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Abstract: Due to the increase in Artificial Intelligence in
theproduction systemsdomain, Industry 4.0 (I4.0) experts
must collaborate with autonomous systems. Industrial AI
raises several concerns about existing standards, which
provide guidelines and design patterns. One way to real-
ize I4.0 systems are Industrial Agents (IAs) due to their in-
herent autonomy and collaboration. Multi-Agent Systems
(MASs) are well suited for realizing distributed AI in I4.0
components. Considering the properties of IAs and exist-
ing standards, an MAS architecture is presented for flex-
ible and intelligent Cyber-Physical Production Systems.
The article compares I4.0 standardization efforts relevant
to adaptAI in the formof IAs, illustrates how IAdesignpat-
terns can be used, and introduces the Multi-Agent aRchi-
tecture for Industrial Automation applying desigN patterNs
practicEs “MARIANNE”. An implementation guideline is
presented to put this CPPS into practice.

Keywords: Artificial Intelligence, Cyber-Physical Produc-
tion Systems, Industrial Agents, Multi-Agent Systems

Zusammenfassung: Aufgrund der Zunahme künstlicher
Intelligenz im Produktionssystembereich müssen Indus-
trie 4.0 (I4.0) Experten mit autonomen Systemen zusam-
menarbeiten. Industrielle KI wirft Fragen zu bestehenden
Standards auf, die Richtlinien und Entwurfsmuster bereit-
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stellen. Eine Möglichkeit, KI in I4.0-Systemen zu realisie-
ren, sind aufgrund ihrer inhärenten Autonomie und Zu-
sammenarbeit industrielle Agenten (IAs). Multi-Agenten-
Systeme (MASs) sind gut geeignet, um verteilte I4.0-
Komponenten zu realisieren. Unter Berücksichtigung der
Eigenschaften von IAs und bestehender Standards wird
eine MAS-Architektur für flexible und intelligente Cyber-
Physical Production Systems (CPPS) vorgestellt. Der Ar-
tikel vergleicht I4.0-Standardisierungsbestrebungen, die
für die Adaption von KI in Form von IAs relevant sind,
zeigt auf, wie KI-Entwurfsmuster verwendet werden kön-
nen und stellt die Multi-Agent aRchitecture for Industri-
al Automation applying desigN patterNs practicEs „MARI-
ANNE” vor. Es wird ein Implementierungsleitfaden vorge-
stellt, um dieses CPPS in die Praxis umzusetzen.

Schlagwörter: Cyber-physische Produktionssysteme, In-
dustrielle Agenten, Künstliche Intelligenz, Multi-Agenten
Systeme

1 Motivation

Artificial Intelligence (AI), in the context of Industry 4.0
(I4.0), opens up the possibility to solvemachine tasks pre-
viously considered to be only performable by humans: in-
terpreting natural language or visual data, identifying de-
sign patterns, and making autonomous decisions [19, 21].
In I4.0, interconnections between machines, smart sen-
sors, actuators, are becoming more common. The net-
worked entities, also known as Cyber-Physical Produc-
tion Systems (CPPSs), or industrial Cyber-Physical Systems
(CPSs) [24], initially commenced as automated Production
Systems (aPSs) in various manufacturing domains. The
CPPSs consist of CPSs applied in aPS domains to link
physical and virtual objects (real world and information-
processing) through constantly, and oftentimes globally,

Open Access. © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/auto-2022-0008
mailto:luis.cruz@tum.de
https://orcid.org/0000-0001-8386-5568
mailto:vogel-heuser@tum.de
https://orcid.org/0000-0003-2785-8819


L. A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow | 581

interconnected information networks [24]. Typical intelli-
gence concepts enabling CPPSs are “agent” entities that
are often related to AI, referring to a smart, self-contained
software program [14]. Agent-based definitions, typolo-
gies, methodologies, technologies, standards, platforms,
design patterns, and programming language approaches,
such as Agent-Oriented Software Engineering, have all
evolved throughout time [6]. Multi-Agent Systems (MASs)
consist out of Industrial Agents (IAs) that have been touted
as a viable and feasible answer for a series of new in-
dustrial challenges over the years [6, 14, 17]. However,
there is no deep analysis of IA’s levels of intelligence, nor
their direct correspondence to AI applied in I4.0. Addition-
ally, combining AI through Machine Learning (ML) into
IAs has made it possible to achieve CPPS’ learnability and
reconfigurability [21], which are necessary properties to
deal with I4.0 issues. Furthermore, the deployment of au-
tonomous and collaborative manufacturing entities with
enhanced self-capabilities, such as self-optimization, self-
awareness, and self-monitoring, is a priority for CPPS [21].
Industrial AI via IAs is viewed as an essential technology to
accomplish these capabilities anddisrupt thewayaPSpro-
cesses and business models are structured as part of the
I4.0 paradigm [6, 14, 17]. AI is a sub-discipline of software
engineering, capable of implementing IA characteristics
traditionally associated with human intelligence, such as
autonomy, reactiveness, reasoning, predictiveness (learn-
ing), and self-improvement [26]. Despite this, there is no
widely acknowledged, precise, and standardized defini-
tion of Industrial AI [21].

Notwithstanding the ostensible benefits of these In-
dustrial AI systems – CPPS implemented by IAs – the cost
of factory transformation, insufficiently qualified people
in essential AI technologies, a lack of design processes,
and reusable MAS applications continue to make it diffi-
cult for industries to implement I4.0 concepts. For this rea-
son, in recent years, IAworking groups, TC-IA1 by the IEEE
P2660.1 and theGerman IFACNMOGMAFA5.152 VDI/VDE,
have addressed these challenges by establishing design
patterns and best practices. Two relevant standards, the
“IEEE Recommended Practice for Industrial Agents: Inte-
gration of SoftwareAgents andLow-Level AutomationFunc-
tions” [11] and the “2653 Sheet 4: Multi-agent systems in in-
dustrial automation – Selected patterns for field level con-

1 TC-IA refers to the IEEE-IES Technical Committee on Industrial
Agents.
2 FA 5.15 “Agent systems” is aGermanworking group (GMA). English:
Society of German Engineers VDI, and German Electrical Engineers
VDE. VDI/VDE is known as a National Member Organization (NMO)
of IFAC.

trol and energy systems” [30], suggest methods for devel-
oping IAs. The combination of these standardization ef-
forts with models that reflect IA design concepts [1, 3–
5, 8, 9], and also with established notions such as the
Product, Process, Resource (PPR) concept, and I4.0 stan-
dardization efforts, specifically RAMI4.0, is crucial though
and requires an integrated architecture. Hence, this arti-
cle makes three contributions. First, it examines how an
agent-based CPPS can be combined with relevant Refer-
ence Architecture Model I4.0 “RAMI4.0” [7] and the PPR
model (Con1). Second, an MAS architecture for CPPS de-
rived from IA patterns is presented (Con2). Third, to im-
prove industrial applicability, a guideline is provided in
order to facilitate the IAs and AASs implementation into
hybrid CPPS platforms (Con3).

This manuscript is structured as follows: Section 2 ex-
plains IAs’ requirements and introduces the state of the art
regardingMASs in I4.0. Section 3 contains themain contri-
bution of this work and presents an agent-based CPPS and
its definitions. Section 4 describes the MAS’ implementa-
tion by applying an I4.0 scenario and Section 5 discusses
findings from the evaluation. The paper concludes with a
summary and an outlook.

2 State of the art

This section introduces related work regarding Industrial
Agents, their standardization, and approaches for combin-
ing them in an MAS for I4.0. Different viewpoints are de-
cided by current I4.0 experts, leading to multiple models
and meaning various descriptions of the target system [3].
Regarding agent-based CPPS, the two IAs standards are re-
lated here, showing diverse IA pattern types that the MAS
community analyzed from several functionality points of
view.

2.1 Industrial agents for I4.0:
categorization, modeling, and
standardization

Industry 4.0 and CPPS often refer to the MAS approach
[6, 14, 17, 24], and to the Asset Administration Shell (AAS),
which is one of the main specifications of the RAMI4.0 [7].
The AAS, together with an IA, allows smart access to as-
set resource information, aswell as connectivitywith other
I4.0 components [6]. Applying Information Technology (IT)
for I4.0 is notable and able to deploy the Digital Twin
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(DT) concept [22]. Leveraging DTs’ technologies, specifi-
cally, the AAS to realize an MAS, increases the flexibility
and adaptability of aPS [31]. In another hand, an IA is an
intelligent entity used for distributed problem-solving in
automation, typically characterized as autonomous, col-
laborative, and communicative [11]. Implementing IA tech-
nology within multiple automation fields (e. g., planning,
scheduling) has been studied for several years. For exam-
ple, many international projects foster research on future
factories that use IAs, e. g., in smart production, smart
logistics, smart grids [17]. In contrast, using IAs in the
field at the process level (supervision and control) is com-
paratively novel research considering hard/soft real-time
needs [6, 11, 30]. A specific requirement is that an IA must
be autonomous [10, 11, 30]. It may work in an organized
way with other external agents, even humans [11]. IAs
could be applied to apply the Human-in-the-loop concept
in I4.0 [14], where the plant floor operators can act and in-
teracts as agents in the CPPS. All instances should con-
sider different amounts of data and ensure a timely re-
sponse in order to react to workwith agents’ decisions and
actions. The above characteristics divide IAs into multiple
categories, as shown in the following subsections.

2.1.1 Traditional types of IAs by response time and
behavior

For most agent-based automation developers, it is well
known that agent features are mainly based on classifi-
cations. These grouping methods – often called design
patterns – generate relationships and approximate com-
mon functionalities at different automation levels [6]. An
IA also provides the intelligence for the sensors/actuators
to have Low-Level Control “LLC” (with soft or hard real-
time) or provides the support that helps foster a desirable
collaboration withManufacturing Execution System (MES)
and the Enterprise Resource Planning (ERP) levels. Both
ERPandMESarepart ofHigh-Level Control “HLC” andusu-
ally do not require real-time capabilities. Therefore, there
are initially numerous categories, including the Reactive
Agent and the Deliberative Agent definitions [17].

Unland [29] defines a Reactive Agent as a “simple”
agent because this type does not dealwith a representative
world (modeling), nor does it apply complex reasoning.
The Deliberative Agent is often semantically on a higher
level than “reactive” and “proactive” [29], since this type
is synonymous with “Strategy & Goals” and can involve
functions based on (but not limited to) probabilities, logi-
cal deduction, knowledge-based reasoning, among other

inference mechanisms [32]. The Deliberative Agent’s be-
havior and common architectures are reasonably more so-
phisticated than the ones of Reactive Agents. This IA type
is most prevalent, even if the internal processes of delib-
erative software are more complicated, which increases to
their timeand resource consumption.However, in contrast
to a human operator, a Deliberative/Proactive agent “un-
derstands,” only a small part of the entire world, i. e., data
acquisition is restricted by non-biological sensors. Never-
theless, it alwayshaswide-ranging, real-world knowledge.
In the industry, Reactive Agents are implemented in vari-
ous ways, including mapping between situations and ac-
tions. Their connectionways canbe [6]: first directwith the
same network domain, i. e., synchronous connection web
service or OPC UA [34]; second, indirect across different
network domains., i. e., asynchronous FIPA (see ACL Mes-
sage Structure Specification [10]). From those definitions,
Deliberative Agents are moderately flexible when imme-
diately acting upon their environment. They can, on the
other hand, become substantially more complicated and
slower in their reactions. Instead, the Reactive Agent’s be-
havior includes a faster response to relevant stimulations
from its environment, as input produces output by sim-
ple situation-action associations that are frequently imple-
mented, whilst ignoring the rest of the perceived history
(also namely simple Reflex Agents [26]). Hence, the Reac-
tive Agent requires fewer resources than the Deliberative
Agent, and it reacts more quickly.

Nevertheless, on the negative side, the Reactive Agent
is not as dynamic and flexible as the Deliberative Agent
that can usually behave proactively. In other research,
Russell and Norvig [26] consider the behavior of Reactive
Agents to be generally not (much) worse than the one of
Deliberative Agents (also namely Rational Agent [26]). Un-
der certain conditions, proactiveness would imply agent
reactiveness, so IAs react to a state change to achieve a goal
[5].

New advances in IA’s classification considering multi-
ple smartness dimensions should be an interesting topic
for distributed AI researchers, but up to now, it has been
avoided. Two reasons for improving IA typologies are:
firstly, to prevent the AI effect, meaning the IA technolo-
gies that were once thought to be intelligent will be-
come outdated as systems are becoming increasingly ca-
pable. One example would be providing adaptability to
predictability in CPPS architectures that need to be scaled
up [24]. Secondly, this IA categorizationdepends on the ex-
istence or not of the normalized IAs. For instance, if a CPPS
architecture includes reactive or proactive IAs, this is a tra-
ditionalMAS [29]. In contrast, IA classificationbasedon its
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capabilities is more precise, since an IA may handle sev-
eral functions borrowed from advanced AI characteristics,
e. g., learnability [14]. Therefore, Section 2.1.2 proposes a
new IA categorization regarding specific requirements in
the same section and complements it with the traditional
agent types.

2.1.2 Modern classes of IAs (by AI characteristic and IA
capability)

This section proposes combining the traditional types of
IAs with means of modern categorization by Industrial AI
definitions related to I4.0 prerequisites. Summarizing Sec-
tion 2.1.1, the traditional typology refers to response time3

andmain behavior (or feature) by three types of IAs, as fol-
lows (those are adapted from [26, 29]):
– Reactive IA, that reacts to perception [29].
– Proactive IA, that performs initiative actions [29].
– Deliberative IA (henceforth “Predictive IA”), that an-

ticipates by learning tasks. Here, we refer to predic-
tive learning to specify the learning agent that can be
formed or not formed from a traditional IA (reactive or
proactive ones) [26].

One prerequisite for the I4.0 is the formal specification of
capabilities and skills [34]. The I4.0 Platform defines a Ca-
pability as an “implementation independent potential of an
Industrie 4.0 component to achieve an effect within a do-
main” [23]. Also, they describe that a Skill “can be made
executable via services” [23]. On the other hand, the Com-
petence of a system is the “ability to apply knowledge and
skills to achieve intended results” (this taxonomy is stan-
dardized by the ISO/IEC/IEEE 24765 [12]). Skills are also
adopted from the IAs community to denote one of theMAS
self-contained software functionalities [11]. Therefore, in
this paper, capabilities state competencies, just as skills
state functionalities (set of functions to provide IA ser-
vices).

Typically, systems capable of Industrial AI implement
minimal AI characteristics like autonomy (C1) and reac-
tiveness (C2). In various I4.0 use cases, the system auton-
omy is provided by auto-adjusting aPS. A more detailed
description can be found in [19]. As a result, in Indus-
trial AI, the degree of autonomy of equipment or processes
is higher or lower according to the I4.0 scenarios [32]. In

3 Response time, or Time response refers here to the how long is
the time taken by the Industrial Agent to respond to a certain task
(adapted from the IEEE 2660.1 guideline [11]).

the case of reactiveness, for most AI techniques, reactive
control is sensor-driven, and it is the most appropriate for
low-level actions [26], i. e., hard and soft real-time. More-
over, Industrial AI frequently requires proactive (C3) and
predictive (C4) capabilities [21], both are reasoning char-
acteristics, but the last one is the most complex Indus-
trial AI characteristic since it requires learning from the
past (as discussed in Section 2.1.1). On one side, reasoning
generates global solutions to complex tasks using plan-
ning [26], i. e., models for decision making (C3) or models
learning fromexperience/predicteddata (C4).On theother
side, proactiveness (C3) logically implies reactiveness (C2)
[5]. Consequently, Industrial AI often uses reactive meth-
ods for LLC anddeliberative/reasoning techniques for HLC
[26] (see IAs’ definitions in Section 2.1.1). Finally, the hu-
man cooperativeness characteristic (C5) increasingly con-
sider human-machine integration as a fundamental de-
sign principle of CPPSs [14]. However, IA is still far from
an entirely symbiotic human and AI interaction, meaning
there are a poor relationship, co-existence, and collabora-
tion among humans (C4) and IAs [13]. Therefore, concepts
like predictability (C4), as well as the involvement of the
Human-in-the-loop (C5), are the most critical capabilities
to be achieved in Industrial AI systems [21]. Predictability
(C4), applying ML, is one of the AI characteristics through
which IAs provide CPPS to achieve learnability [21]. Pre-
dictive learning is a termused to describe an unsupervised
ML system that can anticipate characteristics of its chang-
ing states [26].

A summary of the Industrial AI characteristics dis-
cussed above is enlisted in Table 1.

2.2 Standardizing industrial agents

Derived from the Industrial AI characteristics (see Section
2.1.2. Table 1), the authors determined four IA classes with
specific capabilities potentially interesting for the devel-
opment of MASs. As listed in Table 2, Class I refers to Phys-
ical access agent, Class II to Organizational agent, Class
III to Interface agent, and Class IV to Human agent. Each
Industrial AI characteristics supports the IA classes by
implementing their capabilities. This means that differ-
ent Industrial AI characteristics implementations can be
mapped to each IA class’s capability (at least one skill
to each class). Moreover, skills and capabilities differ in
the level of implementation [23]: while skills offer details
of asset-dependent descriptions [22] (e. g., Common Data
Dictionary/ECLASS/IEC 61360, OPC UA/IEC 62541 meth-
ods), capabilities are independent formal abstractions of
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Table 1: Definitions of Industrial AI characteristics.

Industrial AI characteristic Characteristic definition

C1. Autonomy [19] Degree to which an industrial system can independently master uncertain conditions in a delimited and
automated manner achieving its objectives systematically, i. e., without external or human intervention

C2. Reactiveness [26] Degree to which an industrial system can respond to a request for the processing of its environment
information (observation and communication responsiveness in real-time)

C3. Proactiveness [5] Degree to which an industrial system takes the initiative for deciding and processing information whilst
pursuing a goal (reasoning for deliberative tasks).

C4. Predictability4 [24] Degree to which an industrial system can predict (predictive capability [25]) the next outcomes of actions
given the actions in the previous tasks and the self-learning (from past information).

C5. Human cooperativeness [14] Degree to which an industrial system can apply the Human-in-the-loop concept

Table 2: Industrial Agents, their main competencies and examples.

IA class IA’s competence/capability (capable of) Instantiation (a particular example)

I. Physical access agent Abstracting and connecting heterogeneous
production equipment with the MAS

This IA acts as a digital representation of a physical object
ranging from a single product (or a service) to an
enterprise network at the hierarchy axis [2]. This IA class
also has access to assets’ main functionalities and is
building on the normalized Resource Agent (see VDI/VDE
2653-4 guideline [30])

II. Organizational agent Offering various services into an integrated and
united execution model that can support
managing and organizing the operation of the
MAS and its IAs (see FIPA Agent Management
Specification [10])

This IA type is often concerned with non-physical entities,
e. g., orders, production plans, production schedules,
among others [29]. The typical instances of this IA class
are the normalized Agent Management System and the
Process Agent (see VDI/VDE 2653-4 guideline [30])

III. Interface agent Providing effective communication between the
IAs converting property interfaces into multiple
protocols

An IA class’ instantiation is the normalized
Communication Agent (see VDI/VDE 2653-4 guideline
[30]), and this may, for example, interconnect IAs and LLC
automation functions based on the IEEE 2660.1 interface
practice [11]

IV. Human agent Allowing humans to act as agents in the MAS
interacting with others agents/systems among
the automation levels

This IA type should be able to achieve the concept for
Human-in-the-loop in I4.0 [14]

the asset application functionalities and that can be ex-
pressed in different ways, e. g., Knowledge Base (KB) for-
malismsbyWebOntology Language,UnifiedModeling Lan-
guagemodels UML/SysML/IEC 19514 [1].

Classes I and II (physical and organizational agents)
cover most traditional IA types also normalized by the
VDI/VDE 2653-4 guideline [30]. Those agents are named
Resource Agent (RA), Process Agent (PA), and Agent Man-
agement System (AMS). The Physical access agent is de-
rived from the RA to access the capabilities of physical re-

4 There aremany definitions to Predictability referring to CPS, as dis-
cussed by Sun et al. [28]; however, we adapted this IA characteristic
based on “the ability to anticipate the behavior of a system”definition
presented by Lee [16]. Additionally, in our approach, the agent-based
CPPS needs to be predictable (able to be predicted) to be learnable.

sources, i. e., abstracting and connecting heterogeneous
production equipment with the MAS [30]. The AMS is part
of the Foundation for Physical Agents “FIPA” (see Agent
Management Specification [10]), while the typical Class III
(interface agent), as the Communication Agent (CA), is ad-
dressed by the IA interfacing patterns of the IEEE 2660.1
guideline [11]. The main definitions from both IA stan-
dards and FIPA elements concerning this work are de-
scribed in Section 3. The IEEE 2660.1 interface practices –
related to Class III agent – are clustered by location (the
place where the HLC/LLC are hosted), i. e., on-device or
hybrid; and the interactionmode dimensions (the way the
HLC/LLC interact), i. e., tightly coupled or loosely coupled
[11]. Thus, the CA accounts for the wide range of IA’s inter-
facing techniques, divided into those two levels of abstrac-
tion. In contrast to the other IA classes (I-III), and due to
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its complexity, Class IV (human agent) is not standardized
yet. One reason is probably the different approaches from
MAS developers to describing intelligence resulting from
a Human-in-the-loop between processes and a human be-
ing.

As CPPSs are complex, modeling them from different
viewpoints helps cut the overall complexity. Taking this
into account, CPPS developers demonstrated that integra-
tion with legacy IT systems (e. g., ERP, MES, PLM appli-
cations) must be addressed proactively [21]. Thus, agent-
based CPPSs typically encompass multiple data sources,
which are able to get reusable information to successfully
deploy distributed AI applications at a large scale, i. e.,
System of a System concept [14]. A relevant modeling re-
quirement for I4.0 is the RAMI4.0 capability, specifically in
the AAS concept. Thus, here RAMI4.0 capability refers to
that MAS architectures should accomplish the developed
I4.0 reports with various models, providing the basis for
expanding new I4.0 components, as the Details of the As-
set Administration Shell report version 3.0 [22]. Therefore,
in order to improve I4.0 semantics, a CPPS should consider
RAMI4.0 as a design principle rather than I4.0 conceptual
standard. This means that CPPSs need an integral under-
standing of the AAS context, where the details of the I4.0
component enables binding semantics, clearly identifying
its assets, sub-models and properties in a constantly read-
able directory [22]. Interestingly, MAS authors using the
AAS and OPC UA [20, 34] added flexibility by the Plug &
produce concept (similar to Plug & play and Plug & work
terms [23]) in various I4.0 scenarios. MASs enable I4.0 sce-
narios such as Adaptable Factory, Order Controller Prod-
uct, and Self-organizing Adaptive Logistics extended by the
authors in [32].

Summarizing, the variety and heterogeneity of avail-
able standardization efforts hinders the efficient and in-
teroperable design of agent-based CPPSs, i. e., applying
the details of the AAS, RAMI4.0 capability, I4.0 compo-
nents and I4.0 scenarios concepts. To address these issues,
the interconnections between the AAS and the respective
models need to be identified, which allows the creation
of an MAS architecture compatible with current I4.0 ap-
proaches.

2.3 Selected MASs for Industry 4.0

This section analyzes existing MAS from different I4.0
research groups in order to have a wide range of ap-
plication domains and points of view. The selected re-
searches are named with acronyms or the prominent au-
thors’ last name. The I4.0 architectures are selected based

on the representative aspects of the aPS domain and the IA
classes identified, as follows: Class I for field-level control,
PROPHESY-CPS [20] and Zimmermann et al. [34]; Class
I-II for discretemanufacturing,H-Entity [5] and SemAnz40
[9]; Class I-III for pattern-based CPPS, Cruz et al. [6], FAPS
[8] and MOSAIK [4]; and finally, covering Class I-IV for In-
dustrial CPS, Ribeiro et al. [24].

When comparing the selected architectures (cp. Table
3), it becomes apparent that aPS domains focus on reac-
tiveness (C1) and proactiveness (C2). Regarding the man-
ufacturing domain, the SemAnz40 [9] defines the KBs to
support semanticmodeling of a reactive aPS (C2). From the
relevant designs for I4.0, Ribeiro et al. [24] propose a CPPS
with strongly human cooperativeness (C5), according to
five scale levels of requirements, including adaptability,
convertibility, integrability and other requirements; each
requirement is described with an obligation grade from
three options: shall (must), should (optional), and will
(may). Its industrial CPS focuses on local autonomy (C1)
and basic protocols, changing its structure dynamically to
cover, among others, predictability (C4) [24]. Although no
reusable patterns are considered in most selected works,
by contrast, MOSAIK [4] determined selected patterns fo-
cusing on the role played by theObjectManagement Group
(e. g., UML/SysML) and AutomationML as exchange stan-
dards for CPPS engineering.

Finally, the creators of promising MASs for CPPS fo-
cus on their natural autonomy, reactiveness, and proac-
tiveness, but their different objectives affect the level of ab-
straction of the model, even in the same application do-
main. For instance, MOSAIK [4] is a self-organized MAS
consistingof different agents or “artifacts”within theman-
ufacturing domain – particularly architectures based on
the cloud,Web of Things, and Industrial Internet of Things
technologies. MASs, by their very nature, have often high
autonomy (C1) and reactiveness characteristics (C2), as
demonstrated by IA researchers [6, 14, 17, 24]. However,
MAS architectures have not advanced in the learnability
of the agents (C4), and few works consider the design pat-
terns practices [4, 34], which use human analyses (C5) to
improve reusability among other benefits [11, 30]. In gen-
eral,most of the representative CPPS approaches shown in
Table 3 are missing predictability characteristics (C4) and
the RAMI4.0 capability. Therefore, in order to fulfill those
requirements, this paper proposes the Multi-Agent aR-
chitecture for Industrial Automation applying desigN pat-
terNs practicEs (MARIANNE) following the IA’s normalized
guidelines [11, 30], and addressed by standardized defini-
tions of its classes (see Section 2.2).

Exploring the state-of-the-art, the authors considered
exemplary MASs extended from [3], as given in Table 3.
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Table 3: Selected MAS architectures for Industry 4.0. Extended from [3].

Cruz et al. [6] FAPS [8] H-Entity [5] PROPHESY-
CPS
[20]

Ribeiro et al.
[24]

SemAnz40
[9]

MOSAIK [4] Zimmermann
et al. [34]

Industrial AI
characteristic
(C1–C5)

C1 Auto.
C2 React.
C3 Proact.
C5 Human
coop.

C1 Auto.
C2 React.
C3 Proact.

C1 Auto.
C2 React.
C3 Proact.
C4 Predict.

C2 React.
C3 Proact.
C4 Predict.

C1 Auto.
C2 React.
C3 Proact.
C4 Predict.
C5 Hum.
coop.

C1 Auto.
C2 React.
C5 Hum.
coop.

C1 Auto.
C2 React.
C5 Hum.
coop.

C1 Auto.
C2 React.
C5 Hum.
coop.

IA’s classes
(patterns)

I-III (RA, PA,
CA, AMS)

I, III (RA, PA,
CA, AMS)

I-II (RA, AMS) I (RA) I-IV (RA, PA) I, II (RA, PA,
AMS)

I-III (RA, PA,
CA)

I (RA)

RAMI4.0
capability

Partially Yes No Yes Partially Partially No Partially

PPR structure Resource Resource Process
Resource

Resource Process
Resource

Process
Resource

Product
Resource

Resource

They are categorized by the Industrial AI characteristic
achieved, the IAs applied,RAMI4.0 capability, and thePPR
(from the VDI/VDE 3682 guideline) structure correspon-
dence (see details in Section 2.1 and Section 2.2).

Regarding the combination of RAMI4.0, PPR, and IAs
suitability for applying CPPSs (Con1), the authors of this
study intend to extend preliminary work [6]. One signifi-
cant differentiation is the development of the DT by AAS
together with IAs for a CPPS (see Sec. 4). Another criti-
cal factor from this paper is integrating and evaluating
an MAS architecture using the existing IA pattern stan-
dards (see Sec. 5). However, to the best of their knowledge,
DTs and IA design patterns, specifically the AAS, have
not yet been combined into an agent-based CPPS architec-
ture. Hence, there is a need for an architecture that sup-
ports developers in explaining (Con2) and implementing
MASs (Con3). AnMAS architecture and its implementation
guideline in the CPPSs context shall be developed here.

3 Architecture and implementation
workflow for agent-based CPPSs

This section describes a newly developed architecture for
an MAS, improving semantic consistency by combining
standardized entities. Each component definition and the
code implementation described here is freely available on
the GitHub Agent 4.05 project under the GPL v3.0 license.
Meta-elements follow the UML class diagram (MOF 2.0),

5 MARIANNE codes into the Agent 4.0 project: https://github.com/
siulzurc/agent4.0/tree/main/src/MARIANNE

and similar to other IA authors [4], the word “entity” is
used as a synonym for “UML object” to avoid misunder-
standing with a real object participating in an action. In
general, many details such as the unique identifier or ID,
name, and description of each entity are not considered to
make the MAS architecture easily comprensible.

3.1 Comparing models for I4.0/CPPS

MARIANNE is an agent-based architecture proposed for
the manufacturing domain. This MAS is based on various
notions, which are partially standardized in I4.0 works.
The architecture proposed focuses not only on describ-
ing the IA patterns introduced in the VDI/VDE guidelines
(2653, 3682) but also on relationships with RAMI4.0 [7],
i. e., I4.0 concepts and the AAS concept. MARIANNE asso-
ciates relevant and traditional aPS domain concepts, i. e.,
ISA-88 (IEC 61512-1) scenarios. For an overview of MARI-
ANNE’s key concepts and how they relate to models de-
veloped in the context of I4.0, such as RAMI4.0, but also
the PPR concept, see Table 4.

Preliminarily, detailed analyses in Table 4 about ex-
isting models’ classes for I4.0 should be executed regard-
ing various aspects, such as function hierarchy levels, in-
formation classes, level of detail, specific application do-
main, among others, defined by [3]. In essence, a core
model for I4.0 would allow for the creation of a modeling
language with standardized concepts and terminologies,
specifically based on the RAMI4.0/AAS and the PPR mod-
els. For instance, functional hierarchy levels can be real-
ized via the I4.0 component in RAMI4.0/AAS, and via Re-
sources in the PPR model. Using the MARIANNE classes
related to the standards such as those mentioned, partic-

https://github.com/siulzurc/agent4.0/tree/main/src/MARIANNE
https://github.com/siulzurc/agent4.0/tree/main/src/MARIANNE
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Table 4: Relationship and comparison between models’ classes for Industry 4.0.

How can the
(1–3) model
realize or define
the (a–i)?

Metamodel criteria*

a.
Functional
hierarchy
levels

b.
Engineer.
Process
steps

c.
Technical
flow sorts

d.
Material

e.
Information
classes

f.
Discipline
range

g.
Level of
detail

h.
aPS type

i.
Specific
application
domain

Vi
as

of
th
e
im
pl
em

en
ta
tio

n

1. RAMI4.0/
AAS

I4.0-
component

AAS:
sub-model
element
collection

Asset AAS:
sub-model
element

AAS:
property or
range

AAS:
sub-models

I4.0-system I4.0-
component

2. PPR model Resource Process Product
Process

Product Process

3. MARIANNE
(this work)

Physical
access
agent,
Interface
agent

Organiza-
tional
agent

Process
energy

Organiza-
tional
agent

Human
agent,
Cognitive
modeling

Knowledge
base

Module:
Unit,
Equipment,
Control

Application Operation
Mainte-
nance
Planning
Scheduling

*Source: metamodeling aPS criteria from [3].

ularly ISA-88 modules (Unit, Equipment, and Control), a
core model might be efficiently linked, mapped, or even
utilized to generate new viewsmerging aspects of existing
ones [3]. Through reviewing the criteria of the models in
Table 4, CPPS developers could work out the properties of
the target I4.0 model, employ the existing ones, or extend
them.

3.2 MARIANNE architecture
The following sections describe the notions used in MAR-
IANNE that are also used in existing standardization ef-
forts. Second, an implementation guideline for the MAS
is provided to integrate the agent-based patterns that one
can develop to instantiate the architecture.

3.2.1 Concepts used in MARIANNE that are related to
standardization efforts

The main decisional elements from MARIANNE are ex-
plained in this section. This MAS architecture is composed
of four IA classes that cover the main I4.0 concepts (see
Table 4): I4.0 component (can be the Class I or III), As-
set (managed by the Class II), and AAS (generated by the
Class IV). Each IA is a virtual decision-making entity that
can sense, process, store, or act on any CPPS shop floor.
The IA structure used was proposed by Wannagat et al.
[33], and it was employed in MARIANNE IAs. Figure 1 il-
lustrates an overview of the MARIANNE’s architecture in
the GitHub project (see. Section 3) that is implemented
in Python (.py), AASXexplorer (.aasx), Node-RED (.json),

and TwinCAT (.tnzip) files, available online. Design pat-
tern identification by [6] organizes the MARIANNE control
through their IAs (cp. Figure 1, left). For instance, the entity
Status information function provides current IA state rep-
resentations. This entity relates to other IA modules such
as the Unit, Equipment and Control from the ISA-88 model
(cp. Figure 1, right).

The normalized definitions (classes) refer to the gen-
eral overview based on the primary static information of
the models for I4.0 (see Section 2.3). Consequently, a fur-
ther (sub-)class defined byDIN 40912 is contained inMAR-
IANNE to cover the main RAMI4.0 aspects, e. g., for im-
plementing the AAS [22] report, version 3. Hence, systems
implemented according to MARIANNE can be applied to
achieve I4.0 systems (usually connected to cloud service
providers). However, this class can also contain elements
that donot achieve I4.0 requirements and are therefore not
I4.0 components [7]. I4.0 system description contains an
I4.0 component and its primary dependent representation
of the RAMI4.0, i. e., Asset and AAS entities. Like the DT
concept, an AAS is a digital representation of a resource
that refers to assets [8]. Here, MARIANNE has IAs (as a
type of distributed AI) that can encapsulate an Asset as a
value for an organization [7]. MARIANNE reaches the In-
dustrial AI characteristics (C1-C5, see Section 2.1.2) through
IA competencies (cp. Table 2). A Competence entity refers
to skills that depend on at least one softwareModule–MAS
software can be divided into a set of skills [34]. An IA’s
module refers to common functionalities presented as pat-
terns [6] and is extended by the IA’s level of intelligence
and AI characteristics. Then, to implement IA skills, exter-
nal or internalmodules that referencemathematical equa-
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Figure 1:MARIANNE UML Component diagram. Codes for 1) PADE; 2) AASX Package Explorer; 3) Node-RED; and 4) TwinCAT.

tions (e. g., Control, Reasoning, or Learning) or logical de-
scriptions (e. g., ISA-88 physical model: Unit, Equipment,
Module) are integrated. Another function pattern in MAR-
IANNE is the Knowledge Base, a type of Database that en-
ables AIs of the consistent technical component descrip-
tions as local knowledge [6]. Applying KBs enables smart
manufacturing in a formalized way; however, there are
no standardized MAS ways for generating them [31]. For
instance, module entities implement logical production
functionalities on different field-level devices, e. g., Pro-
grammable Logic Controllers (PLCs), Raspberry Pi, indus-
trial computers. The control or KB entities can model fur-
ther data to describe the hardware, e. g., the platform in-
formation, or define the information models. Here, IA’s
modules for logical purposes are written in various in-
dustrial programming languages, e. g., the IEC 61131-3, IEC
61499, Structured Text, C++/C#. Respective variables in
PLCopen XML store local input and output devices’ infor-
mation in different levels of granularity, as given in [34].

Further building blocks to be reused from existing
standardization efforts are essential for application in the
CPPS domain. Here, an Application entity is a software
functional unit [12] but refers to a specific solution of
an agent-based CPPS to communicate efficiently, intelli-
gently, collaboratively, and conform to a goal-oriented ap-
proach [11]. According to various application types, MAS
developers consider that IAs are interacting with physi-
cal types of equipment to perform control functions in the
CPPS domain. Typical aPS application types are Opera-
tion,Maintenance,Planning, and Scheduling. However, the

PPR is also contained inMARIANNE to describe the funda-
mental domain of the CPPS, e. g., the type of process (Con-
tinuous, Discrete, or Batch).

Process, Product, and Resource from the VDI/VDE
3682 guideline are essential for the MAS architecture. Like
an I4.0 component (consisting of an AAS and an asset
[7]), a product is processed by a resource within a process.
Here, a process is responsive to IA functionalities to make
specific executions, deliberating which strategies will ap-
ply and which products or services they will offer. Re-
source entities generate a lot of data and specify the func-
tions required to obtain products or services. The resource
featureswhether thedesiredprocess steps canbe executed
(procedures to transform/transport/store the material/en-
ergy/information). Besides products, MARIANNE also cov-
ers a Service entity, considered as ITIL6 4, as “a means
of enabling value co-creation by facilitating outcomes that
customers want to achieve, without the customer having to
manage specific costs and risks”.

3.2.2 IA types and reusable IA patterns

This work focuses on using design patterns in Model-
Driven Engineering (MDE) for MASs, e. g., using
UML/SysML in CPPS [1]. Recently, agent-based design pat-

6 ITIL, is formerly an Information Technology Infrastructure Library.
The 4th edition in 2019, focuses on fostering digital transforma-
tion, AI, cloud computing, and DevOps detailed practices (source:
www.ibm.com).

http://www.ibm.com
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terns for the industry have been discussed and approved
by VDI/VDE-GMA FA 5.15 and IEEE TC-IA members, pro-
moting standardized guidelines [30] and [11], respectively.
The first guideline is integrated into the MARIANNE archi-
tecture by introducing classes of IA patterns. For the sec-
ond guideline, MARIANNE’s requirements for the types of
IEEE 2660.1 interface practices are discussed, and quali-
tative evaluation from TC-IA guidelines are provided [11].
Software IA must recognize and efficiently handle the in-
terface and functionality of industrial devices (LLC/HLC)
[11]. Therefore, the MARIANNE architecture integrates the
four IA classes proposed (cp. Table 2): human-, interface-,
physical access-, andorganizational agents. Those classes’
definitions and their capabilities (see Section 2.1.2) are not
fully standardized yet in the context of industrial MASs
for I4.0. Instead, to be able to abstract in different levels,
agent classes of the MARIANNE architecture contain ex-
isting IA agent patterns (inheritance relation): RA is an
instance of the Class I; PA and AMS are instances of the
Class II; and CA is an instance of the Class III (see Section
2.2). The Physical access agent, through RAs, access the
capabilities of physical resources connecting shop floor
equipment with the MAS [30]. The Organizational agent
can support the general management of the MARIANNE
and its Scheduling, i. e., it is a PA or an AMS. The Inter-
face agent handles communication entities such as the
communication adapter to provide requirements for dif-
ferent intercommunication systems with the MAS. The CA
is an instance of this IA class, which considers the cat-
egorization based on the agent patterns interfaces, i. e.,
interaction mode and location (see Section 2.2, cp. Table
2). Consequently, a CA can derive four communication in-
terface practices [11]: i) Tightly Coupled Hybrid, ii) Tightly
Coupled On-device; iii) Loosely Coupled Hybrid; and iv)
Loosely CoupledOn-device. These interfaces vary depend-
ing on the location of the CA control (i. e., LLC/HLC), as
well as from its IEEE 2660.1 interface practice [11]. Finally,
the Human agent entity is able to apply the Human-in-
the-loop concept [14], e. g., through the human factor or
cognitive modeling entities.

3.3 MARIANNE’s implementation guideline

For an asset or the whole MAS, the CA provides the com-
munication adapters and cohesions to the outside world.
The CA enables different communication means, e. g.,
among plants, between AMSs, or provides the HumanMa-
chine Interface (HMI). For the latter, the CA can be imple-
mented in Node-RED, while PADE [18] is used for other IA

patterns with an interactive interface. PADE7 has a sim-
ilar structure to JADE but uses Python, making IA’s im-
plementation more versatile [18]. Regarding the abstract
DT concept, according to the online glossary of Platform
Industrie 4.0,8 the AAS concretes its implementation [8].
Other options to implement DTs are the DTDL and Web of
Things [4]. As a guideline, MARIANNE’s implementation
flowchart is shown in Figure 2, focusing in the AAS devel-
opment.

For systems, where real-time capabilities are critical,
the IA classes which control the CPPS, are generated pro-
gramming the LLC, i. e., by the IEC 61131-3/C++ languages
(cp. Figure 2, Case 1). For higher-level applications, where
real-time capabilities are not as critical, IAs can be im-
plemented using a high-level programming language such
as Python (cp. Figure 2, Case 2). Here, additional steps
are required to match the HLC to the CPPS. For managing
the AAS used for this approach, web flow-based program-
ming, e. g., Node-RED, can be applied to manage the AAS
depending on theAAS tools available. In the authors’ com-
prehension, hybrid DT application is acceptable since dif-
ferent DT approaches represent the complexity of asset be-
havior [8]. A hybrid DT application refers here to the com-
bination of equipment used in direct connection with sim-
ulation technologies and with sub-models integrated into
the forms of AAS. Therefore, in this work, the applied AAS
and simulation are symbiotically united. The structure of
AASs is defined and aimed at developing interoperable
DTs [22]. Following this reference, MARIANNE uses the
AAS, which has the two main parts,Manifest and Compo-
nent manager, together with theirHeader and Body [6, 22].
Here the body has various sub-models for each CPPS’ AAS.
DT developers can use various techniques to help them
create DTs. Since IAs cover advanced skills (typically an
AAS’s property/operation [22]) passive AAS are sufficient.
Thus, the AASXPackage Explorer for the AAS creation and
external management is used to create the DT. The Python
package PyI40AAS allows editing the AAS file and mov-
ing skills [31]. REST utilities and dynamic flow program-
ming practices are the foundations and embrace another
technical directionwhere browser-based interfaces are the
foundations. As a result, MARIANNE architecture com-
plies with current web technology developments as part
of IT software applications using Node-RED, i. e., based on
Node.js. In this case, NOVAAS is used as a runtime for the
AAS [20].

7 PADE project: https://github.com/grei-ufc/pade
8 Plattform Industrie 4.0: https://www.plattform-i40.de

https://github.com/grei-ufc/pade
https://www.plattform-i40.de
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Figure 2:MARIANNE’s guideline implementation flowchart and its relationships.

4 Exemplary implementation for
the demonstrator plant xPPU

This section presents an MAS implementation based on
MARIANNE using the eXtended Pick&Place Unit (xPPU)
[1]. As shown in Figure 3 (bottom right), in this context,
the CA control can have a part of the same computational
platform (on-device, i. e., PLC) or another type of Opera-
tion Technology “OT” (hybrid, i. e., Raspberry Pi, or PC).
Typical communication protocols accepted for the I4.0
paradigm, such as Ethernet/EtherCAT, OPCUA, or Profinet
[11], are implemented (cp. Figure 3, center and top).

The xPPU control application is contained in three pri-
mary devices: a PLC, a Raspberry Pi, and a PC with their
KB (cp. Figure 3, top) to provide multiple IA pattern inter-

faces andmultiple communication protocols. Thus, all IAs
within the MAS as introduced in [31] are associated with
the corresponding asset, including a KB. For coding the
IA interfaces (on-device, i. e., PLC) in LLC, the IEC 61131-3
standard was implemented. To program similar IAs and
interfaces in HLC (hybrid, PC, and Raspberry Pi), Node-
RED/NOVAAS and Python/PADE were applied (cp. Figure
3, bottom). The HLC directly applies control on the LLC
(tightly coupled), or brokers can intermediate the inter-
face (loosely coupled). When LLC/HLC within a CA com-
piles and is deployed as a single set of binaries, it cre-
ates a tightly coupled and on-device design scenario. For
instance, with in/output device entity, RAs (cp. Figure 3,
bottom right) connect the sensors and actuators of assets
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Figure 3: General landscape of the I4.0 scenario proposed with their I4.0 components and their IT/OT technologies.

[6] and connect the CPPS to offer services and thus create
products.

In general, MARIANNE addresses the main I4.0 con-
cepts, and the IAs’ skills can be implemented in the form
of OPCUAmethods, function blocks, and PLCopenXML as
given in [34]. The PA (cp. Figure 4, bottom right) can store
customers’ orders and their execution plan [15], while in-
formation of all active IAs is managed by the AMS [10]
(cp. Figure 4, top left). The structural software design in
an I4.0 scenario must also be modular to comply with the
adaptability requirements of hardware modules. Connect-
ing IAs, messages, or upgrades can also be intuitively sent
to all MAS using a shared communication network. A com-
munication channel via the OPC UA protocol is chosen to
connect to other systems unifying the data exchanged. Ad-
ditionally, the data live dashboard and GUI function work
as the HMI by a set of web interfaces in Node-RED, as
shown in Figure 4 (Part 1 and Part 2).

Additionally, IT nodes using technologies like Long
Range Wide Area Network (LoRaWAN) can be subse-
quently integrated into theMARIANNE throughother com-
patible communicationmethods, such as theHTTP (REST)
or Message Queuing Telemetry Transport (MQTT), and
mapping the data into objects for model-based structures,
i. e., it is as applied in OPC UA. All communication proto-

cols options for this architecture can be related to the OSI
model.

4.1 Implementing MARIANNE for an
intelligent light barrier

Figure 5 shows the division of the xPPU in modules using
the SysMLblockdefinitiondiagram (bdd, cp. Figure 5, cen-
ter). The agent-based CPPS architecture can be hierarchi-
cally structured through OMAC State Machines (for HLC)
and the lowest three levels of the ISA-88 physical model
(for LLC): unit module, equipment module, and control
module [1]. The xPPU unit module consists of two equip-
mentmodules, the stamping part and the sorting part. The
stamping part is composed of a stack, a crane, and stamp
control modules. The sorting part consists of a conveyor
control module (cp. Figure 5, right).

For each orderedWP a PA is created, and then thisWP
is transported through the stamping plant to the sorting
plant. The crane, which is equipped with a vacuum suc-
tion cup, picks up theWPs from the xPPU’swarehouse and
transports them either to the sorting plant or to the stamp-
ing plant, representing the processing station of the CPPS.
On the stamping plant, a shifting table (crane) transports
the WP under the stamp, where it is then imprinted with
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Figure 4: Dashboard and interfaces (GUI) of the implementation: 1) xPPU’s NOVAAS dashboard, 2) CPPS’ HMI in Node-RED.

Figure 5: IAs and the SysML block definition diagram of separating the xPPU’s HLC/LLC into modules. Adapted from [1].

an adjustable pressure (stack). The crane afterward trans-
ports the WP to the sorting plant. From here, the WP can
be sorted into one of the three ramps that form its final pro-
cess (cp. Figure 5, right). The first two ramps are equipped
with pushers and sensors for material detection. The third
ramp is positioned at the end of the conveyor belt and re-
ceives the WPs that have not been separated beforehand.
Combining three light (binary) sensors LS1-LS3 (cp. Figure
5, right)makes it possible to determine the condition of the
three different material cylinders (WPs).

In this context, physical access- and interface- agent
classes are assigned to the individual CPPS modules (cp.
Figure 5, left), with a distinction beingmade between RAs,
PAs, and the AMSs, as is also the case in [6]. The WPs are

initially assigned to an organizational agent class using
PAs. As a result, these PAs define required services to pro-
duce variousWPs (metallic, plastic, etc.). If the present RA
cannot provide the required service, the PA’s offer is sent
to the next connected RA, who proceeds in the same way.
For instance, someRAs include the crane and the conveyor
belt for WP’s transportation service. If the service is un-
available at the present transport RA, the request is sent
to all connected transport RAs until the required service is
found. In this case, for each offer request, a response will
be sent. The possible processing time (to produce a WP)
is adjusted based on the response time (IA real-time) of
the available transport RAs, managed by PAs and AMSs.
It means the fewer failures in the transport RAs (minor
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IA time responses), the better the processing time perfor-
mance.

The KB of the RAwithin the conveyormodule includes
analytical dependencies between the installed actuators
and sensors. RAs can learn individual parameters at run-
time to substitute missing actual values through mathe-
matical estimations. An example is an agent-based sen-
sor for a light barrier which is located in Ramp 1. The con-
veyors’ drive is provided with an initial speed value (set
value) in the primary state. Then, the WPs traveled dis-
tance and time are used to estimate an achieved speed (ac-
tual value). As a result, the initial speed is compared to the
estimated actual speed, providing an error margin (%). If
the error value is reasonable, the estimated speed is accu-
rate enough and can be accepted. The most accurate es-
timated value decides the amplification factor for Ramp 1.
However, a unique feature among the decision-making RA
is the position-WP function block,which continuously cal-
culates theWP’s location on the conveyor based on the es-
timated speed and defined distance, e. g., LS1 to Ramp 1.
In case of an erroneous position value of the limit switch
sensor, the WP location will be replaced by the estimated
position in the RA function block. To estimate an accurate
final position, at least one of the positioning sensors of the
entire sorting plant must be functioning.

The PA includes – but is not limited to – information
directly and permanently associated with the WP, such as
thematerial type, theprocessing time, or even the absolute
conveyor position during the transfer; all these variables
can be estimated by RA’s function block. Corresponding
ISA-88 modules were previously implemented by Bareiss
et al. [1]. The present light barrier sensor is based onWan-
nagat et al. [33] and the level of abstraction that is part of
this work; however, it uses a much more complex labo-
ratory model that results in two main contributions. The
first contribution implements the PA’s call for proposal
(CFP), using Contract Net Protocol – by PADE – that was
implemented according to FIPA (see Contract Net Interac-
tion Protocol Specification [10]). The second contribution is
the implementation of xPPU sub-models embedded into a
single AAS to increase interoperability.

4.2 IA patterns

Summarizing, as seen in Figure 6, the manufacturing
process is often defined by order generation and execu-
tion (typical RAs and PAs interactions). Addressed by the
VDI/VDE 2653-4 guideline of IA patterns, the RAs repre-
sent physical access (in/output devices) and keep its sta-
tus information function synchronized with the input of

Figure 6: Sequence diagram to detail the IA patterns interactions
in the CPPS network. CFP means “Call For Proposal” and refers to
FIPA (see FIPA Iterated Contract Net Interaction Protocol Specification
[10]).

the appropriate device (sensor data). An AMS is responsi-
ble for providing a single interface accessible for any IAs,
using the same protocol, despite the CA provider. The AMS
pattern, in most situations, keeps track of all involved and
related IAs and their messaging addresses, as described in
the preliminary research about IA patterns [6]. The AMS
typically supervises a white pages service, maintaining a
directory of IA references, and containing the two typi-
cal FIPA management components (see FIPA Agent Man-
agement Specification [10]): Directory Facilitator (DF), and
Message Transport Service (MTS). An AMS, together with
DF/MTS, often communicates with RAs and PAs to accom-
plish general MAS goals [6, 30]. Unlike the AMS, the PA
is responsible for the manufacturing recipe rather than
the technological structure since it naturally includes non-
real-time capability [6]. Some MAS architectures replace
the PA with a Product IA type, as Kovalenko et al. [15].

5 Evaluation of the MARIANNE
architecture and its agents’ AI
capabilites

This section gives an overview of the MARIANNE evalua-
tion, providing details about the contributions and the In-



594 | L.A. Cruz Salazar and B. Vogel-Heuser, A CPPS-architecture and workflow

dustrial AI characteristics covered through the IAs in the
xPPU demonstrator results.

5.1 MARIANNE IAs and their Industrial AI
characteristics

For a qualitative evaluation, we relied on IAs applied in
the implementation described in Section 4.1. Those IAs are
evaluated using fourwords to indicate a degree for a scale:
shall, should, may, and can, as presented in the IEEE Rec-
ommended Practice for IAs [11]. That degree of obligation
is an enumeration with five possible levels of Industrial AI
characteristics related to IAs, analyzed in Section 2.1.2 (see
Table 1), i. e., level indicates the number of AI characteris-
tics required to apply a function or skills. The degree val-
ues of each IA are proposed by the authors’ and justified
by literature, with the following words’ semantics:
Level 5. Shall indicates “mandatory requirements strictly

to be followed in order to conform to the standard and
from which no deviation is permitted” [11].

Level 4. Should indicates “that among several possibil-
ities one is recommended as particularly suitable,
without mentioning or excluding others; or that a cer-
tain course of action is preferred but not necessarily
required” [11].

Level 3. May indicates “a course of action permissible
within the limits of the standard” [11].

Level 2. Can indicates “statements of possibility and ca-
pability, whether material, physical, or causal” [11].

Level 1. Usually not (authors’ semantic) indicates the
minimum level of an Industrial AI characteristics’
achievement.

According to the analyses from this study, currentMAS im-
plementation reaches different Industrial AI levels (C1-C4),
while IAs -can apply various functions with a specific de-
scription, as given in Table 5. Each of the first IA func-
tion descriptions (cp. Table 5, items 1.1, 2.1, 3.1, and 4.1)
is drawn from the authors’ evaluation of the actual im-
plementation (cp. Section 4); the other skills come from
the authors’ analyses of the IA concepts and their cited
sources.

In the current implementation, the MAS is initiated
by the AMS, and it perceives the skills of other IAs. The
AMS can restart IAs and update their environment mod-
els autonomously (C1). A faster reaction is achieved for
field-level control (C2), as the RAs can implement several
resources, i. e., conveyor, crane, etc. Proactiveness is sup-
portedbyPAs that applyCFPs todetermineand recalculate
necessary RAs in case of broken resources (C2), i. e., the

agent-based soft sensors to increase availability. However,
the physical resources of the RAs cannot be changed by
theMAS itself, this can only be achieved by human actions
(C5). IAsmake decisions based on their environmentmod-
els (C2-C3) created from the AAS and update if the xPPU
models change. MARIANNE is not built to support the col-
laboration of RAs into the same order (only overall pro-
duction process) because PAs usually request single pro-
cesses. A general overview of the IAs evaluation concern-
ing Industrial AI characteristics is given in Figure 7.

5.2 The MAS evaluation

The MARIANNE architecture comprises design patterns
that are structured by four IA classes (Con2). The IAs
applied for the xPPU are proposed and evaluated ad-
dressing VDI/VDE 2653-4 and IEEE 2660.1 standards [11,
30]. MARIANNE does not focus only on IAs but also
RAMI4.0 (Con1), which should be robust, comprehensive,
extendible, and meet I4.0 modeling requirements accu-
rately, i. e., AAS concept (see Section 2.3). Our industry
experts and IAs focus group members confirmed the util-
ity of the agent-based design patterns concerning the IA
classes [30] (Con2). In addition, MAS models show chang-
ing numbers of different semantics for CPPS entities and
variable levels of abstraction, i. e., hierarchical structure
by ISA-88 physical model (see Section 4.1). The authors
of this work confirm that, to the best of their knowledge,
all identified MARIANNE entities fall within the scope of
standard taxonomies (see Section 3.2), ensuring compre-
hensiveness and consistency. Besides, MARIANNE sup-
ports the development of appropriate RAMI4.0 modeling
approaches, i. e., AAS compatible (see Section 3.3). This
work materializes the levels of abstraction of our IAs into
a final implementation (see Section 4), following inter-
national standardizations (see Sections 2.2 and Section
3.2). Lastly, summarizing the MAS architecture guideline
(Con3), the application shows how RAMI4.0 – which rec-
ommends OPC UA as the bridge between IT/OT [20, 22] –
enables vertical and horizontal communicationwithin the
xPPUdemonstrator for itsHLC/LLC (see Section 3.3).More-
over, everything wrapped by the AAS concept is not lim-
ited to OPC-UA but encourages standard web technologies
and IT, particularly by REST/JSON standards within Node-
RED (NOVAAS application). This adaptation facilitates the
integration of OT into IT while taking advantage of the In-
dustrial AI maturity and steadiness of IA solutions, tools,
and applications within IT areas, i. e., PADE plus NOVAAS.
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Table 5: IA functions related to Industrial AI characteristics.

Item
No.

IA’s function (skill) description Industrial AI characteristic* C1–C2
(see Section 2.1.2, Table 1) evaluation

Au
to
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m
y

Re
ac
tiv
en
es
s

Pr
oa
ct
iv
en
es
s

Pr
ed
ic
ta
bi
lit
y

Hu
m
an

co
op
er
at
iv
en
es
s

1. RA (Reactive, Class I), standardized
1.1 RA may be able to replace sensors data with soft sensors in order to increase

reliability/availability of the MAS. See Section 4.1
● ● ●

1.2 RA can represent and control technical plant components such as equipment (often
hard/soft real-time capability) [6, 30], as well as the resource allocation and its
capabilities as services, e. g., the ProductionService’s action in [8]

● ●

1.3 RA can define its actions in a particular context at runtime utilizing its KB, e. g., for
controlling and reconfiguring material flow systems [6]

● ●

1.4 RA can be able to carry out real-time execution in the plant floor like planning process,
transport, processing workpiece, machining, among others [15]

● ●

1.5 RA usually not have full autonomy due to the submissive heterarchy (it is often located
in the lowest MAS’s hierarchy) [6, 30], i. e., instead of negotiating IAs, a more
hierarchical structure with dominant and submissive IAs might be more suited at the
field-level [31]

●

2. PA (Proactive, Class II), standardized
2.1 PA may supervise the execution of a production recipe/plan the collaboration and

negotiation of other IAs, e. g., RA, AMS, in order to complete its goals (often
non-real-time capability). See Section 4.1

● ● ●

2.2 PA may represent the products that need to be processed [15] ● ● ●
2.3 PA can use graph-search and interaction with the underlying MAS as KB to run a

discrete reasoning process to produce optimal production plans [6, 30]
● ●

2.4 PA can apply a systematic, model-based optimization method during the
decision-making process [15]

● ●

2.5 PA usually are not responsible for the technical system but for the production recipe
since it usually requires non-real-time capabilities [6, 30]

●

3. CA (Reactive, Class III), standardized
3.1 CA may coordinate the message-based communication among other IAs, e. g., on

single or multiple platforms (PLCs, PCs, Raspberry Pis) across the field bus, including
people interfaces (HMI). See Section 4

● ● ●

3.2 CA can convert proprietary interfaces into multiple protocols, e. g., communication
interface by TCP/IP (often real-time capability) [6, 30]

● ●

3.3 CA usually is not limited to direct communication but also by patterns interfaces [11] ●
3.4 CA usually does not have a deterministic behavior communication because message

stacks inside CA possibly will overflow. More details of this experiment are described
in [27]

●

4. AMS (Proactive, Class II), standardized
4.1 AMS shall assume essential functions to coordination, control, and supervision for the

IAs by maintaining a table (white pages) that contains their proper identifiers (often
non-real-time capability). See Section 4.2

● ● ● ● ●

4.2 AMS can manage the operation of the MAS [10, 30], e. g., the creation, deletion,
migration of IAs to and from the MAS [6, 18]

● ●

4.3 AMS can try to restart agents when they fail [18] ● ●
4.4 AMS usually is not outside the IA’s network because of its authority, as only one exists

in a single MAS [10, 18]
●

*Industrial AI characteristics that support the IA main task; ●: needed
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Figure 7: Industrial agents applied in MARIANNE architecture and their level of Industrial AI characteristics (see Table 5).

6 Summary and outlook

AI is an area of study aimed at understanding and creat-
ing intelligent systems that fall into the criteria of think-
ing or behaving logically or humanly [26]. In the I4.0 con-
text, Industrial AI is a technological means of attaining
a certain level of autonomy and other AI characteristics
like reactiveness, proactiveness, predictability, and hu-
man cooperativeness [19, 21]. This paper presented various
technologies for improving aPS to complement CPPS ser-
vices, e. g., using the IA design patterns’ potential. MDE
for I4.0 and applications have received a lot of research
and development attention. MDE can simplify the com-
prehension of the CPPSs and consequently enable access
to an I4.0 scenario. This work examined various IT/OT-
technologies and introduced an agent-based CPPS with IA
topologies and development platforms. Thus, the MARI-
ANNE architecture is proposed, which combines specific
research efforts on how the RAMI4.0 concept might be
used to address the agent-based CPPS with the IA classes.
The PA generates a high-level production plan comprised
of executable skills for each RA. AMS contains (poten-
tially numerous) production process sequences for a spe-
cific product. The CA allows multiple types of communi-
cation among agents, systems, plants, and users of the
CPPS by developing GUIs and HMIs. MARIANNE provides
a broad overview of how recent advances in these IA de-
sign patterns can be linkedwith other components such as
in/output devices, modules, KBs, applications, and other
I4.0 components. Those IT/OT integration technologies
havemotivated affordable Industrial AI gadgets and linked
CPPS services to expand the potential of IT/OT-based ser-
vices. These developments could provide deeper insights
into best IA design patterns practices and enable I4.0 tech-
nologies further. This study is the first MAS research con-
ducted on a CPPS by IA design patterns aligned with the

VDI/VDE 2653-4 and IEEE 2660.1 standards, to the best of
our knowledge.

Definitions and classifications of MAS models charac-
teristics currently lack reusability, semantic interoperabil-
ity, and require more attention in other application do-
mains and I4.0 standardization (see Section 2.2). There-
fore, future IA researchers can face those requirements ap-
plying MARIANNE to perform a deep analysis of agent-
based CPPS features in the next steps. Furthermore, stan-
dardized taxonomies and IA design patterns can relate
to MARIANNE and migrate aPS to multiple domains, im-
proving semantics and a shared understanding of CPPS
(see Section 3.2). Evaluating further aspects of the MARI-
ANNEapproach is subject to upcomingworks andpublica-
tions. MARIANNE can also be applied to the smart grid do-
main by the IA patterns, as shown in the VDI/VDE 2653-4.
For example, using more libraries on PADE capable of the
MOSAIK [4, 18], and IT/OT platforms available for energy
systems [30]. Additionally, to achieve full interoperability,
a normalized way of information exchange between HLC
and LLC was necessary, as it is a formalized way of invok-
ing the LLC services into PLC and functions from the HLC
by the IAs.Here theDT, throughapro-activeAAS, provided
the standardizedway to support information and structure
communication between the IAs and thus interoperabil-
ity. Combining the ECLASS standard could ensure seman-
tic interoperability between IAs (see Section 2.2) [31]. How-
ever, the effort for creatingAASsmanuallywould increase,
even though there are various open tools available, e. g.,
the AASX Package Explorer, PyI40AAS.

In the future, it can be expected that new IAs will be
muchmore potent than reactive and deliberative ones. For
example, it adds learning strategies from analytics, data
mining, and ML as a potential benefit of advanced AI [14].
Additionally, the incorporation of modern ML technolo-
gies in a new type of IA should be researched to increase
the Overall Equipment Effectiveness of a CPPS. Learning
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methods for IAs have the advantage of generating Predic-
tive Agents and Learnability Agents, which are initially en-
abled to operate in unknown environments. This type of
agent becomes more capable than its fundamental knowl-
edge using the mathematical analysis of ML.

Funding: The authors acknowledge the financial support
by the Bavarian State Ministry for Economic Affairs, Re-
gional Development and Energy (StMWi) for the Light-
house Initiative KI.FABRIK (Phase 1: Infrastructure as well
as the research and development program under grant
no. DIK0249).
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