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ABSTRACT 

 

The incorporation of pedestrian simulators during the early phases of a building design process 

remains impractical. Although they are essential tools to assess the operational and evacuation 

performance of a building, their integration is challenging due to time-intensive runtimes and 

laborious export and conversion steps when generating simulation results. Deep learning 

methods have demonstrated their ability to generate results instantly with sufficient, or even 

outstanding performance across many disciplines. In this article, we present the development of a 

neural network that can process both sequential and image data simultaneously to investigate its 

capability to reproduce simulation results via supervised learning. Unlike previous approaches, 

we directly predict trajectories based on floorplans derived from a parametric Building 

Information Modeling (BIM) model. Our findings show that the network can capture short-term 

relations effectively considering previous agent states and their surrounding environments, while 

long-term predictions remain challenging.  

 

INTRODUCTION 

 

Throughout the design and development phases of a building, numerous experts from the 

Architecture, Engineering, and Construction industry collaborate. Consequently, this leads to an 

enormous degree of inter-dependence between the disciplines that are involved in this process, 

such that insufficient or erroneous communication and collaboration in the early design stages 

can result in substantial temporal or economic expenses in later stages (Gervásio, Santos, 

Martins, & da Silva, 2014). The Building Information Modeling (BIM) methodology addresses 

these challenges by creating a centralized, collaborative digital platform that integrates various 
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aspects of the construction process throughout the building life cycle  (Borrmann, König, Koch, 

& Beetz, 2018).  

Simultaneously, in current practice, incorporating pedestrian simulations into the building 

design – particularly in the early stages – remains laborious due to the lack of fast and automated 

generation of simulation results (Clever, Abualdenien, & Borrmann, 2021), as simulation 

runtimes may extend to several minutes for large, complex buildings. Moreover, pedestrian 

simulators are often standalone applications, leading to manual and cumbersome conversion 

steps for preparing input data and visualizing simulation results. This involves exporting the BIM 

model into vendor-neutral exchange formats like IFC (Industry Foundation Classes) and 

subsequent conversion into the specific simulation input format. Consequently, pedestrian 

simulators are rarely employed to assess every building variant discussed during the initial 

project phases (Asriana & Aswin, 2016). 

With the advances in Artificial Intelligence (AI), and particularly deep learning, several 

approaches have been developed to emulate pedestrian simulator results for instant prediction. 

Current research partially focuses on evacuation indicators (e.g. evacuation time) or macroscopic 

quantities of interest, such as density or flow. In contrast, the major advantage of forecasting 

trajectories lies in eliminating the need for any pre-/post-processing steps that convert trajectories 

into macroscopic quantities. Thereby, results are available at every single timestep, providing 

fine-grained insights into the movements of individual agents – the virtual pedestrians. While 

trajectory prediction of humans has also been studied in previous research, model benchmarking 

typically relies on the few publicly available real-world datasets and solely compares short-term 

predictions. This limitation is impractical for the evaluation of many floorplan variants, which 

requires models to be trained on large datasets, incorporating predictions over long-term 

simulation runtimes. In addition, there is significant interest in non-supervised approaches, such 

as reinforcement learning. However, these methods do not guarantee compliance with pedestrian 

simulations through supervision, which is crucial for ensuring safety. Thus, supervised, long-

term trajectory prediction in building design context is missing in the current research landscape. 

In this article, we aim to address these challenges by investigating a supervised data-

driven approach that is capable of learning large quantities of synthetic trajectory data to emulate 

simulation results, utilizing a pedestrian simulator and a parametric BIM model. In the next 

section, the related works concerning evacuation simulations and trajectory prediction are 

discussed. Section 3 describes the methodology of our approach and introduces the neural 

network. Subsequently, the results and the conclusion are presented.  

 

RELATED WORK 

 

Evacuation simulations. The simulation of pedestrian and crowd movement is essential to 

investigate evacuation outcomes in what-if scenarios, and to identify potential bottlenecks with 

minimal cost and risk compared to real-life evacuation drills (Şahin, Rokne, & Alhajj, 2019). 

Since the architectural layout of a building represents a principal factor in pedestrians’ 
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wayfinding capabilities (Natapov, Parush, Laufer, & Fisher-Gewirtzman, 2022), several 

simulation models have been developed in recent years. The Social Force Model (Helbing & 

Molnar, 1995) is particularly popular; it utilizes an equation that accounts for the repulsive and 

attractive forces between obstacles and destinations. Moreover, another common model is the 

Cellular Automaton (Burstedde, Klauck, Schadschneider, & Zittartz, 2001), which discretizes 

space into a grid in which individuals can move from one cell to a neighboring cell. In this 

article, we employ a simulator that is based on the Optimal Steps Model (OSM) (Seitz & Köster, 

2012). The OSM divides time into sequential frames within continuous space, in which the agent 

tries to maximize its utility function by reaching its assigned destination. 

 

AI-based evacuation tools. The recent advances of AI and deep learning techniques across 

various domains have been extended to the domain of evacuation simulations as well. For 

instance, total evacuation time (TET) is predicted through a convolutional neural network based 

on colored floorplan images of train stations in (Clever, Abualdenien, Dubey, & Borrmann, 

2022). Similarly, Abadeer, Ebeid and Gorlatch use different regression techniques to estimate 

TET of a university building structure plan (Abadeer, Ebeid, & Gorlatch, 2022). Both methods 

employ the OSM to generate the datasets for training their machine learning algorithms. The 

authors of (Testa, Barros, & Musse, 2019) utilize a neural network to estimate TET by evaluating 

evacuation time of each individual room, given its geometry and population. Furthermore, more 

meaningful quantities with regards to the safety – not only the speed – of an evacuation have 

been developed. Berggold, Nousias, Dubey and Borrmann simultaneously predict time-

dependent densities and TET for office buildings using a Vision Transformer (Berggold, 

Nousias, Dubey, & Borrmann, 2023). A similar image-to-image approach is developed in 

(Nourkojouri, Dehnavi, Bahadori, & Tahsildoost, 2023), forecasting density heat maps while 

employing XGBoost to assess TET. Finally, Sohn et al. propose a framework to predict the 

aggregation of crowd densities over the entire course of a simulation (Sohn, et al., 2020). 

While the aforementioned approaches provide realistic insights into crowd movement in 

evacuation simulations through macroscopic quantities (e.g. density) or evacuation indicators 

(e.g. TET), they do not discuss the prediction of microscopic quantities, essentially trajectories, 

which is the striking difference to our work presented in this article. 

 

Human Trajectory Prediction (HTP). Meanwhile, trajectory prediction models exist in other 

fields, e.g. autonomous driving or robotics. The task of reproducing pedestrian simulator results 

is slightly dissimilar to forecasting real-world trajectories, mainly because agent destinations are 

pre-defined in simulations, whereas they must be predicted in real-world context. Furthermore, 

simulations typically encode social interactions as hand-crafted transition rules or potential 

functions, simplifying the complex nature of human behavior. Nonetheless, existing trajectory 

prediction models from other fields provide valuable insights from which we draw inspiration. 

For instance, both in (Gupta, Johnson, Fei-Fei, Savarese, & Alahi, 2018) and (Sadeghian, et al., 

2019), LSTM-based GAN modules are used to predict human trajectories in crowded spaces 



Proceedings Paper Formatting Instructions – 4 –  Rev. 10/2015 

with different pooling mechanisms for modelling social interactions. Due to the success of 

Transformer-based networks, recent works have adopted this architecture. In (Giuliari, Hasan, 

Cristani, & Galasso, 2021), a vanilla Transformer is employed for predicting trajectories on 

common benchmark datasets without any social interaction terms, resulting in competitive 

performance compared to previous models. More advanced architectures have been developed 

recently, for instance in (Yuan, Weng, Ou, & Kitani, 2021), where the attentional module is 

altered via a masking operation to attend to inter-agent and intra-agent features differently. 

Furthermore, other approaches have discussed the idea of intermediate goal prediction. In 

(Chiara, et al., 2022), an additional module is employed to support the trajectory prediction by 

sampling potential intermediate goals based on the environment and observed trajectories. 

 

METHOD 

 

Overview. Our approach focuses on developing a deep learning framework that can accurately 

and almost instantly predict a coordinate sequence of maximum length for all agents present in 

the simulation, based on a fixed number of previously observed agent states. For creating a 

comprehensive training dataset, we construct a parametric BIM model that resembles office 

building floors. To achieve a sufficient degree of geometric variability in the dataset, we 

incorporate several building geometry variations, ranging over the building length and width, 

hallway width, number of rooms, as well as the presence or absence of hallway obstacles and 

bottlenecks (essentially doors) in front of the destination areas.  

 

Table 1. Overview of the input parameters to our dataset 

 

Table 1 provides an overview of the dataset’s geometric variations. After generating the BIM 

model in Autodesk Revit, we must first export its floorplan into an IFC file, and subsequently 

convert it both into RGB image and simulator input format. To further increase the diversity in 

our dataset, we introduce variations with respect to the simulation parameters as well. Every 

room may or may not serve as origin area for the agents (denoted in red color), while either end 

or both ends of the hallway may serve as destination area (denoted in green color) to simulate 

evacuation scenarios. Specifically, in case of an emergency, individuals must leave their offices 

at once to reach the exits or staircases. For each floorplan, we include every combination of 

Length Width 
Hallway 

width 

Number 

of rooms 

Destination 

bottleneck 

Obstacle 

presence 

Agents 

per origin 

25 m 20 m 2 m 6 
{present, 

absent} 

{present, 

absent} 
{10,20,30} 

35 m 20 m 3 m 6 
{present, 

absent} 

{present, 

absent} 
{10,20,30} 

40 m 25 m 4 m 7 
{present, 

absent} 

{present, 

absent} 
{10,20,30} 
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origin and destination areas in our dataset. Finally, to cover different agent volumes, we use 10, 

20 and 30 agents per origin area for each variant. In total, our dataset encompasses 9,108 

floorplan variations and simulation runs, incorporating the associated trajectory data. Each 

simulation is essentially represented by a four-dimensional table with the timestamp, agent id, x- 

and y-coordinates as columns, where the agent states are sampled every 0.5 seconds. 

 

  
Figure 1. The parametric BIM model represents basic office building floors. From the BIM 

model, colorized floorplans and the associated simulation files are exported and converted 

to generate the dataset. 

 

The left side of Figure 1 visualizes our parametric BIM model, which is shaped based on its 

input parameters. On the right side, the simulation process is displayed, initializing all agents at 

once into their associated origin areas, from which each agent moves towards its destination. As 

mentioned above, these simulation settings are supposed to replicate an evacuation scenario. 

When the destination is reached, the agent terminates, leaving the simulation scope. We utilize 

the pedestrian simulator crowd:it (accu:rate, 2024), which is configured in our experimental 

setup to provide a Gaussian agent velocity distribution between 0.5 and 1.6 m/s, with standard 

deviation of 0.26 m/s and mean of 1.34 m/s that represents the approximate normal walking 

speed of pedestrians (Weidmann, 1992). The agent torso size is uniformly distributed in a radius 

between 0.42 and 0.46 meters. 

 

Neural network architecture. Our approach integrates both global and local scene information 

for each agent involved in the simulation. These inputs are provided as N semantic maps with 

one channel each, where N represents the number of agents. Each global agent map 

comprehensively represents the entire scene, encompassing non-walkable or repulsive areas, 

such as walls and obstacles, while also incorporating the agent’s specific destination designated 

as attractive area. The local maps are centralized perspectives for each agent, represented as a 

square of fixed size with each agent at the center. These squares contain an occupancy grid 
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around the agents, in which the agent itself, as well as its neighbors, are represented as a 

Gaussian distribution whose mean is placed at the agent location. Its standard deviation is the 

agent’s torso size, which is a simulation parameter. In the maps, repulsive areas are assigned a 

value of +1, contrasting with destination areas, which are marked with -1. The rest of the 

walkable regions within the scene are denoted by zeros.  

As displayed in Figure 2, the maps are passed through a Resnet-18 backbone (He, Zhang, 

Ren, & Sun, 2015) to extract and encode semantic image information, for instance to consider 

nearby agents or obstacles. While the hidden states are combined with the sequence information 

for predicting the next steps, a reconstruction head is attached to the backbone to enable pre-

training the weights via image reconstruction. Notably, the image encoder’s weights remain 

frozen after pre-training to reduce computational load and convergence effectiveness when 

performing sequence prediction. To encode the previous coordinates of N agents, we utilize a 

Transformer encoder. The output of the batch-wise self-attention is concatenated with the hidden 

states of the semantic map input, and passed through a multilayer perceptron (MLP) to predict 

each agent’s next step represented by its subsequent x- and y-coordinates, which also results in a 

new set of centralized local occupancy maps. For the next timestep prediction, the output 

coordinates are appended to the observed states. Meanwhile, previous local maps are replaced 

with current ones for the next predictions to update interaction information continuously together 

with the agent state. This autoregressive training method is quite common in trajectory prediction 

tasks, enabling the model to iteratively refine predictions based on the evolving context. 

 

  
Figure 2. Our neural network architecture, including a pre-trained image encoder, and a 

Transformer encoder for capturing observed sequences. The lower part is trained 

autoregressively, with previous predictions used as inputs for subsequent predictions. 

 

The transformer encoder encompasses three self-attention layers with hidden dimension 512. The 

MLP includes three linear layers with two intermediate dimensions of size 256, each combined 



Proceedings Paper Formatting Instructions – 7 –  Rev. 10/2015 

with the corresponding layer norm and leaky ReLU activation with factor 0.2. Our image 

encoder is built through four Resnet-blocks, plus an image reconstruction head consisting of 

three transposed convolutional layers that increase resolution and decrease dimensionality from 

the hidden space. In total, our network has approximately 18M parameters, with 12.5M 

parameters for the image encoder and 5.5M parameters for the Transformer and MLP layers.  

 

RESULTS 

 

We run several experiments with the network architecture displayed in Figure 2, with each run 

fixed to 50 epochs. Specifically, we split each simulation into distinct sequences, where a 

sequence consists of O observed steps and T future steps for all agents involved in the 

simulation. Therefore, one dataset sample encompasses O observed steps for all agents, plus the 

semantic maps as input to the network, while T future steps of N agents represent the targets. In 

our experiments, we vary O and T to investigate how well the network can reproduce simulator 

output for short and long sequences, and thereby its capability to model complex agent-agent and 

agent-environment relations across different floorplans. To the best of our knowledge, no 

comparable supervised trajectory prediction experiments are available on such large, synthetic 

datasets. 

A set of augmentations are applied to both trajectories and semantic maps. Initially, a 

padding operation fixes the global input maps to a uniform size. Subsequently, translations and 

flipping along both axes, as well as transposing and random rotations around 90 degrees are 

applied. The network is trained with an initial learning rate of 3e-4 and a ReduceOnPlateau 

scheduler with factor of 0.5 and 7 epochs patience. We use the Mean-Squared-Error (MSE) as 

loss function, and present the results in terms of the Average Distance Error (ADE) and Final 

Distance Error (FDE) metrics in Figure 3, which are well established in the Human Trajectory 

Prediction community and more intuitive than MSE. Notably, we present the results solely from 

the test set that comprises 15% of the original dataset (where the remaining samples are used for 

training and validation).  ADE evaluates the average distance between predicted coordinate 𝑦̂𝑛,𝑡 

and actual coordinate 𝑦𝑛,𝑡 at each time step t for each agent n, while FDE measures the distance 

between the predicted position and the ground truth position of a trajectory at final timestep 𝑇: 

 

𝐴𝐷𝐸 =
∑ ∑ ‖𝑦̂𝑛,𝑡−𝑦𝑛,𝑡‖

⬚
𝑡∊𝑇

⬚
𝑛∊𝑁

𝑁∙𝑇
   ,  𝐹𝐷𝐸 =

∑ ‖𝑦̂𝑛,𝑇−𝑦𝑛,𝑇‖
⬚
𝑛∊𝑁

𝑁
 

 

We run all combinations on 2, 4, 8, 12 and 16 observed and predicted steps, as displayed in 

Figure 3, with the colormap aligned to the ADE. Firstly, we observe a realistic pattern in the 

predictions, namely the network’s ease to predict short-term sequences for two and four 

predicted timesteps, with ADE and FDE values around 0.3 meters and 0.5 meters, respectively. 

Intuitively, we also see increasing errors with fewer observed steps, as the self-attention 

mechanism of the Transformer encoder relies on the input sequence to establish relationships 

between states across observed agent trajectories. As the number of observed steps decreases, the 
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model's ability to capture essential context diminishes, making it progressively harder to predict 

accurate trajectories for longer sequences. This becomes problematic particularly closely after 

agent initialization, when only few previous states are observed. 

Finally, although it is difficult to compare our results to state-of-the-art HTP baselines 

due to the inherent differences in the datasets (large, synthetic ones vs. small, real ones), we do 

observe that the ADE is confidently below one meter for the specific O=8, T=12 combination 

that is the most common benchmark sequence split. For even longer predictions, for instance 

T=16 or more, the network struggles to make accurate predictions due to error propagations, with 

the best performing FDE of approximately 3 meters (provided 16 observed steps). It is evident 

that long-term predictions remain challenging, as previous literature reviews pointed out. 

 

 
Figure 3. Trajectory prediction results in terms of ADE and FDE for different 

combinations of observed and predicted steps. The colormap aligns with the ADE. 

 

CONCLUSION AND OUTLOOK 

 

In this article, we investigate a novel approach in predicting pedestrian simulator output via 

supervised deep learning. Specifically, unlike previous approaches, our network architecture is 

capable of capturing sequential relations to predict future agent trajectories based on previous 
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ones, as well as considering complex agent-agent and agent-environment relationships through 

an image encoder. The dataset to train our neural network is generated through a parametric BIM 

model, which demonstrates that the network can be integrated into the BIM-driven building 

design process. The results indicate that our approach is feasible and can accurately predict 

short-term trajectories up to 12 sequential timesteps. Nonetheless, long-term predictions remain 

challenging. Furthermore, in order to completely emulate pedestrian simulator output, the 

network must be able to reconstruct entire trajectories from only the agents’ initialization 

coordinates, which still remains challenging in concurrent research. 

In future research, addressing the challenges with respect to long-term sequence 

predictions requires an enhanced network architecture, more efficient input data formats or 

advanced training techniques, particularly in the decoding process, given the inherent error 

propagation that may lead to significant divergence in long sequences. Promising options are 

network architectures such as Generative Adversarial Networks, Variational Autoencoders or 

cross-attentional modules in the Transformer decoder for tackling this issue. Furthermore, the 

recent success in Natural Language Processing suggests that adopting pre-training methods like 

Next Sequence Prediction or Masked Language Modeling may prove beneficial for trajectory 

prediction as well. 
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