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Abstract: Vision-based construction monitoring methods have improved on-site transparency. How-
ever, many point cloud-based techniques are complex and often involve an image-dependent recon-
struction step, making them prone to uncertainties. Additionally, few address productivity insights at
the construction activity level. This paper presents a novel computer vision approach for automating
construction progress monitoring, extracting information directly from image data enhanced through
as-built details. A PIDNet Semantic segmentation model was trained to identify cast-in-place concrete
walls, columns, and slabs during panel, rebar, and concrete phases. The detected components
were processed using averaging techniques to monitor element-specific progress. The resulting data
was integrated with as-built models through geometric projections, forming the basis for a digital
twin construction. Our method was deployed on two-month construction data, providing detailed
progress information and demonstrating its robustness. Compared to previous methods, this approach
effectively merges existing as-built models with comprehensive as-performed image data.
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1 Introduction
There have been few increases in productivity and digitization during the last decades in the construc-
tion sector despite the recent developments towards Industry 4.0 [1]. Specifically, project management
and progress monitoring are often carried out manually, comparing the status of building elements
against a construction schedule. This tedious and error-prone process results in frequent cost and
time overruns [2]. Novel approaches towards site monitoring need to be developed that aim at the
digital twin idea [3] supporting management in everyday construction projects.
However, recent approaches lack monitoring functionalities for cast-in-place concrete elements (e.g.
columns, walls and slabs) [4]. The authors aim to close this gap by providing a new approach
for semantic segmentation based progress data collection on these elements’ panel, rebar, and
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concrete phases. The potential of our approach is highlighted by demonstrating improved workflows
for extracting and coupling element-specific progress data with a BIM model.

2 Related Work
The monitoring approach proposed by this paper relies on automating the visual understanding of
construction environments with the help of 2D semantic segmentation. This computer vision discipline
allows the detection of specific objects in images by partitioning them into multiple segments with
matching characteristics and assigning a categorical label from a predefined set of classes to each one.
Convolutional Neural Networks (CNNs) use learnable convolutional kernels to efficiently process image
data and perform this task autonomously [5]. However, as most models retain the problem of generality,
curated datasets with annotated ground truths tailored to the specific research problem are required
for training.
Many applications of computer vision and digital twinning pose significant benefits to the construction
sector. In this context, a digital twin is a virtual replica of a building that uses real-time data to
simulate, monitor, and optimize the performance of the structure throughout its lifecycle [6]. Computer
Vision techniques are used to evaluate productivity and progress monitoring on an activity-level in
construction operations [7] or in smaller areas of application like crack detection in reinforced concrete
structures [8].
Progress monitoring is fundamental for digital twins in construction by extending as-planned data
with as-performed data [3]. To fully leverage the digital twin construction, it’s essential to gather and
organize vast data for various assessments [6]. Pfitzner, Braun, and Borrmann [9], for example, enable
extracting precise construction metrics through knowledge graph-based methods. Despite extensive
research in vision-based construction monitoring, significant gaps remain. Existing work, such as
that described in [10], primarily focuses on tracking single elements like pre-cast walls, which limits
the scope of progress monitoring. Expanding existing datasets to include additional elements like
slabs and pillars could provide a more comprehensive understanding of the construction process.
Moreover, approaches as demonstrated by [8] are limited by uncertainties in unordered photographs,
which can be mitigated through advanced averaging algorithms to enhance data reliability. Additionally,
while [7] demonstrates detailed activity-level monitoring, it involves complex processing steps limiting
reproducibility. Therefore, there is a need for a more efficient and accurate approach that can expand
the range of elements monitored, enhance tracking precision, and simplify the monitoring process.
This study aims to enhance vision-based techniques for monitoring construction progress by ad-
dressing existing limitations. Specifically, it focuses on expanding the scope of monitored elements,
enabling in-depth progress tracking, and streamlining the overall monitoring process. By leveraging
state-of-the-art semantic segmentation networks, the proposed method intends to reduce the time
and effort required for effective monitoring while maintaining the accuracy and comprehensiveness of
the tracking.
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3 Method
Our approach provides a semantic segmentation-based pipeline towards automating construction
progress monitoring by detecting element-specific construction progress timestamps. The generated
information is coupled with an as-built model.

Figure 1: Method overview

Pretrained semantic segmentation models [11] are used to generate predictions from the site images.
Our work focuses on cast-in-place slabs, walls and columns. The detected classes include three
different construction stages: panel, rebar and concrete.
Figure 1 shows the proposed pipeline: In the first step, crane-mounted cameras with a fixed viewpoint
capture a continuous stream of site images. These images are then processed by the semantic
segmentation model PIDNet [12]. Finally, element-wise construction progress is extracted from the
resulting prediction files.
The integration of the as-built data is done as follows: First, the elements’ geometry is extracted
from the BIM model and then plotted element-wise in a top-down perspective. These geometries are
then represented in a simplified, top-down view image where each element’s ground floor area is
highlighted in red against a black background, as illustrated Fig. 1. The orientation of each element is
aligned with the actual building directions using rotation based on the as-built model. To match the
camera’s percepective, the as-built representations are converted using perspective transformation.
Per building floor and camera, a transformation matrix is computed using a direct linear transformation
algorithm [13] and point picking. The resulting matrix is applied to each pixel of an element’s as-built
representation. A vector computation determining the elements’ heights was applied to overcome
the 2D limitation of the perspective transformation approach. A vanishing point, predefined on two
parallel lines, determines the z-direction of a building component. The element height extracted from
the as-built representation and the vector computation is converted into pixels and projected onto
the image. The element-wise as-built representations are ultimately passed back to the progress
monitoring pipeline, fusing the resulting data.
A percentage value indicating the components progress is computed based on the overlapping area.
Two thresholds per construction state are assumed: 10%: the start of a panel, rebar, or concreting
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phase and 80%: the end. To reduce the number of computations and minimize outliers, all entries
within a specified averaging interval are aggregated to compute the mean pixel count for each class.

4 Case Study

4.1 Data and Setup

A custom dataset of site images [9] containing cast-in-place concrete elements of real-world site
environments was prepared to showcase our method. The annotated dataset contains 390 samples.
The segmentation model PIDNet-S was used within the computation pipeline.
Two examples were investigated thoroughly to determine the in-depth accuracy of the proposed method.
All cast-in-place types (rebar, slab, concrete) were included. The gap between both timestamps was
used to measure the framework’s accuracy. In the following tables, a negative error indicates the
derived timestamp is earlier than the actual, while a positive error means it’s later.
Various averaging techniques were tested by adjusting starting and ending thresholds from 0% to 50%
and from 50% to 100%, respectively, in 5% increments.
In total, 121 combinations were analyzed for averaging intervals from 0 to 30 minutes in one-minute
intervals for each camera. The total error over all evaluated timestamps was recorded. However, only
the best-scoring combinations of threshold and averaging interval parameters were further evaluated
to enable precise monitoring.
All as-built representations were compared against manually drawn annotations as shown in Figure 3,
4 and 5. Common pixels are coloured in red, pixels missing from model-generated ones in green and
pixels missing from the model-generated pictures in blue. The combined error value was calculated as
a fraction of wrong to correct pixels in percent.
Lastly, the entire pipeline was tested on one construction site using images from two cameras over two
months. The as-built representations were generated for all building elements from the first and second
floors, resulting in 290 elements. Considering only concrete slabs, walls and columns, all elements
were monitored over the whole two-month timespan using a parameter configuration of an averaging
interval of 7 minutes and thresholds of 75% and 10%, respectively. The detected construction progress
was analyzed further by comparing it to manually derived as-built timestamps for 8 elements.

4.2 Results

The segmentation model PIDNet-S was trained on a specific dataset consisting of 390 annotated
images from two different construction sites and achieved a mean average precision (mAP) of 74.20%,
demonstrating sufficient precision and performance. The test results shown in Table 1 indicate
sufficient performance across all classes. Yet, a lower mAP was achieved for wall or column elements
in the rebar phase presumably due to lacking features. However, to achieve higher generalisability of
the model, additional training data is required. A comprehensive investigation of the semantic training
and testing process was carried out in the authors’ prior work [11].
The monitoring results for a specific wall element are shown in Figure 2 with a negative error indicating,
that the derived timestamp is earlier than the actual, while a positive error means it’s later. These
results illustrate, that precise results can be achieved when using different averaging intervals for
singular cameras and by averaging the monitoring results over multiple cameras.
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Table 1: Results for the PIDNet-S model - mAP [%]

class background column slab wall
concrete panel rebar concrete panel rebar concrete panel rebar

mAP [%] 98.34 63.60 72.60 22.59 66.88 93.95 94.00 83.02 79.90 67.12

Figure 2: In-depth monitoring results of a wall element

Including this wall example, six elements were closer investigated to establish a best suited combination
of top-level parameters being the length of the averaging interval and the upper and lower threshold
used for detecting element specific progress milestones. The element-wise best suited upper threshold
varied highly: Especially for partially occluded elements, a conservative threshold like the median of
all examples of 75% seemed practical. However, most studied examples generated precise results
with a minor lower threshold of 5%-10%. Over all samples, a smaller averaging interval of 5 to 10
minutes generated the best results as errors could be compensated, and a certain level of accuracy
was maintained. This configuration of parameters poses a likely combination to work for monitoring
arbitrary construction elements and is used in the following studies.
The generated as-built representations for slabs showed very high accuracy of 96.47% correctly
colored pixels. It must be pointed out that one stairwell platform rendered insufficient results because
of its different base height.
An tolerable error of 18.51% was achieved for the wall elements. This was primarily due to the fact
that in the model-generated images, some elements that should be at the bottom appeared higher
due to the limitations in pixel precision.
Higher errors of 61.12% for column elements were encountered as a result of the height conversion
problem and the column’s smaller mask area.

Figure 3: Slab elements Figure 4: Wall elements Figure 5: Column elements
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The resulting differences between detected and as-built timestamps for the eight closer investigated
elements passed through the end-end pipeline are shown in Table 2. A positive value indicates the
detected event occurring earlier than the actual one. Additionally, all samples are color-coded with
entries below 15 minutes appearing in green, below 24 hours in orange and higher than 24 hours in
red. Unsuccessful tests are shown with a grey background.

Table 2: Examples for determining the accuracy

Event Slab 1 Slab 2 Wall 1 Wall 2 Wall 3 Column 1 Column 2 Column3

Panel Start 00:11:13 00:00:00 >1day >1day 03:50:08 >1day -23:57:45 -01:43:36
Panel End -14:36:13 >1day 00:01:06 -00:08:45 00:57:50 - 00:15:35 >1day

Rebar Start >1day 03:07:34 - - -00:01:06 -00:00:13 00:06:02 02:06:20
Rebar End -00:08:40 -22:39:57 - - -20:26:46 - - -

Concrete Start >1day 01:40:40 >1day >1day >1day -00:00:41 -00:00:44 -00:01:48
Concrete End 00:00:10 - 00:00:40 00:07:43 00:14:15 - - -

Unlike the positive outcomes depicted in Figure 2, challenges were encountered in identifying the
completion times for the rebar stages of wall elements and both rebar and concrete completion events
for column elements. Timestamps for panel phases, however, were detected more accurately. Similar
observations were made for all examined elements despite using fixed parameters based on identical
thresholds and averaging intervals. The underlying reasons and possible fixes for these inaccuracies
are discussed below.

5 Discussion
Our method demonstrated sufficient results in precisely measuring fine-granular phases of construction
progress using sequential on-site images and fusing it with as-built data. While the overall performance
of this approach proved to be promising, some limitations were noted:
The elaborated monitoring methodology could not detect the completion of rebar works correctly. As
the segmentation-based approach identifies an area as 100% completed once a single layer has
been installed, the two necessary directional layers per side could not be monitored. Additionally, the
completion of concreting for walls and columns is only detected once the formwork is removed and
concrete-labeled pixels are visible in the proposed camera setup. Prior limitations can be addressed
by exploring additional monitoring techniques increasing the level of detail [4], [14]. The perspective
transformation method’s inaccuracies can be approached using referenced on-site markers. A
future investigation of this method sourced from laser-scanning [15] and its application to semantic
segmentation would be desirable.
Figure 6 highlights noisy results stemming from a slab with detected panel, rebar, or concrete
timestamps at the same time in different sections of the element. These noisy results were caused by
a lack of details in the as-built model, e.g., missing reinforcement sections. Specific modeling rules
are necessary to represent the element accurately in all phases.
Finally, inaccuracies coming from bad lighting conditions and occlusions could not be compensated for
small elements. Moreover, camera sway from crane movements affected detection accuracy. On-site
markers for dynamic perspective transformation could mitigate this issue.
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Figure 6: Evaluation of a slab in the second building floor with noisy results

While there has been exhaustive work in construction progress monitoring, our approach differs from
existing work as follows: In contrast to [10], progress tracking beyond one element (pre-cast walls) is
demonstrated here. The in-depth analysis of slabs and pillars highlighted additional challenges and
requirements for precise monitoring. Fine-granular monitoring allowed a comprehensive understanding
of the construction process, necessary for efficient and effective on-site resource allocation. This
approach overcomes the uncertainties that arise from unordered photographs [8] through the use
of an averaging algorithm. This algorithm not only smooths out the variations in the data but also
provides a more accurate representation of the overall progress, enhancing the reliability of our results.
While [7] has shown an innovative approach to monitor not only the construction progress but also the
activity-level progress details, a lot of processing steps and computational resources were necessary
to achieve these details. We demonstrate that similar results can be gained using a much simpler
prediction pipeline based on image level. This underscores the need for further exploration of diverse
monitoring methodologies to identify practical approaches for the task at hand.

6 Conclusion
This paper presented a novel approach to automating progress monitoring of cast-in-place concrete
slabs, walls, and columns, extracting information directly from image data and enhancing it through as-
built details. For this task, algorithms for evaluating element-specific construction progress timestamps
and procedures for coupling the obtained information with as-built models have been proposed. With
the integration of different averaging approaches, robust performance with high precision was proven
in case studies concerning the specific parts of the elaborated framework and the whole end-to-end
approach. In contrast to many other studies, the suitability of the proposed methodology on real-world
construction sites has been thoroughly analyzed. In conclusion, the approach demonstrated practical
applicability and potential for supporting on-site management toward higher productivity.
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