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Abstract

The axion is a light, pseudoscalar boson holding the potential to resolve two major
questions in fundamental physics: The unexpected absence of charge-parity violating
strong interactions and the fundamental nature of dark matter. Most popular theor-
etical models of axions fall into the two major categories of DFSZ-type models, which
incorporate further Higgs doublets, and KSVZ-type models, which add heavy quarks.

Recent years have witnessed a surge in experimental efforts to detect axions. Among
them is the Magnetized Disk and Mirror Axion Experiment (MADMAX). MADMAX
uses a dielectric haloscope design, featuring a stack of parallel, dielectric disks and
a mirror to resonantly enhance conversion of axions into photons within a strong
magnetic field. In thesis the frequentist analysis of a first axion dark matter search
conducted with a MADMAX prototype, focusing on axion masses of 76.7µeV and
79.4µeV, is presented. Finding no evidence for axions, the analysis sets new world-
leading upper limits on the photon coupling of dark matter axions in these mass
ranges.

Going beyond proof-of-principle measurements, understanding the full parameter
space is crucial. While photon couplings for minimal extensions of the standard model
and KSVZ-type models are well-established, in this thesis the first systematic cata-
logue of photon couplings for DFSZ-type axions is introduced. With this catalogue,
joint photon coupling distributions for both major categories of axion models can be
constructed, providing valuable inputs to inform sensitivity requirements for frequent-
ist inference or prior probabilities in Bayesian frameworks.

As axion research progresses towards detecting dark matter axions, accurate para-
meter inference becomes essential. Current methods bias signal parameter estimates
in case of an axion detection. A modification to the signal model is proposed in this
thesis that facilitates bias-free inference.





Zusammenfassung

Axionen sind leichte, pseudoskalare Bosonen, die das Potenzial haben, zwei zent-
rale Fragen der fundamentalen Physik zu beantworten: das unerwartete Fehlen von
CP-verletzenden starken Wechselwirkungen und die grundlegende Natur der Dunklen
Materie. Die bekanntesten theoretischen Modelle für Axionen lassen sich in zwei
Kategorien einteilen. Man spricht von Modellen des DFSZ-Typs, wenn dem Stand-
ardmodell der Teilchenphysik weitere Higgs-Dubletts hinzugefügt werden, und von
Modellen des KSVZ-Typs, welche zusätzliche schwere Quarks enthalten.

In den letzten Jahren wurde eine Vielzahl experimenteller Bemühungen voran-
getrieben, Axionen nachzuweisen, zu welchen auch das “Magnetized Disk and Mir-
ror Axion Experiment” (MADMAX) gehört. MADMAX nutzt als Design ein
dielektrisches Haloskop, bei welchem mehrere parallele dielektrische Platten und ein
Spiegel verwendet werden, um die Umwandlung von Axionen in Photonen in einem
starken Magnetfeld resonant zu verstärken. In dieser Arbeit wird die frequentistische
Analyse einer ersten Suche nach Dunkler Materie in Form von Axionen mit einem
MADMAX-Prototyp präsentiert, die sich auf Axionmassen von rund 76.7µeV und
79.4µeV konzentriert. Da keine Hinweise auf Axionen gefunden wurden, setzt die Ana-
lyse neue, weltweit führende obere Grenzen für die Photonen-Kopplung von Dunkle-
Materie-Axionen in diesen Massenbereichen.

Um über erste Proof-of-Principle-Messungen hinauszugehen ist ein gutes Verständ-
nis des vollständigen Parameterraums entscheidend. Während Kopplungskonstanten
zu Photonen für minimale Erweiterungen des Standardmodells und Modelle des
KSVZ-Typs bereits etabliert sind, wird in dieser Arbeit der erste systematische Kata-
log von Photonen-Kopplungen für Axionen des DFSZ-Typs vorgestellt. Mit diesem
Katalog können gemeinsame Verteilungen der Photonen-Kopplung für beide Kat-
egorien von Axionmodellen erstellt werden, die wertvolle Informationen liefern, um
die Anforderungen an die Sensitivität frequentistischer Analysen oder a priori Wahr-
scheinlichkeiten im Kontext von Bayesscher Inferenz zu bestimmen.

Mit zunehmendem Fortschritt der Axionenforschung in Richtung des Nachweises
von Dunkle-Materie-Axionen wird eine genaue Ermittlung von Signalparametern
wichtiger. Im Fall der Detektion eines Axion Signals verzerren momentan verbreitete
Methoden die Inferenz der Signalparameter. In dieser Arbeit wird eine Modifikation
des Signalmodells vorgeschlagen, die eine verzerrungsfreie Inferenz ermöglicht.
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Introduction

Almost one hundred years ago Fritz Zwicky uncovered a startling discrepancy between
the velocity dispersion of the constituents of the Coma galaxy cluster and the grav-
itational attraction inferred from their visible matter. Zwicky’s observation hinted at
the existence of a mysterious, unseen component of the universe. This revelation laid
the groundwork for our current understanding that some form of dark matter must
exist and even dominate the matter content of the universe. The fundamental nature
of this component is one of the largest open questions to both astro- as well as particle
physics.

The axion emerges as a compelling candidate in this context, though it was initially
proposed not to solve this cosmic enigma, but to address a profound issue in quantum
chromodynamics (QCD). In QCD, interactions are predicted to violate charge-parity
(CP) symmetry, yet no such violations have been observed with high precision. By
promoting the parameter responsible for CP violation to a field, it can be dynamic-
ally set to zero, giving birth to the axion. The underlying non-thermal production
mechanism can lead to a cosmologically relevant, stable and cold population of these
axions. They are therefore a prime dark matter candidate offering a solution to two
of modern physics’ biggest questions.

The initial axion proposal was quickly ruled out experimentally due to its sizeable
couplings to the standard model. If, however, additional particles are present in
the theory, couplings to the standard model can be reduced so much that the term
“invisible axion models” was coined in the early 1980s. They are divided into two
major categories depending on whether additional heavy quarks are added (KSVZ-
type models) or additional Higgs particles (DFSZ-type).

To guide experiments to finding dark matter axions, precise knowledge of their
theoretical predictions is needed. In fact, the models can produce a significant axionic
contribution to dark matter for a wide but finite range of axion masses. In terms
of their coupling to photons, for which the most extensive experimental program
exists, every theoretical model makes a concrete prediction for a given axion mass.
Considering only the minimal set of additional particles leads to only three distinct
possible photon couplings for each mass. When this assumption is dropped, however,
the parameter space opens up significantly making several orders of magnitude smaller
or larger photon couplings viable.

Beyond minimal extensions an exhaustive set of predictions so far was only con-
structed for KSVZ-type models. In this thesis for the first time an analogous set for
DFSZ-type models is presented, making it possible to compare these two major cat-
egories of invisible axion models and creating a joint model catalogue. The findings
reveal that DFSZ-type models yield predictions closely resembling those of the KSVZ-
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type case with axion-photon couplings that can exceed those of minimal models by
several orders of magnitude. This comprehensive catalogue is particularly valuable for
Bayesian statistical analysis, where it can be associated with probabilities, providing
a necessary input for inference.

Today the invisible models seem far less invisible than forty years ago. So called
“haloscope” experiments are using axion-photon couplings to gain sensitivity to relev-
ant parts of the invisible axion parameter space. In the presence of a strong magnetic
field, dark matter axions with a specific mass convert into radio-frequency photons
of a specific wavelength λ. The photon emission can be enhanced through the use of
cavities, dielectric structures as in this thesis, or similar resonators.

In haloscope experiments the power per frequency interval coming from the reson-
ator is measured. This power is dominated by background resulting from the response
of the system and the characteristics of the receiver chain. An axion signal would be
visible as a small excess in several adjacent frequency bins. To detect such a small
excess the background must first be estimated and removed. The resulting spectrum
of power excesses is then expected to follow a Gaussian distribution and must not
contain contributions of non-axionic origin. If no significant axion signal is found in
this spectrum, a limit can be set.

Modelling the background ab initio is exceedingly difficult due to λ being compar-
able in size to the components of the system. Instead, typically filters are used to
estimate the background, which are affected by the presence of a signal, altering the
signal shape in the residuals after background removal. This leads to biased inference
of signal parameters in case of an axion detection. In this thesis a way to account
for the effect of the background removal in the signal model is demonstrated. With
only minimal assumptions on the filter, which are usually fulfilled, the signal para-
meters can be inferred in a bias-free way. The method could readily be added to any
haloscope analysis.

A major challenge for haloscopes is tuning, especially towards larger axion masses:
Any given haloscope setup is only resonant for a small range of photon wavelengths,
i.e. axion masses. Since invisible axion models give only very broad predictions for the
range of possible axion masses, a tuning mechanism is vital. Tuning can be achieved
by altering some length scale in the system to match different photon wavelengths.
Reaching smaller λ requires smaller systems. This is detrimental to sensitivity, which
scales linearly with the volume available for axion-photon conversion, i.e. for standard
cavity haloscopes with λ3.

One relatively recent variant of the haloscope approach specifically designed to be
able to reach larger axion masses is the Magnetized Disk and Mirror Axion Experiment
(MADMAX). By using multiple parallel dielectric disks and a mirror with adjustable
separations instead of a cavity, the sensitivity becomes largely independent of λ. A
first axion dark matter search with a MADMAX prototype setup has been conducted
in early 2024. By arranging its three disks in two different configurations world-leading
limits have been achieved at axion masses in the ranges of (76.56 to 76.82)µeV and
(79.31 to 79.53)µeV. These limits were achieved due to methods presented in this
thesis, which contains all necessary details concerning the statistical analysis of the
data.

The thesis is structured as follows: In the first four chapters necessary prerequisites
are covered. Ch. 1 starts with the theoretical foundation of the axion in QCD. It also
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specifically introduces previous work cataloguing axion-photon coupling predictions
for KSVZ-type axions. Ch. 2 presents the axion as a dark matter candidate leading
to a preferred range of axion masses, in which it could constitute the majority of the
local dark matter. It also covers the expected shape of an axion dark matter signal.
In ch. 3 the working principle of haloscopes is introduced with a specific focus on the
MADMAX setup used for the measurements analysed later in the thesis. Ch. 4 covers
some well-established but crucially important statistical methods. It illuminates how
to interpret the results of the analysis conducted later and why a full catalogue of
invisible axion models is vital for a statistical analysis.

Chs. 5 to 8 are dedicated to original work by the author. In ch. 5 axion-photon
couplings are systematically calculated for a large number of DFSZ-type models. The
values obtained for minimal extensions are still preferred for general DFSZ-type mod-
els. Associating a probability with each model, it is possible to obtain theory pre-
dictions for the probability distribution of photon couplings of DFSZ-type models as
one-sided 68% or 95% lower bounds or two-sided bands. These are comparable to the
KSVZ-type case. A subset of theoretically preferred DFSZ-type models is analysed
separately and displays enhanced photon couplings compared to the full set of models.

Ch. 6 presents an approach to infer signal parameters in scenarios where no para-
metric model exists for the background, such as in haloscope experiments. Considering
the effect of the background removal as part of the signal model allows for a bias-free
inference, which is demonstrated in the concrete example of simulated MADMAX-like
datasets.

Chs. 7 and 8 focus on the concrete analysis of the first search for axion dark matter
with a MADMAX prototype setup. Here, ch. 7 abstractly introduces original methods
to ensure and test Gaussianity of the spectra after background removal. It presents a
pipeline to translate the measurements into a competitive limit on the axion-photon
coupling.

In ch. 8 this pipeline is then applied to data taken by the MADMAX collaboration
during a measurement campaign in 2024 using the MORPURGO magnet at CERN.
Systematic uncertainties are taken into account. No hints for an axion signal are found,
therefore a 95% confidence limit is set around 76.7µeV and 79.4µeV. Assuming a local
axion dark matter density of ρa = 0.3GeV/cm3 it exceeds a previous limit at these
masses by up to a factor of four.





1
QCD Axion Theory

This chapter is meant to highlight the theoretical ingredients necessary to understand
the role of the axion in an astrophysical context in ch. 2 as well as laying the foundation
for the phenomenology project [1] presented in ch. 5. Readers interested in a very
detailed introduction to the axion are referred to [7] and [6], on which most of this
chapter is based.

The chapter starts by explaining why the curious absence of CP violation in strong
interactions is a problem and how the most prominent solution to this conundrum
leads to the axion (sec. 1.1). The focus of this thesis lies on obtaining theory pre-
dictions for the coupling of axions to photons as well as experimental explorations
in the axion mass vs. photon coupling parameter plane. In sec. 1.2 therefore the-
ory independent expressions for those two parameters are obtained. This section also
introduces the domain wall number and shows how to calculate anomaly coefficients
which are crucial for obtaining axion-photon couplings. The two most prominent
categories of QCD axion models, DFSZ- and KSVZ-type axions, are introduced in
sec. 1.3. Here, emphasis is put on detailing how to obtain values for the anomaly
coefficients in the standard DFSZ case, since these considerations will be expanded to
theories with more than two Higgs doublets in ch. 5. Complementary investigations
have already been conducted for the KSVZ case by other groups [8, 9]. In order to
prepare for a later comparison their results are outlined here.
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1.1 Strong CP Problem and Peccei-Quinn Solution

The Lagrangian of quantum chromodynamics (QCD) contains two terms that poten-
tially violate charge-parity (CP) symmetry:

Lm =−
∑
q

q̄mqe
iθqγ5

q (1.1)

Lθ =
θg2s
32π2

TrGµνG̃µν . (1.2)

Here, q are the quark fields that can be written in chiral representation as q = qL+qR
and q̄ = q†γ0 is their conjugate. mq is the mass of the quark q which can in general
have a complex phase θq. gs is the strong coupling constant and θ is called the
vacuum angle. The matrix γ5 distinguishes between the chiral components of q:
γ5qL/R = ∓qL/R. Gµν is the strong field strength tensor and G̃µν = 1

2ϵ
µνρσGρσ is

its dual. The trace runs over the indices of the color group SU(3)c, denoted in the
following by Latin indices a, b, and c.

The two terms (1.1) and (1.2) are fundamentally connected: Observable parameters
must be invariant under field redefinitions. For instance performing a global chiral
transformation on the quark fields

q → eiγ5αq (1.3)

transforms θq in (1.1) as θq → θq + 2α, but also θ → θ − 2α in (1.2) because the
path integral measure is not invariant [10]. Therefore only the linear combination
θeff = θ + θq can be an observable and it is possible to shift the full physical effect
either to the fermion sector or to the gluon sector. In the latter case:

θeff = θ +
∑
q

arg mq . (1.4)

Before interpreting this result, it is important to take another closer look at (1.2).
Terms in the Lagrangian such as (1.2) can often be considered unphysical. It is
possible to write TrGµνG̃µν as a total derivative. With regard to the action, which
integrates over the Lagrangian, this leads to a boundary term, which usually has no
influence on physical results from perturbation theory. However, things are different
for eq. (1.2): The QCD vacuum is not described by a vanishing vector potential, but
allows for configurations that are gauge transformations of zero:

Aµ = ig−1
s U−1∂µU , (1.5)

with U(x) being an element of the QCD gauge group SU(3)c.
If all possible U can be smoothly deformed to the identity, then the contribution

to the action vanishes. However, it can be shown that this is not the case. The U(x)
form topologically distinct classes Un(x) with n ∈ Z being called winding number or
Pontryagin index.

Two vector potentials A
(n)
µ and A

(m)
µ constructed from U with different winding

numbers n ̸= m correspond to two different vacuum states |n⟩ and |m⟩. Transitioning
from |n⟩ to |m⟩ requires intermediate non-vanishing field strengths, i.e. an energy
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barrier exists between |n⟩ and |m⟩. This implies that tunnelling can occur and that
the true, physical vacuum is a superposition of |n⟩:

|θ⟩ =
∑
n

e−inθ |n⟩ , (1.6)

where θ is an angular parameter. Including potential transitions between states of
differing winding number in the path integral leads to the appearance of a term of the
form (1.2) proportional to this θ parameter.

The key take-away from this discussion is that the θ-term needs to be included in
the Lagrangian due to the structure of the QCD vacuum, which was first realised by
’t Hooft [11, 12]. The QCD Lagrangian therefore contains a term that is potentially
CP violating.

Such a CP violating term would induce electric dipole moments in baryons, on
which there are strong experimental bounds. In particular there is a tight constraint
on the dipole moment of the neutron (90% confidence level)[13]:

dn < 1.8× 10−26 e cm , (1.7)

where e denotes the electron electric charge. A similar limit can be obtained from
mercury atoms [14]. Various independent theoretical calculations based on the afore-
mentioned Lagrangian predict dn ∼ 10−16θeff e cm [15–21], which sets an upper limit
on θeff of

|θeff | ≲ 10−10. (1.8)

This is a fine tuning problem because of the two contributions in eq. (1.4) [22, 23].
Attempts have been made to explain the smallness of θeff imposing unconventional
dynamics [24, 25] or spontaneously breaking the CP symmetry [26–30]. The most
prominent solution, however is the Peccei-Quinn mechanism:

Peccei and Quinn realised that by introducing a global chiral U(1) symmetry (hence-
forth U(1)PQ) the CP-violating angle θeff can be made dynamical [31, 32], and thus
made to relax to the CP-conserving value θeff = 0 [33]. The U(1)PQ symmetry is spon-
taneously broken with the axion being the corresponding pseudo-Nambu-Goldstone
boson [34, 35].

“Pseudo” in this context indicates that the axion is not a truly massless Goldstone
boson due to the U(1)PQ symmetry being anomalous. This means that the symmetry
holds at the level of the classical action, but is broken for the quantum theory be-
cause the path integral measure is not invariant. Noether’s theorem states that every
continuous global symmetry leads to a conserved current. An anomaly coefficient is
the constant of proportionality indicating how much the current is not conserved. For
JPQ
µ , the current associated to the U(1)PQ symmetry, specifically

∂µJPQ
µ =

g2sN

16π2
TrGµνG̃µν +

e2E

16π2
FµνF̃µν , (1.9)

where N and E are called color and electromagnetic (EM) anomaly coefficient, re-
spectively. Fµν is the EM field strength tensor and F̃µν its dual.
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1.2 Axion Mass and Photon Coupling

This section is meant to give some intuition concerning the model independent axion
potential and mass as well as the coupling to photons. The calculations up to eq. (1.17)
assume energies below the Peccei Quinn and the electroweak breaking scales and only
include the two lightest quarks for simplicity.

From a model building perspective using effective field theory, a complex scalar
field Φ ∝ ϕ(x) exp

[
−ia(x)va

]
is introduced with va being the order parameter of the

spontaneous symmetry breaking potential. The angular field a(x) has an effective
Lagrangian

La =
1

2
(∂µa)

2+Lint(∂µa, q)+
g2sN

16π2

a

va
TrGµνG̃µν +

e2E

16π2

a

va
FµνF̃µν − q̄LMqqR+h.c. .

(1.10)
Here the second term encodes potential interactions with quark fields q and Mq =
diag (mu,md) is the quark mass matrix. The θ term (1.2) is already absorbed in the
third term in (1.10) due to a field redefinition a → a− θeffva/(2N). One can write

fa =
va
2N

, (1.11)

which is called axion decay constant due to the role it plays in Lint.
The term proportional to GG̃ can be removed from the Lagrangian using a field-

dependent axial transformation of the quark fields:

q → e
iγ5

a
2fa

Qaq . (1.12)

Here Qa is a generic matrix that acts on the quark fields. The only requirement
on Qa is that TrQa = 1 in order for this transformation to cancel the GG̃ term.
The transformation (1.12) affects the coupling to photons, since the transformation is
anomalous under QED, as well as the quark mass matrix:

La ⊃ 1

4
gaγaF

µνF̃µν − q̄Le
i a
2fa

QaMqe
i a
2fa

QaqR + h.c. , (1.13)

where
gaγ =

αem

2πfa

[
E

N
− 6Tr

(
QaQ

2
)]

(1.14)

with fine structure constant αem = e2/(4π) and Q = diag(2/3,−1/3) encoding the
EM charges of the quarks. E/N is called the anomaly ratio.

Due to confinement at energies below the QCD scale pions among others become
effective degrees of freedom of QCD instead of quarks and gluons. Using chiral per-
turbation theory it is therefore possible to write an effective chiral Lagrangian for the
axion in terms of interactions with the pions. These calculations lead to an axion-pion
potential. At the ground state of the pion and choosing Qa = 1

2diag(1, 1) it reads

V (a) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
a

2fa

)
, (1.15)
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with mπ and fπ pion mass and decay constant, respectively. A Taylor expansion
around a

fa
= 0 yields a quadratic term in a, the prefactor of which is associated as

the axion mass
ma =

√
mumd

mu +md

mπfπ
fa

. (1.16)

For the axion-photon coupling the choice of Qa = M−1
q /TrM−1

q is more convenient,
since otherwise axion-pion mixing would have to be considered. With this choice and
eq. (1.14) gaγ follows as

gaγ =
αem

2πfa

(
E

N
− 2

3

4md +mu

md +mu

)
. (1.17)

Going beyond this leading order estimation, the authors of [36] find a precise nu-
merical value for the axion mass of

ma = 5.70(7)µeV

(
1012GeV

fa

)
, (1.18)

where the digit in brackets denotes the error on the last digit. For the axion-photon
coupling they find

gaγ =
αem

2πfa

[
E

N
− 1.92(4)

]
. (1.19)

These numerical values will be used in the remainder of this thesis. For convenience
in later chapters it is useful to already define

Caγ ≡ E/N − 1.92(4) . (1.20)

As an angular variable the axion field a is defined over the domain [0, 2πva[, but the
QCD induced potential (1.15) has a periodicity of [0, 2πfa[ with fa = va/(2N). This
means the potential has 2N local minima in the domain of a prompting the definition

NDW ≡ 2N , (1.21)

which is called domain wall number. This definition is needed in ch. 2 and revisited
more thoroughly later in sec. 5.1.

The crucial takeaways from (1.16) and (1.17) are: Firstly, the axion mass is model
dependent only via its inverse proportionality to the axion decay constant. Secondly,
the coupling to photons has a model independent part derived from the quark mass
matrix and a model dependent part derived from the anomaly coefficients E and N .

The anomaly coefficients can be calculated using triangle Feynman diagrams with
one external line being the axion and the other two photons or two gluons, respectively
(see [37] for a general review). Fermions ϕ contributing to the internal loop must
be charged under the PQ symmetry and reside in a specific representation of the
SU(3)c×SU(2)L×U(1)Y gauge group, which can be denoted via (Cϕ, Iϕ,Yϕ). Here Cϕ,
Iϕ and Yϕ encode the color and weak isospin representation as well as the hypercharge,
respectively. Each irreducible representation ϕ contributes to the anomaly coefficients
as

N =
∑
ϕ

Nϕ , E =
∑
ϕ

Eϕ , (1.22)



10 Chapter 1 QCD Axion Theory

particle type weak hypercharge
left-handed right-handed

up +1/6 +2/3
down +1/6 −1/3
lepton −1/2 −1

Table 1.1: Weak hypercharges of SM fermions excluding neutrinos.

with

Nϕ = χϕdim(Iϕ)T(Cϕ) , (1.23)

Eϕ = χϕdim(Cϕ)Tr(q2ϕ) . (1.24)

Here dim(Iϕ) and dim(Cϕ) are the dimensions of the weak isospin and color repres-
entations, respectively. T(Cϕ) is called the color Dynkin index, which is defined via
the SU(3)c group generators, importantly T (3) = 1/2. qϕ = I(3)

ϕ + Yϕ is the EM
charge generator. Tr(q2ϕ) effectively amounts to plugging the squared EM charge of
the particle in question into the equation. χϕ denotes the PQ charge. Contributions
from right handed fermions obtain an overall minus sign.

1.3 Axion Models

In this section the most common benchmark models for UV completions of the axion
effective Lagrangian are introduced and used to derive concrete values for the anomaly
coefficients at low energies.

Eqs. (1.23) and (1.24) show that the anomaly coefficients and thus the axion-photon
coupling depend on which particles are charged under the PQ symmetry. Broadly
speaking either the standard model (SM) fermions can have non-zero PQ charges or
new PQ-charged fermions can be added.

Starting with models of the former type, SM fermions can be divided into three types
with respect to their weak hypercharge as summarised in tab. 1.11. This distinction
is helpful, since the Lagrangian should retain a global U(1)Y × U(1)PQ symmetry,
meaning that all hyper- and PQ charges in every term of the Lagrangian need to sum
to zero.

One can write the Yukawa part of the Lagrangian for a generic model with a single
Higgs doublet H ∼ (1, 2,−1/2) (like the SM Higgs boson) as

LY ⊃ −yU Q̄LuRH − yDQ̄LdRH̃ − yE l̄LeRH̃ + h.c. , (1.25)

where yi, i ∈ {U,D,E} are the Yukawa couplings, iR is a right handed fermion field
of up-, down- or lepton-type, and QL and lL are the left handed quark and lepton
doublets, respectively. The hyper- and PQ charges of H̃ = iσ2H

∗ have the opposite

1Different conventions exist for how the weak hypercharge is calculated differing from the chosen
one by a factor of 2 and/or −1. The terms “hypercharge” and “isospin” in the following always
refer to weak hypercharge and weak isospin, respectively.
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sign as H. Denoting the PQ charge of H as χH and requiring PQ invariance for this
Lagrangian gives the conditions

χH = χuL − χuR (1.26)
−χH = χdL − χdR (1.27)
−χH = χeL − χeR . (1.28)

Leptons are not color charged, i.e. they have zero color Dynkin index, and do not
contribute to the color anomaly. The sum in eq. (1.22) goes over SM quarks only and
therefore leads to N = 0. Coupling the same Higgs doublet to all colored fermions
leads to a vanishing color anomaly and thus does not solve the strong CP problem.
The historically first axion model due to Weinberg and Wilczek (PQWW) [34, 35]
therefore requires the addition of a second Higgs doublet.

In the PQWW model the axion can be identified as a superposition of the angular
degrees of freedom of the two Higgs doublets after electroweak symmetry breaking.
This relates the PQ scale ∼ va to the electroweak scale ∼ 246 GeV leading to relatively
strong couplings via fa, which have quickly been ruled out [38–41]. Making the two
scales independent of each other is the goal of so called invisible axion models, which
can be divided into two general classes:

Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) type models introduce an additional
Higgs singlet for this purpose. In these models as in the original PQWW model
the SM fermions carry PQ charges. Contrary, in Kim-Shifman-Vainshtein-Zakharov
(KSVZ) type models only new heavy quarks are PQ charged. Since these added
quarks can be singlets, the necessary additional Higgs can also be a singlet.

1.3.1 DFSZ Model

For models introducing more than one Higgs doublet, flavor changing neutral cur-
rents (FCNCs), that is transitions e.g. between up and charm quark, are a generic
prediction. Experimentally they have been shown to be strongly suppressed [42, 43],
therefore a theoretical mechanism must be found to avoid FCNCs at least at tree level.
A simple way to achieve this is imposing the Glashow-Weinberg condition [44, 45],
i.e. coupling only one specific Higgs to each fermion type. Later in ch. 5 this condi-
tion will be relaxed, however in this section only one Higgs doublet Hu ∼ (1, 2,−1/2)
coupling to all up-type quarks and another one Hd ∼ (1, 2,+1/2) coupling to all
down-type quarks are considered. The DFSZ model also introduces an additional
SM-singlet complex scalar field S ∼ (1, 1, 0).

There are three U(1) symmetries, U(1)Hu × U(1)Hd
× U(1)S , associated with the

phases of the three scalar fields in the kinetic and Yukawa sector of the Lagrangian,
which need to be broken down into the U(1)Y ×U(1)PQ symmetry mentioned earlier.
This can be achieved by a term in the scalar potential of the form

V (Hu, Hd, S) ⊃ λHuHdS
†2 , (1.29)

with arbitrary constant λ. Requiring PQ invariance of this term leads to a condition
for the PQ charges:

χu + χd − 2χS = 0 , (1.30)
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writing χHf
≡ χf with index f ∈ {u, d, S} for sake of brevity. Via the potential it

can also be ensured that the scalar fields develop vacuum expectation values (VEVs)
vf , expanding around which yields

Hu ⊃ vu√
2
ei

au
vu

(
1

0

)
, Hd ⊃ vd√

2
e
i
ad
vd

(
0

1

)
, S ⊃ vS√

2
e
i
aS
vS , (1.31)

where degrees of freedom not containing the axion have already been neglected.
Under PQ transformation the angular modes af transform as af → af + κfχfvf

with κf being arbitrary constants, while the axion should transform as a → a+ κva.
The currents associated with the residual PQ and hypercharge symmetries can be
written as

JPQ
µ |a =

∑
f

χfvf∂µaf , JY
µ |a =

∑
f

Yfvf∂µaf , (1.32)

respectively, when only the relevant af fields are retained. It furthermore must be
possible to write the PQ current in terms of the axion field as JPQ

µ |a = va∂µa. This
requirements together with (1.32) leads to finding the axion as a linear combination
of the angular modes af [46]:

a =
1

va

∑
f

χfvfaf , (1.33)

v2a =
∑
f

χ2
fv

2
f . (1.34)

Choosing vS ≫ vu,d therefore makes the axion invisible.
To avoid kinetic mixing terms with the Z-boson one must impose an orthogonality

condition on the currents (1.32): ∑
f

χfYfv
2
f = 0 . (1.35)

Thus, together with eq. (1.30) this determines the three PQ charges χf up to an
overall normalisation that is usually fixed by choosing χS = 1. One gets:

χS = 1 , χu = 2
v2d

v2d + v2u
, χd = 2

v2u
v2d + v2u

. (1.36)

The discussion above just involved PQ charges of the scalar sector, the anomaly
ratio E/N however sums over fermions contributing to the anomaly. So what about
the PQ charges of the fermions? Yukawa terms such as in the Lagrangian (1.25)
induce conditions like χu = χuL − χuR . In general the anomaly coefficients depend
only on the difference in PQ charges of right- and left-handed fermions.

It is necessary to specify whether to couple the leptons to Hd or to H̃u. With this
choice either χeL − χeR ≡ χe = χd or χe = −χu, which defines the two benchmark
models DFSZ2-I and DFSZ2-II, respectively2. Since for SM fermions all variables

2In anticipation of the discussion for DFSZ-type models in ch. 5 the two Higgs doublets of the
minimal models are explicitly referred to via the subscript. The standard nomenclature is DFSZ-
I and DFSZ-II, respectively.
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entering the calculation of eqs. (1.22) are known except for the PQ charges, one can
write the anomaly ratio in general:

E

N
=

2

3
+ 2

χu + χe

χu + χd
, (1.37)

which for the benchmark models leads to

DFSZ2-I :
E

N
=

8

3
(1.38)

DFSZ2-II :
E

N
=

2

3
. (1.39)

1.3.2 KSVZ Model

The original KSVZ model adds a singlet fermion in the fundamental representation of
color with zero hypercharge Q ∼ (3, 1, 0). Q gets its mass from a Yukawa coupling to
a new Higgs singlet S ∼ (1, 1, 0). Analogously to the DFSZ case above, the S develops
a VEV expanding around which immediately yields the axion as the angular degree
of freedom:

S ⊃ vS√
2
ei

a
va . (1.40)

SM fermions do not carry PQ charges and therefore do not contribute to the an-
omaly coefficients. E and N depend only on the properties of the added fermion.
Specifically, the EM anomaly vanishes because in the original KSVZ model Q does
not carry EM charge and thus

KSVZ :
E

N
= 0 . (1.41)

The three models (1.38), (1.39) and (1.41) are collectively called “minimal QCD
axion”.

1.3.3 KSVZ-Type Axion-Photon Coupling Distributions

It is possible to go beyond the minimal models presented above by introducing addi-
tional Higgs doublets to the theory for DFSZ-type models or by considering various
representations of potentially multiple new heavy quarks for KSVZ-type models. Di-
Luzio et. al. [8, 47] as well as Plakkot and Hoof [9] constructed anomaly ratios for the
latter case. Key results of their work are presented here, since this thesis completes
the picture by doing the same for DFSZ-type models with multiple Higgs doublets in
ch. 5 and also includes concrete comparisons between the resulting distributions.

A priori there is a vast space of possible theoretically allowed representations for
every additional quark. However, in particular three in part interdependent phe-
nomenological selection criteria can be found that limit the number of possible rep-
resentations for each quark:

1. As sec. 2.3 will show, requiring axions to constitute a significant percentage
of, but not more than, the DM energy density leads to preferred regions for
the axion decay constant fa. These regions differ substantially depending on
which cosmological scenario is chosen. For simplicity the authors of [9] adopted
fa < 5× 1011 GeV.
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Figure 1.1: Anomaly ratio distributions for a single heavy quark in any representation
(red) as well as the complete set of preferred models with up to 28 heavy quarks
(green). Data taken from [8] and [9].

2. Constraints come from lifetimes of the heavy quarks beyond τQ ∼ 10−2 s being
ruled out by Big Bang Nucleosynthesis [48, 49] as well as gamma-ray observa-
tions [50].

3. Adding a particle Q ∼ (CQ, IQ,YQ) with mass mQ to a theory influences the
running of the coupling constant at energies > mQ. Large CQ, IQ and YQ can
lead to divergences in the coupling constants below the Planck scale already for
a single heavy quark, leaving only 16 preferred representations when also taking
the first two constraints into account. The running tends to grow stronger when
adding more and more particles, leading to an upper bound on the possible
number of additional heavy quarks of NQ = 28.

The original KSVZ model as well as the 15 preferred single-quark representations
from [8] are shown in fig. 1.1 as red lines. All anomaly ratios are unique, except for
8/3 and 2/3, which occur two and three times, respectively.

For multiple heavy quarks, allowing negative PQ charges, the authors of [9] find over
5× 106 preferred models with only 820 different anomaly ratios. Their anomaly ratio
distribution (fig. 1.1, green) is peaked closely around the value for which gaγ vanishes,
making such axion models truly invisible. The peaked structure of the distribution at
large absolute anomaly ratios will be more thoroughly investigated in sec. 5.3. The
imposed selection criteria seem to also reject models leading to large axion-photon
couplings. Defining

Ê/N ≡ argmaxE/N (|E/N − 1.92|) (1.42)

an analysis of all models with NQ ≤ 9 produces an extremal Ê/N = −166/3 for the
preferred set of models whereas the full set has Ê/N = −1312/3.



2
Axions as Dark Matter

The universe is homogeneous and isotropic on large scales. Roughly 26% of its energy
density is made up of elusive dark matter [51]. While it can be observed via its
impact on the cosmic microwave background (CMB) and large structures, little is
known about its impact and distribution on smaller, solar-system like scales. Dark
matter could be both completely homogeneous as well as clumped in stellar-like objects
as far as theoretical predictions are concerned. The universe expanded adiabatically
from an early state of high density and high temperature, except during a short
phase of exponential expansion called inflation and a subsequent reheating phase. The
evolution of the universe is therefore often described as a function of its decreasing
temperature.

This chapter shows that the theoretically well-motivated axion, introduced in ch. 1
to solve the strong CP problem, could also very well explain dark matter. Emphasis
is put on aspects relevant to its detection using earth-based dark matter searches,
specifically the relation of PQ scale to inflation and different potential production
mechanisms. Ultimately, this chapter attempts to answer two questions: “Where
should one look for an axion dark matter signal?” and “What does it look like?”.

Significant phenomenological differences arise whether the PQ symmetry is spon-
taneously broken before or after inflation (sec. 2.1). In Sec. 2.2 production mechanisms
are discussed that could lead to axion densities and properties comparable to dark
matter for both scenarios. The findings from the first two sections are used in sec. 2.3
to construct a mass range for the QCD axion which is preferred from a phenomenolo-
gical point of view, effectively answering the first question. Sec. 2.4 then answers the
second question by presenting a thorough calculation of the expected axion lineshape.
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2.1 Axions and Inflation

Understanding the role of the axion in a cosmological context requires to consider
the temperature evolution of the cosmos: As the universe cools down over time, the
U(1)PQ symmetry gets spontaneously broken when T ∼ fa and a specific value for
the angular axion field a is chosen at random. Choosing a specific value for a can
equivalently be expressed as choosing a specific initial angle θi. Only later when
T ∼ ΛQCD the PQ symmetry gets further broken down explicitly, the axion acquires
its potential and one of the NDW minima is selected. Regions in space, called Hubble
volumes, that are not in causal contact at these times can randomly obtain different
θi and select different minima.

Two energy scales play a pivotal role in axion phenomenology: Firstly, the Hubble
rate during inflation HI , and secondly, the maximal temperature reached in the uni-
verse after inflation Tmax. The former can be constrained by CMB measurements [52],
the latter is governed by the precise reheating scenario implemented in the inflationary
model [53].

Pre-inflationary Scenario: If fa is larger than both of these energy scales, the PQ
symmetry is spontaneously broken during and never restored after inflation. Patches
of the universe which are causally connected before inflation choose specific θi and get
enlarged subsequently to leave only one specific value for θi in the observable universe.
θi ∈ [−π, π[ is therefore a free parameter in this scenario. Furthermore the axion is
present as a massless field during, but not actively driving inflation, which leads to
isocurvature perturbations. They leave distinct imprints in the CMB compared to
adiabatic curvature perturbations [51], leading to strong constraints on the Hubble
parameter during inflation in terms of the axion parameters [7]

HI ≲ 4× 106
(

Ωa

ΩDM

)−1( fa
4× 1011GeV

)
θi . (2.1)

Here Ωa and ΩDM are the density parameters for axions and dark matter, respectively,
i.e. the normalised energy densities assuming a flat universe. Eq. 2.1 requires inflation
at a relatively low energy scale for values of θi ∝ O(1).

Post-inflationary Scenario: If at least one of the scales HI or Tmax is larger than
the PQ scale, the U(1)PQ gets spontaneously broken after inflation. Hubble volumes
with different θi will come into causal contact at later times leading to a plethora
of different initial misalignment angles in the observable universe. To obtain correct
predictions for the axion energy density, one must average over all possible values
taking into account anharmonic effects of the axion potential which leads to [36]

θi ≡
√

⟨θ2i ⟩ ≈ 2.15 . (2.2)

At the boundaries of the patches topological defects arise (see fig. 2.1), which can
decay into a non-relativistic axion population as we will see in the next section.
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2.2 Production Mechanisms

2.2.1 Thermal Production

A thermal population of QCD axions could be produced via axion interactions with
the SM. All axion models necessarily contain couplings to either SM particles or heavy
quarks, and effective couplings to gluons and pions, which are all suppressed as 1/fa.

Axions are difficult to produce in this manner in sufficient abundance [54] and might
still be relativistic at the present day. If this is the case they cannot serve as DM, but
rather as dark radiation comparable to neutrinos with non-zero mass. For minimal
QCD axion models decay constants leading to significant energy densities of thermal
axions have been ruled out by stellar cooling constraints [55]. For these two reasons
thermal axions are not further considered in this work.

2.2.2 Misalignment Mechanism

Misalignment production derives an energy density for the axion from the fact that
the initial value for the theta angle θi usually deviates from the CP conserving vacuum
state and has to approach θ = 0 only after some time. It is therefore also referred to
as vacuum realignment. Its contribution to ΩDM is non-thermal which is why it can
lead to a non-relativistic contribution to the cosmological energy density even for the
lightest axion masses. In the following we will see that misalignment produced axions
can constitute a significant percentage of the DM density.

Varying the action for an axion field a coupling minimally to gravity leads to the
following equation of motion ([56] for a derivation):

ä+ 3H(T )ȧ+ma(T )
2a = 0 , (2.3)

with temperature dependent axion mass ma(T ) and Hubble parameter H(T ). The
approximations made in sec. 1.2 to obtain the axion mass (1.16) were only valid below
the QCD scale ΛQCD ∼ 200MeV. In general, effects leading to a potential and thus a
mass for the axion only become relevant at this energy scale. For larger energy scales
T , with ΛQCD ≪ T < fa, the axion mass approaches ma = 0. This means that ma

is not constant as the cosmological temperature decreases, which is made explicit in
(2.3). Its exact scaling is being actively investigated [57–61].

To solve the differential equation (2.3), initial conditions

ai = faθi , ȧi = 0 , (2.4)

need to be imposed. Here the latter condition is due to the absent axion potential
at the high energies in the early universe. Qualitatively at early times, i.e. big
temperatures, ma(T ) ≪ 3H(T ) and the axion field and its energy density remain
constant in time. During this epoch it effectively behaves as dark energy. When
ma(T ) ≈ 3H(T ), the axion field starts oscillating coherently around the vacuum
θ = 0 and its energy density decays over time due to the expansion of the universe,
similarly to dark-matter. At the present day the energy density in axions can be
approximated as

ρa ≈ 1

2
m2

aa
2
0 , (2.5)
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Figure 2.1: Schematic of topological defects in 2D after explicit breaking of the PQ
symmetry for NDW > 1. The size of the patches is governed by the size of Hubble
volumes when T ∼ ΛQCD. Cosmic strings occur at the intersections of multiple
patches, domain walls mark the boundaries between patches. Together they form a
stable string-domain wall network for NDW > 1.

where a0 is the amplitude of the axion field. In terms of the density parameter Ωa

one finds [62]
Ωmis
a

ΩDM
≈
(

fa
4× 1011GeV

)7/6(θi
1

)2

, (2.6)

which is a good approximation below fa < 1015 GeV and ignores anharmonic correc-
tions to the potential that arise as θi ≳ 1. A thorough calculation is found in [63].

2.2.3 Decay of Topological Defects

As discussed in sec. 2.1, in the post-inflationary scenario topological defects can occur
between regions of different θi. They can be classified in two categories:

Cosmic Strings. Consider a situation after spontaneous breaking of the PQ sym-
metry, when every Hubble volume has been assigned a specific initial misalignment
angle and multiple patches have come into causal contact. In this situation paths may
exist around which θi varies by 2πva (compare fig. 2.1). Enclosed in every such path
is a point for which θi is not well-defined. In three spatial dimensions these points
form long string-like objects or closed loops, which are called cosmic strings.

Domain Walls. When the PQ symmetry gets explicitly broken and the individual
θi relax into distinct minima of the axion potential, a second type of topological
defect forms. These so called domain walls are the reason why in sec. 1.2 the number
of potential minima was called “domain wall number”. Domain walls arise, because
it is not possible to smoothly transition from one minimum to another. Edges and
intersections of domain walls are formed by cosmic strings. Even for NDW = 1 domain
walls exist due to the winding number discussed in sec. 1.1. However, in this case
intersections of domain walls are not possible.



2.3 The QCD Axion Window 19

Individual, non-loop cosmic strings are stable. An interacting network of strings,
however, will inevitably form closed loops that decay emitting non-relativistic ax-
ions. These radiated axions could form non-virialised axion streams, axion stars or
miniclusters.

Domain walls in the NDW = 1 scenario rapidly decay before they become cosmolo-
gically relevant. For NDW > 1 however, they are stabilised by the intersections. Their
energy density now would quickly reach unacceptably big values, which is known as
the domain wall problem [64] (see [65] for a review).

Estimating the contribution to the energy density from the decay of topological
defects requires numerical simulations capable of simultaneously resolving the Hubble
scale as well as the width of the cosmic strings. Even with the advanced methods em-
ployed by various groups [66–74] the resulting densities vary a few orders of magnitude
around Ωmis

a .

2.3 The QCD Axion Window

The considerations above lead to a cosmologically preferred window, where the axion
could constitute the entirety of DM without requiring fine-tuning of other parameters.

In the pre-inflationary scenario, the authors of [79] find a probability distribution
for the axion mass with a 95% credible interval of 0.1µeV ≤ ma ≤ 160µeV and
a maximal value around ∼ 30µeV, which is shown as the green band on the pre-
inflationary side of fig. 2.2. To obtain this result they assume Ωa ∼ ΩDM, an initial
misalignment angle randomly drawn from θi ∈ [−π, π], the local DM density, and
E/N around the QCD window. They do not impose a preferred order of magnitude
for fa and also take existing limits into account.

In the post-inflationary scenario, due to the initial misalignment angle being spe-
cified by eq. (2.2), the axion decay constant for which misalignment production sat-
urates the DM density can be calculated using (2.6) as f crit

a ≈ 1011GeV. Other
computations in literature obtain similar results [57].

The uncertainty in this scenario comes from difficulties in estimating the axion
abundance from decay of topological defects as described above. These decays most
likely lead to scarce, compact objects with a very low rate for encounters with earth
[80] making them inaccessible to earth-bound DM experiments like axion haloscopes.
Therefore in the post-inflationary scenario axion masses with dominant misalignment
production provide the best motivated parameter space with respect to these searches.
In fig. 2.2 the range for which Ωmis

a ≥ 0.1ΩDM is shown as a green band on the post-
inflationary side.

In both scenarios the proposed MADMAX experiment [78, 81] covers a large portion
of the well-motivated parameter space. This experimental effort will constitute a
primary focus of this thesis and will be covered in detail in sec. 3.

More precise estimates for preferred and excluded regions than the ones shown in
fig. 2.2 can be obtained by considering anharmonic effects of the axion potential [63]
and a thorough investigation of axion properties during the QCD phase transition [82].
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Figure 2.2: The QCD axion parameter space. Large HI are constrained by the ab-
sence of tensor fluctuations in CMB measurements [52, 75], small fa by supernova
constraints [76]. Isocurvature perturbations constrain the pre-inflationary scenario
via (2.1), whereas in the post-inflationary scenario for large fa too much axion DM
is produced (all grey regions). Fine-tuning to zero of θi by more than two orders of
magnitude, indicated by the grey dashed line, makes fa > 1015 GeV undesirable. In
purple the region is shown where the ADMX experiment reaches KSVZ sensitivity
[77], in orange the proposed sensitivity range of the MADMAX experiment [78]. The
blue line distinguishes pre- and post-inflationary scenario assuming inefficient therm-
alisation after inflation (Tmax < HI). Very efficient thermalisation (Tmax > HI) could
open up the parameter space for the post-inflationary scenario down to HI ∼ 104 GeV
for the projected MADMAX sensitivity range [53]. The green region indicates the
preferred parameter space for pre- and post-inflationary scenarios as described in the
text.
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2.4 The Axion Lineshape

For direct DM searches such as axion haloscopes, where the full energy of a DM
particle is converted into the energy of detectable photons, the photon frequency ω
can be written as

ω =
m√
1− v2

, (2.7)

where m and v are respectively the mass and the velocity relative to the lab of the DM
particle. In particular, for a particle in the virialized DM halo v has two components:
The movement of the DM particle in the restframe of the DM halo, which can be
quantified by the DM velocity dispersion σv, and the velocity of the lab vl with
respect to the DM halo.

Assuming a standard halo model with spherical symmetry and a 1/r2 density profile,
where r is the distance to the centre of the halo, leads to a Maxwell-Boltzmann
distribution in DM velocities

f(v)d3v =
1

(2π)3/2
1

σ3
v

e
−|v|2

2σ2
v d3v. (2.8)

In a lab frame boosted by vl with respect to the restframe of the DM halo one can
write in spherical coordinates without loss of generality

ṽx = vx − vl = v sin(θ) cos(ϕ)− vl ,

ṽy = vy = v sin(θ) sin(ϕ) ,

ṽz = vz = v cos(θ) .

(2.9)

Therefore

f(ṽ)d3ṽ ≡ f(ṽ)dṽxdṽydṽz =

√
2

π

v

σvvl
exp

(
−v2 + v2l

2σ2
v

)
sinh

(
vvl
σ2
v

)
dv ≡ fb(v)dv ,

(2.10)
where the integrals dθdϕ have already been evaluated. fb(v) is the probability distri-
bution function (PDF) of a Maxwell-Boltzmann distribution with velocity dispersion
σv boosted by vl.

Realistic experiments have a non-vanishing resolution bandwidth (RBW) ∆ω, which
means that signal power observed in a specific frequency bin receives contributions
from all frequencies [ω −∆ω/2, ω +∆ω/2]. This effect becomes noticeable if ∆ω is
not much smaller than the FWHM of fb(v). Assuming a top hat shaped response,
the signal strength in a given bin can be calculated by evaluating the cumulative
distribution function (CDF)

Fb(v) ≡
σv√
2πvl

e
− (v+vl)

2

2σ2
v

[
1− exp

(
2vvl
σ2
v

)]
+

1

2

[
erf

(
v − vl√
2σv

)
+ erf

(
v + vl√
2σv

)]
(2.11)

at the edges of the frequency bin and subtracting the results from each other. The
resulting signal shape can be seen in fig. 2.3 Note that the frequency dependence v(ω)
enters via (2.7). For big RBWs the relative position of the frequency corresponding
to v = 0 with respect to the edges of its bin can also play a relevant role (see [83] or
subsec. 7.3.6).
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Figure 2.3: Axion signal shape computed from (2.11) for an axion at 19 GHz. For vl
and σv the values and uncertainties given in (2.12) are used.

To obtain a concrete signal model it is necessary to find realistic values and uncer-
tainties for σv and vl. The DM velocity dispersion σv is taken from [84] with a best fit
value of σv = 218± 6 km s−1. For vl the solar velocity is used neglecting subdominant
seasonal and daily modulations (see [85] for a thorough examination of these effects).
From the vectorial velocity quoted in [86] the value vl = 242± 2 km s−1 is obtained.

The orbital velocity of earth around the sun varies around 29.8 ± 0.5 km s−1 [87],
with rotational speeds being of the same order of magnitude as the seasonal variation
of the orbital velocity.

For vl ∼ σv the DM velocity distribution in the boosted lab frame still resembles a
Maxwell-Boltzmann distribution reasonably well with uncertainties in vl only leading
to minor shifts in the distribution. In the context of a detection experiment it is
therefore sufficient to translate the uncertainty on vl into the σv parameter and assume
vl to be fixed. Propagating maximal errors then gives a conservative uncertainty
estimate

vl = 242 km s−1 , σv = 218± 39 km s−1 . (2.12)

The considerations presented in this section so far apply equivalently to other virial-
ised DM candidates. T he uncertainty in σv will be leveraged in the Bayesian analysis
of ch. 6, whereas the analysis in ch. 7 will assume best fit values.

The non-relativistic velocities of CDM lead to very light DM candidates such as
the axion being well-described as classical fields. Taking the median of the boosted
Maxwell-Boltzmann distribution (2.10) evaluated using the best fit values (2.12) gives
va ∼ 403 km s−1. For DM masses in the green range of fig. 2.2, ma ∼ 0.1 - 400µeV,
this leads to de Broglie wavelengths of

λdB =
2π

mava
∼ 2.3m - 9.2 km (2.13)

and with a local CDM abundance of ρa ∼ 300MeV cm−3 to a number density of
9× 1018 λ−3

dB to 2× 1033 λ−3
dB, far in the classical regime.



3
Detecting Dark Matter Axions

with Dielectric Haloscopes

Humanity has roughly 200 years of experience in building very sophisticated detectors
for photons [88], but a successful detector for elusive dark matter particles has yet to
be built. It is therefore unsurprising that many experimental efforts for detecting the
axion focus on first converting it to photons, which can then be detected.

Sec. 2.4 already demonstrated the relationship between the mass of a dark matter
particle and the frequency of the photon it converts into if any form of coupling
exists. For the mass range relevant to axions ma ∼ 0.1-400µeV, these photons are
in the radiofrequency (RF) regime between 20MHz and 100GHz. RF engineering is
therefore an integral part of this type of axion experiments.

Experiments trying to detect axions via its coupling to photons usually rely on a
magnetic field to prompt axion-photon conversion. They can be divided into three
broad categories:

Helioscopes like CAST [89] or IAXO [90] point a magnet at the sun in the hope
that solar axions convert to photons inside of the magnetic field.

Instead of relying on the sun to produce axions, light-shining-through-a-wall (LSW)
experiments produce axions themselves using a laser and a magnetic field. These
axions can then travel through an obstacle that does not let any of the laser light
pass and are subsequently back-converted into photons using a second magnet. While
requiring less theory assumptions, LSW experiments such as ALPS-II [91] involve two
axion-photon conversions and their sensitivity therefore scales with g4aγ .

The third type of experiment are haloscopes like ADMX [92] or HAYSTAC [93].
Contrary to the other two types of experiments, they rely on axions being locally
present as dark matter. These axions are usually converted into photons in a resonator
inside of a magnetic field, the resonance frequency of which has to be tuned in order
to be sensitive to different axion masses.
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Conventionally haloscopes use RF cavities as resonators, the size of which is de-
termined roughly by the wavelength of the produced photons. The observed power
from such a setup is proportional to the volume allowing for axion-photon conversion,
which leads to a lower sensitivity for higher frequencies. Dielectric haloscopes are one
attempt to alleviate this issue by combining multiple regions with length scales similar
to the photon wavelength into one larger conversion volume.

This chapter describes the working principle behind dielectric haloscopes with spe-
cial focus on the MADMAX haloscope and its already constructed prototype variants.
It is structured as follows: First sec. 3.1 covers necessary basics of axion electrodynam-
ics following the description in [94]. Sec. 3.2 then explains how dielectric interfaces can
be used to enhance a potential axion signal, effectively serving as the aforementioned
resonator. The MADMAX experiment, a haloscope using dielectric disks, is intro-
duced in detail in sec. 3.3. Analysing data from a MADMAX prototype will be the
focus in chs. 7 and 8. Its target design and currently existing prototypes are therefore
described in detail, concluding with calibration strategies for the data analysed later.

3.1 Axion Electrodynamics

Including QED and axion specific terms from eq. (1.10) into the Lagrangian, one can
derive as equations of motion the modified Maxwell equations [95, 96], which include
the axion as an additional source with effective charge and current density

j0a = −gaγBe · ∇a , (3.1)
Ja = gaγBe∂ta . (3.2)

In the presence of a strong, static external magnetic field Be the leading terms of the
macroscopic axion-Maxwell equations read [94]:

ϵ∇ ·E = j0 − j0a , (3.3)

µ−1∇×B− ϵ∂tE = J+ Ja , (3.4)
∇ ·B = 0 , (3.5)

∇×E+ ∂tB = 0 , (3.6)(
∂2
t −∇2 +m2

a

)
a = gaγE ·Be , (3.7)

where the magnetic field B does not include the external field Be.
For detectors much smaller than the de Broglie wavelength of the axion λdB, one

can assume a spatially constant axion field a = a0 exp (−imat) with amplitude a0.
Plugging (3.6) into the time derivative of (3.4) and assuming constant Be leads to the
wave equation for the axion-induced electric field with solution

Ea(t) = −gaγBe

ϵ
a(t) . (3.8)

Note that the amplitude of this field in vacuum is given by E0 ≡ |gaγBea0|. The field
Ea has discontinuities on interfaces inside the constant magnetic field Be where the
dielectric constant ϵ is discontinuous (fig. 3.11). However, the parallel components of

1For the remainder of this chapter the x direction is assumed to be perpendicular to the external
magnetic field as defined in this figure.
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Figure 3.1: Sketch of axion-induced emission sourced at a dielectric interface in a
magnetic field in the classical field picture. In the presence of an external magnetic
field Be (blue arrows) the axion field a (dashed orange line) induces an electric field
Ea (green line) (eq. 3.8). Ea depends on the dielectric constant ϵ of the medium,
leading to a discontinuity at the interface between dielectric medium (grey area) and
vacuum. This step is compensated by the emission of propagating EM waves on both
sides of the interface with their E-field components shown in brown. Modified based
on [97].

total electric and magnetic fields must still be continuous, which prompts the emission
of propagating electromagnetic (EM) waves from the interfaces with amplitudes

|Eγ
1 | =

E0√
ϵ1

∣∣∣∣ 1√
ϵ2

− 1√
ϵ1

∣∣∣∣ , (3.9)

|Eγ
2 | =

E0√
ϵ2

∣∣∣∣ 1√
ϵ2

− 1√
ϵ1

∣∣∣∣ , (3.10)

|Hγ
1,2| = E0

∣∣∣∣ 1√
ϵ2

− 1√
ϵ1

∣∣∣∣ , (3.11)

with H = B/µ0 assuming a negligible magnetic response. These propagating EM
waves have energies corresponding to the axion mass and therefore, in the proposed
MADMAX range of 40-400µeV, wavelengths of λ = 3.1-31mm.

The observable power density emitted by the dielectric interface into free space can
be calculated from the cycle-averaged Poynting flux

Sγ
1 =

1

2
[Re(Eγ

1)× Re(Hγ
1)]x = − E2

0

2
√
ϵ1

(
1√
ϵ2

− 1√
ϵ1

)2

, (3.12)

where the minus sign indicates that it points in negative x direction. Using eqs. (2.5),
(1.19) and (1.18) and assuming the entire local DM consisting of axions of ρa ∼
300MeV cm−3, yields for the power emitted from a perfect mirror (ϵ1 = 1; ϵ2 = ∞)
with surface area A:

Pγ = 2.28× 10−27W

(
A

1m2

)(
Be

10T

)2

C2
aγ . (3.13)
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Experiments using this straightforward approach, like BREAD [98, 99] or DOSUE
[100], are called “dish antenna haloscopes” [101]. They inherently are broadband
searches, covering a wide range of potential axion masses at the same time. However,
making the tiny power (3.13) detectable requires very long integration times or an
enormous mirror surface. It is therefore desirable to boost the signal strength in some
way.

3.2 Power Boost Factor

There is a way to increase the power of the emitted radiation compared to the afore-
mentioned dish antenna approach. It leverages the coherence of the emission from
multiple dielectric interfaces placed inside the static field Be at distances much smal-
ler than the de Broglie wavelength of the axion. Such coherent emissions can be made
to constructively interfere, significantly increasing the detected signal.

In the following, regions r ∈ [0,m] with dielectric constant ϵr are labelled with
increasing indices from left to right. Regions are assumed to extend infinitely in two
spatial dimensions and to have interfaces perpendicular to the x direction (as shown in
fig. 3.1), i.e. only 1D effects are considered. Furthermore assuming a spatially constant
external magnetic field and only media with µr = 1, the electric and magnetic fields
inside each region become (see [94])

Etot
r (x) = −E0

ϵr
+Rre

+iω
√
ϵr∆x + Lre

−iω
√
ϵr∆x , (3.14)

Htot
r (x) =

√
ϵr

(
Rre

+iω
√
ϵr∆x − Lre

−iω
√
ϵr∆x

)
, (3.15)

with ∆x measuring the distance to the left boundary of region r. The first term in
(3.14) is the constant axion-induced electric field. The remaining terms in Etot

r as well
as Htot

r come from the left and right moving EM waves with amplitudes Lr and Rr,
respectively. E and B field continuity at all m interfaces defines a linear system of
equations for Lr and Rr. The total emitted power of a system closed off by a mirror
on the left side, Rm, is then boosted by

β2 ≡
∣∣∣∣Rm

E0

∣∣∣∣2 , (3.16)

where β2 is called (power) boost factor, which generally depends on the frequency ω
and thus the wavelength of the emitted photons.
Rm can include constructively interfering contributions from all surfaces in the

external magnetic field, if appropriate distances between the surfaces are chosen. Ad-
ditionally, emissions can be reflected inside the system multiple times, resonantly
enhancing the constructive interference. The boost factor is largest in systems with
alternating regions of large and small dielectric constants that have an optical thick-
ness corresponding to roughly half of the wavelength. An easy example for such a
system are equidistant dielectric disks of appropriate thickness in vacuum, which is
used as a baseline for the discussions in the following paragraphs.

For a typical experimental effort trying to probe different axion mass/ frequency
ranges, having a large boost factor in a very small frequency range may not be optimal
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Figure 3.2: Simulated boost factor curves for two different configurations for a system
with 20 dielectric disks (ϵ = 25, 1mm thickness). The configurations were optimised
to yield the largest value possible for the minimum of β2 in a 1MHz (resonant) or
a 50MHz window (broadband), respectively. The bottom panel shows the simulated
reflectivity for both configurations, clearly displaying dips at frequencies with large
β2. Adapted from [94]

in terms of scanning speed. Realistic efforts contain some overhead when switch-
ing from one configuration to another, like calibration measurements or, especially
at cryogenic temperatures, non-negligible durations for repositioning the dielectrica.
Less resonant, more broadband configurations with top-hat like boost factor curves
minimise this overhead. They could therefore be desirable to cover a larger frequency
range in a smaller amount of time given a specific sensitivity target.

The authors of [94] showed, that it is indeed possible to trade big peak values for
β2 against an increased bandwidth by moving away from equidistant disk positions.
For an example configuration with 20 dielectric disks this is demonstrated in fig. 3.2,
upper panel. The effect is known as “area law” since the area under the square root of
the boost factor curve integrated over the full frequency space remains approximately
constant when losses are negligible.

A significant challenge for relying on a signal boost is that a direct measurement
of the boost factor is not straightforward in the absence of an axion signal. However,
eqs. (3.14), (3.15) and (3.16) suggest some correlation to the reflectivity R response
of the system. The interference conditions for propagating waves in the system are
independent of whether they are sourced at the boundaries by non-negligible E0 or
injected via Lm ̸= 0. Qualitatively, the simulations shown in fig. 3.2 indeed display
a dip in reflectivity that coincides with frequencies of strong boost factors. In sub-
sec. 3.3.4 reflectivity measurements will be used to quantitatively determine system
parameters leading to a boost factor estimation.

Recently, a second strategy for obtaining boost factors has been developed, lever-
aging the electric fields ER inside the system during a reflectivity measurement [102].
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The fields ER are measured using the bead pull method [103]: A small dielectric
object, or bead, is inserted into the region of interest leading to a change in reflec-
tion coefficient, which is related to the field strength at its location. Probing ER at
multiple different x locations in the vacuum/ air gaps between regions with higher
dielectric constant allows to reconstruct a reliable estimate for the boost factor in an
open system with a single disk and mirror [104]. The method has already been applied
for a first dark matter search [5].

In the 1D setup discussed above the axion emission from the mirror as well as its
propagation through free space occur as plane waves. E and B field components
are both perpendicular to the Poynting vector, therefore this solution is also called
transverse electro-magnetic (TEM) mode.

In real, finite systems the existence of some boundary condition potentially changes
the allowed modes. Consider for simplicity a circular mirror with radius r0, again
potentially in combination with several dielectric disks. Such a system will in the
following be referred to as booster. For the boundary conditions at r = r0 the two
extremes are free space, i.e. no reflection/ perfect absorption at the circular boundary,
or a perfect circular waveguide, i.e. perfect reflection at the boundary. When absorbers
are placed around the booster the free space condition is more applicable. Note,
however, that even in this case inside the disks the boundary conditions are similar to
that of a circular waveguide. Such systems need to be simulated taking the alternating
boundary conditions into account. Alternatively, the booster can be placed inside of
a metal cylinder leading to waveguide boundary conditions in the whole booster.

Waveguide modes differ substantially from the free space TEM mode. Firstly,
the E and B fields of propagating EM fields cannot anymore both be perpendicular
at the same time. Secondly, due to the fixed boundary conditions only a discrete
set of modes can propagate inside the waveguide. One distinguishes between modes
with a transverse E or a transverse B field and they are labelled as TEij or TMij ,
respectively with i indicating the number of radial and j indicating the number of
azimuthal nodes of their field distribution. Higher order modes with larger i and
j typically have smaller propagation constants as well as higher cutoff frequencies.
The cutoff frequency determines up to which frequency a certain mode is still able to
propagate inside a waveguide with a specific radius.

The booster has a relatively big radius, therefore multiple higher order modes are
able to propagate in the system. For a full 3D simulation the propagation properties
of these higher order modes need to be taken account. As a first estimate, however,
a form factor η can be introduced that accounts for the mismatch between axion
induced emission and the mode that couples to the receiver system by calculating the
overlap integral between the two. An example is given in fig. 3.7.

This section explained in some generality how dielectric haloscopes are capable of
boosting potential axion emission relative to dish antenna experiments. The consid-
erations apply e.g. to the DALI [105, 106] and ORPHEUS [107, 108] experiments,
or to the comparable approach by the LAMPOST experiment [109] probing axion
dark matter at larger masses. For specificity the example of dielectric disks as the
boosting components was employed, the working principle utilised by the MADMAX
experiment, which is discussed in detail in the next section.
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Figure 3.3: Baseline design of the MADMAX experiment. The green cylinder repres-
ents the booster consisting of a mirror on the left end and multiple dielectric disks. It
is placed inside a cryostat (gray) to reduce noise levels. The booster part is enveloped
by a dipole magnet, the coils of which are shown in red. Power emitted by the booster
is guided by a focusing mirror (orange) into a horn antenna (yellow) and read out by
a receiver chain (not shown). Not to scale. Taken from [78].

3.3 The MADMAX Experiment

As already discussed in sec. 3.2, one way of boosting a possible axion signal is by pla-
cing a mirror and multiple semi-transparent dielectric disks inside a magnetic field.
The disks need to be positioned such that emissions from the various surfaces con-
structively interfere while being reflected multiple times within the system. This is the
fundamental working principle of the MAgnetized Disk and Mirror Axion eXperiment
(MADMAX).

The power emitted or reflected by the booster is focused into an antenna and coupled
into a receiver system consisting of a low noise amplifier (LNA) as well as multiple
stages of signal processing. The role of this receiver system is to amplify the signal and
to convert the raw time-series spectrum, so it can be digitalised, Fourier transformed
and stored as a real-valued frequency spectrum.

The goal of the MADMAX project is to search for QCD axions making up a majority
of DM with DFSZ sensitivity (E/N = 8/3) in a mass range between 40µeV and
400µeV (i.e. 10GHz - 100GHz). An abstract schematic of the setup is shown in
fig. 3.3.

3.3.1 MADMAX design target

Experimental parameters necessary for reaching this target sensitivity can be determ-
ined by setting the signal strength (3.13) into relation with the noise level from thermal
and electronic backgrounds using the radiometer equation. The noise level depends
on the effective system temperature Tsys, the resolution of the receiver system ∆ω,
i.e. which frequencies are lumped together into one bin, and the integration time τ ,
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i.e. the time in which the receiving system is actively measuring. For a DFSZ axion
with E/N = 8/3, a local density of ρa = 300MeV cm−3 and using the FWHM of a
19GHz axion signal from fig 2.3, ∆ω = 26 kHz, one obtains

S

N
≈ 5

(
A

1m2

)(
Be

9.1T

)2( β2

5× 104

)( η

0.69

)( 2K

Tsys

)(
τ

4 days

)1/2

. (3.17)

The form factor η takes into account the mismatch between the axion induced
emission and receiver system as described in sec. 3.2.

The reachable effective system temperature Tsys is limited by heat load from the
motors responsible for moving the disks as well as noise contributions from the receiver
chain and the booster itself. Results from first data-takings of a MADMAX prototype
setup in a cryostat at < 8K are to be published soon and construction of cryostat
infrastructure at DESY is ongoing.

Concerning the magnetic field Be, extensive design studies on the feasibility of a
9.1T dipole magnet with an 1.35m open bore at the centre have yielded positive
results [110].

The size of the magnet bore may limit the maximal possible size A of the disks.
The envisioned 1.35m opening needs house cryostat as well as a contraption to mount
and move the disks [111]. Requirements on manufacturing precision also play a role
for determining the possible surface area of the disks depending on the material used.
The simulations in this and the previous chapter assume ϵ = 25 which is comparable
with Lanthanum aluminate (LaAlO3), the prototypes described below use Sapphire
(ϵ ∼ 9). To reach the full 1m surface area it may be necessary to construct the disks
out of multiple individual tiles, simulations and manufacturing studies for which are
ongoing [4, 81].

Manufacturing requirements can be broadly divided into three categories, which
differ on the length scale of the inaccuracies: Tilts, planarity and surface roughness.
Tilts describe placement of the disks which is not precisely parallel to the magnetic
field. Planarity describes variations in the thickness of the disk on scales of 1/10 of
the disk diameter. Surface roughness analogously describes variations of 1/4 of the
photon wavelength. Studies on how the 3D power boost factor is affected by random
variations at these three scales for a 20 and a 80 disk setup have been conducted [4].
The results can be seen in fig. 3.4.

More recently these investigations have been followed up by simulations for slightly
curved disks. They show that taking disk inaccuracies into account when determining
disk positions for optimal boost factors may alleviate the requirements imposed by
fig. 3.4.

Reaching the MADMAX design target seems challenging but possible with signi-
ficant steps toward it already having been taken. At target sensitivity it is possible
to cover the target parameter space in a span of several years. To reach this goal,
however, various intermediate milestones need to be passed, the most recent of which
was taking physics measurements with multiple prototype setups. These setups are
the focus of the next subsection.
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Figure 3.4: Influence of geometrical inaccuracies on the obtainable power boost factor
including the form factor η for configurations with 20 LaAlO3 disks with a diameter
of 30 cm and 80 LaAlO3 disks with 1m diameter. The top row shows the effect of
randomly tilting disks in any direction perpendicular to the surface of the mirror up
to the value given in the captions. The middle and bottom rows show the effect of
thickness variations of two different length scales. Shaded areas refer to 16 and 84
percentiles of the resulting boost factors with the solid lines indicating the ensemble
mean. From [4].
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Figure 3.5: Exploded view of the CB 200 booster. From left to right: Taper, dielectric
lens (black), cylinder housing the disks and mirror, three sapphire disks (white) and
spacer rings (grey) and aluminium mirror (golden). The system couples to a receiver
system (not shown) on the left side. On the right side the contraption for putting
pressure on the mirror was omitted. Adapted from [3].

3.3.2 Current MADMAX Prototypes

Between December 2023 and March 2024 several independent physics measurements
have been conducted at CERN and at the University of Hamburg. The measurements
used three distinct setups: CB 100, CB 200 and OB 300. The number refers to the dia-
meter of the dielectric disks in millimetres. The naming scheme distinguishes between
open booster (OB) setups, in which the dielectric disks are mounted on metallic sus-
pensions surrounded by free space, and closed booster (CB) setups, in which the disks
are placed inside a metal cylinder with their distances being determined by metallic
spacer rings. OB systems are more similar to the target design for MADMAX and
allow for easy measurement of internal electric fields using the bead pull method. CB
systems on the other hand are easier to simulate due to the fixed boundary conditions
provided by the metal cylinder.

OB 300 was used in December 2023 and January 2024 for measurements in Ham-
burg. It is an open system consisting of three sapphire disks with 30 cm diameter.
Unlike the closed systems detailed below it makes use of a focusing mirror and a
custom-made receiver system with components from Hamburg University and the
Fermi National Accelerator Laboratory. No magnet was available to host a setup of
this size at the time of measurement, therefore no axion search was possible. However,
the measurement produced world-leading limits on dark photons, another dark matter
candidate [5].

CB 100 is the first closed booster system constructed by the MADMAX collabora-
tion. It was used in previous years for multiple test runs with and without magnetic
field at CERN and at the Max-Planck Institute for Physics in Munich. During the
measurement campaign at CERN in February and March 2024 it was used to obtain
first cryogenic measurements inside of a magnetic field. To this end, as well as for
the CB 200 measurements discussed in this thesis, the MORPURGO magnet was used
with a magnetic field strength of up to 1.6T. CB 100 consists of an aluminium mirror
and three sapphire disks with a diameter of 10 cm and a thickness of 1mm. The disks
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are separated by gold-plated aluminium spacer rings and mounted inside a aluminium
cylinder. The side opposite to the mirror is closed off by a gold-plated aluminium
taper, the purpose of which is to couple any emissions of the booster into the receiver
system.

CB 200 is a slightly larger, enhanced version of the CB 100 setup. Fig. 3.5 shows a
schematic of the system. The most notable difference to CB 100 is the focusing lens
(black in fig. 3.5) between booster and taper, which became necessary due to the
increased size of the system to avoid unwanted modes at frequencies comparable to
the boost factor peak. Additionally, CB 200 has some tuning capability: Different
disk configurations can be chosen by using different sets of spacer rings, making it
possible to choose different frequencies of maximal power boost factor in a ∼ 1GHz
range. The distance between the disks is varied around 12-13mm with exception of
the first disk at ∼ 8mm distance from the mirror. For smaller shifts in frequency of
order 10MHz the high sensitivity of the booster system to variations of the air gap
between mirror and first dielectric disk can be leveraged. The mirror is pressed onto
the stack of disks by an adjustable screw, the pressure on which can be increased/
decreased to decrease/ increase the size of the first air gap on the µm level which
shifts the boost factor distribution by several MHz to higher/ lower frequencies for
measurements at ∼ 20GHz.

Ch. 7 features a first analysis of data from the CB 200 setup. Below some pre-
requisites are covered, which are necessary for the statistical analysis and treatment
of systematics presented later.

3.3.3 Calibration of the CB 200 Setup

For physics and calibration measurements CB 200 was coupled to a Rode&Schwarz
FSW50 spectrum analyser (SA) via multiple stages of amplification using a low noise
amplifier (LNA), filtering, and mixing to convert the RF spectra down to lower fre-
quencies. The data was then read out by a dedicated data acquisition system with
negligible dead time. This receiver system was configured and tested by collaborators
in Bonn and Aachen and is therefore called “Aachen/Bonn receiver” in the following.
Spectra were taken at 8.94Hz resolution with this setup. Individual spectra contain
15min of time-series data. To measure its reflectivity response, CB200 was directly
connected to a vector network analyser (VNA).

The power recorded with an SA cannot easily be converted back into the power
actually emitted by the booster. It needs to be calibrated, which can be done using
the Y-factor calibration method [112]. Instead of the booster, a noise diode with
known power output is attached to the SA via an attenuator. Then, the power
output of the SA can be determined with the noise diode turned off and with the
noise diode turned on. Because the power emitted by the noise diode for both, on and
off, states is known for every frequency, the power measurement taken with the booster
can be reconstructed. These power spectra are usually given in terms of Tsys. This
temperature can be understood as the temperature a reference black body would need
in order to lead to the observed power in the frequency bin. The procedure assumes a
linear scaling between the output of the SA and the power emitted by the noise diode.
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Figure 3.6: Example power calibration factor from the calibration measurement of
Feb, 21st. The raw calibration factor obtained without smoothing is shown in blue,
after applying an SG filter bin-to-bin fluctuations are significantly reduced (orange).

The output of this calibration measurement is a power calibration factor that is
used to convert the arbitrary units of the raw SA output to temperature units. As an
example the factor from the calibration performed on Feb, 21st is shown in fig. 3.6.
The underlying calibration measurement has a total integration time much smaller
than that of a typical physics measurement. For bin-to-bin fluctuations to not affect
the sensitivity, the calibration factor is smoothed using a third-order Savitzky-Golay
(SG) filter (see also subsecs. 6.2.1 and 7.3.5) with a width of 7.2MHz.

The primary uncertainties playing a role in the power calibration procedure are
coming from the precision of the noise diode and the attenuator. Both can be obtained
from data sheets provided by the manufacturers. The attenuator can also be cross-
checked via transmission measurements using the VNA. Additionally, measurement
uncertainties play a role. They can be estimated as the standard deviation of the
noise measurements around a mean given by the SG-filtered version of the dataset.

Lastly, the gain of the LNA is subject to environmental variation. This is reflected
in uncalibrated spectra being shifted to slightly larger or smaller values compared to
other spectra for the same experimental setup. In the following this effect is called
gain drift. It is quantified by investigating the variation in the mean value taken over
all frequency bins in one spectrum. The mean for individual spectra varies on the
percent level, making this effect subdominant.

3.3.4 Boost Factor Estimation for the CB 200 Setup

For a closed system like CB 200 obtaining boost factors directly using a bead-pull
measurement as described in sec. 3.2 is very challenging. Therefore another strategy
was used to obtain boost factors, which is outlined below.

The two relevant components for the procedure are the booster itself as well as the
LNA, which is the first component of the receiver chain. The idea is to first obtain
and verify a 1D model for the booster, using VNA reflectivity measurements, and a
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Figure 3.7: Comparison between TE11 mode of a circular waveguide (left) and axion
induced electric field (right). The direction of the arrows indicates the direction of E,
their length the absolute value |E|.

LNA noise model separately before combining them in order to evaluate the boost
factor of the overall booster-LNA system.

A 1D model for the booster can yield a reliable value for the boost factor if at
frequencies with high boost factors the booster contains only the mode used for the
model. As mentioned earlier, in principle due to the large diameter of CB 200 multiple
different modes can propagate in the system. A dip in the reflectivity spectrum like
in fig. 3.2 indicates some resonance for one of the modes propagating in the booster.
Multiple modes being allowed in the booster therefore implies the existence of many
more dips in the reflectivity spectrum related to other resonances in the setup.

The receiver system is designed for the TE11 mode which has a large overlap with
the axion induced current as shown in fig. 3.7. The latter is strictly (anti-)parallel to
the external magnetic field with constant |E| over the whole emitting surface. The
TE11 mode however has to be perpendicular to the perfectly reflecting boundary. One
has to account for this difference using the form factor η introduced earlier, which for
the modes shown in fig. 3.7 amounts to η ≈ 0.84.

To reliably single out the correct reflectivity dip from other structures in the re-
flectivity spectrum, one can leverage the fact that the boost peak is highly sensitive
to the mirror location and less sensitive to the location of the booster relative to the
receiver system. Adjusting the mirror position moves the frequency position of the
reflectivity dip corresponding to the boost factor peak but leaves other dips relatively
constant. The opposite effect is observed when moving the booster with respect to
the taper connecting to the receiver system.

To further ensure that the feature observed in the power spectrum does indeed
correspond to the wanted booster mode, again the bead-pull method can be of use:
By performing a scan parallel to the disks between last disk and mirror, one can
investigate if the field distribution at the frequency of the reflectivity dip matches
the expectation for |E|2 for the TE11 mode. For the configurations of CB 200 used
at MORPURGO this was verified in advance using scans along z = 0 (as defined in
fig. 3.7).
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Figure 3.8: 1D power boost factors obtained via the fitting procedure described in the
text. Different colours for individual boost factor curves are used only to enhance
visibility.

A fit on the reflectivity spectrum using a 1D booster model is not capable of ac-
counting for 3D effects and therefore cannot accurately reproduce the full reflectivity
spectrum. However, this is not necessary since having singled out the relevant fre-
quency range for the boost factor peak, it is sufficient to accurately reproduce the
corresponding reflectivity dip. The model is constructed using PathWave Advanced
Design System (ADS) by Keysight allowing mirror and disk properties to vary freely
within their previously measured uncertainties.

The LNA model is also implemented using ADS. It contains several effective para-
meters, which are fitted using separate LNA calibration measurements. The uncer-
tainty in these parameters is dominated by the power calibration corresponding to
these measurements.

The distance between booster and LNA can be determined by using a fit on a booster
noise measurement. A single parameter fit only on the distance is employed, all other
relevant model parameters are drawn from their respective probability distributions
as determined in previous steps. The fitting procedure is repeated multiple times
resulting in boost factor curves such as the ones displayed in fig. 3.8.

A Normal distribution is fitted to these boost factor curves for every frequency bin
individually. The resulting mean and standard deviation are then used in the further
analysis process to assess the uncertainty corresponding to the boost factor.



4
Foundational Statistical

Methods

There exists an age-old feud among statisticians on how to best interpret statistical
findings. The gist of it can be summarised using the example of a coin toss:

Classically, statisticians assume a specific hypothesis and investigate how likely a
specific measurement is under this hypothesis. They may use sentences like: “Assum-
ing this is a fair coin, the five heads we got in a row are pretty unlikely.” This line of
thinking implies knowledge of what would happen, given the hypothesis is true, if the
measurement was repeated infinitely many times. Just as in the example, this is ac-
tually the case more often than not. This approach is known as frequentist statistics,
since one can tell how frequently to expect a specific measurement.

A central criticism offered by other statisticians is that one usually does not care
how likely a specific measurement was given some hypothesis which may or may not
be true. What one should care about is what the measurement tells us about the
hypothesis being true or not. One should say: “Given the five heads we got in a row,
this being a fair coin is pretty unlikely.” A statement like this always depends on
one’s beliefs about the hypothesis prior to the measurement. After all, one may be
more inclined to trust the fairness of the coin if taking it from one’s own purse than
if getting it from a shady magician. This dependence on prior belief is formalised in
Bayes theorem, making this approach known as Bayesian statistics.

In this thesis both frequentist as well as Bayesian methods are be used, the former
in chs. 7 and 8, the latter in ch. 6. Given how crucial a good understanding of the
statistical methods employed there is for the interpretation of the results, the relevant
basics are introduced here. Starting with frequentist hypothesis testing in sec. 4.1,
the concept of test statistics is introduced and type I and type II errors are covered.
In sec. 4.2 the look-elsewhere effect is touched upon, explaining necessary corrections
when conducting multiple investigations into equivalent hypotheses. Sec. 4.3 then
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Figure 4.1: Example scenario of a frequentist hypothesis test. Under the hypothesis
H0 (H1) the observed value for the test statistic Tmeas is drawn from a Gaussian with
standard deviation σ = 1 and mean T0 = 0 (T1 = 5.65), shown in green (orange). To
determine which distribution it was drawn from a threshold Tcrit (black, dashed line)
can be employed. For Tmeas < Tcrit one assumes H0 to be true, H1 is assumed to be
true for Tmeas > Tcrit. The false positive and false negative rates can be obtained by
integrating over the hatched green and orange areas, respectively.

switches to the Bayesian interpretation for parameter inference, explicitly illuminating
the importance of physically well-motivated prior beliefs.

Textbooks covering frequentist and Bayesian statistical methods separately are
abundant, for a detailed comparison of the two see e.g. [113].

4.1 Methods for Frequentist Hypothesis Testing

In hypothesis testing two hypotheses are compared with each other, which are usually
called null hypothesis H0 and alternative hypothesis H1. In the context of an axion
haloscope one can for example choose H0 as “no axion exists or its coupling to photons
gaγ equals zero” and H1 e.g. as “the axion exists at the observed frequency, makes up
all of the local dark matter and couples to photons as gaγ = 10−14 GeV−1”. Now an
observable parameter T is needed, the distribution of which is known in the limit of
infinitely many measurements, under the assumption of H0 and H1. In the coin toss
example above this was the number of heads in five coin tosses, for MADMAX the
quantity is related to the measured power at a specific frequency.

The parameter T in this context is called a test statistics. In principle any metric
can be chosen for which a probability distribution can be computed under H0 and H1

yielding different results for the two hypotheses. For most axion haloscopes including
MADMAX the distributions at each measured frequency bin are Gaussians with equal
standard deviations σ but different means T0 and T1 (see fig. 4.1). The experimental
design determines the relationship between observable T and physically meaningful
quantity gaγ . This relationship must be tractable and a good design leads to large
|T0 − T1|/σ. The standard deviation σ typically arises due to statistical fluctuations
and therefore decreases with measurement time.
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Equipped with the two probability distributions for the test statistics under H0 and
H1, one can introduce a threshold value Tcrit. For a measurement Tmeas below this
value H0 is accepted, above it H0 is rejected and H1 is accepted instead. It is now
possible to analytically calculate how often one makes the wrong choice by integrating
over the relevant parts of the probability distributions for H0 or H1. Rejecting H0

even though it it true is called false positive or type I error (hatched green in fig. 4.1).
Accepting H0 even though it is false is called false negative or type II error (hatched
orange). Shifting the rejection threshold trades type I error for type II error or vice
versa.

In physics, H0 is typically considered to be the scenario involving no new phys-
ics. Rejecting H0 therefore requires extraordinary evidence typically considered to be
between 3σ and 5σ globally, corresponding to a false positive rate between 2.7× 10−3

and 5.7× 10−7. Requirements for wrongly rejecting H1 are typically much less strict,
usually a false negative rate between 5% and 10% is deemed acceptable.

If H0 is not rejected this threshold based approach leads to an exclusion limit which
is independent of statistical fluctuations in the data. In an axion context for every
individual frequency bin Tcrit is used to construct the limit instead of the individual
Tmeas, leading to a “smooth” exclusion limit. This approach was employed e.g. by the
HAYSTAC experiment [83].

The ADMX experiment employs a simpler, yet equally valid approach [114], as will
be done by the MADMAX experiment [3]. Instead of comparing two hypotheses it is
possible to claim incompatibility of the data with a single hypothesis. After carefully
investigating data with large Tmeas in order to not accidentally overlook potential
signals, it is statistically sound to interpret any Tmeas as the data being incompatible
with a hypothesis H1 which is expected to lead to T > Tmeas in e.g. 95% of cases.

There is one caveat when using this approach: Assume the no-axion hypothesis
H0 to be true, which means that Tmeas is a sample of the corresponding distribution
around T0. Trivially, 5% of the Tmeas will then be smaller than 95% of the values
of T expected under H0, wrongly excluding H0 for these measurements. For many
independent frequency points this implies that 5% of them would show an exclusion
limit down to gaγ = 0GeV−1. The interpretation of such a limit is not intuitive, in
spite of it being accurate under the stated assumptions. The MADMAX limits shown
in ch. 8 are therefore conservatively restricted to not exceed the median expected limit
T0 by more than 1σ.

4.2 Correcting Look-Elsewhere Effect

Above it was stated that claiming detection of new physics requires a very small false
positive rate down to fp = 5.7 × 10−7. If only one data point is observed, that is
sampled from a Normal distribution, this fp corresponds to a 5σ excess. For a set of
n independent data points, however, the statistical probability that any one of them
exceeds a specific σ level increases as (e.g. [115])

fglobal
p = 1−

(
1− f local

p

)n
, (4.1)

where the superscripts “global” and “local” distinguish between the probability when
considering an excess in any one of the data points or a specific data point only.
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When data points are correlated, an effective number of independent points neff

needs to be found. A standard procedure for an ordered set of equidistant data points
Xi is to divide the number of correlated data points n by the the sum of the auto-
correlation function for all possible offsets [116]:

neff =
n

1 + 2
∑

o cor (Xi, Xi+o)
, (4.2)

with offset o. This procedure can be applied to the actually measured set of data
points or, as is done in sec. 7.5, be leveraged in a Monte-Carlo simulation for simulated
datasets. The latter approach is beneficial to increase the statistical significance for
sets containing only a small number of data points or to avoid unwanted experimental
artefacts.

4.3 Axion Priors for Bayesian Inference

In the frequentist framework above the probability distributions showed how often
to expect a specific measurement for a parameter T when repeating an experiment
assuming some hypothesis to be true. A confidence interval or limit obtained with
this method should be interpreted in terms of the compatibility of the data with some
set of model parameters. It does not mean that there is a 95% probability that the
true model parameter is within the interval or limit.

The latter interpretation is only valid for Bayesian credible intervals or limits. They
are obtained from the posterior probability, or simply posterior, P (θ|x) of a set of
model parameters θ given a measurement x. To calculate the posterior one has to
apply Bayes’ theorem

P (θ|x) ∝ P (x|θ)P (θ) , (4.3)

where the probability of a measurement given a set of model parameters P (x|θ) is
called the likelihood and P (θ) is the probability distribution of the model parameters
prior to the measurement, commonly simply called prior.

The choice of the prior distribution can substantially affect credible intervals and
must therefore be conducted with care. It can be informed by theoretical predictions
and/or previous measurements. In the absence of any prior information for one of
the model parameters an uninformative prior must be chosen. It is subject to open
debate what the most uninformative prior is for different scenarios.

In an axion haloscope context there are three independent parameters to consider:
the axion mass ma, determining the frequency at which an axion signal can be ob-
served, the dark matter velocity dispersion σDM determining the FWHM of the axion
peak, and the axion-photon coupling gaγ , determining the height of the peak1 (see
also secs. 2.4 and 6.2).

The axion mass is only slightly constrained from theoretical considerations. For
global fits the considerations of sec. 2.3 can inform a potential prior choice. In prac-
tice only a very small piece of the axion mass parameter space can be constrained

1Technically also the local DM density and the fraction of DM made out of axions affect the
peak height in the same way as gaγ . A Bayesian analysis should therefore construct a prior for
the combination of these three degenerate contributions. In practice, however, axion haloscopes
typically assume axions to constitute all of DM and a fixed local density.
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by most haloscopes. It can therefore be helpful to restrict the prior range to the ob-
servable values. While this does not lead to an accurate global credible limit, locally,
i.e. assuming an axion to exist in the measurable mass range, the obtained limits are
still accurate.

The DM velocity dispersion is well-determined from measurements leading to tight
priors. For details see sec. 2.4.

The axion-photon coupling for a given ma is determined by the anomaly ratio E/N
according to eq. (1.17). Determining a prior distribution for gaγ can therefore be trans-
lated into finding all possible theoretical predictions for E/N . For the minimal QCD
axion this “distribution” would only consist of three discrete values. In subsec. 1.3.3
previous efforts to compute anomaly ratios for KSVZ-type models were mentioned.
Doing the same also for DFSZ-type models is necessary in order to be able to com-
pute a general non-minimal QCD axion prior distribution. Such a prior is crucial for
applying a Bayesian analysis to any haloscope dataset. This is the main motivation
behind ch. 5.

Beyond the QCD axion, particles with similar properties can arise from many the-
ories beyond the SM, among them string theories [117]. These axion-like particles
(ALPs) do not solve the strong CP problem but include an effective coupling to
photons. Specific models can lead to various predictions for the relation between
ALP mass and photon coupling (see e.g. [118] for some examples). Often, how-
ever, ALPs are considered as model-independent, which means that the photon
coupling is assumed to be independent of the axion mass and could be arbitrar-
ily small/ big within existing experimental bounds. When the magnitude of the
photon coupling is unknown, arguably a prior that treats all decades equally (i.e.
P (10−19 ≤ gaγ

[
GeV−1

]
≤ 10−18) = P (10−18 ≤ gaγ

[
GeV−1

]
≤ 10−17) = ...) is the

most natural choice. Such a prior has an infinite volume as gaγ → 0. If the data
does not contain conclusive evidence for an axion, the likelihood does not vanish in
this limit. The resulting posterior will therefore not be normalisable [119] making it
impossible to obtain Bayesian exclusion limits for model-independent ALPs using the
standard methodology.

The constraining capability of the data can instead be investigated by calculating
the ratio between prior and posterior probability. Parameter space in which the
posterior is suppressed compared to the prior can be deemed disfavoured by the data,
making it possible to construct limits using the data, even though they are not the
standard Bayesian credible limits. Methods using this approach exist [119] and similar
methods have already been used in the context of axion research [120].





5
Non-minimal DFSZ-Type Axion

Models

In subsec. 1.3.1 minimal DFSZ axion models have been investigated, which introduce
two Higgs doublets as well as a Higgs singlet to solve the strong CP problem with an
invisible axion. The minimal KSVZ model has been described, introducing next to
the Higgs singlet an additional heavy quark in a specific representation, and extensive
efforts to generalise this class of models by allowing multiple heavy quarks in various
representations have been recapitulated (subsec. 1.3.3 or [9]). This leaves the glaring
questions: How can the minimal DFSZ models be generalised? Which axion-photon
couplings are generated in such models and how do these findings compare to the case
of non-minimal KSVZ-type models?

The paper [1], co-written by the author and followed closely by the present chapter,
systematically constructs non-minimal DFSZ-type models. It exploits the fact that the
only model dependence of axion-photon couplings is given by the ratio of EM and QCD
anomaly coefficients (see eq. (1.19)), which in turn only depend on representations of
the contributing fields. For DFSZ-type models where only SM fermions contribute
to the anomalies, calculating axion-photon couplings reduces to finding possible PQ
charges for the SM fermions by solving small linear systems of equations (LSEs).
This allows the construction of a vast catalogue of non-minimal DFSZ-type models,
considering models with up to nD = 9 Higgs doublets corresponding to the nine right-
handed fermions of the SM. For convenience, a new notation is introduced, explicitly
stating the number of Higgs doublets in specific models as DFSZnD .

Key findings gleaned from this catalogue include axion-to photon couplings of min-
imal DFSZ models remaining favoured in spite of numerous other photon couplings
being allowed. Unlike in the minimal case, photon couplings for non-minimal DFSZ-
type models are found to be similar to the KSVZ-type case. Models with domain
wall numbers of unity, which are phenomenologically favoured, may also be easier
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to detect, displaying significantly enhanced photon couplings. These statements are
quantified by constructing bands and lower limits in the parameter space of axion mass
vs. photon coupling to be reached by experiments that aspire to be sensitive to a cer-
tain fraction of non-minimal models. Furthermore, the systematic method presented
here facilitates to specifically search for models with large photon couplings, making
it possible to surpass previous maximal values [8].

The considerations above are interesting in their own right from a model builder’s
perspective, but become crucial when applying Bayesian statistics on QCD-sensitive
axion experiments. As seen in sec. 4.3, this statistical framework requires theoretical
prior knowledge that is updated by experimental data. Only considering minimal
invisible axion models in this framework is equivalent to setting the probability of
additional Higgs doublets or heavy quarks equal to exactly zero. Undoubtedly, this is
a valid standpoint some physicists will take, invoking occam’s razor as an argument.
However, one may argue that assigning zero probability to anything is a very strong
statement, especially considering one additional Higgs doublet or heavy quark has
already been added to the SM in order to construct the invisible axion model. As any
discussion on prior belief, this debate does not have a definitive solution, which is why
it is important to provide raw data and generating code for the findings presented
here at the end of subsec. 5.4.2.

To start with, in sec. 5.1 it is shown that the calculation of anomaly ratios is similar
to the minimal DFSZ case. Sec. 5.2 then covers the question what in detail constitutes
a valid model, introducing the concept of multiplicity and discussing possible selection
criteria. In sec. 5.3 the procedure to compute all possible anomaly ratios is applied
explicitly to the case of three Higgs doublets before moving on to larger numbers of
doublets. For more than seven Higgs doublets the full model catalogue cannot be
computed, therefore this case is treated separately. Assumptions are stated which are
necessary to interpret the distributions from a probabilistic standpoint. The results
are then compared with the literature values for KSVZ-type models. Axion bands
and limits are constructed in sec. 5.4 together with a discussion on other implications
for axion searches. The chapter concludes with sec. 5.5.

5.1 Calculating the PQ Charges in DFSZ-Type Models

In eq. (1.37) the anomaly ratio for the DFSZ axion model containing two Higgs
doublets and one Higgs singlet was expressed in terms of PQ charges of fermions.
When the Glashow-Weinberg condition is not imposed, the equation generalises to

E

N
=

2

3
+ 2

∑
ui
χui +

∑
ei
χei∑

ui
χui +

∑
di
χdi

, (5.1)

depending on PQ charges χj ≡ χjL − χjR , with j ∈ {ui, di, ei} and i running over
the three fermion generations. For SM fermions excluding neutrinos, nD ≤ 9 unique
χj can be allowed, where nD corresponds to the number of Higgs doublets introduced
in a specific DFSZ-type theory.

These PQ charges need to be determined. The coupling in the Yukawa sector
together with the requirement of PQ invariance translates the PQ charges of the
Higgs doublets to the fermions. If one Higgs doublet couples to multiple fermions this
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immediately implies that their PQ charges are equal. The PQ charges of the nD Higgs
doublets are fixed by the following requirements, similarly to what was discussed in
sec. 1.3:

Orthogonality between PQ current and weak hypercharge current

The relations imposed by the orthogonality condition, eqs. (1.32)-(1.35), hold equi-
valently for more than two Higgs doublets if f runs over all Higgs fields in the theory.

Yukawa sectors of the form of eq. (1.25) directly fix the weak hypercharges of the
doublets to

−YHui
= YHdi

= YHei
=

1

2
(5.2)

and the singlet has YS = 0. One can furthermore set the vacuum expectation values
(VEVs) to vf = 1 without loss of generality because the anomalies do not depend on
them.

Orthogonality between PQ and hypercharge current yields one condition on the PQ
charges of the Higgs fields, however for nD doublets nD + 1 conditions are required
to fix the PQ charges of all Higgs and thereby all fermion fields. The next paragraph
introduces nD−1 additional conditions, which is sufficient for calculating the anomaly
ratio. With nD conditions all PQ charges of the Higgs doublets can be expressed in
terms of χS . Since both E and N are linear in the PQ charge, χS cancels out. However
other quantities such as the DW number do depend on χS and below it will be used
to get constraints on the singlet charge.

PQ invariance of explicit symmetry breaking potential

The standard kinetic scalar Lagrangian displays a U(1)nD+1 symmetry, which needs
to be explicitly broken down to U(1)PQ × U(1)Y , similar to the case of the minimal
DFSZ model. Otherwise the PQ current is not well-defined and Goldstone bosons with
decay constants of order of the electroweak scale can arise. It is therefore necessary
to introduce a potential Veb that includes at least nD−1 terms which explicitly break
this U(1)nD+1 symmetry.

These terms can be divided into two categories: Terms with two Higgs doublets and
two times the singlet which are henceforth called bilinear terms and denoted symbol-
ically as HHSS, and quadrilinear terms HHHH consisting of four Higgs doublets.
Higher orders in the scalar are not considered, since these terms are not renormaliz-
able. At least one term of the form HHSS is necessary to render the axion invisible,
the form of the remaining terms is in principle free.

For the minimal DFSZ model only one term, ∝ HuHdS
†2 leads to a unique, non-

trivial condition on the PQ charges. For nD > 2 in theory there can be almost
infinitely many terms in the potential, but note that the requirement of PQ invari-
ance translates each term into a condition on the PQ charges of the Higgs particles.
Treating them as unknowns there are nD + 1 free parameters. With the conditions
above and a (for now) arbitrary normalisation for χS , nD − 1 linearly independent
conditions from the explicit symmetry breaking potential lead to a well-defined, solv-
able system. Less conditions lead to undesired massless states since the U(1)nD+1

symmetry is not broken down enough, more conditions usually lead to inconsisten-
cies. However, on top of the minimal potential containing exactly nD−1 terms which
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are all linearly independent, additional terms leading to linearly dependent conditions
can be added. This will be investigated further in the next section.

Well-definiteness of DW number

A consistency condition on χS follows from the DW number NDW being integer-valued
in theories where the axion is a linear combination of fields.

In the low-energy regime the QCD anomaly induces a potential to the axion (com-
pare eq. (1.15) and the discussion beneath), which is periodic in [0, 2πfa[, with
fa = va/2N , while the axion is an angular field defined over [0, 2πva[. The peri-
odic nature of the potential leads to discrete vacua, and the number of vacua within
a single 2π loop is known as the DW number NDW, which can be read off to be
NDW = 2N . In the language of symmetries, this potential explicitly breaks the ori-
ginal U(1)PQ down to the discrete group ZNDW

under which the axion transforms as
a → a + 2πnfa with n ∈ Z. The DW number is encoded in this transformation and
represents the value of n that results in a single loop with a circumference of 2πva.

However, there is a caveat in theories where the axion is a linear combination of
angular modes af [121]. Each angular mode possesses its own residual cyclic symmetry
due to explicit breaking, given by af → af + 2πnfvf where nf ∈ Z. Applying these
symmetry transformations on both sides of the definition for the axion field (eq. (1.33))
one can extract the DW number as

NDW = 2N

∑
nfχfv

2
f∑

χ2
fv

2
f

. (5.3)

In order for the DW number to be integer, the fraction in this expression has to be
integer (which, as it turns out, can be chosen to be one without loss of generality).
Setting nf = χf is the simplest way to achieve this. However, a less restrictive
alternative can be obtained by using the orthogonality condition to remove one of
the vf terms in both the numerator and the denominator of the fraction, and then
comparing terms with the same v2f . Performing this in DFSZ2 for simplicity, with
f = u, d, S, and requiring the fraction to be unity, one finds

nS = χS , (5.4)
nu + nd = χu + χd = 2χS . (5.5)

In the second equality the PQ invariance from the unique Veb term was used,
i.e. HuHdS

†2. The consideration above demonstrates that the residual cyclic symmet-
ries of the underlying angular modes result in the condition χS ∈ Z in the minimal
DFSZ model.

When repeating this procedure for larger numbers of doublets, one finds that
eq. (5.4) is always present along with additional relations similar to eq. (5.5). These
relations imply that for the DW number to be integer, both χS and certain combin-
ations of PQ charges must also be integer. In particular, 2N =

∑
i χui + χdi and∑

i χui +χei have to satisfy this criterion. The key difference for non-minimal models
is that fulfilling all conditions becomes more restrictive compared to the minimal case.
For instance, it could require the minimal value of χS to be integer and greater than
one.
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To summarise, in theories where the axion is a linear combination of fields, the DW
number can still be expressed as NDW = 2N , provided that the fraction in eq. (5.3)
equals one. This additional condition introduces the requirement for χS to be an
integer, although not necessarily one. For the purposes of the discussion below it is
convenient to set χS to its minimum possible value. Consequently, the DW number
is defined as

NDW = min positive integer {2N} , (5.6)

with this definition being used for the remainder of this work.

5.2 What Makes the Model?

This section presents an overview over all relevant criteria determining what consti-
tutes a valid theory.

5.2.1 Higgs Sector

Firstly, only nD ≤ 9 are considered, together with a single singlet to make the ax-
ion invisible. The anomaly of the PQ current is dependent solely on the difference
between the PQ charges of left- and right-handed fermions. One can therefore without
loss of generality set the PQ charges of the left-handed fermions to zero, leaving nine
PQ-charged, right-handed fermions. If two Higgs doublets couple to the same fer-
mion, they must have equal PQ charge to satisfy PQ invariance of the Yukawa sector.
Therefore maximal freedom is reached for nine Higgs doublets from the standpoint of
PQ charges.

Neutrinos could alter this picture. Dirac mass terms for neutrinos could be gener-
ated from some of the Higgs doublets, altering the PQ charges of the other fermions
and thus indirectly affect the anomaly ratio. Since it is currently unknown how neut-
rino masses are generated, this analysis neglects these intricacies and sets PQ charges
of neutrinos to zero. Subsec. 5.3.4 will show that the conclusions of this chapter are
most likely unaffected by this omission.

5.2.2 Multiplicity

One of the standard principles in constructing models is to incorporate all feasible
terms that adhere to the given symmetries. If, for some reason, certain terms are
not included at tree-level, these terms will be generated at higher orders without
protection from an underlying symmetry. In terms of Veb, this implies that potentials
generating the same PQ charges should not be considered distinct as they can simply
be added. This concept can be explained in terms of conditions and LSEs. In the
construction detailed in sec. 5.1 exactly nD − 1 terms were required in the explicit
breaking potential. Fewer terms would result in under-determined systems and for
too many independent terms the resulting system would be over-determined, with
χf = 0 for all f , and would thus fail to solve the strong CP problem. Linearly
dependent terms giving rise to redundant conditions, however, can always be added
to the potential without leading to over-determined systems. Potentials with linearly
dependent terms can be broken down to smaller, still well-defined sub-systems, which
lead to different underlying LSEs. However, all of these LSEs have the same solution,
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i.e. lead to the same PQ charges, and should therefore not be counted as different
theories.

This reasoning also has implications for the Yukawa sector. Although the construc-
tion described here involves coupling a single doublet to each right-handed fermion, in
principle, multiple doublets can be coupled to the same right-handed fermion. There-
fore, the Yukawa sector for each possible set of PQ charges is completed post hoc. For
instance, one can complete the Yukawa sector as follows: If one solution of the LSE
yields χd1 = χe1, then the corresponding completed Yukawa sector is given by

yd1jH
d1Q̄1

Ld
j
R −→ (yd1jH

d1 + ỹd1jH
e1)Q̄1

Ld
j
R ,

ye1jH
e1Ēi

Le
j
R −→ (ỹe1jH

d1 + ye1jH
e1)Ē1

Le
j
R . (5.7)

This ensures that all Yukawa terms compatible with a given solution are included (such
as cross-couplings where for instance up-type doublets couple to down-type fermions).
Furthermore, since each set of PQ charges becomes unique after adding the potentials,
the completed Yukawa sector with all compatible couplings is determined uniquely.
Therefore, for counting the multiplicity, a model is defined as a Yukawa sector that
was completed as demonstrated above and it includes a Veb for which all potentials
with a specific set of PQ charges were added. Crucially, the multiplicity as defined
above does not count theories as distinct, if they lead to the same PQ charges. The
final step in the construction procedure is to calculate the anomaly ratio for each
model and count how often each anomaly ratio arises.

5.2.3 Selection Criteria for DFSZ-Type Models

Having specified what exactly constitutes a model, the next question becomes whether
there are any (phenomenological) selection criteria that can be used in order to extract
a subset of preferred axion models. An equivalent discussion for KSVZ-type models
can be found in [8] or [9] and is recapitulated in subsec. 1.3.3.

N ̸= 0

Sets of PQ charges leading to N = 0 do not solve the strong CP problem and are
therefore discarded.

A Priori Model Selection

One could explore models with multiple singlets or more than nD = 9 doublets, which
do not couple to the SM fermions. Models like this leave eq. (5.1) unchanged, but
allow to obtain very large PQ charges [8, 122] by introducing additional solutions for
the PQ charges. Adhering to the more narrow definition of DFSZ-type models given
in the previous section narrows down the range of models under consideration and
could therefore be considered as a kind of selection criterion.

Running of EW Coupling

The presence of additional Higgs doublets can potentially affect the running of the
electroweak gauge coupling. A strict upper limit on the number of doublets, determ-
ined by the requirement of preserving asymptotic freedom and avoiding Landau poles
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below the Planck scale, however only arises at nD ∼ 50 [8], which is much higher than
the number of doublets considered in this study.

Domain Wall Problem

The periodic low energy potential of the axion (1.15) explicitly breaks the original
PQ symmetry, reducing it to the discrete group ZNDW

, which is subsequently spon-
taneously broken by one of the vacua. As a consequence DWs form as described in
subsec. 2.2.3, which can dominate the energy density of the universe, if NDW > 1.
Therefore, one possible criterion for selecting axion models is to impose NDW = 1.

However, if the PQ symmetry is broken during or before inflation, the DWs do not
form within our Hubble sphere, effectively avoiding the issue. Also in scenarios where
the PQ symmetry breaking occurs after inflation, solutions have been proposed to
circumvent the DW problem [123, 124]. Therefore, NDW = 1 is here not considered to
have a sufficient level of generality to represent a necessary selection criterion for the
main analysis. Nevertheless, the DW numbers for DFSZ3 to DFSZ7 are calculated,
demonstrating the influence of this selection criterion.

Flavour-Changing-Neutral-Currents (FCNC)

FCNCs are a generic feature of models with multiple Higgs doublets. They are subject
to strong experimental constraints [125], which could potentially impose significant
limitations on the number of viable DFSZ-type models. In the following various known
methods to avoid these FCNCs are discussed (see [126] for a review):

FCNCs can arise only when the Yukawa couplings break generation invariance,
i.e. when right-handed fermions of a given electric charge couple to different Higgs
doublets. The Weinberg-Glashow-Paschos condition [44, 45] demands that this is
not the case. Imposing this condition is known as natural flavour conservation and
effectively sets several Yukawa couplings to zero, resulting in nD − 3 decoupled Higgs
doublets for nD > 3. Hence, for DFSZ-type models as defined above, natural flavor
conservation can only be achieved when nD ≤ 3.

To avoid FCNCs at tree level it is sufficient to impose an alignment condition [127–
129]. Requiring the Yukawa matrices of each right-handed fermion to be propor-
tional to each other makes them simultaneously diagonalisable in the fermion mass
eigenbasis.

Going beyond flavour alignment, specific forms of Yukawa matrices in flavour space
can be found, which allow viable SM mass and mixing phenomenology while suffi-
ciently suppressing tree-level FCNCs [130]. The implementation of these mass mat-
rix ansätze as well as of natural flavour conservation often relies on imposing (dis-
crete) symmetries, which also protect the flavour structure from quantum corrections.
However, imposing additional symmetries on the scalar potential spoils the so-called
decoupling property of general multi-Higgs doublet models [131]. In order to avoid
FCNCs using these solutions, it would be necessary to systematically determine which
models possess discrete symmetries that simultaneously avoid FCNCs and allow for a
decoupling limit. Due to the large number of models and the absence of a catalogue
of possible symmetries for nD > 3 [126], conducting such an analysis is beyond the
scope of this work.
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5.3 Anomaly Ratio Distributions

5.3.1 A Cooking Recipe

The previous sections have presented a review on which conditions fix the PQ charges
in a DFSZ framework. They outlined how different Veb can lead to the same set of PQ
charges and many different sets of charges to the same anomaly ratio and what exactly
should be counted as a single, unique theory. The different steps of the procedure can
be summarised in a concise fashion:

1. Specify the Yukawa sector for a fixed nD by coupling one doublet to each right-
handed fermion. This exhausts the maximal freedom regarding the anomaly
ratio.

2. Write down all possible Veb with nD − 1 terms.

3. Solve all associated LSEs to find all possible sets of PQ charges. Underde-
termined systems are discarded.

4. Add the potentials of all equal PQ charges to get the most general potential
associated with a particular solution. This defines one model for the sake of
counting the multiplicity.

5. For each model complete the Yukawa sector by adding all Yukawa terms com-
patible with the PQ- and hypercharges.

6. For each model calculate the anomaly ratio and count its multiplicity.

Step 5 is only relevant from a model building perspective and not for the acquired
solutions. It is therefore skipped in practice and whenever a Yukawa sector is men-
tioned in the remainder of this work, it refers to the one specified in the first step.
The above constitutes a recipe to calculate all possibilities for the PQ charges of the
fermions given a specific Yukawa sector. How this is applied in practice is shown below
for a simple example with three Higgs doublets.

5.3.2 Example: Three Higgs Doublets

For DFSZ3 with the Weinberg-Glashow-Paschos condition imposed, i.e. with one Higgs
doublet per type of fermion, it is possible to explicitly demonstrate the approach out-
lined in the previous section. For this model there are three possible bilinears, namely
(HuHd), (HuHe) and (HdH

†
e), together with their complex conjugates. Each bilinear

can either be coupled to the singlet, which results in 6 different terms of the form
HHSS, or to another bilinear, which results in 36 different quadrilinears of the form
HHHH. For the latter case, removing terms that are related by Hermitian conjuga-
tion and terms that result in no condition reduces the number to 9 (see tab. 5.1). For
nD = 3, the breaking potential consists of either one HHSS and one HHHH term
or two HHSS terms. For the former, there are a priori 54 possibilities, and for the
latter 15, totalling to 69 possibilities for Veb (see tab. 5.2).

The resulting 3×3 LSEs consist of the orthogonality relation, χuv
2
u−χdv

2
d−χev

2
e =

0, and the two conditions coming from the potential. Solving the LSEs yields the
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Table 5.1: Resulting conditions on PQ charges from quadrilinears, constructed from
corresponding bilinears. The lower triangle (’−’) is not counted because the order
of the bilinears does not matter. The terms ’x’ are not counted because they are
Hermitian to a term that has already been counted and the potential by definition
has to include all Hermitian conjugated terms. Terms with ’o’ produce only trivial
conditions. This leaves 9 distinct quadrilinears, which produce 6 unique conditions.

(HuHd) (HuHe) (HdH
†
e ) (HuHd)

† (HuHe)† (HdH
†
e )

†

(HuHd) 2χu + 2χd

= 0
2χu+χd+χe

= 0
χu+2χd−χe

= 0
o χd − χe

= 0
χu + χe

= 0

(HuHe) − 2χu + 2χe

= 0
χu + χd

= 0
x o χu−χd+2χe

= 0

(HdH
†
e ) − − 2χd − 2χe

= 0
x x o

(HuHd)
† − − − x x x

(HuHe)† − − − − x x
(HdH

†
e )

† − − − − − x

PQ charges in terms of χS , which is then fixed by the well-definiteness of the DW
number. The following two simplifications can be made for the purpose of calculating
the anomaly ratio. First, one can set all VEVs equal to one because E and N are
independent of them, and secondly, one can leave χS unfixed because it cancels in the
anomaly ratio after expressing all PQ charges in terms of χS .

Of the 69 minimal potentials found, many have no or degenerate solutions. For
example, potentials including a bilinear and its Hermitian conjugate at the same time
do not have a solution and the nine quadrilinears only give six unique conditions for
PQ charges. A summary of all solutions can be found in tab. 5.2 (top). In total, this
leaves only 16 different solutions for the doublet charges, for each of which one has to
add all the terms to the potential that give rise to this set of PQ charges.

The Yukawa sector in this example does not need any completion since it is already
fixed by the Weinberg-Glashow-Paschos condition. Hence, it merely remains to plug
into eq. (5.1) the different sets of PQ charges, which yields the following possible
anomaly ratios (see tab. 5.2, bottom)

DFSZ3 :
E

N
= −4

3
,
2

3
,
5

3
,
8

3
,
14

3
. (5.8)

Counting the multiplicity, 2/3 and 8/3 each appear 2 times with four terms in the
potential each, and −4/3, 5/3 as well as 14/3 each appear 4 times with three or two
terms in the potential each. A visualisation of this result together with all other nD

values can be found in fig. 5.3. For a summary of important statistics, see tab. 5.3.
It is useful for the following to introduce a compact notation that encodes which

doublet couples to which of the nine fermions. Assign to the nine fermions a position
in a nine-dimensional row vector with square brackets,

u c t d s b e µ τ

u1 u2 u3 d1 d2 d3 e1 e2 e3

[ · , · , · , · , · , · , · , · , · ] , (5.9)
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and write the subscript of the doublets that couple to a certain fermion to the corres-
ponding position. If one doublet couples to multiple fermions, use the first subscript
in the order presented above. For more comprehensive notation use fermion type (up-,
down-, or lepton-type, short u, d, or e) and generation (1 to 3). For DFSZ9, this row
vector would be [u1, u2, u3, d1, d2, d3, e1, e2, e3] while for the original DFSZ2-I model
it would be [u1, u1, u1, d1, d1, d1, d1, d1, d1].

5.3.3 Choices for a Statistical Interpretation

Above a procedure is outlined for obtaining many different solutions for the Higgs
charges. Applying this procedure one can count and histogram the number of models
leading to a specific anomaly ratio. However, ultimately it is desirable to translate
this catalogue of models with specific E/N values to a probability distribution of
anomaly ratios. To this end, relative probabilities of the solutions are required, which
are subject to some theoretical prior beliefs. These beliefs guide multiple decisions
regarding:

• The concept of multiplicity

What exactly counts as a single model? Here the choice is made to count each
unique solution for the PQ charges, effectively adding all compatible potential
terms, as described in the last two paragraphs of sec. 5.2.

• The relative probability of different Yukawa sectors given a specific
nD.

A reasonable choice is to demand all solutions with a given nD to be equally
probable. Similarly, it is also reasonable to consider different initial, uncom-
pleted Yukawa sectors as equally probable. Unfortunately, it is impossible for
both conditions to hold simultaneously since different Yukawa sectors can lead
to different numbers of possible solutions. In this analysis, the principle of treat-
ing solutions as equally probable is adopted, given equal multiplicity and the
same nD. Consequently, no “beauty” arguments are applied, e.g. in favour of
equal coupling patterns for different fermion types.

• The relative probabilities of different nD.

In the total anomaly ratio distribution, equal probability is assigned to all values
of nD in the range 2 ≤ nD ≤ 9. This implies that any individual solution for,
e.g., DFSZ3 (which has 16 solutions) is considered to be much more probable
than any individual solution for DFSZ5 (which has 9.7 × 104 solutions). Al-
ternative considerations could be made, such as penalising models with higher
nD, giving larger probability to models that satisfy symmetry arguments (such
as DFSZ3 with one Higgs doublet per fermion type or DFSZ9 with one Higgs
per right-handed fermion), or considering all charge solutions equally probable.
In the latter scenario, the resulting histogram would most likely be completely
dominated by DFSZ9 due to its significantly larger number of unique solutions.

The aforementioned arguments all imply a probabilistic approach to model selection,
wherein nature “chooses” one of the possible realisations at random. While this notion
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Figure 5.1: Anomaly ratio distributions for DFSZ-type models with 4 Higgs doublets.
Two Higgs couple to the fermions specified in the panels with the other two
Higgs covering the remaining two fermion types invariant with respect to fer-
mion generation. For example, the Yukawa sectors [u1, u1, u3, d1, d1, d1, e1, e1, e1],
[u1, u2, u1, d1, d1, d1, e1, e1, e1], and [u1, u2, u2, d1, d1, d1, e1, e1, e1] are all equivalent
and have anomaly ratio distributions as shown in the left panel.

itself may be open to critique, in the absence of any compelling underlying physical
argument that singles out a particular model, it could be deemed be satisfactory.

Even under the assumption of probabilistic model selection, any of these choices is
to some extent a matter of taste. For this reason it is important to provide the raw
catalogues and generating code as a supplement, so the reader is not dependent on
the choice made here (see subsec. 5.4.2).

5.3.4 Results for Four to Seven Higgs Doublets

The exploration of higher numbers of Higgs doublets involves the investigation of
various Yukawa sectors. PQ charges and anomaly ratios are computed numerically
using the programming language “Julia” [132]. The “StaticArrays” package [133] allows
computation of an extremely large number of LSEs very fast without heap memory
allocation. Nevertheless, calculating all possible solutions proved prohibitive beyond
nD = 7. Therefore the analysis of this case is postponed to the next section, with the
focus here being on DFSZ4 to DFSZ7.

Fig. 5.1 presents an overview over the anomaly ratio distributions for DFSZ4 models
grouped by the different Yukawa sectors. Each of the histograms shows all models of
the specified coupling with the explicit symmetry breaking potential Veb consisting
of k ≥ 1 HHSS- and 3 − k HHHH-terms. The result does not depend on fermion
generation since the construction of the Higgs charges as well as eq. (5.1) treat all
generations equally. Yukawa sectors with special coupling to a lepton have histograms
symmetric around 5/3, while the histograms for up- and down-type special couplings
are mirrored around 5/3.

The reason for this is a symmetry in the construction as well as in eq. (5.1): For
all nD, since all possible Yukawa sectors are considered as mentioned above, every
solution has a corresponding one with

χũi →− χdi

χd̃i
→− χui .

(5.10)

This is due to up-type and down-type quarks being treated equally in the construction
except for the sign of their hypercharges. In the example above, all solutions for the
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Yukawa sector [u1, u1, u3, d1, d1, d1, e1, e1, e1] have a corresponding solution in the
Yukawa sector [u1, u1, u1, d1, d1, d3, e1, e1, e1] under the above mentioned transform-
ation. Solutions that relate via eq. (5.10) can easily be seen to have anomaly ratios
relating by

Ẽ

N
→ 10

3
− E

N
, (5.11)

which is a mirror symmetry around 5
3 .

If all nine histograms of fig. 5.1 are added up, i.e. if no Yukawa sector is treated
preferentially, one obtains the distribution shown in fig. 5.3 (second row, left). Due to
the symmetries of the nine contributing Yukawa sectors, the distribution is symmetric
around 5/3 as well. The largest number of models coincides with the two possible
values for the DFSZ2 model: 2/3 and 8/3. Both of these statements are true for
nD ∈ [4, 7], as fig. 5.3 shows (second row, third row left).

With increasing nD, the number of unique anomaly ratios increases and more ex-
treme E/N values can be found. Anomaly ratios E/N = 5/3+k with k ∈ Z are highly
favoured for nD ≥ 5 compared to other E/N values, especially for odd k. This very
characteristic, peaked spectrum evolves with nD: E/N values with high probability
tend to have their probabilities shrink with increasing nD, whereas low probability
E/N values behave in the opposite manner. In fig. 5.3, one can most easily see this
evolution at big anomaly ratios E/N ≳ 10.

5.3.5 Anomaly Ratios From a Mathematical Perspective

This trend can be understood from a purely mathematical perspective: For DFSZ-
type models the anomaly ration (5.1) is a function with nine variables, the values of
each of which can be thought of as being drawn from a specific distribution. In fig. 5.2
the effect of using different distributions for the variables is shown on the resulting
E/N distribution. A continuous, flat charge distribution of arbitrary width produces
a smooth, fat-tailed E/N distribution. If the median of the charges is 0, the median
of the distribution is at 5/3 (fig. 5.2, top three rows). Allowing only positive values for
the charges shifts the distribution to higher values, with a median of 8/3 and makes
E/N < 0 impossible (fig. 5.2 bottom row). The fewer distinct input values for the
charges are used, the more peaked the anomaly ratio structure becomes, i.e. anomaly
ratios with high relative probability see their likelihood increased and vice versa. This
also leads to fewer possible unique E/N -values.

The continuum limit with its vanishing skewness and positive kurtosis can be ap-
proximated in analytic form via a Pearson type VII distribution [134],

p

(
E

N

)
=

1

αB(m− 1
2 ,

1
2)

1 +( E
N − λ

α

)2
−m

, (5.12)

with parameters λ = 5/3, α = 7/4, and m = 1, and Beta function B with
B(1/2, 1/2) = π.

Following these insights from a mathematical perspective it is expected that the
histograms for larger nD should be smoother, considering that there are more unique
solutions (tab. 5.3). Note, however, that this effect neglects the influence of choosing
different probabilities for different solutions. Non-uniform probabilities reduce the
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Figure 5.2: Influence of drawing PQ charges from different distributions on the res-
ulting anomaly ratio distribution, using eq. (5.1). More unique charges lead to a
smoother anomaly ratio distribution, irrespective of their distribution. Charge dis-
tributions centred around 0 produce anomaly ratio distributions centred around 5/3.
The dashed blue line in the top right panel denotes the fit presented in eq. (5.12).
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Figure 5.3: Anomaly ratio distributions for different numbers of Higgs doublets. All
histograms are symmetric around 5/3. nD ≥ 5 display a characteristic peaked struc-
ture, which becomes smoother with increasing nD. DFSZ8 and DFSZ9 could not be
fully calculated, the two semi-transparent colours denote the two estimates as dis-
cussed in the text.

effective number of different solutions.1 Using the approach of adding all possible
potential terms for one solution of charges leads to more comparable probabilities
for the charges than if one had separately considered all potentials with the minimal
amount of terms to fix the PQ charges (minimal potentials). Therefore the effect of
non-uniform charge probabilities is clearly subdominant for DFSZ5 to DFSZ7. This
most likely still is the case even for DFSZ8 and DFSZ9.

5.3.6 Extrapolation to More than Seven Higgs Doublets

While the anomaly ratios in principle can be calculated for any number of doublets,
calculating all possible anomaly ratios for larger nD involves solving an extremely
large number of LSEs. In order to see how many, one can estimate the number of all

1Just think of the extreme case of say, a charge distribution with 100 unique solutions, in which
10 solutions are 1000× more probable than the other 90. The resulting E/N distribution will
behave more as if it came only from 10 unique charges than as if it had 100.
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Table 5.3: Important statistics of DFSZ-type models broken down by number of Higgs
doublets nD. Included is information on the model with maximal photon coupling
Ê/N from eq. (1.42) and the percentage of models that have minimal photon coupling
(photophobic, |E/N − 1.92| < 0.04). ‘x’ denotes values that could not be estimated.

nD #Veb
Unique Unique

Ê/N
% Photo-

% NDW = 1solutions E/Ns phobic

2 2 2 2 2/3 0 0
3 54 16 5 −4/3 0 0
4 52614 996 83 −52/3 1.4 6.00
5 6.65× 107 9.7× 104 432 −112/3 1.52 6.64
61 ≲ 4× 109 > 2.19× 106 1680 −238/3 1.37 5.83
71 ≲ 7× 1012 x 6256 −466/3 1.39 5.19
82 ≲ 2× 1016 x > 11617 < −628/3 x x
92 ≲ 1× 1020 x ≫ 14122 < −1216/3 x x

1For nD ≥ 6, #Veb and “unique solutions” are estimates. Number of minimal potentials
calculated via eq. (5.14), many of which will be unphysical and not produce valid solutions
for PQ charges. “unique solutions” gives the number of solution found in sample, for which
data exists.
2For nD ≥ 8, not all possible models were calculated, therefore no exact values are available
for the number of unique E/N , the percentage of photophobic models or models with NDW =

1. Ê/N was estimated as shown in subsec. 5.3.7.

possible terms for step 2 in the cooking recipe in subsec. 5.3.1 with an arbitrary nD.
Since the number of possible bilinears is nB =

(
nD
2

)
plus their Hermitian conjugate,

there are 2nB terms of the form HHSS. Regarding the quadrilinears this results in
(2nB)

2 possible terms. Written as a matrix, this yields

(HH (HH)†

HH A B
(HH)† C D

)
, (5.13)

where A denotes the submatrix formed by all terms of the form HHHH, B by
HH(HH)†, and so on. However, as in the DFSZ3 example, there are several equal
terms in this matrix that should not be counted. First of all, the whole matrix is
symmetric. Secondly, since Hermitian conjugated terms are equal, D is completely
redundant with respect to A. Lastly, B is anti-symmetric, so that the number reduces
to n2

B quadrilinears.
From the set of all terms, one needs to pick nD − 1 terms where at least one must

be of the form HHSS. Hence one can pick between 1 and nD − 1 terms of the form
HHSS, then fill up with HHHH terms, and repeat this for all possible amounts of
HHSS terms (ignoring equivalences in the case of multiple HHSS terms). The total
number of possible Veb can then be estimated by

Ntot(nD) ∼
nD−2∑
j=0

(
2nB

1 + j

)(
n2
B

nD − 2− j

)
, (5.14)

which at the same time is the number of LSEs that needs to be solved.
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Simplifications used for the DFSZ3 example apply here as well, namely setting all
VEVs to one and not fixing χS , but regardless of these simplifications the computation
time rises exponentially with nD. While Ntot(nD = 3) = 69 is easily manageable, for
e.g. nD = 8 the number of possibilities becomes Ntot(nD = 8) ≈ 2 · 1016. Thus,
computing requirements for solving all LSEs beyond DFSZ7 are prohibitive.

An easy solution to the computationally prohibitive number of LSEs would be to
sample the (minimal) potentials. However, due to step 4 in the approach, this is not
possible without introducing a bias: A multitude of minimal potentials can lead to
the same solution, thus all of them belong to the same model. This model therefore
has a very long potential and is likely to be found by any sampling algorithm. On
the opposite side, there are also models containing just one or two of the minimal
potentials. Sampling in the space of minimal potentials therefore leads to biased
sampling in the space of models.

An alternative estimation for the DFSZ8 and DFSZ9 distributions can come from
the following considerations. If a large enough number of theories is considered, fig. 5.2
(top, right) and fig. 5.2 (third row, right) can be viewed as extremal cases for the an-
omaly ratio distribution. “Extremal” in this context should not be understood in
terms of an upper or lower limit on individual E/N bins; after all (normalised) prob-
ability measures are being considered. Rather, fig. 5.2 (top row, right) is very smooth,
whereas fig. 5.2 (third row, right) is very peaked. To quantify this criterion one can
look at the cumulative sum of anomaly ratios below a specific value. Similarly to the
two sample Kolmogorov-Smirnov-test, “smoothness” of an anomaly ratio distribution
f(E/N) can be defined as

maxx

∣∣∣∣∣∣
∑

E/N<x

f (E/N)−
∑

E/N<x

c (E/N)

∣∣∣∣∣∣ , (5.15)

where c(E/N) represents the continuous distribution as shown in fig. 5.2 (top, right).
Eq. (5.15) defines smoothness via the maximum of the difference for all anomaly
ratios in the cumulative sum of the distribution compared to the case of continuous
charges. In subsec. 5.4.1 the close connection of this metric to the relevant observable
will be demonstrated. The metric runs from one to zero (by construction for the
continuous distribution), with values closer to zero indicating a smoother distribution.
For DFSZ3, the value is 17%, for DFSZ4 already 5.7%, and down to 1.4% for DFSZ7.

The DFSZ8 and DFSZ9 anomaly ratio distributions can be roughly estimated by
constraining their smoothness. For DFSZ3 to DFSZ7 a higher number of doublets
leads to a smoother anomaly ratio distribution. From investigations of the biased
sampling for nD = 6 and nD = 7, where the true distributions were available, it
was observed that sampling leads to less smooth distributions. This means that the
distribution for nD = 8 or nD = 9 is expected to be smoother than their respective
sampled distribution and the nD = 7 distribution. In fig. 5.3, the nD = 7 distribution
is used as one estimate, denoted as “limit 1”.

The other estimate, overestimating the smoothness, can come from the observation
that the difference in smoothness of the distributions is smaller between DFSZ6 and
DFSZ7 than between DFSZ5 and DFSZ6. Extrapolating the histograms beyond nD =
7 using the difference of the distributions of DFSZ6 and DFSZ7 should therefore
yield anomaly ratio distributions which are smoother than expected. In fig. 5.3, the
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difference is subtracted once to reach the estimate for nD = 8 and twice for nD = 9,
denoted as “limit 2”. For the metric (5.15) the values 0.73% and 0.71% are found for
DFSZ8 and DFSZ9, respectively.

The above approach should not be viewed as representing hard limits for the anom-
aly ratio distributions for eight or nine Higgs doublets, but rather a rough estimate.
The difference in probability in fig. 5.3 looks substantial only due to the logarithmic
axis. Both estimates are much closer to the continuous case of fig. 5.2 (top, right)
than to the peaked one of fig. 5.2 (third row, right) in the sense that only very little
of their probability mass lies at unique E/N values and most in a continuum.

5.3.7 Constructing extreme |gaγ|
Another problem with sampling potentials as described in the previous paragraphs
is that it is very unlikely to find the anomaly ratio corresponding to the maximum
axion-photon coupling Ê/N = argmaxE/N (|E/N − 1.92|) (see also eq. (1.42)).

This anomaly ratio, however, is very useful for constraining the parameter region
of DFSZ-type models. For this reason a procedure is laid out here to construct an
estimate for it. Note that due to the symmetry around E/N = 5/3, in absence of
selection criteria, Ê/N is not given by the largest possible anomaly ratio but the
smallest.

The procedure is based on observations of the LSEs that led to Ê/N for the smaller
numbers of doublets. Any of the LSEs leading to Ê/N of DFSZ4 can be extended to
an LSE leading to Ê/N for DFSZ5. The same behaviour can be seen from DFSZ5 to
DFSZ6 and in a slightly different form from DFSZ3 to DFSZ4. No rigorous mathem-
atical reason has been found for this observation, so applying it to larger nD is more
of an educated guess. However, it turns out to give extreme anomaly ratios, so it is
used to systematically estimate Ê/N .

The procedure goes as follows. First, take all LSEs that lead to Ê/N for a number
of doublets where all solutions are known, say nD = 6. Secondly, add one additional
Higgs doublets by specifying the Yukawa sector for the new doublet. Thirdly, adjust
the orthogonality relation appearing in all LSEs depending on what type of doublet is
added. Then, add one additional relation to the LSEs, solve them and calculate the
anomaly ratio. After that repeat this for every possible relation and every possible
Yukawa sector. Finally, extract the LSEs with the smallest anomaly ratio.

This results in highly negative anomaly ratios. However, for DFSZ9 by taking
the resulting LSEs and systematically exchanging one (or more if the runtime is ac-
ceptable) of the relations, new LSEs can be found that give even smaller anomaly
ratios. In DFSZ9 for instance, the smallest anomaly ratio constructed in this way is
E/N = −1216/3, and it is generated by the terms

(H†
d2
He1)(H

†
d2
Hd1) , (Hu1Hd1)(Hu1Hd2) ,

(H†
u3
Hu1)(H

†
u3
Hu2) , (H†

e1Hd1)(H
†
e1He2) ,

(H†
e2Hd1)(H

†
e2He3) , (Hu2Hd3)(H

†
u1
Hu2) ,

(Hd3Hu1)(H
†
d1
Hd3) , (Hd1Hu1)S

†S† .
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5.3.8 Comparison with KSVZ-Type Models

Having constructed and reviewed an extensive anomaly ratio catalogue of DFSZ-type
models, it is now possible to draw a comparison to the analogue catalogue of KSVZ-
type models constructed by the authors of [9] (see also subsec. 1.3.3). Even though
the theoretical framework for KSVZ-type models differs substantially from DFSZ-type
models, the calculation of the anomaly ratio is quite comparable. Thus the catalogues
are naively expected to display a certain amount of similarity, the investigation of
which is the focus of this section.

In their paper on the KSVZ-type model catalogue, the authors add all anomaly
ratios of phenomenologically allowed KSVZ-type models, irrespective of the number
of quarks, allowing to add or subtract quark representations. This means that a
single model with NQ = 9 quarks, of which there are > 1 × 105, is deemed equally
probable as a single model with NQ = 1, of which there are only 15. The distribution
is therefore dominated by 7 ≲ NQ ≲ 21. If a similar approach was used for DFSZ-
type models, extrapolating the evolution of unique solutions with increasing nD, the
resulting distribution would be indistinguishable from the DFSZ9 case. In subsec. 5.3.3
it was argued to instead use an approach in which all separate values for nD are equally
probable. For consistency one must demand the same for NQ in the KSVZ-type case.
Since raw data was provided by [9], it was possible to weight their KSVZ-type data
in a way that gives equal probability to all values of NQ.2

Using this weighting, their data can be compared with the DFSZ-type results on
a fair basis and the result is shown in fig. 5.4. Nevertheless differences remain: The
authors of [9] were able to apply strict selection criteria, significantly reducing the
number of viable models. Here, no similarly stringent selection criteria were found,
so the DFSZ-type catalogue reflects the full set of models rather than a preferred
set. A comparison between the two types of models or a combined axion band should
therefore not be seen as final, but only as incorporating all selection criteria known
so far. Also note that in the DFSZ-type case, a model with higher nD is always less
likely than a model with lower nD, which can be seen as an appropriate penalty for
introducing more degrees of freedom to the model. In the weighting scheme used here
for KSVZ-type data from [9] this is not the case, since for e.g. NQ = 28 they find
only 510 preferred models, much less than for NQ = 9, making a single model with
NQ = 28 more likely than a single model with NQ = 9 when equal weighting is applied
for all NQ.

One can clearly see the effect of the equal weights for all nD in fig. 5.4 in the region
around E/N = 5/3: The five E/N values of the DFSZ2 and DFSZ3 models show
highly elevated probability due to their large relative probabilities (compare fig. 5.3).
The effect of the two estimates for DFSZ8 and DFSZ9 only becomes substantial at low
absolute probabilities and above |E/N | ≳ 20. The KSVZ-type results are also found
to form a peaked structure similar to the DFSZ-type case, which only becomes vis-
ible in a very finely binned histogram. In fact, for E/N values excluding DFSZ2 and
DFSZ3, the DFSZ-type histograms are less peaked than the KSVZ-type ones, with
decreased probability at moderately large |E/N | and significantly increased probab-
ility for |E/N | ≳ 40. This trend does not translate to the largest possible axion-

2So now the 15 models with NQ = 1 combined are equally likely as all > 1 × 105 models with
NQ = 9 combined.
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Figure 5.4: Comparison between anomaly ratio distributions for KSVZ-type and
DFSZ-type axion models. The KSVZ-type estimate of [9] includes all phenomeno-
logically allowed models, adding and subtracting quark representations and assumes
every model to be equally likely. The DFSZ-type results presented here include cal-
culations for DFSZ2 to DFSZ7 and estimates for DFSZ8 and DFSZ9 giving equal
probability to each nD. For the DFSZ-type distribution different shades denote max-
imum and minimum for each bin under the two limits for DFSZ8 and DFSZ9 described
above.
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photon coupling, however. A maximal |gaγ | is found at Ê/N = −1216/3, which is
comparable to the KSVZ case for NQ ≤ 9 before any phenomenological constraints
(Ê/N = −1312/3).

Models with smallest axion to photon couplings, in the following photophobic mod-
els, are defined the same way as in [9] by their anomaly ratio E/N being compatible
with vanishing gaγ within 1σ theoretical uncertainty (see eq. (1.19)). Tab. 5.3 shows
that there is no clear trend toward a higher or lower percentage of photophobic mod-
els with increasing nD. As discussed in subsec. 5.3.4 the anomaly ratio distribution
becomes smoother with increasing nD: Peaks become less pronounced and anomaly
ratios with low probability become more likely. The absence of a clear trend hints at
the photophobic region being right in the middle between those two extremes. Overall
the percentage of photophobic models found for DFSZ-type models with nD ≤ 7 is
similar to the KSVZ-type case.

In both, KSVZ- and DFSZ-type of model probability distributions, the probability
close to the highest peaks is strongly suppressed (fig. 5.4, bottom). The effect is less
severe for DFSZ-type models than for KSVZ-type ones, because as noted before the
former are less peaked if the effect of DFSZ2 and DFSZ3 is removed.

Upon closer inspection the distribution of KSVZ-type models is not symmet-
ric around 5/3, unlike the DFSZ-type one. Median and mean anomaly ratios are
E/N |mean = 1.43 and E/N |median = 1.30, respectively, whereas for DFSZ-type mod-
els both are exactly E/N |mean = E/N |median = 5/3. These values remain unchanged,
even if only considering the subset of NDW = 1 models. The deviation from 5/3 in
the KSVZ-type models of [9] may arise due to the phenomenological selection criteria
they impose.

5.4 Implications for Axion Searches

5.4.1 Caγ Cumulative Distribution Function

In the previous sections probability mass functions have been derived for the anomaly
ratio from theoretical assumptions for different DFSZ-type theories. To be able to un-
derstand the implications for axion searches, these E/N distributions must be mapped
into gaγ space via gaγ = αem

2πfa
Caγ with Caγ as defined in (1.20). To recapitulate,

Caγ =
E

N
− 1.92(4) ≡ E

N
− C(0)

aγγ , (5.16)

where the correction term independent of E/N has been dubbed C(0)
aγγ . In order to

be independent of the axion mass, results are plotted with respect to the unitless
quantity |Caγ |.

Traditionally, two-sided axion bands centred around the region of maximal probab-
ility are given in this case [8, 9, 135–137]. However, usually an experiment is sensitive
to all axion-photon couplings above a certain threshold |Caγ |min. It could therefore
also be deemed relevant to experimental efforts to post a one-sided limit that has
to be reached in order to be sensitive to, e.g. 68% of all DFSZ-type models given
a specific axion mass. For this purpose a cumulative distribution function (CDF) is
used, plotted against |Caγ |, which can be understood as the combined theoretical prior
probability of models with |Caγ | (model) > |Caγ |min.
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Figure 5.5: Cumulative probability of models with |Caγ | larger than the indicated
values. The plot includes DFSZ-type models of arbitrary domain wall number NDW

with DFSZ3 to DFSZ7 as well as NDW = 1 models for DFSZ4 to DFSZ7 (for smaller
nD no NDW = 1 models exist). The CDFs become smoother with increasing nD, with
DFSZ6 and DFSZ7 already being almost indistinguishable. NDW = 1 models have
systematically larger |Caγ |, shifted by almost one order of magnitude. The dashed line
indicates the analytic fit on the continuum limit from eq. (5.17).

Since the anomaly ratio is treated as a random variable coming from a distribution
that is to be determined, one has to treat C(0)

aγγ in the same way. Its uncertainty can
be modelled as a normal distribution with mean 1.92 and standard deviation 0.04. In
effect, this smooths out steps in the CDF from high probability E/N values, especially
for anomaly ratios close to the mean value of C(0)

aγγ .

5.4.2 Experimental Constraints

Under the assumptions outlined above the anomaly ratios of the DFSZ2 and DFSZ3

models still are the most notable features in the probability distribution, even for all
possible DFSZ-type models. However, since only one value of the anomaly ratio is
realised in nature, reaching sensitivity to these models may be either not necessary or
not sufficient.

Fig. 5.5 shows the resulting theoretical prior probability of DFSZ-type axion models
with |Caγ | larger than a specific value. The results are broken down by possible values
of nD. Considering first the “all NDW”-case, in which the domain wall number does not
present a meaningful selection criterion, DFSZ3 models have zero probability above
log |Caγ | ≳ 0.5. Should an axion be found above this value and be determined to
be of DFSZ-type, this would imply the existence of nD > 3 Higgs doublets. The
impact of the prominent peaks of maximal probability between E/N = −4/3 or
E/N = 14/3 on the cumulative probability is only minor for theories with nD ≥ 5.
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Figure 5.6: Cumulative probability of models with |Caγ | larger than the indicated
values for the complete set of DFSZ-type and KSVZ-type models as well as for models
with NDW = 1 specifically (thin lines). One sided 95% and 68% limits for both cases
are given with coloured vertical dotted lines. The arrows at the top indicate the
location of DFSZ2-I and DFSZ2-II.

Since the CDFs for DFSZ6 and DFSZ7 are already almost indistinguishable, estimates
for higher nD are not included in the plot. In fact, the relative difference on |Caγ |
exclusion limits between the two ways of estimating the smoothness of the DFSZ8

and DFSZ9 distributions is below the percent level. For the purpose of |Caγ | exclusion
limits the two estimates are therefore virtually equivalent. In the following limit 2,
the extrapolation estimate, is used.

It is possible to obtain a reasonable analytic estimate for the cumulative probability
distribution by going back to the analytic anomaly ratio fit from eq. (5.12). For |Caγ |,
it translates to

p (|Caγ |) = 1− tan−1
[
4
7

(
|Caγ | − 19

75

)]
+ tan−1

[
4
7

(
|Caγ |+ 19

75

)]
π

, (5.17)

which is plotted as a dotted line in fig. 5.5.
Now contrast the full set of DFSZ4 to DFSZ7 models with the respective subsets

with unity domain wall number. The latter models could be considered preferred
in the post-inflationary scenario due to cosmological energy density arguments (see
subsec. 2.2.3). NDW = 1 models display |Caγ | values almost an order of magnitude
higher on average than the full set and are therefore much easier to detect. Similarly
to the “all NDW”-case, higher nD values tend to lead to smoother distributions. It
therefore seems reasonable to introduce estimates for nD ≥ 8 similarly as before, again
leading to a difference with respect to the |Caγ | limits between the two estimates below
the percent level. Again limit 2, the extrapolation estimate, is used.

In fig. 5.6 a comparison of the CDFs for DFSZ- and KSVZ-type models is shown.
In general, both types display very similar cumulative probabilities for all |Caγ |. Only
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Figure 5.7: Probability density in log |Caγ |-space of the combined DFSZ-type and
KSVZ-type “all NDW”-case. Central 68% and 95% regions used for fig. 5.8 (bottom)
are indicated in different shades of yellow. Note that the underlying distribution is
discrete and any illustration will in part depend on the chosen binning.

for DFSZ-type models with NDW = 1 a significant percentage of models is above
log |Caγ | ≳ 1.5. The lines of E/N = 2/3 and E/N = 8/3 are clearly visible for DFSZ-
type models, but also for KSVZ-type models. The relative difference between the
68% limits of KSVZ- and DFSZ-type axions is only ∼ 3% and ∼ 19% for the 95%
limits with the DFSZ-type limit being higher in the latter case. Taking into account
possible effects from diverging theory assumptions, this relative difference can be seen
as negligible.

While the investigation of different theoretical assumptions is beyond the scope of
this thesis, note that other assumptions on the full set of models only modify the
relative importance of the prominent DFSZ2 and DFSZ3 peaks. Consider for example
a different definition of multiplicity based on minimal potentials. This dramatically
increases their probability mass but does not shift the overall cumulative probability
to higher or lower |Caγ | values. In this sense any variation of theoretical assumptions
(excluding model selection criteria) should lie between the cumulative probabilities of
the nD = 2 and continuum cases.

Translating the aforementioned limits to gaγ and plotting them over a range of
axion masses yields fig. 5.8 (top). An experimental exclusion limit touching the 68%
line excludes 68% of the probability mass over the model space under the assumptions
outlined above given a specific mass range. An experiment targeting sensitivity down
to the 95% line will be sensitive to 95% of the probability for all models in the targeted
mass range. These and the 99% limit for DFSZ-type as well as KSVZ-type models are
included as well as the combined case of NDW = 1. For the full cumulative probability
from which these three limits are taken, see fig. 5.6. Note that all experimental limits
shown in fig. 5.8 are frequentist in nature and should therefore only be seen as a rough
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Figure 5.8: Top: 68%, 95% and 99% limits for the complete preferred KSVZ-type
case [9], the complete DFSZ-type case (using extrapolation for DFSZ8 and DFSZ9)
as well as the combined NDW = 1 case. The largest DFSZ-type coupling found is
shown in black (E/N = −1216/3). Helioscope limits and forecasts [89, 90, 138] are
shown in green as well as limits and forecasts from various haloscope experiments [81,
92, 93, 98, 109, 139–177] in purple. Bottom: Central 68% and 95% regions for the
case combining all preferred KSVZ-type and all DFSZ-type models together with a
previous band from [8] for comparison (dashed). For reference lines corresponding to
E/N = 0 and E/N = 8/3 are shown in black. (Plotted with tools by O’Hare [178].)
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Table 5.4: |Caγ | lower prior limits for selected combinations of models. All limits
shown are one sided, so a central 68% band can be constructed with values given for
16% and 84% and similar for 95%. KSVZ-type denotes re-weighted results from [9],
DFSZ-type results presented here. Both are combined with equal probability for
the case Combined. The combination only considering models with DW number of
unity is shown as NDW = 1.

|Caγ | 68% band 95% band

One-sided limit 68% 95% 16% 84% 2.5% 97.5%

KSVZ-type 0.833 0.135 4.684 0.427 15.274 0.068
DFSZ-type 0.809 0.164 4.529 0.482 19.272 0.08
Combined 0.819 0.148 4.593 0.451 17.285 0.074
NDW = 1 5.294 0.769 22.773 2.733 36.729 0.731

comparison with respect to the theoretical prior probabilities presented here which are
more in line with a Bayesian interpretation of statistics. In black the maximal Ê/N
value found for DFSZ9 is included. In addition to being excluded by experiments for a
large fraction of the ma range, this model may likely be subject to phenomenological
constraints (see sec. 5.2.3).

The results presented in this chapter make it possible for the first time to give values
of one-sided limits or axion bands for the combined KSVZ-type and DFSZ-type case,
assuming a DFSZ-type axion to be equally likely as a KSVZ-type one. The associated
PDF for the combined “all NDW”-case is shown in fig. 5.7. In log |Caγ |-space with
the chosen binning, the distributions look roughly Gaussian with the exception of
several notable peaks, at E/N = 5/3, 8/3, 2/3, 14/3 and −4/3 (from left to right).
Note, however, that the true underlying distribution is comprised out of a multitude
of delta peaks and thus fundamentally discrete. Central 68% and 95% bands from
this distribution are used in fig. 5.8 (bottom) together with a previous estimate for
the same band from [8]. Previous work was either limited to very few extensions of
DFSZ-type [8] or to the KSVZ-type case [9]. Even now many caveats have to be kept
in mind, like the imprecise prediction for DFSZ8 and DFSZ9 models or the lack of
selection criteria in the DFSZ-type case. Nevertheless, for the reader access to data of
typical limits and bands for a variety of scenarios may be useful. An overview can be
found in tab. 5.4 and more detailed information, such as the full model catalogues as
well as axion limits/ bands together with usable Bayesian theory priors, is hosted on
the website “zenodo” https://doi.org/10.5281/zenodo.7656939. The generating
code can be found at https://github.com/jhbdiehl/DFSZforest.

5.5 Summary & Discussion

In this chapter axion-photon couplings for a large number of DFSZ-type models were
systematically calculated. This resulted in limits that have to be reached in order to
be sensitive to a certain fraction of the probability mass of these models.

First, (phenomenological) selection criteria were discussed, such as the absence of
FCNCs and the DW problem, to extract preferred DFSZ-type models. In contrast

https://doi.org/10.5281/zenodo.7656939
https://github.com/jhbdiehl/DFSZforest
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to KSVZ-type axions, where all selection criteria follow from cosmological bounds
on additional fermions, for DFSZ-type axions no criteria display a sufficient level of
generality, merely desirable features were found.

Next, a recipe was put forth for calculating all anomaly ratios and hence all axion-
photon couplings. This recipe is based on the fact that the PQ charges are not free but
fixed by linear consistency and phenomenology relations. For the sake of calculating
the anomaly ratio, this reduces the procedure of DFSZ-type model building to solving
LSEs. Thus, systematically going through all Yukawa sectors and solving all possible
LSEs for each, all possible anomaly ratios could be derived for up to seven Higgs
doublets.

In addition, by counting how many models lead to a certain anomaly ratio and
establishing relative probabilities of these models, probabilities could be assigned to
each anomaly ratio. For this counting of models, a model was considered to correspond
to the Lagrangian that arises by combining different potentials that give rise to the
same set of PQ charges and by adding the Yukawa couplings compatible with the
resulting set of PQ charges. This takes into account the general mantra that all
terms allowed by symmetry should be included in the Lagrangian and overcounting
is avoided.

The resulting anomaly ratio distributions have their medians at E/N = 5/3, their
maximum values at E/N = 2/3 and E/N = 8/3, and a characteristic shape that
is similar to the one of KSVZ-type models. These observations can be explained by
abstractly modelling the resulting sets of PQ charges as discrete charge distributions
with uniform probability and symmetry around zero.

While the aforementioned recipe works in principle for an arbitrary number of
Higgs doublets, the necessary computational time becomes too large for eight or more
doublets. Simple sampling of potential terms leads to a significant bias, so that
estimates for nD > 7 had to be constructed based on the expected smoothness of
the distributions. Moreover, by using an incremental construction procedure, it was
possible to find a maximal anomaly ratio that is more than a factor of two higher
than in previous estimates [8].

Regarding the axion experimental program, the anomaly ratio distributions confirm
the experimental importance of the values dictated by the minimal DFSZ models,
namely E/N = 2/3 and E/N = 8/3, since they are also favoured for every number
of Higgs doublets (except nD = 3 with the Weinberg-Glashow-Paschos condition im-
posed). However, they also show that plenty of viable parameter space lies above and
below these lines. Overall, this means that a non-observation at these favoured values
is not enough to declare the axion excluded, while an observation above these values
would be a hint for more than one additional Higgs doublet from the DFSZ-type point
of view. The statistical interpretation also reveals that both, KSVZ- and DFSZ-type
models, set very similar sensitivity requirements on experiments.

For nD ≥ 4 a subset of models with DW number NDW = 1 exists, making DFSZ-
type models theoretically more viable in post-inflationary scenarios. This subset even
displays a significantly enhanced axion-photon coupling compared to the minimal
scenarios for both invisible axion classes, hence making these models on average easier
to probe.

The analysis presented here can be extended in multiple directions. For instance, it
would be interesting to perform a similar analysis for models with a right-handed neut-
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rino or KSVZ/DFSZ hybrid models, namely models with additional Higgs singlets,
Higgs doublets, and heavy quarks. From purely mathematical arguments regarding
the anomaly ratio, even though eq. (5.1) would change, similar shapes of the res-
ulting distributions and axion mass vs. axion-photon coupling exclusion lines are
expected. This expectation does, however, not make an explicit analysis dispensable.
Furthermore, it would be interesting to investigate other axion couplings, such as the
axion-electron coupling. Additionally, it would be desirable to find a better estimate
for the anomaly distribution of eight or more doublets, or even an unbiased way to
calculate it.

This project provides a first well-motivated theory prior combining both major
categories of invisible axions beyond the minimal models. While so far most axion
experiments have subscribed to a frequentist interpretation of statistics, the catalogue
presented here is a valuable resource for analysis efforts moving towards a Bayesian
framework like [79, 120]. This prior is also used for the Bayesian analysis presented
in ch. 6, where a novel modification to the standard background removal technique
is validated using generated mock-data resembling a full-scale MADMAX setup. The
MADMAX data-taking of 2024 which is analysed in ch. 8 by design does not reach
sensitivity of photon couplings close to typical values of this prior. Therefore applying
the prior in that context is not beneficial.

Lastly, this analysis is useful for axion searches irrespective of the statistical inter-
pretation. With all possible E/N values for up to seven doublets and a full catalogue
for up to five doublets, in the case of an axion detection one can proceed to do hypo-
thesis testing with the compatible models. Since all E/N values for preferred KSVZ-
type models are also known, this could be used for the purpose of model comparison
between these two model classes. Hence, with or without a statistical perspective,
this project presents another step forward in the understanding and mapping of the
landscape of axion models.



6
Bias-Free Signal Estimation

Axion haloscope experiments face a common but challenging problem: A small-
amplitude signal S of unknown location is to be found in a dominating background B.
Because the relevant wavelengths are comparable to the size of the system, modelling
the background from first principles poses a virtually insurmountable challenge.

To be able to employ a forward-modelling approach, i.e. to construct a model that
is able to simultaneously consider signal and background components, parametric
models for signal as well as background need to be available.

It could still be possible to construct such a parametric background model using
an empirical function without relying on first principles. However, such a function
would have to be able to accommodate a range of possible background shapes to a
high degree of precision as determined by the expected signal amplitude while not
introducing a vast number of nuisance parameters.

In practice it is more feasible to approximate the background using a parameter-free
background filter fbg and subtract this estimate from the observation. The residuals
then ideally only retain some statistical noise N as well as the signal component,
which can be found using standard statistical methods.

However, such a background estimator is usually affected by the presence of a signal,
which in turn means that the signal shape in the residuals is altered. Signal parameters
inferred from such residuals are therefore biased unless measures are taken to correct
for this effect.

In an axion context, simulated experiments have been used to correct for the bias
in signal amplitude, but not for the other parameters related to signal shape and
position [83, 114]. This chapter improves on these previous efforts by presenting a
method that allows the use of parameter-free background filters, while still being able
to obtain inherently unbiased signal estimates.

Such a method is vitally important when a signal is found in order to not infer
biased physical parameters. However, the approach could also provide benefits in
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the absence of measurable signals: If strong prior knowledge exists on one or more
of the parameters in a Bayesian context, a bias in the signal model could lead to
decreased sensitivity due to inferred, biased signal parameters corresponding to regions
in parameter space with lower prior probability.

First, sec. 6.1 presents the general principle of the approach in an abstract manner,
before it is applied in sec. 6.2 to a concrete physics use-case in the context of the
MADMAX haloscope using Savitzky-Golay filters as background estimators. Sec. 6.3
concludes the chapter. The results presented here have already been published by the
author in [2], which this chapter follows closely.

6.1 General Approach

Formally, the approach for bias-free signal estimation can be applied whenever the
following ingredients are present:

1. An experimental observation X, which can be written as a linear combination
of three distinct components signal S, background B and noise fluctuations N
(compare fig. 6.1):

X = S +B +N . (6.1)

S and B are formally only distinguished by the fact that the former should be
retained and the latter removed. N however has the special role of accounting
for the full statistical uncertainty. In particular, for the probability distribution
of X, given a known signal and background, it is required that

p(X|S,B) = pS+B(N) , (6.2)

with known pS+B(N), the probability distribution of the noise which is para-
meterised by the sum of S and B. A simple example for this distribution would
be a Normal distribution with mean 0 and standard deviation depending on
S +B. Also, a vanishing expectation value E(N) = 0 is required, so that

E(X) = S +B . (6.3)

2. An unbiased and effective background estimator fbg. Many mathematical con-
structs could be used as fbg, for example a moving average or any analytic func-
tion fulfilling all requirements. Ideally, it is constructed to yield fbg(X) = B or
equivalently X − fbg(X) = S +N , however this is not necessary. It only needs
to be unbiased in the sense that it reconstructs the background faithfully and
to be effective in suppressing the noise:

B − fbg(B) ≈ 0 , (6.4)
fbg(N) ≈ 0 . (6.5)

The approximations above need to hold relative to possible signal amplitudes
and length scales. In particular, for the application below it must be impossible
for B − fbg(B) to mimic a signal

|B − fbg(B)| ≪ |ampl(S)| (6.6)
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and X − fbg(X) must have approximately the same noise as X

|fbg(N)| ≪
√
var(N) . (6.7)

3. The background estimator must also be linear, in particular

fbg(S +B +N) = fbg(S) + fbg(B +N) . (6.8)

4. Furthermore, it must not reconstruct non-vanishing signals perfectly

S ̸= 0 =⇒ fbg(S) ̸= S . (6.9)

If this were not the case, the background removal could potentially completely
eliminate a signal. Crucially, this requirement is much less strict than the na-
ive assumption of the background estimator leaving the signal approximately
invariant, i.e. S − fbg(S) ≈ S. The method works even for substantial changes,
even though practically this could lead to a loss in sensitivity.

5. A signal that can be parameterised in tractable form using a set of parameters ϕ.
This is made explicit in the following by writing the signal as Sϕ. Less formally:
Possible signal shapes need to be known.

Having a tractable parameterisation of the signal is a prerequisite for attempting
parameter inference in virtually all cases. In a typical inference scenario where signal
and background are separable, the first condition is also usually satisfied. The central
requirements are therefore conditions two to four, which limit the choice of potential
filters in a given scenario.

Note, that the domains of S and B can vary from the domain of X. For instance,
if pS+B follows a Poisson distribution, then S and B have Rn as their domain, with
n ∈ N, while the observation X lies in Nn

0 . However, additions or subtractions of S,
B or X as well as the background estimator need to be well-defined on the respective
domains. In practice, this criterion is usually met.

Under the above conditions it is possible to construct a forward model of the ex-
periment without a parameterised background model. One can make the background
estimator fbg a part of the experiment, replacing the original observation X with a
virtual observation

X ′ ≡ X − fbg(X) , (6.10)

estimating the background
Best ≡ fbg(X) , (6.11)

and defining a modified signal model

S′
ϕ ≡ Sϕ − fbg(Sϕ) . (6.12)

Using the requirements for the filter eqs. (6.4), (6.5) and (6.8), one can rewrite
eq. 6.1 as

N = X − S −B

= X ′ + fbg(X)− S −B

= X ′ + fbg(B +N) + fbg(S)− S −B

≈ X ′ +B + fbg(S)− S −B

= X ′ − S′
ϕ .

(6.13)
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Since Sϕ + B ≈ S′
ϕ + Best, this successfully approximately transformed p(X|S,B)

from eq. (6.2) into an unbiased statistical model, which is parameterised by signal
parameters, but independent of the unknown background: p(X|S,B) ≈ pS′

ϕ+Best
(X ′−

S′
ϕ). Under the assumptions above and given an actual observation X one can use

this result to approximate the likelihood function of the signal parameters

LX(ϕ) ≈ pS′
ϕ+Best

(X ′ − S′
ϕ) (6.14)

and infer signal parameters ϕ from an observation X using standard statistical tools.
Note that for any application it is imperative to thoroughly verify if conditions two

and four hold for the selected background estimator fbg. For condition two, eqs. (6.6)
and (6.7) or similar estimations may be used to check that the filter is unbiased and
effective. Condition four could pose problems in connection with eq. (6.6). It may
be impossible to approximately satisfy both requirements if signal and background
fluctuate on similar scales, i.e. occupy similar regions in Fourier space. Even without
an explicit parameterisation of the background, its general properties like amplitude
and scale of fluctuations usually are available. The difficulty of a given application
primarily depends on this similarity between background and signal as well as the
signal-to-noise ratio.

For arbitrarily small signals it is difficult to a priori rule out B − fbg(B) matching
allowed signal shapes in some region of the dataset, potentially leading to erroneously
detecting a signal. This is one of the reasons why detectable signal strengths are
assumed in the application below. Goodness-of-fit checks however should allow to
reveal such false detections.

The application in the following section demonstrates the capability of the approach
using Bayesian parameter inference. The method however is independent of a specific
statistical framework and generally valid under the conditions described above.

6.2 Application to Simulated MADMAX Data

6.2.1 Data Generation and Analysis

A MADMAX setting is used to test the bias-free signal estimation approach on a
real-world example. One thousand MADMAX-like mock-datasets are generated, a
few of which are shown as grey lines in fig. 6.1. These datasets are then analysed with
bias-free signal models that take the effect of the background subtraction into account
and with standard signal models that do not. For the analysis a Bayesian approach
is chosen, however the bias-free signal estimation procedure can be applied to other
inference methods, e.g., a maximum likelihood estimate of the signal parameters.

One dataset consist of 25001 data points with 2 kHz spacing at frequencies slightly
above fref = 11GHz. It has three components (see fig. 6.1):

• Signal. An axion signal with shape determined by eq. (2.11). Fixed ρa and
vlab are assumed and ma, σv and Caγ are drawn from the prior. For Caγ , a
priori models with Caγ < 0.86 are excluded to ensure that the signals have
photon couplings large enough to be detectable at the noise level given below.
The Caγ cutoff was chosen such that at least 99% of simulated signals could be
reliably recovered by the analysis. This cutoff corresponds to an SNR of 2.38
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S N B

X = B + S + N

Figure 6.1: Components of a simulated example dataset. The upper panel shows mul-
tiple different full datasets X consisting of three components background B, simulated
axion signal S and uncorrelated noise N as defined above, in order to visualise the
variation in the simulated backgrounds. A zoom into the region of the axion signal for
one of them is given. The three lower panels contain the three individual components
of a dataset.
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for the signal amplitude with respect to the standard deviation of the noise.
So the scenario is considered where an axion signal has been discovered but its
quantitative properties have not been inferred yet.

• Noise. Uncorrelated Gaussian background noise with standard deviation σ =
5×10−24 W, corresponding to a realistic integration time of two weeks assuming
a noise temperature of roughly 9K.

• Background. Correlated, non-thermal background. Its shape is modelled after
spectra shown in [179], as well as unpublished MADMAX testruns in 2022, but
does not involve fits to actual datasets. The following formula is used:

B(f)[W] = 10−20

[
erf

(
f − f0
5MHz

)(
f0
f

)3

+ exp

(
−
(
f − 25MHz(1 + r1

15)

20MHz(1 + r2
10)

)2
)]

+ 4× 10−22(1 + r3) sin

(
f + r4f0
2.5MHz

)
+ 5× 10−24

[
(1 + r5) sin

(
f + r6f0
0.25MHz

)
+ (1 + r7) sin

(
f + r8f0
0.1MHz

)]
, (6.15)

where f0 = 4.218MHz and f are frequencies relative to fref and all ri are
independent random variables drawn from a Gaussian N (µ = 0, σ = 1). The
first line of eq. (6.15) and the first sinusoidal component determine the large-scale
shape of the background, but are easy to distinguish from an axion signal with
a FWHM of ≳ 11 kHz. Therefore two more sine-like components are introduced
(last of the three terms in (6.15)) with random phase, amplitudes of order of
the uncorrelated noise and fixed periods of 100 kHz and 250 kHz. This choice
serves as a proxy for the expected, more intricate, structure of fluctuations in
physically realistic scenarios. It represents a bad-case scenario where signal
extraction nevertheless remains feasible. The background is notably different
from spectra obtained in the data-taking of 2024 (see ch. 8) as the shape of
the background crucially depends on the signal receiving chain. As long as the
scales at which the background fluctuates are comparable to realistic values,
differences in the overall shape are of little consequence.

Tab. 6.1 summarises the relevant parameters for the analysis.
The signals in the example application are small in the sense that the median of

their signal to background ratios (SBR) is at 0.016. Fig. 6.2 shows the SBRs and
signal to noise ratios (SNRs) for the mock datasets, represented by signal amplitude
divided by background at the signal frequency and signal amplitude divided by noise
standard deviation, respectively.

The data consisting of these three components is filtered with a fourth-order
Savitzky-Golay (SG) filter [180] of a width of 221 data points, corresponding to
442 kHz. SG filters are moving window polynomial fits on an odd number of data
points. They have two free parameters: The polynomial order o and the number of
data points in a window w. For each window the polynomial value at the centre data
point j is used as the filtered value fbg(Xj). SG filters leverage the fact that data
points are equidistant. Under this condition the central value of any polynomial can
be computed analytically from the data values making the method very efficient for
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Table 6.1: Overview over the fixed parameters in the analysis and the priors used
for the three non-fixed parameters. fmin/max are the extremal absolute frequencies at
which the measurement is sensitive.

Parameter Value/ Prior

ma Uniform(fmin, fmax)
Caγ From [1, 9], excluding Caγ < 0.86
σv Normal(218, 39) [km s−1]

ρa 0.3GeV cm−3

β2 5× 104

vlab 242 km s−1

Be 10T
A 1m2

SBR SNR

Figure 6.2: Distribution of the signal amplitude across the mock datasets, relative to
the background and the noise level. Left: Signal to background ratio, given by the
amplitude of the signal divided by the background at that frequency. Right: Signal
to noise ratio, given by the amplitude of the signal divided by the standard deviation
of the noise component. The bimodal shape of the SNR histogram is caused by the
Caγ prior the signals are sampled from.
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window sizes up to several thousand data points. By construction it is difficult to
obtain good estimates for the first and last w/2 data points in a dataset. For this
reason these data points are removed from the dataset after the SG filter has been
applied.1

Subtracting the filtered from the raw data removes the correlated background com-
ponent almost completely, but also slightly distorts the signal shape, as shown below.
The parameters of the SG fit were chosen to yield a good reduction of the background
while leaving signal and noise almost unchanged. The exact choice of SG parameters
does not affect the validity of the approach. On the contrary: While the parameter
bias induced by previous approaches crucially depends on filter parameters, the bias-
free inference is independent of them, as long as the SG filter fulfils eqs. (6.4) and
(6.5).

As the signal model for the Gaussian likelihood eq. (2.11) is used, multiplied by
ρa (gaγ/ma)

2B2
eAβ

2qe/ℏ to obtain the correct signal amplitude. Here, ma is the mass
of the axion, ρa its local energy density and gaγ its coupling to photons. Be is the
external magnetic field, A the surface area of the dielectric disks in the setup and β2

the power boost factor (compare sec. 3.3). qe and ℏ are electron charge and reduced
Planck constant.

As standard deviation the amplitude of the uncorrelated noise is used, which is
unknown in realistic scenarios and therefore has to be inferred from the data. If
one would simply take the standard deviation of the background reduced data, the
presence of a signal would lead to a slight bias for the noise towards higher values. To
prevent the signal from biasing the noise-level estimation, first the SG filter is used to
remove a background estimate from the data. Then each spectrum is partitioned into
three frequency regions of equal size (roughly 8333 bins). Because the width of each
of these regions is much larger than that of the localised filtered signal, it can only
be present in up to two of the regions simultaneously. The region with the smallest
standard deviation is selected for the noise-level estimation. This removes the bias
caused by the presence of the signal. In the test case the inferred noise level has a
negligible difference compared to the ground truth. This procedure works only if the
background filter is unbiased and the noise level of the residuals is constant, which
was verified for the present test case. In some applications relative residuals may need
to be used, especially for frequency dependent N or if background oscillations depend
on its absolute magnitude.

For Monte Carlo analysis the Reactive Nested Sampling algorithm [181–183] is
employed via the Bayesian Analysis Toolkit in Julia (BAT.jl) [184].

6.2.2 Requirement Validation

Sec. 6.1 states several requirements for the bias-free method to be applicable. This
subsection will show that they are all fulfilled in the example use case.

The first two requirements are fulfilled by construction of the mock datasets. The
red curve in fig. 6.3 (bottom left panel) corresponds to S − fbg(S) and clearly shows,
that it is not equal to zero everywhere. The signal S can also be parameterised as

1SG filters will become important again in sec. 7.3, where the influence of the filter is further
investigated and also transfer functions for different filter parameters are given.
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Figure 6.3: Effect of using a bias-free signal model for the fit on the data. 68%
central posterior predictive intervals for the bias-free and biased fit are plotted in
red and blue, respectively. Top Left: Data after background reduction via SG filter
and biased fit without SG filter applied. Bottom Left: Same data and bias-free
fit with SG filter applied. Top Right: Signal and noise components of the data as
well as biased and bias-free peak-fit without applying an SG filter. Bottom Right:
Deviation of posterior predictive of bias-free and biased peak-fit from the true signal
(“residual”) compared to noise component of the data. The peak-fits in all panels
have been performed on background reduced data as shown in the left panels. The
data components shown in the right panels are for comparison only. Note the smaller
frequency range plotted in the right panels.

described in the previous subsection. It remains to be shown that eqs. (6.6) and (6.7)
approximately hold, which hinges on the choice of SG filter parameters.

As stated in sec. 6.1 already, the SG filter is considered to be a good background
estimator if |B − fbg(B)| ≪ |ampl(S)| and to be efficient at removing the noise
component if |fbg(N)| ≪

√
var(N). Fig. 6.4 shows the distribution for both of these

conditions using an SG filter with a width of 221 data points and polynomial order 4
on the mock datasets.

Fig. 6.4, left panel, demonstrates the chosen SG filter to be an excellent background
estimator with practically all residuals being below 5× 10−4 of the signal amplitude.
The SG filter applied to noise retains the Gaussian behaviour of the noise component,
but reduces its standard deviation by almost one order of magnitude to 0.13

√
var(N),

as can be seen in fig. 6.4, right panel. The chosen SG parameters therefore represent
a filter that fulfils all requirements listed in sec. 6.1.

In a more realistic simulated setting one could allow for proportionality between
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σ = 0.13

Figure 6.4: Validation of the chosen SG filter parameters in terms of background
estimation and noise removal. Left: Deviation between filtered and unfiltered true
backgrounds for all data points normalised to the signal amplitude for each mock
dataset (see eq. (6.6)). Right: Comparison between the filtered noise for all data
points and the standard deviation of the unfiltered noise component for each mock
dataset (see eq. (6.7)).

noise and background components. If their relationship is linear, instead of only sub-
tracting the background estimate from the data, additionally dividing by the back-
ground estimate, in the absence of an axion, leads to a constant standard deviation
over the whole frequency range for the residual data. In such a scenario, if the back-
ground is improperly removed or due to a signal, the noise level may vary slightly. The
simplification applied here, assuming constant noise power independent of the back-
ground, does not lead to relevant errors. It was shown that the deviation from the
truth of the background estimator is much smaller than the signal amplitude (fig. 6.2,
left), which in turn is much smaller than the background. Therefore, small noise
variations due to improper background estimation and the small underestimation of
the noise at the signal location are not expected to be noticeable using any inference
method.

6.2.3 Results

Fig. 6.3 shows the result for one of the datasets, demonstrating the effect of the bias-
free vs biased method qualitatively. When the standard signal model is used to fit the
signal peak (fig. 6.3, top left), the effect of the background removal via SG filter is not
taken into consideration. Due to the presence of the signal, the background around
the signal is overestimated, leading to a systematic decrease in signal amplitude and
adjacent data points below the baseline (grey). A peak-fit with its 68 percentile
central posterior interval (blue) is perfectly capable of fitting this modified signal, but
cannot fit the surrounding data points - and therefore does not retain the true signal
parameters.

The bottom-left plot in fig. 6.3 shows the same, but with a bias-free fit on the signal
peak that takes the effect of SG filtering into account. A good fit is obtained over
the whole frequency range, which displays the characteristic effect of an SG filter on
the signal. Unbiased signal parameters can be obtained based on this fit, as fig. 6.3,
top right shows. The non-filtered and background free signal peak, i.e. the signal
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Figure 6.5: Reduced chi-square distributions for all mock datasets, obtained from fits
using the standard biased method (blue) as well as the bias-free method (red). The
reduced chi-square was calculated for the posterior median using the inferred noise
level as described above and only in a range of 350 data points around the known signal
frequency, because only in this region pronounced differences between the biased and
the bias free method are to be expected.

component S, is fitted well by the posterior predictive central interval of the bias-
free peak-fit on which no SG filter has been applied. The standard, biased peak-fit
however underestimates signal height and width. This underestimation is made more
visible in fig. 6.3, bottom right, where the deviation relative to the true signal is
shown in comparison with the noise level, both for the biased and the bias-free peak-
fit. While the 68 percentile of the bias-free fit includes the true signal over almost the
full frequency range, the standard, biased fit displays significant deviation.

As a first quality-of-fit check, a histogram of reduced chi-square values for all mock
datasets is shown in fig. 6.5. The distribution of chi-square values for the bias-free
method is compatible with unity (1.005 ± 0.08). For the biased method, however, a
distribution of chi-square values systematically above one is observed. While most
datasets display reasonably good χ2

red ∈ [0.8, 1.5], some reduced chi-square values
exceed even the upper bound of fig. 6.5, indicating extremely bad fits.

To further asses the quality of the fits, Bayesian coverage testing is performed and
the Bayesian posterior is shown to be compatible with the true parameter values, but
only when using the bias-free approach. From a frequentist perspective, repeating
an unbiased analysis multiple times should lead to the true signal parameters being
uniformly distributed over all marginal posterior quantiles. As simulated data are used
access to the ground truth of the signal parameters is available, and as 103 equivalent
mock-datasets have been generated, it is possible to verify the Bayesian results in
this manner. The outcome is shown in fig. 6.6. The standard, biased peak-fit that
does not take the effect of the SG filter into account systematically underestimates
Caγ and σv. It also shifts the axion mass to slightly larger values. The bias-free fit,
in comparison, shows no significant deviation from the expected uniform distribution.
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Figure 6.6: Distribution of the posterior quantile bin in which the true signal para-
meter resides, for the three parameters. The red curves show the bias-free parameter
inference, the blue curves show the biased case. For 103 mock-datasets and 10 quantile
bins 100± 10 cases are expected for each bin, which is shown as the green dashed re-
gion. The width of the green band corresponds to the expected statistical fluctuation.
The distribution of the parameters in the bias-free approach shows no significant de-
viations from the expectation. For the standard, biased approach, a significant and
systematic shift away from the true signal parameters can be seen. In this case almost
all true signal parameters reside in the first or last quantile of the posterior distribu-
tion.
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Table 6.2: Coverage properties of the Bayesian credible intervals: The table shows the
percentage of cases in which true signal parameters reside in the 68% (resp. 95% and
99.7%) posterior credible interval, for each of the three free fit parameters.

Coverage biased Coverage bias-free
68% 95% 99.7% 68% 95% 99.7%

ma 0.241 0.405 0.589 0.690 0.945 0.994
Caγ 0.055 0.131 0.426 0.643 0.925 0.993
σv 0.141 0.25 0.387 0.669 0.946 0.992
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Figure 6.7: Posterior and prior probability density for signal parameter Caγ for a
mock dataset with no simulated axion present. The prior extends far beyond the
region shown for Caγ > 2. As expected, the posterior is compatible with a no-signal
hypothesis, sets an upper limit on Caγ , and shows no gain of information with respect
to the prior at low values.

A more standard test to quantify coverage is given in tab. 6.2. With the standard
biased method, only a small fraction of true signal parameters lies within the 68%,
95% or 99.7% credible intervals of the posterior, whereas the coverage for the bias-free
method is close to the expected values.

Fig. 6.7 shows the prior and posterior distributions for a simulated dataset with no
axion present. The probability density of the posterior is clearly severely suppressed
for Caγ > 1.5, which hints at the limit setting potential of a MADMAX-like experi-
ment with parameters as chosen above. Below Caγ < 1.4 posterior and prior follow
similar distributions, no information has been gained. The Caγ posterior is therefore
compatible with a no-axion scenario, as expected.

Positive statistical fluctuations in several adjacent bins can potentially mimic faint
signals in scenarios with no detectable axion present. To avoid erroneous detections
in these scenarios it is crucial to not underestimate the noise level implemented in
the likelihood and to design a statistically sound detection criterion. The latter is
a highly relevant question on its own right, but requires extensive validation and is
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beyond the scope of this project. For this reason Caγ > 0.86 is assumed a priori in the
mock dataset, corresponding to detectable signal strengths for the present analysis
(compare tab. 6.1).

6.3 Summary & Discussion

This chapter presents a method for fitting small-amplitude signals on top of an un-
parameterised background without incurring a bias on the signal parameters. If an
unbiased, effective and linear background estimator is used to remove the background,
its effect on the signal can be incorporated into the signal model. The problem then
reduces to finding a single signal component in the presence of statistical noise.

One possible application for the method are axion haloscope measurements. In
order to demonstrate the effectiveness of the bias-free approach, it was applied to
103 simulated MADMAX-like datasets using an SG filter as background estimator
and compared with an analogous simulation using the standard, biased method. For
inference a Bayesian approach using nested sampling was chosen. For the bias-free
approach indeed all inferred signal parameters deviated from the ground truths only
within the expected statistical fluctuations. The standard, biased approach, however,
showed severe, systematic deviations. Should an axion signal be detected, applying
the bias-free method instead of the standard approach therefore becomes necessary.

Beyond parameter inference in the case of an axion detection, it is reasonably to
assume that the inclusion of the presented approach could improve the sensitivity
of detection procedure, as the modified signal model will more closely resemble the
respective features in the data. This exploration is left for future work.



7
The MADMAX Pipeline for

Statistical Analysis

The previous chapter described in detail a method which in its scope is oriented
towards future applications. It can be leveraged in any present axion haloscope search,
but becomes crucially important only when using Bayesian methodology or in case of
an axion detection.

Recently, however, a very present application became available in form of the first
axion dark matter measurements with a MADMAX prototype setup. In order to
analyse it, a set of methods had to be adapted or developed: A frequentist approach
was chosen for the analysis, an existing analysis pipeline [83] had to be modified to
be used on the data and additional checks and pre-processing steps were developed in
order to obtain a competitive and reliable sensitivity. These methods are introduced
in the present chapter, before being applied in ch. 8.

As in the previous chapter, it is again assumed that the analysed data resemble a set
of frequency spectra containing background, noise and signal components, which will
be defined similarly as before. In an axion haloscope context after the background
component is removed, e.g. using a non-parametric filter as before, all bins in the
residual spectra should be uncorrelated samples from a Gaussian distribution with
zero mean. Bins containing a potential signal component should follow a distribution
with positive mean, but make up at best a tiny fraction of the total number of bins
in the spectrum. They therefore do not significantly alter the expected Gaussian
distribution for the overall residual. The bins of the spectra have to be uncorrelated
because correlations between adjacent bins with correlation lengths comparable to the
FWHM of an axion signal have the potential to significantly impair the sensitivity of
an experiment. Deviations due to other effects such as residual radio-frequency (RF)
structures may lead to bins which are samples from distributions with positive mean
potentially mimicking an axion signal and are therefore also to be avoided.
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Usually to test Gaussianity a histogram is constructed from a set of data points,
which is then compared with a Normal distribution. This test, however, is not sensitive
to correlations between individual data points. An additional method based upon the
work in [185] is therefore presented here that is sensitive to Non-Gaussianity and
better-suited to identify correlations between data points. The method is called Runs
Gaussianity test in the following. To demonstrate its validity and sensitivity, in the
present chapter the Runs Gaussianity test is only applied to abstract sets of data
points not intended to carry physical meaning. It will be applied in the context of
the MADMAX haloscope in ch. 8, in which case the data points are individual bins
of one frequency spectrum.

Should the Runs Gaussianity or similar tests indicate deviations from the expected
behaviour for the residual spectra, these deviations need to be investigated and if
possible avoided. Some background filters may be better suited than others to remove
specific contributions to the background. Savitzky-Golay filters which are typically
used for this task in axion haloscopes can serve as high-pass filters, suppressing all
components of a spectrum that fluctuate on large scales. They are, however, not ideal
for dealing with sinusoidal contributions to the background that fluctuate on a specific
scale, i.e. components with a period of a specific number of data points. This is true
especially if their scale is close to the FWHM of an axion signal. When such contri-
butions are present, a notch filter is required, capable of only removing fluctuations
of a specific scale. For the analysis of the first MADMAX axion measurement such
a filter proved necessary. A digital notch filter (DNF) is therefore developed here,
comparing different possible implementations and investigating its effect on potential
axion signals.

Having processed a set of spectra to the point where only an uncorrelated noise and
potentially a signal component remain, spectra covering the same frequency regions
have to be combined in a way that enhances the signal-to-noise ratio (SNR) as much as
possible. A possible procedure is described in [83], most parts of which are followed in
the present work. With a combined frequency spectrum the search for an axion signal
becomes possible, for which either frequentist or Bayesian methods could be applied.
One simple option from the frequentist tool-box is to cross-correlate the spectrum
with the expected axion lineshape and to investigate the statistical significance of the
largest excess. If it is not deemed to be statistically significant, a limit can be set. If
it is, a set of strategies needs to be in place to rule out any non-axionic origin.

This chapter is structured as follows: First, the Runs Gaussianity test and digital
notch filter are introduced in secs. 7.1 and 7.2, respectively. Sec. 7.3 then covers com-
bining individual spectra and cross-correlation with the axion lineshape for simulated
datasets. Here important systematic effects as well as deviations from the standard
procedure in [83] are pointed out. In sec. 7.4 a limit is constructed for the simulated
datasets before sec. 7.5 adds a discussion on procedures for dealing with significant
excesses. The chapter concludes in sec. 7.6.
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Figure 7.1: Exemplary calculation of runs weights for 9 data points drawn from in-
dependent standard normal distributions (µ = 0, σ = 1). Adjacent points above and
below the mean are summed up to obtain the weights defined in (7.1).

7.1 Runs Gaussianity Test

7.1.1 Description and Validation

In [185] the authors define a novel test statistics T for a set of independent data points
Xi, which are normally distributed with known means µi and variances σi. The basic
idea is to split the set of N data points into individual “runs” Aj defined as sets of
consecutive data points above or below their respective mean values. In fig. 7.1 for
example A4 = {X5, X6, X7, X8}. In the context of the MADMAX haloscope the Xi

are frequency bins in a spectrum after the background has been removed and their
mean value is zero. For each run a weight is calculated as

w (Aj) =
∑
i

(Xi − µi)
2

σ2
i

, (7.1)

where the sum runs over all data points contained in the run Aj . A graphical rep-
resentation for a simple example is given in fig. 7.1. The authors of [185] continue to
define a test statistics T as T ≡ maxj w(Aj) for only runs above the mean and spend
significant effort calculating p-values for it. Notably, small p values corresponding
to big T do neither require nor give information on the shape of the structure that
caused the big value for w beyond it being some sort of localised excess.

This test statistic has already been successfully applied to find simulated axion
signals in the context of early MADMAX-like datasets [179]. It is certainly possible
to find potential axion signals, the shape of which is well known (see sec. 2.4) using
this method. Its shape-agnostic nature, however, makes it especially well suited for
applications in which the user does not precisely know what they are looking for.

The following application leverages this fact: Looking at the full distribution of
weights for all runs can serve as a powerful test for any kind of variation from Gaus-
sianity as will be shown below. The statement could be extended to other distribu-
tions, but would require the generation of dedicated reference datasets following said
distributions.
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Figure 7.2: Probability density distributions for w given reference datasets of various
lengths N .

The abstract idea for the method presented here is as follows:

1. Generate a reference distribution of w(Aj) for a simulated dataset with N data
points, where all data points independently follow normal distributions with
µ = 0 and σ = 1. This means the simulated dataset contains only Gaussian
white noise. Contrary to [185], this analysis considers weights for runs above
the mean as well as runs below the mean.

2. Calculate the distribution of w(Aj) for an actual measurement that has been
processed so only a Gaussian white noise component should be present in the
data.

3. Compare the two distributions visually and using the quantitative metric G
introduced below.

For the application on a haloscope like MADMAX a dataset could be a single
frequency spectrum after background removal, that consists of N frequency bins.

The test statistic T of [185] is applied in [179], where the authors divide their dataset
into many chunks with N = 96 data points each in order to be able to analytically
calculate p-values for each chunk. The present analysis does not impose such scrutiny
and is thus not limited to small parts of the dataset. Nevertheless, reference datasets
may feature a different number of data points as the measurement the user wants
to compare it to. This means an investigation is in order to determine the influence
of N on the dataset. Fig. 7.2 shows reference datasets for a broad range of N . To
generate the distributions shown there the weights for runs are calculated in datasets
containing only Gaussian white noise with length N . This process is repeated until
for each N roughly 107 weights are obtained. This number of weights was chosen
to get reasonable statistics down to probability densities of 10−6 corresponding to
w ≈ 30. No significant differences are visible between N = 2 × 105 (blue) and
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N = 103 (orange). Only for N = 100 large values for w show decreased probability,
which could be explained by edge effects.

To quantify how well a distribution resembles the reference, one can introduce a
metric G as follows. Compute the weights for all runs Ameas

j in a given measured
dataset “meas”. Analogously to the histograms in fig. 7.2 define a set of K ranges rk
between 0 and the maximal weight in the measured dataset

rk =

[
k − 1

K
max

j
w
(
Ameas

j

)
,

k

K
max

j
w
(
Ameas

j

)]
, (7.2)

with k ∈ [1,K]. Define νmeas
k as the number of runs weights with values in a range

rk for the dataset. Find νrefk , the number of runs weights w
(
Aref

j

)
in the same range

for a reference dataset “ref” and scale it to the same number of runs as the measured
dataset, i.e.

∑
k ν

ref
k =

∑
k ν

meas
k . One can then construct a metric for the difference

between the two datasets as

G ≡ 1

K

∑
k

(
νmeas
k − νrefk

)2
νrefk

. (7.3)

Should νrefk = 0 for one of the ranges rk, e.g. because the measured dataset includes
one very big weight, an extrapolation of the exponential trend visible in fig. 7.2 is
used.

To investigate which values of G are compatible with a dataset being distributed
according to Gaussian white noise, the distribution of G is numerically approximated
using simulated datasets with a known Gaussian distribution.

For fig. 7.3 104 abstract mock datasets are simulated, each with 4×104 data points
independently sampled from a normal distribution with µ = 0 and σ = 1. G is then
calculated for each dataset varying the number of data points N or the number of
ranges K used in the calculation of G.

The resulting distributions show peaks around G = 1 with slight variations in mode
and full width at half maximum (FWHM) of the peak depending on the investigated
parameters. Selected properties of the G distributions are given in tab. 7.1. All
distributions display significant tails for large G, therefore even for G ≫ 1 it cannot
be entirely ruled out that the observed value is due to a statistical fluctuation and
does not come from a deviation from Gaussianity. When G is constructed using only
K = 20 ranges, the resulting histogram is shifted compared to using larger K. In
the following therefore K = 50 ranges are used for the calculation of G. With this
K a conservative value of 0.7 < G < 3.5 is demanded to confidently state that no
significant deviations from Gaussian white noise behaviour are observable.

When Poisson statistics is assumed, νrefk in the denominator of the sum in (7.3) can
be seen as a variance and G should resemble a reduced χ2. Investigations into the
exact role of G in standard statistics terms as well as defining a concrete framework
for associating a p-value with a specific value of G are left for future work. Doing so
may require slightly modifying the calculation of G to yield more predictable values
in its big G tail.

For an implementation of the method presented above for the programming lan-
guage Julia see https://gitlab.desy.de/johannes.diehl/runsgaussianity.

https://gitlab.desy.de/johannes.diehl/runsgaussianity
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Figure 7.3: Dependence of the metric G as defined in (7.3) on parameters N , the num-
ber of data points in the dataset, and K, the number of ranges used. The panels show
distributions of the metric G for 104 simulated Gaussian white noise test datasets.
Left: Dependence of G on N , each using K = 50 ranges. Right: Dependence of G
on K, each for 103 data points. The black dashed line marks unity, which would be
median and mode of the distribution if νrefk would accurately follow a Poisson distri-
bution. The grey dashed lines mark the boundaries of the region deemed compatible
with the assumption of a Gaussian white noise distribution. Datasets with G > 5
are not shown to improve readability of the plot. They make up roughly 2-3% of all
datasets.

Table 7.1: Selected properties of the G distributions shown in fig. 7.3.

N K min G max G G 5th-percentile G 95th-percentile

103 20 0.14 49 0.51 1.77
103 50 0.51 517 0.78 3.34
103 100 0.56 301 0.84 3.14
2.5× 104 50 0.46 120 0.75 3.49
4× 104 50 0.51 532 0.82 3.04

7.1.2 Example Applications

In the following the Runs Gaussianity test described above is applied to multiple
simulated datasets in order to demonstrate its capability in determining deviations
from Gaussian white noise behaviour.

To cover a variety of scenarios three datasets are simulated, each with 2.5 × 104

data points, and compared with a reference dataset containing the same amount of
data points. They are intentionally kept as abstract as possible, but in a haloscope
context the datasets would correspond to frequency spectra and the index of the data
point to the index of a frequency bin, i.e. a specific frequency. K = 50 ranges are used
for the calculation of G. The three datasets each include a component of Gaussian
white noise and additionally one of the following features:

• A Gaussian peak centred around the 1300th data point with a standard deviation
of 10 data points and an amplitude of 1.5× the noise standard deviation (see
inset in top row of fig. 7.4).
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Figure 7.4: Three example use cases demonstrating the power of the runs Gaussianity
test. From top to bottom: Peak search, inserted sine wave, correlated noise. For
each application the full dataset is plotted with an inset showing a small relevant
region (left). Centre panels contain histograms of the dataset often used to investigate
Gaussianity. µ and σ give best fit values for fitting a Gaussian to the histogram. Panels
on the right show results for the runs Gaussianity test together with G defined in (7.3).
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• A sine wave with wavelength of 2 data points and amplitude 0.5× the noise
standard deviation. Note that a wavelength this small effectively anti-correlates
adjacent data points.

• A correlation matrix Cij = 10−|i−j| is multiplied to the white noise. This leads
to adjacent data points having some correlation (Pearson coefficient: 0.19) which
drops off exponentially for more distant data points.

The results can be seen in fig. 7.41. While in all three cases a simple histogram of
the datasets perfectly agrees with a standard Gaussian distribution (middle panels),
the Runs Gaussianity method is able to detect the deviation from pure white noise
behaviour.

A peak in the dataset manifests in one or two bins with significantly increased runs
weights (top right panel in fig. 7.4). The sine wave injected in the second example
makes it likely that adjacent data-points have opposite signs. Therefore the probability
density is suppressed for large runs weights (middle right panel). The correlation
induced in the third example has the opposite effect. Adjacent bins are more likely
to have the same sign, therefore the average run contains slightly more data points
leading to increased probability for obtaining large runs weights (bottom right panel).

In all three examples deviations from Gaussianity are very challenging to spot by
visual inspection or using a histogram of the dataset. The runs Gaussianity method,
however, is able to reliably spot the deviation. In all three cases is the metric G larger
than the values deemed compatible with the Gaussian hypothesis, G ∈ [0.7, 3.5],
hinting at a Non-Gaussian component in the dataset. The test was repeated with
multiple mock datasets to ensure the results shown in fig. 7.4 are representative.

7.2 Digital Notch Filter

The Aachen-Bonn receiver system as used for the 2024 data taking at MORPURGO
introduced a small non-thermal background contribution manifesting as a sine-like
pattern in the measured frequency spectra with scales similar to the axion linewidth.

In a Fourier transformed version of the measured frequency spectra, i.e. in time
domain, the contribution shows up as a series of localised peaks which can be removed
while only minimally affecting the rest of the spectrum as well as, crucially, a potential
axion signal. This method of removing peaks in the Fourier spectrum corresponding
to unwanted background components is called digital notch filter in the following. The
filter is digital in contrast to the physical frequency filters used in the receiver chain.
It is a notch filter, because it suppresses only a small part of the Fourier spectrum,
leaving the remaining spectrum untouched.

7.2.1 Description and Example

The digital notch filter is applied to a Fourier transform of a dataset. It is therefore
helpful to introduce Fourier transforms using a mock frequency spectrum resembling
an axion haloscope measurement before presenting the method.

1In the left panels showing the full datasets it may seem like the standard deviation is larger than
one. This effect is only due to the line width used in the plot being non-negligible, making it
impossible to resolve all 2.5× 104 data points in the plot.
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Figure 7.5: Fourier transform of a mock frequency spectrum. Left: A piece of the
mock frequency spectrum around the simulated axion signal (at f0 ≈ 19.208GHz)
with frequencies relative to the signal. The top four panels show individual com-
ponents as described in the text and the bottom plot shows the spectrum with all
components combined. Right: Absolute values of the Fourier transforms of the indi-
vidual components and of the combined mock spectrum are shown.
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A part of such a spectrum dissected into its components can be seen in fig. 7.5 (left
column). The full spectrum has 105 data points with a bin width of 447Hz covering
a 45MHz range between 19.186GHz and 19.231GHz. It consists of

• a background obtained from part of a single timestamp of a rescaled real meas-
urement, to which a smoothing Savitzky-Golay filter2 was applied (width 4999
data-points, polynomial order 3)

• a sinusoidal component with a “wavelength” of 50 kHz and amplitude of two
times the amplitude of the axion signal

• an axion signal at 19.208GHz

• a Gaussian white noise component with µ = 0 and a standard deviation of 1%
of the background level

The right column of fig 7.5 shows the absolute values of the Fourier transforms of the
individual components as well as the full dataset (bottom). Fourier transforms gener-
ally produce complex-valued information, from the real and imaginary part of which
the original dataset can be recovered. The frequency spectra obtained in MADMAX
measurements are themselves Fourier transformed versions of a discrete data stream
in time. A Fourier transform of these spectra would therefore yield the initial data
stream if the full complex frequency spectrum would be retained. Since only a real
valued spectrum is available, the complex phase information is lost and the Fourier
transform of the frequency spectra cannot be interpreted as corresponding to real,
physical time.

Nevertheless, as they are Fourier transforms of spectra that carry frequency units,
the Fourier spectra on the right of fig. 7.5 carry units of time. The scaling of the x
axis is determined by the frequency spectrum: The bin width of the mock frequency
spectrum under consideration of 447Hz leads to a range in the Fourier spectrum of
1
2 × 1

447Hz = 1.12ms. The full range of the frequency spectrum of 44.7MHz leads to
a resolution of the Fourier spectrum of 22.4 ns.

Fig. 7.5 only shows the absolute values of the Fourier spectra, because the individual
complex components do not carry physical meaning. From top to bottom, the Fourier
transform of the background component alone shows a dominant peak at small times
with a strong drop-off towards bigger times. This is consistent with the construction
allowing only the background to contain fluctuations on broad scales in the frequency
spectrum. Secondly, the sine wave component as expected shows up as a localised peak
in the Fourier spectrum at ∆t = 20µs. This value was chosen to roughly correspond
to the Fourier transform of the axion signal (third row) having dropped to 1/e of
its amplitude. The Fourier transform of the axion signal is similar to a Gaussian for
small ∆t which can be explained by the axion peak also being similar to a Gaussian.
The white noise component (forth row) has the real and imaginary parts of its Fourier
spectrum independently following Gaussian white noise distributions as well. The
absolute value shown in the figure therefore resembles the absolute value of Gaussian
white noise. The two peaks from the first two components are still visible over the
noise floor in the Fourier transform of the full mock spectrum (last row).

2More on this class of filters in secs. 6.2 and 7.3.
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Figure 7.6: Fourier peak of the sinusoidal component before and after the digital notch
filter was applied. The figure shows part of the full Fourier spectrum (see also fig. 7.5,
bottom right) before (grey line) and after replacing the peak with various methods as
described in the text.

The purpose of the digital notch filter is to remove the sinusoidal component in the
mock frequency spectrum while ideally leaving all other components untouched. To
do so the following steps are applied:

1. Obtain some information about the spectral features that are to be removed.
This information can but does not need to come from the spectrum under in-
vestigation. For each feature i, information on the range of the Fourier spectrum
at which the feature appears is needed. The example presented here appears at
li = 20µs and has a width of wi ≈ 90 ns.

2. Apply a Fourier transformation to the dataset under investigation. This results
in a complex-valued Fourier spectrum.

3. Remove bins in the regions li±wi from the real and imaginary parts of the Fourier
spectrum. Replace them with values drawn randomly from real and imaginary
components of the Fourier spectrum in regions with negligible deviations from
a noise only spectrum. This replacement method is called “random” in the
following.3

4. Apply a back transformation to obtain the original spectrum without the re-
moved spectral features.

The method as presented above has some pre-requisites. The dataset under invest-
igation may not contain gaps or other sorts of missing data. The method only works
if wi is much smaller than the distances between the features and if

∑
iwi is much

smaller than the full range of the Fourier spectrum.
Other methods for replacing the spectral feature could include setting both real and

imaginary part of the Fourier spectrum equal to zero in the regions li±wi or separately

3Note that standard numerical implementations of Fourier transformations result in two mirrored
spectra such as the one shown in fig. 7.5, right. Therefore in practice to remove one spectral
feature this procedure has to be applied to the Fourier spectrum twice.
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Figure 7.7: Effect of and error from the digital notch filter. Top: A slice of the mock
frequency spectrum before (grey) and after (blue) the digital notch filter using random
replacement has been applied. Middle: Absolute difference between the two spectra
shown in the top panel (blue, dashed) compared with the sinusoidal component (grey)
that should be removed by the digital notch filter. Bottom: Difference between two
curves in the middle panel, i.e. between component subtracted by digital notch filtering
and the sinusoidal component, divided by the amplitude of the sine wave. All three
replacement methods show similar results. The amplitude of the error made by the
digital notch filter is very small compared with the other scales involved.

linearly interpolating real and imaginary parts between the first data points outside
of the region. These methods are called “set zero” and “interpolate” in the following.
The effect of the digital notch filter on the Fourier spectrum of the example with all
three peak replacement methods can be gleaned from fig. 7.6. With the values chosen
above, 9 points in the Fourier spectrum were replaced with random values from other
parts of the spectrum. Replacing fewer data points may not completely remove the
feature, while replacing more could affect other components of the data set that are
to be left untouched.

Fig. 7.7 shows the effect of the filter on a part of the mock frequency spectrum. In
the top panel, one can clearly see parts of the spectrum being shifted to higher/ lower
values in an alternating way. This difference between spectrum before and after the
digital notch filter has been applied follows a sinusoidal pattern closely resembling the
sine wave that is supposed to be removed by the filter (middle panel). The filter does
not perfectly capture amplitude or phase of the sine wave component as the bottom
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Figure 7.8: Effect of the digital notch filter on the shape of a potential axion signal.
The top panel shows unaltered axion signal (grey) as well as axion signal after filtering
using the random replacement method (dashed blue). The bottom panel shows the
signal shape modification from the digital notch filter, i.e. the difference between
“before” and “after” in the top panel, for all three replacement methods mentioned
above.

panel demonstrates by showing the difference between filter effect and sine wave. It is,
however, very close with the amplitude of the error made by the filter in this example
being at ∼ 2% of the amplitude of the removed component or ∼ 0.1‰ compared to
the absolute values of the dataset.

The digital notch filter has so far been shown to be very efficient at removing a
specific sinusoidal component. For experimental efforts, however, it is also crucial to
not affect potential signals. Applying the filter to a signal-only dataset only introduces
deviations at the permille level compared to the signal amplitude as fig. 7.8 shows.
This result holds for all three peak replacement methods, interpolate, set-zero and
random.

7.2.2 Validation

In order to be able to use the digital notch filter in the context of the MADMAX
haloscope, one needs to make sure that the findings obtained from the example in
the previous subsection generalise. The error introduced by subtracting the sine wave
(fig. 7.7, bottom) as well as the signal shape alteration induced by the filter (fig. 7.8,
bottom) have been investigated. It remains to be shown how both quantities evolve
with respect to amplitude and wavelength of the subtracted sinusoidal component.
The result can be seen in fig. 7.9 as a function of amplitude of the sine wave (left)
and its wavelength (right).

Firstly, for changes in signal shape (top panels) the maximal deviation between
axion signals of unity amplitudes before and after applying the digital notch filter
using the random replacement method is plotted. The maximal deviation is used,
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Figure 7.9: Influence of amplitude (left) and location (right) of the Fourier peak to be
removed on signal shape (top) and error for the removal of the sine wave (bottom).
For the top panels the maximal deviation between true signal shape and signal shape
after filtering is shown, while the bottom ones use the median of the absolute deviation
between inserted sine wave and component removed by the filter.

since the deviation is largest at frequencies with high signal strength where the impact
of deviations is greatest.

Varying the amplitude of the sine wave has no influence since signal alteration
depends only on parameters of the digital notch filter (top left). An increase in
the amplitude of the sinusoidal component could affect the axion signal shape only
by making it necessary to choose a larger value for wi. When the wavelength of
the sinusoidal component is increased, shifting the Fourier peak to larger times, the
influence on a potential axion signal decreases exponentially (top right).

Secondly, the error in the subtracted sine wave is estimated by taking the median
deviation between the inserted sine wave and the difference of the spectra before and
after filtering, divided by the amplitude of the sine wave (bottom panels). Again,
random replacement was used. The median is used since frequencies at the low- and
high-frequency boundaries of the datasets tended to display larger deviations. These
parts of the dataset are not too relevant in the analysis of MADMAX data (ch. 8),
since they display low boost factor values and may be cut in later stages of the data
processing.

A larger sine amplitude at constant noise level makes it easier to remove leading to
the exponential drop off observed in fig. 7.9, bottom left panel. Shifting the Fourier
peak to larger times also makes it slightly broader. Keeping w constant, this leads
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to slightly worse inference of the sinusoidal component, which explains the upwards
trend in the bottom right panel.

Given the replacement method is inherently statistical, the mean of 50 repetitions
of each procedure is taken to ensure the results are representative.

Additional tests to further improve confidence in the digital notch filtering method
could include varying backgrounds, noise levels or signal strengths and positions. Also
removing multiple spectral features could be investigated. Given the smallness of the
errors involved, however, such efforts are left for future work.

7.3 Constructing the Grand Spectrum

This and the subsequent section describe in detail how to obtain a limit for a set of
raw measurement data. The procedure is similar to the analysis pipeline established
by the HAYSTAC experiment, presented in detail in [83]. Multiple steps however
could be simplified or had to be slightly altered, which is why it is described here in
its entirety.

As explained in sec. 4.1, a frequentist analysis on an abstract level requires a test
statistic with a known distribution given a specific hypothesis about nature. Further-
more, a way to translate parameters of this distribution into physically meaningful
quantities, gaγ in the present case, is needed. The following explains how to obtain
both from available raw measurements.

It is instructive to briefly go over all data processing steps before returning to each
one in more detail. Frequency spectra are taken in chunks integrating over 900 s of
measurement time. They are called raw spectra and can be thought of as consisting
of two or three components (compare Fig. 6.1): A correlated noise background, un-
correlated Gaussian white noise and potentially an axion signal. For data processing
the background component needs to be removed to obtain processed spectra, display-
ing Gaussian white noise behaviour with zero mean in the absence of an axion signal
and a standard deviation depending on the integration time. The processed spectra
are combined using maximum likelihood (ML) weights, which depend on the relative
strength of a reference axion signal in each bin. The resulting combined spectrum is
then cross-correlated with the axion lineshape to obtain a better signal to noise ratio
(SNR) in the grand spectrum.

Simultaneously, several sets of calibration data (see sec. 3.3) need to be used to
determine the potential strength of a reference axion signal in every bin of the spectra
in order to fulfil the second requirement of a frequentist analysis.

This section uses mock spectra simulated to resemble actual spectra to understand
the reasoning behind all processing steps, similarly to ch. 6. Ch. 8 will then introduce
in detail the full CB200 dataset from measurements in 2024 and apply the pipeline to
obtain physical limits.

Tab. 7.2 gives an overview over the nomenclature used for the various spectra in-
troduced in this section.

7.3.1 Raw to processed spectra

Two example spectra used in this section are shown in fig. 7.10 (top). Every spectrum
represents the receiver output after 15min of integration time. The spectra have units
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Table 7.2: Variables introduced for different spectra used in the analysis. Index i
always indicates a specific timestamp and j a frequency bin, therefore combined and
grand spectra only include the latter index.

Variable spectrum

uij uncalibrated spectrum
bij estimated background
pij processed spectrum
rij rescaled spectrum
cj combined spectrum
gj grand spectrum

Figure 7.10: Datasets simulated for this section consisting of three components: Back-
ground, white noise and equidistant signals (bottom, from left to right). Backgrounds
are smoothed versions of actual 15min spectra from two different booster states. The
spectra have 6 × 104 data points each, with bin widths of ∆ω = 894Hz being equal
to the resolution bandwidth.
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of power per frequency bin, but since they are uncalibrated, the numerical value does
not contain physical information. The goal of this subsection is to convert these raw
spectra to Gaussian random samples4.

This section aims at developing a good understanding of the pipeline before applying
it to real data. Therefore the spectra are constructed from known components as
shown in fig. 7.10 (bottom). Parts of smoothed versions of raw data from two distinct
datasets, i.e. data taken using two different booster states, of the CERN 2024 run with
CB200 are used as background (bottom left). Spectra from the same dataset resemble
each other closely, therefore they are denoted as type-I and type-II spectra in the
following and only one of the 246 and 164 spectra available, respectively, is shown as
an example in fig. 7.10. Statistical fluctuations on top of this background are modelled
as Gaussian white noise with a standard deviation of 0.11% of the background level
at each frequency. Additionally, nine signals are added to the datasets at equidistant
frequencies. Their signal strengths are chosen to be equal after applying the calibration
in both datasets individually. For the dataset using type-I baselines, Be = 1.0T
and a constant β = 2.5 × 103 are used. For the other dataset resembling type-II
measurements, Be = 1.5T and a constant β2 = 0.9 × 103 are chosen. These choices
purposefully lead to unrealistic exclusion limits, the spectral shape of which will be
dominated by variations in system temperature. They are, however, useful to validate
the procedure.

The spectral shape of the correlated noise background of the raw spectra depends on
the exact RF characteristics of the receiver chain, which are prohibitively difficult to
simulate. Since an analytic, parametric description of the background is not available,
a non-parametric fit is employed. This makes simultaneous signal and background
estimation impossible, introducing a bias on signal parameters (more details Ch. 6).
Once the fit has been performed, the power excess pij in bin j of the processed
spectrum pi can be computed via

pij =
uij
bij

− 1 (7.4)

with uij being the value in bin j of the uncalibrated raw spectrum and bij the corres-
ponding value of the fit. This means in terms of the notation introduced in sec. 6.1
bij = fbg(X) and uij = X. Eq. (7.4) is used instead of uij − bij because the standard
deviation of the uncorrelated noise is proportional to the background level. It ensures
the processed spectra to have a constant standard deviation over the whole frequency
range.

A fit on the background should be fast and capable of fitting all structures with
widths larger than the axion lineshape while leaving smaller structures untouched.
One way of approaching this challenge is by making use of a filter. Usually filters are
applied to smooth noisy data, suppressing small scale noise while retaining large scale
structures. In the present case, however, the roles are reversed: The goal is to suppress
large scale RF background structures while retaining a potential localised axion signal.
Roles of passband and stopband are switched compared to usual filter applications by
employing eq. (7.4) instead of proceeding to analyse the filter output bij .

From the variety of possible filters, again Savitzky-Golay (SG) filters were chosen
for this analysis. An SG filter is a moving polynomial fit defined by its two parameters

4Avid readers may wonder why raw spectra are used and not calibrated ones that display sensible
physical units. Subsec. 7.3.4 motivates this choice.
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Figure 7.11: Transfer functions of different SG filters. For ∆ω = 849Hz the axion
FWHM corresponds to roughly 29 bins, indicated as the vertical dashed grey line.

polynomial order o and window size w. As in ch. 6, whenever it is applied the first
and last w/2 data points are removed from the dataset due to worse fitting at the
edges of the dataset.

The effect of SG filters with different parameters o and w are demonstrated in
fig. 7.11. With the chosen filter parameters, structures with widths beyond ∼ 1000
bins are in the passband of the filters, meaning they will be fit and not retained in
the processed spectra. Scales around the axion FWHM of ∼ 26 kHz are well in the
stopband. Nevertheless, an axion signal is still slightly suppressed by the SG filter.
In fact, this effect warrants its own section later (subsec. 7.3.5).

Ideally, in the absence of axions each bin pij after SG filtering is an independent
random sample drawn from a Gaussian distribution with zero mean and a standard
deviation

σp = 1/
√
tint∆ω , (7.5)

that depends only on the integration time tint and resolution bandwidth (RBW) ∆ω of
the measurement and is equal for every bin of the spectrum. The spectrum is unitless,
but the y-axis quantifies the white noise level compared to the background level, so
for the simulated spectra σp = 0.11% corresponds to tint = 924 s for the chosen RBW
∆ω = 894Hz. One example spectrum is shown in fig. 7.12 (blue) together with a
magnified version of the signal component present in the spectrum (orange). The
shape of the axion signals in the measurement is altered by the background filter as
demonstrated in the right panel of fig. 7.12.

7.3.2 Processed Spectra to Combined Spectrum

Ultimately one spectrum should be constructed which at every frequency contains
information from all 15 min measurements at that frequency5 It is tempting to naively
just bin-wise sum over individual processed spectra, however this is clearly not ideal.

5In [83] this process is called vertical stacking.
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Figure 7.12: Type-II example spectrum (blue) and isolated signal component of the
spectrum (orange) after processing. The signal component is magnified by ×100 for
visibility. The right panel shows a zoom on the lowest frequency signal in the spectrum,
displaying alteration in the signal shape due to the effect of the background filter.

An excess in a spectrum bin e.g. with a large external magnetic field Be carries more
information than an excess in a bin that is associated with lower Be and should
therefore get a larger emphasis. The authors of [83] find it optimal to define maximum
likelihood weights for combining the spectra. Each bin of each spectrum is multiplied
by a factor such that a reference axion with its total signal power in this bin would
lead to µ = 1 for that bin.

This implies that for such rescaled spectra individual bins have different standard
deviations. In the previous subsection it was claimed that in the absence of axions
every bin of a processed spectrum could be seen as a random sample of the same
Gaussian distribution with zero mean and standard deviation σp. This statement is
important, because it implies that after multiplying each frequency bin with a different
factor one still knows the standard deviation of the distribution it was drawn from,
even though only one sample from each of the now differing Gaussian distributions
is available. Individual frequency bins get the index j and spectra from the multiple
measurements that are to be combined are labelled with index i.

Quantitatively, the jth bin of a rescaled spectrum ri is obtained from the processed
spectrum pi via

rij = pij ·
bijP

f
ijkB∆ω

sij
, (7.6)

where kB is the Boltzmann constant and P f
ij the jth bin of the power calibration

factor. sij is the strength of a hypothetical single-bin axion signal given by

sij =
qe
ℏ
ρa

(
gaγ
ma

)2

B2
e,iAβ

2
ij . (7.7)

Here qe is the electron charge, ℏ the reduced Planck constant, ρa the local axion energy
density, gaγ is the axion-photon coupling and ma the axion mass. Experimental para-
meters affecting sij are external magnetic field Be, which could vary between meas-
urements i, and surface area of the dielectric disks A as well as the boost factors β2

ij .
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In practice, β2
ij and P f

ij will not change significantly from one 15 min measurement to
the next. Therefore it is not necessary to constantly recalibrate and recompute the
boost factors. They however clearly vary for different booster states, which warrants
the inclusion of the i index. Both are also the only quantities beyond the raw data
that realistically display a frequency dependence.6

The rescaled spectra are defined so that in the absence of an axion every bin is a
random sample from a Gaussian distribution with zero mean and standard deviation
P f
ijkB∆ωσp,i/sij . A single-bin axion would lead to the same standard deviation, but

µ = 1 when filter effects from the processing step before are neglected. An example
rescaled spectrum can be found in fig. 7.13 (top).

As weights the inverse variance in every bin is used, i.e.

wij =

(
bijP

f
ijkB∆ω

sij
σp,i

)−2

. (7.8)

To normalise the weights defined above one has to divide eq. 7.8 by
∑

iwij . The
combined spectrum is now obtained using a weighted sum of the rescaled spectra and
dividing every bin by the appropriate standard deviation σc,j :

cj = σ−1
c,j

∑
i

rij
wij∑
iwij

, (7.9)

where

σc,j =

(∑
i

wij

)− 1
2

. (7.10)

This implies that the combined spectrum cj is normalised to a standard Gaussian
distribution and should have zero mean and a standard deviation of one. An axion
in a single-bin would not alter the standard deviation, but lead to an expected mean
value of µj = σ−1

c,j when filter effects are neglected. Eq. 7.10 only holds if paj and pbj
are uncorrelated for all j if a ̸= b. The combined spectrum for the simulated datasets
can be found in fig. 7.13 (middle). It is expected to approximately follow a Gaussian
white noise distribution which is demonstrated explicitly in fig. 7.15 (top) using the
Runs Gaussianity test.

7.3.3 Combined to Grand Spectrum

Unlike for the HAYSTAC analysis of [83], in the present case the bin width of 894Hz
is comparable to the magnitude of the axion FWHM (26KHz) making their rebinning
scheme at this point superfluous. This step of the HAYSTAC analysis was therefore
skipped.

However, in the combined spectrum, as defined above, an axion would still lead to
a deviation from the mean µ = 0 in multiple adjacent bins. It would be desirable to
use this knowledge and condense the full axion signal information into one bin, while
still retaining the native frequency resolution. This can be done by cross-correlating
the combined spectrum with the axion lineshape to obtain the grand spectrum g.

6gaγ and ma are both proportional to the frequency of the bin, therefore their ratio is independent.
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Figure 7.13: Spectra at intermediate steps towards limit setting compared with sim-
ulated axion signal components at each stage. Top: One example rescaled spectrum
of the type-II simulated dataset. Rescaled spectra (blue) are normalised to the amp-
litude of a simulated axion signal (orange) with reference Cref

aγ = 2 × 103. Middle:
Combined spectrum (blue) including all timestamps of both the type-I and II datasets.
The combined spectrum is normalised for all bins to have an equal standard deviation,
therefore signals at different frequencies have different amplitudes (orange). Bottom:
Grand spectrum (blue) obtained by applying an axion lineshape filter to the combined
spectrum which leads to an increase of the signal amplitudes compared to the stand-
ard deviation of the noise. Note the changing scaling of the signal component in the
different panels.
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In practice this is implemented as in [83] by splitting the grand spectrum into two
components

gj =
Dj

Rj
, (7.11)

which are defined as

Dj =
∑
m

cj+m

σc,j+m
Lm , (7.12)

Rj =

√∑
m

(
σ−1
c,j+mLm

)2
. (7.13)

Here Lm is the mth bin of the theoretical expectation for the axion lineshape defined
in terms of the axion CDF Fb(v) from (2.11). Note that the number of bins in gj is
reduced compared to cj by the number of bins in the lineshape used to cross-correlate.

When the bias-free approach presented in ch. 6 is used, the lineshape Lm simply has
to be updated to incorporate the effect from the concrete SG filter used. Effectively,
one has to cross-correlate with a lineshape of the form of fig. 6.3 (bottom left) instead
of fig. 6.3 (top left) as is usually done. This deviation from the standard pipeline
followed in this section has not been found to increase sensitivity for earlier test runs
and was therefore not employed here.

The grand spectrum for the simulated datasets can be found in fig. 7.13 (bottom).
Since grand as well as combined spectrum normalise every bin to an equal noise level,
the amplitude of reference signals in grand or combined spectrum indicate the SNR
an axion signal with Cref

aγ would have at the respective frequencies. Comparing the
middle and bottom panels of fig. 7.13 and considering the different scaling factors for
the signals in both panels shows that taking the axion lineshape into account increases
the amplitude of the reference signals compared to the combined spectrum by roughly
a factor of five.

The reference signals also still display larger amplitudes at the edges of the dataset
than at around 19.20GHz. Fig. 7.14 explains this effect quantitatively. In red and
green the expected signal amplitudes are shown for the two individual booster states.
One can see that the expected amplitudes are inversely correlated with the total power
in each frequency bin for both booster states, shown in fig. 7.10. Because the boost
factor for both states was assumed to be constant in frequency, any variation in the
SNR can only come from differences in the absolute noise level, which is proportional
to the total power.

The SG filter not only affects the power excess from potential signals, but also
the noise level, i.e. the standard deviation of the grand spectrum. In fact the grand
spectrum shown above has a standard deviation σg = 0.93 < 1. When true white
noise would get cross-correlated with the axion lineshape, the standard deviation
would still equal unity. The reason why this is not the case here can be found in
correlations that are introduced by the SG filter employed to obtain the processed
spectra. The effect is explained in detail in [83] and investigated for the present
datasets below in subsec. 7.3.5. The expected signal amplitudes in fig. 7.14 have
already been rescaled to take the attenuation from the SG filter into account. They
agree with the expectation at the signal frequency below the percent level (fig. 7.14,
bottom panel). The systematic offset visible could be explained by uncertainty in the
calculation of the attenuation from the SG filter.
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Figure 7.14: Expected signal amplitude for the simulated dataset. Dashed lines in-
dicate the individual expectations for the two booster states in the simulated dataset
(red and green), as well as the expectation for the combined dataset (blue). The
latter coincides perfectly with the amplitudes of the simulated signals in the grand
spectrum (obtained by subtracting the grand spectra with and without signals from
each other). The bottom panel shows the difference between signal amplitudes and
expectation at the frequency of the signal with deviations below the percent level.

7.3.4 On Calibrating Spectra

The procedure above employed raw, uncalibrated spectra that are SG filtered to obtain
processed spectra and then combined and rescaled taking the calibration into account.
Arguably it would be more straightforward to calibrate the spectra first and work with
physically meaningful units in the rest of the analysis pipeline. This subsection shows
that both methods are equivalent in the absence of errors and why the former was
employed. In the following only a single power calibration is assumed for all spectra i,
i.e. the spectra are part of the same dataset. Then compared to the previous definition
the index i can be dropped from the power calibration factor, so P f

ij → P f
j .

Define hypothetical, true values for the power calibration factor P̃ f
j , which would

be obtained after an infinite measurement time. Similarly to sec. 6.1 assume that this
ideal power calibration factor can be perfectly fit using the SG filter fbg, i.e.

fbg

(
P̃ f
j

)
= P̃ f

j . (7.14)

Due to the linearity of SG filters, it is then trivial to show that pij is the same no
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matter if uncalibrated or calibrated spectra are used:

pij =
ucalij

bcalij

− 1 =
uijP̃

f
j

fbg

(
uijP̃

f
j

) − 1 =
uijP̃

f
j

fbg (uij) fbg

(
P̃ f
j

) − 1 =
uij
bij

− 1 , (7.15)

where again bij = fbg(uij) and the superscript “cal” denotes calibrated spectra in
contrast to raw spectra without superscript. rij and wij furthermore depend only on
the product bijP̃

f
j , which can similarly be shown to equal bcalij . If eq. (7.14) holds,

calibrating the raw spectra before any other processing step is therefore mathemat-
ically equivalent to using uncalibrated spectra to obtain pij and using bijP̃

f
j in the

calculation of cij .
In practice, however, only an imperfect estimate of P̃ f

j is available:

P f
j = P̃ f

j + ϵj , (7.16)

fbg

(
P f
j

)
= P̃ f

j + ϵ′j , (7.17)

where |ϵj | ≪ P̃ f
j denotes a small error and ϵ′j ≡ fbg(ϵj) ̸= ϵj . P f

j is obtained by
applying an SG filter, here with width w = 8001data points and polynomial order
o = 3, the values of ϵj and ϵ′j therefore depend on the parameters of the SG filter. With
these deviations from the true power calibration factor P̃ f

j using calibrated spectra in
the calculation of the processed spectra leads to an imperfect estimate:

ucalij

bcalij

− 1 =
uij

(
P̃ f
j + ϵj

)
fbg (uij)

(
P̃ f
j + ϵ′j

) − 1 =
uij
bij

(
1 + ϵj/P̃

f
j

1 + ϵ′j/P̃
f
j

)
− 1 =

=
uij
bij

− 1 +
uij
bij

ϵj

P̃ f
j

− uij
bij

ϵ′j

P̃ f
j

= pij +O
(

ϵj

P̃ f
j

,
ϵ′j

P̃ f
j

)
,

(7.18)

where the third equality uses a Taylor series of the fraction in brackets. Constructing
the processed spectra using calibrated data leads to offsets of O

(
ϵj/P̃

f
j , ϵ

′
j/P̃

f
j

)
. Using

uncalibrated spectra on the other hand leads only to multiplicative errors in rij and
wij via

P f
j = P̃ f

j + ϵj = P̃ f
j

[
1 +O

(
ϵj

P̃ f
j

)]
. (7.19)

In practice one power calibration will be used for many different spectra i. When
summing over all spectra for which the same power calibration with P f

j is used, eq. 7.18
becomes

cj ∝
n∑

i=1

(
ucalij

bcalij

− 1

)
=

n∑
i=1

[
pij +O

(
ϵj

P̃ f
j

,
ϵ′j

P̃ f
j

)]
=

= n×O
(

ϵj

P̃ f
j

,
ϵ′j

P̃ f
j

)
+

n∑
i=1

pij .

(7.20)
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Since pij should be uncorrelated between individual spectra i, this implies an increas-
ing error relative to the standard deviation of

∑n
i=1 pij as n increases, whereas the

same does not happen for the factor giving the error incurred when calibrating after
processing in (7.19). This effect can clearly be seen in fig. 7.15 for the example spectra
also used in the previous subsections. The top row shows the method employed here
leading to a combined spectrum displaying Gaussian white noise behaviour. In the
bottom row, however, which shows spectra that were calibrated before processing,
significant deviations from white noise can be seen. The Runs Gaussianity test (bot-
tom right) introduced in sec. 7.1 shows a clear discrepancy between the combined
spectrum (blue) and the white noise reference (orange). The deviation is so big that
it can even be seen by eye when zooming into a small region of the spectrum (inset
in bottom left plot).

In conclusion, using uncalibrated spectra to obtain the processed spectra is a viable
method. The calibration then enters later when the spectra are combined and nor-
malized power excesses are converted into a limit on gaγ . Using uncalibrated spectra
avoids deviations from µj = 0 in the combined spectrum, which otherwise grow with
increasing number of spectra for which the same power calibration is used, i.e. in-
creasing measurement time. It can easily be shown that both methods produce equal
processed spectra in the absence of errors on the power calibration factor. A typ-
ical Y-factor calibration as used for MADMAX in addition to the power calibration
factor allows for an additional additive component called power calibration offset. The
considerations above only hold as long as this component is negligible.

7.3.5 SG filter induced SNR attenuation

When no physically meaningful background model is available, fitting the data to
obtain processed spectra as done above will lead to some attenuation on the signal-to-
noise ratio (SNR). SG filtering induces some suppression on all scales. Fluctuations
with big widths deep in the passband of the filter are efficiently suppressed when
eq. (7.4) is applied. But also fluctuations with widths of only a few bins or even
the bin-to-bin fluctuations of a white noise component incur some suppression as the
transfer function of the possible filters is non-zero for all scales (see fig. 7.11).

To investigate the SNR attenuation induced by the SG filter again an approach
similar to what has been presented in [83] is used. Mock datasets are constructed
similarly as above in the current section, obtaining again realistic backgrounds from
raw data of the type-I dataset smoothed with an SG filter of polynomial order o = 3
and a window size w = 6001bins (i.e. ∼ 5.4MHz). To these backgrounds Gaussian
white noise is added, again for each frequency point with a standard deviation of
0.11% of the background value at this frequency. Every spectrum additionally contains
one signal, which is placed at a random but known location within the central 80th
percentile of the dataset to avoid possible edge effects. Signal parameters are tuned
to yield a significant, but not unrealistic, excess for the grand spectrum at the signal
location.

The analysis pipeline is then applied to the spectrum multiple times: First the
known background is subtracted from the spectrum representing the case of an ideal
filter that does not induce any attenuation. Then SG filters with various window sizes
are used to obtain processed spectra. Since only one spectrum is used in each case the
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Figure 7.15: Gaussianity of the combined spectrum when accounting for the power
calibration before or after constructing the processed spectra. Top: Combined spec-
trum using the method presented here, where uncalibrated spectra are processed and
information on calibration enters via the signal expectation. Bottom: Combined
spectrum when calibrating the spectra before processing. The resulting spectra are
shown on the left with a zoom into an arbitrary region with a width of ∼ 700 kHz in
the inset. The central panels show histograms of the combined spectra giving means
and standard deviations. The right panels show the Runs Gaussianity test described
above including the parameter G, clearly displaying deviations from Gaussian white
noise for the second method (bottom right).
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Figure 7.16: Result of the SG attenuation simulation conducted on a type-I simulated
dataset using an SG filter with polynomial order o = 4 and a window size of w = 1201
data points. Both mean and standard deviation of the resulting grand spectrum are
reduced by applying the SG filter (orange) compared to the ideal case where the
known background is subtracted (grey). This leads to a reduction in SNR governed
by eq. (7.21).

combined spectra are equivalent to the processed spectra. After constructing grand
spectra the grand spectrum value at the signal location is saved for all scenarios. This
process is repeated 104 times. A histogram of the resulting excesses for the ideal
scenario and a filter width of w = 1101 can be seen in fig. 7.16.

In the ideal, effectively background-less scenario the resulting excesses follow a
Gaussian distribution with mean µid = 5.15 and standard deviation σid = 1. The lat-
ter comes from the standard deviation of the grand spectra, the former corresponds
to the parameters of the simulated signals, which are chosen to yield this significant
excess. When instead the SG filter is employed, the mean of the observed signal
strength decreases down to µf = 4.39. This can be attributed to the axion lineshape
filter used in the construction of the grand spectrum not taking into account signal
shape alteration induced by the SG filter. However, not only the mean of the dis-
tribution is reduced. The standard deviation of the distribution of the excesses is
also smaller than σid with σf = 0.93. This is due to adjacent points in the processed
spectrum becoming correlated when applying SG filters. When the spectrum is then
cross-correlated with the axion lineshape to obtain the grand spectrum, which also
correlates adjacent bins, the effect of the SG filter becomes apparent and leads to a
reduction in the grand spectrum standard deviation.

The SG filter not only affects the signal strength, i.e. the mean of the distribution,
but also the noise level, i.e. its standard deviation. The degradation of the SNR due
to the SG filter is therefore given by

ηSG =
µf/σf
µid/σid

. (7.21)

As expected, larger window sizes lead to less SG filter induced attenuation. In practice
it is therefore desirable to choose the largest possible window size which does not lead
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Figure 7.17: Effect of signal misalignment with respect to edges of the frequency bins.
Relevant errors only occur for RBWs beyond ∼ 3 kHz for an axion signal at ∼ 19GHz.
The dashed vertical lines indicate ∆ω = 894Hz, the RBW used in the analysis, and
∆ω = 9.375 kHz, the RBW used in [5].

to residuals of non-axionic RF structures in the grand spectrum. This will be covered
in more detail in subsec. 8.2.2. The effect of varying o was not investigated because
it is approximately degenerate with w as fig. 7.11 shows.

For the bias-free approach from ch. 6 no signal attenuation is expected, because it
is accounted for by the changing lineshape. However it is likely that also the standard
deviation of the grand spectrum will not experience attenuation. On the contrary,
RF structures that are difficult to remove using the standard approach could increase
the standard deviation of the grand spectrum when the effect of the SG filter on the
axion lineshape is accounted for, i.e. when the bias-free approach is applied.

7.3.6 Attenuation from misalignment of the axion signal

The SG filter thus attenuates the SNR by correlating nearby bins and altering the
expected axion lineshape. Another possible effect impacting the expectation for the
axion lineshape is misalignment of the exact frequency of the axion signal with respect
to the lowest or highest frequency, also called edges, of the bins.

The axion signal shape in the grand spectrum differs slightly depending on where
the frequency corresponding to the axion mass falls within one frequency bin. This
effect increases with increasing RBW and does not pose a problem here, as fig. 7.17
shows. For the larger ∆ω used in the analysis of [5], however, it had to be considered
as a systematic error.

To investigate this effect, datasets with 2×104 data points with various different ∆ω
are constructed containing only a single signal component at the central frequencies
and a constant baseline. The signal component of each spectrum is simulated with an
axion mass corresponding to a frequency that is offset from the lower edge of one of the
bins in equidistant increments between 0 and ∆ω. These spectra are then processed
using a fourth-order SG filter with a filter window width of 1.07MHz, corresponding
to w = 1201 data points for the datasets used above and in ch. 8. Every resulting
spectrum is then cross-correlated with the axion lineshape in the zero offset case to
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obtain mock grand spectra. The maximal excesses in these spectra depends on the
offset introduced.

Fig. 7.17 shows the maximal relative difference in grand spectrum excess between
any of the offsets and the zero offset case. For the analysis presented in ch. 8 the
effect from the misalignment is at the permille level and therefore negligible (left
dashed line). The relative error surpasses 1% only for ∆ω ≳ 3 kHz, making it largely
irrelevant for RBWs below this level given an axion mass corresponding to ∼ 19GHz.
Dark matter searches at these frequencies that use RBWs above 3 kHz may have to
take misalignment of the signal with respect to the bins into account as a source of
systematic uncertainty, as is done in [5].

7.4 Limit Setting

The procedure above provides all quantities necessary for limit setting. The grand
spectrum gn serves as a test statistic following a known Normal distribution with
µgn = 0 and σg ≲ 1 for every frequency bin n that does not contain an axion signal.
Rn gauges the values of gn to the physically meaningful scale of gaγ by providing an
expectation for µgn for a reference axion-photon coupling. SG filter induced correla-
tions lead to a small attenuation in SNR induced by the procedure of the statistical
analysis itself. This effect is accounted for by the parameter ηSG.

As described in sec. 4.1, a limit is constructed by finding which hypotheses are
incompatible with the data. When sampling at random from a Normal distribution
with mean µ and standard deviation σ = 1, the probability of obtaining a value below
µ−1.645 is smaller than 5%. Consequently, locally an observed grand spectrum value
of gn rules out photon couplings corresponding to values larger than gn/σf + 1.645
at 95% confidence level, where σf is the expected grand spectrum standard deviation
(see subsec. 7.3.5).

To obtain a 95% confidence limit on the axion-photon coupling one can therefore
employ

|gaγ |n = |grefaγ |
√

gn/σf + 1.645

ηSGRn
(7.22)

where |grefaγ | must equal the photon coupling used in (7.7). The resulting limit for
the example used in this section can be found in fig. 7.18. The median expectation,
corresponding to gn/σf = 0 in (7.22), as well as the boundaries ±1σ, corresponding
to gn/σf = ±1, of the limit are shown as dashed and dotted lines, respectively.

When the limit is constructed using either (7.22) or similar methods it may become
necessary to slightly adapt the limit for visualisation purposes. The limit shown in
fig. 7.18 contains ∼ 6 × 104 data points, which cannot be individually resolved in
the plot. As also demonstrated by the inset, the area at the bottom of the limit
with higher colour intensity is actually the limit fluctuating on scales that cannot be
resolved in the plot due to the finite width of the lines. By construction, the limit only
reaches the dashed line which marks data points exceeding the median sensitivity by
1σ for 16% of the data points. Nevertheless when the full limit is plotted it appears
as if the 1σ line is excluded for all data points. This problem persists similarly even
if the median expected limit is exceeded by more than one sigma.
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Figure 7.18: Simulated limit obtained by applying the analysis pipeline to the mock
dataset described in sec. 7.3.

One solution to this visualisation problem is to smooth the limit before plotting,
employed e.g. by the authors of [114]. The analysis presented here employs a different
approach, showing only limits that do not exceed the median expectation by more
than 1σ. This approach is conservative, since it ensures that at every frequency the
calculated limit corresponds to a confidence level of at least 95%.

7.5 Grand Spectrum Excesses

So far it was implicitly assumed that no significant excess is observed in the grand
spectrum. But what if they are? The purpose of this section is to investigate the
case in which an excess in the grand spectrum can be considered significant, collect
possible scenarios for excesses and provide courses of action that can be considered.

7.5.1 Significance

Before this can be done a few words are in order on when an excess is significant.
Sec. 4.2 showed that a local 5σ excess in the grand spectrum does not correspond to
the naively expected global false positive rate of 2.9× 10−7 and therefore for spectra
containing many independent points is not necessarily significant enough to warrant
a detection claim. Note that only being interested in positive excesses, the numerical
value 2.9× 10−7 is half of the probability given in sec. 4.2 to obtain an outlier beyond
±5σ.

For the 6 × 104 data points used above a local 5σ excess would have a global
significance of only 2.1σ corresponding to a false-positive rate of 1.7% according to
eq. (4.1). This calculation, however, ignores correlations between frequency bins,
which are introduced by the cross-correlation with the axion lineshape. The correction
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factor introduced in eq. (4.2) was calculated for a set of 100 simulated spectra using
the same frequencies as the example above (∆ω = 894Hz). The spectra consisted of
white noise that was cross-correlated with the axion lineshape. Taking the mean over
all 100 correction factors yields an effective number of samples

neff ≈ n

47
, (7.23)

with n = 6 × 104 being the number of correlated data points. This factor crucially
depends on the RBW and has a small dependency on frequency due to the increasing
width of the axion lineshape with increasing frequency. The latter effect however can
safely be ignored for f = 19 ± 1GHz. Using this new effective number of samples
results for a local 5σ excess in a corrected global significance of 3.4σ or false positive
rate of 3.7× 10−4.

7.5.2 Handling Grand Spectrum Excesses

How could a globally significant excess be distinguished from or shown to be an axion
signal?

Firstly, a generic excess in the grand spectrum may be possible to distinguish from
an axion signal using the width of the excess. An axion signal in the grand spec-
trum should have a FWHM similar to the FWHM of the theoretically expected axion
lineshape from sec. 2.4, i.e. ∼ 26 kHz at a frequency of 19GHz. Excesses which are sig-
nificantly more narrow should have already led to even larger excesses in the combined
spectrum and can therefore be expected to be caught at this stage of the analysis. A
more common problem are excesses which are significantly broader than an expected
axion signal. These hint at the presence of RF structures with characteristic scales
above the axion FWHM which have not been effectively removed by the SG filter
employed in the background removal. The frequency of such a structure coinciding
with a sharp peak in the background provides evidence for this hypothesis. Another
hint are small frequency shifts between individual datasets, since RF peaks may shift
in frequency between different booster configurations while an axion signal would not.

If such broader excesses are present, a smaller SG filter window width or bigger
polynomial order can be chosen for the background removal in order to move the pass-
band of the filter closer to the axion scale (compare fig. 7.11). A single small axion
signal should not significantly affect the standard deviation of the grand spectrum.
The same does not need to be true for RF structures, which may lead to multiple,
broader excesses. Whether or not a specific set of SG filter parameters may be used
for the analysis can therefore be determined by comparing the standard deviation of
the grand spectrum σg with σf from (7.21) which by construction does not contain an
effect from residual RF structures. While σg > σf can always be expected due to the
imperfect filter stop-band, deviations beyond

σg
σf

− 1 ≳ 0.02 (7.24)

will be deemed unacceptable in ch. 8.
Secondly, a generic excess can differ from an axion signal in various other properties.

Potential time variability of an axion signal, either in signal strength, signal width
or frequency, is tightly constrained [85]. An excess displaying any kind of variability
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can most likely be ruled out as being of axionic origin. Most notably, however, a
potential axion signal should scale with B2

e . It is therefore desirable to complement
any measurement inside a magnetic field with a significant measurement time in the
same environment but the magnet turned off or at different values of Be. If such data
are available, an excess can be shown to not be due to an axion signal by calculating
the Pearson correlation coefficient between grand spectra at times with and without
the external magnetic field.

Lastly, as is also done in most mature haloscope experiments, e.g. [83, 114, 120],
a rescan strategy is in order before claiming an axion detection. Due to the narrow-
band, scanning approach employed by most haloscope experiments, it is not very time
consuming to significantly increase statistics in a frequency region where a persistent
excess exists. The development of such a strategy for the MADMAX experiment will
be necessary in the long run.

7.6 Summary & Discussion

This chapter provides all necessary ingredients to conduct statistical analysis for the
first axion dark matter search with a MADMAX prototype.

Due to the importance of frequency bins in processed and combined spectra be-
ing uncorrelated samples from a Gaussian distribution, a new Gaussianity test was
introduced. For a normally distributed set of data points with zero mean, taking
the squared sum over consecutive positive or negative data points leads to a set of
values w following a known distribution. The Runs Gaussianity test leverages this
w-distribution in order to investigate the Gaussianity of a dataset. A new metric G
based on this test was added to quantify the results. G ≫ 1 usually indicates correl-
ations between adjacent bins, but there is a non-zero probability of obtaining G ≫ 1
even for uncorrelated white noise. Future work could therefore focus on improving
this metric with respect to its predictability. Results from the Runs Gaussianity test
have been shown to be stable for datasets containing at least N = 103 data points and
for a metric G constructed out of at least K = 50 ranges. Meeting these criteria, the
Runs Gaussianity test displays a better sensitivity than the standard comparison of
a histogram of the data with a Normal distribution for a set of example applications.

With the digital notch filter a method was added to remove sinusoidal background
components which may be difficult to remove using standard SG filters. It is defined
algorithmically by applying a Fourier transform to the dataset, replacing localised
peaks in both complex components of the Fourier spectrum with a set of dummy data
points and conducting a back-transformation afterwards. The method is effective at
removing sinusoidal background components from the raw frequency spectra while
only having permille-level impact on potential axion signals.

The procedure to obtain a grand spectrum that takes the expected axion lineshape
into account from a set of raw, uncalibrated frequency spectra was described using
a set of simulated spectra as an example. It was shown that processed spectra need
to be constructed from uncalibrated data since the short measurement time of power
calibration measurements would otherwise induce errors in the combined spectrum.
Tracing a set of simulated signals through the pipeline reveals the effect of combining
processed spectra on the signals as well as a five-fold increase in sensitivity of the
grand spectrum compared to the combined spectrum. The simulated signals can
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also be used to validate the interpretation of the parameter Rj (see eq. (7.13) as the
expected signal amplitude in frequency bin j. Signal amplitudes are subject to a
systematic attenuation due to the effect of the SG filter used. The standard approach
to estimate this attenuation is by using a Monte Carlo simulation, which was outlined
here and reproduced for one set of SG filter parameters. Another systematic error
could in principle arise from misalignment of the axion signal with respect to the
frequency bins. This effect, however, needs to be considered only for larger resolution
bandwidths of several kHz and is therefore not relevant for this analysis.

Alternatively to the construction of the grand spectrum, Bayesian inference meth-
ods could be investigated by future work. They are potentially more informative,
especially for wider or narrower axion lineshapes. Such differences can be handled by
appropriate prior choices. No matter if Bayesian or frequentist methods are used, the
signal model should be altered to account for the effect of the SG filter as demonstrated
in ch. 6. This has the potential to slightly increase the sensitivity of the procedure,
even though the exact effect needs to be investigated for every dataset individually.

If the grand spectrum does not display statistically significant excesses, a limit can
be constructed. There are multiple possible ways to obtain a confidence limit in the
context of axion haloscopes. One of them is to find for every individual frequency
bin an axion-photon coupling large enough to be incompatible with the measured
value. For datasets containing many bins visualising such a limit on a logarithmic gaγ
axis poses some difficulty, which can be alleviated by conservatively rejecting limits
exceeding the median expectation significantly.

If the spectrum does display a significant excess, it is crucial to properly calculate its
statistical significance taking the number of spectral bins and their correlations into
account. Strategies to verify the axionic origin of an excess include investigating the
width of the excess in the grand spectrum or its scaling with Be. Ultimately, however,
no detection of axion dark matter should be claimed before extensive rescans are
conducted. A concrete strategy for handling excesses is essential and should be put
in place before the next MADMAX physics measurements.

Some of the methods presented in this chapter have already been employed for
constraining dark photon dark matter in [5].





8
First Results from a MADMAX

Axion DM Search

For the MADMAX experiment a dipole magnet with a large open bore is needed.
One magnet fulfilling these requirements is the MORPURGO magnet located in the
H8 SPS beam-line at the CERN north area. Generous support was given to the
MADMAX collaboration in using this magnet over several periods of general CERN
shut-downs. During the latest of these in early 2024 physics data was taken that is
analysed in the present chapter. This data constitutes the first axion dark matter
search by the MADMAX collaboration.

Equipped with the methods introduced in the previous chapter, the data can be used
to construct world-leading limits on dark matter axions in regions around axion masses
of 76.56-76.82µeV and 79.31-79.53µeV. Crucially important for the limit setting is the
determination procedure of the boost factor β2, that is outlined in subsec. 3.3.4 and
subject to future publication.

In order to construct a limit it is furthermore necessary to ensure Gaussianity of
processed and combined spectra. As already hinted at, this requires the removal of
several related sinusoidal background components using the digital notch filter (DNF)
introduced in the previous chapter.

The second filter used in the processing of the spectra for removal of background
components is a Savitzky-Golay (SG) filter. This filter has two approximately degen-
erate free parameters, which determine the stop-band and pass-band of the filter. The
choice of these parameters hinges on the necessity to remove all background structures
from the spectra in the dataset, while keeping attenuation of the axion signal to a
minimum.

Before a limit can be constructed, systematic uncertainties in system temperature
and boost factor need to be accounted for. Their origin has been outlined already in
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Figure 8.1: Time evolution of the available magnetic field strength. Shaded regions
indicate measurement times for individual datasets considered in the analysis, which
are labelled by their respective boost factor maxima.

sec. 3.3, but they now need to be properly combined and translated into a correction
of the limit.

The chapter starts with an overview over the data taking and the datasets obtained
in sec. 8.1. Sec. 8.2 then provides details on all necessary data processing steps which
have not yet been covered in the previous chapter. This includes the choice of exact
digital notch and Savitzky-Golay filter parameters, proving the Gaussian white noise
behaviour of the processed and combined spectra for the aforementioned axion search
measurements as well as the handling of systematic uncertainties. The final axion/
axion-like particle dark matter limits are presented in sec. 8.3 before sec. 8.4 concludes
the chapter.

8.1 Details of the Data Taking

The MADMAX CB 200 setup as described in sec. 3.3 was used for measurements
inside the MORPURGO magnet at CERN between 21st of February 2024 and 12th of
March 2024. The setup was located at 46.26◦ N /6.06◦ E, with its optical axis oriented
horizontally at an azimuth angle of 42◦ relative to north. Fig. 8.1 details the magnetic
field provided by MORPURGO during the measurement campaign. At first the target
field strength of 1.58T was reached, after several problems were encountered with the
cryogenic system of the magnet this however was reduced to 1.0T.

Two significant time periods could not be used in the analysis: On February, 22nd,
a test measurement was started using a different receiver chain. Additionally, the
booster peak in the spectrum of the measurement started on February, 29th, displayed
a significant variation over time. This could be the result of a ferromagnetic screw
left on the booster, leading to small distance variations between mirror and first
disk after the magnet was turned on. This data could theoretically be analysed, but
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starting date f(max β2) [GHz] measurement time [h] median B field [T]

Feb, 21st 18.531 13.5 1.58
Mar, 02nd 18.543 73.75 1.01
Mar, 05th 18.557 159.0 1.01
Feb, 27th 19.196 40.75 1.27
Feb, 23rd 19.215 61.25 1.58

Table 8.1: Summary of the datasets used for limit setting.

would require many individual boost factor estimations, making it unreasonably time
consuming with little added information.

In total five different datasets are used in the analysis described here, corresponding
to two configurations, i.e. sets of spacings between the disks, with boost factor peaks
around 18.55GHz and 19.20GHz, in the following called configuration 1 and 2, re-
spectively. They are summarised in tab. 8.1. The dielectric disks inside the booster are
kept at distances (from the taper-adjacent disk to the mirror) of 12.52mm, 12.25 mm
and 8.38 mm in the former case, and 11.89 mm, 12.25 mm and 8.02mm in the latter
(compare fig. 3.5).

These two configurations were further fine tuned by applying pressure to the mirror
with a metal rod changing the distance between mirror and first disk by several µm.
The altered booster state shifts the booster peak, i.e. the structure in the raw power
spectrum associated with a large boost factor, by O(10MHz). The five datasets consist
of a total of 1393 spectra with a resolution bandwidth of 8.94Hz, each containing data
integrated over 15minutes of measurement time. These spectra look almost identical
for a given dataset, with Tsys variations of < 10K due to the gain drift mentioned in
subsec. 3.3.3 and the frequency of the booster peak shifting by O(0.1MHz). Fig. 8.2
therefore shows one representative spectrum for each dataset. Variations between
individual spectra are accounted for as systematic uncertainties.

It is clearly visible that the pressure applied to the mirror leads to a small change
in its position which causes relevant frequency shifts of O(10MHz) in the boost peak.
At the boost peak a strong electric field is expected between mirror and first disk,
therefore it is more sensitive to changes in mirror position than other spectral features.
In fact, as mentioned in subsec. 3.3.4, most of these other features can not be modelled
by the 1D procedure used to obtain the boost factor, leading to less reliable estimates
at frequencies close to or containing features due to 3D effects. This issue is accounted
for by limiting the analysis to the frequency region around the boost peak that has
been identified to be free of such features in preparation of the data-taking. The
frequency region of the analysis is indicated as the shaded grey area in fig. 8.2.

Boost factors are obtained using the Monte-Carlo procedure detailed in sub-
sec. 3.3.4. They are shown in fig. 8.3 for the five datasets with mean boost factor
values in darker and 1σ uncertainty intervals in lighter colours. In total 100 samples
are generated to estimate the uncertainties. The samples approximately follow Nor-
mal distributions as the histograms of boost factor samples at the β2 peak for all
datasets show in fig. 8.4.

Additionally, the spectra were rebinned to ∆ω = 894Hz before processing by taking
the average of 100 adjacent bins. The new ∆ω leads to more reasonably sized data-
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Figure 8.2: Example spectra for the five datasets used in the analysis. Data regions
used for limit setting are shaded in grey. A clear shift is visible in the boost peaks
for the individual booster states, while other spectral features remain relatively un-
changed.
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Figure 8.4: Distribution of boost factor samples at the maximum of the boost factor
peaks. For all five datasets the distribution is approximately Gaussian.

sets while still being significantly smaller than the expected axion FWHM of 26 kHz.
Therefore no reduction in sensitivity is expected from this rebinning.

The datasets started at Feb, 21st, Feb, 23rd and Feb, 27th with peak β2 at
18.531GHz, 19.215GHz and 19.196GHz, respectively, have dedicated power calib-
ration measurements available that were taken immediately before the data taking.
For both the Mar, 2nd and Mar, 5th measurements with peak β2 at 18.543GHz and
18.557GHz the same power calibration from Feb, 29th was used to avoid having to
ramp down the magnet. This is possible, since no changes on the setup occurred
between Feb, 29th and Mar, 12th except for adjusting the pressure on the mirror,
which could be performed with the magnet on.

8.2 Data Processing

8.2.1 Digital Notch Filtering

In sec. 7.2 a method called digital notch filtering was introduced, which was shown
to be effective at removing sinusoidal backgrounds in frequency spectra by replacing
the corresponding bins in the Fourier transformation. From fig. 8.5 it can be gleaned
that such a background is present in the 2024 data. The Fourier transform of a single
spectrum from the dataset with its β2 peak at 19.215GHz displays two clear peaks
at ∆t = 109.22µs and twice that value.1 Three more peaks at multiples of 109.22µs
exist in the data, but are not visible in fig. 8.5 due to the small integration time of
the single spectrum. The significant increase of the Fourier spectrum at small ∆t
and the statistical fluctuations at larger ∆t correspond to the correlated background
and uncorrelated noise components, respectively, and need to be impacted as little as
possible by the digital notch filter.

The Fourier peaks are removed as the first step of the data processing, even before
processed spectra are calculated. Five regions around n × 109.22µs with n ∈ [1, 5]

1Note that the frequency spectrum transformed here is real-valued, meaning that phase information
is lost and the units of the Fourier transform do not correspond to physical time.
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Figure 8.5: Absolute value of the Fourier transform of a single spectrum of the dataset
with peak β2 at 19.215GHz before and after applying the digital notch filter. The
spectrum before filtering (blue) coincides perfectly with the spectrum after filtering
(orange) except for two clearly visible peaks at multiples of 109.22µs. The inset
explicitly shows the replacement of the peak at lower ∆t in a window of 0.1µs.

are removed with widths of 0.1µs each using the replacement method introduced in
sec. 7.2. Fig. 8.8 shows that removing five regions is indeed necessary.

Another perspective on the sinusoidal background component is provided by invest-
igating correlations between individual spectra. The procedure introduced in sec. 7.3
assumes that Gaussian spectra which are stacked to yield the combined spectrum are
uncorrelated. This implies that when averaging over a certain number N of spectra
with equal standard deviation σ, the resulting spectrum has a standard deviation of
σ/

√
N . Using

σ2
p = (tint∆ω)−1 , (8.1)

with integration time tint, for a single processed spectrum one can predict the rela-
tionship between tint and σ−2 for an experiment with zero dead-time, i.e. tint equals
the actual time of the measurement. In other words, if the receiver chain is calibrated
and σp is known, the integration time can be used for validation. The tint expectation
is shown as the dashed black line in fig. 8.6. An experiment with significant dead time
would still display a linear relationship, albeit with smaller slope. Positive curvature
as displayed by the dataset with peak β2 at 18.557GHz without digital notch filtering
(blue) indicates correlation between the processed spectra, here caused by the afore-
mentioned sinusoidal background component in the frequency spectra. This dataset is
shown here for having the longest measurement time, the same effect however persists
similarly for all datasets. With the digital notch filter applied (orange in fig. 8.6),
the time evolution of σ−2 perfectly matches the ideal case, indicating the absence of
further correlations and no significant dead-time.

This perspective is especially valuable because it is agnostic of the type of correla-
tion. In the present example the correlating component removed by the digital notch
filter is localised in the Fourier spectrum and therefore easily visible. In case this
would not hold, the σ−2 evolution would nevertheless provide hints of problems in the
dataset.
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Figure 8.6: Evolution of the standard deviation of averaged processed spectra with
respect to measurement time for the dataset with its β2 peak at 18.557GHz. If
individual spectra are uncorrelated and the experiment has negligible dead-time the
evolution should follow the case marked as “ideal” (dashed black). Without applying
the digital notch filter a significant deviation is visible (blue), which vanishes when
the filter is applied (orange).

At the level of the combined spectrum the effect of the Fourier peak on the spectrum
itself becomes obvious. Due to the significantly lower uncorrelated noise component
compared to a single processed spectrum, the oscillation corresponding to the Fourier
peaks visible in figs. 8.5 and 8.8 can easily be seen in a zoomed in version of the
combined spectra for both booster configurations (fig. 8.7). Here as well the filter
demonstrates its effectiveness at removing the oscillation, since the combined spec-
tra after filtering look like white noise at least at first glance. This is investigated
thoroughly in sec. 8.3.

Applying a Fourier transform to the combined spectra before and after digital notch
filtering again demonstrates the effectiveness of the digital notch filter at removing
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Figure 8.7: Excerpt of combined spectra for both booster configurations with (orange)
and without (blue) applying the digital notch filter. The dashed vertical lines indicate
the absolute frequencies 18.53GHz and 19.19GHz of the spectrum pieces shown.
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Figure 8.8: Absolute value of the Fourier transform of the combined spectrum for
booster configuration 1 before and after applying the digital notch filter. The inset
again shows how exactly the digital notch filter affects the region around the peak at
109.22µs.

the Fourier peaks. The result is shown in fig. 8.8 for the booster configuration 1,
but equivalently holds for the other configuration. Additionally, note how the SG
filter successfully removed the peak at ∆t = 0 s, corresponding to the large-scale
background component.

This subsection demonstrates that a combination of digital notch and SG filter-
ing successfully removes all correlations present between individual raw spectra. No
remaining correlation can be seen for measurement times of at least 159hours, poten-
tially more. This means the receiver system is effective for the task of investigating
axion dark matter in the range around 19GHz. Investigating the physical reason for
the Fourier peaks with a characteristic timescale of ∆t = 109.22µs is nevertheless
imperative. The goal is to avoid their presence altogether in the raw spectra of future
measurements. This is actively being pursued at the time of writing.

8.2.2 Obtaining SG Parameters

There are two parts to obtaining suitable parameters for the SG filter used to process
the spectra. Firstly, as described in subsec. 7.3.5 the SNR attenuation induced by a
specific set of filter parameters has to be simulated. Secondly, one must investigate if
the residual spectrum contains any non-axionic deviations from Gaussianity, e.g. using
eq. (7.24). It is sufficient to treat only one of the two filter parameters, polynomial
order o and filter window width w, as free since they are approximately degenerate
(see sec. 7.3.5).

To investigate the SNR attenuation, the procedure described in subsec. 7.3.5 was
applied separately to all five datasets for a range of reasonable window widths w,
always assuming o = 4. The attenuation should depend only on the RBW and w, so
all datasets should yield the same results. This is approximately the case as can be
seen in fig. 8.9, the datasets show systematic percent-level variation. The calculation
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Figure 8.9: Evolution of ηSG with filter window size for all five datasets. The dashed
vertical line indicates the filter window size used for the final limit.

using the dataset with maxβ2 at 19.196GHz produces the smallest ηSG for all window
sizes. This systematic shift may be explainable by all window sizes using identical
values for ideal mean µid and ideal standard deviation σid, which are also subject to
uncertainty. To be conservative, in the following the lowest value for ηSG of any of
the datasets was used for a given filter window. The same simulation also yields the
expected standard deviation of the grand spectrum σf when a specific SG filter is
used. It increases with increasing w.

According to fig. 8.9, larger window sizes are clearly preferable due to their increased
ηSG, i.e. lower SNR attenuation. However, it needs to be ensured that no residual
structures, i.e. small excesses due to features in the background, remain in combined
or grand spectrum that could be mistakenly associated with an axion signal. To
choose an appropriate filter window width, the Gaussianity of the grand spectra for
both booster configurations is investigated.

Fig. 8.10 presents grand spectra and histograms thereof for a variety of SG filter
window sizes and o = 4. With the exception of configuration 2 for w = 1501 all
shown grand spectra display approximately Gaussian behaviour as demonstrated by
the histograms. The standard deviation of a best fit Normal distribution on the
histograms is σg < 1 in all but the aforementioned case. This is expected from
the interplay between SG filter and the cross-correlation with the axion lineshape as
already mentioned in subsec. 7.3.5.

The effect, however, cannot fully explain the increase of σg with w seen in fig. 8.10.
The actual standard deviation of the grand spectra, σg, should for both configurations
be close to the theoretical expectation σf obtained in the SNR attenuation simula-
tion, which by construction does not include residual structures using the SG filters
discussed here. Fig. 8.11 shows how σg, obtained from the data, deviates from σf , ob-
tained from simulation, for larger w. Both booster configurations show some increase
beyond the expected value of σg/σf − 1 = 0, however much larger values are obtained
for configuration 2 up to a relative deviation of almost 10% for w = 1501.
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Figure 8.10: Grand spectra and histograms thereof for both booster configurations
using o = 4 and various SG filter widths w. Mean µg and standard deviation σg are
given for all grand spectra shown.

When increasing w it is inevitable that grand spectra display statistically significant
excesses at locations of not fully removed RF structures. Configuration 2 for w = 1501
clearly displays such an excess at a frequency of 19.180GHz with a local significance
of 5.45σ. It is significantly attenuated when using smaller w, contrary to an excess of
axionic origin the shrinking of which would be governed by the factor ηSGσf depending
on w. The excess has been thoroughly investigated and seen to be significantly broader
than the FWHM of the axion lineshape. For these two reasons an interpretation of
this excess in terms of an axion signal can be ruled out.

An excess at the same frequency is still visible when using w = 1301 at 4.19σ local
significance. Therefore for the final limit a fourth-order SG filter with window width
w = 1201data points was chosen, leading to ηSG = 0.917 and σf = 0.938.

8.2.3 Gaussianity of Processed and Combined Spectra

In the previous subsection the grand spectra were used to inform the choice of w.
As mentioned before, it is vital also for the combined spectra to not include residual
structures for this choice. Unlike grand spectra for which adjacent bins get correlated
by the cross-correlation with the axion lineshape, combined spectra are expected to
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Figure 8.11: Relative deviation between expected grand spectrum standard deviation
σf and the value obtained from the data, σg, for the two booster configurations.
Booster configuration 2 displays deviations > 2% for filter window widths w > 1201
indicating the presence of not fully removed RF structures in the spectrum.

display pure white noise behaviour, i.e. no correlation between adjacent bins should
exists. Therefore the Runs Gaussianity test introduced in sec. 7.1 can be applied.

The result can be seen in fig. 8.12 (left). The combined spectrum for configuration
2, corresponding to higher frequencies around 19.2GHz, is perfectly compatible with
pure Gaussian white noise, quantified by the metric G2 = 0.8 ∈ [0.7, 3.5] being within
the interval defined in sec. 7.1. Configuration 1 displays one significant excess leading
to G1 = 126 ≫ 3.5. The excess is shown in fig. 8.12 (right). It has a width significantly
smaller than the axion FWHM, making it impossible to arise from homogeneous axion
dark matter. It also does not seem to be a transient event, since it does not coincide
with particularly significant excesses in any of the processed spectra. Contamination
by a small structure at radio frequencies could be a possible explanation, even though
a purely statistical excess cannot be ruled out at this point.

Investigating all processed spectra individually, only one significant transient event
was found. The spectrum taken on Feb, 28th at 12:40 PM displays an increase of
∼ 5% in its standard deviation compared to the theoretical expectation due to several
excesses between 19.22GHz and 19.23GHz. Fig. 8.13 plots all frequency bins of all
processed spectra for the individual dataset in a histogram. There this transient
event can be seen as the increased probability density for power excesses > 5σ for the
dataset with maxβ2 at 19.196GHz compared to other datasets. With this exception
all datasets perfectly follow the expected Gaussian distribution.

Fig. 8.14 shows the distribution of the metric G for all processed spectra indi-
vidually. The distributions match the theoretical expectation presented in sec. 7.1
well. There are three outliers with G > 20: One is in the dataset with maxβ2 at
18.557GHz, however it does not coincide with the excess in the combined spectrum
for configuration 1 discussed earlier. Two more can be found in the dataset with
maxβ2 = 19.196GHz and can be attributed to the aforementioned transient event.

All datasets display no relevant deviations from Gaussian behaviour and can there-
fore be used for limit setting without further processing.
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Figure 8.14: Distribution of metric G for all processed spectra contained in the five
datasets. Overall, the distributions follow the expectation well with three exceptions
having G > 20.

8.2.4 Systematic Uncertainties

Before proceeding to the limit setting, however, the impact of systematic uncertainties
on the limit has to be understood.

The limit in frequency bin j is given by eq. (7.22) as

|gaγ |j = |grefaγ |
√

gj/σf + 1.645

ηSGRj
.

In this formula only Rj , which encodes the SNR expectation for a reference axion-
photon coupling in every frequency bin, is subject to significant systematic uncertain-
ties. Those are: Gain drifts of the receiver chain, uncertainty in the power calibration
factor and boost factor uncertainty. Their assessment is outlined in subsecs. 3.3.3
and 3.3.4. Fig. 8.15 shows all three systematic uncertainties for the five datasets in-
dividually. Each individual uncertainty has comparable magnitudes for all datasets.
Uncertainty in the power boost factor is largest (top panel) followed by uncertainty
in the power calibration factor (middle panel). Note that two datasets have the same
calibration uncertainty because no separate power calibrations were possible (com-
pare also sec. 8.1). The gain drift is defined as variation of the mean mi =

1
N

∑
j bij

between different spectra i, where the sum is over frequency index j ∈ [1, N ]. bij
again are SG filtered, uncalibrated spectra. Gain drift only plays a subdominant role
(lower panel).

To combine the three sources of uncertainty and properly translate them to an effect
on the exclusion limit, the path towards Rj has to be retraced. Rj is defined in (7.13)
in terms of σc,j , the standard deviation of individual frequency bins of the combined
spectrum before normalisation. σc,j as defined in (7.10) in turn depends on a sum
over the weights wij used to combine spectra. These weights are proportional to the
inverse square of raw spectra and power calibration factor, as well as the square of the
axion signal expectation, which itself is proportional to β2

ij (see eq. (7.7)). Because
power calibrations should be considered correlated between individual datasets, while
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other systematic uncertainties are not, it is necessary to divide their contributions to
the overall uncertainties. No other quantities used in the calculation of wij are subject
to significant systematic uncertainties, therefore the relative uncertainty from the two
different types of systematics can be calculated as

δwij

wij

∣∣∣∣
noP f

= 2

√√√√(δβ2
ij

β2
ij

)2

+

(
δm

m

)2

,
δwij

wij

∣∣∣∣
justP f

= 2

(
δP f

ij

P f
ij

)
, (8.2)

where again P f
ij is the power calibration factor and m = 1

Mk

∑
imi for Mk spectra

indexed by i in a dataset k.
Errors on spectra in a given dataset are considered to be perfectly correlated. This

is inevitable for β2
ij and P f

ij , since for each dataset only one estimate is available for
both quantities, i.e. β2

ij = β2
j and P f

ij = P f
j for all spectra in one dataset but not across

different datasets. Similarly the gain drift was calculated by considering all spectra for
a given dataset and is therefore unaffected by a sum over the spectra i. Thus, one can
drop the index i and introduce the dataset index k such that δwij/wij ≡ δw/w|(kj)
for all spectra i in dataset k.

This is true for both uncertainty from power calibration factor as well as other
uncertainties. The difference lies in the way different datasets have to be combined.
Here systematic uncertainties from the power calibration factor are treated as perfectly
correlated and other uncertainties as perfectly uncorrelated, leading to

δσc,j
σc,j

∣∣∣∣
noP f

=
1

2

√√√√∑
k

(
δw

w

∣∣∣∣(kj)
noP f

)2

, (8.3)

δσc,j
σc,j

∣∣∣∣
justP f

=
1

2

∑
k

δw

w

∣∣∣∣(kj)
justP f

, (8.4)

where the sum is over the datasets k belonging to one of the booster configurations.
Cross-correlating with the axion lineshape again leaves the error unchanged, because
errors on individual frequency bins are approximately equal at least for the relevant
frequency differences. Therefore the error in Rj is calculated as

δRj

Rj
=

√√√√( δσc,j
σc,j

∣∣∣∣
noP f

)2

+

(
δσc,j
σc,j

∣∣∣∣
justP f

)2

. (8.5)

The limit on gaγ is ∝ R
−1/2
j , therefore the limit including systematic uncertainty is

obtained via
|gaγ |j → |gaγ |j ×

(
1 +

1

2

δRj

Rj

)
, (8.6)

where |gaγ |j denotes the limit in frequency bin j without systematic uncertainties.
The resulting value for the total uncertainty 1

2
δRj

Rj
for both booster configurations

is shown in fig. 8.16. It is between 5% to 10% for almost the full frequency range,
indicating only minor suppression in terms of the final limit.
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Figure 8.16: Total systematic uncertainty on |gaγ | for both booster configurations as
a function of frequency.

8.3 Axion Limits

The previous sections discussed in detail how the datasets are obtained and processed.
The final grand spectra are shown in fig. 8.17 (yellow) together with the expected sig-
nal amplitude for a reference Caγ = 2 × 103 over the frequency range (dashed grey
line). The signal expectation can be divided into the individual contributions from
different datasets (coloured dashed lines). The multimodal shape of the expected
signal amplitude is explained by these individual contributions. Their shape is dom-
inated by the frequency dependence of the power boost factors shown in fig. 8.3. The
system temperature also plays a role through its influence on the noise. The interplay
between these two contributions can lead to slightly multimodal structures even for a
single dataset as can be seen for the dataset with max β2 at 18.531GHz.

As shown in subsec. 8.2.3, the grand spectra do not display significant deviations
from Gaussianity with standard deviations of σ1 = 0.94 and σ2 = 0.95. The maximal
excesses in the grand spectra for booster configurations 1 and 2 are 3.88σ and 3.75σ
local significance. The probability for a local excess of at least 3.88σ in both grand
spectra combined can be determined to be p ≈ 0.13 using eq. (4.1) with an effective
number of samples governed by (7.23). Existing excesses can therefore be explained
by a noise-only hypothesis. Since no evidence for a DM signal was found, a limit is
constructed.

The obtained limit as a function of frequency/ axion mass for both configurations
can be seen in fig. 8.18. Its shape corresponds to the expected signal amplitudes shown
in fig. 8.17 and is determined by the frequency dependent boost factor and system
noise temperature. As explained in sec. 7.4 limits exceeding the median sensitivity by
more than 1σ are not shown for better intelligibility of the plot. Existing limits from
the CAST helioscope [186] are surpassed by up to a factor of 4 if a local density in
dark matter axions of ρa = 0.3GeV/cm3 is assumed.
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Figure 8.17: Grand spectra for both booster configurations (yellow) as well as expected
signal amplitudes for all five datasets individually (dotted) and combined (dashed).
Right panels additionally show histograms of the normalised power excesses in both
grand spectra as well as mean µ and standard deviation σ of best-fit Gaussian distri-
butions.
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as dashed and dotted black lines. For comparison the most recent CAST helioscope
limit [186] in the frequency range is given (grey).

8.4 Summary & Discussion

The measurements with a MADMAX prototype at CERN in 2024 resulted in world-
leading limits on the axion-photon coupling in two mass ranges around 76µeV and
80µeV. These are the first limits on axion dark matter published by the MADMAX
collaboration.

Five datasets using two different configurations of the CB 200 booster have been
used in the analysis. Parts of the datasets with difficult to model boost factor estimates
were removed. Here, future work could investigate an empirical and objective way to
more appropriately model the reduction in sensitivity for frequency regions where the
boost factor is difficult to estimate.

The datasets include a set of peaks at positions in the Fourier spectrum corres-
ponding to timescales of multiples of 109µs. They can effectively be removed using
the digital notch filter presented in sec. 7.2. The physical reason behind these back-
ground components is actively investigated with the goal of avoiding them in future
measurements.

The data does not contain other background structures with fluctuations on scales
comparable to the axion FWHM, making it possible to apply a fourth-order SG fil-
ter with a window width > 1MHz leading to relatively small SNR attenuation of
ηSG = 0.92. The resulting processed and combined spectra display almost perfect
Gaussianity, a key feature for being able to extract sensitive limits. From systematic
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uncertainties a relative worsening of the limit of 5% to 10% is incurred. Assuming a
local axion dark matter density of ρa = 0.3GeV/cm3, the obtained limits exceed the
previous most stringent limit by up to a factor of four.

The limits were obtained with only two weeks of measurement time using a simple
20 cm setup with three disks inside of a magnet with Be ∼ 1T. This highlights the
substantial discovery potential of the MADMAX concept, particularly if future designs
can achieve magnetic fields of Be ∼ 10T with multiple 100 cm diameter disks leading
to a boost factor of up to β2 = 104. A full-scale MADMAX setup could make a
significant portion of the QCD axion parameter space for masses above ma ∼ 40µeV
accessible for experimental exploration.





Conclusion & Outlook

Axion research is entering a golden decade with first experiments reaching sensitivity
to minimal QCD axion models and many more promising efforts on the way, including
MADMAX.

The work described in this thesis contributes to the axion search program by provid-
ing a competitive statistical analysis pipeline for first MADMAX prototype measure-
ments. It combines standard practices in the field, e.g. to properly weight and sum
individual power spectra, with new methods applied to axion dark matter data for
the first time, such as the Runs Gaussianity test or the digital notch filter.

The Runs Gaussianity test is a new, sensitive way to investigate a set of data
points regarding any kind of deviations from white noise. Being based on the expected
distribution of consecutive excesses, it is agnostic of the shape of the deviation making
it well-suited for the hunt for residual background structures.

The digital notch filter became necessary due to a sinusoidal background compon-
ent, which could not be removed using standard methods. By replacing relevant parts
of the Fourier transform of the spectrum with values informed by the rest of the spec-
trum, it efficiently removes such components without significant influence on potential
axion signals.

Thanks to the digital notch filter, the statistical analysis pipeline is able to remove
backgrounds from individual measurements. It then combines them and, since no
relevant deviations from Gaussianity are found, cross-correlates the result with the
expected axion lineshape. No significant evidence for dark matter axions is found at
axion masses in the ranges of (76.56 to 76.82)µeV and (79.31 to 79.53)µeV. Signal
attenuation due to the background removal procedure as well as systematic uncer-
tainties are taken into account to yield upper limits on the axion-photon coupling at
95% confidence level. The limits improve upon existing constraints by up to a factor
of four, if a local axion density of ρa = 0.3GeV/cm3 is assumed.

This outcome was achieved with just two weeks of measurement time using a com-
pact 20 cm setup containing three disks within a Be ∼ 1T magnet, underscoring
the significant discovery potential of the MADMAX concept. Plans are underway to
drastically increase the axion-photon conversion rate by scaling up both the size and
number of disks. Furthermore, efforts are being made to lower the system temperature
through the use of cryogenic quantum sensors. Over the coming years, extended meas-
urements are planned using the infrastructure from CERN until the ultimate goal of a
dedicated magnet for MADMAX with Be ∼ 10T can be realised. A setup consisting
of multiple 100 cm diameter disks and reaching boost factors of β2 ∼ 104 could enable
the experiment to probe a substantial portion of the QCD axion parameter space at
high axion masses. The statistical analysis pipeline described in this thesis could be
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applied during all these stages of development with only minor modifications. In fact,
it has already been adapted for use in a dark photon dark matter search with an open
MADMAX setup [5].

Standard haloscope analysis typically relies on linear filters for background removal,
which distort the shape of potential axion signal. If these alteration are not accounted
for, they may reduce sensitivity, particularly in a Bayesian framework where prior
knowledge of signal parameters is explicitly considered. The bias-free signal estimation
approach presented in this thesis may alleviate this issue by integrating the signal
shape modification caused by the filter directly into the signal model.

With the maturing of the field of axion research it is only a matter of time until first
analyses divert from the prevalent frequentist paradigm and apply Bayesian methods
to axion measurements. First efforts to this effect are underway [120] by investigat-
ing updates in the prior belief. Using Bayesian inference in an axion context is not
conceptually difficult as shown by its application to a set of simulated MADMAX-like
datasets in this thesis. It was primarily hampered by the absence of usable prior
distributions for general QCD axions beyond minimal models.

The work described in this thesis presents such a comprehensive prior distribution
for the first time. It systematically investigates the axion-photon couplings of DFSZ-
type axion models with up to nine Higgs doublets. By combining the results with
a pre-existing KSVZ-type model catalogue, a joint theoretical prior for both major
types of invisible axion models can be constructed.

Even in the large set of DFSZ-type models analysed, anomaly ratios of the minimal
DFSZ model are still favoured. In contrast to the minimal models, no significant
differences between the anomaly ratio distributions for general DFSZ- and KSVZ-
type models are found. A subset of DFSZ-type models with domain wall number
of unity was found and could be considered phenomenologically preferred. These
models additionally display photon couplings, which are on average almost one order
of magnitude larger than for the full set of models, making them more easily accessible
for experiments.

The investigations could be extended into multiple directions, such as better es-
timating anomaly ratio distributions for eight or more Higgs doublets and accounting
for massive neutrinos. However, mathematical considerations show that the resulting
distributions would likely be similar.

The ultimate goal of the extensive axion search program cannot be the setting of
incrementally tighter limits, but to eventually find the axion and in doing so solve two
of the greatest mysteries in physics. If an axion signal is found, the methods presented
here are necessary for a bias-free estimation of its signal parameters. This thesis there-
fore not only helps to shrink the viable axion parameter space by analysing data from
a MADMAX prototype setup, but also contributes by providing methods applicable
to measurements beyond the MADMAX prototype and towards axion detection.
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