
Organization, Technology and Management in Construction 2022; 14: 2640–2655

Research Paper� Open Access

Wolfgang Eber*

Manageability of complex organisational  
systems – system-theoretical confines of control
DOI 10.2478/otmcj-2022-0009 
Received November 03, 2021; Accepted May 06, 2022

Abstract: The task of organisation is based on break-
ing up complex systems into a number of less complex 
subsystems where the interfaces are well-determined 
leading inevitably to hierarchical structures. There-
with, the principle need of precisely predefined targets 
regarding quality and time frames becomes necessary, 
which in turn enforces establishing controlling proce-
dures. Meanwhile, it is well accepted that controlling 
processes are demanding resources and therewith form 
the cost of organisation. Rarely quantitatively regarded 
is, however, the need of having further resources ready 
to repair for detected quality deviations. This paper 
points out where the system-theoretical limits of control 
lie, based on a mathematical approach of delayed 
control where a second-order approximation leads to 
the introduction of terms of perseverance as well as of 
dissipative terms. On this background, delayed inte-
gral controlling meets the characteristics of a harmonic 
control system and also suffers it’s confines determin-
ing the fundamentally limited reaction time. The focus 
of the article presented here is on the development of 
realistic scenarios of limited quality deviation situa-
tions and their relevance in the light of a fundamental 
criterion of stability derived from the differential equa-
tion of the harmonic control. In this context, we find 
evidence that partly self-determining concepts, such 
as e.g. maintained in lean construction, SCRUM and 
similar others, become favourable, if not superior, to 
hierarchical approaches.

Keywords: controlling, systems theory, lean management, 
construction management, real estate management, 
 coordination

1  Introduction
Organisation is all about improving efficiency of produc-
tion by implementing division of work (Smith 1776). Long 
since, Taylor (1911) laid the foundation of this concept by 
introducing the idea of perfect construction of work pack-
ages where the effort of perfect determination tends to 
infinity. The common structural approach to developing 
appropriately matching work packages is based on hier-
archical tree structures using reduced but nonetheless 
non-ambivalent interfaces to superior as well as sub-or-
dered structural elements (Schulte-Zurhausen 2002; 
Kerzner 2003; Eber and Zimmermann 2018). However, 
furthermore, in particular, horizontal interactions are 
clearly ignored and replaced by an attempt to determine 
and require perfect outcomes of each package so that 
interdependencies automatically become fulfilled. Not 
only recent development of understanding implies that 
this strict concept is bound to fail principally. Meanwhile, 
alternative approaches like self-deterministic manage-
ment (Malik 2003; Schelle et al. 2005), agile management 
(Beck et al. 2001; Schwaber and Sutherland 2020) and to 
some degree concepts of lean management (Koskela 2000; 
Koskela et al. 2002; VDI 2019), where definitions are less 
strict and interfaces more cooperative, are gaining more 
and more importance.

Understanding the principle of incomplete con-
tracts (Ebeling et al. 1998; Picot et al. 2008; Liening 
2017; Hoffmann and Körkemeyer 2018) already states 
that no result nor consumption of resources can be 
perfectly determined in advance which would be abso-
lutely required by a hierarchical approach to division of 
work (Caldarelli and Vespignani 2007). This is valid for 
horizontal interdependencies where independently pro-
duced packages need to perfectly match as well as for 
vertical relationships.

The well-known principal-agent problem (Picot et 
al. 2008) points out that a perfect description of work 
and respective supervision can only be gained at a price 
of an at least equivalent effort as if not outsourcing the 
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package. Thus, the goal of organisation is finding the sec-
ond-best solution instead of hoping for a never occurring 
first-best solution. The second-best solution is then rep-
resented by the balance between control and tolerance 
(Coase 1937).

The known principle of balancing transaction cost 
(Picot et al. 2008) only considered the coordination effort 
versus the gained production advantage at an optimal 
degree of division of work. Therewith, perfect definition 
of outcome and interfacing is preconditioned while in no 
way taking tolerance into account.

This problem occurs not only with real division of 
work distributing to different people or companies but 
also with a single person taking up different roles within a 
project. Even then, the perfect transfer of knowledge and 
understanding from one role to another cannot be gained 
without significant losses.

Doubtless, the implementation of control mecha-
nisms to adjust processes to required results is part of 
the concept of coordination. However, even then, the 
definition of perfect results to compare with is required. 
Thus, coordination not only focusses on the agents’ side 
in order to fulfil the given requirements but also needs 
to deal with the principals’ inability to formulate the 
perfect determination of work package as a solution to 
a given problem. This situation resembles the V-model 
(Schelle et al. 2005) controlling not only the quality of 
a solution, measured as deviation from then given plan, 
but also the applicability of the result to solving the 
given problem appropriately. The therewith demanded 
extension of the principle of control, being absolutely 
compatible with the traditional approach of governing, 
however, requires not only a significantly higher provi-
sion of controlling resources but also higher controlling 
delays as well since the goal comparison procedure 
resides on a much more abstract level than just compar-
ing facts to a plan.

On this background, we state that perfect determina-
tion, e.g. based on strict hierarchical approaches, is prin-
cipally not possible, neither on the agents’ side nor on the 
principals’ side (Wassermann and Faust 1994; Strogatz 
2001; White et al. 2004; Winch 2006; Eber 2020). There-
fore, the following question is to be brought up: to which 
degree within an inevitably inconsistent system local 
contradictions can be ruled out by respective controlling 
mechanisms and where perfection reaches its limits given 
by fundamental rules?

Recent approaches, e.g. lean management VDI 2553 
(VDI 2019) or the SCRUM manifest (Beck et al. 2001; 
Schwaber and Sutherland 2020), emphasize a strategi-
cal turn towards non-hierarchical management where 

self-determination plays the fundamental role rather than 
the execution of perfectly determined tasks. These ideas 
are mainly based on the experience of a lack of perfection 
in predetermination of sub-elements, execution of these 
or the ability of controlling instances to ensure perfection. 
However, these concepts seem to be missing a mathemati-
cal foundation and are, hence, introduced on a more heu-
ristic basis.

This paper represents an extension to ‘System-theo-
retical Approach to Fundamental Limits of Controllability 
in Complex Organization Networks’ (Eber 2021), where the 
fundamentals and principal limits of controlling precision 
based on harmonic control are discussed. This under-
standing is again presented in Sections 2–7 while a sim-
ulational experiment is added in Section 7, validating the 
resulting boundaries. The novelty of this present paper 
is first on the development of a set of scenarios of differ-
ent stochastic deviations of input parameters providing 
limited indetermination and, hence, the requirement of 
a particularly determined set of resources in need to be 
held ready to face these (Section 8). Secondly, on the back-
ground of understanding harmonic control as dynamic 
and dissipative contributions to the behaviour, a princi-
pal limit of stable behaviour is proposed and discussed 
(Section 9).

2  �Organisation modelled as a 
system

In order to understand the behaviour of an organisation 
(Booch et al. 2007), modelling it as a system is required. 
Based on a hierarchical work breakdown structure (WBS), 
the overall task is separated into a large number of 
non-overlapping subtasks. The WBS as a graph-theoreti-
cal tree structure is bound to ignore all horizontal inter-
actions between subtasks and branches solely according 
to a singular specific criterion, e.g., the physical structure 
of the product. Only after identifying the entirety of the 
product elements, the (horizontal) interfaces between 
these are reintroduced and form the system as a set of 
elements and respective (systemic) interactions (Berta-
laffy 1969; Haken 1983; Luhmann 2001; Newman 2003; 
Zimmermann and Eber 2017). This comprises not only 
physical elements but also all imaginable elements to 
be processed in order to complete the project. Broken 
down to the utmost level of detail, each element is rep-
resented by a single variable qi forming the state vector 


Q, while all interactions are given by linear differential 
equations as the second term of a respective Taylor series. 
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The constant terms can be eliminated by linear transfor-
mation of the reference system to the state of equilibrium 

= ∂ ∂ =


0 0 / 0q Q t . Higher order terms are neglected for 
this approach; linear superposition property of impact is 
assumed. 

	 +

∂= + → = + +
∂



    

0( ) (higher orders)t dt t
QQ Q F Q Q AQ
t

� (1)

where A is the adjacency matrix and 


Q the state vector 
(Figure 1). 

Written as components we obtain the following: 

	
∂

=
∂ ∑ ,

j
j i i

q
c q

t � (2)

3  �Unruled inconsistent systems/
organisations

As long as the system is not contradictory (Zimmer-
mann and Eber 2017), the differential equations lead to 
the trivial solution and the system stabilizes at a state 

=



0Q  (zero vector). Inconsistency is given if multiple 
influencing nodes are driving a common target towards 
different values. Formally, within a linear system, the 
differential equations are superposed. However, if the 
influencing parameters ,i jc  are strong and the impact is 
not performed simultaneously but e.g. alternatingly, a 

nonlinear system is built and instabilities show up on 
the time axis.

Example (Principal-Agent Problem) (Picot et al. 2008): 
Two partners (1 and 2) are not agreeing on a certain value 
qj. The principal (1) expects and formulates a certain 
quality qj for a sub-product, while the agent (2) provides 
only a different value, for whatever reason. He probably 
knows better due to his expertise or cannot do better due 
to the given circumstances. Then, over time, this absolute 
value is determined by each of the participants according 
to their personal (valid, however inconsistent) definition 
somehow alternatingly and induces the respective conse-
quences to the adjacent elements (Figures 2 and 3). 

In this context, the temporary qj(t) value is simply 
set by the locally determining party. Since the differential 
equation refers to only a modification of the previously set 
value, this needs to be understood as a very strong and 
very fast adaption to the given value (i.e., notifying the 
inadequate value and immediately setting it). 

Remark: If the adjustment process is slow compared 
to the alternating determination of the contradicting ele-
ments, the resulting value represents the average opinion. 
This situation is equivalent to both parties accepting the 
other side’s value to some degree over time.

qi qj 

Fig. 1: Modelling the effect of nodes I on a node j.

q1

q2

qj

Fig. 2: Multiple nodes driving qj towards inconsistent values.

qi

t

value qj based on qi1

value qj based on qi2

qj enforced by q1 on action of “1”

qj enforced by q2 on action of “2”

qj on alternating action 
(strongly – weakly enforced)

Fig. 3: Inconsistent state of equilibrium depending on the point of time when the one or other impacting node takes priority.
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Such inconsistencies are represented by the average 
resulting fuzziness of system variables. As long as factu-
ally inconsistencies are existing, the system models the 
behaviour correctly. This includes averaging as well as 
oscillating or even escalating development.

Obviously, the two determining elements (players) 
maintain no direct interaction, namely nothing in order to 
clarify the situation. Only if one of the players is officially 
declared to be wrong or both agree on a common value, 
the discrepancy is solved. Such a procedure, however, is 
based on both players to realize each other’s position or 
at least the resulting value and start an attempt to solve, 
which means establish a corrective interaction. 

4  �Introduction of controlling 
structures

If means of controlling are established, one or both of the 
disagreeing parties or possibly a third party is observing 
the value in question and comparing this to an expected 
value. Based on this knowledge, forces are implied to 
bring the value back to expectation. In terms of systems 
theory, this is the introduction of a loop, where some 
impact is derived from an observation of a value (Wiener 
1992) (Figure 4).

In case of self-organised consolidation of inconsistent 
expectations, both the impacting elements are observ-
ing the state of the respective element and are taking the 
current situation – that is the influence of the disturbing 
element – into account when deciding for their reacting 
strength.

Considered as classical controlling, this process turns 
out to be equivalent. The development of a value, proba-
bly as the result of some production process, is compared 
with a predefined value of quality, per contract or plan, 
and brought back on value reacting to the observed dis-
crepancies.

The mathematical representation of any short (one 
member only, the controller returns only proportional 
reaction) controlling loop is given by the simplest struc-
ture (Figure 5): 

The general solution of this kind of equations is either 
oscillating, exponentially escalating or damped, which 
is the preferred controlling behaviour (Zimmermann and 
Eber 2014; Eber 2019a).

	
∂
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∂



ic ti
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c q q e

t
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5  �General theoretical approach to 
(linear) controlling mechanisms

The most general approach to understand the time-related 
behaviour of a starkly simplified subsystem of this kind 
is by the differential equations for the harmonic oscilla-
tor. Any deviation of a value Q is answered by an automa-
tised force leading back − β  to the desired value 0 working 
against the inertness µ towards any change and addition-
ally taking some retarding forces ρ  proportional to the rate 
of change into account. 
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using the damping factor = /k ρ µ and the frequency 
= /ω β µ .

The general solution is given by an approach of 
damped oscillations as a complex function

	 ( )= ⋅0( ) expQ t Q tλ � (5)

Observe(a)

(b)

q1

q2 qj

Observe

Manipulate

Manipulate

Observe
q1

q2 qj

Manipulate

Manipulate
Manipulate

Controller

Fig. 4: (a) Observing loop at both impactors. (b) Attached 
controlling element.

qi ci,iProduction Controlling

Observe

Manipulate

Disturbing forces

Fig. 5: Basic system of the theoretical controlling structure.
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λ ω
µ µ µ

� (6)

Depending on the relationship between the damping 
factor = /k ρ µ and the frequency = /ω β µ , this system is 
capable of performing damped or escalating oscillations, 
as well as exponential approximating characteristics 
(Figure 6).

The situation of weakly damped oscillations is deter-
mined by /2k ω  where the root becomes negative and 
the solution therefore complex-valued.

	

     = ⋅ − ± ⋅ −        

2
2

0( ) exp exp
2 2
k kQ t Q t i t ω � (7)

The relevant real part of this is representing exponen-
tially damped oscillations:

	

     = ⋅ − ± −        

2
2

0( ) exp cos
2 2
k kQ t Q t t ω � (8)

The frequency is different from the undamped 
frequency = −2 2 2 /4d kω ω , while the relaxation time is 

= =2/ 2 /R kτ µ ρ.
Critical dampening refers to the situation where 

the root term vanishes as no oscillations occur
= → =/2 /2 /k ω ρ µ β µ . The solution reduces to a single 
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Fig. 6: Solutions of harmonic differential equation.
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exponential descent with an identical relaxation time 
constant = =2/ 2 /R kτ µ ρ:

	

 
= ⋅ −  0( ) exp

2
kQ t Q t � (9)

Finally, the overdamped case is given if the root yields 
a real solution, i.e., 

/ 2k ω

	

   = ⋅ − ± −    

2
2

0( ) exp
2 2
k kQ t Q t t ω � (10)

The characteristic of the time development is also 
exponential; however, the time constant of relaxation is 
somewhat different.

	

−
   = −     


1
2

2

2 2R
k kτ ω � (11)

The primary solution (negative sign) indicates the 
damping factor k/2 reduced by a term depending on the 
relationship between frequency and damping factor and, 
thus, an increased relaxation time Rτ .

Excursion: In order to approximate a strongly over-
damped situation which moves slow enough that the 
originally dominant inertia term would cease to play a 
role (µ → 0), the differential equation needs to be slightly 
modified:

∂ ∂ ∂ ∂= − − → = − − → = −
∂ ∂ ∂∂

2

2 0Q Q Q QQ Q Q
t t tt

βµ β ρ β ρ
ρ

�(12)

The solution of the remaining purely integral control-
ler is given by ( )= ⋅ −0( ) exp /Q t Q tβ ρ  where the relaxation 
time constant is = /Rτ ρ β .

In the end, this is the reason why the primary solution 
out of the two possible signs is correctly chosen: Obviously, 
only then the development of Rτ  for large values of Cτ  is 
sensibly approximating the inertia-free approach. 

6  �Theoretical approach applied on 
delayed integral governors

6.1  �Approximation of a delayed integral 
controller

Understanding the characteristics of a harmonic oscillator 
obviously shows no direct connection to controlling mech-
anisms since terms like ‘inertia’, ‘friction’ and ‘retarding 

forces’ have only symbolic meaning. However, from gov-
erning theory (e.g. Haken 1983), we know the principles of 
the integral controller as the most fundamental and stable 
concept.

	
∂ = −
∂ C
Q k Q
t

� (13)

The most influential parameter taken from real con-
trolling systems which is not manifested here would be 
a significant time delay ∆t resulting from finite detection 
patterns, lengthy considering and discussion procedures 
and, finally, from durations of initiating activities.

Considering this parameter in particular, the 
differential equation (DE) takes on a different shape:

	
∂ = − − ∆

∂
( ) ( )C

Q t k Q t t
t

� (14)

As a first-order approach, we substitute and develop  
Q(t) in close proximity of t:

∂ + ∆ ∂ ∂= − ⇒ + ∆ = −
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2

2

( ) ( ) ( )( )    ( )C C
Q t t Q t Q tk Q t t k Q t

t t t
� (15)

Rearranging and comparison to the harmonic DEQ 
leads to:

∂ ∂= − − = − −
∆ ∆ ∂∂

∆  

2 2

2 2

1  compared to:  

identifies: 1

C

C

kd Q dQ Q QQ Q
t t dt tdt t

t k

β ρ
µ µ

µ β ρ
�(16)

This is certainly not accurate enough but at least indi-
cates the closeness of a time delay to an approach using 
inertia and friction. Therewith, virtual inertia rises with 
the time delay and a friction term is at least existing. In 
order to improve, a second-order approach is obviously 
required:

	
∆− ∆ − ∆ + +

2 2

2( ) ( ) ...
2

dQ t d QQ t t Q t t
dt dt

� (17)

Inserting this into the differential equation of the 
delayed integral controller yields:

∂ ∆= − + ∆ − +
∂

2 2

2

( ) ( ) ...
2C C C

Q t dQ t d Qk Q t k t k
t dt dt

( )∆ = − + ∆ −
2 2

2 1
2C C C
t d Q dQk k Q k t

dtdt

and finally:

	

( )∆ −−
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∆ ∆

2

2 2 2

2 12 CC

C C

k tkd Q dQQ
dtdt k t k t

� (18)
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This expression again needs to be compared to the 
harmonic equation

	

∂ ∂= − −
∂∂

2

2

Q QQ
tt

β ρ
µ µ � (19)

Thus, we identify as a useful approximation using 
τc = 1/kc as the time constant of the original governor:
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6.2  �Characteristics of delayed integral 
controllers

On this background, the behavioural cases of an integral 
controller with controlling strength kc = 1/τc and subjected 
to some delay ∆t can be formulated:

The overdamped controller is well capable to rule out 
any deviation, however, not in the shortest possible time. 
The relaxation time is given as follows:
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The previously introduced approximation for vanish-
ing inertia leads to the approximation value
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Excursion: The same result is obtained when develop-
ing the full term for ∆ − ∆

2 / R Ct tτ τ , i.e., a controller time 
constant Cτ  far off the time delay ∆t in comparison to ∆t 
itself and it’s relation to the relaxation time Rτ :

With ( )ϑ = − ∆: C tτ , we obtain:
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With ∆ ϑ

2
Rt τ , the second term can be neglected 

while the remaining terms yield:
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A different arrangement of this condition may help to 
clarify the meaning:
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The critical setting is given by the condition:
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= → = → = =
∆∆ ∆ ∆ ∆2 2 2 2

2 1
2 2 2

2 2

C
CC C

C

t
t

tt t t t

τ
ττ τρ β

µ µ τ

( )− ∆
= → − ∆ = ∆ → = ∆ + ∆
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τ

τ τ

	 ( )= ∆ +1 2C tτ � (27)

and leads to the optimal relaxation time constant (which 
is significantly shorter than τc since the starting of the 
oscillation helps to bring the deviation down):

	

∆ ∆= = = =
  − ∆∆−  

2 22 22/
2 1

R
C

C
C

t tk
tt

µτ
ρ τ

τ
τ

� (28)

Finally, the attempt to rule out deviations within 
shorter times (weakly damped) invokes the oscillating 
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Fig. 7: Theoretical development of relaxation time τR ranging from oscillating over the critical/optimal setting to the overdamped situation.

solution where the overall relaxation time is given as 
follows:

	

∆ ∆= = = =
  − ∆∆−  
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tt
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Remark: As long as > 0Rτ , the oscillations are damped 
and finally run out. However, with > 0Rτ , the exponential 
function changes it’s character to an escalating behaviour. 
With ( )= ∆ − ∆2

R Ct tτ τ , this transition occurs at = ∆C tτ  
where the exponent changes sign.

Figure 7 shows the characteristic behaviour of such 
a controlling structure over a wide range of controlling 
strength = 1/C Ck τ  for given unity time delay ∆ = 1t :

We clearly observe the critical setting as the optimal 
selection of controller time constants for obtaining the 
shortest possible governing time. 

Increasing given time constants Cτ , i.e., weaker gov-
erning strengths = 1/C Ck τ , leads to increasingly slower 
relaxation times. From the mathematical point of view, two 
branches are possible, where the correct one approaches 
a linear function with gradient 1, intersecting the abscissa 
at = ∆C tτ .

Smaller time constants corresponding to applying a 
stronger controller (raise kc) produce instable behaviour 

performing increasingly oscillations, however damped 
and therefore still stabilising after some time. Only 
if the controller time constant Cτ  reaches the value of 
the given time delay ∆t, the systems behaviour changes 
from damped to escalating oscillations with the change 
of sign.

In order to illustrate this, Figure 8a shows the depend-
ency of relaxation times vs. a given controlling strength 
for a fixed time delay ∆ = 200t . Furthermore, Figure 8b 
plots the points of just stable behaviour (in terms of Cτ ) 
for varying given time delays ∆t for a simulated delayed 
integral governor. Both plots are well in accordance with 
the theoretical predictions.

Excursion: The relaxation time values Rτ  in Figure 8a 
were measured at the point where the decreasing devi-
ation reaches 10% of its original value. This includes 
the duration of the time delay ∆t itself where obviously 
no modifications were initiated by the controller. The 
relaxation time values were then corrected for reaching 
a value 1/e instead of 10% assuming over all exponen-
tial functions. Therefore, the correction factor is given as 
follows:

	

= − ⇒ − = −

⇒ = = ⋅
10% 10%

10% 10%

1 exp( / ) ln10 /
10

/ ln10 0.434
R R

R

t t
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τ τ

τ
� (30)
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Fig. 9: Linear process subjected to controlling.

7  �Explicit evaluation of required 
tolerance margins

These theoretical results can easily be applied on a sin-
gular presumably linear production process. Let the rate 
of production, corresponding the invested production 
resources, be =ProdR dQ dt, leading to the product deter-
mined as quality QFin after the production duration tFin 
(Figure 9).

7.1  �Time tolerance of a controlled linear 
production process

Using an implemented controlling process over the whole 
process where the delay ∆t is given, the optimal controlling 
strength is about ∆0,41 /Ck t  and the time constant is 

⋅∆ 2,41C tτ . From this, we derive the optimal relaxation 
time ⋅∆0.707R tτ . However, since Rτ  represents the time 
to bring a deviation down to 1/e, we conclude a sensible 
required time tolerance to settle a possible deviation e.g. to 
1% as: = ⋅ ∆ln0.01 3,26R tδτ τ , which is valid during the 
process and, thus, as well at the end of the process.

7.2  �Quality tolerance of a controlled linear 
production process

In order to derive a term helpful as quality tolerance, 
we make use of (Eber 2019b) where we understand 
the meaning of the differential equation for a integral 
controller

	
∂

= −
∂ I0[ ( ) ( )]I

I I

Q
Q t Q t k

t
� (31)

as kI corresponds to the percentage of the actual deviation 
of value QI that is invested efficiently in the production 
speed, thus in the resources ready exclusively for con-
trolling purposes per time unit. Accordingly, we under-
stand and name the resources used for controlling pur-
poses in this context =Contr IR dQ dt .

Remark: This, in fact, provides a valid measure for 
required resources depending on the characteristic devel-
opment of the actual quality deviation. Thus, different 
scenarios, following maximum as well as minimum expec-
tions, are possible and need to be considered later in 
detail. 

Therein, we insert the known optimal controlling 
strength ∆0,41 /Ck t  and transform to the equilibrium 
system =I0 0Q

	 = ⋅ ∆0,41 /Contr ContrR Q tδ � (32)

Rearranging gives a measure for the deviation ContrQδ
which can be mastered within the time tolerance δτ  if the 
controlling ressources are given:

	 ⋅∆ ⋅ 2,41Contr ContrQ t Rδ � (33)

Dividing by the resources available for production 
= /ProdR dQ dt and integrating over the production time 

we, obtain the following:

	

= ⋅∆ ⋅ ⇒ = ⋅∆ ⋅

∆⇒ = ⋅ ⋅

2,41 2,41

2,41

Contr Contr
Contr Contr

Prod Prod

Contr Contr

Fin Fin Prod

Q R
Q t R t

R R
Q Rt
Q t R

δ
δ

δ
�(34)

Thus, we obtain the manageable relative deviation 
= /Contr Contr FinQ Q Qδ δ  requiring relative controlling res-

sources = /Contr Contr ProdR R R  where the ratio is besides a 
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factor of order 1 mainly determined by the time delay in 
comparison to the process completion time.

	

∆⋅ ⋅ 

 2,41Contr Contr
Fin

tQ R
t

δ � (35)

Remark: This value represents what can be managed 
given the controlling ressources and the time tolerance 
derived from the controller during the process and, thus, at 
the end of the process as well.

In this context, the time delay ∆t represents the 
responsiveness of the controlling process. Thus, we 
replace  by the previously elaborated absolute time tol-
erance = ⋅ ∆ln0,01 3,26R tδτ τ : 

∆= ⋅ ⋅ ⇒ = ⋅ ⋅ ⇒

= ⋅ ⋅

2,412,41
3,26

  0,74

Contr ContrContr Contr

Fin Fin Prod Fin Fin Prod

Contr Contr

Fin Fin Prod

Q QR Rt
Q t R Q t R

Q R
Q t R

δ δ δτ

δ δτ

� (36)

Referring to a normalised process (QFin = 1, tFin = 1, 
RProd  = 1), we obtain the relation between manageable 
quality and time tolerance:

⋅ ⋅ ⋅


  



 



0,74  and thus 0,74Contr
Contr Contr Contr

Q
Q R R

δ
δ δτ

δτ
� (37)

So far and very obviously, we state the ratio of relative 
manageable quality to relative time tolerance given by the 
continuously available controlling ressources held ready. 
This relationship is widely valid; however, since the time 
tolerance δτ  is principally predetermined (and limited) 
by the underlying controlling process, the resulting man-
ageable quality 

ContrQδ  is now tightly bound to ContrR  and 
limited as well. 

On this basis, we estimate the general ability of con-
trolling mechanisms to enforce a given and predetermined 
quality over the production process. Assuming given con-
trolling resources ContrR , quality deviation incidents up to 


ContrQδ  can be compensated for if the time tolerance δτ  is 
allowed for. This is certainly true during the run of the 
process as well as at the end tFin where the controlling 
needs to continue operation using ContrR  for another period 
of about δτ . However, this limits the manageable quality 
deviation principally, and all expected deviation exceed-
ing this value need to go into a definite quality tolerance 
margin.

	 = − = − ⋅    

0,74Dev Contr Dev ContrQ Q Q Q Rδ δ δ δ δτ � (38)

8  �Investigation of quality deviation 
scenarios

Based on this principal dependency, the required con-
trolling resources can be investigated from the quality 
deviations to be faced. However, this strongly relies on the 
character of deviation considered. Several scenarios are 
to be discussed in order to provide some framework for 
dimensioning sensible control mechanisms.

8.1  Maximum response scenario

Quality deviation incidents resulting from sources outside 
the production process are expected to occur unexpect-
edly and randomly (Figure 10). In order to settle these, 
the resources =Contr C ContrR k Qδ  corresponding to the initial 
(maximum) controlling response need to be held available 

time

Production Q

Time Constant C

Incidence - Q
/ContrR Q t

utilizing Controlling 
Resources

Production Q+ Q without controlling

Controlled production Q(t)

requiredmax
ContrR less required

Fig. 10: Randomly occurring incidents need full resources to respond in time.
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all over the process time Fint . While settling, only a frac-
tion will be required due to the exponential decay of the 
remaining ContrQδ . However, no storing of ContrR  in order to 
average the demand is feasible without violating the guar-
anteed controlling reaction time ∆t.

This ‘Maximum Response Scenario’ requires con-
trolling ressources = 



max max /0.74ContrR Qδ δτ  held ready where 


maxQδ  is given as the maximum amplitude of every possi-
ble incident as the fraction of the final product QFin. 

Remark: The shorter the time constant, the faster this 
incident can be settled. Thus, the shorter the time constant, 
the the higher the gradient dQ/dt at the incident:

	

− −

= =

= − = −/ /

0 0

1 1t t

t t

d e e
dt

τ τ

τ τ � (39)

8.2  Limited response scenario

Assuming that incidents are not of external origin but 
internally induced, they might be understood as limited 
by the production resources = /ProdR dQ dt over the unob-
served time interval ∆t yielding = ∆lim

ProdQ R tδ . In this 
respect, the limited limQδ  is taken from what the produc-
tion rate can change during one timestep related to the 
final production volume QFin. This reflects the produc-
tion-induced worst case where the production completely 
stops. 

Thus, we have the following:

	

∆ ∆ ∆= = = =

lim
lim Prod Fin

Fin Fin Fin Fin Fin

R t Q tQ tQ
Q Q t Q t

δδ � (40)

Using ∆ 3,26 tδτ , we obtain explicit values and 
the respective demand for controlling resources for this 
‘Limited Response Scenario’

	

∆= = =
⋅





lim 0,31
3,26Fin Fin
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t t

δτδ δτ � (41)
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8.3  Minimum response scenario

The ‘Minimum Response Scenario’ on the other hand 
presupposes that the total deviation totalQδ  in the end of 
a process was formed by a number of tFin/∆t incidents 
occuring equally distributed all over the production time 
tFin where resulting deviation steps are minimal. Then, we 
have the following:

∆
=

∆
=

min

min

and therefore related to    the final product 
total

Fin
total

Fin Fin

Q t
Q

t
Q t

Q
t Q

δ
δ

δ
δ

� (43)

This scenario requires resources:

∆ ∆
= = = ⋅

∆




min 0,41
0,74 0,74 3,26

total total
totalFin

Contr
Fin Fin Fin Fin

Q t Q t t
R Q

t Q t Q t
δ δ

δ
δτ

� (44)

8.4  Simplified estimation scenario

Starkly simplifying, we might assume the (uncontrolled) 
production process to be halted after tFin and then using 

ProdR  during a subsequent period with the duration of the 
time tolerance δτ  producing further and therewith repair-
ing for the incomplete quality. Then, we obtain the man-
ageable = ⋅ ⋅0,74Est

Contr ProdQ Rδ δτ  where the time tolerance 
is needed as well as the provision of the production res-
sources over this time period. This approach also provides 
a measure for the manageable quality deviation, using 

ProdR  instead of ContrR . (Figure 11) 

⋅ ⋅ ⋅ ⋅
= = = ⋅

⇒ = ⋅ = 



0.74 0.74
0.74

   0.74  and 1

Est
Contr Prod Fin

Fin Fin Fin Fin Fin
Est Est
Contr Contr

Q R Q
Q Q Q t t

Q R

δ δτ δτ δτ

δ δτ
� (45)

9  Fundamental limit of control
Besides the attempts to quantify resources taken from the 
optimal controlling mechanisms on the basis of limited 
deviation scenarios (Section 8), a principal limit to control 
within a system may be described based on a much more 
fundamental argument:

In fluid dynamics, the ratio of dynamic forces and 
frictional forces is used to identify turbulent behaviour 
dominated by dynamics in contrast to linear flow which 
is driven by retarding forces (Reynolds number, conceptu-
ally introduced by Stokes (Stokes 1851)). Within the given 
context, a similar situation is at hand and, hence, a com-
parable criterion to distinguish between linear managea-
ble and nonlinear escalating behaviour is proposed:

Based on the description of delayed controlling units, 
the differential equation is (see above, second-order 
approach) written as follows:

	
∂ ∂= − −

∂∂

2

2

Q QQ
tt

β ρ
µ µ � (46)
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Here, the dynamical impact is represented by the 
linear response of the partial system to any deviation βQ/µ 
and can be understood as the force leading back to the 
target value Q = 0 proportional to the deviation Q.

The retarding forces are represented by the second 
term  /Qρ µ  which is proportional to the first derivative of 
the deviation ∂ ∂/Q t; hence, the speed of change inducing 
the frictional term. 

The ratio of these two components which determines 
the overall behaviour of the system yields the following:

	
= = =

 

DynamicTerm Q QS
RetardingTerm Q Q

β µ β
µ ρ ρ � (47)

Using the equivalents to dynamical and frictional 
terms taken from the delayed controlling approach 
(second order) provides:

 ∆ ∆= = = −  

2 2 2 1
C C C
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τ τ τ
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ρ τ

τ
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It turns out that the characteristic of this development 
lies mainly with the denominator, while the undetermined 
factor /Q Q only scales the behaviour linearly (Figure 12):

Clearly, the overall behaviour is dominated by 
dynamic forces if the time constant of the implemented 
control τc approaches the time delay ∆t. The temporal 

development will be non-linear, likely to be unpredicta-
ble and, hence, uncontrollable. Only if the controllers are 
operating much slower than the time delay, stability can 
be expected. Then, linear behaviour allows for predicta-
bility and, thus, controllability.

Understanding = ContrQ Q  as the manageable deviation 
and = ContrQ R  as the resources available for control, we 
obtain for stable situations < 1S :

( )> − ∆ >
− ∆





1 l1 y respective  C Contr Contr
C

Q t Q Q
t Q

τ δ
τ

( )< − ∆ ∀ > ∆Contr C Contr CQ t R tδ τ τ

( )< − ∆Contr Contr
C

Prod Fin Prod Fin

Q R
t

R t R t
δ

τ

	
( )− ∆

< = − ∆   



C
Contr Contr C Contr

Fin

t
Q R t R

t
τ

δ τ � (49)

Remark: Using the first-order approach yields 
<= 



Contr C ContrQ Rδ τ , implying very short time delays.
Hence, in order to achieve stable systems, the devi-

ation of quality needs to be less than the available con-
trolling resources scaled by a factor given by the differ-
ence between the relative controlling time constant and 
the relative control delay, i.e., the more effective control is 
expected to be, the slower control is required to keep the 
system stable.

This completely different understanding of a con-
finement to stability and therewith for controllability is 
plotted into Figure 13. The proportionality of manageable 

Fig. 11: Limitations of manageable quality deviation for different scenarios. The range below the lines represents the manageable quality 
deviation.
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deviation 

ContrQδ  (understood as percentage of the sched-
uled quality) and the controlling resources on hold 

Contr (also understood as percentage of the productive 
resources) remain for obvious reasons while the scaling 

factor − ∆

C tτ  becomes meaningful. Since this factor is the 
difference of two durations, furthermore denoted as per-
centage of the total duration, the unit is tFin. Besides the 
criterion of stability, this value also represents the induced 

Fig. 13: Fundamental confines to controllability.
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time tolerance given by this approach (formally not to be 
confused with the time tolerance derived on the basis of 
optimised control, but providing an equivalent idea).

This picture clearly points out that the control ratio 
needs to exceed unity by far 

/ 1Contr ControlR Qδ  in order to 
provide sensible time tolerance values.

Example: A given quality deviation of e.g. = 5%ControlQδ  
is expected to be compensated by additonal controlling 
resources of also = 5%ContrR . Then, the timing constant of 
the controller needs to be equal to the production time tFin 
on top of the time delay which cannot be zero and, hence, 
is at least tFin, giving an idea of the magnitude of a time 
tolerance. Vice versa, a reasonable time tolerance of, e.g., 

− ∆

 5%C Fint tτ  which is to be shared by the controller time 
constant and the controlling delay, requires the ratio of 
controlling resources to quality deviation to be at least 

−> =

1/ 0.05 20Contr ControlR Qδ . Thus, controlling resources 
of = 5%ContrR  allow only for compensation of deviation 
values = = 5% / 20 0.25%ControlQδ .

Hence, the various previously discussed scenarios 
offer limited deviation situations based on a number 
of different arguments limiting the absolute values of 
expected quality deviation. As a consequence, the result-
ing normalised resources required ready for control sit 
somewhere in the range of slightly below unity. However, 
the stabililty criterion which is clearly not as sophisticated 
but much more fundamental overrides this outcome by 
far and demands at least by one magnitude higher control 
resources in order to guarantee stability. Thus, in particu-
lar, this limit turns out to be crucial to designing control-
lable systems.

10  Conclusion

Based on these theoretical considerations, we state that 
any organisational structure can principally not be set up 
consistently and therefore will be in fundamental need 
of concepts of controlling not only overhead but also tol-
erance. Any inconsistent system, i.e., not only far off the 
equilibrium state but also where the equilibrium state is 
only dynamically determined, cannot be stabilised totally.

If ruling mechanisms are at hand which principally 
allow inducing forces strong enough to compensate for 
inconsistencies, the system may become controllable. 
The optimal time constant of the balancing process as the 
central controlling parameter is widely independent of 
the degree of inconsistency or controlling force. The main 
parameter turns out to be the controlling delay, i.e., the 
reaction time of the controlling mechanism which cannot 
be assumed to vanish. Therewith, a principal minimum 

balancing time is given. At any attempt to reduce this by 
employing stronger controlling mechanisms, the system 
becomes increasingly unstable and develops escalating 
behaviour.

The maximum deviation to be handled is clearly an 
undetermined parameter and, however, can be limited 
considering some practical scenarios. The dependency of 
the resources required to correct for the given deviations 
develops nevertheless proportional. Considering a bal-
anced situation where the time tolerance of control also 
needs to be kept within reasonable limits, this ratio is 
forced to at least a magnitude beyond unity, hence prin-
cipally limiting the capabilities of control with mutual 
restrictions on time tolerance as well as available control 
resources and manageable quality deviation values.

Less hierarchical and therewith more self-determin-
ing organisational systems, e.g. concepts of lean manage-
ment VDI 2553 (VDI 2019) or the SCRUM manifest (Beck 
et al. 2001; Schwaber and Sutherland 2020), are in fact 
taking these principal limitations of control into account 
proposing flexible structures on the basis of short-range 
collaboration. Therewith, based on originally hierar-
chical structures, substantial decentral control is man-
ifested and, however, equipped with a well-established 
set of resources ready to correct for unavoidable planning 
deviations and inconsistencies. Probably unaware of the 
conceptual implication, finally, the need of a significant 
number of resources including the therewith connected 
time tolerance is accepted and readily provided.

Hence, as a practical implication of this paper, a very 
clear and inevitable understanding of controlling confines 
in any organisational system is pointed out. This applies 
to any kind of project and, however, in particular to con-
struction projects, focusing on unique production assem-
blies bound to very tight time frames and cost frames 
with no options to reconsider decisions. Typically, strictly 
hierarchical approaches are maintained predetermining 
all details in advance and then relying on controlling 
mechanisms to ensure the required specifications. Time 
and cost reserves are then integrated on a heuristic basis 
to a degree required by the markets rather than on a sub-
stantiated background. Based on the findings described in 
this paper, a fundamental minimal time tolerance is given 
through the well-known time delay of the implemented 
controlling mechanisms. Furthermore, the resources 
required to correct for the expected misalignment can be 
expressed directly in terms of a percentage of the creation 
of value of the respective process, in dependence of the 
intended controlling time constant and delay.

Therewith, the required controlling effort in terms of 
explicit cost is no more subjected to personal experience 
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with more or less substantial statistical significance. 
Instead, this most decisive knowledge can be explicitly 
derived from available project parameters as are the 
planned time tolerance respectively the tolerance regard-
ing the final value of the product.

References
Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., 

Cunningham, W., Fowler, M. et al.  (2001). The Agile Manifesto. 
downloaded April 2021 28th from https://agilemanifesto.org/
iso/de/principles.html

Bertalaffy, L. (1969). General Systems Theory. George. Braziller Inc., 
New York, p. 54 ff. ISBN 780807604533

Booch, G.; Maksimchuk, R.; Engle, M.  (2007). Objekt-Oriented 
Analysis and Design, 3rd ed. ISBN-13: 978-8131722879, 
Addison-Wesley, Bonn, 2007.

Caldarelli, G., & Vespignani, A. (2007). Complex systems and 
interdisciplinary science. Large Scale Structure and Dynamics 
of Complex Networks, Vol. 2. World Scientific Publishing Co. 
Pvt. Ltd., Singapore. pp. 5-16, doi: 10.1142/6455.

Coase, R. H. (1937). The nature of the firm. Economica,4, p. 16.  
doi: 10.1111/j.1468-0335.1937.tb00002.x.

Ebeling, W., Freund, J., & Schweitzer, F. (1998). Komplexe Strukturen: 
Entropie und Information, Teubner Verlag, Stuttgart. ISBN 
9783815430323.

Eber, W. (2019a). Managing construction projects: developing 
complexity into complicatedness. In: Sustainable Built 
Environment D-A-CH Conference 2019, Graz University of 
Technology, Graz, Austria.

Eber, W. (2019b). Bauprozessmanagement und Immobil-
ienentwicklung - Von den Grundlagen zur Anwendung 
(Vortrag), Kolloquium Investor - Hochschule Bauindustrie 2019, 
LBI-Lehrstuhl Bauprozessmanagement, München.

Eber, W. (2020). Potentials of artificial intelligence in construction 
management. Organization, Technology and Management in 
Construction: An International Journal, 12(1), 2053-2063 .

Eber, W. (2021). System-theoretical approach to fundamental limits 
of controllability in complex organization networks. In: Creative 
Construction eConference 2021, CCC 2021, 28–31 June 2021, 
Budapest, Hungary.

Eber, W., & Zimmermann, J. (2018). Evaluating and retrieving 
parameters for optimizing organizational structures in real 
estate and construction management. Periodica Polytechnica 
Architecture, 49, pp. 155-164, doi: 10.3311/PPar.12709.

Haken, H. (1983). Synergetik. Springer Verlag, Berlin, Heidelberg, 
New York, Tokyo. ISBN 978-3540110507.

Hoffmann, W., & Körkemeyer, K. (2018). Zum Umgang mit der 
Komplexität von Bauvorhaben. In: Ergebnisse einer Experten-
befragung Bauingenieur 93, pp. 347-354. Springer, VDI-Verlag, 
Düsseldorf.

Kerzner, H. (2003). Project Management: A Systems Approach to 
Planning, Scheduling, and Controlling, 8th edn. Wiley, Berlin. 
ISBN 0884222245414.

Koskela, L. (2000). An Exploration Towards a Production Theory 
and Its Application to Construction. VTT-Publications, 
Kivimiehentie, Finland. ISBN 951-38-5565-1.

Koskela, L., Ballard, G., Howell, G., & Tommelein, I. (2002). The 
foundations of lean construction, Design and Construction: 
Building in Value. doi: 10.4324/9780080491080-23.

Liening, A. (2017). Komplexität und Entrepreneurship, Springer 
Gabler, pp. 186ff, 431ff. ISBN 978-3-658-13173-9.

Luhmann, N. (2001). Soziale Systeme. Grundriss einer allgemeinen 
Theorie. Frankfurt am Main 1984. ISBN 3-518-28266-2.

Malik, F. (2003). Systemisches Management, Evolution, Selbstor-
ganisation, 4th edn. Haupt Verlag, Bern. ISBN 3834964409.

Newman, M. E. J. (2003). The structure and function of complex 
networks. SIAM Review, 45, pp. 167-256, doi: 10.1137/
S003614450342480.

Picot, A., Dietl, H., & Franck, E. (2008). Organisation - Eine 
ökonomische Perspektive, 5. rev. edn. Schäffer-Poeschel, 
Stuttgart. ISBN 978-379-102371-7.

Schelle, H., Ottmann, R., & Pfeiffer, A. (2005). Project Manager. 
GPM Deutsche Gesellschaft für Projektmanagement, Nürnberg. 
ISBN 9783800637362.

Schulte-Zurhausen, M. (2002). Organisation, 3rd edn. Verlag Franz 
Vahlen, München.

Schwaber, K., & Sutherland, J. (2020) Scrumguide. downloaded 
28 April. 2021. Available at https://scrumguides.org/docs/
scrumguide/v2020/2020-Scrum-Guide-US.pdf.

Smith, A. (1776). An Inquiry into the Nature and Causes of the 
Wealth of Nations, Vol. 1, Nachdruck von 1981, Indianapolis, 
Indiana, USA, S. 14f. ISBN 0-86597-006-8.

Stokes, G. (1851). On the effect of the internal friction of fluids on 
the motion of pendulums. Transactions of the Cambridge 
Philosophical Society, 9, pp. 8–106. Bibcode:1851T-
CaPS...9....8S.

Strogatz, S. H. (2001). Exploring complex networks. Nature, 410,  
p. 268, doi: 10.1038/35065725.

Taylor, F. (1911). The Principles of Scientific Management. Harper 
& Brothers, London, Cosimo, New York 2006. ISBN 1-59605-
889-7.

Verein Deutscher Ingenieure e.V. (2019). VDI 2553 Lean 
Construction. Beuth-Verlag, Düsseldorf.

Wassermann, S., & Faust, K. (1994). Social Network Analysis. 
Cambridge University Press, Cambridge. ISBN-10: 0521387078.

White, D. R., Owen-Smith, J., Moody, J., & Powell, W. W. (2004). 
Networks, fields and organizations. Computational and 
Mathematical Organization Theory, 10, pp. 95–117,  
doi: 10.1023/B: CMOT.0000032581.34436.7b.

Wiener, N. (1992). Kybernetik. Econ Verlag, Düsseldorf, Wien, New 
York, Moskau. ISBN 978-3430196529.

Winch, G. (2006). Towards a theory of construction as production by 
projects. Building Research & Information, 34(2), pp. 164–174. 
doi: 10.1080/ 09613210500491472.

Zimmermann, J., & Eber, W. (2014). Mathematical background 
of key performance indicators for organizational 
structures in construction and real estate management. 
Procedia Engineering, 85, pp. 571–580, doi: 10.1016/j.
proeng.2014.10.585.

Zimmermann, J., & Eber, W. (2017). Criteria on the value of expert’s 
opinions for analyzing complex structures in construction and 
real estate management. In: Creative Construction Conference 
2017, CCC 2017, 19–22 June 2017, Primosten, Croatia,  
doi: 10.1016/j.proeng.2017.07.208, Procedia Engineering, 196, 
pp. 335-342.

doi:%2010.3311/PPar.12709
https://de.wikipedia.org/wiki/Spezial:ISBN-Suche/0865970068
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://de.wikipedia.org/wiki/Spezial:ISBN-Suche/1596058897
https://de.wikipedia.org/wiki/Spezial:ISBN-Suche/1596058897
doi:%2010.1080/

