



Abstract— The ISO 11783 (also known as ISOBUS) standard
defines a protocol for communication between an agricultural
implement and a Virtual Terminal (VT) — a commonly used,
standardized, automatic/plug-and-play, inter-manufacturer
device for displaying the user interface of the connected
implement to the driver. However, unlike other aspects of the ISO
11783 standard, the VT is dependent on the specifics of the chosen
user interface. Thus, software libraries cannot abstract the
functionality of the VT by simply abstracting the message
encoding and decoding, as is the case for sending and receiving
periodic signals such as status parameters etc. In this paper a
modern code architecture is presented which uses a separation of
concerns methodology to devise VT-specific abstraction layers
which ease development for designers who may not be well versed
in the ISO 11783 standard.

I. INTRODUCTION

ISO 11783 (also known by the marketing name ISOBUS)
is a widely-used standard series defining plug-and-play inter-
manufacturer communication in agricultural machines,
namely tractors and implements. ISO 11783 defines not only
the sharing of information between nodes, but also defines a
Virtual Terminal (VT) device which is a screen acting as a
graphical user interface (GUI). Due to standardization, an
implement can automatically upload its GUI information to the
VT and the VT will be able to interpret and display it [1]. This
avoids the situation of a farmer needing a separate control box
and/or display for each implement [2] and is therefore a
desirable feature from a usability standpoint.

Even as tractors progress to higher autonomy levels (up to
SAE J3016 level 4 High Driving Automation [3]), the
variation between distinct implement types will likely mean
that a proprietary GUI must still be offered by the implement
for the driver to handle specific tasks. A standardized interface
design would not be sufficient to cover the multitude of
differing implement types.

It can be difficult for entities that want to add ISO 11783
compatibility for the first time due to the breadth and depth of
functionality covered by the 14 standard documents
(consisting of 1144 pages [4]). For this reason, there are paid
and free/open-source libraries which can abstract the low-level

*The project is supported by funds of the Federal Ministry of Food and
Agriculture (BMEL) based on a decision of the Parliament of the Federal
Republic of Germany. The Federal Office for Agriculture and Food (BLE)
provides coordinating support for digitalisation in agriculture as funding
organisation (28DE112B18).

Samuel Brodie and Timo Oksanen are with the Technical University of
Munich (TUM), Chair of Agrimechatronics and Munich Institute of Robotics

details away from developers and ease development. Such
libraries may be useful for implement manufacturers who want
their equipment to be ISO 11783-compatible (and get ISOBUS
certification); in particular, small manufacturers who may not
have the scale to develop their own library.

ISO 11783 networks use CAN 2.0B as the physical layer
and encode a parameter group number (PGN) into the ID field
of the CAN frames which signifies the frame's purpose. The
data field of the CAN frame is encoded differently depending
on the PGN. For example, ISO 11783 defines that the rear
hitch pitch angle must be encoded into bytes 5 and 6 of a CAN
frame with a PGN of 61697, and using a scale of 0.002
degrees/bit [5].

The abstraction of the ISO 11783 protocol can include
many aspects:

 Encoding/decoding CAN ID and data fields to/from
usable data such as engine speed.

 Abstracting the ISO 11783 address claiming procedure
which is required before a participant can begin sending
messages on the bus.

 Implementing Transport Protocol and Extended Transport
Protocol which allow the transfer of data which is longer
than 8 bytes (the payload of one CAN frame) [6].

Together, this can make certain aspects of ISO 11783
relatively easy to implement for manufacturers even without
any knowledge of the underlying protocol. For simple,
periodic data (such as hitch pitch angle or wheel speed)
complete abstraction of the underlying protocol is possible
because the information can be passed to a function which
simply encodes a CAN frame (ID and data fields) as specified
in the standard and writes it to the bus. However, the VT-
related parts of the ISO 11783 protocol cannot be abstracted
so simply and GUI designers must have detailed knowledge of
the VT protocol to build functional code. This is because the
VT protocol cannot be abstracted by abstracting only the
underlying CAN IDs and encoding, but instead it requires
abstraction of the whole VT protocol stack, the details of
which are dependent on the proprietary GUI of each
implement. For designers and control engineers who are not

and Machine Intelligence (MIRMI), Freising 85354 Germany (corresponding
author: samuel.brodie@tum.de).

Seung-Yun Baek and Yong-Joo Kim are with the Department of Smart
Agriculture Systems, Chungnam National University (CNU), Daejeon 34134,
Korea.

Samuel Brodie, Seung-Yun Baek, Yong-Joo Kim and Timo Oksanen

Function Block Approach for Abstraction of ISO 11783 Virtual
Terminal User Interfaces in Agricultural Machines

Sam Brodie
CNU_paper_2024

familiar with ISO 11783 this can pose a challenge and a large
time investment.

This paper presents a software architecture which goes
beyond simply abstracting the CAN message encoding and
rather abstracts the whole lower-level VT protocol details
away. The purpose of the architecture is to allow designers to
focus on design-level code without the need for direct VT
control.

II. BACKGROUND

One of the latest big developments in ISO 11783 is the
Tractor-Implement Management (TIM) functionality. Class 3
machines (machines that are able to control tractor functions
from the implement) have been studied from the perspective
of automation and functional safety [7]. This has followed on
to become ISO 11783 Tractor Implement Management (TIM)
which standardizes an authentication framework to allow
implements to authenticate with the tractor before taking
control of certain functions (speed, steering, hitch position
etc.) [8, 9].

Another area of ISO 11783-related research is the
development of a so-called High-Speed ISOBUS (HSI). HSI
is being developed as the next generation of ISO 11783,
replacing the CAN bus with an Ethernet network and an
appropriate middleware [10, 11].

There is a range of scientific work researching the
adaptability of ISO 11783 in the fields of autonomy and
robotics. Owing to the inter-manufacturer, plug-and-play
properties of ISO 11783, a new and promising area of research
is investigating how ISO 11783 networks can be utilized in
agricultural robotics. For automated robots which are able to
attach and use small implements (rather than single-task
robots), these properties are valuable [12, 13]. In [12] and [13]
the authors create a VT GUI for a CEOL robot
(AgreenCulture, Toulouse, France).

A. ISO 11783 Virtual Terminal

ISO 11783 defines the use of a VT to act as a GUI [1];
commonly these are touch screens, but this is not necessarily
the case. In Figure 1, an example VT display is shown. On the
right-hand side is the soft key mask area which contains the soft
key designators. Activation of the soft key can be done with
physical soft keys assigned to each soft key designator; these

can be either hardware buttons or linked to an area of the touch
screen. The larger section of the screen is the data mask area
where UI elements such as shapes, text, and inputs can be
shown based on the proprietary design of the connected
implement [1].

At initialization, both the VT and implement must
complete the address claim procedure (as any node must) to
begin communicating on the bus. Then the implement uploads
its Implement Object Pool (IOP) to the VT. The IOP is a set of
objects such as numeric input field, shapes, or string output
field (where the object types are defined in ISO 11783-6 [1]),
each with a unique Object ID which are encoded into a byte
string that is uploaded by an implement and decoded by a VT.
The IOP defines the GUI with several object types. The objects
are defined in the IOP in a hierarchy (objects have parent
objects) and objects have specific attributes depending on their
type (commonly X and Y position relative to the parent, color,
and value). Some attributes which are more specific include
font type, and the scaling and offset which ISO 11783 uses to

Figure 1 – An example Virtual Terminal screen layout with

annotations (adapted from [1])
Figure 2 A sequence diagram showing the initialization of a

Virtual Terminal

represent decimal numbers (as all values are sent on the bus as
unsigned integers. The IOP can be generated using software
such as OSB VT Designer (OSB connagtive GmbH, Munich,
Germany) or Jetter ISO-Designer (Bucher Automation AG,
Ludwigsburg, Germany). Once the IOP has been uploaded, the
initialization is complete and the VT can display the
implement's GUI to the user. The entire process is shown in
Figure 2. The library handles the scaling fo the IOP to the
screen size of the connected VT.

The different "screens" of the GUI are called masks. The
implement should be aware of which mask is active at any
time, however, the VT status message also contains
information about currently active mask. The implement can
manage transitions between the masks in two ways [1]:

1. Through sending a Change Active Mask message to
command the VT to display a particular mask.

2. Through the use of Macros in the IOP which can be
described as a list of commands which the VT will
automatically execute after specific trigger conditions
have been met (e.g. when a soft key is activated, the VT
should automatically execute a Change Active Mask
command, without the implement needing to send any
CAN messages). The standard notes that "a Macro that
executes a Change Active Mask command will trigger a
VT Status message, but will not trigger a Change Active
Mask response."[1]

The implement must keep track of the objects that are
visible on the VT at any time. Primarily this consists of

knowing which objects are part of which mask (objects can
also be hidden/shown within a mask; updating hidden objects
these will induce unnecessary busload but will not cause
display errors).

B. Code

Popular open-source ISO 11783 libraries such as IsoAgLib
and AgIsoStack++ abstract the CAN message encoding but
still require the developer to understand the underlying ISO
11783 VT [14, 15]. For example, in the AgIsoStack++ tutorial,
the developer must do the scaling and offset of numeric values
themselves [16] because the VT messages do not allow
encoding of floating point or signed numbers.

Another example is the difference between VT buttons
(clickable objects drawn on the central data mask area of the
screen) and VT soft keys (clickable objects in the soft key area
at the sides of the screen). VT buttons have a latchable
property defined in ISO 11783 (i.e. the object switches
between two states each time it is clicked, as opposed to when
held/released), but VT soft keys do not. Therefore, if a
designer desires a latchable soft key then they must implement
this code themselves because a latchable soft key is not
included in the standard. This puts extra work on the designer
who must understand the ISO 11783 scaling and offset, the
soft key states, and build latching behavior independently.

III. ARCHITECTURE

We have seen that the ISO 11783 standard makes it a
requirement for implements to track which objects are drawn

Figure 3 – The presented software architecture. The application logic is separated from the Virtual Terminal-specific layer

on the active data mask at any given time. This cannot be
handled through abstracting the CAN message encoding, but
rather requires additional code structures to maintain the state
of the GUI. An architecture is therefore presented to address
this.

The proposed architecture gives several different types,
and layers, of abstraction. It is applicable to applications where
an implement which will upload a GUI to the VT that has
interactive elements which connect with physical effects. This
design will allow user-input such as button presses and entry
of text and/or numeric values, and it will also provide
information to the user in the form of updated text, numeric
values, colors etc.

A. Layers

The architecture splits the overall application into layers as
shown in Figure 3. Using a separation of concerns software
design principal, each layer has a distinct purpose. This also
abstracts lower layers from one another and separates the UI
design from application logic and hardware Input/Output
(I/O).

1) Application_Logic

The Application_Logic contains the application in the
highest level of abstraction. This layer defines the overall
application of the implement, for example the logic of how the
machine should function, such as when a user should be
allowed to perform particular tasks, or enabling of a field mode
and transport mode. This layer does not handle the lower level
implementation details of ISO 11783.

2) IO_abstraction_layer

The IO_abstraction_layer provides an interface between
the application logic and the machine's I/O such as the
connections between physical actuators, sensors etc. and their
corresponding connectors. Here, the safety logic and control
logic of the physical IO can be implemented and abstracted
away from the application.

3) VT_application_specific_layer

The VT_application_specific_layer abstracts the VT
protocol away from the GUI designer and allows them to do
GUI application functions without needing to understand ISO

11783 (e.g. the scaling and offset system, the masks system,
and so on). Here, the GUI designer will program the GUI logic
(which conditions trigger a change of mask, or update an
object) without knowledge of ISO 11783.

This layer uses the VT classes (VT_Base, VT_Mask,
VT_Object described in detail below) to abstract ISOBUS
functions.

4) VT_ISOBUS_abstraction_layer

The VT_ISOBUS_abstraction_layer does not need to be
changed by the designer as it is not design specific. It
implements a FIFO queue of ISOBUS VT events coming from
the VT server (user) side (button presses, number inputs etc.).
The purpose of this queue is to allow the program to check the
ISOBUS message queue with a relatively high frequency,
handle ISOBUS time-sensitive events such as address claim
(250ms timeout), and queue VT events for later handling (at a
lower frequency) if desired. That is to say, if a single-threaded
program is performing a computationally intensive task, it
must relinquish control to clear and respond to the ISOBUS
CAN message queue in compliance with the 250 ms timeout
of ISO 11783 VT messages (by calling
VT_ISOBUS_abstraction_layer::iterate()). However, the
VT_ISOBUS_abstraction_layer allows the VT messages to be
acknowledged (with an appropriate CAN frame) while the
event itself is queued for the application to handle later.

5) ISOBUS_lib

The ISOBUS_lib layer contains a general ISO 11783
library which handles the encoding and decoding of CAN
frames, and interfaces with the CAN hardware. This layer
initializes the CAN bus hardware, handles address claiming,
and uploads the IOP to the VT.

B. VT Classes

The VT classes are to be used as the application-code
representations of the IOP objects. The classes communicate
with the lower layers and abstract the ISO 11783
implementation of common design functionalities such as
latching soft keys. The classes are initialized with instances
which correspond to a counterpart in the IOP of the same type
(e.g. the developer should initialize one instance of VT_Mask
for each mask in the IOP, one instance of VT_Obj_softkey for
each soft key etc.).

Three classes are defined: VT_base which represents the
root of the IOP, VT_Mask which represents a mask, and
VT_Object which represents an object in general and from
which the classes for specific object types inherit.

Figure 4 – UML diagram showing the key elements of the VT_base

class

Figure 5 – UML diagram showing the key elements of the VT_mask

class

1) VT_Base

Each of the GUIs (normally only one per implement but
not necessarily) defined in the IOP will have a corresponding
instance of the VT_Base class as shown in Figure 4. Instances
of VT_Base have pointers to their child VT_Masks. VT_Base
is responsible for tracking the mask which is currently
displayed on the VT.

2) VT_Mask

Each of the masks defined in the IOP will have a
corresponding instance of the VT_Mask class as shown in
Figure 5. Instances of VT_ Masks have pointers to their child
VT_Objects as a means of tracking which objects are shown
on the screen whenever that mask is the active mask.

3) VT_Object

As shown in Figure 6, the VT_ Object class is a base class.
Each ISO 11783 object type has a class derived from
VT_Object such as numeric inputs, softkeys etc. Each object
defined in the IOP will have a corresponding instance of a class
derived from the VT_Object base class.

The VT_Object class handles the scaling and offset
because ISO 11783 VT communication doesn't support
floating point values, instead unsigned integer values are sent,
and scaled for display by the receiver which uses the offset and
scaling factor defined for that object in the IOP. This means
that updating values is not a simple as purely encoding the
CAN message correctly, but it also needs to factor in the
unique properties of each object.

The ISO 11783 soft key object type is used to draw a soft
key on the VT (different to a button, these are the special keys
shown at the edges of the screen). This soft key type does not
have any concept of latching and so latching must be
implemented by the implement by maintaining the latched
state of the soft key and updating the visuals of the object to
inform the user of the latch status.

IV. USE CASE: HITCH CONTROL

As a use case for the proposed architecture, a hitch-control
application was made and the I/O layer had simulated inputs
and outputs. The function of the application is as follows:

There is a manual mode/auto mode switch. In manual mode,
the up/down soft keys directly control the hitch position. In
auto mode there is a setpoint (numeric input) field and the hitch
automatically moves to the correct position based on the
readings of a range sensor. There is a settings page —
accessible via soft key — with numeric inputs to tune the
controller (gain etc.). The application utilizes the previously
defined layers. In Table 1 an example is presented of the

Figure 6 – UML diagram showing the key elements of the

VT_object, VT_Obj_Softkey and VT_Obj_num_variable classes.

VT_Obj_Softkey and VT_Obj_num_variable inherit from

VT_object

Figure 7 – A screenshot showing the example use case VT design,

taken on a Topcon VT

logical flow of the program and in Figure 7 the main mask of
the application is shown on a Topcon VT screenshot.

V. CONCLUSION

Many parts of the ISO 11783 protocols can be abstracted
by simply abstracting the CAN message encoding, or by
implementing logic to handle events such as address claims.
However, the VT is too use case-specific for the full VT
runtime functionality to be abstracted in this way. This paper
shows a function block approach to address this. A set of class
instances which mirror each VT object type can be used to
allow further distance between the designer and the ISO 11783
standard. By utilizing instances of the appropriate class to
mirror the objects in the IOP, a software architecture is
designed so as to enable separation of concerns and allow VT
GUIs and VT-enabled applications to be designed without
detailed knowledge of the underlying protocol.

An example VT design was created to prove the concept
and was tested by using the described approach to successfully
create a working interface with automatic control in a plug-
and-play multi-brand system.

In the future a full software package could be created
which implements classes for each of the object types that can
be put into an IOP.

VI. REFERENCES

[1] Iso 11783-6:2018 Tractors and Machinery for Agriculture and

Forestry — Serial Control and Communications Data Network —

Part 6: Virtual Terminal, Iso, 2018.
[2] S. Brodie, T. Oksanen, and H. Auernhammer, "Buzzword Isobus,"

Informatik Spektrum, vol. 46, no. 1, pp. 46-50, 2023.

[3] Sae J3016 — Taxonomy and Definitions for Terms Related to
Driving Automation Systems for on-Road Motor Vehicles, Society

of Automotive Engineers, 2021.

[4] T. Oksanen and H. Auernhammer, "Isobus— the Open Hard-
Wired Network Standard for Tractor-Implement Communication,

1987-2020," presented at the Agricultural Equipment Technology

Conference, Louisville, Kentucky, USA, Feb, 2021, 913C0121.
[Online]. Available:

http://elibrary.asabe.org/abstract.asp?aid=52060&t=6.

[5] Vdma. "Isobus Data Dictionary - Pgn> 61697 Primary or Rear
Hitch Roll and Pitch."

https://www.isobus.net/isobus/pGNAndSPN/2652?type=PGN

(accessed 24th of January, 2024).
[6] Iso 11783-3:1998 Tractors and Machinery for Agriculture and

Forestry — Serial Control and Communications Data Network —

Part 3: Data Link Layer, Iso, 1998.
[7] A. Ronkainen, "Design Considerations for Isobus Class 3

Machinery System's Human-Machine Interaction," IFAC

Proceedings Volumes, vol. 46, no. 18, pp. 259-263, 2013.
[8] Aef Guideline 023 Rig 3 (2023), Isobus ‑ Isobus Automation

Principles, Agricultural Industry Electronics Foundation, 2023.

[9] Agricultural Industry Electronics Foundation. "Tractor Implement
Management (Tim) - Aef Online." https://www.aef-

online.org/about-us/activities/tractor-implement-management-

tim.html (accessed Jan 18, 2024).
[10] D. Smart and V. Brill, "Aef – High Speed Isobus – Technology

Readiness for a Next Generation Network," in LAND.TECHNIK

2022, Düsseldorf, 2022, vol. 2395: VDI, in VDI-Berichte, 1 ed.,
pp. 551-558, doi: 10.51202/9783181023952-551.

[11] D. Smart and V. Brill, "High Speed Isobus, an Aef Project for Next

Generation Ag Networking," in LAND.TECHNIK 2019,
Düsseldorf, 2019, vol. 2361: VDI, in VDI-Berichte, 1 ed., pp. 91-

106, doi: doi.org/10.51202/9783181023617.

[12] G. M. Sharipov et al., "Smart Implements by Leveraging Isobus:
Development and Evaluation of Field Applications," Smart

Agricultural Technology, vol. 6, p. 100341, 2023.

[13] G. M. Sharipov et al., "Communication between Agricultural
Robot and Mechanical Weeding Machine Based on Iso 11783

Network," IFAC-PapersOnLine, vol. 56, no. 2, pp. 8902-8907,

2023.
[14] E. Tumenjargal et al., "Development of Isobus Universal Terminal

and Client Ecus for Agricultural Machinery," in 2018 ASABE
Annual International Meeting, 2018: American Society of

Agricultural and Biological Engineers, p. 1.

[15] E. Tumenjargal, L. Badarch, H. Kwon, and W. Ham, "Embedded
Software and Hardware Implementation System for a Human

Machine Interface Based on Isoaglib," Journal of Zhejiang

University Science C, vol. 14, no. 3, pp. 155-166, 2013.
[16] Open-Agriculture. "Agisostack-Plus-Plus Virtual Terminal Client

Example." https://github.com/Open-Agriculture/AgIsoStack-plus-

plus/blob/9503ee9e207030de92c641a78aef96966d29586a/examp
les/virtual_terminal/version3_object_pool/main.cpp (accessed

Jan, 2024).

Table 1 – Step by step example proof of concept application

Layer Action

1 N/A

The system is powered on. The nodes
initialize and the IOP is uploaded to the VT.

The user presses the manual-mode soft key
on the terminal, resulting in a CAN message.

2
ISOBUS

Library

The incoming CAN message is interpreted
and added to the VT abstraction layer queue
(button pressed/released event).

3
VT ISOBUS

Abstraction
The event is held in the queue until the
application is ready to act upon it.

4
VT Application

Specific

The VT events queue is read and objects are
updated appropriately:

The manual mode VT_Obj_Softkey class
object latches and changes color.

ISOBUS
Library

The appropriate CAN message is sent to the
VT to update the soft key color.

5 N/A
The user presses and holds the hitch-down
soft key on the terminal, resulting in CAN
messages from the VT.

6
ISOBUS

Library

The incoming CAN message is interpreted
and added to the VT abstraction layer queue
(button held event)

7
VT ISOBUS
Abstraction

The event is held in the queue until the
application is ready to act upon it.

8
VT Application

Specific

The VT events queue is read and objects are
updated appropriately:

The desired position VT_numeric class
object updates its value.

9
VT Application

Specific
Application-defined minimum hitch setpoint
options are enforced.

10 I/O Abstraction
The desired position of the hitch is sent to
the I/O with the appropriate physical
connections, feedback loop etc.

11
VT Application

Specific

The current hitch position is evaluated and
the actual position VT_numeric class object
updates its value and sends appropriate CAN
messages to the VT via the ISOBUS Library.

http://elibrary.asabe.org/abstract.asp?aid=52060&t=6
https://www.isobus.net/isobus/pGNAndSPN/2652?type=PGN
https://www.aef-online.org/about-us/activities/tractor-implement-management-tim.html
https://www.aef-online.org/about-us/activities/tractor-implement-management-tim.html
https://www.aef-online.org/about-us/activities/tractor-implement-management-tim.html
https://github.com/Open-Agriculture/AgIsoStack-plus-plus/blob/9503ee9e207030de92c641a78aef96966d29586a/examples/virtual_terminal/version3_object_pool/main.cpp
https://github.com/Open-Agriculture/AgIsoStack-plus-plus/blob/9503ee9e207030de92c641a78aef96966d29586a/examples/virtual_terminal/version3_object_pool/main.cpp
https://github.com/Open-Agriculture/AgIsoStack-plus-plus/blob/9503ee9e207030de92c641a78aef96966d29586a/examples/virtual_terminal/version3_object_pool/main.cpp

