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Abstract: The measurement of musculoskeletal tissue properties and loading patterns during physical
activity is important for understanding the adaptation mechanisms of tissues such as bone, tendon,
and muscle tissues, particularly with injury and repair. Although the properties and loading of these
connective tissues have been quantified using direct measurement techniques, these methods are
highly invasive and often prevent or interfere with normal activity patterns. Indirect biomechanical
methods, such as estimates based on electromyography, ultrasound, and inverse dynamics, are
used more widely but are known to yield different parameter values than direct measurements.
Through a series of literature searches of electronic databases, including Pubmed, Embase, Web of
Science, and IEEE Explore, this paper reviews current methods used for the in vivo measurement of
human musculoskeletal tissue and describes the operating principals, application, and emerging
research findings gained from the use of quantitative transmission-mode ultrasound measurement
techniques to non-invasively characterize human bone, tendon, and muscle properties at rest and
during activities of daily living. In contrast to standard ultrasound imaging approaches, these
techniques assess the interaction between ultrasound compression waves and connective tissues to
provide quantifiable parameters associated with the structure, instantaneous elastic modulus, and
density of tissues. By taking advantage of the physical relationship between the axial velocity of
ultrasound compression waves and the instantaneous modulus of the propagation material, these
techniques can also be used to estimate the in vivo loading environment of relatively superficial soft
connective tissues during sports and activities of daily living. This paper highlights key findings
from clinical studies in which quantitative transmission-mode ultrasound has been used to measure
the properties and loading of bone, tendon, and muscle tissue during common physical activities in
healthy and pathological populations.

Keywords: quantitative ultrasound; speed of sound; broadband ultrasound attenuation; connective
tissue properties

1. Introduction

Musculoskeletal disorders, including injuries of bone, tendon, and muscle tissue,
affect more than 1.71 billion people worldwide [1]. The loss of bone mass associated with
osteoporosis, for instance, is estimated to affect more than 500 million adults worldwide,
with approximately nine million reportedly suffering an osteoporosis-related bone fracture
each year, equating to an osteoporotic fracture every three seconds [2,3]. Similarly, the
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gradual loss of skeletal muscle mass and strength, characterizing sarcopenia, is conser-
vatively estimated to affect as much as 10% of healthy older adults worldwide [4], while
tendon disorders purportedly represent the primary musculoskeletal complaint for which
a patient seeks medical attention [5]. Moreover, musculoskeletal disorders are a leading
cause of chronic pain and protracted disability [6]. In 2020, musculoskeletal disorders were
estimated to be the second-highest global cause of non-fatal disability [7]. Not surpris-
ingly, musculoskeletal conditions are also the highest contributor to the global need for
rehabilitation, with more than two-thirds of all adults worldwide in need of rehabilitative
care [1].

The measurement of the mechanical properties of connective tissues and their change
with physical loading is critical for understanding the cellular behavior of tissues, their
normal ‘homeostatic’ tissue functionality, as well as the development of musculoskeletal
disorders and their rehabilitation after injury [8]. The conceptual biomechanical model
of the “mechanostat“, first proposed by Harold Frost in the 1980s, is arguably among the
most significant contributions to connective tissue research to date [9–11]. The model states
that connective tissues, including bone, tendon, and muscle tissues, respond to habitual
loading and that any change in the loading environment leads to the structural adaptation
of tissue architecture. The model suggests the presence of a physiological feedback system,
which is able to adjust tissue mass and structure according to the loads experienced. Cells
play a pivotal role in the model, acting both as sensors as well as drivers of extracellular
matrix synthesis and degradation. The mechanostat is typically modeled as a feedback
algorithm using a set-point criterion based on a particular mechanical quantity, such as
strain or strain rate. Although the precise set-point criterion for many musculoskeletal
tissues, including bone, tendon, and muscle tissues, is the source of ongoing debate [12–16],
these mechanical thresholds (set points), determine whether material is added to or lost
from the tissue. Different muscles, tendons, and bones are thought to respond differently
to increases or decreases in loading depending on the sensitivity of their specific mechanos-
tat [17,18]. It is unclear why and how the different connective tissue structures respond to
complex loading stimuli, which comprise numerous different parameters including strain
magnitude, frequency, and rest intervals (among others). When mechanical stimuli fall
below a certain mechanical set point, cell apoptosis occurs followed by tissue resorption.
Conversely, when mechanical loading remains within certain set points, cells remain viable
and no tissue is lost (i.e., homeostasis). With a greater than customary mechanical stimulus,
cells release anabolic factors, resulting in tissue formation. With excessive mechanical
stimuli, the accumulation of micro-damage is thought to exceed tissue formation, resulting
in injury [14,19]. Hence, understanding tissue properties and the physiological loading
governing the mechano-sensitization and desensitization of individual musculoskeletal
tissue structures is essential for our ability to promote positive musculoskeletal adaptation,
prevent injury, hasten its recovery after injury, and enhance performance.

The primary aims of this narrative review, therefore, were threefold. The first aim
was to review conventional methods currently used to quantify the mechanical proper-
ties of human musculoskeletal tissues, such as bone, tendon, and muscle tissues, in vivo,
as well as to highlight the strengths and limitations of each approach. The second aim
was to broadly outline current transmission-mode ultrasound techniques that have been
specifically developed to non-invasively quantify the mechanical properties of human
musculoskeletal tissues, including a brief overview of their operating principles and key
measurement parameters that are commonly used. The third aim was to review important
findings from in vivo applications of each technique in quantifying the mechanical proper-
ties and biomechanical loading of bone, tendon, and muscle tissues, both at rest and during
activities of daily living in clinical and non-clinical populations. We also highlight new
and emerging applications before concluding with a brief precis of future directions for the
development and potential applications of transmission-mode techniques to evaluate the
human musculoskeletal system.
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To meet the aims of this review, we conducted a series of broad literature searches
of a variety of electronic databases, including Pubmed, Embase, Scopus, Web of Science,
and IEEE Explore, between 30 June 2023 and 1 May 2024. Keyword searches were carried
out for each section of this review and included, but were not limited to, the following
terms, used in varying combinations with and without the use of wild cards, truncation,
and Boolean operators: skeletal, musculoskeletal, connective tissue, bone, osseous, trabec-
ular, cortical, tendon, muscle, quantitative ultrasound, transverse transmission, through
transmission, axial transmission, pulse echo, ultrasound, speed of sound, attenuation, os-
teopenia, osteoporosis, muscle wasting, sarcopenia, cachexia, tendinopathy, tendon rupture,
tissue properties, biomechanics, viscoelasticity, modulus, bone mineral density, apparent
density, apparent density, Poisson’s, and mechanobiology. No restrictions were placed
on the publication date or type; hence textbooks, narrative and systematic review articles,
meta-analyses, and original articles including, prospective and retrospective cohort studies,
clinical trials, and observational studies, were included. A full-text review of sources was
undertaken with respect to the hierarchy of the evidence and was limited to texts published
in English or German languages. Additional sources were identified by scrutinizing the
reference lists of published studies. In total, more than 800 peer-reviewed publications
were retrieved and appraised, with 372 references directly included in the final review.

2. Conventional Methods for Characterizing Musculoskeletal Tissue Properties In Vivo
2.1. Bone

Dual-energy X-ray absorptiometry (DXA) is considered the current “gold-standard”
method for assessing bone status in vivo. The technique quantifies the transmission and
attenuation of two low-dose X-ray beams of separate energy, which are variably absorbed
by hard and soft connective tissues, to provide a measure of areal bone mineral density
(aBMD: g/cm2); which is used as a surrogate measure of bone strength [20–22]. Although
DXA is the most widely used technique for evaluating osteoporosis and fracture risk in
adults, its use in quantifying bone properties has several limitations [23]. In particular,
as the technique is reliant on a two-dimensional (2-D) projection of skeletal tissues, it
is unable to provide reliable quantitative information regarding true (i.e., 3-D) volumet-
ric bone mineral density (vBMD: g/cm3) [24,25]. Moreover, normative data for aBMD
have typically been reported only for common trabecular fracture sites, i.e., lumbar spine
and hip [26], whereas 80% of osteoporosis-related fractures are estimated to involve the
cortical bone [27]. Indeed, more than half of low-trauma fractures are reportedly unde-
tected by DXA when the osteoporotic threshold defined by the World Health Organization
(T-score = −2.5) is used [28], raising concerns regarding the sensitivity of DXA in detecting
osteoporosis-related pathology [29,30]. In addition, the use of DXA in specific populations,
such as children and adolescents, presents short-comings as DXA-based estimates of bone
mineral density are highly dependent on bone morphology, body size, pubertal staging,
and skeletal maturity [31]. Although high-resolution peripheral quantitative computed
tomography (HR-pQCT) overcomes the 2-D limitations associated with DXA to provide
3-D information about cortical bone at peripheral skeletal sites [32,33], it currently provides
insufficient spatial resolution to accurately evaluate intra-cortical porosity-related bone loss
and involves the use of ionizing radiation, which limits its widespread use [34,35].

Likewise, the characterization of the in vivo loading environment of bones also presents
significant technical challenges to researchers and clinicians. Although direct measurement
methods, such as strain-gauge extensometry, have long been applied [36–38] and are
widely considered to be the ‘gold standard’ for the assessment of bone and joint loading
during physical activity [39], biomechanical models have been most commonly used.
Typically informed by measurements of ground reaction force, muscle activity, motion
analysis, and increasingly by inertial measurement units [40], various models have been
constructed to estimate potential forces applied to appendicular and axial bones during
walking, running, and jumping, among other activities [41–44]. However, the process
involves multiple stages, each with assumptions and errors that can cause a much larger
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compounded error [45]. As cautioned by Curry et al. [46], validation still represents a
key limitation of many of the models that have been constructed. The advent of publicly
available data sets, including direct measurements of joint contact force during walking
(for example, [47,48]), has resulted in substantial improvement in the sophistication of
modeling techniques [49], with the construction of patient-specific models, in particular,
demonstrating encouraging accuracy for the estimation of the hip or tibiofemoral joint
contact forces [50–52]. However, the extensive personalization of model parameters remains
a time-consuming procedure and typically requires detailed medical imaging data that
are not routinely available [53]. Thus, the capacity of validated musculoskeletal models to
predict absolute contact forces during activities of daily living, other than walking-related
tasks, has not been well studied [54,55].

2.2. Tendon

Several approaches for the non-invasive quantification of the mechanical properties of
soft connective tissues, such as tendons, have been reported within the literature, including
vibrational techniques [56–58], shear-wave elastography [59], and standard ultrasound
imaging coupled with inverse dynamic models [60,61]. To date, most studies evaluating
tendon properties have used standard B-mode ultrasonography coupled with inverse
dynamics to indirectly estimate tendon displacement and loading commonly experienced
during isometric muscle contractions (for example, [62,63]). The structural and material
properties of the tendon, such as its stiffness, elastic modulus, and hysteresis, are then
subsequently derived from either force–displacement or stress–strain curves. Although
insightful, the indirect estimation of internal tendon properties using ultrasonography
and inverse dynamics requires a number of key assumptions and has some significant
limitations [64]. For instance, tendon loads derived from inverse approaches have been
shown to be overestimated by as much as 50% compared to direct measurements [65,66],
while estimates of viscous properties (hysteresis) have been shown to be physiologically
implausible [67]. Indeed, direct measurements of the in vivo loading environment of
human tendons have been made with relatively high accuracy via the use of implantable
transducers, such as extensometer gauges, Hall-effect transducers, and fiber optic systems.
The operating principles and limitations of each approach have been detailed elsewhere [68].
Although direct measurements of tendon force have been made during a number of
activities of daily living, including walking, running, squatting, hopping, jumping, and
cycling [69–77], these techniques are highly invasive, may interfere with normal movement
patterns, often raise ethical concerns, and are commonly limited to small sample sizes.
Moreover, to the best of our knowledge, they have not specifically evaluated mechanical
loading in chronic tendon disease.

Shear-wave elastography, which has recently appeared in clinical settings, is among the
better-established alternative modalities for quantifying the mechanical properties of mus-
cles and tendons [78]. In contrast to standard ultrasound imaging and transmission-mode
methods that use ultrasound compression waves, the technique estimates the material
stiffness of tissues by measuring the velocity of shear waves rather than compression
waves, which are typically generated either by the operator via the application of external
forces or by an acoustic radiation force [79–81]. While elastography has been used for
some time, with varying levels of success as a diagnostic aid in the assessment of chronic
liver disease [81] and breast cancers [82], applications to musculoskeletal soft tissues are
becoming increasingly popular [83–85]. By quantifying the velocity of the ultrasound shear
wave, the technique has the potential to quantify the elastic modulus of tissues, which,
subsequent to the non-linear properties of tendons at physiological loads [86,87], may also
provide some insight into the internal loading environment of the tissue [59,88]. However,
mathematical modeling studies have shown that longitudinal shear-wave velocity is un-
affected by the tensile viscoelasticity of soft tissues [89,90], and thus, caution is required
in its clinical use. Indeed, in a recent ex vivo study implementing both shear-wave and
transmission-mode ultrasound methods, Glozman et al. [91] showed that estimates of
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longitudinal shear-wave velocity, although strongly affected by the initial mechanical state
of the tissue, were confounded by tissue non-linearity. This finding has been corroborated
by animal studies, which observed no correlation between shear-wave velocity and the
tensile elastic modulus of healthy rabbit Achilles tendons [92]. Similarly, in a recent in vivo
study comparing shear-wave elastography with standard B-mode ultrasound coupled with
inverse dynamics, Misfud et al. [93] noted that estimates of the tendon modulus were only
moderately correlated (r = 0.64) and only at low levels of tendon loading (10% maximum
voluntary contraction). Although there is some evidence that longitudinal shear-wave
velocity in tendons may be sensitive to its strain-energy dissipation properties [94], shear-
wave measurements have also been shown to be highly sensitive to confounders, and thus,
reliability and reproducibility are thought to be greatly limited [95–97].

2.3. Skeletal Muscle

The characterization of the mechanical properties of skeletal muscle at the organ level
is complicated by the contractile nature of the tissue. Some approaches have been proposed
to measure the passive mechanical properties of skeletal muscle; however, there is little
consensus within the literature concerning the most appropriate measurement method.
Indeed, in the context of sarcopenia, a syndrome characterized by an accelerated loss of
skeletal muscle mass and strength [98,99], many modalities have been used to characterize
the “quantity,” and to a lesser extent, the “quality,” of skeletal muscle, including anthro-
pometry [100], bioelectrical impedance analysis [101], DXA [102], ultrasound imaging [103],
magnetic resonance imaging [104], and radiographic computed tomography [105,106]. The
advantages and limitations of each modality, as they relate to the measurement of muscle
mass, have been summarized elsewhere [107–109]. Arguably, the current reference stan-
dards for quantifying the passive mechanical properties of skeletal muscle tissue include
radiographic computed tomography (CT) and magnetic resonance (MR) imaging, which
are capable of providing high-resolution cross-sectional images that allow the differentia-
tion between skeletal muscle and other lean mass components [110–112]. Measurements
of cross-sectional skeletal muscle area or volume, which are often allometrically scaled
to measurements of body height, can be subsequently made to yield relative estimates of
muscle mass, such as the skeletal muscle index (cm2/m2) [113]. Surrogate estimates of
muscle composition and quality may also be obtained on the basis of signal intensity or
the diffusion anisotropy of water in the case of MR imaging or with the transformation of
attenuation coefficients to radio densities in the case of CT, which reportedly relate to mus-
cle fat content [104,114]. MR imaging has also been applied in elastographic approaches
as a measure of passive skeletal muscle properties [108]. As with ultrasound-based elas-
tography, MR elastography relies on the transmission of an external vibration through
skeletal muscle but uses MR imaging to measure the subsequent propagation of displace-
ment waves through the tissue. Maps of shear modulus are then calculated based on the
linear viscoelastic wave equation. A review of the technical details of the approach is
provided elsewhere [115]. To date, the majority of MR elastography studies have assumed
muscle to be isotropic [116–118]. Anisotropic approaches require additional information
regarding muscle fascicle architecture, which can, for instance, be obtained from diffusion
imaging [119,120]. Such methods have been used to study the elastic and viscous properties
of both healthy and disease-affected muscles in their passive state [120–122]. While MR
elastography is generally considered more reliable than ultrasound elastography [123–125],
there is growing evidence that it may also be sensitive to contraction-induced stiffness
changes, primarily at low levels of muscle contraction [116,122,126,127], which may con-
tribute to lower apparent reliability [108]. Moreover, the typical scan duration and physical
restrictions associated with MR elastography make it impractical to measure changes in the
mechanical properties of skeletal muscle during “real-world” dynamic activities of daily
living, such as walking, running, and stair climbing [127].

The force-generating capacity of skeletal muscle is most commonly estimated in vivo
using simple dynamometry. Given the well-established relationship between muscle size
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and maximum voluntary force output [128,129], dynamometric measurements of skeletal
muscle strength or torque are often normalized to image-based measurements of mus-
cle volume or cross-sectional area to yield relative measurements of muscle strength. It
is well known, however, that increases in strength do not necessarily correspond to in-
creases in skeletal muscle mass [130] and that force generation in skeletal muscle is the
result of a number of additional factors, including tissue composition (e.g., contractile ver-
sus non-contractile), architecture (intramuscular fiber orientation, length, and pennation),
and neural activation (such as motor unit recruitment patterns, central drive, etc.), that
contribute to the overall force production capabilities [131–133]. Hence, while electromyo-
graphy has been used to estimate skeletal muscle force [134], electromyography-based
estimates of muscle force can be substantially inaccurate [135]. Arguably, the estimation
of the “specific tension” of a muscle (the maximal force per unit of physiological cross-
sectional area) [136,137] may be a more appropriate indicator of the contractile quality of
skeletal muscle. However, such estimates typically require the combined use of multiple
modalities (dynamometry, ultrasound, MR, electrostimulation, and electromyography) to
address issues related to the variation in motor unit recruitment, central drive, and partici-
pant motivation, to quantify muscle architecture, joint centers, and moment arms, and to
address assumptions regarding agonist and antagonist muscle contributions to the net joint
moment, each of which has errors that can result in considerable compounded errors [138]
and that may partly underpin the wide variation in specific tension, for example, from
150 kPa [136] to 540 kPa [139], reported for human skeletal muscle measured in vivo.

3. Techniques for Quantitative Transmission-Mode Ultrasound

Although ultrasound compression waves have long been used for the non-destructive
characterization of defects in engineering materials, first appearing in the 1930s [140], it
was not applied in humans for the evaluation of musculoskeletal tissue properties until
1958, when it was first used, with limited success, to evaluate cortical bone status during
fracture healing [141]. However, it was some 25 years later that the clinical utility of quanti-
tative ultrasound was demonstrated with the publication of the seminal work of Langton
et al. [142], in which transmission-mode ultrasound was used to assess cancellous bone.

In contrast to the qualitative information commonly afforded by the visual observa-
tion of ultrasound waveforms in A-mode, tomographic images in B-mode, and dynamic
images in M-mode, quantitative transmission-mode ultrasound evaluates the fundamental
properties of musculoskeletal tissue based on the interactions of propagating ultrasound
compression waves with the tissue microstructure [143–145]. Indeed, the propagation
characteristics of ultrasound compression waves through musculoskeletal tissues have
been shown to be related to the mechanical properties (elastic coefficients) of the tissue, as
well as to other characteristics, including mass density and macro- or microarchitecture,
which, in turn, are associated with biomechanical properties [146–150]. Hence, quantitative
ultrasound techniques, such as transmission-mode ultrasound, have been used to assess
the material and structural properties of connective tissues and their change with loading,
providing new insights into the health of musculoskeletal tissues and the biomechanical
control of activities of daily living.

Transmission-mode techniques using ultrasound compression waves may be generally
classified into one of three categories (Figure 1): 1. through- or transverse-transmission,
2. pulse-echo, and 3. axial-transmission. While the current paper provides a brief overview
of the operating principles behind each technique, a comprehensive discussion concerning
the equipment, operating principles, analytic approaches, and limitations associated with
each one and their many variants have been detailed elsewhere [151–153].
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Figure 1. Illustration of the basic setup and operating principles of classical transmission-mode
ultrasound techniques. (a) In the through-transmission technique, two ultrasound transducers, i.e., an
emitter (E: red) and a receiver (R: blue), are placed on opposing sides of the musculoskeletal structure
and provide estimates of tissue properties in the transverse plane. (b) Pulse-echo transmission
approaches use a single ultrasound transceiver (E/R), operating in transmit and receive modes.
Tissue characteristics are estimated by evaluating the backscattered signal and typically require
assumed knowledge or combined measurements of one or several material properties. In soft tissues,
the approach is often used in combination with a reflector (gray) positioned at a known distance from
the transceiver. (c) Axial-transmission techniques typically employ two or more linearly orientated
and regularly spaced ultrasound transducers consisting of an emitter (E: red) and one or more
receivers (R: blue) aligned along the same side of the musculoskeletal structure. A broadband
ultrasound pulse enters the musculoskeletal structure at a critical angle, and the compression wave
propagates along the long axis of the structure.

3.1. Through-Transmission Techniques

The through-transmission technique uses a separate emitter and a collinearly aligned
receiver positioned on opposite sides of the musculoskeletal structure to be measured
(Figure 1a). The distance between the emitter and receiver is either known or measured.
Assuming that the system response and wave propagation are linear, the transmission
characteristics, such as attenuation and velocity, of a broadband ultrasonic excitation trans-
mitted through the sample can be readily obtained using the classical substitution technique,
in which the signal transmitted through the musculoskeletal site is compared to that trans-
mitted through a reference medium, such as water, at a known temperature [142,144,152].
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3.2. Pulse-Echo Transmission Techniques

In contrast to through-transmission, pulse-echo transmission uses a single ultrasound
transceiver, operating in both transmit and receive modes. Upon entering the skin and
subcutaneous tissues, the broadband ultrasonic pulse is scattered and reflected from point-
normal orientated interfaces where there is an acoustic mismatch between media, passes
through mutual interference, and is received by the transceiver as radiofrequency echo
signals (Figure 1b). Key characteristics of the target tissue, such as its thickness and attenu-
ation, are subsequently estimated by evaluating the backscattered signal, which returns
along the same path as the transmission [154–156]. In general, pulse-echo measurements
of musculoskeletal tissues in vivo rely on assumed or a priori knowledge or combined
measurements of one or several material properties, such as ultrasound velocity [153]. In
some instances, an external reflector of a known distance from the transceiver is employed,
thereby minimizing the need for prior knowledge [157,158].

3.3. Axial-Transmission Techniques

The axial-transmission technique, in contrast, uses two or more transducers, one acting
as an emitter and the others as receivers [159]. The regularly spaced transducers are linearly
orientated and axially aligned along the same side of the musculoskeletal structure to be
measured (Figure 1c) [147]. Axial wave propagation differs considerably from conventional
through-transmission and pulse-echo measurements. A broadband ultrasonic excitation
is transmitted through the subcutaneous tissue and enters the musculoskeletal structure
at a critical angle [160]. The refracted wavefront propagates along the longitudinal axis of
the structure and, in doing so, results in a lateral wave that radiates into the subcutaneous
tissue at a critical angle [161]. The transit time of the first arriving lateral wavefront
along a defined distance is measured and used to calculate velocity. When applied to
structures thicker than the involved wavelength, the apparent velocity of ultrasound
in axial transmission corresponds to the speed of compressional bulk wave within the
musculoskeletal structure [161,162]. The use of two or more receivers makes it possible
to overcome the influence of the overlying skin and materials on the front of the probe
when calculating wave speed [147,163]. As illustrated in Figure 1c and shown through
Equations (1)–(6), the Time of Flight (ToF, in s), defined as the time the lateral wave of
ultrasound pulse takes to travel along its transmission pathway, is measured at each
receiver. The axial velocity is subsequently calculated by dividing the known distance
between receivers by the ToF.

ToFR1−Rn(s) = ERn (s)− ER1 (s) (1)

where, ER1 (s) = EX(s) + XY(s) + YR1(s) (2)

ERn (s) = EX(s) + XZ(s) + ZRn(s) (3)

as, YR1(s) = ZRn(s) (4)

ToFR1−Rn(s) = XZ(s)− XY(s) (5)

which simplifies to To FR1−Rn(s) = YZ(s) (6)

3.4. Key Transmission-Mode Measurement Parameters

The two most common parameters measured using transmission-mode ultrasound
techniques are the propagation velocity (V, in m/s) and attenuation, reported either at a sin-
gle frequency (α, in dB/m) or as frequency-dependent attenuation (FDA, in dB/MHz/m).
From these measurements, a number of composite measurements have also been derived,
particularly for bone, which have been reviewed elsewhere [164].
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The longitudinal velocity of an ultrasound wave (V) in musculoskeletal tissues is de-
pendent on the instantaneous elastic modulus (E) and mass density (ρ) of the tissue through
which it propagates and is governed by the following relationship [143,149,165,166]:

V =

√
E
ρ

k (7)

where k is a constant relating to Poisson’s effects and the negative ratio of axial to transversal
strain with loading, which for connective tissues, such as tendons, is independent of the
applied load [167]. Moreover, in soft connective tissues, which typically operate within
the so-called ‘toe region’ under physiological loads, the axial velocity of ultrasound can be
used as a surrogate measure of elastic modulus as it has been shown to vary monotonically
with the applied load [148,149,168–170]. Hence, although the change in ultrasound velocity
with loading represents a limitation of most sonographic approaches used to characterize
soft-tissue properties [171], transmission techniques take advantage of this relationship,
along with the non-linear properties of soft connective tissues at physiological loads [86,87],
to also quantify the loading of soft tissues in vivo during dynamic activities of everyday
living [172–174].

The propagation of ultrasound waves through tissue also results in a loss of signal
intensity or attenuation via a number of processes, including both viscous and relaxation
absorption [175], scattering, reflection [176], diffraction [177], mode conversion, and phase
cancellation [152,178]. The loss of intensity or apparent attenuation (α) can be obtained
from the referent (Aref) and measured sample (Asample) signals in either the time or frequency
domain using the following equation [179]:

α = 20 ln

∣∣∣Are f

∣∣∣∣∣∣Asample

∣∣∣ (8)

At the frequency range commonly used in vivo, ultrasound attenuation in muscu-
loskeletal tissues typically varies quasi-linearly with frequency [180,181], with attenuation
over the 0.2–0.6 MHz frequency range commonly referred to as broadband ultrasound
attenuation (BUA) [144]. Table 1 shows the approximate ultrasound velocity, attenuation,
tissue density, and elastic modulus values of muscle, tendon, and bone samples.

Table 1. Approximate values * reported for ultrasound velocity, attenuation, density, and elastic
modulus of muscle, tendon, and bone.

Tissue Velocity
(m/s)

Attenuation
(dB/MHz/cm)

Density
(g/cm3)

Elastic Modulus
(GPa)

Bone 2700–4100
[182,183]

2–15 †

[182–184]
1.38–1.81

[182]
6.9–20.7

[46,185,186]

Cortical 2660–4200
[185,187,188]

5–12 ‡

[189]
1.66–2.10

[185,187,188]
10.9–19.7

[188]

Cancellous 1517–2892
[185,187,189,190]

4–31
[190]

1.08–1.76
[187,191]

3.0–15.0
[192]

Tendon 1637–1938
[143,168,187,193]

2–5
[184,193]

1.06–1.17
[149,168,187]

0.9–2.0
[60,194]

Muscle 1545–1631
[183,187,195–198]

0–3
[183,195–199]

1.04–1.18
[183,187,195,196]

0.1–0.4
[8,200]

* Approximate values vary with intrinsic, extrinsic and measurement-related factors including age, temperature
and orientation. † dB/cm measured at 1 MHz. ‡ Radial measurement.
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4. In Vivo Application of Transmission-Mode Ultrasound
4.1. Measurement of Bone Properties

All three ultrasound transmission techniques (i.e., through-transmission, pulse-echo,
and axial-transmission techniques) have been used in the evaluation of passive properties
of human bone, primarily within the context of osteoporosis and fracture risk. While each
technique has been applied to a variety of skeletal sites, the increasing number of commer-
cially available devices, which differ in terms of their measurement parameters coupled
with the absence of technology-specific guidelines, has limited the widespread acceptance
of transmission-mode ultrasound for the determination of passive bone properties for
osteoporotic fracture risk within clinical settings [201]. The most common applications of
each technique, however, are briefly reviewed below.

The earliest and arguably best-validated approach in bone involves through-transmission
measurements [201]. The majority of research employing the through-transmission tech-
nique has evaluated the calcaneus due to its high trabecular content, metabolic activity,
and similar demineralization pattern to that of vertebrae [202,203]. However, the method
has also been applied to evaluate the bone status of the proximal femur [204], patella,
distal tibia, ulnar, radius, and phalanges [205–208], with the latter generally considered a
measure of cortical properties (i.e., “cortical transverse transmission”) [209,210]. As shown
in Figure 2a, measurements of ultrasound velocity are site-specific. In one of the earliest
studies, Gerlanc et al. [208] reported ultrasound velocity through the distal tibia and ulna
utilizing a through-transmission technique; the measurements were performed at regions
of relatively constant and minimal soft-tissue thickness between the tibial tubercle and me-
dial malleolus and between the olecranon and ulnar styloid, respectively. The ultrasound
velocity values for both tibia and ulna in males demonstrated a rise from the third decade
to the fourth decade, with a gradual decline thereafter. In contrast, females exhibited an
increased ultrasound velocity at the tibia and ulna from the third decade to the fifth decade,
followed by a greater decline in ultrasound velocity with age. The ultrasound velocity in
people with an overt fracture at the tibia initially decreased but then increased non-linearly
with healing. Delayed-union was characterized by a longer period of reduced ultrasound
velocity before gradually increasing.
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Ex vivo studies employing the through-transmission technique to evaluate trabecular
bone have long since demonstrated that ultrasound velocity is closely related to its elastic
modulus and, to a lesser extent, mass density [188,216]. Overall, similar age-related changes
in ultrasound velocity profiles to those noted in the ulna and tibia [208] have been reported
with trough-transmission measurements of the calcaneus in male and female populations
(Figure 2b). In contrast to measurements of ultrasound velocity, measurements of ultra-
sound attenuation are thought to primarily reflect indices of bone mineral density and
trabecular microarchitecture [217–223]. Langton et al. [142], in seminal work that greatly
influenced later developments, applied the through-transmission technique to demonstrate,
for the first time, that the slope of frequency-dependent attenuation of ultrasound at the
calcaneus could be used to discriminate osteoporotic from non-osteoporotic individuals.
Subsequent research demonstrated that, similar to measurements of velocity, ultrasound
attenuation was sensitive to the effects of senescence, showing a reduction in attenuation
values after the third decade (Figure 2c). Further research involving cross-sectional and lon-
gitudinal cohorts has provided considerable evidence that through-transmission measure-
ments of ultrasound velocity and attenuation at the calcaneus are predictive of vertebral and
femoral neck fractures in osteoporotic and several non-osteoporotic groups [224–229], with
predictive rates comparable to or higher than that of radiographic-based measurements
of bone mineral density [224,228,230–232]. They have also been shown to be predictive of
low-trauma fractures in people with type 2 diabetes and chronic kidney disease [231,233],
in which traditional X-ray-based clinical tools are generally considered insensitive [234].

A recent study of the UK Biobank, which includes over half a million adults recruited
via the National Health Service, has also shown that calcaneal ultrasound velocity mea-
sured using the through-transmission technique is also independently associated with
measurements of blood vessel compliance [235]. More recently, it was shown that broad-
band ultrasound attenuation of the calcaneus, but not apparent ultrasound velocity, was an
independent predictor of both cardiovascular and all-cause mortality, even after adjustment
for established cardiovascular risk factors and hip BMD [236], highlighting the potential
utility of calcaneal ultrasound velocity to also evaluate the risk of cardiovascular disease.

Axial-transmission approaches have also been specifically advocated for use in osteo-
porosis [237] since approximately 80% of fragility fractures involve the appendicular skele-
tal sites comprised of large amounts of cortical rather than trabecular bone [27]. Cortical
thinning and increased intra-cortical porosity are key factors underpinning non-vertebral
fracture risk [238,239], and apparent ultrasound velocity in axial transmission is partly de-
pendent on intra-cortical porosity, mineralization, and cortical bone thickness relative to its
wavelength [161,240]. The technique has been most commonly applied to evaluate the corti-
cal properties of long bones including the radius, tibia, metatarsus, and phalanges [240–242].
Although the level of evidence supporting the use of through-transmission ultrasound of
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the calcaneus for evaluating fracture risk is considerably greater than for other transmission
modes, there is compelling evidence that axial-transmission parameters are also capable
of discriminating between individuals with an osteoporotic fracture (in the hip, vertebrae,
or other site) from age-matched healthy individuals [160,243–247]. Current evidence from
prospective studies, however, is generally mixed [248–251], with a recent prospective study
of children suggesting that through-transmission-derived measurements of calcaneal ultra-
sound attenuation may be superior to axial-transmission measurements of tibial velocity for
monitoring bone densitometric change during puberty [252]. Although tibial ultrasound
velocity has been shown to reflect the strength and elastic modulus of cortical bone [253]
and is correlated with tibial bone mineral density, and, to a lesser extent, mineral density at
other skeletal sites [237], it has also been shown to be a poor discriminator of osteoporotic
fracture [254].

Axial-transmission ultrasound has also been applied as a quantitative method to
evaluate fracture healing in long bones. Indeed, the technique was first developed in
1958 to study cortical bone status during fracture healing, albeit with limited success [141].
As described by Bossy et al. [162], the application of the axial-transmission technique
to cortical bone yields both a fast-moving axial compression wave and slower “guided”
waves. The latter waves arise from the reflection, mode conversion, and interference
of longitudinal and shear waves within the cortical structure [241]. Animal, simulation,
and clinical studies have demonstrated that axial-transmission parameters, such as the
time of flight and propagation velocity of the first arriving ultrasound signal (i.e., fast
wave), when measured across a fracture site, can be used as an indicator of bone fracture
and healing [162,208,255–257], with propagation velocity, rather than attenuation, being
arguably more sensitive to changes in callus mineralization and porosity during the regen-
eration process [258,259]. Similarly, simulation and ex vivo studies have also suggested that
guided waves, which are generally dispersive and influenced by both the periosteal and
endosteal bone surfaces, may be even more useful for evaluating oblique and transverse
fractures in cortical bone [241,260–263] and may even have the potential to detect osseous
micro-cracks [264]. The technique also allows waveguide characteristics of the bone, such
as cortical thickness and/or porosity, to be estimated from dispersion curves by fitting a
theoretical waveguide model [265–268]. Although preliminary applications in vivo show
promise [269,270], soft tissue properties, multimode overlap, and the conversion of guided
waves still present a significant challenge for the routine in vivo use of ultrasonic guided
waves for the quantification of cortical bone fracture [271,272]. Moreover, further prospec-
tive research studies are needed to demonstrate the clinical potential of axial-transmission
techniques for quantifying fracture characteristics in cortical bone and the subsequent
healing stages.

In one of the earliest clinical studies, Craven et al. [273] reported ultrasound velocity
in the cortical bone of the radius utilizing a pulse-echo technique, dividing bone thickness
derived from plain radiographs by measured ultrasound transit time. A small cohort of
nine adult males (23–33 years) exhibited larger cortical thickness and ultrasound velocities
than 11 female adults aged between 49 and 71 years. In a subsequent paper [274], the elastic
modulus was estimated as the square of ultrasound velocity multiplied by bone density,
derived using both plain radiograph and photon absorptiometry data. The same research
group also presented a conference abstract reporting a pulse-echo method to estimate
ultrasound attenuation in cortical bone, derived from measurements of inner and outer
cortices at two sites of different cortical thicknesses [275]. Given that cortical porosity and
thickness are important determinants of the mechanical properties of the bone [276,277],
pulse-echo methods have more recently been employed to estimate transverse ultrasound
velocity, cortical thickness, and osteoporotic fracture risk. Primarily targeting cortical
bone sites, including the distal radius and tibia, the simplest approach estimates cortical
thickness using a single-element pulse-echo configuration to record the time lag between
reflections from the periosteal and endosteal interfaces of the distal radius. The apparent
cortical thickness is subsequently derived based on the assumptions of a normal-incidence
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homogenous material with perfectly flat interfaces and a priori knowledge of an invariant
radial ultrasound velocity [155,278]. The technique also assumes that specular reflections
from periosteal and endosteal cortical interfaces are stronger than backscattered ultrasound
signals from cortical pores. Nonetheless, when combined with basic anthropometric data,
multi-site pulse-echo thickness estimates were reported to have varied sensitivity (80–94%)
and specificity (60–88%) in identifying hip osteoporosis compared to DXA but did not
enhance the identification of radiographically confirmed fractures compared to estimates
based on age and bone mineral density alone [279–283].

Ultrasound backscatter parameters, which can also be obtained from pulse-echo mea-
surements, have also been applied to explore bone quality at both cortical- and trabecular-
rich sites [284–286]. Backscatter occurs as the ultrasonic pulse interacts with the porous
microstructure of bone, namely solid–fluid impedance mismatches, to provide frequency-
dependent information on the composition (5 MHz), structure, and mechanical properties
(1–3 MHz) of the bone [285,287–289]. Case-control studies have suggested that, com-
pared to DXA, backscatter approaches applied in vivo to axial and appendicular reference
sites can generally distinguish between elderly adults with and without osteoporosis,
albeit with varied sensitivity (65–92%) and specificity (74–95%) [290–295]. Research has
also demonstrated the utility of pulse-echo backscatter parameters in identifying fragility
fractures [281,296,297], with several prospective studies reporting predictive metrics for
fractures of the hip, spine, and “all” sites comparable to, or better than, DXA [298,299].

Although some pulse-echo backscatter approaches are reportedly limited by non-
uniformities in the acoustic near-field [300], preliminary longitudinal studies suggest that
backscatter parameters are also sufficiently sensitive to detect changes in cortical and
trabecular bones following extended (90 days) bed rest [301], with a sensitivity comparable
to that of axial-transmission techniques [302]. Although pulse-echo backscatter approaches
also show promise for monitoring neonatal bone status [303,304], prospective research
studies are needed to evaluate the sensitivity of pulse-echo techniques to quantify early
skeletal changes with growth and metabolic disease and following therapeutic intervention.

4.2. Measurement of Bone Loading

The majority of research undertaken to date has applied transmission-mode ultra-
sound techniques to evaluate the passive material and structural properties of the bone.
In one of the few studies evaluating the effect of mechanical loading on bone properties,
Liu et al. [305] reported that through-transmission measurements of ultrasound attenuation
at the calcaneus were significantly reduced with body-weight loading in a group of pre- and
postmenopausal women (n = 16 and 45, respectively). While measurements of ultrasound
velocity were also increased with loading, albeit to a lesser extent, the authors noted that
the loading-induced reduction in ultrasound attenuation was greater in postmenopausal
than premenopausal women. The authors suggested that greater ultrasound attenuation
likely reflected changes in the trabecular microarchitecture with body-weight loading,
highlighting the potential of the technique to evaluate the mechanical response of the
bone to loading during activities of daily living. With the exception of heavily deminer-
alized bone, however, mechanical testing of whole bone specimens ex vivo typically does
not demonstrate an initial period of non-linear deformation with loading [306,307], the
so-called “toe region”, which is characteristic of soft tissues and facilitates the use of the
technique for quantifying the dynamic loading of soft tissues. Moreover, preliminary work
from our laboratory has also highlighted that body-weight loading results in a change
in the orientation of the calcaneal bone and differential movement of the overlaying soft
tissues, resulting in small changes in the location of measurements [308]. Indeed, it is
well known that the orientation of the bone and thickness of the overlaying soft tissue
can significantly affect clinical measurements of broadband ultrasound attenuation of the
calcaneus when using the through-transmission approach, albeit such effects are more
pronounced for measurements of calcaneal ultrasound velocity [309–313]. Moreover, in
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contrast to ultrasound velocity, an established theoretical relationship linking ultrasound
attenuation to the mechanical properties of the bone remains elusive [152,314].

4.3. Measurement of Tendon Properties

Although through-transmission techniques were applied as early as the 1990s to
quantify the interaction and dispersive effects of the equine tendon on the propagation
characteristics of ultrasound waves ex vivo [143,315], it was not until a decade later that
axial-transmission techniques were first applied to evaluate human tendon biomechanics
in vivo [148,172]. By measuring the transmission velocity of ultrasound compression waves
along (as opposed to across) the tendon, axial-transmission ultrasound is particularly
well suited to evaluating dynamic tendon biomechanics in vivo and has been successfully
applied in a series of human cohort studies to evaluate tendon biomechanics during static
and dynamic loading conditions [172–174,316–318], in tendon pathology [174,316,319], and
common clinical approaches used to modify tendon loading [320–323], as outlined below.

4.3.1. Tendon Biomechanics during Common Activities of Daily Living

Axial-transmission techniques employing a nominal 1 MHz ultrasound emitter have
typically been used to quantify the acute change in Achilles tendon (Figure 3a) and, to a
lesser extent, patellar tendon properties during activities of daily living. During each heel–
toe walking cycle, the axial ultrasound velocity trace in the Achilles tendon is characterized
by two minima and two maxima (Figure 3b). The first minimum occurs shortly after the
heel strike, at approximately 10% of the stance, following peak ankle plantarflexion, before
peaking in the late stance at around 50% of the gait cycle shortly after peak vertical ground
reaction force. The second and more profound minimum in ultrasound velocity occurs
during the early swing phase at around 70% of the gait cycle before peaking again shortly
prior to the next heel strike. The biphasic pattern was shown to be highly reproducible, with
within-subject coefficients of variation typically <1.5% [317,320], and comparable to directly
measured force profiles previously reported in the Achilles tendon with implanted force
transducers [69,72,75]. While our unpublished data indicate that between-limb differences
in axial velocity in the Achilles tendon during walking at preferred speeds are typically
<1.5%, subsequent research has shown that increasing walking speed (0.85–1.35 m/s)
resulted in a speed-dependent reduction in the axial velocity of ultrasound in the Achilles
tendon during the stance phase of walking (Figure 3b), despite a concomitant increase
in peak vertical ground reaction force and ankle plantarflexion [173]. The observation
of a speed-dependent reduction in ultrasound velocity in the Achilles tendon is in close
agreement with those in which force was directly measured within the tendon (Figure 3b
inset) [72,75]. Although consistent with the limitations in the force–velocity behavior of
the triceps surae muscle group [324], gait speeds associated with running were found to
induce higher peak ultrasound velocities than for walking and, hence, higher internal loads
within the Achilles tendon [317].

Subsequent research demonstrated that the foot-strike pattern adopted by runners
had a profound effect on the axial ultrasound velocity recorded in the tendon during
running (Figure 3c), with habitual forefoot-strike running patterns showing higher and
earlier peak velocities than habitual rearfoot strikers [325]. The magnitude of the foot-
strike effect (≈150 m/s) was marked compared to changes observed with walking speed
but similar to that (≈140 m/s) observed with surgically induced injuries in the equine
tendon [326]. Moreover, in comparison to habitual rearfoot strikers, runners that habitually
adopted a forefoot-strike pattern also had markedly higher velocities in the tendon during
walking (≈100 m/s) even though both groups adopted the same heel–toe walking pattern
(Figure 3d). Hence, these findings highlighted that habitual footfall patterns during running
may influence the functional properties of the Achilles tendon in recreational runners.
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Figure 3. (a) Position of the axial-transmission probe over the Achilles tendon. (b) Consistent with
research employing a direct measure of tensile force in the Achilles tendon (inset), axial velocity of ul-
trasound in the Achilles tendon is typically biphasic during walking, with peak values systematically
reduced with increasing walking speed [173]. (c) Foot-strike patterns during running alter the axial
velocity of ultrasound in the Achilles tendon [325]. (d) The effect of habitual foot-strike patterns on
the axial velocity of ultrasound in the Achilles tendon during walking [325]. (e) The vertical ground
reaction force (blue line) and axial velocity of ultrasound in the Achilles tendon (black line) during a
30-s hopping task [174]. (f) The effect of hopping at frequencies of 1.8 Hz (dashed line) and 2.5 Hz
(solid line) on ankle movement and the axial velocity of ultrasound in the Achilles tendon [174]. The
beginning of contact is denoted by a green circle (•), while the end of contact is denoted by a red circle
(•). Note that the dotted lines represent standard deviations. The asterisks indicate a statistically
significant difference (p < 0.05).
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Hopping is a common activity, which is often used clinically to book-end progressive
loading programs of the Achilles tendon during functional rehabilitation [327]. Direct
measurements of physiological loading in the Achilles tendon have indicated that sub-
maximal hopping places greater demands on the Achilles tendon than walking or run-
ning [74,75]. Research employing indirect estimates of tendon loading, in contrast, has
suggested that Achilles tendon loads during bilateral submaximal hopping are akin to
those of running [327]. To the best of the authors’ knowledge, only one study to date has
applied transmission-mode ultrasound to quantify the change in Achilles tendon properties
during hopping. Given that previous research has shown that the major determinant of
leg stiffness during hopping switches from knee stiffness to ankle stiffness at a hopping
frequency above 2.2 Hz [328–330], our laboratory recorded axial ultrasound velocity in the
Achilles tendon of healthy adults while hopping at frequencies above (2.5 Hz) and below
(1.8 Hz) this threshold [174]. At each frequency, ultrasound velocity profiles in the Achilles
tendon were highly reproducible between cycles, with a mean within-subject coefficient
of variation of <1% over the entire ground contact phase, and characterized by a single
local minimum and maximum during the contact phase of steady-state hopping (Figure 3e).
Maximum and minimum ultrasound velocities recorded in the Achilles tendon during
steady-state hopping increased correspondingly with hopping speed (Figure 3f) and were
approximately 200 m/s higher than those previously reported in healthy adults during
walking at a preferred speed [148,172,320].

Although the peak axial ultrasound velocity in the tendon increased when hopping
at the higher frequency, reflecting greater energy storage within the tendon, there was
negligible change in the area of the hysteretic loop of the ultrasound-velocity–ankle-angle
curve, a surrogate measure of energy loss of the tendon (Figure 3f). The results are thus
consistent with ex vivo studies of tendon biomechanics in which viscous loss is known to
be reduced in tendons exposed to higher strain rates [331]. Moreover, ultrasound velocity
profiles in the Achilles tendon during hopping were found to be closely correlated with
knee flexion (r = 0.95–1.00) rather than ankle movement (r = 0.35–0.79), highlighting the
importance of knee movement to tendon loading and the challenge associated with the
deconvolution of the contribution of agonist and antagonist muscles to the net joint moment,
especially of bi-articular muscles encountered by inverse dynamic approaches [174].

Finally, axial-transmission ultrasound has also been used to measure in vivo properties
and loading of the patellar tendon in adults during squatting, a common activity of daily
living and exercise used in the rehabilitation of patellar tendinopathy. Axial ultrasound
velocity in the patellar tendon was observed to increase non-linearly with knee flexion
during the sit-to-stand movement in healthy adults; suggesting an increase in tension
within the tendon, which peaked at around 15◦ of knee flexion [316] (Figure 4). Beyond
approximately 20◦ of flexion, however, the ultrasound velocity within the patellar tendon
remained relatively constant. The pattern of loading was highly reproducible (<3% within-
subject coefficient of variation) but differed from that reported by previous research, in
which inverse dynamics were used to estimate tension in the patellar tendon during
squatting and peak force was estimated to occur beyond 80◦ of flexion [332]. However, the
ultrasound velocity pattern in the patellar tendon was consistent with those of cadaveric
research in which direct measurements of tendon loading showed that knee flexion beyond
approximately 15◦ progressively lowered tension in the patellar tendon by as much as 50%,
relative to that applied to the quadriceps tendon [333].
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Tendon disease represents a spectrum of disorders ranging from reactive tendinopa-

thy, through chronic tendinopathy, to rupture [334]. The most common clinical condition, 
chronic tendinopathy, is characterized by an underlying state of tissue degeneration 
[335,336], and is generally thought to reflect an “overuse” injury in which the tendon fails 
to adapt to prevailing loading conditions [337]. Ultimately, degenerative change associ-
ated with prolonged tendinopathy is thought to result in acute tendon rupture in selected 
cases, which often results in disability and long-term functional limitations [338]. 

To study the biomechanics of tendon injury, we used transmission-mode ultrasound 
to measure the in vivo loading of the patellar tendon in adults with and without unilateral 
tendinopathy during squatting [316]. Ultrasound velocity in the patellar tendon differed 
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4.3.2. Biomechanics of Injured Tendon

Tendon disease represents a spectrum of disorders ranging from reactive tendinopa-
thy, through chronic tendinopathy, to rupture [334]. The most common clinical condi-
tion, chronic tendinopathy, is characterized by an underlying state of tissue degenera-
tion [335,336], and is generally thought to reflect an “overuse” injury in which the tendon
fails to adapt to prevailing loading conditions [337]. Ultimately, degenerative change asso-
ciated with prolonged tendinopathy is thought to result in acute tendon rupture in selected
cases, which often results in disability and long-term functional limitations [338].

To study the biomechanics of tendon injury, we used transmission-mode ultrasound
to measure the in vivo loading of the patellar tendon in adults with and without unilateral
tendinopathy during squatting [316]. Ultrasound velocity in the patellar tendon differed in
young adults with and without chronic unilateral patellar tendinopathy (Figure 4). Despite
tendinopathy involving only one tendon, ultrasound velocity was significantly higher
(+250 m/s) in the tendons of both the symptomatic and asymptomatic limbs compared to
that of healthy adults. The difference in velocity between groups was substantial, mirror-
ing the magnitude of change reported in the equine tendon following surgery [326,339].
Moreover, the results were unexpected in two aspects. First, ultrasound velocity was higher
bilaterally in injured adults despite the presence of only unilateral disease. We had hypoth-
esized that ultrasound velocity would be lower in the involved tendon in tendinopathy,
reflecting the disorganized collagen structure [335] and the inherently lower intrinsic elastic
modulus of the tendon, as shown in previous studies in which an inverse dynamic approach
was used to estimate patellar tendon stiffness in tendinopathy [340]. Second, ultrasound
velocity was heightened in the tendon but only during a quiet bipedal stance both prior to
and following the squat but not during the squat movement. We reasoned that if adults
with tendinopathy possessed intrinsically stiffer tendons, which would account for a bilat-
eral increase in ultrasound velocity, the axial velocity would be heightened throughout the
entire movement, which was not the case. We concluded, therefore, that resting muscle tone
may be increased in both asymptomatic and symptomatic tendons in patellar tendinopathy,
resulting in greater loading and, hence, a higher ultrasonic velocity, bilaterally, while at
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rest [316]. Indeed, our findings were consistent with the so-called ‘vicious cycle’ pain theory
and with previous research in which the electromyographic activity of agonist muscles
is often higher in tendinopathy than in healthy controls [341]. Unpublished data from
our laboratory have also highlighted the potential for axial-transmission methods to be
used within clinical settings to monitor the effects of therapeutic interventions on the acute
loading environment of the tendon (Figure 4).

Our laboratory has also used axial-transmission ultrasound to quantify the recovery
state of rupture-repaired tendons. In a cross-sectional study of patients that had surgically
repaired Achilles tendons, we observed that the axial velocity of ultrasound in rupture-
repaired tendons was significantly lower than that of the contralateral limb during walking,
despite symmetrical spatiotemporal gait parameters and vertical ground reaction forces be-
tween limbs (Figure 5a) [319]. The magnitude of the reduction in the ultrasound (≈175 m/s)
was comparable to that previously reported in the equine flexor tendon (≈140 m/s) fol-
lowing the surgical induction of a core tendon lesion [326] and was suggestive of a lower
material stiffness of the repaired tendon. The difference was even more pronounced during
a hopping task (Figure 5c,d) [174]. We concluded that the lower material stiffness of the re-
paired tendon would alter the coordination and functional efficiency of the muscle–tendon
unit, which may, in part, underpin reported tendon lengthening and long-term deficits in
muscle strength following rupture repair [342,343]. Indeed, neuro-mechanical adaptations,
consistent with our findings, have since been reported in subsequent research focused on
chronic Achilles tendinopathy, the prequel state to rupture [344]. In contrast to hopping,
we also observed no significant difference in the change in ultrasound velocity in repaired
and contralateral tendons over a gait cycle. It is noteworthy, however, that the change in ul-
trasound velocity in the tendon during walking was strongly correlated with self-reported
pain and physical function (r2 = 0.85, p < 0.01), as defined by the Achilles tendon Rupture
Scale [345]. Unpublished data from our laboratory have also highlighted the potential for
axial-transmission techniques to be used clinically to monitor the post-operative recovery
of tendons following rupture. Figure 5b provides an illustrative example of recovery in
the peak axial velocity of ultrasound in a surgically repaired Achilles tendon over a 3-year
period following surgery in a male adult while walking on a treadmill at a fixed speed
(2.0 m/s). Note that although the peak axial velocity in the rupture-repaired tendon in-
creased exponentially throughout the post-operative period, to approach the lower 95%
tolerance interval (with 95% confidence) of the healthy tendon (shaded area), it did not
reach the peak axial velocity recorded in the contralateral tendon, which remained relatively
unchanged over the 3-year post-operative period. Hence, transmission-mode ultrasound
may have the potential to individually guide rehabilitation programs.

When considered collectively, these studies also highlight, for the first time, that
different muscle–tendon units may respond differently to a tendon injury, resulting in
either an increase or a decrease in tendon loading. Although neuromuscular mechanisms
underpinning such a differential response are ongoing, from an applied perspective, such
differences have important implications for tendon rehabilitation, in which progressive
loading during activities of daily living remains the mainstay of treatment [327,346].
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4.3.3. Modification of Tendon Biomechanics via External Influences

Footwear remains a prime candidate for the prevention of tendinopathy and is often
used as a key therapeutic intervention in Achilles tendon rehabilitation after injury. The
inherent heel offset incorporated in traditional running shoes is thought to elevate the
heel and shorten the muscle–tendon unit, thereby decreasing the load in the Achilles
tendon during gait [347]. However, supporting evidence for such an effect is equivocal,
with elevation of the heel in the order of 15 to 18 mm reported to either increase [348],
decrease [349], or have no effect [350,351] on peak tensile loading of the Achilles tendon
during running. In a series of repeated-measures studies, in which axial-transmission-
mode ultrasound was used to monitor Achilles tendon biomechanics, our laboratory
demonstrated that conventional running shoes that incorporated a 10-mm heel offset
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(elevation) significantly increased the peak axial velocity of ultrasound and hence, loading
in the Achilles tendon during walking [320]. We later demonstrated that a simple orthotic
heel lift (22-mm heel offset) may moderate the increase in loading to some extent [321] and
that incorporation of a progressive increase in heel offset within the shoe (0 mm–15 mm)
resulted in a linear reduction in the peak axial velocity of ultrasound in the tendon during
walking [322]. However, we also observed that a substantial manipulation of footwear
components, including heel offset, would be required to return the loading environment of
the Achilles tendon to that of the barefoot gait [322]. More recently, we also applied this
technique to demonstrate that the energy loss properties of shoes also alter the Achilles
tendon loading during walking and may be manipulated to either increase energy storage
within or reduce energy returned by the tendon [323].

4.4. Measurement of Skeletal Muscle

Quantitative ultrasound was first used ex vivo as early as 1982 to characterize the
longitudinal and transverse changes in tissue stiffness with muscle contraction in animal
models [352]. Using through- and pulse-echo transmission approaches (1, 3, and 7 MHz),
Tamura and colleagues [352] demonstrated that, although the propagation speed of ultra-
sound waves in frog skeletal muscle (n = 20, mean (±SD) = 1610 ± 50 m/s) was virtually
insensitive to passive force development, tetanic-induced isometric contraction resulted in
an increase in propagation velocity in the longitudinal direction (≈245 m/s), coupled with
a decrease in velocity in the transverse direction (≈283 m/s) [352,353]. Given that striated
muscle stiffness has long been purported to reflect the number of active actin and myosin
cross-bridges at any given time [354], Hatta et al. [353] used the same approach to argue
that changes in axial ultrasound velocity, as surrogate measurements of muscle stiffness,
and provided insight into the cross-bridge function in skeletal muscle.

Despite the pioneering work of Tamura and colleagues [352], the application of quan-
titative ultrasound techniques for the in vivo characterization of human skeletal muscle has
been surprisingly sparse in comparison to that of the bone and tendon, only appearing
within the literature relatively recently [158,355,356]. In contrast to the tendon, in which the
axial-transmission technique predominates, research investigating changes in the properties
of human skeletal muscle in vivo has almost exclusively adopted pulse-echo transmission
techniques to measure the transverse velocity of ultrasound. In contrast to pulse-echo
approaches used with the bone, measurements in muscles have most commonly employed
a reflector, positioned at a known distance from the emitter [158,170,357,358]. While the
use of a reflector aids in the accurate estimation of the transmission velocity of ultrasound
waves, wavefront travel times have been shown to be highly sensitive to deviations in reflec-
tor inclination angles, which are likely unavoidable in clinical settings [359]. Nonetheless,
the technique has been shown to be sufficiently sensitive (area under the receiver–operator
characteristic curve = 0.94) to detect differences in the properties of the triceps surae mus-
cles of young (mean (±SD) age: 28.1 ± 3.9 years) and elderly adults (82.7 ± 7 years), with
the mean (±SD) transverse ultrasound velocity in young adults (1550 ± 8 m/s) reported
to be significantly higher than that of the elderly adults (1523 ± 16 m/s) [158]. Clinical
studies have also shown that, in comparison to ultrasound-based measurements of muscle
thickness and echotexture, the technique was able to detect changes in skeletal muscle
properties with short-term (7 days to 2 months) immobilization, with the transverse ul-
trasound velocity of the triceps surae muscle being significantly lower than that of the
contralateral limb following immobilization [360]. Lower transverse ultrasound velocity, in
turn, reportedly correlates moderately to the fat content of the muscle, as determined by
the Dixon MRI fat fraction [361]. Consistent with measurements of through-transmission
velocity in animal muscle [362], however, quantitative pulse-echo measurements of trans-
verse ultrasound velocity in the muscle are reported to be relatively insensitive to the state
of muscle contraction, with the isometric loading of the ankle (up to 650 N) shown to have
a negligible effect on the ultrasound velocity (<10 m/s) of the calf muscle when measured
in the transverse direction [360]. Hence, the pulse-echo technique, as currently used, does
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not appear suitable for characterizing the force-generating capacity or contractile quality of
skeletal muscle.

The preliminary work from our laboratory suggests that axial-transmission techniques
have the potential to provide suitable quantification of the contractile properties of skeletal
muscle. Figure 6a demonstrates the measurements of axial-transmission velocity (nominal
1 MHz) recorded over the biceps brachialis muscle during maximum voluntary isometric
contraction. Axial ultrasound velocity was monotonically related to the force measured at
the wrist during isometric muscle contraction (Figure 6b), with the change in peak axial
ultrasound velocity linearly related to force during submaximal and maximal isometric
voluntary contractions (Figure 6c). It is noteworthy that, although the relationship was best
fit by a linear model for each individual, the slope varied markedly among healthy adults.
We also observed that for a given percentage of maximal isometric contraction of the biceps
femoris muscle, elderly adults (n = 8 and mean age (±SD): 82.6 ± 6.4 years) demonstrated
a greater change in peak axial-transmission velocity from resting values than young adults
(n = 8 and mean age (±SD): 26.0 ± 6.5 years) (Figure 6d). Although further research
is required, the results highlight, for the first time, the potential of axial-transmission
techniques to quantify the contractile quality of skeletal muscle in vivo, particularly within
the context of aging and age-related sarcopenia.
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Figure 6. (a) Position of the axial-transmission probe (inset) over the belly of the biceps femoris
muscle. (b) Ensemble force measured at the wrist (N, black line) and axial ultrasound velocity (m/s,
blue line) recorded over the biceps femoris muscle during repeated maximum isometric voluntary
contractions in a healthy male adult. (c) Change in peak axial ultrasound velocity recorded over
the biceps femoris muscle in healthy individuals (n = 6) as a function of the force measured at the
wrist during submaximal and maximal isometric contractions. Note that for each individual the
relationship was best fit by a linear model; however, the slope varied markedly between individuals.
(d) Change in peak axial ultrasound velocity recorded over the biceps femoris muscle as a function
of the force measured at the wrist in young (n = 8 and mean age (±SD): 26.0 ± 6.5 years—empty
circle) and elderly adults (n = 8 and mean age (±SD): 82.6 ± 6.4 years—filled square), expressed
as a percentage of maximum voluntary isometric contraction. Note that for a given percentage of
maximal contraction, elderly adults had a greater change in peak axial-transmission velocity from
resting values than young adults.
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5. Future Perspectives

For many decades, researchers have worked to advance techniques used for charac-
terizing musculoskeletal tissue properties in vivo. Considerable advances in transmission-
mode ultrasound techniques have been made since the first in vivo application of the
through-transmission approach at the calcaneus was detailed in the mid-1980s [142]. Tech-
nological developments, coupled with advances in data acquisition and signal processing
procedures, have typically been adapted and applied to skeletal structures first, with the
translation to soft tissue structures representing the next logical short-term development.
Indeed, 3-D multi-frequency and multi-parameter measurements that combine transmis-
sion approaches are likely needed for the full characterization of the microstructural and
mechanical properties of musculoskeletal tissues [363,364]. To that end, approaches such
as ultrasound computed tomography (UCT) have the potential to effectively and efficiently
quantify and spatially map human tissue properties in 3D [365,366], albeit at the expense of
increased cost and complexity and reduced portability. Current applications have already
demonstrated that UCT has the capacity to provide images from various reconstructed
acoustic parameters, including the propagation velocity of axial ultrasound waves [367],
density, and attenuation [358]. Sequential scanning approaches, such as those used in
synthetic transmit aperture (STA) imaging [368], represent a natural extension of current
bi-directional transmission approaches [270] and may be a useful adjuvant to aid multi-
parameter imaging. Simultaneous developments in wearable ultrasonic arrays are likely
to yield viable low-cost methods for extended, serial, and multi-parameter transmission
measurements of musculoskeletal tissues that can be acquired at rest during activities of
daily living and in settings outside the hospital or the laboratory [369]. Current wearable
devices provide 48 h or more of continuous ultrasound scanning to depths of 30–40 mm,
with contrast and axial/lateral resolutions in the order of ≈3 dB and 0.25/1.0 mm [370].
Such devices have already been applied in vivo to monitor skeletal muscle flexion [371] and
the change in skeletal muscle modulus following exercise [372]. The future development
of these approaches, and in particular, attenuation and backscatter parameters, would un-
doubtedly benefit from further elucidation of the complex interaction between ultrasound
and the microstructures of connective tissues [152,179].

6. Conclusions

The assessment of the biomechanical properties of musculoskeletal tissues has long
been recognized as an important tool in the evaluation of tissue adaptation, the early
detection and management of pathological conditions, the staging of injury, and the moni-
toring of the progression of rehabilitation protocols. For this assessment, improving the
accurate and non-invasive quantification of the in vivo properties of connective tissues in
passive states and during activities of daily living remains a significant challenge. Although
transmission-mode ultrasound techniques have been applied in vivo for the quantifica-
tion of the structural and mechanical properties of human bone for over 40 years, these
techniques have only been introduced relatively recently as non-invasive measurement
tools for characterizing muscle and tendon biomechanics in vivo. The advancement of the
techniques through continuing research will provide opportunities for new insights into
the health and disease of musculoskeletal tissues and their biomechanical responses during
activities of daily living.
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295. Nowakowska-Płaza, A.; Wroński, J.; Płaza, M.; Sudoł-Szopińska, I.; Głuszko, P. Diagnostic agreement between radiofrequency
echographic multispectrometry and dual-energy X-ray absorptiometry in the assessment of osteoporosis in a Polish group of
patients. Pol. Arch. Intern. Med. 2021, 131, 840–847. [CrossRef] [PubMed]

296. Pisani, P.; Greco, A.; Conversano, F.; Renna, M.D.; Casciaro, E.; Quarta, L.; Costanza, D.; Muratore, M.; Casciaro, S. A quantitative
ultrasound approach to estimate bone fragility: A first comparison with dual X-ray absorptiometry. Meas. Phys. Educ. Exerc. Sci.
2017, 101, 243–249. [CrossRef]

297. Roux, C.; Roberjot, V.; Porcher, R.; Kolta, S.; Dougados, M.; Laugier, P. Ultrasonic backscatter and transmission parameters at the
os calcis in postmenopausal osteoporosis. J. Bone Min. Res. 2001, 16, 1353–1362. [CrossRef] [PubMed]

298. Pisani, P.; Conversano, F.; Muratore, M.; Adami, G.; Brandi, M.; Caffarelli, C.; Casciaro, E.; Di Paola, M.; Franchini, R.; Gatti, D.;
et al. Fragility Score: A REMS-based indicator for the prediction of incident fragility fractures at 5 years. Aging Clin. Exp. Res.
2023, 35, 763–773. [CrossRef] [PubMed]

299. Adami, G.; Arioli, G.; Bianchi, G.; Brandi, M.L.; Caffarelli, C.; Cianferotti, L.; Gatti, D.; Girasole, G.; Gonnelli, S.; Manfredini, M.;
et al. Radiofrequency echographic multi spectrometry for the prediction of incident fragility fractures: A 5-year follow-up study.
Bone 2020, 134, 115297. [CrossRef] [PubMed]

300. Hoffmeister, B.K.; Lawler, B.C.; Viano, A.M.; Mobley, J. Effect of transducer po-sition on ultrasonic backscatter measurements of
cancellous bone. J. Acoust. Soc. Am. 2023, 154, 2858–2868. [CrossRef] [PubMed]

301. Bi, D.; Dai, Z.; Liu, D.; Wu, F.; Liu, C.; Li, Y.; Li, B.; Li, Z.; Li, Y.; Ta, D. Ultrasonic backscatter measurements of human cortical and
trabecular bone densities in a head-down bed-rest study. Ultrasound Med. Biol. 2021, 47, 2404–2415. [CrossRef] [PubMed]

302. Laugier, P.; Novikov, V.; Elmann-Larsen, B.; Berger, G. Quantitative ultrasound imaging of the calcaneus: Precision and variations
during a 120-day bed rest. Calcif. Tissue Int. 2000, 66, 16–21. [CrossRef] [PubMed]

303. Liu, C.; Li, B.; Li, Y.; Mao, W.; Chen, C.; Zhang, R.; Ta, D. Ultrasonic backscatter difference measurement of bone health in preterm
and term newborns. Ultrasound Med. Biol. 2020, 46, 305–314. [CrossRef] [PubMed]

304. Mao, W.; Du, Y.; Liu, C.; Li, B.; Ta, D.; Chen, C.; Zhang, R. Ultrasonic backscatter technique for assessing and monitoring neonatal
cancellous bone status in vivo. IEEE Access 2019, 7, 157417–157426. [CrossRef]

305. Liu, C.-R.; Niu, H.-J.; Pu, F.; Wang, L.; Sun, L.-W.; Fan, Y.-B.; Li, D.-Y. The effect of physical loading on calcaneus quantitative
ultrasound measurement: A cross-section study. BMC Musculoskelet. Disord. 2012, 13, 70. [CrossRef] [PubMed]

306. Bowman, S.M.; Zeind, J.; Gibson, L.J.; Hayes, W.C.; McMahon, T.A. The tensile behavior of demineralized bovine cortical bone. J.
Biomech. 1996, 29, 1497–1501. [CrossRef] [PubMed]

307. Wright, T.M.; Vosburgh, F.; Burstein, A.H. Permanent deformation of compact bone monitored by acoustic emission. J. Biomech.
1981, 14, 405–409. [CrossRef] [PubMed]

308. Jones, B.; Langton, C.M.; Robertson, A.; Tippett, V.; Wearing, S.C. Calcaneal ultrasound attenuation as a predictor of bone density:
Does the region of interest or loading influence the repeatability of measurement? J. Sci. Med. Sport. 2021, 24, 68–69. [CrossRef]

https://doi.org/10.1121/1.1378343
https://www.ncbi.nlm.nih.gov/pubmed/11508981
https://doi.org/10.1109/TUFFC.2020.3033050
https://www.ncbi.nlm.nih.gov/pubmed/33104498
https://doi.org/10.1016/S0041-624X(99)00191-2
https://www.ncbi.nlm.nih.gov/pubmed/10829754
https://doi.org/10.1088/0031-9155/51/11/002
https://www.ncbi.nlm.nih.gov/pubmed/16723761
https://doi.org/10.1109/TUFFC.2008.819
https://www.ncbi.nlm.nih.gov/pubmed/18986933
https://doi.org/10.1016/j.ultrasmedbio.2009.03.011
https://www.ncbi.nlm.nih.gov/pubmed/19525060
https://doi.org/10.1016/j.ultrasmedbio.2013.12.024
https://www.ncbi.nlm.nih.gov/pubmed/24642217
https://doi.org/10.1016/j.measurement.2018.02.071
https://doi.org/10.1007/s00198-018-4686-3
https://www.ncbi.nlm.nih.gov/pubmed/30178159
https://doi.org/10.1016/j.bone.2020.115786
https://www.ncbi.nlm.nih.gov/pubmed/33278653
https://doi.org/10.1007/s11657-021-00990-x
https://doi.org/10.20452/pamw.16046
https://www.ncbi.nlm.nih.gov/pubmed/34180214
https://doi.org/10.1016/j.measurement.2016.07.033
https://doi.org/10.1359/jbmr.2001.16.7.1353
https://www.ncbi.nlm.nih.gov/pubmed/11450712
https://doi.org/10.1007/s40520-023-02358-2
https://www.ncbi.nlm.nih.gov/pubmed/36752950
https://doi.org/10.1016/j.bone.2020.115297
https://www.ncbi.nlm.nih.gov/pubmed/32092480
https://doi.org/10.1121/10.0022324
https://www.ncbi.nlm.nih.gov/pubmed/37930178
https://doi.org/10.1016/j.ultrasmedbio.2021.04.002
https://www.ncbi.nlm.nih.gov/pubmed/34052063
https://doi.org/10.1007/s002230050005
https://www.ncbi.nlm.nih.gov/pubmed/10602839
https://doi.org/10.1016/j.ultrasmedbio.2019.10.021
https://www.ncbi.nlm.nih.gov/pubmed/31791554
https://doi.org/10.1109/ACCESS.2019.2949748
https://doi.org/10.1186/1471-2474-13-70
https://www.ncbi.nlm.nih.gov/pubmed/22584084
https://doi.org/10.1016/0021-9290(96)84546-5
https://www.ncbi.nlm.nih.gov/pubmed/8894931
https://doi.org/10.1016/0021-9290(81)90058-0
https://www.ncbi.nlm.nih.gov/pubmed/7263733
https://doi.org/10.1016/j.jsams.2021.09.170


Healthcare 2024, 12, 1254 35 of 37

309. Chappard, C.; Berger, G.; Roux, C.; Laugier, P. Ultrasound measurement on the calcaneus influence of immersion time and
rotation of the foot. Osteoporos. Int. 1999, 9, 318–326. [CrossRef] [PubMed]

310. Johansen, A.; Stone, M.D. The effect of ankle oedema on bone ultrasound assessment at the heel. Osteoporos. Int. 1997, 7, 44–47.
[CrossRef] [PubMed]

311. Kotzki, P.O.; Buyck, D.; Hans, D.; Thomas, E.; Bonnel, F.; Favier, F.; Meunier, P.J.; Rossi, M. Influence of fat on ultrasound
measurements of the os calcis. Calcif. Tissue Int. 1994, 54, 91–95. [CrossRef] [PubMed]

312. Evans, W.D.; Jones, E.A.; Owen, G.M. Factors affecting the in vivo precision of broad-band ultrasonic attenuation. Phys. Med. Biol.
1995, 40, 137–151. [CrossRef] [PubMed]

313. Chappard, C.; Camus, E.; Lefebvre, F.; Guillot, G.; Bittoun, J.; Berger, G.; Laugier, P. Evaluation of error bounds on calcaneal speed
of sound caused by surrounding soft tissue. J. Clin. Densitom. 2000, 3, 121–131. [CrossRef] [PubMed]

314. Njeh, C.F.; Boivin, C.M.; Langton, C.M. The role of ultrasound in the assessment of osteoporosis: A review. Osteoporos. Int. 1997,
7, 7–22. [CrossRef] [PubMed]

315. Hoffmeister, B.K.; Verdonk, E.D.; Wickline, S.A.; Miller, J.G. Effect of collagen on the anisotropy of quasi-longitudinal mode
ultrasonic velocity in fibrous soft tissues: A compari-son of fixed tendon and fixed myocardium. J. Acoust. Soc. Am. 1994, 96,
1957–1964. [CrossRef] [PubMed]

316. Wearing, S.C.; Hooper, S.L.; Smeathers, J.E.; Pourcelot, P.; Crevier-Denoix, N.; Brauner, T. Tendinopathy alters ultrasound
transmission in the patellar tendon during squatting. Scand. J. Med. Sci. Sports 2016, 26, 1415–1422. [CrossRef] [PubMed]

317. Wulf, M.; Wearing, S.C.; Hooper, S.L.; Smeathers, J.E.; Horstmann, T.; Brauner, T. Achilles tendon loading patterns during barefoot
walking and slow running on a treadmill: An ultrasonic propagation study. Scand. J. Med. Sci. Sports 2015, 25, 868–875. [CrossRef]
[PubMed]

318. Wearing, S.C.; Hooper, S.L.; Locke, S.; Smeathers, J.E. Non-invasive clinical measurement of the viscoelastic properties of tendon
using acoustic wave transmission. Dtsch. Z. Sport. 2013, 64, 148.

319. Wulf, M.; Shanker, M.; Schuetz, M.; Lutz, M.; Langton, C.M.; Hooper, S.L.; Smeathers, J.E.; Brauner, T.; Wearing, S.C. Lower
material stiffness in rupture-repaired Achilles tendon during walking: Transmission-mode ultrasound for post-surgical tendon
evaluation. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 2030–2037. [CrossRef] [PubMed]

320. Wearing, S.C.; Reed, L.; Hooper, S.L.; Bartold, S.; Smeathers, J.E.; Brauner, T. Running shoes increase Achilles tendon load in
walking: An acoustic propagation study. Med. Sci. Sports Exerc. 2014, 46, 1604–1609. [CrossRef] [PubMed]

321. Wulf, M.; Wearing, S.C.; Hooper, S.L.; Bartold, S.; Reed, L.; Brauner, T. The effect of an in-shoe orthotic heel lift on loading of the
Achilles tendon during shod walking. J. Orthop. Sports Phys. Ther. 2016, 46, 79–86. [CrossRef] [PubMed]

322. Brauner, T.; Hooper, S.; Horstmann, T.; Wearing, S. Effects of footwear and heel elevation on tensile load in the Achilles tendon
during treadmill walking. Footwear Sci. 2018, 10, 39–46. [CrossRef]

323. Reed, L.; Brauner, T.; Horstmann, T.; Wearing, S.C. Is the energy loss of footwear related to Achilles tendon loading during
treadmill walking? Footwear Sci. 2023, 15, 103–104. [CrossRef]

324. Neptune, R.R.; Sasaki, K.; Kautz, S.A. The effect of walking speed on muscle function and mechanical energetics. Gait Posture
2008, 28, 135–143. [CrossRef] [PubMed]

325. Wearing, S.C.; Davis, I.S.; Brauner, T.; Hooper, S.L.; Horstmann, T. Do habitual foot-strike patterns in running influence functional
Achilles tendon properties during gait? J. Sport. Sci. 2019, 37, 2735–2743. [CrossRef] [PubMed]

326. Vergari, C.; Pourcelot, P.; Ravary-Plumioen, B.; Dupays, A.G.; Denoix, J.M.; Mitton, D.; Laugier, P.; Crevier-Denoix, N. First
application of axial speed of sound to follow up injured equine tendons. Ultrasound Med. Biol. 2012, 38, 162–167. [CrossRef]
[PubMed]

327. Baxter, J.R.; Corrigan, P.; Hullfish, T.J.; O’Rourke, P.; Silbernagel, K.G. Exercise progression to incrementally load the Achilles
tendon. Med. Sci. Sports Exerc. 2021, 53, 124–130. [CrossRef] [PubMed]

328. Farley, C.T.; Blickhan, R.; Saito, J.; Taylor, C.R. Hopping frequency in humans: A test of how springs set stride frequency in
bouncing gaits. J. Appl. Physiol. 1991, 71, 2127–2132. [CrossRef] [PubMed]

329. Farley, C.T.; Morgenroth, D.C. Leg stiffness primarily depends on ankle stiffness during human hopping. J. Biomech. 1999, 32,
267–273. [CrossRef] [PubMed]

330. Hobara, H.; Inoue, K.; Omuro, K.; Muraoka, T.; Kanosue, K. Determinant of leg stiffness during hopping is frequency-dependent.
Eur. J. Appl. Physiol. 2011, 111, 2195–2201. [CrossRef] [PubMed]

331. Abe, H.; Hayashi, K.; Sato, H. Data Book on Mechanical Properties of Living Cells, Tissues, and Organs; Springer: New York, NY,
USA, 1996.

332. Frohm, A.; Halvorsen, K.; Thorstensson, A. Patellar tendon load in different types of eccentric squats. Clin. Biomech. 2007, 22,
704–711. [CrossRef] [PubMed]

333. Ellis, M.I.; Seedhom, B.B.; Wright, V.; Dowson, D. An evaluation of the ratio between the tensions along the quadriceps tendon
and the patellar ligament. Eng. Med. 1980, 9, 189–194. [CrossRef]

334. Uhthoff, H.K.; Sarkar, K. Classification and definition of tendinopathies. Clin. Sports Med. 1991, 10, 707–720. [CrossRef] [PubMed]
335. Jozsa, L.; Reffy, A.; Kannus, P.; Demel, S.; Elek, E. Pathological alterations in human tendons. Arch. Orthop. Trauma. Surg. 1990,

110, 15–21. [CrossRef] [PubMed]
336. Kannus, P.; Józsa, L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J.

Bone Jt. Surg. 1991, 73A, 1507–1525. [CrossRef]

https://doi.org/10.1007/s001980050154
https://www.ncbi.nlm.nih.gov/pubmed/10550449
https://doi.org/10.1007/BF01623459
https://www.ncbi.nlm.nih.gov/pubmed/9102062
https://doi.org/10.1007/BF00296057
https://www.ncbi.nlm.nih.gov/pubmed/8012877
https://doi.org/10.1088/0031-9155/40/1/012
https://www.ncbi.nlm.nih.gov/pubmed/7708836
https://doi.org/10.1385/JCD:3:2:121
https://www.ncbi.nlm.nih.gov/pubmed/10871906
https://doi.org/10.1007/BF01623454
https://www.ncbi.nlm.nih.gov/pubmed/9102067
https://doi.org/10.1121/1.410139
https://www.ncbi.nlm.nih.gov/pubmed/7963017
https://doi.org/10.1111/sms.12602
https://www.ncbi.nlm.nih.gov/pubmed/26660902
https://doi.org/10.1111/sms.12455
https://www.ncbi.nlm.nih.gov/pubmed/25913324
https://doi.org/10.1007/s00167-017-4624-5
https://www.ncbi.nlm.nih.gov/pubmed/28660438
https://doi.org/10.1249/MSS.0000000000000256
https://www.ncbi.nlm.nih.gov/pubmed/24500535
https://doi.org/10.2519/jospt.2016.6030
https://www.ncbi.nlm.nih.gov/pubmed/26755409
https://doi.org/10.1080/19424280.2017.1407965
https://doi.org/10.1080/19424280.2023.2199385
https://doi.org/10.1016/j.gaitpost.2007.11.004
https://www.ncbi.nlm.nih.gov/pubmed/18158246
https://doi.org/10.1080/02640414.2019.1663656
https://www.ncbi.nlm.nih.gov/pubmed/31506014
https://doi.org/10.1016/j.ultrasmedbio.2011.10.008
https://www.ncbi.nlm.nih.gov/pubmed/22104528
https://doi.org/10.1249/MSS.0000000000002459
https://www.ncbi.nlm.nih.gov/pubmed/32658037
https://doi.org/10.1152/jappl.1991.71.6.2127
https://www.ncbi.nlm.nih.gov/pubmed/1778902
https://doi.org/10.1016/S0021-9290(98)00170-5
https://www.ncbi.nlm.nih.gov/pubmed/10093026
https://doi.org/10.1007/s00421-011-1853-z
https://www.ncbi.nlm.nih.gov/pubmed/21318314
https://doi.org/10.1016/j.clinbiomech.2006.12.006
https://www.ncbi.nlm.nih.gov/pubmed/17499407
https://doi.org/10.1243/EMED_JOUR_1980_009_049_02
https://doi.org/10.1016/S0278-5919(20)30580-9
https://www.ncbi.nlm.nih.gov/pubmed/1934093
https://doi.org/10.1007/BF00431359
https://www.ncbi.nlm.nih.gov/pubmed/2288799
https://doi.org/10.2106/00004623-199173100-00009


Healthcare 2024, 12, 1254 36 of 37

337. Snedeker, J.G.; Foolen, J. Tendon injury and repair—A perspective on the basic mechanisms of tendon disease and future clinical
therapy. Acta Biomater. 2017, 63, 18–36. [CrossRef] [PubMed]

338. Steinmann, S.; Pfeifer, C.G.; Brochhausen, C.; Docheva, D. Spectrum of tendon pathologies: Triggers, trails and end-state. Int. J.
Mol. Sci. 2020, 21, 844. [CrossRef] [PubMed]

339. Vergari, C.; Pourcelot, P.; Ravary-Plumioën, B.; Dupays, A.G.; Jacquet, S.; Audigié, F.; Denoix, J.M.; Laugier, P.; Mitton, D.;
Crevier-Denoix, N. Axial speed of sound for the monitoring of injured equine tendons: A preliminary study. J. Biomech. 2012, 45,
53–58. [CrossRef] [PubMed]

340. Wiesinger, H.P.; Seynnes, O.R.; Kösters, A.; Müller, E.; Rieder, F. Mechanical and material tendon properties in patients with
proximal patellar tendinopathy. Front. Physiol. 2020, 11, 704. [CrossRef] [PubMed]

341. Reid, D.; McNair, P.J.; Johnson, S.; Potts, G.; Witvrouw, E.; Mahieu, N. Electromyographic analysis of an eccentric calf muscle
exercise in persons with and without Achilles tendinopathy. Phys. Ther. Sport. 2012, 13, 150–155. [CrossRef]

342. Rosso, C.; Vavken, P.; Polzer, C.; Buckland, D.M.; Studler, U.; Weisskopf, L.; Lottenbach, M.; Müller, A.M.; Valderrabano, V.
Long-term outcomes of muscle volume and Achilles tendon length after Achilles tendon ruptures. Knee Surg. Sports Traumatol.
Arthrosc. 2013, 21, 1369–1377. [CrossRef] [PubMed]

343. Horstmann, T.; Lukas, C.; Merk, J.; Brauner, T.; Mündermann, A. Defcits 10-years after Achilles tendon repair. Int. J. Sports Med.
2012, 33, 474–479. [CrossRef] [PubMed]

344. Chang, Y.J.; Kulig, K. The neuromechanical adaptations to Achilles tendinosis. J. Physiol. 2015, 593, 3373–3387. [CrossRef]
[PubMed]

345. Nilsson-Helander, K.; Thomeé, R.; Grävare-Silbernagel, K.; Thomeé, P.; Faxén, E.; Eriksson, B.I.; Karlsson, J. The Achilles tendon
total rupture score (ATRS) development and validation. Am. J. Sports Med. 2007, 35, 421–426. [CrossRef]

346. Cook, J.L.; Purdam, C.R. The challenge of managing tendinopathy in competing athletes. Br. J. Sports Med. 2014, 48, 506–509.
[CrossRef] [PubMed]

347. Reinschmidt, C.; Nigg, B.M. Influence of heel height on ankle joint moments in running. Med. Sci. Sports Exerc. 1995, 27, 410–416.
[CrossRef] [PubMed]

348. Dixon, S.J.; Kerwin, D.G. The influence of heel lift manipulation on achilles tendon loading in running. J. Appl. Biomech. 1998, 14,
374–389. [CrossRef]

349. Farris, D.J.; Buckeridge, E.; Trewartha, G.; McGuigan, M.P. The effects of orthotic heel lifts on Achilles tendon force and strain
during running. J. Appl. Biomech. 2012, 28, 511–519. [CrossRef] [PubMed]

350. Dixon, S.J.; Kerwin, D.G. Variations in Achilles tendon loading with heel lift intervention in heel-toe runners. J. Appl. Biomech.
2002, 18, 321–331. [CrossRef]

351. Braunstein, B.; Arampatzis, A.; Eysel, P.; Brüggemann, G.-P. Footwear affects the gearing at the ankle and knee joints during
running. J. Biomech. 2010, 43, 2120–2125. [CrossRef] [PubMed]

352. Tamura, Y.; Hatta, I.; Matsuda, T.; Sugi, H.; Tsuchiya, T. Changes in muscle stiffness during contraction recorded using ultrasonic
waves. Nature 1982, 299, 631–633. [CrossRef]

353. Hatta, I.; Sugi, H.; Tamura, Y. Stiffness changes in frog skeletal muscle during contraction recorded using ultrasonic waves. J.
Physiol. 1988, 403, 193–209. [CrossRef] [PubMed]

354. Huxley, A.F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 1957, 7, 255–318. [CrossRef]
355. Topchyan, A.; Tatarinov, A.; Sarvazyan, N.; Sarvazyan, A. Ultrasound velocity in human muscle in vivo: Perspective for edema

studies. Ultrasonics 2006, 44, 259–264. [CrossRef]
356. Utter, A.C.; McAnulty, S.R.; Sarvazyan, A.; Query, M.C.; Landram, M.J. Evaluation of ultrasound velocity to assess the hydration

status of wrestlers. J. Strength. Cond. Res. 2010, 24, 1451–1457. [CrossRef] [PubMed]
357. Ruby, L.; Sanabria, S.J.; Saltybaeva, N.; Frauenfelder, T.; Alkadhi, H.; Rominger, M.B. Comparison of ultrasound speed-of-sound

of the lower extremity and lumbar muscle assessed with computed tomography for muscle loss assessment. Medicine 2021, 100,
e25947. [CrossRef] [PubMed]

358. Rau, R.; Unal, O.; Schweizer, D.; Vishnevskiy, V.; Goksel, O. Frequency-dependent attenuation reconstruction with an acoustic
reflector. Med. Image Anal. 2021, 67, 101875. [CrossRef] [PubMed]

359. Korta Martiartu, N.; Simute, S.; Jaeger, M.; Frauenfelder, T.; Rominger, M.B. Toward speed-of-sound anisotropy quantification in
muscle with pulse-echo ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 2499–2511. [CrossRef] [PubMed]

360. Ruby, L.; Sanabria, S.; Martini, K.; Frauenfelder, T.; Jukema, G.N.; Goksel, O.; Rominger, M.B. Quantification of immobilization-
induced changes in human calf muscle using speed-of-sound ultrasound: An observational pilot study. Medicine 2021, 100, e23576.
[CrossRef] [PubMed]

361. Ruby, L.; Kunut, A.; Nakhostin, D.N.; Finkenstaedt, T.; Frauenfelder, T.; Sanabria, S.J.; Rominger, M.B. Speed of sound ultrasound:
Comparison with proton density fat fraction assessed with Dixon MRI for fat content quantification of the lower extremity. Eur.
Radiol. 2020, 30, 5272–5280. [CrossRef] [PubMed]

362. Marsh, R.L. Speed of sound in muscle for use in sonomicrometry. J. Biomech. 2016, 49, 4138–4141. [CrossRef] [PubMed]
363. Pham, T.-L.; Minonzio, J.-G.; Talmant, M.; Laugier, P. Impact of a multi-frequency sequence of measurements on first arriving

signal velocity on a bone plate model. In Proceedings of the IEEE International Ultrasonics Symposium, Rome, Italy, 20–23
September 2009; pp. 574–577.

https://doi.org/10.1016/j.actbio.2017.08.032
https://www.ncbi.nlm.nih.gov/pubmed/28867648
https://doi.org/10.3390/ijms21030844
https://www.ncbi.nlm.nih.gov/pubmed/32013018
https://doi.org/10.1016/j.jbiomech.2011.10.016
https://www.ncbi.nlm.nih.gov/pubmed/22018583
https://doi.org/10.3389/fphys.2020.00704
https://www.ncbi.nlm.nih.gov/pubmed/32733263
https://doi.org/10.1016/j.ptsp.2011.08.003
https://doi.org/10.1007/s00167-013-2407-1
https://www.ncbi.nlm.nih.gov/pubmed/23370984
https://doi.org/10.1055/s-0032-1301932
https://www.ncbi.nlm.nih.gov/pubmed/22499571
https://doi.org/10.1113/JP270220
https://www.ncbi.nlm.nih.gov/pubmed/26046962
https://doi.org/10.1177/0363546506294856
https://doi.org/10.1136/bjsports-2012-092078
https://www.ncbi.nlm.nih.gov/pubmed/23666020
https://doi.org/10.1249/00005768-199503000-00018
https://www.ncbi.nlm.nih.gov/pubmed/7752869
https://doi.org/10.1123/jab.14.4.374
https://doi.org/10.1123/jab.28.5.511
https://www.ncbi.nlm.nih.gov/pubmed/22695168
https://doi.org/10.1123/jab.18.4.321
https://doi.org/10.1016/j.jbiomech.2010.04.001
https://www.ncbi.nlm.nih.gov/pubmed/20462583
https://doi.org/10.1038/299631a0
https://doi.org/10.1113/jphysiol.1988.sp017245
https://www.ncbi.nlm.nih.gov/pubmed/3075667
https://doi.org/10.1016/S0096-4174(18)30128-8
https://doi.org/10.1016/j.ultras.2006.02.003
https://doi.org/10.1519/JSC.0b013e3181d82d26
https://www.ncbi.nlm.nih.gov/pubmed/20508445
https://doi.org/10.1097/MD.0000000000025947
https://www.ncbi.nlm.nih.gov/pubmed/34032704
https://doi.org/10.1016/j.media.2020.101875
https://www.ncbi.nlm.nih.gov/pubmed/33197864
https://doi.org/10.1109/TUFFC.2022.3189184
https://www.ncbi.nlm.nih.gov/pubmed/35797323
https://doi.org/10.1097/MD.0000000000023576
https://www.ncbi.nlm.nih.gov/pubmed/33725923
https://doi.org/10.1007/s00330-020-06885-8
https://www.ncbi.nlm.nih.gov/pubmed/32385650
https://doi.org/10.1016/j.jbiomech.2016.10.024
https://www.ncbi.nlm.nih.gov/pubmed/27789038


Healthcare 2024, 12, 1254 37 of 37

364. Muller, M.; Mitton, D.; Moilanen, P.; Bousson, V.; Talmant, M.; Laugier, P. Prediction of bone mechanical properties using QUS
and pQCT: Study of the human distal radius. Med. Eng. Phys. 2008, 30, 761–767. [CrossRef] [PubMed]

365. Martiartu, N.K.; Boehm, C.; Fichtner, A. 3-D wave-equation-based finite-frequency tomog-raphy for ultrasound computed
tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1332–1343. [CrossRef] [PubMed]

366. Wu, X.; Li, Y.; Su, C.; Li, P.; Wang, X.; Lin, W. Ultrasound computed tomography based on full waveform inversion with source
directivity calibration. Ultrasonics 2023, 132, 107004. [CrossRef] [PubMed]

367. Fincke, J.; Zhang, X.; Shin, B.; Ely, G.; Anthony, B.W. Quantitative sound speed imaging of cortical bone and soft tissue: Results
from observational data sets. IEEE Trans. Med. Imaging 2022, 41, 502–514. [CrossRef] [PubMed]

368. Afrakhteh, S.; Behnam, H. Efficient synthetic transmit aperture ultrasound based on tensor completion. Ultrasonics 2021, 117,
106553. [CrossRef] [PubMed]

369. Ren, D.; Yin, Y.; Li, C.; Chen, R.; Shi, J. Recent advances in flexible ultrasonic transducers: From materials optimization to imaging
applications. Micromachines 2023, 14, 126. [CrossRef] [PubMed]

370. Du, W.; Zhang, L.; Suh, E.; Lin, D.; Marcus, C.; Ozkan, L.; Ahuja, A.; Fernandez, S.; Shuvo, I.I.; Sadat, D.; et al. Conformable
ultrasound breast patch for deep tissue scanning and imaging. Sci. Adv. 2023, 9, 5325. [CrossRef] [PubMed]

371. Xue, X.; Zhang, B.; Moon, S.; Xu, G.X.; Huang, C.C.; Sharma, N.; Jiang, X. Development of a wearable ultrasound transducer for
sensing muscle activities in assistive robotics applications. Biosensors 2023, 13, 134. [CrossRef]

372. Hu, H.; Ma, Y.; Gao, X.; Song, D.; Li, M.; Huang, H.; Qian, X.; Wu, R.; Shi, K.; Ding, H.; et al. Stretchable ultrasonic arrays for the
3-dimensional mapping of the modulus of deep tissue. Nat. Biomed. Eng. 2023, 7, 1321–1334. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.medengphy.2007.08.006
https://www.ncbi.nlm.nih.gov/pubmed/17988924
https://doi.org/10.1109/TUFFC.2020.2972327
https://www.ncbi.nlm.nih.gov/pubmed/32054575
https://doi.org/10.1016/j.ultras.2023.107004
https://www.ncbi.nlm.nih.gov/pubmed/37071945
https://doi.org/10.1109/TMI.2021.3115790
https://www.ncbi.nlm.nih.gov/pubmed/34570702
https://doi.org/10.1016/j.ultras.2021.106553
https://www.ncbi.nlm.nih.gov/pubmed/34454358
https://doi.org/10.3390/mi14010126
https://www.ncbi.nlm.nih.gov/pubmed/36677187
https://doi.org/10.1126/sciadv.adh5325
https://www.ncbi.nlm.nih.gov/pubmed/37506210
https://doi.org/10.3390/bios13010134
https://doi.org/10.1038/s41551-023-01038-w
https://www.ncbi.nlm.nih.gov/pubmed/37127710

	Introduction 
	Conventional Methods for Characterizing Musculoskeletal Tissue Properties In Vivo 
	Bone 
	Tendon 
	Skeletal Muscle 

	Techniques for Quantitative Transmission-Mode Ultrasound 
	Through-Transmission Techniques 
	Pulse-Echo Transmission Techniques 
	Axial-Transmission Techniques 
	Key Transmission-Mode Measurement Parameters 

	In Vivo Application of Transmission-Mode Ultrasound 
	Measurement of Bone Properties 
	Measurement of Bone Loading 
	Measurement of Tendon Properties 
	Tendon Biomechanics during Common Activities of Daily Living 
	Biomechanics of Injured Tendon 
	Modification of Tendon Biomechanics via External Influences 

	Measurement of Skeletal Muscle 

	Future Perspectives 
	Conclusions 
	References

