DE GRUYTER

Current Directions in Biomedical Engineering 2022;8(1): 117-120

Jakob Gaubatz*, Regine Hartwig, and Dirk Wilhelm
Location recognition in laparoscopic surgery

https://doi.org/10.1515/cdbme-2022-0030

Abstract: Navigation systems play an increasingly impor-
tant role in minimally invasive surgery (MIS) by mitigating
the problems rising from the decoupling of hand-eye move-
ment of the surgeon. Many of these systems suffer from a high
dependency on external optical tracking systems that require
a constant line-of-sight to the optical markers being tracked.
Simultaneous localization and mapping (SLAM) algorithms
allow tracking the endoscope in cases where optical tracking
fails due to the cluttered environment in the operating room.
To ensure a correct camera pose estimate and to correct for
drift, a recognition of previously visited locations (loop clo-
sures) is essential. We propose a method for location recog-
nition in a minimally invasive scenario that only requires a
stereo endoscope and an inertial measurement unit (IMU). We
use a hierarchical bag-of-visual-words (BoW) algorithm that
saves compact image representations and enables querying for
matching images. A two-staged consistency check using a ran-
dom sample consensus (RANSAC) and the data measured by
the IMU ensure a high matching precision.
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1 Introduction

Minimally invasive surgery (MIS) has become a standard for
many procedures. However, while patients benefit from de-
creased blood loss, pain, healing time, and improved cosmetic
outcomes, the decoupling of hand-eye movement for naviga-
tional tasks outside of the surgeon’s line-of-sight poses a big
challenge for surgical staff and technology [1, 2]. Navigation
systems try to mitigate these problems by enhancing visual-
ization, planning, and tool tracking but face significant prob-
lems caused by the complex environment within the operating
room. Most concepts rely on optical tracking systems using
reflective spheres and an infrared (IR) tracking camera to es-
timate the camera pose and track surgical tools. Establishing
the constant line-of-sight required for optical tracking is espe-
cially challenging in minimally invasive visceral surgery due
to clutter, significant tool movements, and rotations. To tackle
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this problem, our algorithm updates the camera rotation and
pose estimates if no IR tracking is available using a stereo en-
doscope and the data of an IMU attached to it (compare Fig.
1a) [3]. The visual feature-point-based simultaneous localiza-
tion and mapping (SLAM) method builds a map of the surgi-
cal site and localizes the camera within it. Due to unavoidable
measurement errors and noisy input this method suffers from
a constant drift which decreases the camera pose estimate. A
way to compensate for drift is the detection of loop closures
(already visited locations). Loop closures are expected to oc-
cur regularly in MIS caused by large camera movements dur-
ing exploration or while establishing optimal vision onto the
surgical site. We built a database online from the images col-
lected during the procedure and establish an efficient method
to query for images that are similar to the currently observed
image. Due to the large amount of image data produced during
one procedure, we use a very compact image representation to
enable a memory efficient storing of the images in a database.

This article presents a procedure to detect loop closures in
an MIS scenery using a hierarchical BoW algorithm. We test
the algorithm on a series of images of a visceral surgical scene
and apply additional consistency checks using data of an IMU
attached to the stereo endoscope.

2 Related Work

The efficient recognition of objects or locations in image data
is a well-known problem in computer vision. Some location
recognition algorithms use global features to generate a com-
pact vector representing a scene. GIST being one of the most
popular global descriptors, is used on several occasions for
loop closure detection [4, 5]. It extracts information from im-
ages using Gabor filters at different frequencies and orienta-
tions. A different global image descriptor was proposed by Liu
et al. [6]. They used an average of the U-V color space values
of pixels enclosed in vertical edges to characterize an image.
While this approach showed promising results in an indoor en-
vironment containing many vertical lines, it fails in a laparo-
scopic context, where straight lines are uncommon within the
organic tissue structure.

In a BoW approach, other algorithms use local feature
descriptors like SIFT, SURF, or FAST to create a compact
image representation. Originating from text-based document
analysis, BoW uses a dictionary of visual words generated by
clustered local image features. Counting the number of occur-
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rences of each visual word (cluster center) in an image enables
a compact image representation. This approach has become
one of the gold standards in location recognition [7-9]. To
increase efficiency for large-scale object recognition, Nistér
et al. [10] suggested a tree-shaped vocabulary that enables a
faster lookup of visual words and the efficient use of a more
extensive, more discriminative vocabulary. Galvez-Lépez et
al. [9] improved this approach by the use of binary BRIEF
descriptors with FAST keypoints to speed up the computa-
tional bottleneck of image descriptor extraction. In a medical
context, Moll et al. [11] performed feature matching using a
BoW approach to re-initialize their algorithm for rotating la-
paroscopic images.

To our knowledge, our proposed method is the first Bow
procedure to detect loop closures, specially designed for a
laparoscopic context. Our contribution is as follows: Firstly,
we built a vocabulary from laparoscopic images since feature
descriptors differ from publicly available datasets of human-
made indoor or outdoor environments. Similarly to [9] we de-
cided to use a hierarchical BoW dictionary that discretizes a
binary descriptor space but we follow the approach of [12]
and use ORB-descriptors to overcome the described prob-
lems of lack of rotation and scale invariance when using the
FAST+BRIEF features. Secondly, we evaluated appropriate
vocabulary size and thresholding parameters. Thirdly, in con-
trast to a temporal consistency check proposed in [9], we use
the measured angular velocity data of the IMU attached to the
endoscope.

3 Method

3.1 Vocabulary Tree

To extract the BoW dictionary, the descriptor space gets di-
vided into IV visual words. This visual vocabulary enables the
formation of a compact image representation by assigning all
image descriptors to the closest word. The number of occur-
rences of each word in an image results in a sparse histogram
called BoW vector v; € RY that represents the image. The
vector of each frame is saved and enables querying for sim-
ilar images without the need to compare image descriptors.
We chose a binary descriptor space using ORB-descriptors for
speeding up descriptor computation. The tree-shaped vocabu-
lary with leaf nodes as the visual words reduces the number
of computations required to map an image into the BoW space
by traversing the tree from the root to the leaves. At each layer,
we select the node which minimizes the Hamming distance.
We created a specially designed vocabulary offline, per-
forming k-means clustering on a set of training image descrip-
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tors. The resulting clusters build the first layer of the tree. We
get subsequent levels by repeating the procedure to obtain L
levels and N = k% visual words. Each word gets assigned a
weight based on its occurrence frequency within the dataset,
giving a higher weight to less frequent and thus more discrim-
inative words. We use the popular term frequency-inverse doc-
ument frequency as suggested by [13].

3.2 Thresholding

To compare the similarity between two BoW vectors v; and
vo we calculate the L -distance:
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s(v1,v2) =
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If the resulting score is beneath a certain threshold x,, the
two images should show a similar content, thus representing
a loop closure. A sophisticated choice of the threshold is cru-
cial to ensure the best possible performance of the BoW algo-
rithm. In our binary classification task a suitable threshold can
be found by analyzing the probability density functions (PDF)
fo(z) (images represent a loop closure/ground truth positive)
and f7 (z) (images represent no loop closure/ground truth neg-
atives) for a given dataset. When choosing a threshold z;j, the
true positive rate (T PR) is given by 2 and the false positive
rate (FPR) is given by 3:

Tth

TPR(z,) = [ fo(x)dz 2
FPR(zy,) = /fl(x)dx 3

We choose the threshold by the maximum likelihood decision
rule, resulting in an x4, where fo(x) = f1(x).

Additionally, a receiver operating characteristic curve
(ROC-curve) can be generated by plotting TPR over FPR
for different thresholds x4, that helps to determine a trade-off
between FFPR and T'PR by choosing an error level, i.e, an
upper bound for the false positive rate.

3.3 Consistency Checks

For each image pair (Iq, I,) obtained from the BoW query,
with s(va,vp) < z¢, We apply additional consistency checks
to confirm a valid loop closure. First, we get a camera pose
by matching at least six 2D-3D feature correspondences be-
tween both images. For each landmark z, we find a 3D-
location Py, € R® w.rt. the camera location of the initial-
ization image I,. The required 3D-locations are obtained us-
ing stereo-correspondences found by descriptor matching and
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Fig. 1: (a) The used setup: A stereo endoscope with attached IMU
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reconstruction of the depth using the known camera calibra-
tion of our stereo endoscope. 2D feature points pj 1, ..., Pp,y, in
image I, are added as corresponding to P, . if the descriptor
distance is smaller than a threshold and the distance gap to all
other landmarks is larger than a threshold. The camera pose
can then be calculated using a perspective-n-point algorithm
(PnP) [14] inside a RANSAC provided by OpenGV.

If we find a suiting camera pose, we compare the esti-
mated camera rotation Rransac € SO(3) to the integrated
gyroscope measurements Ry, € SO(3) attached to the en-
doscope to check if the real-world data supports the RANSAC
output. The distance between two Lie-Group elements in
SO(3) represented as the norm of an element of the Lie al-
gebra s0(3) = R? is given by:

d(Rransacs Rayro) = || log (Rransac ™ Royro)l| €R - (4)

If d(Rransac: Rayro) lies under the threshold dyj, = 0.5rad,
I, and I, are considered to represent a loop closure.

4 Evaluation

To evaluate the performance of our algorithm, we extracted
three dictionaries with different parameters L and k from a set
of images of the MITI dataset [15]. The dataset contains im-
ages from inside the abdomen acquired during a visceral MIS.
A set of 39233555 ORB-descriptors extracted from a series
of 75702 images using the OpenCV library form the training
base for the dictionaries. We perform a hierarchical k-means
clustering using the DBoW3 library [16]. To compare the per-
formance of the extracted dictionaries and to choose a suitable
similarity threshold x5, we used a series of 828 images con-

taining a total of eight loop closing scenarios, priorly excluded
from the training dataset. The loop closures show different
anatomical structures and exhibit tissue deformations and il-
lumination changes between the closing events, as it is expect-
able during an intervention. Fig. 1b, 1c, and 1d show the prob-
ability density functions of the dictionaries calculated based
on the test dataset. The curve’s separability differs depending
on the number of parameters of the BoW dictionary. For an in-
creasing number of parameters we observe that the vocabulary
fails to meaningfully represent the descriptor space for unseen
data. The corresponding ROC-curves in Fig. le show an im-
proved generalizability of the vocabulary with fewer parame-
ters on the test dataset. We obtain the best trade-off between
FPR and TPR using the smallest dictionary with & = 30
and L = 2. Based on the maximum likelihood decision rule,
we choose the line intersection threshold z;;, = 0.3 in Fig. 1b
which results in a TPR = 0.63 and FPR = 0.37 and corre-
sponds to the shoulder point in the ROC-curve. Alternatively,
we can choose a predefined error level and design a Newman-
Pearson test that decides for the hypothesis of a match being
valid based on a threshold determined by the chosen F'PR.

Since the BoW query output is used in a SLAM algorithm,
the number of false detections (false positives) should be as
small as possible to give a high rating to the query results when
weighting the SLAM-residuals. Therefore, we attach more im-
portance to high precision than to high recall using the Fjg-
score:

precision * recall
(B2 * precision) + recall

Fg=(1+p%)« )

The parameter 3 adjusts the weighting of recall and pre-
cision. A f < 1 increases precision weighting, and a g > 1
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increases the weighting for recall. In our case, we choose
B = 0.1. We evaluate the metric on the same set of 828 images
previously used. We define a true positive as both frames being
part of a matching frame interval also considering neighbor-
ing frames. The matching frame intervals were hand-labeled
prior to testing. Like in a real-world scenario, we process
all image frames successively by first converting them into
the BoW space, saving the BoW vector in the database, and
then querying for matches. Since not all images are present in
the database from the beginning, the number of ground truth
matches for one query frame is the number of matching frames
present in the BoW database at query time.

Fig. 1f shows the Fg-scores after querying for a match,
after the consistency check using RANSAC, and after the last
consistency check with the angular velocity evaluated for dif-
ferent matching thresholds z;,. It is observable that a consid-
erably high score can be achieved without consistency checks
when using a very restrictive threshold. Since a low thresh-
old also causes a high rate of discarded loop closures, taking
a low threshold is not optimal, proving the necessity of con-
sistency checks. The RANSAC consistency check allows the
choice of a much higher threshold without the drastic decrease
in performance. The PnP, however, holds the drawback that for
significant tissue deformations in the image sequence it can
not find a rigid transformation between the matched frames,
thus decreasing the recall. To compensate for that, we choose
the RANSAC and PnP hyperparameters to be less restrictive,
increasing the recall but simultaneously decreasing precision
since it is more likely to find meaningless transformations.
We filter out those false positives by the IMU-consistency
check that constantly keeps high Fg-scores even for increas-
ing thresholds x;j. The recall decreases in cases of large, rigid
object movements, where descriptors are matching but IMU
measurements do not fit the observed movement.

5 Conclusion

We present a method for location recognition to detect loop
closures in laparoscopic MIS using a stereo endoscope and
an IMU attached to it. Using a specially designed BoW vo-
cabulary and approach, we can effectively store compact im-
age representations and query for similar images. The eval-
uation demonstrates that the two-staged consistency check
using RANSAC and the angular velocity data measured by
the IMU provides high matching precision even for less re-
strictive matching thresholds. However, the main limitation of
our method is a low recall for significant tissue deformations
or large object movements. Therefore, the consistency check
serves as a segmentation of rigid image parts, downweight-
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ing/deleting residuals of matches from dynamic/deformed ob-
jects from the SLAM optimization problem.

In the future our method will be integrated into an already
existing SLAM system [3] to further validate the impact onto
the camera tracking accuracy.
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