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Abstract: Functions of automated Production Systems
(aPS) can be realized by control software (SW), whose
high quality and short development time are, therefore, vi-
tal. To achieve both, SW should be modular and, thereby,
reusable. Static code analysis can help improve the modu-
larization of existing software, e. g., by automatically an-
alyzing control and information flow. However, manual
code reviews are still typically required because planning
a SW’s modularization requires a semantic understanding
of its functionality. This paper presents an approach to, in-
stead, identify SW functionality automatically and evalu-
ates it with SW from three aPS manufacturers.

Keywords: automated Production Systems, control soft-
ware, functionality, semantics, static code analysis

Zusammenfassung: Die Funktionen automatisierter Pro-
duktionssysteme (aPS) können durch Steuerungssoftware
(SW) realisiert werden, deren hoheQualität und kurze Ent-
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wicklungszeit daher entscheidend sind. Deshalb sollte SW
modular und somit wiederverwendbar sein. Statische Co-
deanalyse kann bei der Modularisierung existierender SW
helfen, indem z. B. automatisch Kontroll- und Informati-
onsfluss analysiert werden. Dennoch sind meist manuel-
le Analysen nötig, um ein semantisches Verständnis der
SW-Funktionalität zu entwickeln. Dieses Paper stellt statt-
dessen einen Ansatz vor, um Funktionalität automatisch
zu identifizieren und evaluiert ihn mit SW von drei aPS-
Herstellern.

Schlagwörter: automatisierte Produktionssysteme, Steue-
rungssoftware, Funktionalität, Semantik, statische Code-
analyse

1 Challenges in control software
quality assessment

The majority of industrial and consumer products are
manufactured or processed by automated Production Sys-
tems (aPS) whose functions are primarily and increas-
ingly realized by control software (SW) [1] (Note that “func-
tion” in this paper describes any goal-oriented behavior,
whereas “functionalities” can be differentiated based on
their specific purpose). The SW is typically executed on
Programmable Logic Controllers (PLC) and implemented
according to IEC 61131-3, which defines five (partially
graphical) programming languages and so-calledProgram
Organization Units (POU) to structure the SW [2]. Since
aPS have lifetimes of up to several decades, companies
working in the domain often manage large historically
grown codebases, making the maintainability of SW cru-
cial [3]. Combined with Industry 4.0 requirements like the
global demand for highly specialized, flexible systems and
a short time to market [3], it is essential to compose SW
from reusable, well-tested modules (i. e., groups of one or
more POUs) fulfilling a specific set of functionalities [4].
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Static code analysis is helpful to improve the mod-
ularization of existing SW by decreasing the complexity
of modules and improving their clear separation. Com-
mon techniques include an assessment of the size of POUs
and the control and information flow between them [5–7].
However, current static analysis approaches usually fo-
cus on syntactic features without a mechanism of detect-
ing semantics, i. e., the purpose of a piece of code in a
larger context. An assignment of functionalities to POUs
can express this semantic understanding and assist au-
tomation engineers in their decision-making, e. g., by cat-
egorizing library POUs to assemble new configurations or
by helping to improve the modularity of existing SW [4].
Currently, this semantic understanding requires in-depth
manual analyses of a POU’s description (e. g., names or
comments) and expected runtime behavior (based on its
implementation). The main contribution of this paper is
an automatic classificationworkflow that can successfully
assign eleven selected functionality classes to eight in-
dustrial SW projects from three German aPS manufactur-
ers working in different domains. Thereby, a semantic un-
derstanding of SW functionality is enabled by automatic
means to assist developers in improving SW modularity.
Modularity improvements can focus on limiting function-
alities to specific levels in the call hierarchy, prescribing
which functionalities should be fulfilled by distinct POUs,
or restricting permissible relations (e. g., only allowing
data exchange between selected functionalities).

The remainder of the paper is structured as follows.
Section 2 derives the requirements for functionality analy-
sis from the boundary conditions in aPS SW development,
followed by an investigation of their fulfillment in the state
of the art in Section 3. The concept to automatically iden-
tify control SW functionality is presented in Section 4 and
evaluated in Section 5. Finally, Section 6 provides a sum-
mary and an outlook on future research.

2 Requirements for generating
functionality semantics

IEC 61131-3 SW projects are structured into POUs, intended
to enable reusing functionality [2]. Thus, companies fre-
quentlymaintain libraries of POUs fromwhichSWprojects
are composed. To assess the modularity of SW as a prereq-
uisite for planned reuse, it is, therefore, necessary to as-
sign functionality at the level of individual POUs (R1: POU-
level classification).

Industrial SW projects frequently involve hundreds of
POUs [6] and are, thus, too large to routinely identify each

POU’s functionalitymanually. Instead, an automatic func-
tionality assignment is required (R2: automation).

To ensure that the conceptmatches the boundary con-
ditions of aPS development, it must be scalable to the ex-
tensive size of industrial SW projects mentioned above.
Additionally, industrial SWmay be more complex than ar-
tificial examples (e. g., additional interlocks to ensure safe
operation) and extensive commenting or naming conven-
tions, which may be relevant for static functionality iden-
tification. Thus, an evaluation of the concept using indus-
trial SW projects is needed (R3: industrial SW).

POUs are connected by calls, direct (DDE), and indi-
rect data exchange (IDE), which are cumulatively referred
to as a SW’s architecture in this paper. Because architec-
ture and modularization are interdependent (e. g., a POU
performing much IDE is challenging to isolate as a mod-
ule), a visualization of POUs as nodes and relationships as
edges canaid the analysis and subsequent improvement of
a SW’s modularization [7]. As explained above, function-
ality information is essential to understand existing mod-
ularity and should, therefore, also be visualized. Further,
the visualization requires means to search and filter the
view (R4: visualization).

PLC SW often mixes the languages defined in IEC
61131-3, e. g., the graphical language Ladder Diagram to
program interlocks and Structured Text for mathematical
operations. Thus, the concept should support graphical
and textual IEC 61131-3 languages to support the industrial
practice of mixed-language projects (R5: IEC 61131-3).

3 State of the art in control
software analysis

State-of-the-art approaches already fulfill the require-
ments introduced in Section 2 to a varying degree, as sum-
marized in Table 1. If only some sources per column fulfill
a requirement, they are listed in the rows.

Research in variability management aims to cope with
the variability created by long lifecycles, small lot sizes,
and unmanaged reuse approaches. The approaches iden-
tify similarities using static metrics computation (i. e.,
without executing the program) [8] or behavior modeling
[9]. There are also attempts to aid companies in transi-
tioning from legacy SW tomanaged reuse, either based on
software product lines (SPL) [10] or the automatic extrac-
tion and reuse of variability [11]. For improved variability
management, especially if a transition to SPLs is desired
[10], SW should be reusable and, thus, modular. As de-
scribed above, improving modularization requires knowl-
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Table 1: Fulfillment of requirements in the state of the art. Fulfilled (3), not fulfilled (7), or not considered (–). If not specified otherwise, the
row entries refer to all sources in the heading.

Requirement Variability
management
(Linsbauer,
Thaller et al.
[9, 11], Rosiak
et al. [8])

Static complexity
analysis (Fischer
et al. [6], Lucas &
Tilbury [12])

Control/data
flow analysis
(Prähofer
et al. [5])

Verification/restart
safety (Grochowski
et al. [14], Cha
et al. [15])

Modularity and
architecture
(PackML [17],
Vogel-Heuser et al.
[7, 16, 18])

NLP (Farias
et al. [20],
Garousi
et al. [19])

R1: POU-level
classification

– – – – 3 [18] –

R2: automation 3 3 3 3 3 [7] 3

R3: industrial SW 3 [11] 3 3 3 [14] 3 [7, 16–18] 3

R4: visualization – – – – 7 –
R5: IEC 61131-3 3 [8] 3 3 3 3 [7, 16–18] 7

edge about functionality, which this paper aims to support
by providing an automated approach (R1, R2, R4).

POUs must be easy to maintain, test, and understand
to be reused. Static complexity analysis focusing on dif-
ferent types of complexity commonly serves to evaluate
these properties [6]. While complexity metrics are well es-
tablished in computer science, fewer adoptions exist that
specifically consider the boundary conditions of aPS, such
as the different languages and program structures [12].
Several commercial tools (e. g., EcoStruxure Control En-
gineering – Verification, logi.CAD Static Analysis, Codesys
Static Analysis, and TwinCAT 3 PLC Static Analysis) are
available to analyze guidelines regarding, e. g., POU com-
plexity or naming conventions, and Prähofer et al. pro-
vide additional techniques to target architectural complex-
ity in a control/data flow analysis [5]. However, all current
automated complexity analyses lack semantic awareness,
which is necessary to judge whether a POU is “too com-
plex” because certain functionalities inevitably increase
the complexity in different categories [6].

In aPS specifications, functional requirements regard-
ing the processing of inputs (e. g., sensor readings) into
outputs (e. g., hardware actuation) can be distinguished
from extra-functional ones, describing boundary condi-
tions for aPS operation like reliability, performance, effi-
ciency, and safety [13]. For the verification of requirements,
specifically regarding restart safety, Kowalewski et al. pro-
pose the Arcade.PLC framework combining static analy-
sis, simulation, and model checking [14]. Similarly, Cha
et al. attempt a generalized description language for test
cases and automatic checking against a model of PLC SW
[15]. Because SW functionality depends on the imposed re-
quirements, improved knowledge of the functionality dis-
tribution on POU-level may allow more direct traceability
from requirements to the implementation. This enables a

more targeted verification of selected implementation sec-
tions.

Available descriptions of modularity and architecture
in aPS SW comprise case studies of current industry prac-
tices [16] and suggestions in guidelines like OMAC/ISA
PackML [17]. Fuchs et al. already provide a functionality
classification that this paper will extend upon [18], and
Neumann et al. describe design patterns (recurring kinds
of relationships between multiple POUs) to identify them
in a visualization (R4) [7]. However, existing approaches
do not attempt completeness (i. e., all analyzed POUs can
be categorized) and provide partially overlapping defini-
tions. This paper attempts a functionality classification ex-
tended from [18] to describe all encountered descriptions
and implementations of functionality unambiguously and
automatically (R2), including visualization of the results
(R4).

Code analysis via natural language processing (NLP)
uses descriptive metadata like source code comments and
SW element names. Thereby, automated SW testing [19]
and the identification of knowingly accumulated techni-
cal debt [20] are pursued. However, no approaches target-
ing IEC 61131-3 could be found (R5). Because guidelines fre-
quently prescribe naming conventions and commenting,
NLP may be helpful for the automatic identification of a
POU’s intended functionality (R1, R2, R4) as well as poten-
tial deviations (which may be “admitted” in comments as
found by Farias et al. [20]).

In summary, the automatic analysis of SW is already
commonplace, including evaluations with industry-scale
projects. Many research areas specifically focus on the lan-
guages of IEC 61131-3, excluding NLP applications. Fur-
ther, previous work describes functionalities and their re-
lation to architecture. So far, however, no approaches exist
to identify POU functionality automatically and, thereby,
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Table 2: Overview of the identified functionality classes.

Functionality class Mentioned in

Program Main (FMain): Entry point of an application or module. From here, calls extend to subordinate units. [16]

Sequence Control (FSeq): Implementation of the nominal, sequential behavior of the machine [21]. POUs of this
functionality correlate with the technical process.

[16–18, 21]

Sensor/Actuator Control (FS/A): Control of connected components. POUs of this functionality correlate with the
machine’s mechanical composition.

[2, 13, 17, 21]

Changing Operation Modes (FModes): Changing a machine’s modes of operation. An example is OMAC/ISA
PackML [17], but similar approaches are also valid.

[13, 16, 17, 21]

Diagnostics (FDiag): Identification of errors. Either technical (about single components) or process-related. [13, 16, 18, 21]

Fault/Message Propagation (FMsg): Distribution of errors identified via Diagnostics. [13, 16, 21]

Communication – HMI (FHMI-C): Data exchange with human operators via an HMI. [2, 13, 16–18, 21]

Communication – Other Modules (FMod-C): Data exchange with conceptually separate parts of the software. [13, 18, 21]

Communication – External Sources (FExt-C): Data exchange with computer programs outside of the analyzed SW. [2, 13, 18, 21]

Utility (FUtil): Units created only for better separation of concerns and not to fulfill specific requirements of the
automation problem.

[18]

Safety Control (FSaf): Control of specialized safety hardware. [13, 18, 21]

help improve the modularity in large-scale industrial SW
projects.

4 Automatic identification of
selected functionality classes

To classify functionalities, first, a set of functionality
classes to describe the reviewed literature and industrial
SW is introduced in Section 4.1. Using these classes, Sec-
tion 4.2 introduces the concept to identify functionality au-
tomatically.

4.1 Selection of functionality classes
Typically, hundreds of POUs (the largest investigated
project contains 588 POUs) are needed to fulfill the re-
quirements of aPS by implementing various functionali-
ties, making a manual semantic understanding difficult
and time-consuming. Because, in the absence of industry-
wide standards, companies develop varying approaches
to functionality implementation, it is also challenging for
a single manufacturer to determine a suitable granular-
ity of functionality classes. Therefore, an analysis of de-
scriptions and implementations of functionality frommul-
tiple heterogeneous sources serves to identify an appropri-
ate abstraction level. The resulting classification of eleven
functionality classes is depicted in Table 2 and introduced
in the following.

An aPS SWuses tasks that cyclically execute the POUs
from which the call structure originates (cf. the main-
function in C-like languages). These POUs at the highest
call-hierarchy level are classified as Program Main (FMain)
and typically perform little logic besides calling other
POUs. Often, multiple levels of FMain increasingly refine
the modularization, e. g., matching the architectural lev-
els of Vogel-Heuser et al. [16]. Analysis of industrial SW re-
veals that the sequential process logic [21] and hardware
control are often implemented distinct from each other,
such that, e. g., many processes can reuse one type of ac-
tuator’s control. Therefore, the corresponding classes Se-
quence Control (FSeq) and Sensor/Actuator Control (FS/A)
describe POUs for functional requirements. In addition,
there are extensive extra-functional implementation parts
[22], which are explained below, subdivided into eight
functionalities.

Depending on influences like operator input or fault
states, a process controlled by FSeq must adapt its behav-
ior. One possibility to realize this is ISA/OMAC PackML
[17], but other approaches are also present in industrial
practice. Common to all of them is the need to globally
change the current mode (e. g., Automatic or Manual),
represented by a functionality Changing Operation Modes
(FModes). The related functionality Diagnostics (FDiag) de-
scribes POUs that continuously monitor the state of the
hardware (e. g., an axis is stuck) and technical process
(e. g., shortage of material) to trigger a global reaction. To
achieve this, additional code propagates fault data from
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Figure 1: Concept for the automatic detection of selected functionality classes.

the point of identification to the POUs responsible for a re-
action (often on higher architectural levels [16]), a func-
tionality classified as Fault/Message Propagation (FMsg).
Besides a change of operation mode, typical reactions in-
clude an alarm to operating personnel [16], requiring op-
erators to, in turn, impact the machine’s behavior, both
of which is realized via a human-machine interface (HMI)
and the corresponding POUs, classified as Communica-
tion – HMI (FHMI-C). Other types of frequently encountered
communication concern either data exchange between
logically distinct modules in the same software (Commu-
nication – Other Modules; FMod-C) or data exchange with
other computer programs like databases ormanufacturing
execution systems via Communication – External Sources
(FExt-C). Furthermore, SW often utilizes auxiliary POUs not
tied to one specific aPS function or extra-functional re-
quirement (e. g., data conversions, copy operations, or
validity checks) represented by the functionality Utility
(FUtil). Finally, due to the potential hazards of aPS for their
environment, specialized hardware like safety doors or
light barriers are necessary, whose control is performed by
POUs classified as Safety Control (FSaf).

4.2 Concept to statically predict the
functionality classes

This paper aims to develop amethodology to statically de-
rive a POU’s functionality and, thereby, assist the modu-
larization of existing legacy software. The concept is visu-

alized in Figure 1 and depends on three types of external
input data: SW projects from the industrial practice to en-
sure practically relevant results, existing descriptions of
functionality in case studies and guidelines, and regular
interviewswith experts from the involved companies to re-
fine the concept. On that basis, the functionality classes
defined in Section 4.1 serve as a fourth input. The concept
relies on a generation of so-called functionality predictors
(“predicting” a POU’s functionality based on its character-
istics) that is necessary only once when adopting the pro-
cedure (grey background inFigure 1). Thepredictors derive
a functionality classification either from the implementa-
tion, i. e., the expected runtime behavior, or from natural
language descriptions in names and comments. They are
created bymanually classifying POUs according to the def-
initions in Table 2 and then identifying correlations be-
tween a POU’s functionality and its implementation or de-
scriptive texts. Additionally, the generated predictors’ ac-
curacy (definedas the ratio of POUswhose automatic func-
tionality classification matches the manual classification)
allows judging their validity. After generation, the predic-
tors can automatically analyze any SW (blue background
in Figure 1). However, it is expected that the SW to clas-
sifymust adhere to similar design philosophies to produce
high accuracy results, e. g., by following the same guide-
lines as the training data.

To find commonalities in implementations/descriptions
(cf. Figure 1), each POU is characterized by 23 properties of
its implementation and descriptive texts from six sources,
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both selected based on the state of the art introduced in
Section 3. Neumann et al. describe a set of design patterns
and observe multiple correlations with functionality, in-
cluding tree-like patterns that emerge at POUs in higher
architectural levels and end at so-called (atomic) basic
modules [7], whichVogel-Heuser et al. previously observed
to correlate with reusable functionalities like controlling
connected hardware (FS/A). Similarly, frequently called
POUs often perform functionalities for extra-functional re-
quirements,whereas POUs that callmany others are found
at the FMain level [7]. To analyze such functionality corre-
lations, the numbers of incoming and outgoing edges of
every structural type (calls, DDE, IDE) are calculated for
every POU, aswell as their depth in call and data exchange
hierarchies. Further, industrial case studies show that IDE
is often used to communicate information from lower to
higher levels of the call hierarchy [16],making thempoten-
tially beneficial to detect the data exchange functionalities
FMsg, FHMI-C, FMod-C, and FExt-C. Similarly, FS/A POUs must
likely access variables connected to a PLC’s physical I/O
to control the connected hardware. In addition to its struc-
tural relationships, a POU’s functionality manifests in dif-
ferent types of complexity (e. g., size, control flow, or data
structure), assessed using nine different metrics adapted
fromFischer et al. that correlatewithPOU functionality [6].
Lastly, meta-information like the selected programming
language is analyzed, which the IEC 61131-3 standard rec-
ommends choosing based on the fulfilled functionality [2].

A POU’s functionality may correlate with its natu-
ral language description, because industry standards and
company-internal guidelines frequently prescribe naming
conventions and extensive commenting. Therefore, every
POU’s name, the names of its variables, all containing
folders and the application, and all labels and comments
included in the implementation are collected. Different
case styles are split into separate words (“FB_SafCtrl”
into “FB Saf Ctrl”), and abbreviations are resolved based
on company-specific dictionaries (“Function Block Safety
Control”).

Because the functionality prediction, i. e., the gen-
eration of a mapping from characteristics to function-
ality, is a typical classification problem, machine learn-
ing (ML) classifiers are trained to solve it. Thereby, in-
put features comprise the POU characteristics (separated
into implementation- and description-based ones), and
the output is one of eleven functionalities (Table 2). The
classifiers are trained using the manually classified POUs,
i. e., labeled training data.

A visualization fulfilling R4 serves to make the find-
ings understandable for SW developers. This includes a
graph-like display of individual POUs as nodes and their

relationships (calls, DDE, IDE) as connecting edges [7].
A node’s fill color denotes the functionality of individual
POUs (R1). Additional functions include dragging nodes
and panning and zooming the view to focus on subgraphs
of interest. Further, because of the large size of aPS SW
projects (cf. R2), the graph can be limited to a “slice” (i. e.,
only POUs that directly impact or are impacted by a se-
lected POU), and POUs can be searched by name after
which the view zooms to the corresponding node.

5 Evaluation in machine and plant
manufacturing

For evaluation purposes, the presented concept is proto-
typically implemented as part of the ZD.B-funded project
advacode, focusing on PLC SW developed in Siemens To-
tally Integrated Automation (TIA) V15.1 and V16. Projects
are exported as TIA Openness XML and transformed into
a SW model containing all relevant data for functionality
classification. After generating the characteristics of im-
plementation and description, a previously trained and
imported ML classifier (if available) predicts the function-
alities of all POUs. Otherwise, the POU data (manual func-
tionality assignment and characteristics) are exported to
use in open-source ML frameworks. For implementation-
based classification, decision trees are trained in Scikit-
learn [23], and the description-based classification uses
the Stanford Classifier with Stanford CoreNLP [24]. Since
decision trees are human-readable, it is possible to vali-
date the generatedprediction rules basedonexpert knowl-
edge. The visualization as described in Section 4.2 is also
included in the prototype and depicted in Figure 2.

Using this prototype, eight industrial exampleprojects
are analyzed as described in Figure 1, i. e., functional-
ity predictors are generated and then evaluated regarding
their prediction accuracy, thereby assessing the concept’s
validity for automatic functionality prediction. The con-
cept is further evaluated based on expert feedback from
the involved companies (Section 5.1), regarding the ful-
fillment of the requirements introduced in Section 2 (Sec-
tion 5.2), and by discussing its limitations and threats to
its validity (Section 5.3).

Three German aPS manufacturers participate in the
evaluation (companies A, B, and C) and contribute eight
SW projects from previously manufactured plants (four
from companyA, two each from companies B and C). In to-
tal, 2,544 POUs representing all functionalities in Table 2
are available for analysis (cf. Figure 3). All companieswork
in manufacturing engineering, controlling discrete and
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Figure 2: Graph visualizations generated in the prototype. POUs as nodes, call edges in solid black, IDE edges dashed and green. The bot-
tom image includes functionality information generated based on NLP analysis (cf. Table 2).

Figure 3: Available sample data per company (vertical axis scaled by
square root).

continuous processes in the Automotive, MedTech, and
film stretching industries. They exhibit mature develop-
ment practices producingSW that allows amostly straight-
forward manual assignment of one functionality per POU.
The companies’ SW developers follow written guidelines
and partially work based on templates, automatically gen-
erated or assembled from library POUs. The guidelines in-
clude specifications about architecture, e. g., regarding the
call hierarchy and permissible data exchange. While SW
architectures are, thus, similar between projects from the
same company, they differ notably between companies.
The fact that all companies exhibit an awareness of func-
tionality, reflected in their projects’ modularity, is benefi-
cial to the purpose of this paper, as it offers insight into the
industrial practice of functionality implementation. The
representation of varying modularity and architecture de-
signs and requirements frommultiple industry sectors fur-
ther increases the validity of the findings.

Two projects per company (e. g., A1 and A2 from com-
pany A) are selected for training and validation and com-
piled into seven data sets (A – ABC, cf. Table 3). Thereby,
e. g., set AB contains POUs from A1, A2, B1, and B2. No
set contains the so-called holdout projects A3 and A4.
Two classifiers are trained with every set: one using char-
acteristics of a POU’s implementation, the other its de-
scription. Thereby, 75% of available POUs serve as train-
ing data, 25% for validation. Every classifier’s accuracy is
computed regarding the 25% validation POUs and all aPS
SW projects. Thus, a check for overfitting is enabled, if a
classifier predicts the train projects much more accurately
than the validation set.

The classifiers can learn rules applicable to the en-
tire company and not only to the selected projects, as ev-
idenced by the similar accuracies of the holdout projects
A3 and A4 compared to A1 and A2. However, the appli-
cability to projects of a company not involved in training
(e. g., A1 and A2 for classifiers BC) is minimal, likely be-
cause of the varying implementation practices described
above. The average recall rate of classifier ABC-Impl re-
garding all functionalities is 66%, with an average preci-
sion of 45%. Classifier ABC-NLP performs with an average
recall of 91% and average precision of 92%. The lowest
values are measured for ABC-Impl regarding FExt-C (recall
33% and precision 18%).

The accuracy distribution reveals that the NLP-
based classification performs significantly better than
the implementation-based one. This relation increases as
other companies are added to the input, which only neg-
atively affects the implementation-based accuracy. Closer
inspection further reveals that projects A4 and B2 are
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Table 3: Fourteen classifiers (columns; implementation-based or natural language-based) trained with seven data sets. Prediction accura-
cies for eight aPS SW projects (rows) in [%].

Evaluation data Training sets (combined aPS SW projects)
AQ BC CF ABQC ACQF BCCF ABCQCF

Classifiers trained with the training sets
Impl NLP Impl NLP Impl NLP Impl NLP Impl NLP Impl NLP Impl NLP

aPS SW
projects

A1Q 85 96 22 20 24 18 77 95 79 96 28 19 72 96
A2Q 71 91 29 13 37 15 62 88 56 91 35 13 58 87
A3 69 95 19 22 21 21 65 94 65 94 27 22 61 96
A4 68 87 24 23 22 22 58 84 54 88 25 19 42 87
B1C 28 31 89 93 8 37 71 92 25 39 74 91 63 91
B2C 26 26 81 91 7 34 65 87 25 32 68 86 58 87
C1F 29 28 13 19 84 87 30 38 70 93 67 89 60 85
C2F 21 20 15 39 87 93 22 43 80 95 75 92 63 91

Validation 69 87 83 84 77 83 69 87 69 88 69 80 58 86
Legend:
Impl = classifier trained with implementation characteristics NLP = classifier trained with natural language characteristics
Qtraining projects from company A Ctraining projects from company B Ftraining projects from company C
Accuracy ∈ [0, 50]% Accuracy ∈ (50, 75]% Accuracy ∈ (75, 100]%
mostly less predictable than the companies’ other projects.
The responsible development leads offered different ex-
planations for this effect. A4 was reportedly created by
an inexperienced developer, causing deviations from the
guidelines like non-regulated IDE and the “reinvention”
of available library POUs. B2, on the other hand, ad-
heres to all guidelines but implements more functions
than B1, leading to functionalities that are only present
in one sample and, thus, not reliably detected. Both ex-
amples demonstrate that the functionality predictors in-
herently express an interpolation of the correlations be-
tween POU characteristics and functionality. Hence, in-
sufficient accuracy means either a project deviates from
the learned standard and should be revised (A4), or addi-
tional data are needed to train a well-performing classifier
(B2).

5.1 Expert feedback

The visualization described in Section 4.2 and depicted
in Figure 2 was successfully used in repeated workshops
to describe the preliminary functionality classification re-
sults. Thereby, experts helped to iteratively refine the func-
tionality classification to reach its current state depicted
in Table 2, and the selection of POU characteristics (cf.
Section 4.2) was adapted and extended. The validity of
the classification results in Table 3 was confirmed, as well
as the concept’s merit for the industrial practice. Poten-
tial use cases include the application in quality assurance,
either to maintain and improve a functionality-oriented

architecture and modularization or to detect violations
based on the functionality semantics (e. g., a POU having
the wrong name or being too complex for its functional-
ity).

Besides its usefulness to SW developers, a visualiza-
tion including functionality information was also con-
firmed to aid SW documentation. Potential audiences in-
clude new personnel and a company’s upper manage-
ment, as a SW’s architectural design and its relation to
company guidelines can be easily grasped without in-
depth code analyses.

Experts criticized the implicit assumption that every
POU has exactly one functionality because it is neither al-
ways true (e. g., POUs for FS/A and FSeq often include FDiag)
nor always desired. Instead, one company explained that
they aim to developmore “intelligent” POUs that subsume
multiple functionalities to simplify the overall architec-
ture.

5.2 Assessment of the requirements’
fulfillment

Eleven functionality classes are defined and used to fulfill
R1 (POU-level classification) by classifying the functional-
ities found in literature and code reviews. In the prepara-
tory phase (grey background in Figure 1), POUs are classi-
fied manually, but the entire remaining procedure is au-
tomated to fulfill R2 (automation) – including the pars-
ing of SW projects, extraction of characteristic properties,
and training and application of ML classifiers. Further,
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R3 (industrial SW) is fulfilled by evaluating the concept
with eight customer projects from three German aPS man-
ufacturers, thereby ensuring applicability to the industrial
practice in different domains. The visualization (cf. Fig-
ure 2) comprises structural graphs of calls, DDE, and IDE
and information about each POU’s functionality via the
color of nodes. Additionally, several means of interaction
are included that helped to verify the fulfillment of R4 (vi-
sualization) by explaining and discussing the functional-
ity analysis results with industry experts. The visualiza-
tion indirectly highlights a lack of modularization, if no
POUs are identified for a functionality, and enables the
validation of developers’ expectations about functional-
ity distribution. Finally, R5 (IEC 61131-3) is only partially
fulfilled because the investigated SW projects are imple-
mented in TIA, whose distributor Siemens claims com-
pliance with IEC 61131-3 [25] but deviates in some points.
Notably, object-oriented programming is highly beneficial
for modular program development [26] but unavailable in
TIA. Even so, all graphical and textual languages are sup-
ported.

5.3 Threats to validity and limitations

The concept presented above is highly dependent on the
large-scale analysis of industrial SW projects and, thus,
the outcomes rely on the selected data. As assumed in Sec-
tion 4.2 and confirmed by the results in Table 3, predictors
are generally only effective when applied to projects that
resemble the training data, e. g., because they were cre-
ated based on the same guidelines or by the same develop-
ers. Thus, companies can only adopt the approach in prin-
ciple but may have to modify the selection of functionality
classes and POU characteristics.

Since the classifiers benefit from data consistency
(e. g., use of naming conventions, templates, library POUs,
and code generation), it is likely that companies with less
mature development practices than described in Section 5
(specifically, consistent implementation of functionality
in individual POUs) cannot achieve the high accuracies in
Table 3. Similarly, the training of a single classifier formul-
tiple companies shown in the rightmost columns of Table 3
likely benefits from the fact that all involved companies
work in manufacturing engineering and, thus, must fulfill
similar requirements. Finally, as criticized by practitioners
(Section 5.1), it is unlikely that exactly one functionality
from Table 2 can be assigned to every POU if companies
develop less modularized SW.

6 Summary and outlook
This paper proposes a concept to automatically classify
aPS SW functionality, thus helping the improvement of
legacy code modularization. The presented classification
scheme can comprehensively describe functionality in the
reviewed literature and eight SW projects from three ma-
chine and plant manufacturing companies. All available
projects are classified manually and automatically based
on characteristics of a POU’s implementation or descrip-
tion, achieving accuracies of up to 96% in the holdout test
set (cf. Table 3). However, several shortcomings still exist
that future work should address.

An iterative training procedure should replace the
large amount of up-front manual classification work
to ease the concept’s adoption for aPS manufacturers.
Thereby, means to assignmultiple functionalities per POU
and visualize them are required. Enlargements of the in-
vestigated scope are needed to include the functionali-
ties of other industry sectors (cf. Section 5) and differ-
ent coding and modularization styles (e. g., using object-
orientation or more coarse-grained modules). It is also
unclear whether a “one-size-fits-all” approach (like the
combined classifiers in Table 3) is feasible in this en-
larged scope. As the concept’s usefulness to the industrial
practice depends strongly on the visualization, additional
properties like metric values (size, control flow complex-
ity, data complexity) should be displayed.

Another approach to the concept not explored here
is to invert the interpretation of the observed mapping
between characteristics and functionality, i. e., to derive
generalizations about how functionality is implemented.
By analyzing the human-readable decision trees used for
implementation classification, trained with a selection of
projects that are considered exceptionally well designed,
it may be possible to derive best practices about how
aPS functionality should be implemented. Thereby, well-
modularized POUs can be designed [4] and reused in new
SW configurations.
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