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Abstract: Continuous discovery and update of applications or their boundaries running in cloud
environments in an automatic way is a highly required function of modern data center operation
solutions. Prior attempts to address this problem within various products or projects were/are
applying rule-driven approaches or machine learning techniques on specific types of data–network
traffic as well as property/configuration data of infrastructure objects, which all have their drawbacks
in effectively identifying roles of those resources. The current proposal (ADLog) leverages log data
of sources, which contain incomparably richer contextual information, and demonstrates a reliable
way of discriminating application objects. Specifically, using native constructs of VMware Aria
Operations for Logs in terms of event types and their distributions, we group those entities, which
then can be potentially enriched with indicative tags automatically and recommended for further
management tasks and policies. Our methods differentiate not only diverse kinds of applications,
but also their specific deployments, thus providing hierarchical representation of the applications in
time and topology. For several applications under Aria Ops management in our experimental test
bed, we discover those in terms of similarity behavior of their components with a high accuracy. The
validation of the proposal paves the path for an AI-driven solution in cloud management scenarios.

Keywords: automated cloud management; application discovery; dimensionality reduction; event
types; hierarchical and density-based clustering; log analytics; recommender system

1. Introduction

With the rise of cloud-native development practices [1,2], it has been critical to bring
agility to legacy apps through application modernization. The primary objective in any
modernization roadmap revolves around application assessment through the discovery
of application interactions, interdependencies as well as boundaries to help rationalize
application portfolio and architecture and a wide range of other modernization activities.
Companies, such as Amazon, IBM, Microsoft, and Deloitte, employ application discovery
(AD) methodologies to enable enterprise customers to obtain visibility into the configura-
tion, usage and behavior of workloads running on their infrastructure [3]. Moreover, the
discovery and understanding of applications is critical in terms of creating relevant inven-
tories of technical assets, improving maintenance and operations as well as significantly
reducing risk in response to ongoing business needs. Cloud vendors tend to enhance their
data center management portfolios with application-aware management capabilities. This
introduces flexibility for customers to leverage tools and identify workloads [4] that nec-
essarily make up an application and manage/troubleshoot their data centers with a solid
understanding of inter-dependencies, communication patterns and potential problems
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related to those applications. As modern multi-cloud environments advance rapidly with
ever-growing complexities, it becomes challenging to accurately define highly dynamic
application boundaries. As of this, the application definition itself can reflect different
interpretations across different products. Most services usually leverage a combination of
workload naming conventions, workload tags, security tags and groups to establish appli-
cation boundaries in their discovery engines. There are yet other approaches (e.g., AWS
Application Discovery Service) that incorporate agent-based AD methodologies capturing
system configuration, system performance, running processes and details of the network
connections between systems [5]. They necessarily gather and process information corre-
sponding to server hostnames, IP addresses as well as resource allocation and utilization
details related to virtual machine (VM) inventory, configuration and performance history
such as CPU, memory and disk usage data [6]. Microsoft [7] and IBM [8] solutions on
AD verify logs against an existing catalog of applications. Although all these solutions
in industry address a variety of significant use cases in application-aware management
frontiers, the accuracy and performance of the underlying models heavily rely on rich and
available metadata to be in place. Overall, AD remains an important and complicated
administration task under the emerging multi-cloud management paradigm that some
vendors drive their vision to.

Our proposal (ADLog) takes a novel approach to the AD problem from the log data of
cloud sources and fully AI-driven perspectives. It is an attempt to employ unsupervised
machine learning to modeling the log streams of cloud resources monitored by Aria Ops
for Logs (former Realize Log Insight or vR LI) [9]. Log data contain a contextually rich
behavioral fingerprint of the underlying application. Therefore, we consider this as a more
reliable and unbiased source for characterizing the nature of applications and discriminate
those in terms of both their kinds and instances through the relevant workload patterns.
Building on this intuition, our prototype solution verifies a hypothesis on whether event
type (ET) meta-constructs by Log Insight [9] and their distributions are indicative enough
of fingerprint applications across their dynamism in time. ETs were previously utilized in
intelligent log analytics in identifying anomalies, changes and sickness status of IT resources
(e.g., [10]), as well as for problem’s root cause analysis purposes, where explainable ML
plays an important role in terms of the adoptability of generated recommendations [11].
These are abstract groups of similar messages performing dimensionality reduction of
the original log data. Users leverage ET representations in various tasks to interactively
analyze log streams. An extra functionality (event trends) on top of ETs enables users to
compare two time intervals in the log stream and identify increasing or decreasing types of
messages and locate sub-streams of interest.

We share results from our initial experimental work on a set of applications available
to us in corporate internal environments. ADLog demonstrates highly accurate grouping
outcomes of application entities and their deployment instances, monitored and modeled
with the above-mentioned ET distributions. We believe that based on this research, cloud
management solutions can be furnished with a relevant log-driven discovery capability,
which is sufficiently reliable to be delivered as a standalone feature/recommender system
for users to infer their map of app components, as well as enhance the existing AD solutions
from a new angle.

We review the related work in Section 2 and our methodology in Section 3 with
experimental set-up details. Evaluation of obtained results is provided in Section 4, while
Section 5 covers discussion points and concluding notes.

2. Related Work

VMware enables its customers with a variety of approaches to define applications
within their products through cloud management and deployment tools (such as Configu-
ration Management Databases, Aria for Automation [12], Aria Operations (former vRealize
Ops or vR Ops) [13]), where customers can manually establish application definitions,
specify application dependencies across different entities in datacenter and define appli-
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cation blueprints among the resources in use. Additionally, customers can incorporate
properties on their deployed entities as well as tags and naming conventions to identify
specific resources that belong to subjective applications. Whereas all these approaches
might serve well in specific use cases, they all expose drawbacks in terms of consistency
in deviations from true application topologies over time. Current AD offerings include
the Service and Application Discovery by Aria Ops [14] and the network Flow-Based
Application Discovery (FBAD) [4] within Aria Ops for Networks [15]. The problem of AD
can also be tackled from additional perspectives which utilize the configuration properties
of IT objects and their naming conventions.

From application monitoring, integration and management perspectives, Aria Ops
enables Service Discovery (SD) for services running in each VM to build relationships or
dependency between those from different VMs. With this, SD leverages VMware tools
to discover some known services, but it limits the scope, in which the applications are
only discovered within specific contexts of those services connected to each other. On the
other hand, FBAD leverages network traffic flows from either the vSphere Distributed
Switch [16] or NSX [17] and applies ML techniques (such as disconnected component
and outlier detection) to discover application boundaries automatically [4]. Whereas the
flow-based discovery approach groups application components based on their runtime
behaviors, it is generally not capable of accurately capturing the components (e.g., VMs
in “dev”, “production” or “staging” environments) of a true application that are yet to
be isolated in the network. Unlike FBAD, object tags and property-based approaches
drive the discovery and ML-based inference of potential applications solely based on the
configuration properties of compute entities and tags as an additional source for entity
labeling from automated datacenter naming systems (not always available).

Even though these methods can serve as several successful use cases in the AD fron-
tier, they heavily rely on the availability and propriety of contextual representations of
data to train accurate and robust ML models. Due to the difference in methodologies, in
assumptions and use cases of those as well as in dissimilar specifics of environment condi-
tions, the understanding of application topology across different end-use cases remains a
state-of-the-art challenge for all these existing approaches. As a result, the AD itself exposes
significant bias toward the source of information used in the discovery process.

Unfortunately, the above-mentioned ML-driven approaches to AD are described only
in internal technical papers and are not disclosed academically for proper and accessible
references. Moreover, there is a lack of a scientifically systematic treatment of the AD
problem especially from the perspectives of unsupervised ways of learning the nature
of cloud assets/objects. On the other hand, researchers are focused more on designing
frameworks for the discovery of relevant cloud services for a given application rather than
categorizing compute instances in a cloud environment subject to common behaviors of its
components, as we observe in the review paper by Agbaegbu et al. [18] on ontologies in
cloud computing and the respective references [19–24] therein.

Apart from application reconciliation and curation roadmap, it has become critical to
serve a variety of scenarios in different environments, by focusing on the co-existence of
different sources of discovery independently. With this, there is no prior art looking into
the AD problem from log data perspectives of services which contains contextually rich
information about the underlying applications and infrastructures. This paper makes a pre-
liminary validation of the viability of an approach which is based on log data characteristics,
applies no expert knowledge and is completely unsupervised.

3. Materials and Methods

Log monitoring and analytics platforms (such as Aria Ops for Logs) collect logs
through agent-based and agentless methods and API integrations. The logs can be in
various formats such as Syslog, Windows event logs and custom application logs. The log
management solutions normalize, parse and index these logs, making them searchable
and analyzable for effective pattern detection and troubleshooting. In the context of our
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study, the analysis below based on particular cloud vendor concepts is exemplary, since the
proposed methods rely on abstract constructs of the distributions of log messages, making
them universally applicable in any other cloud eco-system where these distributions can be
derived accordingly.

Based on the introductory discussion, our objective in this study was to investigate

1. whether log sources of IT resources within a common cloud management service can be
reliably leveraged for identifying underlying applications in a context-independent manner;

2. what ML approaches could be adopted for automating such a task.

Our approach in identifying similar groups of entities relies on hierarchical cluster-
ing of relevant log sources based on their ET (probability) distributions sampled across
a time axis with an aggregation interval. Then, to evaluate the quality of such an ap-
proach, we need to compare the obtained groups of sources with the true structure of apps
under investigation.

The full solution under our vision contains a recommender system running on trained
ML models and advising users on discovered app maps, as well as dynamic changes
occurring in those. Additionally, we can automatically reconstruct/prescribe application
kinds while enriching detected groups with indicative messages behind dominant ETs using
NLP or word clouds for user validation and continuous operator-in-the-loop improvement
of the ML method.

A high-level architectural representation of the proposed system (ADLog) is depicted
in the diagram of Figure 1. Monitored log messages of heterogeneous applications flowing
into an intelligent log management service are analyzed for their ETs and related probability
distributions, which are then fed into the AD engine. This module identifies similarity
groups of those sources using ML approaches.

Future Internet 2024, 16, x FOR PEER REVIEW 4 of 14 
 

 

and analyzable for effective paĴern detection and troubleshooting. In the context of our 
study, the analysis below based on particular cloud vendor concepts is exemplary, since 
the proposed methods rely on abstract constructs of the distributions of log messages, 
making them universally applicable in any other cloud eco-system where these distribu-
tions can be derived accordingly. 

Based on the introductory discussion, our objective in this study was to investigate 
1. whether log sources of IT resources within a common cloud management service can 

be reliably leveraged for identifying underlying applications in a context-independ-
ent manner; 

2. what ML approaches could be adopted for automating such a task. 
Our approach in identifying similar groups of entities relies on hierarchical clustering 

of relevant log sources based on their ET (probability) distributions sampled across a time 
axis with an aggregation interval. Then, to evaluate the quality of such an approach, we 
need to compare the obtained groups of sources with the true structure of apps under 
investigation. 

The full solution under our vision contains a recommender system running on 
trained ML models and advising users on discovered app maps, as well as dynamic 
changes occurring in those. Additionally, we can automatically reconstruct/prescribe ap-
plication kinds while enriching detected groups with indicative messages behind domi-
nant ETs using NLP or word clouds for user validation and continuous operator-in-the-
loop improvement of the ML method. 

A high-level architectural representation of the proposed system (ADLog) is depicted 
in the diagram of Figure 1. Monitored log messages of heterogeneous applications flowing 
into an intelligent log management service are analyzed for their ETs and related proba-
bility distributions, which are then fed into the AD engine. This module identifies similar-
ity groups of those sources using ML approaches. 

 
Figure 1. ADLog system architecture for identifying M similarity groups of application sources. 

On top of such an architecture and analysis, the discovered groups of log sources can 
be used to fuel another recommender system. This system (out of scope of our study) can 
suggest potential components of an application (entity baskets) to cloud users. These 
groups can then be approved as valid applications and transferred into a specific manage-
ment mode. Furthermore, these applications and components can be tagged, labeled and 
enriched with additional metadata. This enrichment process helps operators optimize and 
monitor the performance of their ecosystems in a more application-centric manner. 

3.1. Experimental Set Up for ADLog 
To evaluate the ET-based grouping method, it is applied to a set of applications with 

ground truths coming from SD in Aria Ops (which is approved and labeled by developers) 
and from Engineering Services managing various internally deployed applications. 

Monitored Applications 
The ground truth applications monitored in Aria for Logs are listed in Table 1. The 

kinds of applications and status (whether it is a standalone instance although of the same 

Monitored Log 
Sources

Log 
Management 

Service 

Event Type 
Analytics

App Discovery 
Module

Groups of Log 
Sources 

Figure 1. ADLog system architecture for identifying M similarity groups of application sources.

On top of such an architecture and analysis, the discovered groups of log sources
can be used to fuel another recommender system. This system (out of scope of our study)
can suggest potential components of an application (entity baskets) to cloud users. These
groups can then be approved as valid applications and transferred into a specific manage-
ment mode. Furthermore, these applications and components can be tagged, labeled and
enriched with additional metadata. This enrichment process helps operators optimize and
monitor the performance of their ecosystems in a more application-centric manner.

3.1. Experimental Set up for ADLog

To evaluate the ET-based grouping method, it is applied to a set of applications with
ground truths coming from SD in Aria Ops (which is approved and labeled by developers)
and from Engineering Services managing various internally deployed applications.
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Monitored Applications

The ground truth applications monitored in Aria for Logs are listed in Table 1. The
kinds of applications and status (whether it is a standalone instance although of the same
kind, like ESX16 in the table) of entities within those applications are also indicated. The list
includes vR Ops and vR LI apps with relevant services discovered by SD. This adapter or
management pack-based discovery mechanism executes commands in the guest operating
system (OS) of the corresponding VMs and finds out which services are running and which
ones communicate through ports. The discovered applications can be both predefined
and custom. In particular, the vR Ops application instance (of Table 1) consists of two
VM nodes. There are multiple services in this app, for instance, “vROps Analytics” which
performs data manipulation and learning tasks such as typical ranges of time series metrics
for anomaly detection. Those services are hosted by different VMs; however, they are part
of the same “vRealize Operations” application. Another application discovered by SD is
“vRLI” (Table 1). There are three nodes in the application and each of them are connected
to the other node through services. Both applications definitely exist in the monitored
environment. The rest of the applications in Table 1 are confirmed by the engineering teams
dealing with internally deployed apps under the monitoring of Aria Ops for Logs. For
instance, F5 load balancer has two distinct instances. Analogously, the host esx16 is not a
part of the same service application consisting of the rest of the nine hosts, but a different
service running with an NSX.

Table 1. Ground truth app kinds and their structure.

Log Sources Application Kind Deployment

10.27.74.245 F5 Load Balancer v13 standalone

10.27.74.233 F5 Load Balancer v12 standalone

10.27.82.46 vRLI
part of one10.27.82.45 vRLI

10.27.82.43 vRLI

evn1-hs1-a0716.eng.vmware.com ESXi (+vSAN)

under the same vSphere

evn1-hs1-a0719.eng.vmware.com ESXi (+vSAN)

evn1-hs1-a0717.eng.vmware.com ESXi (+vSAN)

evn1-hs1-a0720.eng.vmware.com ESXi (+vSAN)

evn1-hs1-a0722.eng.vmware.com ESXi (+vSAN)

evn1-hs1-a0723.eng.vmware.com ESXi (+vSAN)

evn1-hs1-a0724.eng.vmware.com ESXi (+vSAN)

evn1-hs1-a0721.eng.vmware.com ESXi (+vSAN)

evn1-hs1-a0718.eng.vmware.com ESXi (+vSAN)

sc2-05-r19esx16.oc.vmware.com ESXi (+NSX) standalone

10.27.82.51 vROPs part of one
10.27.82.52 vROPs

10.27.74.219 Microsoft Internet
Information Server standalone

10.27.74.218 PaloAltoNetworks standalone

An AD method has to learn and distinguish the applications in Table 1, subject to their
kind and deployment instances ideally. This list of applications of various natures serves as
an exemplary set of log sources against which we demonstrate the viability of our methods
in terms of their high-accuracy classification.

evn1-hs1-a0716.eng.vmware.com
evn1-hs1-a0719.eng.vmware.com
evn1-hs1-a0717.eng.vmware.com
evn1-hs1-a0720.eng.vmware.com
evn1-hs1-a0722.eng.vmware.com
evn1-hs1-a0723.eng.vmware.com
evn1-hs1-a0724.eng.vmware.com
evn1-hs1-a0721.eng.vmware.com
evn1-hs1-a0718.eng.vmware.com
sc2-05-r19esx16.oc.vmware.com
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An examplary ET distribution charting over a time axis is depicted for the load
balancer application F5 in Figure 2. For each time interval, the relative presence of ETs can
be converted to relevant probability distributions (as discribed in the prior art literature,
as well as in the next subsection). Our ML analysis deals with those distributions in
identifying the behavioral similarity of log sources to potentially make an application kind
or its particular deployment in case of a hierarchical discrimination.
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3.2. Feature Engineering

All log sources of apps in Table 1 were monitored by an Aria Ops for Logs for a
one-week period. With our prototype scripts, we extracted counts of distinct ETs observed
in each 4-h interval for each of the sources under consideration, thus generating a data
store of samples to be processed. Then, converting those values into relative frequencies
or probabilities of ETs, we continued to work with the resultant distributions (this means
probability elements are summed up to one for each time interval). It is important to note
that, for the sake of an accurate ML treatment, this feature engineering technique builds the
relevant probability vectors on the entire set of distinct ETs observed from all sources, thus
introducing a sparsity into the data set subject to the hierarchical clustering below. Overall,
607 distributions (with dimensionality = 5605) feature vectors, representing behavioral
samples from the six application kinds and their sources, were collected over the one-week
monitoring window.

Here are some interesting patterns and insights from the descriptive analysis of the
ET data. Figure 3 demonstrates a structure in observed ET counts for the same sort of
log sources. It seems that, even based on this total count, criterion app kinds can be
differentiated/filtered out in a given time slot.
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Figure 4 displays a discernable structure of probability feature vectors (with probabilities
higher than 0.005) for two 4-h intervals of distinct instances of the same load balancer F5.
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3.3. ADLog Using Hierarchical Clustering of Event Type Distributions

Features constructed based on ETs occurrence, described in Section 3.2, are fed into
the agglomerative clustering with Jaccard distance and average linkage. This distance
is a measure of dissimilarity between two sets. In the context of clustering or similarity
analysis, it quantifies how different two sets are based on their shared and unique elements,
calculated as the ratio of the size of the intersection of the sets to the size of their union.

Since we do not know how many groups of entities to expect in the cloud environment,
silhouette and Calinski–Harabasz scorings serve a guidance for inferring the best number
of clusters. The silhouette score is a metric used to evaluate the quality of clusters formed
by a clustering algorithm. It measures how similar an object is to its own cluster (cohesion)
compared with other clusters (separation). A higher silhouette score indicates better-
defined clusters, where data points are closer to members of their own cluster than to
members of other clusters. The Calinski–Harabasz score is another metric for evaluating
the quality of clusters produced by clustering algorithms. It is calculated by considering
the ratio of between-cluster dispersion to within-cluster dispersion. A higher Calinski–
Harabasz score indicates better-defined and more separated clusters.

Figures 5 and 6 display the corresponding results, respectively, detecting the number
of app kinds in our experiment, where the elbow method is used. In general, we suggest
experimenting with different clustering scores and making the final decision based on the
summary of the results.

The dendrogram (a diagrammatic representation of the arrangement of clusters pro-
duced by hierarchical clustering algorithms) in Figure 7 illustrates how the various sorts of
apps (indicated in differently colored trees) in our analysis are discriminated based on the
above-mentioned scoring results. These tree-like structures display how individual data
points or clusters are combined at each stage of the clustering process. The most sizeable
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cluster (yellow) represents the ESXi-kind application with a comparably larger number of
sampled ET distributions from related host entities.
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Since, within ADLog, the next objective is to be able to also distinguish app instances
of the same kind of subject to their workload patterns (reflected in ET distributions), the
solution performs further steps in interpreting the high-dimensional feature space we deal
with into two-dimensional representation for more granular observability and an extra
tooling in recommending the cloud application map. In that context, Figure 8 reflects
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the original feature space through t-SNE (t-distributed stochastic neighbor embedding)
methodology [25]. This dimensionality reduction technique is commonly used for vi-
sualizing high-dimensional data in lower-dimensional space while preserving the local
structure of the data. It constructs a probability distribution over pairs of high-dimensional
data points, aiming to keep similar points close together and dissimilar points apart in
the lower-dimensional space. For that, the method minimizes the Kullback–Leibler (KL)
divergence or distance between the joint probability distribution of the high-dimensional
data and the conditional probability distribution of the lower-dimensional embedding.
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Interestingly, silhouette scoring (Figure 9) for HDBSCAN (hierarchical density-based
spatial clustering of applications with noise) [26] clustering using t-SNE projections results
in six groups again, where we chose the density-based way of grouping as more intuitive in
view of the projections plot in Figure 8. HDBSCAN is a density-based clustering algorithm
that identifies clusters of varying shapes and sizes in a dataset. It extends the traditional
DBSCAN algorithm by incorporating hierarchical clustering techniques. The choice of
density-based clustering algorithms is more reasonable in our use case compared with
centroid-based algorithms (like K-means), especially because of the non-Euclidean distance
we deal with and the unknown number and data structure of expected applications.
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We apply HDBSCAN clustering to the t-SNE feature space shown in Figure 8, for
different values of the number of clusters, and calculate the corresponding silhouette scores
(see Figure 9).

The graph of Figure 9 suggests that the maximum value of silhouette score is attained
at k = 2. However, our choice stands on k = 6, which corresponds to the next maximum
value. The reason for this choice is the visual confirmation obtained from Figure 7. Appli-
cation of HDBSCAN with six clusters implies a labeled t-SNE representation of Figure 10
with clearly separated constellations of observations sampled from the different kinds of
app entities/sources.
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Zooming into the ESXi constellation and taking it as an input to the agglomerative
clustering with the related t-SNE features, we infer that the second-stage grouping for this
data set can be performed as the silhouette scoring in Figure 11 indicates. We highlight
this effect in Figure 12, where the samples coming from source esx16 make a separable and
tighter group in the t-SNE plot of features using preserved L1-distance. Therefore, ADLog
leads to a prediction about a distinct app instance which is compliant with the ground truth
in Table 1.
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4. Evaluation of Results

The insights discussed in the previous subsection confirm the ability of ADLog to
perform application categorization using ET distributions by Aria Ops for Logs. This
prototype solution demonstrated a high discrimination power and accurately identified
the app kinds in ground truth in Table 1 with 100% accuracy.

As to the identification of standalone instances of the same kind, only in the case of the
F5 load balancer with two consecutive versions v12 and v13 was it not possible to effectively
discriminate those (see Figure 13). Hypothetically, ADLog misses this fragment because of
the very nature of F5 and its behavioral footprint collected, needing more distributions to
be sampled reflecting various levels of workload stress. In general, Jaccard distance is a
suitable measure for identifying the app kinds, while more sensitive measures like L1 are
better for the second-layer and more granular clustering of log sources.
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Within a log analytics service, ET distributions can provide also an explanation for
discovered applications as footprint structures. However, in general, they might represent
rather big vectors of probabilities not suitable for a simple interpretability purpose. At the
same time, they are baseline structures of applications which can be utilized not only for
the discovery task but also for identifying atypical performance behaviors (abnormalities
or anomalies) when diverging from dominant distributions (see [10] for relevant concepts
and methods). In this regard, for an anomaly detection task of an application within a
supervised learning set up, where training data given by ET distributions and their labels
are available, a rule induction and verification approach based on the Dempster–Shafer
theory (DST) of evidence [27] introduced in [11] is of special value. It can validate simple
rules defined on probability degrees of individual ETs and their combinations that lead to
anomalous application states, thus reducing the complex interpretability in characterizing
applications and their performance statuses.

5. Discussion and Conclusions

Our initial belief is that the AD from the logs approach remains a standalone way for
the contextually relevant and accurate identification of cloud resources, while also guiding
other techniques to improve their recommendations and function as an ensemble method.
At the same time, it is important to note that, especially in the context of multi-cloud and
native cloud management scenarios, ADLog might be a stronger choice for adoption with
a higher degree of observability power. However, one of its potential drawbacks might
be less discrimination power of the same-type applications operating independently in
the environment.

To enhance this work, we plan to conduct extensive experimental validation and
comparison with various techniques based on available log data sets which we did not
possess while working on this idea. The explanation aspect in application discovery and
performance analysis is another important direction of research to pursue in our future
studies. An extended ADLog prototype will also include a fully developed recommender
system for inferring relevant application kinds and indicative tags from messages behind
ETs using NLP.

Although the proposed approach was demonstrated on log management paradigms
of a specific cloud provider, the ADLog principles remain generic. Realizing ADLog into
any cloud management eco-system might only need the integration of an ET learning
mechanism. In the case of Aria Operations for Logs, those constructs are available, which
were directly utilized in our analysis. In this regard, it is another research item to compare
ADLog with AD services by various cloud providers. However, the available offerings
seem to be mostly rule-driven solutions, not relying on machine intelligence, which would
be important for a proper benchmarking.

6. Patents
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