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Abstract. As power density becomes the main constraint of multicore
systems, managing power consumption using DVFS while providing the
desired performance becomes increasingly critical. Reinforcement learn-
ing (RL) performs significantly better than conventional methods in
performance-power optimization under different hardware configurations
and varying software applications. RL agents learn through trial-and-
error by receiving rewards which is defined by an objective function (e.g.
instructions-per-second (IPS)) within specified constraints (e.g. power
budget). System and application requirements lead to changing objec-
tives and constraints which in turn result in different reward functions.
The RL agents adapt to these changing objectives and constraints (and
hence reward functions). Equivalent-policy invariant comparison (EPIC)
is a popular technique to evaluate different reward functions. EPIC pro-
vides a numerical score which quantifies the difference in two reward
functions. In this work, we use this EPIC distance (score) to transfer
knowledge and improve learning for changing reward functions. Experi-
mental results using a DVFS enabled RISCV based system-on-chip im-
plemented on an FPGA shows 16.2% lower power budget overshoots
compared to a tabular Q-learning agent with direct transfer.

Keywords: EPIC, DVFS, reinforcement learning, reward functions, power
management, transfer learning

1 Introduction

The power wall has become one of the primary challenges of managing mod-
ern computing systems. Meeting application objectives (e.g. IPS, FPS, response
time etc.) within system constraints (e.g. power budget) is critical in managing
these complex systems. The objectives and constraints are typically conflict-
ing in nature (e.g. Instruction throughput vs power consumption) and hence
call for performance-power optimization. Dynamic voltage and frequency scal-
ing (DVFS) is one of the most widely used technique for performance-power
optimization in CPU cores. It enables designers to design methods to set the
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Fig. 1: Visual representation of 3 different reward functions showing an hypo-
thetical state transition from Sc to Sn.

voltage/frequency (V/F) levels of a CPU core by monitoring several CPU per-
formance metrics (e.g. utilization, memory accesses) to meet the application
objectives and system constraints. Several heuristics have been proposed in lit-
erature to perform performance-power optimization. However these methods are
inefficient in the face of stochastic workloads and environments, varying appli-
cation requirements and system constraints [11].
Reinforcement learning (e.g. Q-learning) is a model-free technique which has
been proven to be better than heuristics for run-time power management. RL
agents monitor the current state of the system and learn the best action to be
taken in the state for a given reward function via trial-and-error. Q-learning
maintains a table of Q-values for all states and actions and typically learns by
exploration/exploitation in the state-action space as defined by the action selec-
tion strategy. The time taken to learn an optimal policy increases exponentially
with the size of the state and action spaces. This can be accelerated by using the
Experience Replay technique, where the past experiences are stored in a memory
buffer and used in batches to speed-up learning.
A reward function is used to numerically quantify the effectiveness of an action
taken in a particular state. The reward function is defined by the current ob-
jectives and constraints provided to the RL agent. The objective and constraint
provided can change dynamically in run time resulting in different reward func-
tions. A policy learnt by the RL agent for the source reward function is not
always optimal for the target reward function i.e. the best action in a state for
the source reward function might be sub-optimal for the target reward func-
tion and vice versa. The RL agent has to unlearn and relearn these sub-optimal
state-action pairs which is inefficient and time-consuming. The rate at which the
RL agent learns the new reward function can be improved by transfer learning.
Equivalent Policy Invariant Comparison (EPIC) is an algorithm which allows
us to evaluate the difference between two reward functions without learning the
policy [4]. In this work, we propose to use the EPIC-distance as a metric to
employ transfer learning in RL agents to improve its learning efficiency for a



EPIC-Q 3

change in reward function.

Example 1. Consider the 3 different reward functions corresponding to 3 differ-
ent combinations of IPS reference (IPSref ) and Power budget (Pbudget) as shown
in Fig. 1. Consider the hypothetical state transition as shown from the state Sc

to Sn by applying an action a. We can clearly see that the reward achieved by
the RL agent for the above transition is different for the different reward func-
tions. The agent has to learn by trial-and-error the Q-value for the state action
pair (Sc, a). We can accelerate the learning efficiency by evaluating the EPIC
distance between the reward functions and use it to update the Q-value.

The main contributions of this paper are as follows:

– EPIC-Q : A run time Q-learning agent performing performance (IPS) and
power optimization in multi-core SoC. The agent is augmented by an expe-
rience replay (ER) technique.

– Determining the EPIC scores for different reward functions in run time using
experiences stored in the ER buffer.

– Using the EPIC scores to modify the Q-values of states and actions to ac-
celerate learning and improve performance.

– Empirical analysis of performance, number of power budget overshoots and
resource utilization of EPIC-Q as a DVFS controller for a RISC based
system-on-chip implemented on an FPGA.

2 Background and related work

2.1 Q-learning

Q-learning is a type of reinforcement learning where the agent learns the Q-value
of an action in a particular state via trial-and-error. It uses the rewards given
by the environment to learn hence model-free. Q-learning agents can handle
problems with stochastic transitions and rewards. Tabular Q-learning (QT-DT)
is one of the most popular forms of Q-learning where the agent keeps a Q-value
for every state-action pair in a table. The Q-value depicts the learned expected
reward when an action is applied in a particular state. At each learning epoch
t, the Q-value is updated by the following equation:

Q(s, a)← (1− β)Q(s, a) + β(R+ γmaxQ(s′, a′)) (1)

where, Q(s, a) is the Q-value, s is the current state, a is the action, s′ is the next
state, β is the learning rate, γ is the discount factor and R is the reward.

2.2 Experience replay

Experience replay (ER) is a memory replay technique used in reinforcement
learning where we store the experiences of the agent at each time-step [14].
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Experience replay speeds up the learning process of RL agents by reusing the
stored experiences. An experience (et) added into the ER buffer at any epoch t
is a tuple : et = (s, a,R, s′). The experiences are stored in a fixed-size memory
buffer of size NER. The ER buffer is typically implemented as a FIFO with
uniqueness property. FIFO implies that the most recent experiences are stored
in the ER buffer and uniqueness implies that no two experiences in the buffer
are identical. The experiences stored in the ER buffer are randomly sampled in
each iteration and are used to update the Q-values of the experience’s state and
action using the experience’s reward (using Equation 1).

2.3 EPIC: Equivalent-Policy Invariant Comparison [4]

Quantifying the dissimilarity between different reward functions in Reinforce-
ment Learning can be very useful in gaining information about the learning
process, analyzing the learned parameters, and optimizing the agent’s behavior
in the environment. Most work on quantifying the difference between reward
functions evaluated the policies associated with the learned reward. This is time
consuming and is sensitive to environment changes. Equivalent Policy Invariant
Comparison (EPIC) distance is an elegant metric that can be used to directly
quantify the difference between the reward functions without having to resort
to their associated policies making it a more robust and invariant metric to the
changes in the environment.
EPIC distance is calculated in two key steps. Firstly, the reward functions are
canonically shaped (normalized) by evaluating the expectation of the rewards
over some arbitrary distributions of the state-action spaces. Such canonicaliza-
tion ensures that the reward function is independent of the initial state distribu-
tion and the transition dynamics within the environment. Secondly, the EPIC
distance is calculated as the Pearson distance between the two canonically shaped
rewards.

Definition 1. Canonically shaped reward: Let R : SxAxS → R be a reward
function. Given distributions DS and DA over the states and actions, let X and
X ′ be random variables independently sampled from DS and A sampled from
DA. The canonically shaped reward is defined as:

CDS ,DA
(R)(s, a, s′) = R(s, a, s′)+

E[γR(s′, A,X ′)−R(s,A,X ′)− γR(X,A,X ′)] (2)

Definition 2. Pearson distance: The Pearson distance between two random vari-
ables X and Y is defined as:

Dp(X,Y ) =
√
1− p(X,Y )/

√
2 (3)

where, p(X,Y) is the Pearson correlation between X and Y defined as
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p(X,Y ) =
E[(X − µx)(Y − µy)]

σxσy
(4)

where, (µx, σx) and (µy, σx) are the mean and standard deviation of the variables
X and Y respectively.

Definition 3. EPIC Distance: Given two canonically shaped rewards CDS ,DA
(RA)

and CDS ,DA
(RB) over some distributions DS and DA (which are distributions

over states S and actions A respectively), the EPIC distance between two rewards
RA and RB is:

D − EPIC(RA, RB) = Dp(CDS ,DA
(RA), CDS ,DA

(RB)) (5)

2.4 Related work on RL based performance-power optimization

Reinforcement learning based SoC performance-power optimization is a well
studied topic in the community. Tabular Q-learning based approaches are pro-
posed in [16, 7, 9]. Classifier system based approaches are proposed in [13, 3].
Neural network approaches using Deep Q-learning and Imitation learning are
described in [11, 5, 10]. Many transfer learning techniques have been applied to
RL based performance-power optimization. Chen et al. proposed a batch-update
method to accelerate convergence of learning of the RL agent by using the re-
ward received for a particular state to update all the other dominated states [2].
Jenkus et al. proposed intra-state (ISLT) and intra-task (ITLT) learning trans-
fer which enhances the standard Q-learning to improve learning [8]. Chen et al.
presented a Smart Knowledge Transfer Technique (STQL) which introduces a
contradiction checking mechanism to speed up the learning process between two
tasks by evicting inappropriate knowledge transfer [1]. All these methods trans-
fer knowledge between states or tasks but for a given fixed reward function.
This work proposes a transfer learning technique applied to changing reward
functions. Transfer learning between states or tasks can be applied to this work
to further improve learning which will be addressed in future work.

3 EPIC-Q based CPU performance-power optimization
using DVFS

3.1 Working of Q-learning based DVFS

Fig. 2 shows the block diagram of the EPIC-Q based CPU performance-power
optimization. The Q-learning agent operates periodically with a time period tQ.
At every iteration, the QL-agent reads the current state of the system (s) and
recommends an action (a) to the CPU based on the action-selection strategy. In
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Fig. 2: Working of EPIC-Q: a○ Tabular Q-learning using an ER buffer b○ Di-
viding the state-action space into sub-spaces, evaluating EPIC distances for the
sub-spaces and using them to update the Q-values.

the next iteration, the reward (R) is used to update the Q-value of the state-
action pair (s, a) using Equation 1. The Q-learning agent is augmented with
an experience replay buffer. The ER buffer holds the previous experiences seen
by the Q-learning agent. Each experience is tuple made up of the state, action,
reward and next state (s, a,R, s′). The ER buffer implements the FIFO principle
with the uniqueness property as described in Section 2.2. The states, actions,
action selection strategy, objectives and rewards are defined as follows:

States and Actions The states and actions of our work are defined as follows:

– The current frequency (f), CPU utilization (u) and instructions-per-second
(IPS) constitute the input state of the EPIC-Q agent i.e. X = {f, u, IPS}.
The CPU utilization is calculated as :

u = 1− #cycles_cpu_stalled

#cycles_total
(6)

where, #cycles_cpu_stalled is the number of cycles the CPU was stalled
due to cache or branch misses. #cycles_total is the number of cycles in the
time period tlct at maximum CPU frequency.

– The frequency, utilization and IPS are binned into 8, 16 and 16 bins.
– The actions which can be applied by the EPIC-Q agent are increase (+2,

+1) or decrease (-2, -1) or do nothing (±0) in frequency of the processor by
a unit step. The voltage level is scaled proportionally w.r.t. the frequency.

Objective and Reward Function EPIC-Q agent is deployed as a low-level
controller performing DVFS to optimize the performance (IPS) and power of a
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core. The objectives (goals) and constraints of the EPIC-Q agent are provided
by a software supervisor. The objective of the EPIC-Q agent is to learn to effi-
ciently control the frequency of the core to provide a reference IPS throughput
(IPSref ) with a power budget (Pbudget). These two are conflicting objectives
since increasing the frequency increases the IPS throughput and the power bud-
get. The EPIC-Q agent has to provide the closest possible IPS to the IPS ref-
erence while minimizing the number of power budget overshoots. The objective
(∆) and reward functions (R) are used to enforce this behavior in the EPIC-Q
agent and hence are defined as:

∆ =
|IPS − IPSref |

IPSmax
(7)

R =

{
1−∆, if power ≤ powerbudget

0, otherwise
(8)

Any action that reduces the deviation to the IPS reference, reduces the objective
function and hence receives a higher reward. Violating a power budget is critical
since this may lead to thermal violations, and it is crucial to reduce the number
of such violations. Therefore, a reward of 0 is assigned for every power budget
violation. A visual representation of the defined reward function for different
combinations of IPSref and Pbudget is shown in Fig. 1.

3.2 Transfer learning using EPIC distance

A change in the objective (IPSref ) or the constraints (Pbudget) leads to a change
in the reward function. The supervisor changes the objective and/or constraint
adhering to application and system requirements. EPIC-Q is applied every time
there is a change in the reward function. Let RA be the current reward function
and RB be the new reward function. EPIC-Q works in two stages. First, the
state-action space is divided into sub-spaces (sub− spacen). Secondly, the EPIC
distances (D − EPICn) is calculated using RA, RB and coverage distribution
supplied by the ER buffer.

State-action space division We first divide the state-action space into smaller
sub-spaces. Fig. 1 shows the reward function for different combinations of IPSref

and Pbudget. We observe that the reward functions are similar in certain states
and different in other states. Determining the EPIC distance for the complete
state-action space and using this value for updating the Q-values is inefficient.
Let (IPSrefA,PbudgetA) and (IPSrefB ,PbudgetB) be the objectives and con-
straints for the reward functions RA and RB respectively. We can then divide
the state-space using these metrics are boundaries to get the sub-spaces.

Updating Q-values using EPIC distances Once the sub-spaces are estab-
lished, we find the EPIC distances for each sub-space using the reward functions
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RA, RB and the ER buffer. The ER buffer holds a list of most recent and unique
experiences faced by the Q-learning agent. We use this as coverage distribution
for calculating the EPIC distances as defined in Section. The EPIC distance
quantifies the difference in the two reward functions for the different sub-spaces
based on the experiences stored in the ER buffer. We use the EPIC distance as
a factor to forget some knowledge learned for the reward function RA to accel-
erate the learning of the reward function RB . An EPIC distance of 0 indicates
no change in the sub-spaces and an EPIC distance of 1 indicates a complete
contradiction in the reward functions. The EPIC distances of the different sub-
spaces are used to then modify the Q-values of the state-action (s, a) pairs of
the respective sub-spaces as:

Q(s, a)← (1−D − EPIC) ∗Q(s, a) + (D − EPIC ∗Q0) (9)

where, Q0 is the value used for initialization of the Q-learning agent.

Zero Padding Experiences in EPIC calculations The performance of
EPIC-Q is directly influenced by the size of the ER buffer and the number
of experiences stored in it corresponding to the individual sub-spaces. In run
time learning, the inputs to the learning agent are not uniform. The states vis-
ited by EPIC-Q is influenced by the objectives and constraints, the applications
being run on the processing core and also the number of iterations the agent
has been called. The number of experiences corresponding to a sub-space is also
influenced by the size of the sub-space itself. In case the number of experiences
for a sub-space is lower than a threshold θ#exp, we perform zero padding while
calculating the EPIC distance for the sub-space. This prevents a limited number
of experiences to dominate the EPIC distance of the whole sub-space.

4 Experimental Setup and Results

4.1 Experimental Setup

We evaluate our methodology on an Xilinx Virtex 7 FPGA implementing the
PULP RISC-V based system-on-chip [12]. The SoC implements a 3-core system
and uses the general purpose configuration provided by the PULP platform. The
SoC runs on the FPGA with a maximum frequency of 30MHz. Each core in the
SoC is controlled by an EPIC-Q agent running as a software process on the
same core. We use benchmarks from the MiBench benchmark suite [6] to con-
stitute workloads for our experiment. The MiBench benchmarks have different
compute and memory characteristics and we randomly schedule the benchmarks
in sequential order to get workload with varying CPU intensiveness. We aver-
age each set of experiments over 50 randomly generated workloads. The reward
function is changed every 25-30 seconds in our setup. The EPIC-Q agent has a
time period tQ of 5ms, ER buffer size of 100, zero padding threshold (θ#exp) of
10 and the initial Q-value (Q0) is 0.125. The learning rate (β) is 0.125 and the
discount factor (γ) is 0.1.
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4.2 Sweeping EPIC distances vs performance
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Fig. 3: Sweeping EPIC distance vs number of power budget overshoots where
EPIC-Q is used to maximize the performance (IPSref = IPSmax) under chang-
ing power budgets. The Q-values are updated using Equation 9

Firstly, to see the benefits of transfer learning for a change in reward func-
tion using Equation 9, we first train the Q-learning agents for a source domain
reward function. We then change the reward function and update the learnt Q-
values with different EPIC distance values. The EPIC distances are obtained by
linearly sweeping from the range [0,1]. Fig. 3 shows the number of power budget
overshoots achieved by the different sweeping EPIC distances for two different
scenarios of changes in reward functions. In both scenarios, we maximize the
performance under different power budgets i.e. IPSref = IPSmax. We initally
train the agents in the source domain with a power budget of 0.8Pmax. In the
first scenario, we change the power budget from 0.8Pmax to 0.6Pmax whereas in
the second scenario we change it from 0.8Pmax to 0.4Pmax. The EPIC distances
calculated in the two scenarios are 0.38 and 0.58 respectively. We can clearly
observe that the performance of EPIC-Q by updating the Q-values using Equa-
tion 9 improves within the range [0,1]. We also observe that the performance
improvement using the calculated EPIC distance is close to the best achieved
improvement. This proves that the calculated EPIC distance is a good metric to
update Q-values for a change in reward function.

4.3 Results

EPIC-Q based transfer learning is applied when there is a change in reward
function (i.e. change in objective IPSref and/or power budget). We evaluate the
effectiveness of our approach against the performance of a standard Q-learning
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Fig. 4: Results comparing the performance of EPIC-Q, Q-table with direct trans-
fer (QT-DT) and Q-table from scratch (QT-Scratch). 1○ IPS difference and 2○
Number of power budget overshoots as metrics.

agent with direct transfer (i.e. the Q-values are transferred from the source
domain to target domain without modification) and a Q-learning agent from
scratch (i.e. the q-values are reset for a change in reward function). Fig. 4 sum-
marizes the results of our work. We use 1○ the IPS difference (|IPS − IPSref |)
and 2○ number of power budget overshoots as metrics to evaluate our work. We
set IPSref to IPSmax where the agents are required to maximize performance
under a power budget. We use three different power budgets (0.4Pmax, 0.6Pmax,
0.8Pmax) for the source and target domains which gives us 6 different transitions
or reward function changes. The bottom left set of graphs in Fig. 4 depict a de-
crease in power budget whereas the top right set of graphs depict an increase in
power budget.
For an increase in power budget, EPIC-Q achieves 59% lower and 17.2% lower
power budget overshoots which achieving 11.35% higher and 1% higher IPS dif-
ference relative to the QT-Scratch and QT-DT respectively. For a decrease in
power budget, EPIC-Q achieves 39.67% lower and 15.67% lower power budget
overshoots which achieving 2% lower and 0% lower IPS difference relative to the
QT-Scratch and QT-DT respectively. In both the scenarios, EPIC-Q reduces the
number of power budget overshoots significantly while trying to maximize the
IPS throughput of the CPU core.

Overhead EPIC-Q is used when there is a change in the objective or constraints
i.e. the reward function. This in our experimental setup is done every 25-30
seconds. The calculation of the EPIC distances and updating the Q-values for
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the different sub-spaces requires less than 1ms in our experimental setup which
is negligible. The time complexity increases exponentially w.r.t the size of the
state-action space. It increases linearly w.r.t the number of sub-spaces.

5 Conclusion

In this work, we proposed EPIC-Q: A Q-learning agent enhanced with Equivalent
Policy Invariant Comparison (EPIC) based transfer learning for run time SOC
performance-power optimization. The Q-learning agent is augmented with an
experience replay feature which accellerates the learning process by batch train-
ing. EPIC-Q based transfer learning is applied when there is a change in the
objective or constraints (i.e. reward function) of the Q-learning agent. EPIC is a
method which quantitatively evaluates the difference between two reward func-
tions (EPIC-distance). We first divide the state-action space of the Q-learning
agent into sub-spaces with the objectives (IPS reference) and constraints (power
budget) as the margins. We evaluate the EPIC-score for the individual sub-spaces
using the ER buffer for experiences and modify the Q-value of the state-action
pairs in the sub-space. Experimental results on a DVFS enabled RISC-V based
system-on-chip running on an FPGA shows 50% lower and 16.435% lower num-
ber of power budget overshoots compared to a Q-learning agent learning from
scratch and with direct transfer respectively.
Intra-state and Intra-task learning transfer can further enhance the performance
of EPIC-Q which will be explored as future work. The performance of EPIC-
Q can be further improved by approximating the state-action space as done in
LCS based systems [15] or neural networks [17]. Future work can also address
the intersection of the state-action space approximation and EPIC based transfer
learning to increase learning efficiency.
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