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Abstract: Recent studies have highlighted neurons and their associated Schwann cells (SCs) as key
regulators of cancer development. However, the mode of their interaction with tumor cells or other
components of the tumor microenvironment (TME) remains elusive. We established an SC-related
43-gene set as a surrogate for peripheral nerves in the TME. Head and neck squamous cell carcinoma
(HNSCC) from The Cancer Genome Atlas (TCGA) were classified into low, intermediate and high SC
score groups based on the expression of this gene set. Perineural invasion (PNI) and TGF-β signaling
were hallmarks of SChigh tumors, whereas SClow tumors were enriched for HPV16-positive OPSCC
and higher PI3K-MTOR activity. The latter activity was partially explained by a higher frequency
of PTEN mutation and PIK3CA copy number gain. The inverse association between PI3K-MTOR
activity and peripheral nerve abundance was context-dependent and influenced by the TP53 mutation
status. An in silico drug screening approach highlighted the potential vulnerabilities of HNSCC with
variable SC scores and predicted a higher sensitivity of SClow tumors to DNA topoisomerase inhibitors.
In conclusion, we have established a tool for assessing peripheral nerve abundance in the TME and
provided new clinical and biological insights into their regulation. This knowledge may pave the way
for new therapeutic strategies and impart proof of concept in appropriate preclinical models.

Keywords: axonogenesis; head and neck squamous cell carcinoma; human papillomavirus;
neurogenesis; perineural invasion; Schwann cells; tumor microenvironment; cancer–neuron interaction

1. Introduction

The tumor microenvironment (TME) is an ecosystem composed of stromal cells,
immune cells, endothelial and lymphatic vasculature, and extracellular matrix components.
Accumulating evidence indicates that these cellular and non-cellular components of the
TME have a strong influence on tumor initiation, growth, invasion, metastasis, and response
to therapy [1]. Recently, peripheral nerves have emerged as a novel pathological structure
within the TME. Several studies have demonstrated the critical role of tumor innervation
and signaling via neurotrophic factors and neurotransmitters in various types of cancer,
including head and neck cancer [2–4]. For example, perineural invasion (PNI) has been
identified as a common interaction between tumor cells and peripheral nerves, describing
tumor invasion of existing locoregional nerves. PNI is commonly observed in cancers of
nerve-rich regions such as prostate, pancreatic, and head and neck cancers. It is associated
with cancer pain and serves as an independent risk factor for poor prognosis [5]. However,
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the cancer–neuron interaction (CNI) appears to be much more complex. Tumor cells release
multiple factors, such as axon guidance molecules and nerve growth factors, to promote
neurogenesis, axonogenesis, and cellular transdifferentiation into neuron-like cells [4,6,7].
These processes increase local nerve density, facilitate tumor progression, and are associated
with poor prognosis [8,9].

Schwann cells (SCs) are the major supporting glial cells of the peripheral nervous
system [10]. As the key component in neural repair and regeneration, SCs play a crucial
role in promoting PNI [11,12]. Nerves invaded and damaged by tumor cells can activate
SCs to proliferate and migrate toward tumor cells [13]. SCs interacting with tumor cells
and the accompanying process of axonal sprouting provide the first access of cancer to
nerves, which leads to neural dissemination at an early disease stage [14]. In pancreatic and
colon cancer, SCs colonize neoplastic sites before the onset of tumor invasion, indicating
their role in providing a pathway for tumor cell migration and invasion [13]. Furthermore,
SCs can attract cancer cells to the perineural niche and enable adhesion of cancer cells to
the nerves [15,16]. A recent study by Pascual et al. provided experimental evidence that a
proregenerative state of tumor-activated SCs is related to metastasis initiation in mouse
models of oral carcinogenesis and melanoma [17]. Another study demonstrated that SCs
not only regulate the phenotype of tumor cells but also cancer-associated fibroblasts in
the microenvironment of pancreatic ductal adenocarcinomas [18]. Taken together, SCs
have crucial responsibilities in nerve–tumor interactions, indicating their potential role as
cellular biomarkers and serving as drug targets for therapy.

Head and neck squamous cell carcinoma (HNSCC) is one of the most common can-
cers worldwide with high morbidity and mortality rates [19,20]. HNSCC is a remarkably
heterogeneous disease, with tobacco, alcohol, and human papillomavirus (HPV) infection,
especially HPV16, as major etiological risk factors [21]. Due to the abundant distribution of
peripheral nerves in the head and neck region, HNSCC exhibits perineural invasion and
intra-tumoral innervation to a greater extent than cancers originating from other anatomical
sites [4,22]. Several recent landmark studies have provided compelling experimental and
clinical evidence for a pivotal role of CNI in the pathogenesis of HNSCC and its potential
as a promising drug target for anticancer therapy [6]. Amit et al. demonstrated in mouse
models of oral cancer that the loss of the tumor suppressor p53 in tumor cells drives neu-
ronal reprogramming through reduced levels of miR-34a. Moreover, sensory denervation
or pharmacological blockade of adrenergic receptors inhibits tumor growth [23]. These
findings from preclinical models were complemented by a retrospective analysis of tumor
samples from oral cancer patients. This analysis not only confirmed an association between
the local nerve density and the TP53 mutation status, but also with poor clinical outcome.
In another study, Restaino et al. identified synapse-like structures in HNSCC and demon-
strated a higher electrical activity level in malignant as compared to benign or normal
tissue. This finding suggests that intra-tumoral nerves establish functional connections to
promote cancer progression [24].

Taken together, cancer neuroscience is emerging as an attractive new research avenue
to better understand the underlying principles of HNSCC pathogenesis. Targeting the
neural addiction of these tumors may provide an important new pillar for a more effective
treatment of HNSCC patients [3,4,25]. To address these issues, there is an urgent need for
new tools that allow quantitative assessment of peripheral nerve density in the tumor tissue
from larger patient cohorts for which multi-omics and clinical data are available. The main
objectives of this study were as follows: (i) the establishment of an SC-related gene set as a
molecular surrogate for tumor nerve density, (ii) an integrative analysis of multi-omics data
for tumors from TCGA-HNSC to elucidate differences in the mutational landscape and
signaling networks as potential modulators of CNI, and (iii) the identification of potential
vulnerabilities of tumors with functional neural circuits as drug targets for a more effective
and less toxic treatment in HNSCC, but also in other cancer types.
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2. Materials and Methods
2.1. Key Resources

Details of all publicly available data, patient cohorts, online tools, software, and algo-
rithms used in this paper are listed in Table S1. All data from TCGA are anonymized and the
National Cancer Institute originally published the ethics and policies. The HNSCC patient
cohort used in this study is from TCGA (TCGA-HNSC), consisting of 499 primary tumors
as a training cohort and is complemented by validation cohorts for HNSCC (GSE117973,
CPTAC-HNSC, GSE65858, and GSE39368) and for other tumor entities from TCGA (CESC,
ESCA, LUSC, LUAD, PAAD, PRAD, and BRCA). The scRNA-seq data were downloaded
from GSE182227, and the in silico drug screening analysis is based on CCLE data from the
GDSC1-2 project and Oncopredict scores.

2.2. Establishment of the Schwann Cell-Related Gene Set

The Harmonizome tool represents a collection of processed datasets collected to serve
and mine knowledge about genes and proteins from over 70 major online resources [26].
It provided 547 proteins co-occurring with the keyword “Schwann cells” in abstracts of
biomedical publications from the “TISSUES Text-mining” Tissue Protein Expression Evi-
dence Scores. The scores indicate the relative strength of the functional associations between
genes/proteins and their attributes. Standardized scores are related to empirical p-values
as abs (standardized values), and they are only available for initially continuous data sets.
Based on the cutoff p < 0.05, n = 43 genes were selected to build an SC-related gene set.

2.3. Gene Set Variation Analysis (GSVA)

To integrate the selected SC-related 43-gene set into the computational analysis, we
applied the Gene Set Variation Analysis (GSVA) package in RStudio (version 1.2.1335) using
the Gaussian Kernel [27]. By this approach, we computed the distribution of enrichment
scores for different gene sets, which are related to the peripheral nervous system (PNS),
specifically SCs, based on RNA-seq data from the TCGA-HNSC cohort (n = 499). The GSVA
provides scores to rank the patients according to the given gene sets. This model provided
harmonized SC scores, which we used to stratify the tumors into three groups: SClow,
SCmoderate, and SChigh. Eleven gene sets related to the peripheral nervous system (PNS)
were selected from MSigDB [28] and applied to the GSVA model with the same purpose
of ranking tumors from TCGA-HNSC. Three gene sets were selected from a study [29]
that provided an unbiased single-cell transcriptomic characterization of the unperturbed
rodent PNS, including independently confirmed markers of previously underestimated
non-myelinating Schwann cells (nmSCs) and nerve-associated fibroblasts to compare the SC
score with other published gene sets. We also calculated GSVA scores for an SC gene set
provided by Panglao DB [30] based on single-cell RNA-seq data from mice and humans.
For further validation on specific types of neurons, we included nine neural gene sets
collected from Harmonizome [26], MSigDB [28], and Panglao DB [30]. The GSVA scores of
the established gene sets were compared to the SC score using Spearman’s correlation.

2.4. Immunohistochemical Staining and Quantification

Paraffin-embedded tissue samples of primary HNSCCs from surgical resections of
the GSE117973 cohort were provided by the Tissue Bank of the National Center for Tumor
Diseases (NCT) Heidelberg, Germany, in accordance with the regulations of the tissue
bank, the approval of the ethics committee of Heidelberg University (protocols: S-206/2011
and S-232/2022), and the written informed consent of all participants. This study was
conducted in accordance with the Declaration of Helsinki. IHC staining was performed
in accordance with Burkart et al. [31] using an anti-GAP43 antibody (ab75810, Abcam,
Cambridge, UK). IHC-stained slides were scanned with a VENTANA DP 200 slide scanner
(Roche, Mannheim, Germany), and to quantify the amount of GAP43-positive neuronal
structures, the number of positive areas out of 10 was manually calculated.
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2.5. Copy Number Alteration (CNA)

To explore the density and frequency of copy number gains and losses in groups with
low, moderate, and high SC scores, we analyzed somatic CNA. Segmented data for TCGA-
HNSC were downloaded from the “Firehose Broad GDAC”. The value of segment means
was defined with greater than 0.2 as gain and less than −0.2 as loss, and depending on
different p-value cutoffs, we obtained hotspot regions with the most significant CNV. Group
comparisons were performed with differences in the frequency of specific events at each
chromosomal location tested for significance using a two-tailed Fisher’s exact probability
test with an accepted significance of the p-value at a defined percentage difference level
using CoNVaQ [32]. Summary plots were visualized using IGV_2.8.0 software (Integrative
Genomic Viewer_2.8.0).

2.6. Somatic Mutations

Mutation counts and candidate genes identified by MutSig 2.0 [33] for TCGA-HNSC
were retrieved from cBioPortal (https://www.cbioportal.org/). Statistically significant
differences between subgroups were determined by the chi-square test.

2.7. GSVA for Regulatory Networks and Oncogenic Pathways

Hallmark (H) category gene sets from the Molecular Signatures Database (MSigDB)
were used, and enrichment scores were calculated using the GSVA package based on bulk
RNA-seq (count data) from TCGA-HNSC. Statistical differences in GSVA scores between
groups were analyzed using the Wilcoxon rank test.

2.8. Oncopredict

Cancer Cell Line Encyclopedia (CCLE) data were downloaded from the Dependency Map
(DepMap) portal of the Broad Institute. Additionally, drug response data from the Sanger
GDSC1 and GDSC2 drug screens were obtained from the same portal. The Oncopredict
scores [34] were calculated using the R package Oncopredict (version 0.1) for TCGA-HNSC
based on the CCLE RNA-seq and the IC50 drug response data of GDSC1-2. Statistical
differences for the SC score (high vs. low) were calculated with the Wilcoxon rank test.

2.9. Single-Cell RNA-Seq Analysis

The single-cell RNA sequencing (scRNA-seq) data were downloaded from the Gene
Expression Omnibus (GEO) [35]. The Unique Molecular Identifier (UMI) matrix was trans-
formed to CPM (counts per million) by normalizing each gene by the total number of UMIs
per sample. The CPM matrix was log2 transformed, as log2(CPM/10+1). The data were
mean-centered by subtracting the average expression of each gene from all values of that gene.

2.10. Statistical Analysis

Statistical analysis was performed in R software (version 4.3.2), with p-values < 0.05
considered significant unless otherwise noted. Clinical data were analyzed by cross-
tabulation, and significant enrichment was detected by the chi-square test using the R
package (crosstable).

3. Results
3.1. Establishment of the Schwann Cell-Related 43-Gene Set

Assuming that the abundance of SCs serves as an accurate surrogate for the presence
of peripheral nerves in a tumor, we used the Harmonizome online tool [26] to construct
an SC-related 43-gene set. The gene set was extracted from 547 protein-coding genes that
co-occurred with the keyword “Schwann cell” in abstracts of biomedical publications from the
TISSUES Text-mining Tissue Protein Expression Evidence Scores dataset (cut-off p-value < 0.05,
Table S2). GSVA scores were calculated based on bulk RNA-seq data from TCGA-HNSC for
the following: (i) the SC-related 43-gene set, (ii) eleven gene sets from MSigDB related to
SCs or the peripheral nervous system, (iii) three gene signatures available for the unbiased

https://www.cbioportal.org/
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single-cell transcriptomic characterization of the non-diseased rodents, and (iv) one gene
signature for SCs from Panglao DB curated from mouse and human single-cell data. This
analysis revealed a positive and significant correlation between the newly established SC-
related 43-gene set and most of the other gene sets tested, with the exception of one gene
set: GO_PERIPHERAL_NERVOUS_SYSTEM_MAINTENANCE (Figure 1A, Table S3A). The
positive correlation was also confirmed with global gene expression data from four inde-
pendent HNSCC cohorts (CPTAC-HNSC, GSE117973, GSE65858, GSE39368) and other solid
tumors from TCGA with similar risk factors and histopathological characteristics (LUSC,
CESC, and ESCA) or with well-established cancer–neuron interactions in the TME (LUAD,
BRCA, PAAD, PRAD) [7,36] (Tables S4 and S5). To further substantiate the predictive accuracy
of the SC-related 43-gene set, we inferred the enrichment of immune and stromal cells by
deconvolution of gene expression data using xCell [37]. The comparison of these data with
the GSVA scores for the SC-related 43-gene set confirmed a positive and significant correla-
tion with the enrichment of astrocyte-like cells and neurons for TCGA-HNSC, independent
HNSCC cohorts, and other solid tumors from TCGA (LUSC, CESC, ESCA, LUAD, BRCA,
PAAD, PRAD) (Figure 1B, Table S6). Notably, a significant and inverse correlation was also
observed for several immune cells, particularly CD4+ memory T cells, CD8+ T cell memory,
and T helper cells. For further validation, we extended this analysis by selecting eight gene
sets related to specific sympathetic, parasympathetic, and neurogenesis-related gene sets from
MSigDB, Panglao DB, and the Mayan Lab. A significant positive correlation was evident for
all these gene sets, confirming the potential of the SC-related 43-gene set as a surrogate marker.
However, we did not detect any obvious difference between sympathetic or parasympathetic
gene signatures (Figure S1H, Table S3B).
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demonstrates an increase in the number for HNSCC with a high SC score (SChigh, red, n = 25) as 
compared to a low SC score (SClow, green, n = 25). 

  

Figure 1. Establishment of the SC-related 43-gene set as a surrogate for peripheral nerve abundance



Cells 2024, 13, 1033 6 of 16

in the TME of HNSCC. (A) Spearman’s correlation coefficient matrix for GSVA scores of the SC-related
43-gene set and indicated gene sets related to the peripheral nervous system based on bulk RNA-seq
data from TCGA-HNSC. (B) Spider plot showing the correlation coefficients comparing the GSVA
scores of the SC-related 43-gene set and scores for astrocytes (blue color) and neurons (orange color)
based on xCell deconvolution for TCGA-HNSC, four independent HNSCC cohorts, and other solid
tumors from TCGA. (C) Representative images of an IHC staining with an anti-GAP43 antibody show
a positive staining (brown signal) in peripheral nerve fibers (PN) adjacent to and within the tumor area
(T, marked by a dashed red line) of FFPE tumor sections. Histological staining with hematoxylin to
visualize tissue architecture. (D) Bar plot shows quantitative assessment of positive areas of peripheral
neurons adjacent to and within the tumor and demonstrates an increase in the number for HNSCC
with a high SC score (SChigh, red, n = 25) as compared to a low SC score (SClow, green, n = 25).

3.2. Association of the SC-Related 43-Gene Set with the Abundance of Peripheral Nerves in the TME

As a further proof of concept for the accuracy of the SC-related 43-gene set to predict
peripheral neuron abundance in the TME, we examined FFPE tumor sections from a
HNSCC cohort (n = 50) by IHC staining with an anti-GAP43 antibody. For this cohort,
transcriptome data were available (GSE117973). GAP43 was selected because it is expressed
in axons of peripheral neurons and activated SCs. The anti-GAP43 antibody had a good
specificity with almost no positive staining in tumor cells or other stromal cells of the TME as
compared to other antibodies for established marker proteins (Figure S1A–E). Quantitative
assessment of peripheral neurons adjacent to and within the tumor tissue showed an
increase in the number of positive areas for HNSCC with a high GSVA score (SChigh, n = 25)
as compared to SClow tumors (n = 25, Figure 1C,D). To further assess the quality of the
predicted SC-related 43-gene set at the single-cell level, we calculated GSVA scores based
on scRNA-seq data from a HNSCC cohort [38]. This analysis confirmed a significantly
higher enrichment of the SC score in the mesenchymal subpopulation of fibroblast-like cells
compared to all other cell types, including epithelial cells, endothelial cells, immune cells,
lymphovascular cells, and myofibroblasts (Figure S1F). These data indicated the absence or
low expression of the SC-related 43-gene set in malignant epithelial cells.

In summary, the newly established SC score based on the SC-related 43-gene set
provides an adequate tool to infer the abundance of peripheral nerves in the TME and to
explore their mutual interaction with tumor cells during cancer development.

3.3. Association of the SC Score with Clinical Features and the Mutational Landscape

To explore potential differences in clinical and histopathologic characteristics among
HNSCCs with different SC scores, we classified tumors from the TCGA-HNSC cohort
into three groups: SClow (lower quartile), SCmoderate

, and SChigh (upper quartile). A cross-
tabulation analysis revealed a highly significant enrichment of HPV16-positive OPSCC for
the SClow group, which was almost absent in the SChigh group (p = 2.33 × 10−6). Moreover,
SChigh tumors were enriched for perineural invasion based on the histopathologic annota-
tion (p = 2.50 × 10−4) and a recently established machine learning model (p = 1.00 × 10−3)
(Table S7) [39]. To further validate these findings, the SC scores based on single-cell RNA-
seq data were compared with tumor cells from HPV-negative and HPV-positive tumors.
This analysis confirmed a significantly higher SC score for single cells from HNSCC patients
with HPV-negative tumors (Figure S1G).

Regarding the mutational landscape, SChigh tumors exhibited a significantly lower
proportion of global genomic alterations as compared to HNSCCs with low or moderate
SC scores. Highly significant differences (p < 0.0005) were detected for copy number
gains at chromosomes 3q and 9q and copy number losses at chromosomes 11q and 16q
(Figure 2A,B). No statistically significant difference was evident in the total count of somatic
mutations between HNSCCs with low, moderate, or high SC scores (Figure 2C). However,
we identified several MutSig genes with significant differences in the relative frequency of
somatic mutations (Figure 2D, Table S8). Consistent with a recent study [23], we observed
a significant (p = 0.0078) and gradual increase in the relative frequency of somatic TP53
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mutations with increasing SC scores. A similar pattern was also found for somatic NOTCH1
mutations (p = 0.0262, Figure 2D). In contrast, a significant and gradual decrease in the
relative frequency of somatic mutations with increasing SC scores was observed for AGTR1
(p = 0.03), RSRC1 (p = 0.02), and PTEN (p = 0.002). The higher frequency of somatic PTEN
mutations in combination with PIK3CA copy number gain at chromosome 3q26 for SClow

as compared to SChigh HNSCC suggested an inverse association between PI3K pathway
activity in cancer cells and peripheral nerve abundance in the TME.
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Figure 2. Differences in the mutational landscape for tumors from TCGA-HNSC with low, moderate,
and high SC scores. (A) Violin plot shows statistically significant differences in the fraction of genome
altered for HNSCC with low, moderate, and high SC scores. (B) Frequency plots summarize copy
number gains (red) and losses (blue) and indicate hotspot regions with significant differences between
tumors from TCGA-HNSC with high and low SC scores. (C) Violin plot shows no statistically
significant difference in mutation counts for HNSCCs with low, moderate, and high SC scores.
(D) Bar plot illustrates MutSig genes (TP53, NOTCH1, AGTR1, RSRC2, PTEN) with statistically
significant differences in somatic mutation frequency among HNSCCs with low, moderate, and
high SC scores. Statistical differences in the fraction of genome altered and mutation counts were
determined by ANOVA-Tukey HSD, while the significant differences in relative mutational frequency
were determined by chi-square test with * p < 0.05, ** p < 0.005 and n.s. = not significant.

3.4. Association of the SC Score with Gene Regulatory Networks and Oncogenic Pathway Activity

To further support the notion that PI3K pathway activity hinders tumor-related neuro-
genesis and to identify other underlying molecular principles of the reciprocal cancer–neuron
interaction, we calculated GSVA scores for hallmark gene sets of the MSigDB (category H)
based on bulk RNA-seq data from TCGA-HNSC (Figure 3A, Table S9). Consistent with dif-
ferences in the mutational landscape, significantly higher GSVA scores were detected for the
P53 pathway (p = 4.9 × 10−3), PI3K-AKT-MTOR (p = 2.01 × 10−3), and MTORC1 signaling
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(p = 3.91 × 10−9) in SClow tumors as compared to SChigh counterparts (Figure 3A,B). Other
gene sets with a higher GSVA score for SClow HNSCCs resembled processes of metabolism
and cell cycle progression, such as MYC or E2F target genes, oxidative phosphorylation,
DNA repair, and G2M checkpoint (Figure 3A,C and Figure S2A). In contrast, top-ranked
gene sets with higher GSVA scores for SChigh HNSCCs were associated with well-established
oncogenic processes and pathways, such as epithelial–mesenchymal transition (EMT) and
Hedgehog and TGF-β signaling (Figure 3A,D). These associations were independent of the
HPV16 status in TCGA-HNSC (Figure S2B) and were also confirmed for the CPTAC-HNSC
cohort (Figure S2C). Significantly higher GSVA scores for PI3K-AKT-MTOR and MTORC1
signaling in SClow tumors and higher GSVA scores for gene sets related to TGF-β signaling
and EMT in SChigh tumors were also observed in other solid tumors from TCGA, such as
CESC and BRCA (Figure S3A,B). Finally, we confirmed significantly higher TGF-β pathway
activity for SChigh tumors for TCGA-HNSC with PROGENy (Figure S3C, Table S10). This
activity may contribute to a suppressed tumor immune microenvironment (TIME) with a
reduced number of TILs, as detected previously (Table S6). In summary, the analysis of
GSVA scores for hallmark gene sets confirmed higher PI3K-AKT-MTOR signaling pathway
activity in the low SC group, independent of HPV16 status. These data further support a
negative impact of PI3K pathway activity on peripheral nerve abundance within the TME.

3.5. Context-Dependent Impact of PI3K Pathway Activity

To further explore the impact of PI3K pathway activity on peripheral nerve abundance
in the context of somatic TP53 mutations, we stratified tumors from TCGA-HNSC into
four groups: (i) tumors without somatic TP53, PTEN, or PIK3CA mutations and without
PIK3CA amplification (TP53wt/PTEN-PIK3CAwt); (ii) tumors with somatic TP53 mutations
but without somatic PTEN or PIK3CA mutations or PIK3CA amplification (TP53mut/PTEN-
PIK3CAwt); (iii) tumors without somatic TP53 mutation but with somatic PTEN or PIK3CA
mutations or PIK3CA amplification (TP53wt/PTEN-PIK3CAmut); or (iv) tumors with somatic
TP53 mutations and with somatic PTEN or PIK3CA mutations or PIK3CA amplification
(TP53mut/PTEN-PIK3CAmut). Consistent with our hypothesis that PI3K pathway activ-
ity is impaired with peripheral nerve abundance, SC scores were significantly lower in
TP53wt/PTEN-PIK3CAmut HNSCC as compared to all other groups (p = 0.01, Figure 4A).
However, this difference was not evident in the presence of somatic TP53 mutations, sug-
gesting that the impact of PI3K pathway activity on the abundance of peripheral neurons is
context-dependent and dominated by the TP53 status. A similar mode of regulation was
also evident for neurotrophic factors, such as NGF (Figure 4B).

To further support this concept, we examined the expression of miR-34a, which was re-
cently reported to be a p53-regulated target during neuronal reprogramming in HNSCC [23].
As expected, miR-34a showed a significantly lower expression in SChigh as compared to
other tumors for TCGA-HNSC (p < 0.01, Figure 4C). A significant difference in miR-34a
expression related to the SC score was also confirmed in other solid tumors from TCGA,
such as LUSC, ESCA, CESC, and PAAD (Figure S4). Regarding the context-dependent role of
PI3K pathway activity, the highest miR-34a transcript levels were detected in TP53wt/PTEN-
PIK3CAmut HNSCC. In contrast, its expression was significantly lower in the presence of
somatic TP53 mutations (Figure 4D). A reverse mode of regulation was also detected for
TGF-β signaling and a significant difference was observed between TP53wt/PTEN-PIK3CAwt

and TP53mut/PTEN-PIK3CA mut tumors from TCGA-HNSC (Figure 4E).
Next, we calculated the SC score based on RNA-seq data from 4NQO-induced tongue

tumors of genetically engineered mice carrying a gain-of-function (GOF) allele for Pik3ca
alone or in combination with a Trp53 mutation [40]. The analysis revealed a significantly
higher SC score for tongue tumors from Trp53mut mice with or without Pik3caGOF as com-
pared to wild-type (WT) controls or Pik3caGOF counterparts (Figure 4F). Tongue tumors
from this animal study also confirmed a significantly higher Ngf expression in the presence
of Trp53 mutation compared to WT controls and Trp53wt/Pik3caGOF mice (Figure 4F).
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Figure 3. Differences in gene regulatory networks and oncogenic pathway activity associated with
different SC scores for tumors from TCGA-HNSC. (A) Heatmap showing an unsupervised hierarchical
cluster analysis based on GSVA scores of top-ranked MSigDB hallmark gene sets with significant
differences between tumors with high or low SC score. (B–D) Violin plots show statistically significant
differences between tumors with high or low SC scores for indicated gene sets in TCGA-HNSC.
Statistical significance was determined using the Wilcoxon rank test.
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Finally, we analyzed the PI3K pathway activity and TP53 mutation status for tumors
which were stained with the anti-GAP43 antibody. As expected, GSVA scores for the
SC-related 43-gene set were higher in TP53 mutant tumors compared to non-mutant
counterparts (Figure 4G). PI3K pathway activity was inferred from the transcriptome data
using PROGENy. The inferred activity was lowest for tumors without TP53 mutation
and with a high abundance of peripheral nerves as assessed by GAP43 immunostaining
(Figure 4G). Collectively, these data confirmed that the impact of increased PI3K pathway
activity on the abundance of peripheral neurons within the TME is context-dependent and
dominated by the TP53 status.
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Figure 4. Association of the SC score with PI3K pathway activity, NGF, and miR-34a expression.
Violin plots showing differences between indicated mutation subgroups of TCGA-HNSC for the
SC score (A), NGF transcript levels (B), miR-34a transcript levels (D), and GSVA scores for TGF-β
signaling (E). (C) Violin plot showing statistically significant differences in miR-34a transcript levels
for TCGA-HNSC tumors with low, moderate, and high SC scores. (F) Violin plots illustrating SC scores
(top) and Ngf transcript levels (bottom) for 4NQO-induced tongue tumors from mice with indicated
genotypes. (G) Violin plots showing differences in the SC score between tumors from GSE117973 with
or without TP53 mutation (left) and for the PI3K PROGENy score for tumors’ TP53 mutation status
and the abundance of peripheral nerves as assessed by GAP43 immunostaining (right).
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3.6. Identification of Vulnerabilities by in Silico Drug Screening

To identify potential vulnerabilities for tumor subgroups with either SChigh or SClow

phenotypes, we used Oncopredict [34] to impute sensitivity to compounds tested in the
GDSC project (Table S11). This approach revealed potential sensitivities of SChigh tumors to
EGFR inhibitors (e.g., CANERTINIB, AST-1306) and MEK inhibitors (e.g., REFAMETINIB),
whereas SClow tumors were particularly sensitive to drugs targeting the cell cycle or DNA
topoisomerases (e.g., CAMPTOTHECIN, IRINOTECAN, TENIPOSIDE, and TOPOTECAN)
(Figure S5). The latter finding was consistent with the enrichment of gene sets related to
cell cycle progression and DNA repair in the SClow tumors (Figure 3A,B, Table S9) and
indicates a therapeutic potential of topoisomerase inhibitors for HNSCC patients with this
type of tumor.

4. Discussion

High density of peripheral nerves and their functionality in the TME have been
associated with poor prognosis in several cancers, including HNSCC [8,22,41]. How-
ever, our understanding of the underlying molecular and cellular principles that promote
mutual communication between cancer cells and peripheral nerves remains limited [4].
This is, at least in part, due to the technical challenge of reliably assessing peripheral nerve
abundance in tumor samples from larger patient cohorts for which multi-omics data are
available. In addition, most research efforts focus on the impact of different neuronal
types, e.g., sympathetic, parasympathetic, or sensory neurons, in carcinogenesis, gener-
ally ignoring neuroglia such as SCs [42]. SCs are able to modulate various immune cells
and inflammatory processes and possess regenerative capacities. Their broad abundance
throughout the body makes them a perfect target for malignant cells during the initial
stages, progression of cancer development, and the formation of the tumor microenviron-
ment [42]. The reprogramming of SCs occurs in cancer and is associated with a variety of
effects, including cancer growth, cancer migration and invasion, immune regulation, and
pain. Immune regulation and pain transmission may be controlled directly by the cancer
cells or indirectly via the reprogrammed SCs in the microenvironment [43]. Several studies
showed that SCs in the TME attract various subsets of immune regulators and enhance
their ability to suppress effector T cells [42].

In the present study, we established an SC-related 43-gene set as an accurate surrogate
for the presence of peripheral nerves in the TME of HNSCC and classified TCGA-HNSC
tumors into three groups based on low, moderate, and high SC scores. The predictive
power of the SC score was confirmed by gene expression data from independent HNSCC
cohorts and other solid tumors from TCGA with similar risk factors and histopathologic
characteristics (LUSC, CESC, and ESCA) or with well-established cancer–neuron interac-
tions in the TME (LUAD, BRCA, PAAD, PRAD) [7,36]. A landmark study by Amit et al.
identified loss of p53 function as an important regulator of neuronal reprogramming in
HNSCC, thereby promoting tumor development and malignant progression [23]. TP53
is the most frequently mutated tumor suppressor gene in HNSCC and affects multiple
aspects during tumorigenesis, including modulation of the TME [21]. Mechanistically, loss
of p53 was associated with loss of miR-34a expression, which determines the fate of cancer-
associated neurons [23]. MiR-34a is a well-known tumor suppressor miRNA that is lost or
downregulated in a variety of tumors. Moreover, the reintroduction of miR-34a mimics was
found to inhibit cancer cell growth both in vitro and in vivo. In nasopharyngeal carcinoma,
miR-34a was identified as a critical inhibitor of EMT and metastasis [44,45]. Consistent with
these findings, we confirmed a higher frequency of somatic TP53 mutations and reduced
miR-34a expression in SChigh HNSCC, while p53 pathway activity and miR-34a expression
were higher in SClow tumors. Interestingly, a significant difference in miR-34a expression
related to the SC score was also observed in other solid tumors from TCGA, such as LUSC,
ESCA, CESC, and PAAD. This finding raises the intriguing question of whether our newly
established SC score can be used to identify tumors with TP53 mutations and a high local
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nerve density in the TME. These cases may benefit from miR-34a mimetics in combination
with currently established treatment regimens.

Another important finding of this study is the potential role of the PI3K-MTOR path-
way in the regulation of nerve density within the TME of HNSCC. The analysis of gene
regulatory networks and oncogenic pathway activities revealed significantly higher GSVA
scores for PI3K-AKT-MTOR and MTORC1 signaling in SClow HNSCC. These associations
were at least in part due to the higher frequency of somatic PTEN mutations and PIK3CA
copy number gain at chromosome 3q26 in these tumors as compared to the SChigh coun-
terparts. Genomic alterations and somatic mutations in key hubs of the PI3K signaling
pathway are common in HPV16-associated OPSCC and are associated with the activation
of MTOR. This specific difference in the mutational landscape, in combination with the
lack of somatic TP53 mutations, may explain the reduced abundance of peripheral nerves
in the TME of HPV16-positive OPSCC. Accordingly, HPV16-positive OPSCC do not only
exhibit lower SC scores, but also have reduced expression of synaptic markers and electrical
activity within tumors and a lower frequency of PNI [24,39]. However, it is worth noting
that the potential impact of PI3K-MTOR signaling on neuro- and/or axonogenesis appears
to be context-dependent and influenced by the TP53 mutation status. This assumption is
supported by the low SC scores in TP53wt/PTEN-PIK3CAmut tumors from HNSCC patients
and chemically-induced tongue tumors from Trp53wt/Pik3caGOF mice. Low SC scores were
not observed for tumors with somatic TP53 mutations despite the presence of PTEN or
PIK3CA alterations. Recent studies have shown that cancer cells express neurotrophic mark-
ers such as NGF, BDNF, and GDNF and release axon guidance molecules such as Ephrin
B1 to promote axonogenesis, neurogenesis, and neuronal reprogramming [6]. Indeed, NGF
expression was lowest in tumors from HNSCC patients and tongue tumors from animals
with mutations in the PI3K pathway but without TP53 mutations. These findings suggest
that the effect of the PI3K-MTOR pathway activity on the abundance of peripheral neurons
in the TME is triggered, at least in part, by the altered release of NGF, which is dependent
on the TP53 status. However, the underlying molecular principles remain elusive and need
to be addressed in future studies.

In the context of the tumor immune phenotype, TGF-β signaling is known to suppress
the function of adaptive and innate immune cells [46,47]. Previous studies have reported a
close interaction between peripheral neurons, SCs, and immune cells, which are mediated
by soluble factors, including TGF-β [48]. For example, a recent study provided compelling
experimental evidence that neural involvement enhanced tumor aggressiveness by upregu-
lating TGF-β signaling and PD-L1 expression in OSCC. Moreover, denervation of OSCC
inhibited tumor growth, which was accompanied by reduced TGF-β signaling, enhanced
CD8+ T cell activity, and improved efficacy toward anti-PD-1 immunotherapy [49]. Con-
sistent with this study, our data demonstrated a positive correlation between a high SC
score and TGF-β signaling. This finding indicates an immunosuppressive phenotype for
SChigh tumors based on the reduced levels of specific tumor-infiltrating lymphocytes as
determined by xCell. In contrast, SClow tumors demonstrated an immunoactive TME by
enrichment of CD8+ T cells, CD4+ T cells, and T helper cells. It is also noteworthy that
HPV16-positive OPSCCs were almost absent in the SChigh group. OPSCCs arise from
anatomical sites with lymphoid tissue, especially tonsils, which could also explain a higher
density of different immune cells in the TME. However, the presence and activity of specific
immune cell subsets may also have a negative impact on peripheral nerve density by in-
hibiting neurogenesis and axonogenesis in an immunoactive environment. These findings
highlight promising therapeutic targets in the context of cancer–neuron–immune crosstalk
and further investigation in co-culture models using cancer cells, SCs, and immune cells
will be important as a proof of concept for future translation into clinical application.

Finally, we explored the potential vulnerabilities for HNSCC with SChigh or SClow phe-
notypes as a solid basis for further testing in appropriate preclinical models and long-term
translation into clinical trials. Our in silico drug screening predicted a higher sensitivity of
SClow tumors to drugs targeting DNA topoisomerases, such as Camptothecin, Irinotecan,
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Teniposide, and Topotecan. Inhibitors of the DNA topoisomerase 1 (TOP1) and 2 (TOP2A
and TOP2B) have shown considerable potential as therapeutic agents against cancers,
including HNSCC. However, their unfavorable pharmacokinetic profiles and off-target
toxicities have limited their clinical use [50,51]. In HNSCC, a phase I/II prospective trial of
triple combination therapy with Cisplatin, Tegafur/Uracil, and Irinotecan showed that this
treatment was well tolerated and effective in selected patients [52]. These data suggest that
a better molecular stratification may improve prognosis and quality of life for individual
patients with recurrent/metastatic HNSCC. To maximize the therapeutic potential of DNA
topoisomerase inhibitors, combination therapies co-targeting oncogenic pathways have
been proposed to induce synthetic lethality for more thorough anti-tumor activity [53].
As our GSVA identified enrichment of MYC and E2F target genes for SClow tumors, co-
targeting of these oncogenic pathways in combination with DNA topoisomerase inhibitors
may be a viable option for these HNSCCs. In addition, the list of top-ranked candidates
with a higher sensitivity for SChigh HNSCC included EGFR inhibitors (e.g., Canertinib,
AST-1306) and MEK inhibitors (e.g., Refametinib). Again, a more detailed analysis in
appropriate preclinical models is needed to provide the proof of concept that inhibition of
the EGFR-MEK pathway has an impact on CNI and resembles an effective treatment for
SChigh HNSCC.

We are aware that our study is not without limitations. The limitations are the retro-
spective study design and that most conclusions are derived from bioinformatics analysis
of bulk RNA-seq data from TCGA and other publicly available resources. Future studies
have to focus on prospectively collected tumor samples, for which both the assessment
of the newly established SC-related 43-gene set and multiplex immunostaining on tumor
sections will be feasible. Furthermore, a more precise definition of candidate genes for
several subsets of SCs and peripheral nerves will be necessary to better characterize their
abundance, activity, and regulation in the TME at the single-cell level (e.g., by the analysis
of single-cell RNA-seq and spatial transcriptomics data). Finally, the impact of predicted
oncogenic pathways in tumor cells and their context-dependent function in the complex
interplay between cancers and key components of peripheral nerves in the TME must be
experimentally confirmed by sophisticated preclinical 3D coculture and adequate in vivo
models. Expected data will provide the proof of concept for the most promising drug
targets and their translation into clinical trials.

5. Conclusions

In this study, the presence of peripheral nerves in the TME across HNSCC and other
tumor entities was predicted by a SC-related 43-gene set. The newly established SC score
provides an adequate tool to infer the abundance of peripheral nerves in the TME and to
explore their mutual interaction with tumor cells during cancer development. Based on
the comparison of tumors with either a low or high SC score, we gained new clinical and
biological insights which allowed us to predict the potential vulnerabilities of tumor sub-
groups with variable abundance of peripheral nerves in the TME. This approach revealed
potential sensitivities of SChigh tumors against inhibitors targeting EGFR-MEK signaling,
whereas SClow tumors appear to be particularly sensitive to drugs targeting DNA topoiso-
merases. The critical role of the PI3K-MTOR pathway in cancer cells, which is associated
with the altered expression of important regulators of neurogenesis, axonogenesis, and
neuronal reprogramming, is another key finding of our study. However, the impact of
PI3K-MTOR pathway activity on the abundance of peripheral neurons within the TME is
context-dependent and affected by the TP53 status. These findings may pave the way for
new therapeutic strategies and impart proof of concept in appropriate preclinical models.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells13121033/s1, Figure S1: Confirmation of the SC-related 43-gene set
by IHC and scRNA-seq analysis; Figure S2: GSVA of hallmark gene sets from MSigSB for TCGA-
HNSC and CPTAC-HNSC; Figure S3: GSVA of hallmark gene sets from MSigSB for TCGA-CESC
and TCGA-BRCA and PROGENy analysis for TCGA-HNSC; Figure S4: MiR-34a expression in other
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tumors from TCGA; Figure S5: In silico drug screening for TCGA-HNSC; Table S1: Summary of
data resources and analytical tools; Table S2: SC-related 43-gene sets with standardized empirical
p-values; Table S3: Spearman’s correlation matrix for GSVA scores based on bulk RNA-seq data from
TCGA-HNSC; Table S4: Spearman’s correlation matrix for GSVA scores based on gene expression
data from independent HNSCC cohorts; Table S5: Spearman’s correlation matrix for GSVA scores
based on RNA-seq data from other solid tumors from TCGA; Table S6: Spearman’s correlation matrix
for GSVA scores of the SC-related 43-gene set and xCell data based on bulk RNA-seq data from
TCGA-HNSC, independent HNSCC cohorts, and other tumor entities from TCGA; Table S7: Crosstab
analysis based on the subgroups of SC score in TCGA-HNSC; Table S8: Somatic mutation frequency
of MutSig genes for TCGA-HNSC; Table S9: Association of the SC score with hallmark gene sets
from MSigDB for TCGA-HNSC; Table S10: Spearman’s correlation matrix for SC and PROGENy
scores based on RNA-seq data from TCGA-HNSC; Table S11: Top 20 drugs based on the in silico
drug sensitivity screening for TCGA-HNSC.
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