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Abstract: Early detection is crucial for optimal treatment
and prognosis of cancer. New approaches for pan-cancer
screening comprise the comprehensive characterization of
circulating tumor DNA (ctDNA) in plasma by next genera-
tion sequencing and molecular profiling of mutations and
methylation patterns, as well as fragmentation analysis.
These promise the accurate detection and localization of
multiple cancers in early disease stages. However, studies
with real screening populations have to show their clinical
utility and practicability.
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The concept of cancer screening
and its challenges

Many cancer screening programs aim at the detection of
cancer in early disease stages to enable optimal–if possible,
curative–treatment with best prognosis and high quality of
life. Thus, they focus on specific risk groups like smokers or
individuals older than 50 years because they have a higher
probability of developing cancer. There are many local and
national programs running to regularly monitor individuals
for increased risk or presence of cancer based on genetic
(BRCA1, 2 etc.), biochemical (e.g., fecal immunologic blood

test), radiological (computed tomography, ultrasound etc.),
or invasive methods (e.g., colonoscopy) [1–6].

On the other hand, screening exams are often
critiqued: While they enable the early detection and
prompt treatment of cancer in many cases, they also often
cause “false alarms”. Suspicious findings in false-positive
tested persons have to be verified by additional, often
invasive exams accompanied by considerable risk of
complications and psychological distress [7–9].

Furthermore, several types of bias have to be consid-
ered [10]: The “lead-time bias” suggests a longer survival
by screening that is overestimated due to an earlier diag-
nosis in the screened group although the time of death is
possibly the same in both groups (Figure 1A). The “length-
time bias” leads to distorted perceptions because the
probability of early detecting indolent tumors with a low
growth rate, late occurrence of symptoms and long survival
is higher than detecting aggressive, rapidly growing tu-
mors that become early symptomatic, have a shorter
screening interval and are associated with a poor outcome.
Thereby, the true screening effect is overrated (Figure 1B).
The “overdiagnosis bias” describes the fact that a consid-
erable number of tumors irrelevant to the survival of the
patient are detected and eventually treated by aggressive
therapies which is known as “overtreatment” (Figure 1C).
Thismeans that individuals die laterwith the tumor but not
because of the tumor and are therefore treated unneces-
sarily [10]. Finally, the development of new therapies and
multiple lines of therapy sequences during the course of
cancer havemade it more difficult to estimate the influence
of screening methods for overall survival.

Requirements for blood biomarkers
in cancer screening

There are specific challenges related to the early detection
of cancer via blood-based markers. For optimal decision-
making on the necessity and type of treatment, blood
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Figure 1: Biases that may result in systematic overestimation of the benefits of cancer-screening.
Lead-time bias (A), length-time bias (B), and overdiagnosis bias (C) may arise when the natural history of asymptomatic disease is not taken
into consideration (Figure adapted from Gates, 2014 [10]).
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diagnostics should inform about the presence of cancer,
the location of the tumor, and the aggressiveness and
invasiveness of the tumor.

To maximize the chances of curative outcome, therapy
should be applied as early as possible, ideallywhen lesions
are still very small and barely detectable by radiological
methods. However, in such early stages of disease most
tumors do not release a detectable number of biomarkers
into circulation, making it very difficult to quantify minor
biochemical changes in blood plasma and serum [11–13].

Many attempts to identify and use single tumor- and
organ-specific protein markers for the early detection of
cancer often failed because many so called “tumor
markers” are not tumor-specific but are also released from
non-malignant cells in small amounts [14, 15]. In addition,
there are only few organ-specific markers known. One
exception is the prostate specific antigen (PSA), which has
shown a considerable reduction of mortality in some large
screening trials for early detection of prostate cancer both
in the European ERSPC and the Goteborg trial [16, 17].
Successful implementation of these findings into practical
workflows necessitates the use of uniform methods, accu-
rate decision thresholds for biopsies, andwell-defined time
intervals between serial determinations and reflex testing
e.g., with free PSA for results in the “grey zone”. If these
aspects are not taken into careful consideration, if the
screening cohort is contaminated, treatment methods and
outcomemeasures are different, then opposite results with
poor value of PSA for screening purposes may be found –
even in large-scale and long-running trials [18].

For diagnostic industries, the blood-based screening
for cancer is highly attractive because testing a large
number of “patients at risk” represents an enormous
market potential with considerable estimates of compound
annual growth rates (CAGR) of around 8–9% during up-
coming years [19, 20]. However, as Covid-19 screening tests
have recently shown very clearly, it is crucial that assays
used for screening purposes do not only demonstrate high
sensitivity and specificity, but that they are also validated
in the proper screening setting like in defined risk cohorts:
For meaningful information they should provide a high
positive or negative predictive value that depends strongly
on the prevalence of the disease in the tested population.
At an overall prevalence for some cancer types of around
1:100 to 1:1,000, the rate of false-positive results will
significantly outnumber the correct-positive ones! [11–14].

An improvement of thepredictive values canbeachieved
by individual monitoring of serial biomarker determinations,
their dynamic changes over time, and the parallel testing of
multiple markers in order to increase the sensitivity and
specificity for cancerdetection. Furthermore, biomarkersmay

be used in conjunction with other screening methods, such
as colonoscopy or low-dose computed tomography (LDCT)
to reduce the false-positive detection rate in sequential
screening scenarios [11, 12, 14, 21–23]: In “prescreening” ap-
proaches, individuals with higher risks of cancer can be
identified first by sensitive biomarkers followed by regular
or more frequent check-up exams like colonoscopy. “Post-
screening” use of biomarkers or biochemical risk scores can
help to better estimate the relevance of small suspicious le-
sions detected by screening exams–e.g., by LDCT screening
in smokers–and determine the necessity of further invasive
follow-up investigations. Both approaches are intended to
precisely identify individuals with the highest cancer risk for
more intensive investigations and leave others for regular
monitoring, thereby reducing overall costs and capacities
needed for check-up exams [12, 22, 23]. It has to be empha-
sized that all these considerations are valid for cancer
screeningwith already established proteinmarkers aswell as
with newly developed blood-based nucleic acid biomarkers.

Pan-cancer screening through
plasma ctDNA analyses

The use of next generation sequencing (NGS) technologies
enables comprehensive molecular characterization of can-
cers in tumor tissue as well as in blood plasma derived
ctDNA – also known as liquid profiling [23–25]. This means
that also in blood plasma, the presence of typical molecular
patterns for a specific tumor or even a multitude of different
tumors can be assessed. This so-called “pan-cancer
screening” is based on diverse principles: (i) the molecular
profilingofmutationsonctDNA in combinationwithprotein
markers, (ii) the profiling of methylation pattern on ctDNA,
and (iii) the profiling of ctDNA fragmentation patterns. All of
these approaches focus on the sensitive detection, specific
characterization and localization of cancer [11, 23–28]. There
are currently several takeovers and fusions of big companies
in the United States (Illumina/Grail, Exact Sciences/Thrive)
who have developed ctDNA-based screening products and
launched large prospective screening studies, mirroring the
enormous dynamics and the high market potential in this
diagnostic field [29].

Profiling of plasma ctDNA
mutations and protein patterns

The principal challenge in cancer screening by ctDNA is the
low amount of tumor DNA in blood plasma, particularly in
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early tumor stages, which makes the detection of single
molecular markers very difficult [11–13]. Given the fact that
in cancers with a diameter of 10 mm, less than 1 genome
equivalent (GE) is expected in 10 mL of the blood and
proportion of ctDNA among total DNA is lower than 0.01%,
the probability of detection by a single marker is quite low
[13]. However, recent technical improvements such as pre-
enrichment of ctDNA, error reduction in NGS analyses by
unique molecular identifiers (UMIs) as well as inclusion of
multiple gene targets have shown some promising results
in the early detection of some cancers [12, 23–25]. Yet the
sensitivity for detecting pancreatic cancer was quite
limited with 30% at a 99% specificity when diverse ctDNA
markers were solely used in the CancerSeek study; only
with the addition of protein markers CA 19–9, CEA, HGF
and OPN it could be increased to 64% [30].

In a subsequent study, 61 amplicons from 16 genes and
8 protein tumormarkerswere used in order to early detect a
variety of gastrointestinal, gynecological and lung cancers
in 1,005 tested patients [31]. Sensitivities of 69–98% were
achieved for the detection of ovarian, liver, stomach,
pancreas and esophagus cancers at a specificity of more
than 99% versus a healthy control group (n=812). For colo-
rectal, lung and breast cancer the sensitivities were some-
what lower. In cancer stages I to III, median sensitivities
were at 70% but in the very early stage I they were consid-
erably lower with only 43%.Most remarkably, tumors could
be localized by the combination of ctDNA and protein
markers inup to 83%of caseswhereinproteinmarkersmade
the main contribution [31]. Although the conclusions of the
study were limited due to the lack of a “real screening
cohort”, the selection of tumor patients and healthy control
groups, and the lack of an independent validation, new
studies were encouraged by the promising results.

In the prospective intervention study DETECT-A,
10,005 women aged 65–75 years and without any known
tumors were examined by a stepwise diagnostic workflow,
including double blood exams and positron emission
tomography-computed tomography (PET-CT) [32]. In this
scenario, suspicious ctDNA findings at the initial basis
blood draw applying the original CancerSEEK method had
to be confirmed in a second blood draw wherein only
particular DNA mutations or proteins that were abnormal
in the baseline test were assessed. In addition, potential
molecular contaminations by clonal hematopoiesis were
excluded rigorously by analyzing a larger amount of white
blood cell DNA. Only confirmed positive patients subse-
quently underwent PET-CT analysis.

By use of this differentiated procedure, critical results
were obtained in 490 persons in the basis blood draw that
were confirmed in 134 cases. After PET-CT, 64 individuals

were suspected of having cancer which was finally
confirmed in 26 cases. Among them 9 had lung cancer,
6 ovarian cancer, 2 colorectal cancer but none had breast
cancer. Tumors were detected in these 26 women by use of
ctDNA in 14 cases, by use of proteinmarkers in 11 cases and
by bothmethods in one case. An additional 24 tumors were
found by standard screening procedures, and 46 tumors by
the presence of symptoms [32].

As shown by this detailed description, blood-based
screening enabled the detection of 27% of the 96 tumors in
a total of more than 10,000 tested women. Double blood
exams narrowed the number of women with tumor suspi-
cion down to 1.2% who were chosen for PET-CT analysis.
Finally, only 59% of the remaining 64 suspicious women
after PET-CT (in total 0.4% of all screened subjects) were
unnecessarily subject to further diagnostic procedures.
Although the procedure was extremely laborious and
expensive and absolute numbers seem to be small, the
positive predictive value (PPV) was considerably higher
with 40,6% (26 out of 64) as found bymany other screening
methods [32].

The design of the DETECT-A study is an exemplary
demonstration of how the strategy how PPV can be
improved in screening trials (i) by identifying patients with
the highest cancer risk to increase the pretest-probability,
(ii) by multimarker testing with an orthogonal design, (iii)
by repetitive, serial testing and exclusion of non-specific
results, and (iv) by inclusion of subsequent sensitive
radiological exams – e.g., by use of PET-CT analyses. This
approach is also supported by the proposition of integrative
cancer diagnostics of the EFLM that also suggests the use of
highly sensitive technologies like PET-MRI and artificial
intelligence-based interpretation tools [25].

Profiling ctDNA methylation
patterns

An alternative approach is the comprehensive analysis of
unique ctDNA methylation marks which are found much
more frequently than tumor-specific mutations. Cancer-
associated patterns comprise the methylation of CpG
islands in promotor areas of suppressor genes, such as
MLH1 in colorectal cancer, that lead to the inhibited sup-
pression of tumor growth or DNA repair [33]. Promotor
hypermethylation of the septin-9 gene was used as the
basis of the Epi proColon® test from Epigenomics that
achieved a ca. 70% sensitivity at 80% specificity for
colorectal cancer detection and was approved as the
first methylation assay by the U.S. Food and Drug
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Administration (FDA) despite a positive predictive value
of only 2–3% [34, 35].

Beyond hypermethylation of specific sites, a general
hypomethylation and numerous irregularmethylations are
present over the whole genome in cancer [23–28, 36]. These
altered tumor and tissue-specific methylation patterns can
be analyzed in a targeted or genome-wide manner by
chromatin-immunoprecipitation of cell-free methylated
DNA and high-throughput sequencing (cfMeDIP-Seq) or by
sequencing after bisulfite conversion. There are pros and
cons of the different approaches, like the loss of DNA after
bisulfite conversion and the dependency on antibodies in
ChIP during MeDIP-Seq that are also reviewed in detail
elsewhere [23, 28]. Then, classifiers are built on the basis of
tens of thousands of methylation signals differing between
tumor and normal tissue, followed by validation and use
for prediction of cancers in early stages in plasma samples
as reviewed in [23, 26, 28, 36–38].

The potential diagnostic power of methylation pat-
terns has systematically been investigated in several
studies of the CCGA consortiums with more than 15,000
participants. The so-called multi-cancer early detection
(MCED) classifier was validated in 6,689 individuals
and reached a specificity of more than 99% and a sensi-
tivity of 67% for 12 cancer types in stages I–III. Thereby,
sensitivity increased from 39% in stage I to 69% in stage II
and 83% in stage III. However, the detection of some
tumor types like breast and prostate cancer remained
difficult particularly in the early tumor stage I. Most
remarkably, tissue of tumor origin was localized in 96%of
the cases by a specific methylation signature [37]. In
another recent study, the high specificity and sensitivity
of the MCED classifier was confirmed in an independent
validation cohort [38]. The so called Galleri® test from
Illumina/Grail is now awaiting approval by the FDA.

Similarly to the ctDNA mutation approach, there is a
lively debate on the clinical utility of the Galleri® test with
respect to the limited sensitivity and low PPV particularly in
early stages and for rare cancers, the stability of the marks
and the algorithm as well as the need for validation studies
in real screening settings [13, 39, 40]. Obviously, several
prospective population-scale trials with diverse studies de-
signs have been initiated with more than 300,000 planned
participants that should be able to answer current open
questions in the next years [40].

Fragmentomic analyses of ctDNA

A relatively new screening approach is the analysis of
ctDNA fragmentation patterns in blood [26, 28]. This arises

from the fact that 146 bp ofDNAare associatedwith histone
proteins in so-called nucleosomes that protect DNA from
spontaneous degradation by nucleases [41]. In the case of
regulated chromatin breakdown during apoptotic cell
death in the cell nucleus or in the case of unregulated
cleavage after release of DNA into the blood stream,
DNases will preferably bind at the easily accessible linker-
DNA-sites between nucleosomes, resulting in different
fragmentation patterns [26, 41]. This affects the length of
fragments, which are in tumor patients slightly shorter
than in healthy controls (peak at 146 bp vs. 166 bp) as well
as the type of fragmentation with different breaking
patterns, orientation, and end-point sequence motifs
[26, 42]. An additional diagnostic feature is the “nucleo-
somal footprint” of ctDNA, i.e., the portion of DNA se-
quences that are conserved by nucleosomal protection
and of degraded DNA sequences. This footprint provides
functional evidence for the binding of transcription
factors which is informative for the presence of cancer as
well as for the tissue of tumor origin [26, 28, 43].

A recent study compared the diagnostic power of a
genome-wide DNA fragmentation profiling in combina-
tion with clinical risk factors, carcinoembryonic antigen
and CT-scan for the presence of lung cancer. Although the
study was small, the sensitivity of the DELFI fragmenta-
tion score reached a remarkable 91% in the early stages I
and II, and 96% in stages III and IV, however, at a
specificity of only 80% [44]. Beyond size, there are plenty
of further plasma cfDNA fragmentation characteristics
that may be exploited for diagnostics purposes in the
future [26].

Perspectives

Various NGS-based pan-cancer-screening approaches
yield promising first results in initial studies that have to
be confirmed in independent, multicentric and prospec-
tive trials. Most importantly, new tools for early cancer
detection have to be evaluated in “real screening pop-
ulations settings” mirroring the real prevalence of
different cancer types and confounding pathologies,
considering long observation times and correction for all
biases that occur under screening circumstances [10].
Earlier screening trials have shown how difficult, labo-
rious and expensive it can be to show the real benefit of a
screening method [16–18].

Although the overall sensitivity of several pan-cancer-
screening methods seem to be promising, detection in
preferred early stages remains challenging as sensitivity is
then frequently below 50% and for some tumor types like
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breast and prostate cancer as low as 10–20%. This illus-
trates that in tumors with small volumes minor traces of
plasma ctDNA may be missed even if multitarget ap-
proaches are applied [13, 39]. Given the low prevalence of
some cancers even in risk groups, detection rate and the
positive predictive value appears to be too low for suc-
cessful implementation in clinical patient care [13, 39].

Future strategies therefore have to focus on (i) improving
technologies and better understanding the biology and
metabolism of the markers investigated, (ii) increasing the
pretest-probabilitybyaddressingpersonswithhighest cancer
risk, (iii) applying multimarker testing with orthogonal de-
signs, (iv) serial testing and interpretation of individual
marker dynamics, (v) including subsequent highly sensitive
radiological exams and (vi) developing smart, artificial
intelligence-based interpretation tools, some of these aspects
also being recently suggested by the EFLM [25], to finally
develop integrative, step-wise screening programs.

Other essential criteria for a broad acceptance and use
of screening tools in patient care is data that is convincing
and easy-to-interpret and understand, the availability of
diagnostic capacities, the simplicity, robustness and speed
of analysis, integration into existing workflows, the cost-
benefit efficiency, reimbursement issues and the general
acceptance by clinicians, patients and society. All of these
issues and challenges have to be addressed by the new
approaches.

Finally, it has to be considered that the use of screening
tools is only beneficial if it leads to therapeutic conse-
quences. If a tumor is detected by molecular screening
already in an asymptomatic stage, or possibly even before it
becomes visible by imagingmethods, the questionwill arise
as to when and how to treat it. Both alternatives – watchful
waiting as well as preemptive therapies – will confront the
patient, the clinician and the whole health care systemwith
new challenges [45]. Therefore, all screening approaches –
old or new– should always bear inmind themain bioethical
principle of medicine: “primum non nocere – first, do not
harm”!
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