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Abstract

This thesis explores the numerical simulation of quantum impurity models using non-markovian stochastic
tensor network methods. This thesis uses a novel approach called Hierarchy of Matrix Product States
(HOMPS) to simulate bosonic quantum impurity models exactly. My supervisors and I introduce the Hi-
erarchy of Grassmannian Tensor Product States (HOGTPS) to simulate fermionic impurity models. The
main result of this thesis is to propose this method to simulate fermionic and hybrid open quantum sys-
tems. Implementing and benchmarking HOGTPS is not shown in this thesis, however, it will be the next
step in this journey.

I discuss in detail several key theoretical fundamentals required to understand the tensor network ap-
proaches and the quantum impurity models. For the impurity models explored, I focus on the spin-boson
model and fermionic impurity models such as the Kondo model and the Simple Impurity Anderson Model. I
take a step further and explore experimental realizations of spin-boson models through engineered setups
from ultra-cold atoms and Josephson junctions and discuss these engineered Hamiltonians to explore the
field of quantum simulation. Numerical results are only gained for the spin-boson model and its experi-
mental realizations.
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1 Introduction

Strongly correlated systems exhibited in quantum impurity models are a rich area of theoretical physics
where abundant theoretical development is still at the forefront of the field. A better understanding or
testing of proposed theories requires deriving numerical or analytical solutions, which are a big challenge.
Tensor networks are a powerful tool enabling the numerical analysis for these models [1]. From the suc-
cess of the Density Matrix Renormalization group (DMRG) in the early 90s, employing the tensor network
ansatz to simulate the evolution of a quantum system for one dimension has been very practical [1].

Although over 30 years of fascinating development have followed since DMRG, several different numerical
algorithms have been developed to obtain numerical results for different models in condensed matter and
high-energy physics. One of these methods developed by D.Seuess is known as the Hierarchy of Pure
states [2] which develops upon the Non-Markovian Quantum State Diffusion by giving an exact solution
for the dynamics of an open quantum system. An extension of this was developed by [3] to form a Matrix
Product State (MPS) ansatz known as the Hierarchy of Matrix Product States, which gives efficient simu-
lations for a quantum system coupled to a bosonic bath in 1D [3].

There are several open problems remaining within this method that have yet to be addressed. Within
the context of impurity problems, the exact simulation of the dynamics of a quantum system coupled to
a fermionic bath in 1-D is an example, mainly due to the anticommuting behaviour of the bath, also the
simulation of the noise process accompanying fermionic HOPS is very inefficient to simulate [2].

The main result of this thesis is addressing this problem by implementing a new tensor network method
called the Hierarchy of Grassmannian Tensor Product States (HOGTPS) to simulate quantum systems
coupled to a fermionic bath. I will first explore the formalism behind HOPS and the Fermionic HOPS by
first discussing the fermionic coherent state representation. Then I will discuss tensor networks and one
algorithm used for Hamiltonian evolution known as the Time Dependent Variational Principle (TDVP). Af-
terwards, the formalism behind the main tensor network approach implemented for the spin-boson model
known as HOMPS will be discussed before introducing the tensor network method developed from this
thesis called HOGTPS. After a theoretical introduction, numerical results are shown for the spin-boson
models using HOMPS, whilst HOGTPS ansatz is proposed for fermionic impurity models.
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2 Fermion Coherent States

There exist different representations for states within a Hilbert space, such as the Fock-Bargmann rep-
resentation leading to the second quantization formalism. The Gaussian coherent state representation
of basis states is a powerful tool for evaluating the path integral for theories which are not only based
on canonical quantization (such as fermions). Similar steps to derive a coherent state representation for
bosons cannot be followed for the case of fermions due to the anti-commuting relations. This motivates the
implementation of a new kind of nilpotent and symmetric algebra known as the Grassmann algebra. [4].
Nilpotence directly encodes the Pauli exclusion principle, allowing for a mathematical structure to describe
the physical property of fermions. An irreducible representation of the rotation group SO(2n,R) for a sys-
tem of n fermions called the spin representation is also a mathematically equivalent approach [4], avoiding
the use of Grassmann algebra. However, in the context of this thesis, the Grassmann representation is
imperative towards successfully simulating a fermionic bath [2], hence motivating this section to introduce
the relevant formalism.

Considering a Hilbert space spanned by a set of harmonic oscillators |n⟩ and [â†, â] be the standard
creation and annihilation operators that satisfy standard commutation relation (CCR), these operators
generate harmonic oscillator states, which is well known, in terms of the vacuum state |0⟩ by :

|n⟩ = 1√
n!

(â†)|0⟩ (2.1)

A coherent state |z⟩ is given by:
|z⟩ = ezâ

† |0⟩, ⟨z| = ⟨0|ez̄â (2.2)

Where z is an arbitrary complex number with z̄ being its complex conjugate. This coherent state represen-
tation in equation (2.2) is relevant for bosons. The relevant expression for fermions will be explained in the
next section.

2.1 Grassmann Algebra

A Grassmann algebra A on R or C is an associative algebra generated by a unit and a set of generators
{θi} that satisfy the anti-commutation relations:

θiθj + θjθi = 0 ∀i, j (2.3)

If the number of generators n is finite, the elements of the algebra form a vector space of finite dimension
2n over R or C. All elements can be written as linear combinations of the elements Av, v = 1, . . . , 2n:

Aν ∈ {1 and {θi1θi2 . . . θip} with i1 < i2 < · · · < ip, 1 ≤ p ≤ n}. (2.4)

A is a graded algebra, this means that for each monomial θi1θi2θi3 . . . θip , one can associate an integer
p that counts the number of generators in a product. Furthermore, if Ap and Aq are two monomials of
degree p and q respectively, then the swapping between the two monomials is:

ApAq = (−1)pqAqAp (2.5)

Another important property of the algebra relevant to defining the fermionic coherent states is that all el-
ements in a Grassmann algebra, considered as functions of a generator θi are first-degree polynomials
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(affine functions).

Differentiating Grassmann algebras can be derived easily by considering the Nilpotent property [5].

A = A1 + θiA2
∂A
∂θi

= A2
(2.6)

The inherent nilpotent property of Grassmann algebras results in the operator ∂
∂θi

to be nilpotent. Left and
right derivatives can also be defined in such a way that a left/right derivative consists of acting the operator
∂
∂θi

commuting θi to the left/right in all monomials before suppressing it.

Similar considerations are done when taking an integral of Grassmann variables, defined by:∫
diA ≡ ∂

∂θi
A, ∀A ∈ A (2.7)

Considering more relevant situations, where integrations of algebras with the double family of generators
{θi, θ̄i}, i = 1, . . . , n related by the complex conjugation, the integration is considered of the form:

I =
∫

dθdθ̄f(θ, θ̄) (2.8)

General integration rules can then be formulated as:∫
dξ1 = 0 ↔ ∂ξ1 = 0∫
dξξ = 1 ↔ ∂ξξ = 1 (2.9)

Where the pair (θ, θ̄) represents any pair of conjugate generators. By considering these rules to a general
analytical function A(ξ̄, ξ), the rules are:

∫
dξA(ξ̄, ξ) =

∫
dξ
(
a0 + a1ξ + ā1ξ̄ + a12ξ̄ξ

)
= a1 − a12ξ̄∫

dξ̄A(ξ̄, ξ) =
∫
dξ
(
a0 + a1ξ + ā1ξ̄ + a12ξ̄ξ

)
= ā1 + a12ξ∫

dξ̄dξA(ξ̄, ξ) = −
∫
dξdξ̄A(ξ̄, ξ) = −a12

(2.10)

From these considerations, the delta function can be straightforwardly shown as:

δ(ξ̄, ξ) =
∫

dηe−η(ξ−ξ̄) (2.11)

Where ξ, ξ̄ and η are Grassmann variables.

The final important consideration of Grassmann algebras that are very relevant for determining the Grass-
mann tensor network approach is the Grassmann Gaussian integrals. These Gaussian integrals are de-
fined with an integration over two families of generators {θi, θ̄i}. By considering the integral:

Z(K) =
∫

dθ1dθ̄1dθ2dθ̄2 . . . dθndθ̄n exp

 n∑
i,j=1

θ̄iKijθj

 . (2.12)

This integral can be simplified by using the rules of the Grassmann integral. Focusing on the integrated,
the argument of the exponential function contains only terms belonging to A+, which commute. With this
information, the integrand can be written as:

exp
( n∑
i,j=1

θ̄iKijθj
)

=
n∏
i=1

exp
(
θ̄i

n∑
j=1

Kijθj

)

=
n∏
i=1

1 + θ̄i

n∑
ji=1

Kijiθji

 . (2.13)
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This leads to a Gaussian integral over Grassmann variables by also introducing another copy of the Grass-
mann algebra A whose generators are denoted by {ζi, ζ̄i} of the form :

Z[K] =
∫ ( N∏

i=1
dθ̄idθi

)
e

−
∑

i,j
ξ̄iKijθj+θ̄iζi+ζ̄iξi (2.14)

The above expression gives a more general expression for performing Gaussian integrals over Grassmann
algebras. This defines the backbone for performing basic operations with Grassmann algebras, which is
required to understand Grassmann tensor networks. However, the notion of "creating" or "annihilating"
a Grassmann algebra is not defined. To address this, the Grassmann representation of fermionic Fock
spaces is introduced and the generalized Grassmann algebra is mentioned to introduce the notion of
ladder operators with Grassmann variables.

2.2 Grassmann Generalization from Weyl-Heisenberg Algebra

To understand the notion of ladder operators in terms of Grassmann generators, a generalized defini-
tion of Grassmann algebra needs to be defined from a Weyl-Heisenberg algebra [6]. An introduction to
Weyl-Algebra can be found in [4]. A Qudit algebra used in [6] is represented by generalized Grassmann
variables, which is the main result of this paper. However, this result can not be used within this thesis as
the Qudit algebra does not satisfy fermionic commutation relations, although, the methodology in deriv-
ing such a representation in [6] can be used to intuitively understand how one could perform raising and
lowering operations on a Grassmann algebra.

2.2.1 Generalized Grassmann Variables

From the properties of Grassmann algebra discussed in the previous sections, a general expression can
be achieved from the polynomial expansion for symmetric Grassmanian generators θ. A generalized
Grassmann variable can be defined as:

η =
k∑
i=1

θi η =
k∑
i=1

θ̄i (2.15)

By definition, these Grassmann variables are Nilpotent (as the square of the variable is zero). θ̄ is the
conjugate of θ. From [6], A symmetric θ-polynomial can be defined as :

en(θ⃗) =
∑

i1<i2<···<in
θi1θi2 · · · θin , for n = 1, 2, · · · , k and e0(θ⃗) = 1 (2.16)

Where the vector containing the generators θ⃗ = (θ1, θ2, · · · , θn). From (2.16), the n − th power of the
Grassmann variable η (2.15) can be expressed in terms of symmetric θ polynomials as:

ηn = n!en(θ⃗) for n = 1, 2, · · · , k (2.17)

The nilpotency condition of a Grassmann variable requires the k+1-th exponent of the generalized Grass-
mann variable (2.17) to be zero. The η-derivative can be derived in an analogous procedure. By first
defining a differential- ∂∂θ and ∂

∂θ⃗
operator as:

∂

∂η
=

k∑
i=1

∂

∂θi
,

∂

∂η̄
=

k∑
i=1

∂

∂θ̄i
. (2.18)

Using properties in equation (2.9), a generalized differential- ∂∂θ operator is defined as:

gn =
∑

i1<i2<···<in
∂θi1

∂θi2
· · · ∂θin

, for n = 1, 2, · · · , k and g0 = 1. (2.19)
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From [6], the raising and lowering of a symmetric analytic function can be gained by acting the generalized
Grassmann variable and generalising Grassmann derivative respectively:

ηen(θ⃗) = en+1(θ⃗), ∂en(θ⃗)
∂η

= en−1(θ⃗) (2.20)

This result is similar to the annihilation and creation operators for a generalized Weyl-Heisenberg algebra.
The main difference is the normalization factors and the algebra commutation rules. The notion of a
generalized Grassmann algebra is useful when discussing Grassmann tensor product states [7], where
the basis of the tensors is described in terms of Grassmann generators. In [8], the authors use a different
mapping compared to equation (2.20), where essentially the fermionic creation/annihilation operator is
mapped to a Grassmann generator/conjugate generator.

2.3 Fermionic Fock Spaces and Grassmann Representation

For N fermions, the Hilbert space is spanned by the anti-symmetrized states |n1, . . . , nN ⟩. A general state
in this Hilbert space is then given by :

n1, . . . , nN ⟩ = (c†
1)n1 . . . (c†

N )nN |0⟩ (2.21)

Projecting this state onto the wave function ⟨n1, . . . , nN |Ψ is fully antisymmetric.

Let ξ̄i, ξi, with i = 1, . . . , N be a set of 2N Grassmann variables, which are the generators of the Grass-
mann algebra. By definition, Grassmann variables satisfy the following properties:

{ξi, ξj} = {ξ̄i, ξ̄j} = {ξi, ξ̄j} = ξ2 = ξ̄2 = 0 (2.22)

From the above property, Grassmann variables behave as a set of time-ordered fermion operators. These
variables must also anti-commute with fermion operators:

{ξi, cj} = {ξ̄i, c†
j} = {cj , ξ̄j} = {c†

j , ξ̄j} = 0 (2.23)

These properties allow for the definition of coherent states to be:

|ξ⟩ ≡ e−ξc† |0⟩
⟨ξ| ≡ ⟨0|eξ̄c

(2.24)

We can Taylor expand the exponential term with the Grassmann variable to the second term because the
exponentials of Grassmann variables are zero (Nilpotency).

e−ξc† = 1 − ξc† (2.25)

Taking the inner product of two fermionic coherent state |ξ⟩ and |ψ⟩ is given by:

⟨ξ|ψ⟩ = ⟨0|eξ̄c−ψc†0⟩ = 1 + ξ̄ψ = eξ̄ψ (2.26)

Since the commutator [ξic†
i , ξjc

†
j ] vanishes, this gives clean expressions when considering the N fermion

coherent state representation:

|ξ⟩ = |ξ1, . . . , ξN ⟩ = ΠN
i=1e

−ξic
†
i |0⟩ ≡ e

∑N

i=1 ξic
†
i |0⟩ (2.27)

By using the above definition for fermionic coherent states and the rules for Grassmann algebras men-
tioned in the previous section, the properties for these coherent states can now be mentioned. These
coherent states can be written can be expressed as:

|{ξj}⟩ = e
−
∑

j
ξjc

†
j |0⟩, ⟨{ξj}| = ⟨0| e

∑
j
ξ̄jcj (2.28)
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With relations with fermionic annihilation and creation operators as:

ci|{ξj}⟩ = ξi|{ξj}⟩ c†
i |{ξj}⟩ = −∂ξi

|{ξj}⟩ ⟨{ξj}|ci = ∂ξ̄i
⟨{ξj} |⟨{ξj}|c†

i = ξ̄i⟨{ξj}| (2.29)

The inner product between two coherent states is given by:

⟨{ξj}|{ξ′
j}⟩ = e

∑
j
ξ̄jξj (2.30)

Similarly, the Resolution of the Identity operator of a single Grassmann variable is given by:

I =
∫

(ΠN
i=1dξ̄idξi)e−

∑N

i=1 ξ̄iξi |{ξi}⟩⟨{ξi}| (2.31)

To express a generic state |Ψ⟩ in terms of the resolution identity (2.31), For Ψ(ξ̄) = Ψ(ξ̄1, . . . , ξ̄N ). This
state can be expanded in fermion coherent states as:

|Ψ⟩ =
∫

(ΠN
i=1dξ̄dξ)e−

∑N

i=1 ξ̄iξi |Ψ(ξ)⟩⟨{ξi}| (2.32)

With this state, the corresponding matrix elements can be expressed as:

⟨ξ|cj |ξ⟩ = ∂ξ̄j
Ψ(ξ̄), ⟨ξ|c†

j |Ψ⟩ = ξ̄jΨ(̄) (2.33)

Calculating expectation values for normally ordered operators A({c†
j}, {cj}), let |0⟩ define an empty state.

This is not interchangeable with a vacuum state since it is not in the sector of the ground state of systems
of interest [5]. The matrix elements of this ordered operator in the coherent states |ξi⟩, |ξ̄⟩ can be shown
as:

⟨ξ|A({c†
j}, {cj})|ξ̄⟩ = e

∑
i
ξ̄iξ

′
iA({ξ̄k}, ξ

′
j) (2.34)

If considering the fermion number operator N̂ , the expectation value of this operator in the coherent state
will be:

⟨ξ|N̂ |ξ⟩
⟨ξ|ξ⟩

=
∑
j

ξ̄jξj (2.35)
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3 Non-Markovian Quantum State Diffusion and
Hierarchy of Pure states

The main result of evolving the wave function using NMQSD is that it successfully expresses the reduced
density matrix as an ensemble average over stochastic pure states.

The reduced density matrix shown in (8.4 )is first modified to represent Bargmann coherent states [9]
|zλ⟩ := ezλa

†
λ |0⟩λ with coherent states zλ ∈ C and |0⟩λ representing the ground state of the respective

mode with index λ. This gives a new expression for the reduced density matrix:

ρsys(t) = Trenv(|Ψ(t)⟩⟨Ψ(t)|) =
∫

d2ze
−|z|2

πNB
⟨z|Ψ(t)⟩⟨Ψ(t)|z⟩ (3.1)

The integral is over a complex vector space with elements z := (z1, . . . zNB
)T . Working with the interaction

picture to the environmental Hamiltonian is advantageous as it eliminates the oscillator dynamics of the
system. This does not affect the system as the propagator in the interaction picture only acts on the
environment. This gives the Schrödinger equation for the wave function as:

i∂t|Ψ(t)⟩ = U †
env(t)(H −Henv)Uenv(t)|Ψ(t)⟩ =

(
Hsys +

∑
λ

g∗
λe

iωλtLa†
λ + gλe

−iωλtL†aλ

)
|Ψ(t)⟩ (3.2)

The coherent state labels in the equation (3.1) can be interpreted stochastically as complex-valued Gaus-
sian distributed random variables with zero mean and covariances. This introduces more constraints to
the problem [2]:

M(zλzλ′) = M(z∗
λz

∗
λ′) = 0 and M(zλz∗

λ′) = δλ,λ′ .

Over the coherent state labels:
ρsys(t) = Mz (|ψ(z∗, t)⟩⟨ψ(z, t)|)

The stochastic pure state is then expressed as:

|ψ(z∗, t)⟩ := ⟨z|Ψ(t)⟩ .

For numerical stabilities, a non-linear expression of the expectation value may be considered. This is al-
lowed since a property of the Bargmann coherent states is that ⟨Ψ(t)|z⟩ is holomorphic in z and thus does
not depend on z∗.

The results can be summarized into the dynamics of the reduced state if the dynamics of the stochas-
tic pure state are known. Using ⟨z|aλ|Ψ⟩ = ∂z∗

λ
⟨z|Ψ⟩ and ⟨z|a†

λ|Ψ⟩ = z∗
λ⟨z|Ψ⟩,The Schrödinger equation

in (3.2) can be expressed as:

∂tψ(z∗, t) =
[
−iHsys + z∗(z∗, t)L− iL†∑

λ

gλe
−iωλt∂z∗

λ

]
ψ(z∗, t) (3.3)

Where z∗(z∗, t) := −i
∑
g∗
λz

∗
λe

iωλt is the complex Gaussian stochastic noise process.

An important step in the derivation is that although the stochastic pure state is an element of the sys-
tem Hilbert space, the number of bath modes is still present in the equation (3.3) due to expressing the
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states in Bargmann coherent states. Taking the limit ∆t → 0 leads to the differential form of the NMQSD
equation [10]:

∂tψt[η∗] =
[
−iHsys + η∗(t)L− L†

∫ t

0
ds α(t− s) δ

δη∗(s)

]
ψt[η∗] (3.4)

This results in NMQSD being a functional stochastic process. The local nature of the equation for the
stochastic pure state (3.4) is not problematic as it contains a convolutional-like integral which probes how
the stochastic pure state at time t depends on the entire history of the stochastic process. The functional
derivative in (3.4) is problematic as it cannot be solved directly. The Hierarchy of Pure states (HOPS) is an
alternate approach that removes the presence of this functional integral while simultaneously maintaining
the exact dynamics of the system [2].

3.1 Hierarchy Of Pure States

Developing from equation (3.4), to tackle the issue of the functional integral, additional assumptions must
be considered. The bath correlation function must be expressed as a sum of exponentials. Finding this
representation for the BCF is a non-trivial task which has been investigated in the Hierarchy of Equations
of Motion [2]. The expansion of the BCFs takes the form:

α(τ) =
N∑
i=1

gie
−ωi,τ with gi, ωi ∈ C and τ ≥ 0 (3.5)

This representation with N exponentials results in N independent auxiliary states. This is simplified by
introducing the combined partial derivative:

Dn
µ :=

{
0 n = 0
√
g
i

∑n−1
m=0 e

−ωi(n−m)∆t∂z∗
m

n > 0
(3.6)

Here, n and m are discrete-time indices and i is the index from the BCF representation. Inserting the
above equation in the NMQSD expression in (3.4) results in:

ψn+1 = ψn + ∆t (−iHsys + η∗
nL)ψn − ∆tL†

N∑
µ=1

Gµ
ḡµ
Dn
µψn . (3.7)

The above expression motivates inserting the main Ansatz of the HOPS method which is the auxil-

iary states ψk
n :=

∏N
µ=1

(
Dn
µ

)kµ

ψn. The total number of iterative applications reflects the order of

partial derivatives, referred to as the hierarchy level. With the help of the recursion relation Dn+1
µ =

e−Wµ∆t
(
ḡµ∂η∗

n
+Dn

µ

)
and inserting it into (3.7):

ψk
n+1 =

N∏
µ=1

(
Dn+1
µ

)kµ

ψn+1 =
N∏
µ=1

e−kµWµ∆t
(
ḡµ∂η∗

n
+Dn

µ

)kµ

×

1 + ∆t

−iHsys + η∗
nL− L†

N∑
µ=1

Gµ
ḡµ
Dn
µ

ψn
(3.8)

Keeping only terms up to first order in ∆t yields:

ψk
n+1 = ψk

n + ∆t

−iHsys −
N∑
µ=1

kµWµ + η∗
nL

ψk
n

− ∆tL†
N∑
µ=1

Gµ
ḡµ
ψk+eµ
n + ∆tL

N∑
µ=1

kµḡµψ
k−eµ
n .

(3.9)
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To gain the Hierarchy of pure states representation given in [2], ∆t → 0 must be considered which gives:

ψ̇k
t = (−iHsys −

N∑
µ=1

kµWµ + η∗
tL)ψk

t + (−L†)
N∑
µ=1

Gµ
ḡµ
ψ

k+eµ

t + (L)
N∑
µ=1

kµḡµψ
k−eµ

t (3.10)

Equation (3.10) follows similar stochastic constraints as the NMQSD, namely:

M(η∗
t ) = 0, M(η∗

t η
∗
s) = 0 = M(ηtηs), M(ηtη∗

s) = α(t− s)
(3.11)

The structure of the equation (3.10) reveals that an auxiliary state of level l =
∑
µ kµ couples to other

auxiliary states with level ±1 only. Therefore, different states hierarchically depend on each other. To
solve this differential equation, the initial conditions need to be specified. By considering that the initial
condition for the stochastic pure states coincides with the initial state for the system and the relations
shown in the expressions (3.5) and (3.6) at t = 0, the initial condition for HOPS are:

ψk
0 = |ψ0⟩ for k = 0

ψk
0 = 0 for k ̸= 0

(3.12)

In conclusion, based on the exponential representation of the BCF in (3.5), it is shown that the stochastic
pure states are equivalently obtained from the HOPS and there is no more functional operator present in
this stochastic equation.

3.2 Fermionic Hierarchy of Pure States

After considering a general derivation of the HOPS in the previous section, an important factor is the
noise process selected to govern the stochastic dynamics of the modified system. A Gaussian process
is implemented but only with the assumption that the constituents follow canonical commutation relations,
however, if the system is comprised of particles which do not follow these relations (such as fermions)
then not only must a different noise process be considered but the overall HOPS formulation has signifi-
cant changes.

Considering a Fermionic environment introduced in Fermionic impurity models, only the zero-temperature
case with pure initial condition will be considered (The dynamics at the thermodynamic limit will not be
considered in this thesis). Rewriting the Hamiltonian (8.14) in the interaction picture, a similar Hamiltonian
than in the Bosonic case is gained [2]:

Ĥtot(t) = Ĥs +
∑
i

(g∗
i e
iωitĉ†

i L̂+ gie
−iωitL̂†ĉi) (3.13)

The Hamiltonian above can be represented in its coherent state using Grassmann variables introduced in
an earlier section. These coherent states |ξ⟩ := ⊗j ⊗λ |ξjλ⟩ are defined by:

|ξjλ⟩ = e−ξjλb
†
jλ |0⟩ = |0⟩ − ξjλb

†
j,λ|0⟩ (3.14)

Here, ξjλ are anti-commutating Grassmann variables which follow standard anti-commutating canonical
relations. Using ψt(ξ∗) = ⟨ξ|ψtot(t)⟩ where |ψtot(t)⟩ is the total state vector for the system and envi-
ronment and ⟨ξ| is a coherent state representation for the environment. With such a representation, the
NMQSD equation for fermionic bath is expressed as [2]:

∂

∂t
ψt(ξ∗) = [−iĤs + L̂ξ∗

t − L̂†
∫ t

0
dsK(t, s) δl

δξ∗
s

]ψt(ξ∗) (3.15)
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Where ξ∗
t = −i

∑
i g

∗
i e
iωitξ∗

i is the Grassmann Gaussian noise (Grassmann noise) [2] and K(t, s) =∑
i |gi|2e−iωi(t−s) is the correlation function. The striking characteristic of the Grassmann noise is that it

values anti-commute at different times. The Hamiltonian is now represented as a stochastic Schrodinger
quantum state diffusion type equation. Similar stochastic constraints are followed as for the earlier stochas-
tic equations [2]:

Eξ∗
j (t) = E

(
ξ∗
j (t)ξ∗

j′(s)
)

= 0, E
(
ξ∗
j (t)ξ∗

j′
∗(s)

)
= δjj′α(t− s) (3.16)

Analogous to the bosonic case in the earlier section, to express the Hamiltonian into its HOPS represen-
tation, auxiliary states of must be defined for the functional derivative in equation (3.15). This hierarchical
Ansatz is given by: ψ(k)

t := Dk1
1,tD

k2
2,t . . . ψt = Dk

t ψt. As shown in [2], the Fermionic hierarchy of pure
states equation is given by:

∂tψ
(k)
t =

−iH − k · w + (−1)|k|∑
j

Z∗
j (t)Lj

ψ(k)
t

+
∑
j

(−1)|k|jgjLjψ
(k−ej)
t −

∑
j

(−1)|k|jL†
jψ

(k+ej)
t

(3.17)

A full derivation of equation (3.17) is shown in A1.1
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4 Tensor Networks

4.1 Overview of Tensor Network Theory

As mentioned in the introduction, Steve White’s density-matrix renormalization group (DMRG) is the most
powerful numerical method in the study of one-dimensional quantum lattices [11].

The ground state of a wavefunction for a local Hamiltonian with a gapped ground phase is easier to
find due to the entanglement scaling properties. Effective parametrizations allow this corner of the Hilbert
space for this simplification and are provided by the matrix product states.

The most common operation in tensor networks is a contraction in which the common dimension of neigh-
bouring tensors is summed over. This generalizes tensor-tensor multiplication. The contraction scheme is
not trivial as one deals with larger tensor network representations and is still an active area of research [1].

4.2 Matrix Product States and Matrix Product Operators

The Matrix Product States and Matrix Product Operators allow for a better representation of quantum
many-body systems. The main advantages comes with simulating a vector space with a lower dimension
than the Hilbert space.

Such a representation can be gained by iteratively ’splitting’ the spaces of the Hilbert space in which the
quantum state is defined. Given an N-dimensional quantum state |ψ⟩ =

∑d−1
j1,...,jN

Cj1,j2,...,jN |j1⟩⊗. . .⊗|jN ⟩
which is specified by the knowledge of the rank-N tensor C, splitting the first index from the remaining and
performing a singular value decomposition (Schmidt decomposition) [12]:

|ψ⟩ =
∑
i

λi|Li⟩ ⊗ |Ri⟩ (4.1)

Where λi are Schmidt weights and {|Li⟩} and {|Ri⟩} are the orthonormal sets of vectors. λ is also a di-
agonal matrix containing the Schmidt weights. It is an important quantity to characterize the entanglement
rank [1], which is simply the log of the number of nonzero Schmidt weights, giving the α-Rényi entropy
given by [1]:

Sα(ρ) = 1
1 − α

log(Trρα) (4.2)

The Von-Neumann entropy is recovered by taking α → 0.

After performing successive singular value decompositions along each cut in the Hilbert space, splitting
out the tensor into local tensors and λ, The matrix product state representation is given by contracting the
singular value tensors into the local tensors.

An arbitrary many-body state for a system consisting of N subsystems can be written as:

|Ψ⟩ =
∑

l1,l2,...,lN

Ψl1,l2,...,lN |l1, l2, ..., lN ⟩ , (4.3)
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A[1] A[2] A[3] A[N ]

l1 l2 l3 lN

i1 i2 iN−1

Figure 4.1 Tensor network diagram for the MPS representation of the state in equation (4.4) Each circle represents
a tensor A[i],li with physical index li and virtual indices ij . The dashed line indicates periodic boundary conditions,
forming a closed chain.

Where the multi-mode states are basis vectors of the many-body Hilbert space and the coefficients are
scalars indexed for the respective mode in the state space. This can be further expressed as a MPS by:

|Ψ⟩ =
∑

l1,l2,...,lN

χ0∑
i0=1

χ1∑
i1=1

· · ·
χN−1∑
iN−1=1

A
[1],l1
i0,i1

A
[2],l2
i1,i2

· · ·A[N ],lN
iN−1,i0

|l1, l2, . . . , lN ⟩

=
∑

l1,l2,...,lN

tr
(
A[1],l1A[2],l2 · · · A[N ],lN

)
|l1, l2, . . . , lN ⟩ ,

(4.4)

The construction in (4.4) is both general and exact. While SVD is used to gain such a representation,
it is sometimes tedious to perform [12]. A numerically cheaper technique which can be used is the QR
decomposition [11], where an arbitrary matrix M of dimension (na, nb) is decomposed into M = QR ,
Where Q has dimension (na, na) and is unitary while R has dimension (na, nb) and is upper triangle.

An MPS is an extension of the concept of tensor contraction where each tensor represents a single site.
Each tensor has a physical dimension which points outward into which local operators, can be contracted
into the site. Downward-facing physical dimensions represent a ket state and upwards are either a bra
state or a conjugate state. Since exponential growth is a hindrance to scaling tensor networks. It is known
that truncating these bond dimensions results in a good approximation of a state and reduces the bond
dimension as much as possible through singular-value decomposition [11].

Each tensor sit can be further expressed as a canonical form. A canonical form can be identified if the
contraction along the specific dimensions results in the identity. The main advantage of this is a speedup
in the convergence of the algorithm [11]. A tensor can be in left canonical or right canonical form which
relates to which contractions lead to the identity represented by a single line in tensor network notation.

A Matrix product state has bounded levels of entanglement [6], which are manifested as area laws. Gauge
fixing is a method used to improve the numerical stability of performing calculations using MPS and is also
a standard method to initialise a MPS chain before performing very common time-evolving algorithms such
as DMRG, TEBD and TDVP [12].

Gauge transformations, which are certain transformations that can be performed upon an MPS which
leave the physical state that it is representing to be invariant, correspond to basis transformations on a
virtual level. These transformations can then be "blocked", which is a process that combines a chain of
MPS tensors into a single effective tensor on a larger physical region. This procedure leaves the initial
MPS in its canonical form. The gauge transformation is usually done by performing an SVD or a QR de-
composition on each tensor site.
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Although gauge degrees of freedom can be manipulated to set a chosen tensor Aj as a centre of or-
thogonality, this does not fully fix this degree of freedom on any of the links between the tensor since the
tensor Aj will remain a centre of orthogonality under a unitary change of gauge ( the gauge change is
implemented by a unitary matrix and its hermitian conjugate). If an additional constraint on the link is that
it is diagonal with positive elements in ascending order, this completely fixes the gauge freedom of the link
solving the earlier problem. By setting every link of a tensor chain as a centre of orthogonality, the new
form of the MPS is called the canonical form. The uniqueness of this property follows from the correspon-
dence between the link-based centre of orthogonality and the SVD [5].

A common canonical form to bring a MPS into is the left-isometric/canonical form:

d−1∑
j=0

A†
jAj = 1D×D (4.5)

Putting an MPS in this form is known as partial gauge fixing [11]. Putting an MPS into its left and right
isometric form creates a centre of orthogonality. This is determined if every branch attached to a specific
tensor site Aj forms an isometry between its open indices and the index connected to tensor Aj [11]

The compact expression after bringing the MPS into a canonical form can be:

|ψ(A)⟩ =
∑
i

v†
L[Πn∈ZA

in ]vR|i⟩ (4.6)

Where Ai is a D × D matrix for every entry of the index i [11]. A can be seen as a three-index tensor of
dimensions D × d × D, where d is the dimension of the physical Hilbert space at every site in the chain
and D is the bond dimension.

Operators can also be written in the MPS formalism. A general operator acting on a many-body system
can be written as :

Ĥ =
∑

l1,l2,...,lN

∑
l′1,l

′
2,...,l

′
N

H
l′1,l

′
2,...,l

′
N

l1,l2,...,lN
|l1, l2, . . . , lN ⟩⟨l′1, l′2, . . . , l′N | (4.7)

From the area law, the MPS form a vanishingly small corner of the full Hilbert space, and thus cannot
be them to approximate arbitrary quantum states

4.3 Time Dependent Variational Principle

Many tensor network algorithms work by sweeping across the chain of sites. Splitting the infinite/finite
chain into left-canonical and right-canonical forms allows operations to focus purely on that site known as
the orthogonality centre.

The properties and geometry of both the parameter space within which the MPS lies and its corresponding
manifold in Hilbert space are used to define the necessary steps for performing the time evolution of the
quantum state as a tensor network. This is known as the Time Dependent Variational principle (TDVP)
and is the main approach used in this thesis.

Implementing the TDVP algorithm to simulate the time evolution of Hamiltonians can be done without
an increase in computational cost [13], resulting in a relatively quick convergence, without violating energy
conservation for constant Hamiltonians or any other conservation laws dictated by the symmetries within
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the Hamiltonian.

One first interprets the set of MPS with a determined bond dimension as a manifold within the Hilbert space
in which the wavefunction is represented in. This manifold is defined by mapping the set ofD×d×D tenors
A and physical states in the Hilbert space |ψ(A)⟩ [13]. The resulting manifold is not a linear subspace as
the sum of two MPS with the same bond dimension is not in the same manifold. Therefore, considering the
tangent space consisting of taking the tangent of every point in the wave function |ψ(A)⟩.The Schrodinger
equation can be expressed as:

i
∂

∂t
|ψ(A)⟩ = H|ψ(A)⟩ (4.8)

Which determines how a quantum state evolves in time within a manifold. The overlap between the two
tangent vectors introduces an important metric on the tangent space known as the Gram matrix, given by:

⟨ψ(B̄′ ; Ā)ψ(B;A)⟩ = B̄i,Gij(Ā, A)Bj (4.9)

Where Gij(Ā, A) = ⟨∂iψ(Ā)|∂jψ(A)⟩ is the Gram matrix.

The main issue with equation (4.8) is that the initial MPS |ψ(A)⟩ is immediately taken out of the mani-
fold. To determine the time evolution of the state in the manifold |ψ(A(A))⟩, the time derivative is given
as:

i
∂

∂t
|ψ(A)⟩ = |ψ(Ȧ;A)⟩ (4.10)

Which is a tangent vector. Finding Ȧ which provides the best approximation to H|ψ(A(A))⟩ results in the
minimization problem:

Ȧ = arg min
B

∥H |Ψ(A)⟩ − |Φ(B;A)⟩∥2
2 . (4.11)

The solution to the minimization problem (4.11) can be solved similarly by taking the projection of equation
(4.10), which projects the linear Schrodinger equation into a non-linear differential equation manifold [13].
which is given as:

i
∂

∂t
|ψ(A)⟩ = PA(t)H|ψ(Ȧ;A)⟩ (4.12)

The TDVP equation is then written as:

i
∂

∂t
|Ψ(A)| = (∂Ai |Ψ(A)⟩) (G−1)ij

(
∂Āi

〈
Ψ(Ā)

∣∣∣)H |Ψ(A)⟩

= ∂Ai |Ψ(A)⟩ (G−1)ij∂Āj
h(A, Ā),

(4.13)

Where h(A, Ā) = ⟨ψ(Ā)|H|ψ(A)⟩. The TDVP equation (4.12) can be expressed in the uniform gauge.

The procedure for computing the time derivative of the MPS tensor A according to the TDVP can be
followed in [13]. The simplest option is performing an Euler decomposition for the differential equation for
A(t) which is given as A(t+δt) = A(t)+δt ˙A(t). A numerical integrator that does not have the symplectic
properties of the TDVP equation is also preferred, such as Runge-Kutta [12]. In the Hilbert space, the
imaginary time evolution of a state |ψ0⟩ results in a projection onto the ground state in the infinite-time
limit [13]:

lim
τ→

e−Hτ |ψ⟩
||e−Hτ |ψ⟩||

= |ψ0⟩ (4.14)

The Euler scheme to integrate the differential equation to solve for the tensor operator Ȧ is similar to per-
forming a steepest-descent optimization with a tangent-space gradient [13].
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5 Hierarchy of Matrix Product States

5.1 HOMPS Ansatz

The hierarchy of matrix product states (HOMPS) representation of the HOPS algorithm allows for a tensor
network representation for the impurity Hamiltonian. The first step is to express the standard Hamiltonian
into an effective stochastic Hamiltonian defined by [3], which is:

ˆHeff = ĤS + iL̂Z∗
t − i

K∑
k=1

vk b̂
†
k b̂k − iL̂†

K∑
k=1

√
|dk|b̂k + iL̂

K∑
k=1

dk√
|dk|

d̂†
k (5.1)

Similar notation follows from the hierarchy of pure states, the statistics of the operators and the noise
process depend on whether the bath consists of fermions or bosons. The parameter dk is a scaling
parameter which could be understood as a means to improve the numerical stability of HOMPS. The
creation and annihilation operators are acted upon a basis state of {nk} where k is the hierarchy index
and it plays the role of occupation numbers. Such an expression allows for a MPS representation to be
developed. The HOPS systems of equations shown in (3.10) can be expressed for a wave function:

|ψ(Z∗)⟩t =
∑
n

ψnt (Z∗)|n⟩ (5.2)

as
∂t|ψ(Z∗)⟩t = −iĤeff (Z∗)|ψ(Z∗)⟩t (5.3)

The product of sums in equation (5.1) can be implemented in terms of MPS and MPO [3]. The wave
function (5.2) is first represented as an MPS by expanding |ψ⟩t on a product of system states |l⟩ and the
introduced pseudo-Fock states:

|ψ⟩t =
∑
l,n

ψl,nt |l, n1, . . . , nK⟩ =
∑
l,n,a

Al1,a0A
n1
a0,a1 . . . A

nK
aK−1,a1 |l, n1, . . . , nK⟩ (5.4)

Each Ani
ai−1,ai

is a rank-tensor with one physical index, which is determined by the Hierarchy, and two
virtual indices, whose ranges are determined by the bond dimensions. In the MPS, the physical bond
dimension nk represents the original indexing of the HOPS. Furthermore, an MPO representation can be
gained through:

ˆHeff =
∑

l,l′,n,n′,w

W l,l′

1,w0W
n1,n

′
1

w0,w1 . . .W
nK ,n

K
K

wK−1,1|l, n1, . . . , nK⟩⟨n′
K , . . . , n

′
1, l

′| (5.5)

Where the MPO W
ni,n

′
i

wi−1,...,wi represents the matrix of local operators acting on the ith effective mode [11].
This representation gives the so-called Hierarchy of Matrix Product states construction from the wave
function. This can be achieved using the state machine method to construct this MPO [3]. It becomes nu-
merically stable to truncate the MPO order for numerical stability. Better numerical results can be achieved
by rescaling the HOPS proposed in [3].

5.2 Implementing HOMPS

To gain a matrix product operator representation of equation (3.10), one can start by representing the full
hierarchy at time t by a single quantum state:

|Ψt⟩ =
∑
l,n

Ψl,(n)
t |l, n1, n2, . . . , nK⟩ , (5.6)
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For basis states which are tensor products of system states |l⟩ and auxiliary "pseudo-Fock" states |n⟩.
To obtain a "Pseudo-Fock" representation of the wavefunction in equation (3.10), the ladder operators in
equation (5.7) must be defined and inserted into the effective stochastic Hamiltonian in (3.17).

b̂′†
k |n⟩ :=

√
nk + 1 |n + ek⟩ ,

b̂′
k |n⟩ := √

nk |n − ek⟩ ,
N̂k |n⟩ := nk |n.⟩

(5.7)

Which are used to update the full state given by equation (5.3) with the stochastic effective Hamiltonian
(5.1). To get an MPO representation for equation (5.5), the finite state machine algorithm can be used [14].
Using this approach, the MPO gained from equation (5.1) is represented as:

W [1]′ :=


−iI iL̂ i

(
L̂†
)

ĤS + iẑ∗
t L̂

0 0 0 0
0 0 0 0
0 0 0 0

 ,

W [k+1]′ :=


I 0 0 ωkN̂k

0 I 0 −dk√
|dk|

b′†
k

0 0 I
√

|dk|b̂′
k

0 0 0 I

 , k = 1, 2, . . . ,K,

(5.8)

The expectation values for a physical observable L† can be calculated as:

〈
L̂†
〉
t

= ⟨Ψ(0)
t |L̂†|Ψ(0)

t ⟩
⟨Ψ(0)

t |Ψ(0)
t ⟩

,

|Ψ(0)
t ⟩ =

∑
l,i

A
[1],l
i0,i1

A
[2],0
i1,i2

A
[3],0
i2,i3

. . . A
[K+1],0
iK ,i0

|l⟩.

(5.9)
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6 Grassmann Tensor Networks

Developing from the MPS representation introduced in the previous sections, the framework for Grassmi-
anian tensor networks, which (in this thesis) is an MPS chain where each site represents a state in the
Grassmann representation. The formalism for Grassmann tensor networks will first be introduced and then
it will later be applied to the context of fermionic coherent states.

6.1 Grassmann Tensor Product States

Using variables ηi;1,...,N as single-component Grassmann numbers can be considered as links to their re-
spective coefficient tensors Ti1,...,iN with rank N . The Grassmann tensor of rank N can then be expressed
as [7]:

Tη1η2···ηN =
1∑

i1=0

1∑
i2=0

· · ·
1∑

iN =0
Ti1i2···iN η

i1
1 η

i2
2 · · · ηiNN (6.1)

These tensor networks follow similar properties of a standard MPS chain, such as contraction and reshap-
ing, however, additional considerations due to the anti-commutation relation of the Grassmann links must
be made, as this will result in a sign change. Two Grassmann tensors of rank N and M Aη1,...,ηN and
Bζ1,...,ζ

M
respectively can be contracted from η1 to ζi as:∫

dξ̄dξe−ξ̄ξAξη2...ηN
Bξ̄ζ2...ζM

. (6.2)

Which is itself a Grassmann tensor. This contraction can be computed as:

Ci1,...,iN =
N∑
ii

Ai2,i3,...,inBi2,i3,...,iN si2,...,iN (6.3)

Where si2,...,iN is the sign factor tensor which considers the anti-commutating relations between the Grass-
mann indices and is expressed as:

si2,...,iN = Πi1,i2,...,iN × (−1)P (L)∗(
∑N

i>i1
P (i))+ΠN

i>2(P (i))
(6.4)

Where P (i) is the parity function which converts the composite index i to binary. The sign factor tensor
must be recalculated and rewritten for every contraction [7]. Numerically, these tensors were simulated
using the GrassmannTN python package [15] for this thesis.

6.2 GrassmannTN: A Python Library

This section will cover the fundamentals from a Python library called GrassmannTN [15], which allows
a user to efficiently simulate Grassmann tensor networks. This is also the library used to implement
HOGTPS,however, due to timing constraints, no results were gained. Regardless, the formalism and
structure of [15] is discussed here to show how a stochastic Hamiltonian of the form (5.1) with Grassmann
generators can be implemented.
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6.2.1 Contracting Grassmann Tensors

A generic Grassmann tensor encodes 4 types of information [7], the numerical coefficient tensor T , the
statistics of the indices, the index encoding method and the coefficient format, expressed as:

Tψ1,...,ψm,ζ1,...,ζm =
∑

I1,...,ImJ1,...,Jn

TI1,...,ImJ1,...,Jnψ
I1
1 . . . ψIm

m ζJ1
1 . . . ζJm

m (6.5)

Describing these terms in a bit more detail, the statistics determine to the type of index on each site which
can be: +1 (non-conjugate fermionic index), -1 (conjugate index) and 0 (bosonic index). This can be fur-
ther represented diagrammatically by considering the non-conjugate fermionic index to be presented as
a tensor leg with an arrow pointing from the tensor, the conjugate fermion index as a tensor leg with an
arrow pointing into the tensor and bosonic tensors having no arrow. The index encoder refers to how a
composite index I = (i1, . . . , in) is encoded as an integer. The two options are parity-preserving and
canonical encoders as shown in [7].

The advantage of the canonical encoder is that it is relatively easier to join and split tensor indices. The
parity-preserving encoder is designed to readily manifest the Grassmann parity of the specific index [7].

The two conditions which must be met before contracting two Grassmann tensors are that they must have
the same dimension and have the opposite statistics. The contraction between two Grassmann tensors
Aψ =

∑
I AIψ

I and Bζ =
∑
J BJζ

J can be calculated as:∫
ψζ
AψBζ =

∑
{i}

(Πa>b(−1)iaib)Ai1...inBi1...in =
∑
I

σIAIBI (6.6)

6.2.2 Joining and Splitting Grassmann Tensors

Grassmann tensors can also be reshaped similarly to traditional tensors, however, the process of joining
and splitting tensor legs introduces an additional sign factor to the coefficient tensor T which must be
considered. This can be understood in algebraic terms as joining the Grassmann algebra encoded on
each leg into a single Grassmann algebra. This is done in two steps [5], first by combining the algebras
using a direct sum and finally forming the resulting Grassmann algebra (m) into a graded tensor product
of t:

t = v1 ⊕ . . .⊕ vm ⊕ u1 ⊕ . . . un ; m = C ⊕ t ⊕ (t ⊗ t) ⊕ · · · ⊕ (t ⊗ t ⊗ · · · t)︸ ︷︷ ︸
m+n

. (6.7)

The first equation in (6.7) represents the direct sum of the Grassmann algebra, and the second equation
in (6.7) forms the resulting direct sum into graded tensor products. The process of joining Grassmann
algebras is useful when considering reshaping the Grassmann tensors as well.

6.2.3 Grassmann Tensor Decomposition

Similar to the SVD method mentioned earlier for generic tensors, Grassmann tensors can be decomposed
using singular values [7];

Mψ,ϕ =
∫
η̄η,ζ̄ζ

Uψ̄ηΣη̄ζVζ̄ϕ (6.8)

Where U and V are unitary matrices and
∑

¯etaζ =
∑
I λIσI η̄

IζI is the singular value matrix. For a general
Grassmann tensor network, the SVD decomposition can be expressed as:

Tψ1···ϕ̄1···i1···ψ′
1···ϕ̄′

1···k1··· =
∫
η̄η,ζ̄ζ

Uψ1···ϕ̄1···i1···ηΣη̄ζVη̄ψ′
1···ϕ̄′

1···k1···, (6.9)

Where Ση̄ζ is, just as before, the diagonal singular value matrix.
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As mentioned earlier in this section, the initialization and operations of Grassmann tensors are performed
using the GrassmannTN python package [15].

6.3 Fermion Coherent State Representation of GTPS

A simple Grassmann tensor network representing an electron-level filling state can be given as [8]:

ψf ({mi}) =
∫

ΠiT
mi
i ΠijGij (6.10)

Where the tensors Tmi
i and Gij are compact representations of the Grassmann components within the

tensor network, given as:
T 1
i = dθi, T 0

i , Gij = 1 + uijθiθj
(6.11)

Where θi are the Grassmann numbers acting on site i introduced in the earlier section. The integral ∈ is
the Berezin integral and it only integrates the Grassmann numbers. Tensors Tmi

i can be understood as a
dimension-1 tensor and Gij as a dimension-1 rank 2 tensor on site ij

A Fock basis representation also exits [16] and is straightforward to derive, however, due to the anti-
commutating relations for different Grassmann numbers, the ordering for different local Grassmann tensors
Tmi
i;ak,al,...

, must always be checked, which negatively influences the numerical simulation of such a tensor
network. A Fermionic coherent representation is shown in [8], where the basis of the fermionic wave-
functions is independent of the ordering of local Grassmann tensors, addressing the numerical simulation
issue. A fermionic tensor product state can be expressed as:

|ψ⟩ =
∑

{mi}

∑
{aI}

∫
Πi[c†

i ]
miTmi

i;ak,al,...
ΠijGij,aIaJ |0⟩ (6.12)

Where mi = 0, 1 represents the fermionic occupation numbers which are conserved through Pauli’s ex-
clusion principle. The Grassmann tensor product wave function can be derived under the Fock basis:

|Pii(ci)mi |0⟩ = (c†
1)m1(c†

2)m2 . . . |0⟩ (6.13)

Implementing the over complete fermion coherent state basis:

|η⟩ = Πi(1 − ηic
†
i )|0⟩ (6.14)

By using the closure relation:
Πidη

∗
i dηi(1 − η∗

i ηi)|η⟩⟨η| = 1 (6.15)

The matrix Grassmann tensor product can be achieved for an arbitrary fermionic MPS tensor:

⟨η|η⟩ =
∑

{mi}

∑
{aI}

∫
Πηmi

i Tmi
i;akaL

ΠijGij;aIaJ (6.16)

A cleaner expression can be gained if the Grassmann tensor Tmi
i;ak,al

, . . . is redefined as:

Tmi
i;ak,al,...

=
∑

{laK
K }{lal

L }

T
mi;{laK }{laL

L }
i;ak,al,...

η∗mi
i ΠI∈iΠaI

(dθaI
I )lI aI (6.17)

The wavefunction can then be expressed as:

ψ(η∗) =
∑

{mi},{aI}

∫
ΠiT

mi
i;ak,al,...

ΠijGij;aIaJ (6.18)
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The main advantage of the newly expressed wave function (6.18)) is that it always contains an even number
of Grassmann numbers [16], therefore, this wavefunction is completely independent of the ordering of
those local Grassmann tensors Tmi

i;ak,al,...
, which significantly improves the simulation efficiency for such

tensor networks. Another advantage of expressing the wave function in the representation (6.18) is the
convenience of calculating local physical quantities [7]. The norm of this tensor product can be expressed
as a tensor trace of Grassmann tensor network and other local physical quantities such as energy can be
expressed as a trace of Grassmann tensor networks. The norm of the wave function (6.18) is calculated
as: ∫

Πidη∗
i ηi(1 − η∗

i ηi)ψ∗ηψ∗η∗ =
∑
{pI}

∫
ΠiTi;pKpL...ΠijGij;pIpJ (6.19)

For local operators containing c† and c, these terms need to be mapped to Grassmann numbers and inte-
grated using the Berezin integral with respect to a proper measure. An example of calculating the norm of
the fermion occupation number is shown in A1.2

Performing standard tensor network operations on Grassmann tensor networks follows similar method-
ologies, however, additional considerations arising from the anti-commuting variables and the nature of
Grassmann variables must be considered as well. A few of these operations which are important for the
next section will be introduced here.
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7 Hierarchy of Grassmannian Tensor Product
States

In the HOMPS ansatz (5.2), pseudo-occupation states were defined as the basis for developing a ma-
trix product state/operator ansatz. It was seen earlier that a similar type of matrix product state can
be developed from a set of Grassmann generators in section (1). Similarly, one can introduce pseudo-
Grassmannian generators to reformulate the HOPS ansatz as a Grassmann tensor product state.

The main goal is the express the fermionic hierarchy of pure states Ansatz (3.17) into a tensor product
state. This was difficult to do earlier as the FHOPS is expressed in the Grassmann basis satisfying Grass-
mann algebra and a matrix representation was not trivial to obtain. However, as seen in the "Grassmann
Tensor Network" section, the Grassmann generators are considered as the links in the tensor network.
The fermionic coherent state representation for Grassmann tensor networks (6.12 ) can be used as an
alternative approach as an Ansatz [8], however, a more general Ansatz will be used (6.5). The former will
be more advantageous numerically as this formulation immediately has an even number of Grassmann
generators. However, the simplicity in coding the Ansatz (6.5) is preferred.

The formulation is straightforward, developing further from the HOMPS Ansatz (5.2) by using the gen-
eralized Weyl-Heisenberg algebra (2.16), the Fock states can be represented by Grassmann generators.
First we represent the "pseudo"-Fock states in the fermionic basis:

ĉ′†
k |n⟩ := (−1)

∑
l<k

nl · (1 − nk) |n + ek⟩ ,

ĉ′
k |n⟩ := (−1)

∑
l<k

nl · nk |n − ek⟩ ,

N̂k |n⟩ := ĉk ĉ
†
k |n⟩ := nk |n.⟩

(7.1)

Where ĉk and ĉk† are fermionic creation and annihilation operators. After expressing the FHOPS (3.17) into
the HOMPs ansatz for pseudo-Fock states {|n⟩} with |n⟩ = |n1, . . . , nK⟩ and in the fermionic basis as in
equation (7.1). Following the same recipe as in [3] for bosonic operators. can be followed for fermionic
operators. The following effective stochastic Hamiltonian is achieved, gaining a fermionic hierarchy of
matrix product states (FHOMPS) Ansatz:

Ĥeff =ĤS + iL̂Z∗
t − i

K∑
k=1

νk ĉ
†
k ĉk −iL̂†

K∑
k=1

√
|dk|ĉk + iL̂

K∑
k=1

dk√
|dk|

ĉ†
k (7.2)

Z∗
t is the stochastic Grassmanian noise (Z∗

t = −i
∑
i g

∗
i e
iωit∂/∂ηi). From [4], the Grassmann algebra is

isomorphic to the algebra of creation and annihilation operators for fermions with the following correspon-
dence:

c†
i 7→ ηi , ci 7→ ∂/∂ηi (7.3)

Using this correspondence, a quick mapping can be performed to represent the FHOMPS Ansatz in terms
of Grassmann generators. This expresses the effective stochastic Hamiltonian as :

Ĥeff = ĤS + iL̂Z∗
t − i

K∑
k=1

νkηk
∂

∂ηk
− iL̂†

K∑
k=1

√
|dk|

∂

∂ηk
+ iL̂

K∑
k=1

dk√
|dk|

ηk (7.4)
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Using the correspondence defined in equation (2.20), a non-conjugate Grassmann polynomial (ηi) results
in increasing the total number of Grassmann generators by one and a differential Grassmann operator
(∂/∂ηi) results in decreasing the total number of Grassmann generators by one.

c†
i |ni⟩ 7→ en+1(θ⃗li) , ci|ni⟩ 7→ en−1(θ⃗li) (7.5)

Where n is the total number of elements in the pseudo-Fock space in the fermionic basis in equation (7.1)
and θ⃗ = (θi1 , θi2 , . . . , θin). The effective stochastic Hamiltonian can now be expressed in terms of raising
and lowering Grassmann generators:

Ĥeff = ĤS + iL̂− i
∑
i

g∗
i e
iωit · en−1(θ⃗li) − i

K∑
k=1

νken+1(θ⃗li) · en+1(θ⃗li)

−iL̂†
K∑
k=1

√
|dk|en−1(θ⃗li) + iL̂

K∑
k=1

dk√
|dk|

en+1(θ⃗li)
(7.6)

The Grassmann generators here serve as links within the Grassmann tensors network and the coefficients
in (7.4) become the coefficient tensors in (6.5). The expression in (7.4) assumes that the system Hamilto-
nian ĤS is bosonic, however, if the system Hamiltonian contained fermionic terms, a similar mapping (7.3)
can be used.

The Hamiltonian in equation (7.6) can be efficiently coded symbolically using GrassmannTN [15]. Using
this library, a matrix representation of equation (7.6) can be achieved, converting the symbolic Grassmann
expressions into a matrix format representing the Fermionic basis while considering the parity sign of each
matrix element, giving a form similar to the MPS equation (5.6). The finite state machine algorithm could
also be applied to equation (7.4) to gain a Grassmann tensor product operator. This will give a form:

W [1]′ :=


−iI iL̂ i

(
L̂†
)

ĤS +
∑
i g

∗
i e
iωit∂/∂ηi · L̂

0 0 0 0
0 0 0 0
0 0 0 0

 ,

W [k+1]′ :=


I 0 0 ωkηk

∂
∂ηk

0 I 0 −dk√
|dk|

ηk

0 0 I
√

|dk| ∂
∂ηk

0 0 0 I

 , k = 1, 2, . . . ,K,

(7.7)

The MPO in (7.7) assumes that the system Hamiltonian H̄S consists of bosonic operators (bosonic sys-
tem). An alternative approach for The TDVP algorithm can be directly performed on Hamiltonian (7.6) after
it is first expressed symbolically using GrassmannTN [15]. The sign factor must be considered after con-
tracting, splitting or joining the Grassmann tensors. I attempted this approach to simulate (7.6), however,
as mentioned earlier, timing restrictions didn’t allow any further progress.

This approach can be used to simulate open quantum systems consisting of either fermionic/bosonic
baths or system Hamiltonian, even a hybrid mix of fermionic bath and bosonic system. Obtaining numeri-
cal results to benchmark the stochastic Hamiltonian in equation (7.4) will be the next step in the future.



23

8 Quantum Impurity Models and Implementing
HOMPS

The general class of quantum impurity models describes a localized, discrete quantum system [17]. The
impurity is coupled to a bath, which is a noninteracting excitation with a continuous (non-discrete) excita-
tion spectrum. The initial motivation to develop quantum impurity models was to explain certain anomalies
in the resistivity of magnetic alloys [18].

These models have now become ubiquitous in current-day research, especially in quantum technologies.
One of the reasons is that the impurity can be considered classified as a quantum system of interest itself,
a component of a quantum-sensing device or act as a scatterer in a host material [19], [20]. Major research
goals are the dynamical and coherent control and read-out of their quantum state and the minimization of
decoherence effects due to their coupling with the environment. An example of such an experimental re-
alization is considering impurities as quantum sensors to read out properties of nearby quantum systems
with high sensitivity [20].

A second motivation to investigate quantum impurity models is that they are perfect testbeds for ana-
lytical and numerical techniques in quantum many-body physics [17]. Few-level quantum impurity systems
coupled with infinitely many environmental degrees of freedom are often suitable starting points to develop,
test and compare different analytical and numerical approaches.

An initial Hamiltonian used to describe such an impurity system was proposed originally by Feynmann
and Vernon [21], where they described the environment in terms of a bath of harmonic oscillators as
shown in equation (8.1).

Ĥ = −ĥ · S + Ĥ0 + Ĥenv[ĥ] (8.1)

Where ĥ describes the environmental degrees of freedom coupled with the impurity and Ĥ0 describes the
impurity within the total quantum system.

The goal to understand the thermodynamics and dynamics of quantum impurity models led to the develop-
ment of many ground-breaking numerical methods such as renormalization group methods [11], functional
integral techniques for in-and-out of equilibrium [22] and many more. However, a striking difficulty regard-
ing both analytical and numerical calculation occurs due to the interaction term in the Hamiltonian, as its
general form consists of the Feynmann-Vernon functional integral.

Common approaches to circumvent this functional term are to employ Markovian approximations or Zero
Order Functional Estimation (ZOFE) in the case of NMQSD. HOPS however provides another ansatz to
obtain exact, non-markovian stochastic numerical solutions.

Numerical results are shown for the bosonic impurity models, however, the purpose of the fermionic im-
purity models is to explore and set up the motivation to implement the HOGTPS in the future, continuing
from this thesis.
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8.1 Bosonic Impurity Models

Considering an impurity and bath that follows bosonic statistics, the spin-boson model is one of the central
paradigms. The quantum mechanical two-state system (spin 1/2 or qubit) interacting with a bosonic bath
is the simplest model to describe the effect of an environment on constructive and destructive interfer-
ence [17]. Its comprehensive investigation of decoherence and damping on quantum systems results in
numerous applications ranging from electron transfer to quantum information processing [20].

The characteristics of the harmonic bath in contact with the two-state system are captured by the spectral
density function of the bath [2]. A special case in the spin-boson model is considering an ohmic spectral
density. This implies that the impurity is damped equally at all frequencies [2].

The respective Hamiltonian for this model is given by:

H̃ = −ℏ∆0
2 σx − ℏε

2 σz + 1
2σzℏ

∑
k

λ̃k
(
b̃†
k + b̃k

)
+
∑
k

ℏω̃k b̃+
k b̃k (8.2)

Where b̃†
k and b̃k are the creation and annihilation operators of the k-th bath mode with frequency ω̃k. The

Spin-Boson model, like the quantum impurity model consists of three parts. The impurity, the environment
and the interaction between the two.

The first term in (8.2) describes the two-state system; a spin1/2 impurity, which can be tuned via the
tunnelling parameter ∆ and the additional bias ϵ. σx and σz represent Pauli Matrices. The second term in
(8.2) represents a non-charged, non-interacting environment which is characterized by non-interacting har-
monic oscillators with frequencies ωi. The corresponding occupation numbers are given by the standard
operator ni = b̃†

k · b̃k. The final term in the (8.2) corresponds to the interaction term. The z-th component
of the spin couples linearly to each oscillator mode with λi specifying the coupling strength.

The spectral density of the bath nodes is assumed to have a Lorentzian peak at the characteristic fre-
quency Ω but behaves Ohmically at low frequencies with a coupling strength α = J(ω)

ω . The Ohmic spectral
density is formulated as:

JOhm(ω) =
∑

ν2
k∆ (ω − ωk) = κωe−ω/ωc (8.3)

Where ωc is a cut-off frequency. κ is a dimensionless parameter describing the coupling strength between
the impurity (spins) and the bosons in the bath. The exponent in the spectral density function characterizes
the distribution of the bath modes. There are three different regions for this exponent which lead to different
properties of the model: the super-ohmic case ( ωωc

> 1), the ohmic case ( ωωc
= 1) and the sub-ohmic case

( ωωc
< 1).

The coupling term κ shows profound significance towards characterizing the model as it aids in explaining
the phases and the respective phase transition within the model, making it the ordered parameter accord-
ing the Landau’s theory. The two phases exhibited by the spin-boson model are the delocalized phase and
the localized phase. The delocalized phase describes a tunnelling between the σz eigenstates outweighs
the coupling in the z-direction leading to a weak coupling phase. This results in the ground state consisting
of a superposition of spins directed in the up and down direction leading to a vanishing magnetization in
the coupling direction (σz = 0 ). The localized phase is the strong coupling phase, where the spins are
localized in the direction of bath coupling leading to a two-fold degenerate ground state with finite magne-
tization.

At zero temperature, a quantum phase transition can occur between the localized and the delocalized
phase which is controlled by the coupling parameter. In the super-ohmic case, no phase transition occurs
as the spin is always delocalized and no average magnetization is present. In the ohmic case, both lo-
calized and delocalized phases are present and the system undergoes a Kosterliz-Thouless transition in
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1-D [22]. In a sub-ohmic bath, a second-order quantum phase transition between the localized phase and
the delocalized phase takes place.

Equation (8.2) characterized by equation (8.3), cannot be generally solved explicitly as of its infinite di-
mension. Even suitable truncations of each harmonic oscillator do not solve this problem. However, since
the original motivation is to model the dynamics of the system part including dissipation, the main task
should be to calculate the non-unitary dynamics of the reduced density matrix:

ρsys(t) = Trenvρ(t) (8.4)

Where the total state ρ(t) evolves unitarily according to the Von-Neumann equation iρ̇(t) = [H, ρ(t)] and
Trenv denotes the partial trace over the environmental modes. under suitable conditions, the reduced dy-
namics can be calculated efficiently in a perturbative manner using time-local master equations. However,
when leaving the perturbative regime the calculation of the reduced dynamics becomes substantially more
challenging.

8.1.1 Realization of Spin-Boson Models

Platforms for quantum simulations are a test bed for many theoretical predictions for many-body physics.
Engineering these platforms requires extreme precision and control of the system to replicate the nature
of such a system established by the theory, for example, if a canonical ensemble is used or if the par-
ticle statistics are fermionic or bosonic. Engineering such a protocol would be efficient if it is supported
by numerics predicting how such a platform would exhibit properties of the theoretical model (dissipative
dynamics, phase transitions, etc.)

A one-dimensional transmission line can be used to engineer the required ohmic resistance. A one-
dimensional transmission line is understood as an ensemble of harmonic oscillators with a fixed cutoff
frequency [23].To give a brief overview of how different platforms could be used to realize a spin-boson
model, some examples (which are explored more in detail later) are:

1. Superconducting transmission lines shown in figure (8.1a):

• With charge qubits built out of Cooper pair superconducting boxes coupled to transmission
lines, the dissipative spin-boson model can be realized.

• The charge Qubit can be seen as a spin-1/2 particle that corresponds to the two degenerate
charge states.

• The gate voltages of the transmission lines act similarly to an effective magnetic in the spin-
boson model as it can control the two charge states.

• Placing the gate-source in series with an external resister describes a spin-boson model with
ohmic dissipation [23].

2. Ultra-cold atoms shown in figure (8.1b):

• Spin-1/2 particles can be engineered with one atom in a tight optical trap limit [24].

• Bath modes refers to sound modes of a 1-D Bose-Einstein condensate [24]

• Coupling between the bath and the optical trap is mediated through optical Raman transitions
and collisional interactions [25]

Both cases here describe a situation with Ohmic dissipation, which is important as it allows for easy
implementation of the HOMPs algorithm. The main reason is that the bath correlation function has a
simple form which eases the hindrances on the numerical stability while performing HOMPs. Several other
platforms have also been realised experimentally for the spin-boson model, advancing the field of quantum
simulations. A few examples of different platforms are circuit-QED arrays [26] and edge states of quantum
Hall systems [27].
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(a) An array of Josephson Junctions in series to gain an
ohmic dissipation of the spin-boson model [23].

(b) Cold-atom setup that can either host one or no particle
of an arbitrary atomic species b with one-site interactions
Ubb that describes the spins. Which are coupled to a BEC
through scattering gab and Raman coupling (red arrows)
to another atomic species a confined to trapping potential
Va(x) [24]

Figure 8.1 Spin-boson engineering. Realizing the spin-boson model with ohmic dissipation in superconducting
circuits (a) and cold-atoms (b)

Spin-Boson Model

The Hamiltonian for a spin-boson model in a thermal bath is similar to the Hamiltonian in equation (8.2).
As the engineered platforms of ultra-cold atoms and Josephson junctions are in the low temperature and
high damping limits, this will be also considered in the simulation for the spin-boson model in a thermal
bath. Using the Hierarchy of Matrix Product States, the dissipative dynamics for such a model can be
numerically approximated and is shown in figure (8.2). The MPO for the effective stochastic representation
of the spin-boson Hamiltonian (8.2) is given in equation (8.5).

W [1]′ :=


−iI i(1

2 · σzλ̄k) i(1
2 · σzλ̄k)† −ℏ∆0

2 σx − ℏε
2 σz + iẑ∗

t σz
0 0 0 0
0 0 0 0
0 0 0 0

 ,

W [k+1]′ :=


I 0 0 ωkN̂k

0 I 0 −dk√
|dk|

b′†
k

0 0 I
√

|dk|b̂′
k

0 0 0 I

 , k = 1, 2, . . . ,K,

(8.5)

In the spin-boson model, the system Hamiltonian is defined as H̄s = −ℏ∆0
2 σx − ℏε

2 σz and the interaction
operator L̂ is given by σz.The noise generation ẑt

∗ for the bosonic bath is generated by the stochastic
Gaussian noise. In the following tensor network simulations, N = 2000 realizations were used with a
truncation of hierarchy order Ntrunc = 10 and a maximum bond dimension of χmax = 10

Spin-Boson in Ladder Systems

Originally proposed by [25], a spin-boson model can be realized using ultra-cold atoms. First consider
the system defined on a ladder geometry, which is the low energy excitations of a two-legged bosonic
ladder [25]. In [22], the researchers propose that such a ladder geometry on a lattice where the spin-1/2
is used to probe a Mott-Superfluid transition. Such a setup consisting of a ladder geometry is illustrated
in figure (8.3). The interaction between the double-well system (Us) has to be sufficiently strong such that
a state with one atom on the two wells is realized. The rest of the ladder forms the environment(bath).
Since the two locations of the double-well potential correspond to the two different polarization states of
a spin-1/2 particle, a particle can hop to and from the impurity with the amplitude t∥,s, which the hopping
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Figure 8.2 Dissipative Dynamics of a Spin-Boson model in a highly damped regime in the presence of a low-
temperature thermal bath. N = 2000 realizations, Ntrunc = 10 and bond dimension ξ = 10 were used for this
HOMPS simulatio

amplitude of the particle exchange between the spin and the bath respectively. The Hamiltonian is defined
as:

Ĥ =
∑
q

ν|q|b†
a,qba,q + σz

2
∑
q ̸=0

λq
(
b†
a,q + ba,−q

)
+ (nVx + ∆0)σx

λq = ν

√
π|q|
L

(
aVz
2πν

√
K − 1√

K

)
.

(8.6)

The parameters in equation (8.6) are defined in the table below:

a ba,q ∆0 L n U v K

Lattice Spacing
Bosonic mode coupled to
Impurity mode

Direct Tunnel Coupling
Total Length
of the ladder

Filling of the
bath

one-site Bose-Hubbard
interactions

speed of sound associated
to the symmetric mode of bath

Luttinger parameter

The speed of sound associated with the mode of the bath and the Luttinger parameter are defined as [28]:

ν = a
√

2nt∥U, K = 2π

√
nt∥
2U (8.7)

Where t∥ are amplitudes of hopping between different sites in the bath. To finally identify an ohmic spin-
boson model, coupling amplitudes Vz and VX have to be defined as:

Vz = −t2∥,s

(
1

µ+ Un
− 1
V⊥,s − µ

+ 1
Us − µ

)
,

Vx = −t2∥,s

(
1

µ+ Un
− 1
V⊥,s − µ

)
.

(8.8)

Where µ is the chemical potential and V⊥,s is the on-site interaction terms for the Bath. A dimensionless
parameter α which can identify the which dissipative regime the model is in (damped, underdamped,
critical) for a Hamiltonian (8.6) is defined as:

α = 1
2K

(
Vx
2U − 1

)2
(8.9)
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Figure 8.3 Model of the spin-impurity coupled to the low-energy excitations of the two-leg bosonic ladder [22]

These different regimes can be seen in the phase diagram of this model. In [22], by fixing the chemical
potential in the ladder, the mean density is fixed n = 1. A Kosterlitz-Thouless type transition is observed
in the phase diagram [28]. When α is zero, the phonons become suppressed due to charge quantization
and the Luttinger parameter of the bath is renormalized to zero, resulting in the complete decoupling of the
spin from the bath. When α < 1

2 , the Rabi oscillations are in the underdamped regime and when α > 1
2

the system is in the overdamped regime [29].

Using the finite-state machine algorithm [14], the MPO for the ladder spin-boson model is given by:

W [1]′ :=


−iI i(1

2 · σzλ̄k) i(1
2 · σzλ̄k)† (nVx + ∆0)σx + iẑ∗

t (1
2 · σzλ̄k)

0 0 0 0
0 0 0 0
0 0 0 0

 ,

W [k+1]′ :=


I 0 0 ωkN̂k

0 I 0 −dk√
|dk|

b′†
k

0 0 I
√

|dk|b̂′
k

0 0 0 I

 , k = 1, 2, . . . ,K,

(8.10)

In MPO (8.10), the interacting parameter λ̄k is given by equation (8.6), which encodes the information
about the coupling amplitudes of the double-well, speed of sound in the bath mode and the Luttinger pa-
rameter which all characterize the ultra-cold experiment. Using the values for the parameters in equation
(8.6) found in [22], the dissipative dynamics for such an operator can be simulated using HOMPS (8.10).
The results are shown in figure 8.4. The Rabi oscillations can be seen in figure (8.4) and are similar to
the oscillations shown in figure (8.4). Since [22] only considers the coherent regime of the dissipative
parameter (8.9), such Rabi oscillations are expected. Therefore, the platform for such a ladder geometry
using ultra-cold atoms with appropriate system settings (Luttinger parameter, tunnelling values, etc.) could
be ideally used to an extent to simulate the spin-boson model experimentally. This numerical simulation
does not take into account several other experimental parameters which could directly influence the dy-
namics of the spins within such a system, therefore, this result does not completely justify using ultra-cold
atoms, although from a numerical standpoint, the arguments are supported and are in agreement [25].
The Hamiltonian (8.6) is shown to be in agreement regardless with the spin-boson model [25].
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Figure 8.4 Dissipative dynamics of a spin-boson model simulated using an engineered Hamiltonian ultra-cold atoms
in a ladder geometry within the high damping regime and low temperature. N = 2000 realizations, Ntrunc = 10 and
bond dimension ξ = 10 were used for this HOMPS simulation

Realizing Spin-Boson model in Josephson Circuit

Developing from the ladder geometry spin-boson model discussed in the previous section, a similar geom-
etry can be understood for superconducting systems intuitively by considering a two-level system which
corresponds to two charged states on such a system [23]. Summarizing the idea proposed by [23], the
states in a superconductor can be modelled by harmonic oscillators by describing the quantum excitations
in two long transmission lines as Harmonic oscillators. An illustration is given in Such a model can be
energetically described through the Hamiltonian at half-filling (8.11) [30]:

Ĥ =
∑
k>0

νa|k|
(
b†
akbak + 1

2

)
− hx

2 σx − EJ
2 σx −

∑
k>0

λk(bak + b†
ak)

σx
2 (8.11)

The symmetric ladder operators bak in (8.11) are combinations of the operators (blk and brk) that cre-
ate/destroy an excitation in mode k in the left and right transmission lines. The effective tunnelling of
Cooper pairs from the left to right transmission lines is characterized by an effective Josephson coupling
EJ (which is analogous to the spin-boson model as the transverse parameter ∆0 in equation (8.2)). To
characterize the different dissipative regimes for the Hamiltonian (8.11), the dissipative parameter α [22]:

α = 2R
RQ

(γ2
l + γ2

r ) (8.12)

In equation (8.12), RQ is the quantum resistance given by 2π
(2e)2 for a Cooper pair charge of 2e, R is the

internal resistance of each transmission line and finally, l and γr are the effective dimensionless couplings
of the qubit on the left and right transmission lines respectively. The different damping regimes are char-
acterized by the same values for α as in the ultra-cold atom model (8.6).
To perform the HOMPS simulation, the effective stochastic Hamiltonian has to be defined. Following the
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similar approach in the last two subsections, we first define an MPO using the finite-state machine algo-
rithm [14]. The MPO is defined in equation (8.13).

W [1]′ :=


−iI i

(
1
2λkσx

)
i
(

1
2λkσx

)†
−hx

2 σx − EJ
2 σx + iẑ∗

t

(
1
2λkσx

)
0 0 0 0
0 0 0 0
0 0 0 0

 ,

W [k+1]′ :=


I 0 0 ωkN̂k

0 I 0 −dk√
|dk|

νa|k|b′†
k

0 0 I
√

|dk|νa|k|b̂′
k

0 0 0 I

 , k = 1, 2, . . . ,K,

(8.13)

Since in the Hamiltonian for the Josephson circuit (8.11), the system Hamiltonian is defined as Ĥs =
−hx

2 σx − EJ
2 σx and the exchange operator is L̂ = 1

2λkσz. With the MPO in (8.13) and the parameter
values for the effective Josephson coupling EJ , the dimensionless coupling between the qubits γl and γl,
and the dissipative parameter in equation (8.12) is given taken directly from [22], the HOMPS simulation
can be performed. The results from are shown in figure (8.5) The first few seconds in figure (8.5) display the

Figure 8.5 Dissipative dynamics of a spin-boson model simulated using an engineered Hamiltonian consisting of
superconducting Josephson Junctionsin a ladder geometry within the high damping regime and low temperature. N
= 2000 realizations, Ntrunc = 10 and bond dimension = 10 were used for this HOMPS simulation

Rabi oscillations which are expected for a spin-boson model, however, after t = 5 seconds the numerical
results appear to be unstable. This could be due not properly choosing the bond dimension in the HOMPS
tensor network, or instabilities that arised from including the values for the parameters in the engineered
Josephson junction Hamiltonian (8.11) gained from [22].
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8.2 Fermionic Impurity Models

Preliminary research was done regarding the physics of fermionic impurity models. Although no numerical
results are available to be shown, the theory supporting these models is presented in this section along
with a derived Ansatz for how the HOGTPS method for the one-qubit in a fermionic environment case.

The study of Fermionic impurity models has a lot of attention due to its applications in quantum optical
systems, As these systems comprise one or multiple few-level quantum systems coupled to a dissipative
environment [31]. Especially in modern quantum technologies, particular interest in systems of quantum
emitters in structured baths (environments with non-trivial spectral properties) [32].

Coupling a single excited emitter to a bath with a gapped band structure can lead to fractional decay
due to population trapping in an emitter-bath bound state [33]. Such bound states can mediate purely
coherent long-range interactions between multiple emitters, enabling the diverse simulation of quantum
many-body models [32]. These structured baths also give rise to a variety of novel dissipative phenom-
ena, such as chiral emission dynamics and non-exponential decay [33].

In condensed matter theory, fermionic impurity models play a significant role in a variety of systems,
an example of this is individual localised fermionic impurity levels can affect transport properties in meso-
scopic systems [31], and their presence in superconductors can lead to the emergence of localised quasi-
particle states or Majorana modes [31]. Recent proposals of cold-atom matter-wave analogues to tradi-
tional waveguide QED setups provide a quite natural pathway to explore these models from a quantum
optics perspective [31]

The free-fermion formalism will be considered in this section. Fermionic impurities are described by cre-
ation and annihilation operators c̃†

k and c̃k which follow anti-commutation relations (CAR). These impurities
are coupled via local tunnelling to a d-dimensional spinless fermionic bath of L(d sites. The bath modes

are therefore described as operators
{

b†
j , bj

}Ld

j=1
.

The respective Hamiltonian is defined as:

HS = ∆
∑
n

c†
ncn

HB = 2dJ
∑
j

b†
jbj − J

∑
⟨j,j′⟩

(
b†
jbj′ + H.c.

)
,

V = g
∑
n

(
c†
nbjn + H.c.

)
.

(8.14)

Where HS represents the impurity subsystem, HB is the bath Hamiltonian and V is the interaction Hamil-
tonian describing the coupling between the impurity and bath as in the bosonic case. The main differ-
ence here is that the impurity Hamiltonian and the bath Hamiltonian anti-commute with each other due to
the presence of fermions. Setups considering commuting bath-impurity models have also been consid-
ered [33] but will not be focused upon in this thesis.

The bath Hamiltonian in (8.14) can be diagonalized using a Fourier transform since a property of the
bath Hamiltonian is that it is translational-invariant and it has a single site per unit cell. This results in:

HB =
∑

k

ωkb
†
kbk

V = g√
Ld

∑
n,k

(
eik·rnc†

nbk + H.c.
) (8.15)

Where the shorthand notation rn = rin denotes the position of the j-th bath site.
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The spectrum consists of a single band ωk ∈
[
0, 2d+1J

]
, and the one-site potential ∆ constitutes a detun-

ing for the lower band edge. The spectrum is modelled using the dispersion relation of 8.14 which is given
as ωk = 2J(1 − cos(k) for d=1.

Since the Hamiltonian in (8.14) conserves the particle number, studying the dynamics produces a well-
defined number of particles for a given initial state, allowing a restriction to a smaller subspace within the
Hilbert space consisting of the same number of particles. While considering the thermodynamic limit, the
Fermi-level or the filling fraction is defined in terms of the ground state of HB with the highest energy of
occupied bath eigenmodes. The ground state is given as:

|FS⟩ =

 ∏
ωk<EF

b†
k

 |vac⟩ (8.16)

Where "FS" stands for the Fermi sea and "vac" denotes the vacuum state. A Fermi level less than or
equal to zero identifies an empty bath, whereas a level greater than 2d+1J corresponds to a fully occupied
bath. By replacing the impurity and bath modes with spin and boson operators, the standard Hamiltonian
employed in quantum optics to describe quantum emitters coupled to structures (photonic) environments
is recovered from equation (8.14).

Implementing the Free-Fermion formalism is non-trivial in this context as the Hamiltonian described in
(8.14) is quadratic in fermionic operators, reflecting the fact that the fermions are non-interacting.

Considering M independent fermionic creation and annihilation operators {ψ†
l , ψl}Ml=1. Assuming a com-

plete set, the states {|ψl⟩ = ψ†
l |vac⟩}Ml=1 form an orthonormal basis of the single-particle Hilbert space. A

basis of the whole many-body Hilbert space is then given by the Fock states: |n⟩ ≡
(
ψ†

1

)n1
. . .
(
ψ†
M

)nM |vac⟩
where the state can be either 0 or 1 due to Pauli’s exclusion principle. For an arbitrary quadratic operator
O =

∑
l,mOlmψ

†
lψm, the expectation value can be expressed as:〈

n′∣∣O |n⟩ =
∑
l,m

Olmn
′
lnm∆n′−el,nem

×(−1)
∑

j<l
n′

j+
∑

j<m
nj

(8.17)

The expectation value in (8.17) is non-vanishing only if the bra and ket have the same number of particles
and differ at most by one pair of occupation numbers, meaning only diagonal elements are non-vanishing.
The single-particle eigenmodes {ϕ†

l , ϕl}Ml=1 as they diagonlize the Hamiltonian as H =
∑
l εlϕ

†
lϕl. With

this, the ground state for a given Fermi level is:

|GS⟩ =

 ∏
εl<EF

ϕ†
l

 |vac⟩ (8.18)

Since the Hamiltonian (8.14) is quadratic, a further conclusion that can be made is that it is linked with the
theory of Gaussian states, since Gaussianity is preserved under the evolution with a quadratic Hamilto-
nian [32]. A property of Gaussian states is the fact that any even-ordered correlations can be expressed
entirely in terms of 2-point correlations according to Wick’s theorem. Therefore, Gaussian states are
characterised fully by their covariance matrix [32]. This is important as this characteristic allows for the
stochastic description of the evolution of the wave equation in (8.14).

For a non-Markovian stochastic equation for an open system coupled to a fermionic bath, in the inter-
action picture, the Hamiltonian is [34]:

Ĥtot(t) = Ĥs +
∑
i

(g∗
i e
iωitĉ†

i L̂+ gie
−iωitL̂†ĉi) (8.19)
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Where Ĥs is the system Hamiltonian, ĤB : is the bath Hamiltonian (consisting of fermions) and Ĥint

is the interaction Hamiltonian. The FHOPS representation in equation (3.17) can be gained from (??).
Furthermore, the effective stochastic Hamiltonian can be defined as

Ĥb =
∑
i

ωiĉ
†
i ĉi,

Ĥint =
∑
i

(g∗
i ĉ

†
i L̂+ giL̂

†ĉi),
(8.20)

To apply the HOGTPS Ansatz, the effective stochastic Hamiltonian must be defined from the Hamiltonian
(8.14).

From this short introduction to Fermionic impurity models, it can be seen that the tools mentioned and
developed in the previous sections can be easily applied within this context. We first start by writing the
total Hamiltonian in equation (8.14) as a stochastic Hamiltonian by introducing the Grassmannian noise
process (as the bath consists of fermions). The effective stochastic Hamiltonian can be written as analo-
gously to equation (7.2). A toy model will be first considered before moving to the Kondo Model.

8.2.1 One-Qubit Dissipative Model

As the title suggests, the toy model consists of a qubit (system) in a fermionic bath. The total Hamiltonian
for the one-qubit dissipative model is defined as [34]:

Ĥtot = Ĥs + Ĥb + Ĥint,

Ĥs = ω

2 σ̂z,

Ĥb =
∑
i

ωiĉ
†
i ĉi,

Ĥint =
∑
i

(g∗
i ĉ

†
i L̂+ giL̂

†ĉi),

(8.21)

Where L̂ = σ̂−. The effective fermionic stochastic Hamiltonian is defined as:

Ĥeff =ω

2 σ̂z + σ̂− ·
∑
i

∂

∂ηk
eiωit−i

∑K

k=1 ωk ĉ
†
k
ĉk

− iσ̂†
−

K∑
k=1

√
|dk|ĉk + iσ̂−

K∑
k=1

dk√
|dk|

ĉ†
k

(8.22)

Where θ is a Grassmann generator. Using the correspondence in equation (2.20), the effective Hamiltonian
in (8.22) can be expressed in terms of a Grassmann algebra:

Ĥeff = ω

2 σ̂z + iσ̂− · Z∗
t − i

K∑
k=1

νkηk
∂

∂ηk
− i(σ̂−)†

K∑
k=1

√
|dk|

∂

∂ηk
+ iσ̂−

K∑
k=1

dk√
|dk|

ηk (8.23)



34

Coding this symbolically in terms of [η,η̄] and using GrassmannTN to obtain the matrix representation of
(8.23), the finite-state machine algorithm can be applied to obtain a Grassmann tensor product state [14]
as:

W [1]′ :=


−iI iσ̂− i

(
(σ̂−)†

)
ω
2 σ̂z +

∑
i e
iωit∂/∂ηi · σ̂−

0 0 0 0
0 0 0 0
0 0 0 0

 ,

W [k+1]′ :=


I 0 0 ωkηk

∂
∂ηk

0 I 0 −dk√
|dk|

ηk

0 0 I
√

|dk| ∂
∂ηk

0 0 0 I

 , k = 1, 2, . . . ,K,

(8.24)

This was the initial setup for the GTPS, however, no numerical results were obtained due to timing con-
straints. The Kondo model and the Simple Impurity Anderson Model are included in Appendices A.3 and
A.4 respectively.
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9 Conclusion

This thesis explored the intersection between tensor network simulations of non-markovian dynamics and
condensed matter theory. 1-D Impurity models consisting of a bosonic and fermionic bath were considered,
with numerical results for bosonic impurity models whilst only a proposed approach for fermionic models
was introduced. A non-markovian stochastic tensor network known as the Hierarchy of Matrix Product
States was used to simulate the ohmic-dissipative dynamics of spin-boson models and their experimental
realizations through ultra-cold atoms and Josephson circuits. The results for the dissipative dynamics are
shown in figure (8.4) for the ultra-cold atoms while figure (8.1a) shows the Josephson junction.

A new tensor network approach was introduced in this thesis to simulate spin-1/2 particles in a fermionic
bath known as the Hierarchy of Grassmann Tensor Product States, which addressed the difficulty of sim-
ulating a Grassmannian stochastic noise. However, only the method and the MPO for this approach were
derived, and numerical results benchmarking its performance is still an open question. For Fermionic im-
purity models, the HOGTPS approach was derived for a toy model of a qubit in a fermionic bath, other
models such as the 1-D Simple Impurity Anderson Model and the Kondo model were mentioned as a
model which could be explored to simulate such a tensor network algorithm.

For a future outlook, the first direction will be to implement the HOGTPS algorithm and to benchmark
its performance extensively against other numerical methods to simulate open fermionic environments
(Quantum Monte Carlo, Hierarchical Equations of Motion.). It will be interesting to further observe which
type of fermionic models can be simulated and what factors about this approach affect the numerical re-
sults, such as the stability of the solution, the optimal bond dimension and the truncation of the hierarchy.



36

A Appendix

A.1 Derivation of Fermionic Hierarchy of Pure States

The order of functional derivative operators is important now since they anti-commute with each other. For
the same reason, all auxiliary states with some kj > 1 vanish as expected to follow the Pauli exclusion
principle, as Di,t are linear combinations of fermionic annihilation operators. The functional integrals in
(3.15) can be expressed as ψ(1,0,...)

t := D1,tψt, ψ
(0,1,...)
t := D2,tψt, . . ., which allows for the following

expression:
∂tψ

(0)
t = −iHψ(0)

t +
∑
j

LjZ
∗
j (t)ψ(0)

t −
∑
j

L†
jψ

(ej)
t (A.1)

An exponential form of the BCF is again assumed to obtain the equations of motion for the auxiliary states
similar to the bosonic case. By taking the time derivative of ϕk

t :

∂tψ
(k)
t = (∂tDk

t )ψt + Dk
t (∂tψt) (A.2)

Using that the second term on the right-hand side commutes with all the Di,j , one obtains:

∂tψ
(k)
t = −k · wψ

(k)
t − iHψ(k)

t +
∑

LjD
k
t Z

∗
j (t)ψt︸ ︷︷ ︸

∗

−
∑

L†
jD

k
tDj,tψt︸ ︷︷ ︸

∗∗
(A.3)

Dj,t must be ordered to obtain a closed equation for the auxiliary states. In (**) Dj,t must be moved to the
correct position due to the ordering of fermionic operators:

Dk
tDj,t = (−1)kJDk1

1,t . . . Dj,tD
kJ
J,t = (−1)kj+1+···+kJDk1

1,t . . . D
kj+1
j,t · · ·DkJ

J,t. (A.4)

In (*), Z∗
j (t) in front of DK

t by using {Dj,t, Z
∗
j′(s)} = δjj′α(t− s) which results in:

Dk
t Z

∗
j (t) = (−1)kJDk1

1,t . . . Z
∗
j (t)DkJ

J,t

= (−1)kj+1+···+kJD1,t . . . D
kj

j,tZ
∗
j (t) . . .

= (−1)|k|jD1,t . . .
(
−Dkj−1

j,t Z∗
j (t)Dj,t +D

kj−1
j,t gj

)
.

= . . .
(
D
kj−2
j,t Z∗

j (t)D2
j,t −D

kj−1
j,t gj +D

kj−1
j,t gj

)
. . .

= . . .
(
(−1)kjZ∗

j (t)Dkj

j,t + (kj mod 2)gjD
kj−1
j,t

)
. . .

= (−1)|k|Z∗
j (t)Dk

t + (−1)|k|j (kj mod 2)gjD
k−ej

t

(A.5)

Combining equations (A.4) with (A.5) results in an infinite hierarchy of pure states for a fermionic environ-
ment [2]:

∂tψ
(k)
t =

−iH − k · w + (−1)|k|∑
j

Z∗
j (t)Lj

ψ(k)
t

+
∑
j

(−1)|k|j (kj mod 2)gjLjψ
(k−ej)
t

−
∑
i

(−1)|k|j (−1)|k|jL†
jψ

(k+ej)
t

(A.6)
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As mentioned earlier, all states with a kj value not equal to either zero or one vanish. This is ensured by
the modulo term in (A.6), therefore, states with some other kj-values that are initially zero always remain
zero which further means that the closed and finite hierarchy with all the appropriate kj values results in a
closed and finite hierarchy given as:

∂tψ
(k)
t =

−iH − k · w + (−1)|k|∑
j

Z∗
j (t)Lj

ψ(k)
t

+
∑
j

(−1)|k|jgjLjψ
(k−ej)
t −

∑
j

(−1)|k|jL†
jψ

(k+ej)
t

(A.7)

Which is the final expression for the HOPS for a fermionic environment.

It is immediately noticed that the finite system in (A.7) consists of 2J coupled equations (J is the number
of modes), and a large number of modes J results in intractable large numerical simulations. Therefore, a
useful truncation yields to be helpful through introducing a truncating order.

A.2 Norm of Grassmann Tensor Products

A simple example shown in [8], considers calculating the norm of the fermion occupation number c†c:

⟨Ψ|c†
ic

†
j |Ψ⟩ =

∫
dη∗

i dηi(1 − η∗
i ηi)dη∗

jdηj(1 − η∗
j ηj)

∏
i′

dη∗
i′dηi′(1 − η∗

i′ηi′)η∗
i η

∗
jΨ(η)Ψ(η∗)

= −
∑

aM āM ...aK āK···{mi′ },{aI′ āI′ }

∫
T̄ 1
j,āM āN··· T̄

1
i,āK āL...

Ḡij;āI āJT
0
i;aKaL...

T 0
j;aMaN ...

Gij;aIaJ

×
∏̃

i′
T̄i′;āK′ āL′ ..

∏
i′j′

Ḡi′j′;āI′ āJ′

∏
i′

T
mi′
i′;aK′aL′ ..

∏
i′j′

Gi′j′;aI′aJ′

=
∑

{aI′ āI′ }

∫
T ′
i;aK āK ,aLāL...

T ′′
j;aM āM ,aN āN ...

Gij;aI āI ,aJ āJ

∏
i′

Ti′;aK′ āK′ ,aL′ āL′ ...

∏
i′j′

Gi′j′;aI′ āI′ ,aJ′ āJ′ ,

(A.8)
Where T′

and T′′
are introduced as impurity tensors and are defined as:

T ′
i;aK āK ,aLāL...

= T̄ 1
i;āK āL...

T 0
i;aKaL...

;T ′′
j;aM āM ,aN āN ...

= T̄ 1
j;āM āN ...

T 0
j;aMaN ...

. (A.9)

A.3 The Kondo Model

Focusing on an application of the fermionic impurity model, a classical example is the Kondo model. An
experimental observation around the 1930s showed that the resistance in noble or divalent metals typically
shows a minimum at low temperatures when containing small concentrations of transition metals [18].
It was theorised that the inelastic scattering is reduced with decreasing the temperature, therefore the
resistance should also decrease linearly as a function of temperature, however, the experimental results
showed that the increase of the residual resistance is proportional to the transition metal concentration [18]
and only occurs when those impurities are magnetic. Kondo proposed a Hamiltonian which provides the
physical picture explaining this experimental data. This Hamiltonian is called the Kondo model:

H = Hb +HK (A.10)

Where Hb is the term describing the conduction electrons expressed by a non-interacting electron gas
and HK describes the interaction between the electron gas and a localized magnetic moment modelled
through the Heisenberg Hamiltonian.

Hb =
∑
k⃗σ
ε
k⃗σ
c†
k⃗σ
c
k⃗σ , and HK = JS⃗s⃗b (A.11)
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S⃗ represents the impurity spin and s⃗b is the spin of conduction electrons at the impurity site.

s⃗b = 1
2

1
N

∑
k⃗k⃗′

∑
αβ

c†
k⃗α
σ⃗αβck⃗′β (A.12)

Here σ⃗ in (A.12) are the Pauli matrices and not the spin as in (A.11). The lattice has a finite size of N sites
which are sent to infinity in the thermodynamic limit.

A.4 1-D Simple Impurity Anderson Model

To understand the local moment formation in systems with doped magnetic impurities, Anderson proposed
a model to better understand this interaction [ref]. The simplest version comprises a single localized spin-
degenerate level and a Coulomb repulsion when the level is filled with two electrons of opposite spin
(numerical results for this setup are not considered in this thesis, rather only one electron). The local
dynamics of this single-impurity Anderson model is then defined by the Hamiltonian:

HSIAM = Himp +Hb +Hmix (A.13)

Ĥimp =
∑
σ

(ϵd,σ − µ) d†
σdσ + U nd,↑nd,↓. (A.14)

Where the operators d̂
†

and d̂ create and annihilate electrons on the impurity level with spin components
σ = ±1 and nd,σ = d̂

†
d̂ is the particle number operator and µ is the chemical potential. Two electrons

with different spin occupying the same impurity level cost a repulsive interaction energy U > 0 because of
Coulomb Interaction, which is given by:

ϵd,σ − µ = −U

2 + Vg +Bσ . (A.15)

This system is then coupled to a single conduction band which is modelled by a noninteracting electron
gas:

Hb =
∑
k⃗σ

(ε
k⃗

− µ)σ)c†
k⃗σ
c
k⃗σ (A.16)

This impurity could be for example the d- or f-level of a transition metal atom embedded in a nonmagnetic
metal. Anomoulous minimum in the electrical resistivity is observed at very low temperatures due to the
interaction between the conduction electrons with the impurities [35] described by the Kondo model (A.11)

The interaction between the electron and the impurity bath due to hybridization is given by:

Ĥhybridization = −V
∑
k⃗,σ

(
d†
σbk⃗,σ, + b†

k⃗,σ
dσ
)

(A.17)

Where V is the coupling strength between the electron and the impurity
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