 0.013 , 0.0639)

FuzzyVariable: domain: "Newton 3" range: (0, 1)

"disabled , enabled": Gaussian (0.3333 , 0.1667)

"enabled": Gaussian (0.6667 , 0.1667)

Define how the output variables should be decoded into configurations of AutoPas

OutputMapping:

"Newton 3":

0.3333 => [newton3 = "disabled"], [newton3 = "enabled"]

0.6667 => [newton3 = "enabled"]

Define rules connecting the input variables to the output variables

if ("threadCount" == "lower than 18.0") && ("threadCount" == "higher than 8.0")

&& ("homogeneity" == "lower than 0.041")

then ("Newton 3" == "enabled")

if ("threadCount" == "higher than 26.0") && ("particlesPerCellStdDev" == "lower than

0.013")

then ("Newton 3" == "disabled , enabled")

Listing 3.1: Demonstration of the domain-specific language used for Fuzzy Tuning

2https://www.antlr.org/

23

3. Implementation

3.3. Fuzzy Tuning Strategy

The Fuzzy Tuning Strategy implements the interface between the Fuzzy Logic framework
and the AutoPas simulation and is responsible for updating the configuration queue of
configurations to be tested next. To achieve this, the strategy evaluates all fuzzy systems
present in the rule file using the LiveInfoData (See A.2) collected by AutoPas. These data
points contain summary statistics about various aspects of the current simulation state, such
as the total number of particles, the average particle density, or the average homogeneity of
the particle distribution. The fuzzy systems should use those values to calculate the results.
Each evaluation of a Fuzzy System yields a single numeric value, which is then passed on
to the OutputMapper object. The OutputMapper is responsible for mapping the continuous
output value of the Fuzzy System to the discrete configuration space of AutoPas.
Internally, the OutputMapper stores an ideal numerical location for each configuration-

pattern3 and always selects the option closest to the predicted value. This method of assigning
discrete values to the output of fuzzy systems is inspired by Mohammed et al.’s [MKEC22]
work on scheduling algorithms, where the authors used a similar approach.

All the configuration patterns predicted by the Fuzzy Systems are then collected and
used to update AutoPas’s configuration queue of configurations to be tested next during the
tuning phase.

Currently, two different approaches using Fuzzy Tuning to predict optimal configurations
are implemented: The Component Tuning Approach and the Suitability Tuning Approach.
Both approaches are described in detail in the following sections.

3.3.1. Component Tuning Approach

The Component Tuning Approach assumes that each tunable parameter can be tuned
independently of the others, making it possible to define a separate Fuzzy System for each
tunable parameter.

All those Fuzzy Systems should then attempt to predict the best value of their parameter
independent of the other parameters. This approach requires the rule file to only define
#Parameters different Fuzzy Systems and a corresponding OutputMapper for each parame-
ter. Creating such rule files is straightforward and could be reasonably created manually by
a domain expert. An obvious drawback of this method is the independence assumption be-
tween the parameters, which might not hold in practice. However, the practical Experiments
carried out in Chapter 5 still show quite good results, even with this simplification.
Another problem of this approach lies in the defuzzification step. As this method relies

on defining a single system for all values of a tunable parameter, we must define a numerical
ranking of all values the parameter could take. Such a ranking is problematic, as most tunable
variables are nominal and thus do not have a natural order (e.g., lc c04, lc c08, vcl c06,
vcl sliced balanced . . .). To circumvent this problem, we chose the MOM defuzzification
method, which selects the mean of all x-values for which the membership function is maximal.

3A configuration-pattern is a tuple of all tunable parameters, where each component of the tuple de-
scribes a set of possible values for this parameter. The wildcard value * allows any possible value.
For example, the configuration-pattern (Container=LinkedCells, Traversal=*, DataLayout=SoA,

Newton3=enabled) matches the specified configuration, regardless of the value of the Traversal pa-
rameter.

24

3.3. Fuzzy Tuning Strategy

When using Gaussian-shaped membership functions for the output values, this method will
always return the mean of the Gaussian with the highest activation4.
After evaluating this ruleset, one ends up with a list of configuration patterns, each

describing a different pattern to which the solution should conform. All those patterns are
then used to filter the configuration queue, excluding every configuration that does not
match all the predicted patterns. Figure 3.3 shows a schematic of how the Fuzzy Tuning
Strategy could be used for the Component Tuning Approach.

LiveInfo ∈ Rd

R
µ

FS Newton3

OutputMapper Newton3Pattern

R
µ

FS DataLayout

OutputMapper DataLayoutPattern

R
µ

FS Traversal

OutputMapper TraversalPattern

R
µ

FS Container

OutputMapper ContainerPattern

Figure 3.3.: Example Visualization of the fuzzy systems for the Component Tuning Approach.
The parameters Container, Traversal, DataLayout, and Newton3 are tuned
independently. The OutputMapper maps the defuzzified output values to their
corresponding configuration patterns. The configuration queue is then updated
with all configurations that match all predicted patterns.

3.3.2. Suitability Tuning Approach

The Suitability Approach mainly differs from the Component Tuning Approach in that it uti-
lizes #Container options·#Traversal options·#DataLayout options·#Newton3 options
different Fuzzy Systems, one for each possible combination of those parameters. Each Fuzzy
System is responsible for predicting the suitability of its configuration.

The advantage of this approach is that there is no need to rank the output values, and one
can utilize the power of Fuzzy Systems to interpolate between different predictions. This
method uses the center of gravity (COG) defuzzification method, as suitability values have a
natural order (higher suitability is better). Furthermore, dependencies and incompatibilities
between the parameters can be modeled accurately, as each way of combining the parameters
is handled with a separate Fuzzy System. The downside of this method is the enormous
complexity of the rule file, which quickly becomes infeasible to maintain by hand. Surprisingly,
the cost of evaluating all those Fuzzy Systems is negligible compared to the overhead of
other tuning strategies, as later experiments in Chapter 5 will show.

After evaluating all Fuzzy Systems and using a trivial OutputMapping, the method yields
a list of (Configuration, Suitability) pairs, which can then be used to update the
configuration queue. The current implementation selects the highest possible suitability
value and then chooses every configuration performing within a certain threshold of the
best configuration. Those configurations are then used to overwrite the configuration queue.

4There are exceptions when two Gaussians have the same level of activation, in which case the mean of
both Gaussians is returned. However, this rarely happens in practice and could be resolved with special
defuzzification methods. The current implementation just uses the MOM method as it works well in
practice.

25

3. Implementation

Figure 3.4 shows how the Fuzzy Tuning Strategy could be used for the Suitability Tuning
Approach.

LiveInfo ∈ Rd

R
µ

FS [Combination15]

OutputMapper Configuration 15

R
µ

FS [Combination14]

OutputMapper Configuration 14

R
µ

FS [Combination13]

OutputMapper Configuration 13

R
µ

FS [Combination12]

OutputMapper Configuration 12

R
µ

FS [Combination11]

OutputMapper Configuration 11

R
µ

FS [Combination10]

OutputMapper Configuration 10

R
µ

FS [Combination9]

OutputMapper Configuration 9

R
µ

FS [Combination8]

OutputMapper Configuration 8

R
µ

FS [Combination7]

OutputMapper Configuration 7

R
µ

FS [Combination6]

OutputMapper Configuration 6

R
µ

FS [Combination5]

OutputMapper Configuration 5

R
µ

FS [Combination4]

OutputMapper Configuration 4

R
µ

FS [Combination3]

OutputMapper Configuration 3

R
µ

FS [Combination2]

OutputMapper Configuration 2

R
µ

FS [Combination1]

OutputMapper Configuration 1

Figure 3.4.: Example Visualization of the fuzzy systems for the Suitability Tuning Approach.
Each fuzzy system is responsible for predicting the suitability of a specific
combination of tunable values, resulting in an enormous amount of fuzzy systems.
The (Configuration, Suitability) pairs are passed to the Fuzzy Tuning
Strategy, which then updates the configuration queue based on the highest
suitability values.

26

4. Proof of Concept

This chapter presents a proof of concept for the fuzzy tuning technique and will develop
working instantiations of the approaches introduced in the previous chapter.

Creating rule bases for fuzzy systems is challenging, as it typically requires a profound
prior understanding of the system to create meaningful rules. In practice, such knowledge
may be difficult to acquire and formalize, as experts may struggle to express their intuition
and experience in the precise, structured form required for a fuzzy rule base. However,
data-driven approaches can help semi-automate this process by generating an initial set of
rules without prior expert knowledge, which can be refined later.
In this work, we will use a data-driven approach based on decision trees proposed by

Crockett et al. [CBMO06]. This method first trains decision trees to create an initial set of
crisp rules. In the second step, the decision trees are converted into so-called fuzzy decision
trees, which can then be used to extract the linguistic variables and fuzzy rules.

4.1. Data Driven Rule Extraction

4.1.1. Decision Trees

Decision trees are prevalent machine learning algorithms used for classification and regression
tasks. They work by recursively partitioning the input using axis-parallel splits so that
the resulting subsets are as pure as possible. In particular, they try to minimize a given
impurity metric, such as the Gini impurity IG =

∑n
i=1 pi(1 − pi) of the subsets [Mur12].

Since decision trees directly partition the input space into regions with different classes, they
can also be depicted using their decision surface if the dimensionality allows it. The decision
surface of a decision tree is a piecewise constant function that assigns the predicted class
label to each point in the input space of the decision tree. An example decision tree and its
decision surface are shown in Figure 4.1a and Figure 4.1b, respectively.

x ≤ 3

y ≤ 2 y ≤ 1

x ≤ 2 x ≤ 1

Class 1 Class 2 Class 2 Class 1 Class 1 Class 3

yes no

yes no

yes no

yes no yes no

(a) Example decision tree

x

y

3

2

21

1

Class 2 Class 1

Class 1 Class 2

Class 3

Class 1

(b) Decision surface over D = [0, 4]× [0, 3]

Figure 4.1.: Example decision tree and its decision surface

27

4. Proof of Concept

4.1.2. Conversion of Decision Trees to Fuzzy Systems

This section will demonstrate how to convert a classical decision tree into a fuzzy decision
system using the fictional decision tree from Figure 4.1a as an example.

Fuzzy Decision Trees

Fuzzy decision trees are a generalization of classical decision trees and allow for fuzzy logic
to be used in the decision-making process. Instead of following the classical if then else

logic to descend into the decision tree, it uses fuzzy sets at each node of the tree to fuzzily
calculate the contribution of each branch to the final decision based on the degree of truth
of both possible paths. Contrary to classical decision trees, which follow a single path from
the root to a leaf node, fuzzy decision trees explore all possible paths simultaneously and
make a final decision by aggregating the results of the paths using fuzzy logic operations.

Conversion

A classical decision tree is converted into a fuzzy decision tree by replacing the crisp decision
(e.g., x ≤ 3) at each internal node of the decision tree with fuzzy sets. Those fuzzy sets
should maintain the same semantics as the crisp decision but should provide a continuous
value in the range [0, 1] specifying the degree of how much each branch should be considered.
Allowing the decision trees to consider multiple paths simultaneously can drastically increase
the decision-making capabilities of the decision tree, especially in boundary cases where the
decision can be ambiguous.
The shape of the membership functions of the fuzzy sets can be chosen arbitrarily, but

typical choices include complementary sigmoid-shaped functions that are centered around
the crisp decision boundary (See Figure 4.2), as those function shapes maintain the semantics
of the branching idea. Crockett et al. [CBMO06] suggested creating those sigmoid shapes
with a width proportional to the standard deviation of the attribute. In Particular, the
authors suggested an interval [t − n · σ, t + n · σ] for the membership function, where t
is the value of the decision boundary, σ is the standard deviation of the attribute and
n is a parameter that can be adjusted to control the width of the membership function.
This interval specifies the region of the membership function where most of the change
in membership occurs. The value of n is typically chosen from the interval n ∈ [0, 5]
as the membership function can become too broad otherwise and could even weaken the
decision-making process [CBMO06]. In this work, we will use n = 2 as a default value.

3

1

x ≤ 3 x > 3

x

µ
Crisp Split: x ≤ 3

3

1

µxsmaller3 µxgreater3

x

µ
Fuzzy Split: x ≤ 3

Figure 4.2.: Conversion of crisp membership functions to fuzzy membership functions. The
crisp membership functions x ≤ 3 and x > 3 of a decision tree node are replaced
by two sigmoid-shaped membership functions µxsmaller3 and µxgreater3.

28

4.1. Data Driven Rule Extraction

Once the internal nodes of the decision tree have been converted, the next step is to
convert the leaf nodes of the decision tree to fuzzy leaf nodes. As the outputs of decision trees
are specific class labels, we can define a single linguistic variable consisting of all possible
class labels each associated with a fuzzy set. The shapes of the membership functions for the
base fuzzy sets can again be chosen mostly arbitrarily, but we will use gaussian functions
with a different mean as they are a good choice for representing class labels in a continuous
domain. The resulting conversion of the decision tree in Figure 4.1a into a fuzzy decision
tree is shown in Figure 4.3.

3

1

µxsmaller3 µxgreater3

x

µ
Fuzzy Split: x ≤ 3

2

1

µysmaller2 µygreater2

y

µ
Fuzzy Split: y ≤ 2

1

1

µysmaller1 µygreater1

y

µ
Fuzzy Split: y ≤ 1

2

1

µxsmaller2 µxgreater2

x

µ
Fuzzy Split: x ≤ 2

1

1

µxsmaller1 µxgreater1

x

µ
Fuzzy Split: x ≤ 1

1

1

class

µ
Class: 1

2

1

class

µ
Class: 2

2

1

class

µ
Class: 2

1

1

class

µ
Class: 1

1

1

class

µ
Class: 1

3

1

class

µ
Class: 3

yes no

yes no

yes no

yes no yes no

Figure 4.3.: The fuzzy decision tree corresponding to the decision tree in Figure 4.1a. Internal
nodes use two sigmoid membership functions (µsmaller and µgreater) instead of
a crisp decision. The leaf nodes use different gaussian membership functions
centered around a unique mean.

It is now possible to fully extract all linguistic variables from the fuzzy decision tree.
Every fuzzy set in the tree can be grouped into a corresponding linguistic variable based on
the input variable of the fuzzy set. This results in linguistic variables consisting of a bunch
of different sigmoid membership functions for input variables (internal nodes) and a single
linguistic variable with different gaussian membership functions for the output variable
(leaf nodes). The resulting linguistic variables are shown in Figure 4.4.

29

4. Proof of Concept

Figure 4.4.: Linguistic variables used in the fuzzy decision tree of Figure 4.3. The standard
deviation of the attributes is assumed to be σ ≈ 0.5 such that the width of
the sigmoid membership functions is n · σ ≈ 1. The standard deviation and
placement of the class values are chosen so that they do not overlap too much.

Rule Extraction

The final step is to extract the fuzzy rules from the tree. This can be done by traversing
and aggregating the tree in a depth-first manner and collecting the correct membership
functions for each path ending in a leaf node along the way. As all conditions of this path
have to hold simultaneously, all fuzzy sets are connected using the fuzzy AND operation. This
newly created fuzzy set represents the antecedent of the rule. The fuzzy set representing the
class (the leaf node) is the consequent of the rule. Therefore, each unique path traversing
the tree results in a unique rule of the form IF antecedent THEN consequent. This process
essentially mimics the decision surface seen in Figure 4.1b, as we create precisely one rule
for each region of the decision surface. The rules extracted from the fuzzy decision tree in
Figure 4.3 using this method are shown in Table 4.1.

Rule Antecedent Consequent

1 x is smaller3 ∧ y is smaller2 ∧ x is smaller2 class is 1
2 x is smaller3 ∧ y is smaller2 ∧ x is greater2 class is 2
3 x is smaller3 ∧ y is greater2 ∧ x is smaller1 class is 2
4 x is smaller3 ∧ y is greater2 ∧ x is greater1 class is 1
5 x is greater3 ∧ y is smaller1 class is 1
6 x is greater3 ∧ y is greater1 class is 3

Table 4.1.: Extracted fuzzy rules from the fuzzy decision tree in Figure 4.3 in the format:
IF Antecedent THEN Consequent

30

4.1. Data Driven Rule Extraction

Effect of an Unsuitable Defuzzification Method

This section briefly discusses the effect of an unsuitable defuzzification method on the
resulting fuzzy system. To show the problem when defuzzifying nominal variables, we use
the previously extracted rules from Table 4.1 and evaluate the resulting Fuzzy Set for a
critical data point (x = 2.95, y = 2.5) using both the Center of Gravity (COG) and the
Mean of Maximum (MOM) defuzzification methods. The resulting fuzzy sets are shown in
Figure 4.5a and Figure 4.5b.

(a) Defuzzification using the COG method. Due
to the interpolation, the COG method incor-
rectly suggests results in a class value close
to 2.0 without it being a prominent class.

(b) Defuzzification using the MOM method. The
MOM method correctly suggests the class
value 1.0 as it is the most prominent class in
the fuzzy set.

Figure 4.5.: Comparison of COG and MOM on data point (x, y) = (2.95, 2.5).

To get a full understanding of this problem, we create the full decision surfaces for both
fuzzy systems shown in Figure 4.6a and Figure 4.6b, respectively. The decision surface using
COG tries to smoothly interpolate between the different classes, which causes interpolation
errors if there are other classes in between. The decision surface using MOM is mostly
valid and closely resembles the decision surface of the crisp decision tree in Figure 4.1b.
Consequently, we should use the MOM method when working with nominal variables.

Interpolation Error

(a) Decision surface when using the COG
method. The highlighted areas show in-
terpolation errors.

(b) Decision surface when using the MOM
method. There are only minor invalid
regions in the decision surface.

Figure 4.6.: Comparison of COG and MOM decision surfaces of the fuzzy rules.

31

4. Proof of Concept

4.2. Fuzzy Systems for md flexible

This section will use the data-driven approach introduced in the previous section to demon-
strate how to generate fuzzy systems for md flexible simulations. The first section will
describe the data collection process needed to train the classic decision trees, and the later
sections will use the obtained data to generate the two different styles of fuzzy systems
introduced in Section 3.3.

4.2.1. Data Collection

Included Scenarios

We chose to include the prominent example scenarios provided by md flexible such as
fallingDrop.yaml, explodingLiquid.yaml and SpinodalDecomposition.yaml as the pri-
mary source of data. Additionally, we included some simulations of uniform cubes with
different densities and particle counts to gather more data about the performance of the
different configurations under lab-like conditions.
All simulations were run on the serial partition of the CoolMUC-2 cluster1 and were

repeated twice to account for fluctuations in performance. Furthermore, every simulation was
repeated with 1, 4, 12, 24, and 28 threads to additionally gather data on how parallelization
affects the ideal configuration.
All the values were collected with the newly created PAUSE SIMULATION DURING TUNING

CMake option to ensure that the simulation state does not change during the tuning phases.
This guarantees a fair comparison of the tested configurations, as all of them are evaluated
under the exact same conditions. To gather the maximal amount of data, we used the
FullSeach tuning strategy, which executes all possible configurations during the tuning
phases.

Collected Parameters

The existing TuningDataLogger and the newly created LiveInfoLogger classes of the
AutoPas framework allow us to collect a wide variety of parameters during the simulation,
such as the used configuration, information about the state of the simulation, and the
measured timing data for each iteration of the simulation.

The complete shape of the collected data can be found in Section A.1 and Section A.2, re-
spectively. We will however only make use of a subset of the available LiveInfo data, as we are
only interested in relative values that do not change when the simulation is scaled up or down
and are therefore primarily interested in: avgParticlesPerCell, maxParticlesPerCell,
homogeneity, maxDensity, particlesPerCellStdDev and threadCount. This focus should
help the fuzzy systems generalize better to unseen data, as they are less likely to overfit the
training data.

Limitations

As the performance of machine learning models may degrade quickly when confronted with
significantly different data than the data they were trained on, it is essential to collect a wide
variety of scenarios to cover as many possible use cases as possible. As we only included a

32

https://github.com/AutoPas/AutoPas/blob/c25dc770f173ff160630d7e58f59b38e277032a1/examples/md-flexible/input/fallingDrop.yaml
https://github.com/AutoPas/AutoPas/blob/c25dc770f173ff160630d7e58f59b38e277032a1/examples/md-flexible/input/explodingLiquid.yaml
https://github.com/AutoPas/AutoPas/blob/c25dc770f173ff160630d7e58f59b38e277032a1/examples/md-flexible/input/SpinodalDecomposition.yaml

4.2. Fuzzy Systems for md flexible

limited number of scenarios, we have to keep in mind that the generated fuzzy systems will
only be able to make confident predictions about scenarios similar to the included ones, and
we should not expect them to generalize well to unseen data. To guarantee a fair evaluation
of this tuning approach, we will only focus on slight variations of the included scenarios
during the later evaluation phase in Chapter 5.

4.2.2. Data Preprocessing

In order to make predictions about the performance of different configurations, we first need to
define an appropriate metric to compare them. As we paused the simulation during the tuning
process with the PAUSE SIMULATION DURING TUNING option, we can safely use the runtimes
of the different configurations to compare them. Those runtimes are, however, absolute
values and may differ significantly between tuning phases as the underlying simulation
changes. To compare runtimes between different tuning phases, we introduce the concept
of relative speed, which measures how well a configuration performs compared to the best
configuration in the same tuning phase, and augment the collected timing data with this
metric. The relative speed is calculated as

relative speed
(i)
config =

t
(i)
best

t
(i)
config

(4.1)

Where t
(i)
best is the runtime of the best configuration during the i-th tuning phase and

t
(i)
config is the runtime of the configuration we are interested in.
This value will range from 0 (being infinitely worse than the best configuration) to 1

(being equally good as the best configuration) for each configuration. Additionally, we chose
to combine the fields Container and DataLayout of the configuration into a single field
ContainerDataLayout as they are closely related and should be tuned together.

Table 4.2 shows the augmented dataset for creating the fuzzy systems. The next sections
sections will describe how this dataset can be used to create fuzzy systems for the so-called
Component Tuning Approach and the Suitability Tuning Approach.

ParticlesPerCell Miscellaneous Configuration

avg max stddev
genity
homo-

density
max-

threads
DataLayout
Container

Traversal Newton3
Speed

Relative

0.905 23 0.0129 0.0354 0.531 1 LinkedCells AoS lc sliced enabled 0.450641

2.201 13 0.0144 0.0861 0.627 24 VerletListsCells AoS vlc sliced disabled 0.594117

0.905 18 0.0136 0.0431 0.319 4 LinkedCells AoS lc sliced c02 enabled 0.454632

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 4.2.: Augmented dataset used for creating the fuzzy systems. The dataset contains all
collected parameters and the relative speed of the configuration compared to the
best configuration in the same tuning phase.

33

4. Proof of Concept

4.2.3. Component Tuning Approach

This approach makes use of three different FuzzySystems, one for each of the tunable
parameters of the simulation (ContainerDataLayout, Traversal, and Newton3). All those
systems should independently predict the best configuration for their respective parameter
based on the current LiveInfoData. Figure 3.3 shows the structure of this approach.

As we only want to create a fuzzy system predicting good-performing configurations, we
naively remove all configurations performing worse than a certain suitability threshold (we
chose 70%) as depicted in Figure 4.7. The remaining configurations, which are known to
perform well, are then used to create the fuzzy systems.

Figure 4.7.: Relative speed distribution of the collected data. The suitability threshold is set
to 70%, thus removing all configurations performing worse than this threshold.
From the plot, we can also see that the average configuration performs just 52%
as well as the best configuration, with some configurations also performing ten
times worse than the best in certain tuning phases.

Afterward, we group all configurations evaluated in the same tuning phase and aggregate
all the present values of tunable parameters into a single term. As we paused the simulation
during the tuning phase, the LiveInfoData will be equal for such configurations, and the
aggregated terms will therefore represent all good values for the parameters in this simulation
state (as they occur in configurations with ≥ 70% suitability). The aggregated training data
is shown in Table 4.3 and is used to fit three decision trees, which are then converted into
fuzzy systems using the method described in the previous section. A few of the extracted
fuzzy rules are shown in Table 4.4.

34

4.2. Fuzzy Systems for md flexible

ParticlesPerCell Miscellaneous Aggregated Configuration Terms

avg max stddev
genity
homo-

density
max-

threads
DataLayout
Container

Traversal Newton3

0.906 15 0.015 0.055 0.297 4
VerletListsCells AoS”

VerletClusterLists SoA,
”LinkedCells SoA,

lc sliced c02”
lc sliced balanced,

”lc sliced,
”enabled”

0.945 25 0.041 0.084 0.673 24
VerletListsCells AoS”

VerletClusterLists SoA,
”LinkedCells SoA,

lc sliced balanced”
lc sliced,
lc c08,
”lc c04,

enabled”
”disabled,

0.906 20 0.014 0.041 0.336 24
VerletListsCells AoS

VerletClusterLists SoA,

vlc c18”
vlc c01,
”vcl c06,

enabled”
”disabled,

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 4.3.: Aggregated training data for the Component Tuning Approach. Each row repre-
sents a different tuning phase. The numerical values stem from the LiveInfoData
during that tuning phase, and the aggregated configuration terms represent the
configuration options that are known to perform well under the given conditions.

Antecedent Consequent
avgParticlesPC homogeneity particlesPCStdDev threadCount ContainerDataLayout

lower than 3.45 lower than 0.05 lower than 18.0
VerletListsCells AoS”

”VerletClusterLists SoA,

lower than 3.45 higher than 0.05 lower than 0.024 higher than 18.0

VerletListsCells AoS”
VerletClusterLists SoA,

”LinkedCells SoA,

...
...

...
...

...

Antecedent Consequent
avgParticlesPC homogeneity particlesPCStdDev threadCount Traversal

lower than 1.553 higher than 0.047 lower than 0.023 higher than 2.5

lc sliced c02”
vlc c18,
”lc sliced,

lower than 0.037 lower than 0.023 lower than 26.0

vlc sliced c02”
vlc c18,
”vcl c06,

...
...

...
...

...

Antecedent Consequent
avgParticlesPC homogeneity particlesPCStdDev threadCount Newton 3

higher than 0.03 higher than 18.0
enabled”
”disabled,

∧ lower than 0.037

higher than 0.023

∧ higher than 8.0

lower than 18.0
”enabled”

...
...

...
...

...

Table 4.4.: Extracted fuzzy rules from the decision trees for the Component Tuning
Approach. The rules are grouped by the tunable parameter they predict.
The first row is read as: IF (avgParticlesPC = ”lower than 3.454”) ∧ (homogeneity =
”lower than 0.05”) ∧ (threadCount = ”lower than 18.0”) THEN (ContainerDataLayout =
”VerletClusterLists SoA, VerletListsCells AoS”)

35

4. Proof of Concept

As described previously, we use gaussian membership functions for each linguistic term
of the consequent linguistic variables. The exact placement of the values is irrelevant as we
will use the MOM defuzzification method, but they should be chosen so that they do not
overlap completely. Figure 4.8a and Figure 4.8b show the resulting linguistic variables for
the homogeneity linguistic variable (an input variable) and the Newton3 linguistic variable
(an output variable). The visualizations of the other variables follow a similar pattern but
are more complex due to the higher number of terms and are therefore not shown here.

(a) Linguistic variable for the Homogeneity attribute

(b) Linguistic variable for the Newton3 attribute

Figure 4.8.: Linguistic variables for Homogeneity and Newton3 attributes. The background
shows the histogram values present in the dataset.

These linguistic variables and fuzzy rules are then used to create the fuzzy systems
for the component tuning approach. After creating a suitable OutputMapper, we con-
struct the final rule file for the component tuning approach, which can be looked up at
fuzzyRulesComponents.frule.

36

https://github.com/AutoPas/AutoPas/blob/f77f10f72c19a86d5471bce287ae3a4ae344c012/examples/md-flexible/input/fuzzyRulesComponents.frule

4.2. Fuzzy Systems for md flexible

4.2.4. Suitability Tuning Approach

The suitability approach differs from the component tuning approach in that it tries to predict
a configuration’s numerical suitability value under the current conditions. Therefore, each
possible configuration is assigned a unique fuzzy system tailored to evaluate the suitability
of its assigned configuration. Figure 3.4 shows the structure of this approach.

To train the decision trees, we again use a classification-based approach with the terms
terrible, poor, bad, medium, ok, good, and excellent each corresponding to specific
ranges of suitability values (see Figure 4.9 for the exact placement). Conveniently, we can
use suitability = relative speed, as the relative speed value already measures how well a
configuration performs.

We create the training data for the decision trees by adding a new column to the aggregated
training data containing the suitability class to which the numeric relative speed value mostly
belongs. The final training data is shown in Table 4.5. After grouping the data by possible
configurations, it is again possible to use these data points to train the decision trees and
extract the fuzzy rules from them. Due to the grouping, each configuration receives a fuzzy
system with rules explicitly tailored to it. Some resulting rules are shown in Table 4.6.

By again constructing corresponding linguistic variables and a suitable OutputMapper,
we can create the final rule file for the suitability approach, which can be looked up at
fuzzyRulesSuitability.frule.

Figure 4.9.: Linguistic variable for the Suitability attribute. The domain between 0%
suitability and 100% suitability is divided into 7 classes: terrible, poor, bad,
medium, ok, good, and excellent. The inner membership functions have a
gaussian shape, while the outer ones have a sigmoid shape to capture the
one-sided nature of those boundaries. The choice to use seven classes was made
somewhat arbitrarily, with the intention to densely cover the range of suitability
values with enough precision.

37

https://github.com/AutoPas/AutoPas/blob/f77f10f72c19a86d5471bce287ae3a4ae344c012/examples/md-flexible/input/fuzzyRulesSuitability.frule

4. Proof of Concept

ParticlesPerCell Miscellaneous Configuration

avg max stddev
genity
homo-

density
max-

threads
DataLayout
Container

Traversal Newton3 Relative speed Suitability

0.905 15 0.012 0.035 0.531 1 LinkedCells AoS lc sliced enabled 0.450 ”bad”

0.944 25 0.012 0.083 0.691 28 VerletClusterLists AoS vcl c06 disabled 0.319 ”poor”

0.944 20 0.012 0.079 0.041 12 LinkedCell SoA vlc sliced enabled 0.989 ”excellent”

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 4.5.: Training data for the Suitability Approach. The dataset contains the LiveInfoData
of the simulation, the current configuration, the relative speed, and the suitability
values of the configuration. Each row represents a different configuration evaluated
in a tuning phase.

Antecedent Consequent

avgParticlesPC homogeneity particlesPCStdDev threadCount
lc c01 disabled
LinkedCells AoS

Suitability

lower than 0.084 higher than 0.029 higher than 26.0 ”medium”

higher than 0.084 higher than 0.029 higher than 26.0 ”bad”

higher than 0.02 lower than 2.5 ”poor”
...

...
...

...
...

Antecedent Consequent

maxParticlesPerCell homogeneity particlesPCStdDev threadCount
lc c04 disabled
LinkedCells AoS

Suitability

higher than 18.5 lower than 0.082 ∧ lower than 26.0

higher than 18.0
”medium”

higher than 18.5 higher than 0.082 ∧ lower than 26.0

higher than 18.0
”bad”

...
...

...
...

......
Table 4.6.: Some extracted fuzzy rules from the decision trees for the Suitability Approach.

The rules are grouped by the configuration they predict. The first row is read
as: IF (homogeneity = lower than 0.084) ∧ (particlesPerCellStdDev = higher than 0.029) ∧
(threadCount = higher than 26.0) THEN (Suitability LinkedCells AoS lc c01 disabled =
”medium”)

38

5. Comparison and Evaluation

In this section, we compare the two developed fuzzy tuning approaches with other tuning
techniques present in AutoPas and evaluate their performance.

To measure the performance of the fuzzy tuning strategy, we use the scenarios present in
md flexible and compare the results with the other tuning strategies of AutoPas. The
benchmarks are run on the CoolMUC-21 cluster and are repeated with 1, 12, 24, and 28
threads. We use the timeSpentCalculatingForces metric to evaluate the performance
of the tuning strategies as it gives a good indication of the overall performance of the
simulation.

5.1. Exploding Liquid Benchmark (Included in Training Data)

The exploding liquid benchmark simulates a high-density liquid that expands outwards as
the simulation progresses. As the data of this scenario was included in the training data, we
expect the fuzzy tuning technique to perform well.

The plot in Figure 5.1a shows the time spent calculating the forces for each tuning strategy
throughout the simulation. We only include the benchmark results using one thread for
brevity, as all thread counts resulted in very similar behavior.

The plot shows that both fuzzy tuning strategies perform close to optimal and show very
stable force calculation times throughout the simulation. All other tuning strategies show a
much higher variance caused by testing significantly more and worse configurations during
the tuning phases.

To show the differences between the strategies in more detail, we also include a boxplot of
the time spent calculating the forces for each tuning strategy based on the current phase
in Figure 5.1b. All tuning strategies show similar timings during the simulation phases,
as they eventually found a close-to-optimal configuration during the tuning phase. The
tuning phases, however, differ drastically: All knowledge-based strategies (Fuzzy Tuning
and Rule-Based Tuning) tend to perform better in tuning phases and evaluate fewer bad
configurations, as the rule files correctly discourage the evaluation of such configurations.
The last plot in Figure 5.1c shows the total time spent calculating the forces for each

tuning strategy, again divided into simulation and tuning time. The fuzzy tuning strategies
have the lowest total time, with practically no time spent in the tuning phases. In contrast,
all other strategies spend about 50% of their total time in the tuning phases.
Both fuzzy tuning approaches perform similarly and are by far the best-performing

strategies, achieving a speedup of tFullSearch
tFuzzy[Components]

= 32.5s
16.6s ≈ 1.96 and tFullSearch

tFuzzy[Suitability]
= 32.5s

20.3s ≈
1.60, respectively.

1CoolMUC-2 is a supercomputer located at the Leibniz Supercomputing Centre in Garching, Germany. It
consists of 812 Haswell-based nodes with 14 cores each. As a result of hyperthreading, each node supports
up to 28 threads. More information can be found at https://doku.lrz.de/coolmuc-2-11484376.html

39

https://doku.lrz.de/coolmuc-2-11484376.html

5. Comparison and Evaluation

The low tuning overhead is the most significant contributor to the performance of the
fuzzy tuning strategies. It is primarily caused by very short and efficient tuning phases,
where only a few good configurations are evaluated. This is in contrast to the other tuning
strategies, which evaluate many bad configurations during the tuning phases, causing a
significant slowdown.

We observe that the suitability approach performs slightly worse during simulation phases
compared to all other strategies, as it failed to find the optimal configuration during the first
tuning phases. In later tuning phases, however, the suitability approach always succeeds in
finding the optimal configuration. Even with this slight error in the suitability approach, it
still performed better than all classical strategies.

5.2. Spinodal Decomposition MPI (Related to Training Data)

The spinodal decomposition benchmark simulates an unstable liquid that separates into two
phases, each having different characteristics. To improve the performance of the simulation,
we used four different MPI ranks, each running on 14 threads to simulate the scenario.

As a full Spinodal Decomposition run with just one rank was included in the training
data, and the scenario is very homogeneous, we expect the fuzzy tuning strategies to also
perform well in the smaller regions handled by the individual MPI ranks, especially as the
rule files only contain relative rules, that should be unaffected by rescaling the scenario.

The plot in Figure 5.2a shows the time spent calculating the forces for each tuning strategy
throughout the simulation. For brevity, we again only include the benchmark results for the
0th MPI rank, as the results for the other MPI ranks are nearly identical. This time, we see
a big difference in both fuzzy tuning strategies, as the component tuning approach performs
way better than the suitability approach throughout most of the simulation.

We see that the suitability approach performed the worst during most simulation phases,
as it never found the true optimal configuration during the tuning phases. This is primarily
caused by the suitability threshold of 10% being too low for this scenario. The low threshold
caused the suitability approach to be overly optimistic in its predictions and resulted in
very few configurations actually being evaluated during the tuning phases. The predicted
configurations were not bad, as shown in Figure 5.2b, but didn’t include the optimal
configuration. Subsection 5.3.2 will investigate the suitability threshold’s effect on the
simulation’s performance in more detail.
Figure 5.2 shows that the component tuning approach again performs best, with a

speedup of tFullSearch
tFuzzy[Components]

= 2236.1s
1650.3s ≈ 1.35. Surprisingly, the suitability approach performed

reasonably well despite never finding the optimal configuration, mainly due to basically no
time wasted during the tuning phases. In particular it achieves a speedup of tFullSearch

tFuzzy[Suitability]
=

2236.1s
1846.1s ≈ 1.21 which places it on the third place. This shows the importance of efficient
tuning phases, as they can cause tremendous overhead if not done correctly.

40

5.2. Spinodal Decomposition MPI (Related to Training Data)

(a)

(b)

(c)

Figure 5.1.: Exploding Liquid benchmark with 1 thread. (a) Time spent calculating forces
for every iteration. (b) Boxplots of time spent calculating forces divided into
tuning- and simulation phases. (c) Total time spent calculating forces for tuning-
and simulation phases. The Suitability approach uses a non-optimal threshold
of 10% (see Subsection 5.3.2).

41

5. Comparison and Evaluation

(a)

(b)

(c)

Figure 5.2.: 0th Rank of the Spinodal decomposition benchmark (Total: 4 MPI ranks, 14
threads each). (a) Time spent calculating forces for every iteration. (b) Boxplots
of time spent calculating forces divided into tuning- and simulation phases. (c)
Total time spent calculating forces for tuning- and simulation phases. The
suitability approach uses a non-optimal threshold of 10% (see Subsection 5.3.2).

42

5.3. Further Analysis

5.3. Further Analysis

5.3.1. Quality of Predictions During Tuning Phases

As described above, a tremendous slowdown of the classical tuning strategies is caused by
very bad configurations encountered during the tuning phases. To further illustrate this, we
will investigate the speedup density distribution of all configurations evaluated during the
tuning phases of the different strategies. In particular, we will look at the Exploding Liquid
and Spinodal Decomposition MPI scenarios introduced above.

The plots in Figure 5.3 show the relative speed distributions of all configurations evaluated
during the tuning phases.
All classical tuning strategies tend to encounter configurations with extremely low rela-

tive speed during the tuning phases. In the exploding-liquid benchmark, some evaluated
configurations are up to 10 times slower than the winning configurations, while we observe
iterations up to 100 times slower in the Spinodal Decomposition MPI scenario.
The component tuning approach also encounters such bad configurations, but they are

less frequent than in the classical tuning strategies and, therefore, do not significantly impact
the overall performance.
The suitability approach performs very well in both scenarios, predicting configurations

with the highest median relative speed. However, the high relative speed of the suitability
approach could also be caused by the low suitability threshold of 10%, which resulted in the
strategy only predicting very few semi-good configurations. As mentioned previously, we
will investigate the impact of the suitability threshold in more detail in Subsection 5.3.2.

Potential Improvement: Early Stopping of Bad Configurations

As most tuning strategies are plagued by evaluating extremely bad configurations during
the tuning phases, it would be highly beneficial to AutoPas if such configurations could be
detected during their evaluation and discarded early. Such an improvement could drastically
benefit every tuning strategy by significantly reducing the time spent in the tuning phases
while still finding the same optimal configuration.

A simple strategy could be aborting a configuration’s evaluation if it performs worse than
the current best configuration by a particular factor. Additionally, evaluating a configuration
can be stopped if it performs worse than the configuration used in the prior simulation
phase.

43

5. Comparison and Evaluation

(a) Tuning phases of the Exploding Liquid scenario with one thread.

(b) Tuning phases of rank 0 of the Spinodal Decomposition MPI scenario with 14 threads.

Figure 5.3.: The plot shows the relative speed distribution of all configurations evaluated
during the tuning phases of both the Exploding Liquid and Spinodal Decompo-
sition MPI scenarios calculated from the smoothed timings (see Section A.1).
The fuzzy tuning strategies generally encounter better configurations during
the tuning phases, which improves their total performance, as less time is spent
evaluating bad configurations.

44

5.3. Further Analysis

5.3.2. Optimal Suitability Threshold

In previous measurements, the Component tuning approach performed better than the
Suitability tuning approach, mainly due to the suitability approach not finding the optimal
configuration during the tuning phases (see Figure 5.2a).

The previous benchmarks were executed with a rule file specifying that only the top 10%
of configurations with the highest suitability should be selected, which may have been too
low, causing a high chance of not finding the globally optimal configuration.

To investigate this issue, we reran the Exploding Liquid benchmark with different suitability
thresholds each time, measuring the total runtimes as shown in Figure 5.4.

From the figure, we observe that very low thresholds perform poorly, as they select too few
configurations to be evaluated in the tuning phases, resulting in a high chance of not finding
the optimal configuration. Very high thresholds also perform poorly, as high suitability
values cause the strategy to behave like FullSeach, selecting nearly all configurations to be
evaluated.
The optimal suitability threshold for this scenario lies between 20% and 40%, which

guarantees that the best configuration is selected for the tuning phases while still keeping
the total number of evaluated configurations low. Following this observation, we updated
the default value of the rule file of the suitability approach to 30%. This change should
improve the suitability approach’s performance in future benchmarks.

Figure 5.4.: Exploding liquid benchmark with different suitability thresholds. The fastest
runtimes are achieved with a threshold between 20% and 40%. The time spent
calculating forces during tuning phases increases with higher thresholds as the
strategy converges towards the behavior of FullSearch.

45

5. Comparison and Evaluation

5.3.3. Generalization of Rule Extraction Process

Previous measurements of the Exploding Liquid and the Spinodal Decomposition MPI
benchmark showed that the fuzzy tuning strategies perform well. However, all previously
tested scenarios were in some way included in the training data, which could have biased
the results in favor of the fuzzy tuning strategies.

To investigate the generalization of the rule extraction process, we reran the rule extraction
process without the Exploding Liquid scenario being present in the training data.
To test the resulting impact, we reran the Exploding Liquid benchmark with the new

holdout-rule files to see if the fuzzy tuning strategies can still perform well even without the
scenario being directly included in the training data.
The results in Figure 5.5 show that the fuzzy tuning strategies still perform remarkably

well, with comparable performance to the previous measurements.
The remaining training scenarios provided enough general tuning information to still allow

the fuzzy tuning strategies to extrapolate the optimal configuration for the Exploding Liquid
scenario.
Therefore, we conclude that the rule extraction process is reasonably robust, and the

extracted rules can be generalized to similar scenarios, even if they were not included in the
training data.

Figure 5.5.: Total time spent calculating forces for tuning- and simulation phases for the
Exploding Liquid benchmark without the scenario being included in the training
data. The fuzzy tuning strategies still perform best, and the timings are
comparable to those of the previous measurements.

46

6. Future Work

In this chapter, we discuss some of the possible improvements that could be made to the
current system to improve its performance and usability.

6.1. Dynamic Rule Generation

The current rule extraction process is static and requires a pre-collected dataset of selected
scenarios. This is an obvious limitation, as users cannot be expected to collect a dataset of
scenarios prior to using the library. Another issue is that the generated rules can only be
expected to perform well in scenarios similar to the ones in the dataset, preventing the rules
from being shared between vastly different use cases.

One could look into ways of adaptively updating the expert knowledge as new scenarios are
encountered. This could be done by spending extra time during the simulation to evaluate
the performance data of recently or additionally executed configurations and updating the
expert knowledge on the fly.

6.2. Improving Tuning Strategies

As previously discussed in subsubsection 5.3.1, all current tuning strategies suffer from
evaluating extremely bad configurations during the tuning phases. Especially for strategies
without knowledge bases, this is a significant issue and causes enormous tuning overhead
that could be avoided. Implementing an early stopping mechanism could drastically improve
all tuning strategies and thus benefit the core idea of AutoPas.

6.3. Simplification of the Fuzzy System to Decision Trees

As the current way of generating the Fuzzy Systems with the data-driven approach already
makes use of Decision Trees, one could look into ways of directly using Decision Trees to
perform the tuning.

The current implementation of the Component Tuning approach is already quite close to
a Decision Tree approach as it uses the MOM defuzzification. Since this approach showed
promising results, it is possible that the Fuzzy Tuning approach could be simplified to a
Decision Tree approach without losing much performance. This would make the tuning
process more transparent and easier for users to understand, as the complexity introduced
by fuzzy sets and membership functions could be avoided.

To test this hypothesis using the current system, one could change membership functions
to crisp splits as originally depicted in Figure 4.2 and rerun the benchmarks to see if the
performance is still comparable. Such a rule file would emulate (Crisp) Decision Trees,
following the same rules but without the fuzziness.

47

7. Conclusion

This thesis introduced a novel fuzzy logic-based tuning strategy for AutoPas and implemented
a generic Fuzzy Tuning Library into the AutoPas framework, providing a reusable foundation
for future research projects.

A key contribution was the development of a data-driven approach to automatically generate
competitive fuzzy systems, enabling the tuning of complex systems without extensive prior
knowledge. The results demonstrated that the proposed Fuzzy Tuning Strategy significantly
outperformed existing tuning strategies on selected benchmarks, substantially reducing the
total simulation runtime by up to a factor of 1.96.

While the fuzzy tuning strategy and the data-driven rule generation process showed promise,
they are not universal solutions, as considerable upfront effort is necessary to collect the
data to generate the rule base. Since such a workload cannot be expected from typical users
of AutoPas, future research is needed to streamline the data collection and rule generation
process to make the fuzzy tuning strategy more accessible to a broader audience.

In conclusion, the Fuzzy Tuning Strategy and the data-driven rule generation process
represent a significant step forward in tuning AutoPas simulations and offer a solid foundation
for future research. While challenges remain in making it more accessible and broadly
applicable, the potential for substantial performance gains makes this an exciting area for
continued investigation and refinement.

48

A. Appendix

A.1. TuningDataLogger Fields

The following fields are currently available in the TuningData file. The TuningData file is a
CSV file containing the performance information and configuration parameters during the
tuning phases. This data is used to guide the data-driven rule generation process for the
Fuzzy Tuning Strategy. The data is collected and logged by the TuningDataLogger class of
the AutoPas library.

Date The date and time when the data was collected.

Iteration The current iteration number of the simulation.

Container The type of container used to store the particles in the simulation
(e.g., LinkedCells, VerletLists).

CellSizeFactor A factor that determines the size of the cells relative to the cutoff
radius.

Traversal The method used to traverse the cells and calculate interactions
between particles.

Load Estimator The strategy used to estimate and balance the computational load
across different parts of the simulation domain.

Data Layout The arrangement of particle data in memory (e.g., AoS for Array of
Structures, SoA for Structure of Arrays).

Newton 3 Indicates whether Newton’s third law optimization is used to reduce
computational effort (enabled/disabled).

Reduced The reduced performance data for configuration is calculated by
aggregating its timing data across all its evaluated iterations. The
specific aggregation method can be configured via the .yaml config-
uration file.

Smoothed A smoothed version of the reduced performance data.

A.2. LiveInfoLogger Fields

The following fields are currently available in the LiveInfoData file. The LiveInfoData file is
a CSV file containing summary statistics about the simulation state at each iteration. In
the current implementation, this data is the only source of information for the Fuzzy Tuning

49

A. Appendix

Strategy to make decisions during the simulation. The data is collected and logged by the
LiveInfoLogger class of the AutoPas library.

Iteration The current iteration number of the simulation.

avgParticlesPerCell The average number of particles per cell in the simulation domain.

cutoff The cutoff radius for the interaction of particles, beyond which
particles do not interact.

domainSizeX The size of the simulation domain in the X dimension.

domainSizeY The size of the simulation domain in the Y dimension.

domainSizeZ The size of the simulation domain in the Z dimension.

estimatedNumNeigh-
borInteractions

The estimated number of neighbor interactions between all particles
in the simulation domain.

homogeneity A measure of the distribution uniformity of particles across the cells.

maxDensity The maximum density of particles in any cell.

maxParticlesPerCell The maximum number of particles found in any single cell.

minParticlesPerCell The minimum number of particles found in any single cell.

numCells The total number of cells in the simulation domain.

numEmptyCells The number of cells that contain no particles.

numHaloParticles The number of particles in the halo region (boundary region) of the
simulation domain.

numParticles The total number of particles in the simulation domain.

particleSize The number of bytes used to store a single particle in memory.

particleSizeNeeded-
ByFunctor

The particle size required by the functor (the function used for
calculating interactions).

particlesPerBlurred-
CellStdDev

The standard deviation of the number of particles per blurred cell
provides a measure of particle distribution variability.

particlesPerCellStd-
Dev

The standard deviation of the number of particles per cell, indicating
the variability in particle distribution.

rebuildFrequency The frequency at which the neighbor list is rebuilt.

skin The skin width is added to the cutoff radius to create a buffer zone
for neighbor lists, ensuring efficient interaction calculations.

threadCount The number of threads used for parallel processing in the simulation.

50

A.3. Density Plots of Relative Speed present in the Dataset

A.3. Density Plots of Relative Speed present in the Dataset

To investigate the collected data, we performed some exploratory data analysis to identify
patterns and trends in the dataset. We created density plots to visualize the distribution of
the relative speed based on different configuration options.

(a) Distribution of the relative speed based on the Newton 3 option. We can see that enabling
Newton3 is generally the better option, allowing for higher relative speeds. Therefore, we can
confirm that Newton 3 is generally a good option to enable.

(b) Distribution of the relative speed based on the Traversal option. The vlc sliced balanced option
generally performed better than the other options with an expected relative speed of 66%.

(c) Distribution of the relative speed based on the ContainerDatalayout option. The VerletList-
Cells AoS ContainerDatalayout performed best with an expected relative speed of 68.8%.

Figure A.1.: Density plots showing the relative speed distribution based on different configu-
ration options for the collected dataset.

51

List of Figures

1.1. MD simulation of the HIV-1 capsid . 1
1.2. MD simulation of shear band formation around a precipitate in metallic glass 1

2.1. Visualization of different container options in AutoPas. 8
2.2. Visualization of different color-based traversal options in AutoPas. 9
2.3. Example of fuzzy sets for the age of a person. 13
2.4. Effect of different t-norms on the intersection of two fuzzy sets 15
2.5. Visualization of the full fuzzy logic inference process. 18

3.1. Recursive construction of a complex fuzzy set from simpler fuzzy sets. . . . 21
3.2. Class diagram of the Fuzzy Tuning Strategy 22
3.3. Visualization of the fuzzy systems for the Component Tuning Approach . . 25
3.4. Visualization of the fuzzy systems for the Suitability Tuning Approach . . . 26

4.1. Example decision tree and its decision surface 27
4.2. Conversion of crisp tree node into fuzzy tree node 28
4.3. Fuzzy decision tree created from the regular decision tree 29
4.4. Linguistic variables for the converted fuzzy decision tree 30
4.5. Comparison of COG and MOM on data point (x, y) = (2.95, 2.5). 31
4.6. Comparison of COG and MOM decision surfaces of the fuzzy rules. 31
4.7. Relative speed distribution of the collected data 34
4.8. Linguistic variables for Homogeneity and Newton3 attributes. The background

shows the histogram values present in the dataset. 36
4.9. Linguistic variable for the Suitability attribute 37

5.1. Benchmark Results for the Exploding Liquid Scenario 41
5.2. Benchmark Results for the Spinodal Decomposition MPI Scenario 42
5.3. Relative speed distribution of configurations evaluated during tuning phases 44
5.4. Impact of the suitability threshold on the simulation performance 45
5.5. Benchmark Results for the Exploding Liquid Scenario (Holdout) 46

A.1. Speedup density plots based on different configuration options 51

52

List of Tables

2.1. Commonly used t-norms and t-conorms in Fuzzy Logic 14

4.1. Extracted fuzzy rules from the example fuzzy decision tree 30
4.2. Augmented dataset used for creating the fuzzy systems in md flexible . . 33
4.3. Aggregated training data for the Component Tuning Approach 35
4.4. Selected fuzzy rules for the Component Tuning Approach 35
4.5. Prepared training data for the Suitability Approach 38
4.6. Selected fuzzy rules for the Suitability Approach 38

53

Bibliography

[BMK96] Bernadette Bouchon-Meunier and Vladik Kreinovich. Axiomatic description of
implication leads to a classical formula with logical modifiers: (in particular,
mamdani’s choice of ”and” as implication is not so weird after all). 1996.

[BPR+16] Tobias Brink, Martin Peterlechner, Harald Rösner, Karsten Albe, and Gerhard
Wilde. Influence of crystalline nanoprecipitates on shear-band propagation in
cu-zr-based metallic glasses. Phys. Rev. Appl., 5:054005, May 2016.

[CBMO06] Keeley Crockett, Zuhair Bandar, David Mclean, and James O’Shea. On
constructing a fuzzy inference framework using crisp decision trees. Fuzzy Sets
and Systems, 157(21):2809–2832, 2006.

[Che] Chemie.de. Lennard-jones-potential. https://www.chemie.de/lexikon/

Lennard-Jones-Potential.html. Accessed: 2024-07-07.

[GSBN21] Fabio Alexander Gratl, Steffen Seckler, Hans-Joachim Bungartz, and Philipp
Neumann. N ways to simulate short-range particle systems: Automated al-
gorithm selection with the node-level library autopas. Computer Physics
Communications, 273:108262, 2021.

[GST+19] Fabio Alexander Gratl, Steffen Seckler, Nikola Tchipev, Hans-Joachim Bungartz,
and Philipp Neumann. Autopas: Auto-tuning for particle simulations. In 2019
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 748–757, 2019.

[Iri21] Karl Irikura. Physics-guided curve fitting for potential-energy functions of
diatomic molecules. Authorea, April 2021.

[JPRS06] E. Jodoin, C.A. Pena Reyes, and E. Sanchez. A method for the fuzzification of
categorical variables. In 2006 IEEE International Conference on Fuzzy Systems,
pages 831–838, 2006.

[LM15] Benedict Leimkuhler and Charles Matthews. Molecular Dynamics: With
Deterministic and Stochastic Numerical Methods. Interdisciplinary Applied
Mathematics. Springer, May 2015.

[MAMM20] C Y Maghfiroh, A Arkundato, Misto, and W Maulina. Parameters (sigma,
epsilon) of lennard-jones for fe, ni, pb for potential and cr based on melting
point values using the molecular dynamics method of the lammps program.
Journal of Physics: Conference Series, 1491(1):012022, October 2020.

54

https://www.chemie.de/lexikon/Lennard-Jones-Potential.html
https://www.chemie.de/lexikon/Lennard-Jones-Potential.html

Bibliography

[MKEC22] Ali Mohammed, Jonas H. Müller Korndörfer, Ahmed Eleliemy, and Florina M.
Ciorba. Automated scheduling algorithm selection and chunk parameter cal-
culation in openmp. IEEE Transactions on Parallel and Distributed Systems,
33(12):4383–4394, 2022.

[Mur12] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012.

[NGNB23] Samuel James Newcome, Fabio Alexander Gratl, Philipp Neumann, and Hans-
Joachim Bungartz. Towards auto-tuning multi-site molecular dynamics sim-
ulations with autopas. Journal of Computational and Applied Mathematics,
433:115278, 2023.

[Phy] Nexus Physics. The lennard-jones potential. https://www.compadre.org/

nexusph/course/The_Lennard-Jones_Potential. Accessed: 2024-07-07.

[PS17] Juan R. Perilla and Klaus Schulten. Physical properties of the hiv-1 capsid from
all-atom molecular dynamics simulations. Nature Communications, 8(1):15959,
2017.

[RdCC12] Pilar Rey-del Castillo and Jesús Cardeñosa. Fuzzy min-max neural networks
for categorical data: application to missing data imputation. Neural Computing
and Applications, 21(7):1349–1362, 2012.

[VBC08] G. Viccione, V. Bovolin, and E. Pugliese Carratelli. Defining and optimizing
algorithms for neighbouring particle identification in sph fluid simulations.
International Journal for Numerical Methods in Fluids, 58(6):625–638, 2008.

[ZBB+13] Franck Zielinski, Pierre Baudin, Gérard Baudin, Pierre Baudin, and Gérard
Baudin. Quantum states of atoms and molecules. Chemical Education Digital
Library, 1(1):1–10, 2013.

55

https://www.compadre.org/nexusph/course/The_Lennard-Jones_Potential
https://www.compadre.org/nexusph/course/The_Lennard-Jones_Potential

	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Theoretical Background
	Molecular Dynamics
	Quantum Mechanical Background
	Classical Molecular Dynamics
	Potential Energy Function
	Numerical Integration
	Simulation Loop

	AutoPas
	Autotuning in AutoPas
	Tunable Parameters
	Tuning Strategies

	Fuzzy Logic
	Fuzzy Sets
	Fuzzy Logic Operations
	Linguistic Variables
	Fuzzy Logic Rules
	Fuzzy Inference

	Implementation
	Fuzzy Logic Framework
	Rule Parser
	Fuzzy Tuning Strategy
	Component Tuning Approach
	Suitability Tuning Approach

	Proof of Concept
	Data Driven Rule Extraction
	Decision Trees
	Conversion of Decision Trees to Fuzzy Systems

	Fuzzy Systems for md_flexible
	Data Collection
	Data Preprocessing
	Component Tuning Approach
	Suitability Tuning Approach

	Comparison and Evaluation
	Exploding Liquid Benchmark (Included in Training Data)
	Spinodal Decomposition MPI (Related to Training Data)
	Further Analysis
	Quality of Predictions During Tuning Phases
	Optimal Suitability Threshold
	Generalization of Rule Extraction Process

	Future Work
	Dynamic Rule Generation
	Improving Tuning Strategies
	Simplification of the Fuzzy System to Decision Trees

	Conclusion
	Appendix
	TuningDataLogger Fields
	LiveInfoLogger Fields
	Density Plots of Relative Speed present in the Dataset

	Bibliography

