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Abstract: Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases,
with an increasing number of targeted therapies available. While biologics to treat AD exclusively
target the key cytokines of type 2 immunity, Janus kinase inhibitors target a broad variety of cytokines,
including IFN-γ. To better stratify patients for optimal treatment outcomes, the identification and
characterization of subgroups, especially with regard to their IFNG expression, is of great relevance,
as the role of IFNG in AD has not yet been fully clarified. This study aims to define AD subgroups
based on their lesional IFNG expression and to characterize them based on their gene expression,
T cell secretome and clinical attributes. RNA from the lesional and non-lesional biopsies of 48 AD
patients was analyzed by RNA sequencing. Based on IFNG gene expression and the release of IFN-γ
by lesional T cells, this cohort was categorized into three IFNG groups (high, medium, and low)
using unsupervised clustering. The low IFNG group showed features of extrinsic AD with a higher
prevalence of atopic comorbidities and impaired epidermal lipid synthesis. In contrast, patients in
the high IFNG group had a higher average age and an activation of additional pro-inflammatory
pathways. On the cellular level, higher amounts of M1 macrophages and natural killer cell signaling
were detected in the high IFNG group compared to the low IFNG group by a deconvolution algorithm.
However, both groups shared a common dupilumab response gene signature, indicating that type
2 immunity is the dominant immune shift in both subgroups. In summary, high and low IFNG
subgroups correspond to intrinsic and extrinsic AD classifications and might be considered in the
future for evaluating therapeutic efficacy or non-responders.

Keywords: atopic dermatitis; IFNG; IFN-γ; subgroups/endotypes; IL-4RA1; M1 macrophages;
natural killer cells

1. Introduction

Atopic dermatitis (AD) is a chronic inflammatory skin disease with increasing preva-
lence worldwide. Its pathogenesis is based on an impaired skin barrier, a type 2-dominant
immune response and a dysbiosis of the skin microbiome [1]. It is well accepted that AD is
a heterogeneous disease, and several disease endotypes have been described in the litera-
ture [2]. Though numerous new treatment options have been approved over the last decade,
there is still a proportion of approximately 30% of patients not reaching an optimal clinical
response [3,4]. In this context, the role of IFN-γ in AD is currently gaining renewed interest
due to the different modes of action of new treatments. While the anti-IL-4Rα antibody
dupilumab and the anti-IL-13 antibodies tralokinumab and lebrikizumab exclusively target
specific type 2 immune cytokine functions, Janus kinases 1/2 inhibitors modify the signal
transduction of numerous cytokines, including IFN-γ as well as type 2 cytokines [1].
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In the 1990s and 2000s, IFN-γ was a major focus of AD research. Numerous studies
demonstrated the reduced capacity of peripheral T cells to produce IFN-γ and a reduced
presence of IFN-γ in the affected skin of AD patients [5–7]. Therefore, IFN-γ was con-
sidered as a possible treatment option and several studies investigated the therapeutic
administration of IFN-γ. Despite significant clinical improvement [8–11], recombinant
human IFN-γ therapy has not become part of the conventional AD therapies [12].

To date, the role of IFN-γ in AD is still not fully understood. IFN-γ is produced by
natural killer (NK) cells and T cells and signals via STAT1 and STAT4. Its main physio-
logical task is the recognition of and defense against intracellular viruses and malignant
cells [12–14]. IFN-γ prevents the differentiation of T-helper (Th) 2 cells, IL-4-induced IgE
production and the expression of IL-4R on keratinocytes, while in return type 2 cytokines
suppress Th1 polarization [7,15–18]. Several studies proved the potential of IFN-γ to con-
tribute to an impaired skin barrier by downregulating tight junctions or ceramide synthesis.
Furthermore, IFN-γ mediates Fas-dependent keratinocyte apoptosis and promotes inflam-
mation, especially in the context of contact dermatitis [19–22]. Moreover, AD patients with
low lesional IFN-γ levels are at higher risk of developing eczema herpeticum, a widespread
herpes simplex infection of the skin [23,24]. While higher IFN-γ levels were detected in
chronic AD lesions, it remains unclear whether a high IFN-γ expression in AD exhibits
predominantly protective effects or if it rather contributes to chronicity and maintained
inflammation in AD [25,26]. From a clinical perspective, it is therefore crucial to clarify
whether there are certain subgroups of AD patients who would benefit from additional
targeting of IFNG or, conversely, whether the inhibition of type 2 immunity alone is suffi-
cient for the treatment of AD even in subgroups with high IFNG expression. Therefore, the
aim of this work is to characterize high and low IFNG subgroups in AD with respect to
their clinical characteristics, comorbidities, differences in gene expression and regulation of
dupilumab-responsive genes.

2. Results
2.1. Transcriptome Analysis Reveals High, Medium and Low IFNG Subgroups of AD Correlating
with Patients’ Ages

The transcriptome of, in total, 48 lesional and corresponding non-lesional skin biopsies
of AD patients was analyzed by RNA sequencing. Based on lesional IFNG expression,
the AD cohort was first categorized into IFNG subgroups by unsupervised clustering
(Figure 1A). The optimal number of clusters (k = 3) was determined using the elbow method
(Figure 1B). Subsequently, k-mean clustering with k = 3 identified 8 patients as cluster 3
“high IFNG” (IFNG mean-normalized counts = 4.7), 25 patients as cluster 2 “medium IFNG”
(IFNG mean-normalized counts = 3.83) and 15 patients as cluster 1 “low IFNG” (IFNG mean-
normalized counts = 3.29), showing significant (p ≤ 0.0001) differences in their expression
of IFNG (Figure 1C). This characterization of the cohort showed there was a positive
correlation (R = 0.5638, p ≤ 0.0001) of IFNG expression with patients’ ages (high IFNG
group 66 ± 12 years, intermediate IFNG group 50 ± 20 years, low IFNG group 37 ± 15 years)
(Figure 1D,E). A principal component analysis of the whole lesional skin transcriptome
revealed minor separation between cluster 1 and cluster 2/cluster 3 (PCA1 = 15.01%)
(Figure S1), which is why the following analysis focused on the differences between the
“low IFNG” cluster 1 and “high IFNG” cluster 3. The analysis of cluster 2 “medium IFNG”
is provided in the Supplementary Materials (Figures S2 and S3). To further characterize
the high IFNG and the low IFNG cohort, the severity of the disease was evaluated using the
Physician Global Assessment (PGA) score, ranging from 0 (clear) to 4 (very severe disease).
More patients in the low IFNG cohort were severely affected than in the high IFNG cohort
(PGA-4: 53% vs. 14%) (Figure 1F). Next, clinical and laboratory characterization revealed
that the “low IFNG” cluster exhibited features of extrinsic AD with an increased presence of
bronchial asthma (28% vs. 14%) and allergic rhino conjunctivitis (52% vs. 43%) (Figure 1G),
as well as high serum IgE levels (6937 ± 2443 kU/I vs. 31.9 ± 3.9 kU/I) (Figure 1H)
compared to the “high IFNG” cluster. In contrast, significantly more patients in the “high
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IFNG” cohort suffered from arterial hypertension (57% vs. 20%) and renal insufficiency
(14% vs. 4%) compared to the “low IFNG” cluster (Figure 1G). In terms of the amount of
blood eosinophils (Figure 1I) and the Dermatology Life Quality Index (DLQI) (Figure 1J),
there were no significant differences between both clusters. In summary, the high IFNG
subgroup is characterized by a higher age and exhibits an intrinsic AD endotype, while the
low IFNG subgroup is characterized by a lower age and exhibits an extrinsic AD endotype.
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Figure 1. Transcriptome analysis reveals high, medium and low IFNG subgroups of AD correlat-
ing with patients’ ages. (A) Study design: lesional and non-lesional skin biopsies from 48 AD pa-
tients were collected, and their bulk RNA was sequenced and categorized into 3 IFNG subgroups 
based on their lesional IFNG expression by unsupervised clustering. (B) Elbow method identified 
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Figure 1. Transcriptome analysis reveals high, medium and low IFNG subgroups of AD correlating
with patients’ ages. (A) Study design: lesional and non-lesional skin biopsies from 48 AD patients
were collected, and their bulk RNA was sequenced and categorized into 3 IFNG subgroups based
on their lesional IFNG expression by unsupervised clustering. (B) Elbow method identified k = 3 as
the optimal number of IFNG clusters for the AD cohort. (C) Normalized IFNG gene counts in AD
patients separated by low (n = 15), medium (n = 25) and high (n = 8) IFNG expression. (D) Pearson
correlation of patient’s age and normalized IFNG gene expression for lesional AD biopsies (n = 48).
(E) Age distribution within the low (n = 15), medium (n = 25) and high (n = 8) IFNG AD subgroups.
(F) Physician Global Assessment (PGA) for evaluating the disease severity score of high and low
IFNG subgroups. (G–J) Clinical and laboratory characterization of the low and high IFNG AD
subgroups in relation to their co-morbidities ((G), radar plot), serum total IgE concentrations (H),
number of blood eosinophils (J), and the patient’s dermatology quality of life index (DLQI, (I)).
Group comparison was performed using one-way ANOVA test with multiple comparisons. The
significance levels were defined as p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.0001 (****). AD = atopic
dermatitis, PGA = Physician Global Assessment, DLQI = Dermatology Life Quality Index.

2.2. Ex Vivo Secretome Analysis of Lesional T Cells of AD Patients Confirms High and Low
IFN-γ Subgroups

To validate the results of the high and low IFNG AD subtypes identified in the tran-
scriptome study, punch biopsies were collected from seven different AD patients to isolate
their lesional T cells. After expansion and stimulation, the generated lesional T cell su-
pernatant (TCSN) was characterized by ELISA for IL-4, IL-22 and IFN-γ (Figure 2A,B).
Interestingly, T cells from two patients (Patient 6 and 7) did not produce IFN-γ. Subse-
quently, their TCSNs were pooled to generate a low IFN-γ- (patient 6 and 7) and high
IFN-γ (patient 1–5)-containing AD TCSN. To further characterize the two TCSN groups, a
Luminex analysis was performed as a bioplex assay for 27 chemokines and cytokines. Here,
a higher amount of IFN-γ (701,328 vs. 29,585 pg/mL), TNF (3,313,489 vs. 1,640,775 pg/mL),
IL-8 (141,764 vs. 18,399 pg/mL) and IL-2 (91,028 vs. 6583 pg/mL) was observed in the high
compared to the low IFN-γ AD TCSN (Figure 2C). No significant differences were observed
for the Th2 cytokines IL-4, IL-5 and IL-13. Thus, the ex vivo secretome analysis of lesional
AD T cells could confirm the presence of high- and low-IFN-γ AD subgroups. However,
both IFN-γ subgroups were defined by their expression and release of Th2 cytokines.
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Figure 2. Ex vivo secretome analysis of the lesional T cells of AD patients confirms high and low IFN-γ
subgroups. (A) Generation of lesional AD T cell supernatant (TCSN): Lesional T cells from the punch
biopsies of 7 atopic dermatitis (AD) patients were isolated, expanded and stimulated to collect an AD
TCSN. Subsequently, TCSNs were pooled into TCSNs with low (n = 2) and high (n = 5) IFN-γ contents
based on their IFN-γ secretion and characterized by Luminex analysis. (B) Concentrations of IFN-γ, IL-4
and IL-22 in the AD TCSNs of individual patients, measured by ELISA. (C) Twenty-seven-plex Luminex
analysis of the pooled high, type 1 and the low, type 2 IFN-γ AD TCSN.
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2.3. Low and High IFNG AD Subgroups Show Distinct Molecular Pathways with a Strong
Activation of Type 1 Immunity in the High IFNG Group

Next, the high and low IFNG AD subgroups were characterized by a transcriptome
analysis. For this purpose, differentially expressed genes (DEGs) were calculated by compar-
ing matched lesional and non-lesional skin biopsies. In total, the low IFNG group showed
slightly more DEGs, with 4568, than the high IFNG group with 3480 DEGs, while 2191 of
those genes were regulated in both clusters (Figure 3A). In contrast, the high IFNG group
(PC1 = 20.25%, PC2 = 16.47%) showed a larger separation between the transcriptomes of
lesional and non-lesional skin compared to the low IFNG group (PC1 = 16.20%, PC2 = 12.77%)
(Figure 3B,C), indicating a stronger alteration of unaffected skin in extrinsic AD skin.

Next, a GO-term enrichment analysis was performed. Interestingly, in the low IFNG
group, pathways related to cell cycle processes (e.g., chromosome segregation, mitotic cell cycle
phase transition, cell division), immune responses (regulation of immune response, lymphocyte
activation) and epithelium development were upregulated, while pathways associated with
lipid metabolism (fatty and organic acid/cellular and glyerolipid/organophosphate metabolic
process) were downregulated (Figure 3D). In contrast, the signature of the high IFNG group
was dominated by reactions of the innate and adaptive immune system (e.g., innate immune
response, lymphocyte activation, leukocyte differentiation), as well as the response to bacterium
and a general inflammatory response (Figure 3E).
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Figure 3. Low and high IFNG AD subgroups show distinct molecular pathways, with a strong
activation of type 1 immunity in the high IFNG group. (A–C) Differentially expressed gene (DEG)
analysis between lesional and non-lesional skin for the high and the low IFNG AD subgroups: In
(A), the number of DEGs is visualized in a Venn diagram for both groups. In (B,C), the separation
between lesional and non-lesional skin is shown within the low (B) and high (C) IFNG groups by
principal component analysis. (D,E) GO term pathway analysis: enriched pathways within the low
(D) and high (E) IFNG AD subgroups are shown. (F,G) DEG analysis of the high vs. low IFNG
AD subgroups: DEGs are visualized in a volcano plot (F). Normalized gene counts for identified
differentially regulated genes are shown for the low (n = 15) and high (n = 8) IFNG groups (G). Group
comparison was performed using a t-test. The significance levels were defined as p ≤ 0.05 (*) and
p ≤ 0.01 (**). DEG = differentially expressed gene, PC = principal component, NES = normalized
enrichment score, NS = not significant, FC = fold change.

Finally, the DEGs between the transcriptome of lesional AD skin from the high and
low IFNG groups were calculated to compare both groups at the gene level (Figure 3F).
The volcano plot of the high vs. low IFNG groups revealed significantly upregulated genes
in the high compared to low IFNG group; among them were the type I immune response
genes CXCL10 (p = 0.0051), CXCL11 (p = 0.0122), STAT4 (p = 0.0064) and STAT1 (p = 0.0082),
as well as the chemoattractant CCL5 (p = 0.0051) and the interferon (IFN)-inducible GTPase
GPB4 (p = 0.00135), activators of the inflammasome (Figure 3F,G).

In summary, the transcriptome analysis of the high IFNG group showed a strong
activation of type 1 immunity, including the innate immune system and viral and bacterial
defense and Th1-related genes, whereas the low IFNG group showed a significant reduction
in lipid metabolism.

2.4. Digital Cytometry Reveals Higher Amounts of M1 Macrophages, NK Cells and CD4 Memory
T Cells in the High IFNG AD Subgroup

To further characterize and quantify differences regarding the immune cell subsets
in the low and high IFNG AD subgroup, we performed an in silico cytometry analysis by
applying the deconvolution algorithm CIBERSORTx. In accordance with the transcriptome
and pathway analysis, a higher presence of immune cells was observed in the high IFNG
group (Figure 4). In detail, the high IFNG group revealed a higher amount of the total
estimated fraction of M1 polarized macrophages (p = 0.015) and a tendency towards more
resting NK cells (p = 0.051), as well as CD4+-activated memory cells (p = 0.060), compared to
the low IFNG group. There was no significant difference between CD8+ T cells, neutrophils,
eosinophils, M2 macrophages and dendritic cells. This indicates that, apart from M1
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macrophages and possibly NK cells, the cellular composition of lesional AD skin is similar
between the two subgroups.
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Figure 4. Deconvolution algorithm reveals higher amounts of immune cells such as M1 macrophages,
NK cells and CD4 memory T cells in the high IFNG group. The CIBERSORT algorithm was used to
perform a deconvolution with regard to the presence of immune cell populations in the low (red)
and high (blue) IFNG AD subgroups. LM22, a gene matrix of 22 distinct human hematopoietic
cell populations provided by CIBERSORT, was used as the signature matrix. The proportion of
deconvolution is visualized for the individual immune cell populations. Group comparison was
performed using a paired t-test. The significance level was defined as p ≤ 0.05 (*).

2.5. Gene Set Variation Analysis Shows a Higher Cardiovascular Risk, a More Pronounced
Activation of the Immune System and a Higher Enrichment of Type 1-Associated Genes in the High
IFNG AD Subgroup

Next, a gene set variation analysis (GSVA) of publicly available gene sets associated
with AD (MADAD) [27], cardiovascular diseases [28–30], the immune system [29,31] and
type 1 and type 2 keratinocyte response genes [32] was performed, identifying further
differences between the low and high IFNG AD subtypes, including in the analysis of
lesional and non-lesional skin. As expected, the established gene signature for AD (meta-
analysis-derived atopic dermatitis (MADAD)) was significantly enriched in the lesional
skin biopsies of both the high (p = 0.0005) and low (p = 0.0004) IFNG groups, with a
tendency towards greater enrichment in the high IFNG group (Figure 5A). Additionally,
there was a significantly higher upregulation of genes associated with cardiovascular
diseases (p = 0.0024, Figure 5B) and the immune system (p = 0.0001; Figure 5C) in the high
compared to the low IFNG group. To further characterize the specific immune response
patterns in both groups, signature gene sets were extracted from a microarray analysis
of stimulated keratinocytes under type 1 and type 2 cytokine conditions, as described
previously [32], and a GSVA was performed (Figure 5D,E). For both immune response
patterns, the signature genes were highly enriched in lesional compared to non-lesional skin
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in both IFNG groups, except for type 1 genes in the low IFNG group (Figure 5D,E). Overall,
the gene set for type 2-related genes showed the largest differences between lesional and
non-lesional skin (Figure 5E). Consistent with previous findings, type 1 immune response
genes were more enriched in the lesional skin of the high compared to the low IFNG AD
subgroup, again suggesting an activation of the type 1 axis by IFN-γ (Figure 5D). Of note,
there were no differences in type 2-related genes between the two IFNG groups, suggesting
that, regardless of IFNG expression, type 2 signaling is the dominant common pathway.
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Figure 5. Gene set variation analysis shows a higher cardiovascular risk, a stronger activation of the
immune system and a higher enrichment of type 1-associated genes in the high IFNG AD subgroup.
(A–E) A gene set variation analysis (GSVA) was performed for different gene set collections associated
with AD signature genes (MADAD, (A)), cardiovascular diseases (B) and the immune system (GO,
(C)), as well as type 1/type 2 keratinocyte immune signatures (D,E), with lesional (L) and non-lesional
(NL) low (n = 15) and high (n = 8) IFNG AD transcriptomes. The enrichment is visualized as Z-scores.
Group comparison was performed for a mixed-effect analysis with Tukey’s multiple comparison test.
The significance levels were defined as ns = non-significant, p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***).

2.6. High and Low IFNG AD Subgroups Share a Strong Common Core Signature with Dupilumab
Response Genes

Finally, to gain further insights into the therapeutic relevance of the IFNG content in
AD subgroups, the transcriptome of the low and high IFNG AD subgroups was compared
to a dupilumab response signature (lesional skin at week 16 after dupilumab initiation
vs. week 0), as previously described [33]. For this purpose, the most central genes of
both groups were first determined by the INFORM consensus algorithm, as described
previously [34], and combined into a core signature for the low (Figure 6A left) and high
(Figure 6A right) IFNG AD groups. Next, the gene expressions of the identified core
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signature genes were correlated to the most important type 2-related genes: IL4R, IL13RA1,
IL4 and IL13 (Figure 6B). The core signature genes of the low IFNG AD group (Figure 6B left)
showed a strong positive correlation with IL4R and IL13RA1 which was less pronounced
in the high IFNG AD group (Figure 6B right). The cytokines IL4 and IL13 exhibited a lower
overall correlation.

Subsequently, the DEGs of lesional vs. non-lesional core signature genes were calcu-
lated for the high (n = 1061) and low (n = 879) IFNG AD groups and were compared with
dupilumab response genes (n = 685) to characterize the gene response pattern of both AD
groups with regard to dupilumab therapy (Figure 6C). Overall, the dupilumab signature
was strongly regulated in both AD groups. A total of 52.5% (360 genes) of the dupilumab
response genes were present in the DEGs of the low and/or high IFNG AD group, of
which 189 DEGs were commonly regulated in all three groups. Interestingly, 59.3% of these
commonly regulated genes were upregulated in the high and low IFNG AD groups and
downregulated by dupilumab. Among those genes were driver genes of AD, such as CCL8,
CCL17 and CCL22, as well as SERPINB4, S100A7A and DSC2 (Figure 6E). Conversely, only
a total of 4.2% of these commonly regulated genes were downregulated in the high and low
IFNG AD groups and upregulated by dupilumab, while 36.5% of all commonly regulated
genes were regulated in the same direction.

Looking at the difference between low and high IFNG, 71 genes were only regulated
by dupilumab and the low IFNG AD group (Figure 6C). All of them were regulated in
opposite directions (Figure 6D left), and among them were IL13RA2 (Dupi DOWN, low
IFNG group UP) and ELOVL3 (Dupi DOWN, low IFNG group UP). The same applies to
the genes exclusively shared between dupilumab and the high IFNG AD group. Again,
98% of the 100 genes were regulated in opposite directions (Figure 6C,D right), including
STAT1 (Dupi DOWN, high IFNG group UP) and CXCR4 (Dupi DOWN, high IFNG group
UP) Despite the regulation of AD-related driver genes, a large number of DEGs were
not included in the dupilumab response gene signature for both the low (70.4%) and
high (72.2%) IFNG AD groups (Figure 6C). Interestingly, within the genes exclusively
regulated in the high IFNG AD group (507 genes), IFNG response genes such as GATA3,
GBP5, GBP1, GZMA, IFNG, IL32, STAT4, TNF, TRPV2 and ZBP1 were highly upregulated
(Supplementary Tables S1 and S2).

In summary, a strong common signature was observed between the high and low
IFNG AD subgroups and the dupilumab response genes, including several AD driver
genes that were regulated in opposite directions after the dupilumab treatment. However,
the genes exclusively regulated in the high IFNG AD group were strongly associated with
type 1 inflammation and were not affected by the dupilumab treatment.
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Figure 6. High and low IFNG AD subgroups share a strong common core signature with dupilumab
response genes. (A) Centrality ranked genes were identified as core signature genes for the low
(left) and high (right) IFNG AD subgroups by the INFORM consent algorithm and visualized in a
gene interaction network. The red coloration of the genes indicates their heightened centrality and
importance within the gene network. (B) Pearson correlation was performed between the (A) identified
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core signature genes for the low (left) and high (right) IFNG AD groups and the type 2-related
genes IL4R, IL13RA1, IL4 and IL13. (C–E) The DEGs (LS vs. NL) of core signature genes of the high
(n = 1061) and low (n = 879) IFNG AD subgroups were compared to dupilumab response genes
(n = 685, lesional skin on week 16 after dupilumab initiation vs. week 0) [33] and visualized in a
Venn diagram (C). Log2FCs of the dupilumab response genes and low IFNG (left) or high IFNG
(right) DEGs are displayed as scatter plots and linear regression was applied (R = −0.93 for the high
IFNG group, R = −0.88 for the low IFNG group) (D). In total, 189 genes were commonly regulated by
dupilumab and the high and low IFNG groups, including CCL8, CCL17, CCL22, DSC2, SERPINB4 and
S100A7A. Log2FC and p-adjusted values of these selected commonly regulated genes were visualized
for the dupilumab response and low and high IFNG AD groups (E). DEG = differentially expressed
gene, FC = fold change.

3. Discussion

This study identified high and low IFNG AD subgroups by transcriptome and T cell
secretome analyses, characterized their differences, and further evaluated their relevance
for dupilumab treatments at the transcriptome level. Due to the significant biological
role of IFN-γ in AD, such as in antiviral defense, this study focused on IFN-γ subgroups.
Additionally, IFN-γ signaling pathways are often masked in unsupervised clustering
algorithms due to strong type 2 responses. Given the diverse therapeutic landscape for
AD, ranging from targeted therapies to JAK inhibition, selecting the appropriate treatment
for each patient is crucial for physicians. While targeted therapies block type 2 cytokines,
such as IL-13, JAK inhibitors block multiple cytokines, including IFN-γ. Understanding the
molecular characteristics of high and low IFN-γ subgroups could provide a basis for future
studies to stratify patients for either JAK inhibition or targeted therapy. First, mapping
IFNG subgroups with their clinical parameters revealed that the high IFNG AD group was
characterized by a higher age, a higher risk of cardiovascular comorbidities, and an intrinsic
AD phenotype, while the low IFNG AD group showed classical features of extrinsic AD
with atopic comorbidities and a downregulation of lipid metabolism. These findings
are consistent with previous studies on acute/chronic and intrinsic/extrinsic AD [35–37].
Additionally, in line with our findings in the high IFNG AD group, Th1/type 1-associated
cytokines were identified in the adult- compared to the pediatric-onset AD cohort, in chronic
compared to acute AD, and in intrinsic compared to extrinsic AD [38–41]. Furthermore, the
PCA of the low IFNG AD group revealed less separation between the lesional and non-
lesional transcriptome in comparison to the high IFNG group, which might be explained
by a strong alteration of healthy skin in extrinsic AD [42–44]. Moreover, in the low IFNG
AD group, a significant reduction was observed in lipid production (glycerolipid metabolic
process), a hallmark of the impaired barrier characteristic of extrinsic AD [41,45,46].

The protective function of IFN-γ in AD is an established mechanism in the context of its
antiviral and antibacterial response [24,35,47]. This is supported by our data, as in the high
IFNG AD group the pathways response to bacterium and positive regulation of defense
response were significantly upregulated. This might explain why patients with intrinsic
AD suffer less frequently from eczema herpeticum or generalized impetiginization (Staph.
aureus) than patients with extrinsic AD [48,49]. Additionally, the pathway analysis of the
high IFNG AD group also provides evidence for a pronounced proinflammatory milieu
with an upregulation of the innate immune response, lymphocyte activation, response to
cytokines and inflammatory response, as well as a strong activation of the MADAD and
immune system gene sets. In this context, cytokine synergisms between IFN-γ and other
cytokines may play a role. IFN-γ and TNF, for instance, exert pro-apoptotic effects on
keratinocytes, which can contribute to eczema formation, cell death and spongiosis [50,51].
However, the transcriptome analysis of the high IFNG group revealed, overall, a stronger
Th1 signal. As AD is a heterogenous type 2-dominant disease, it is important to understand
the characteristics of patients exhibiting additional type 1 immune activation.

In contrast to previous studies, the present work compared the cellular composition
of the high and low IFNG subgroups using digital cytometry (CIBERSORTx). Here, the
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high IFNG AD group showed higher estimated fractions for M1 macrophages and a trend
towards higher levels of NK cells. Overall, the digital cytometry results revealed only
minor statistical effects. This is expected, as lesional skin was compared with lesional skin,
rather than comparing lesional skin with healthy skin. However, M1 macrophages revealed
a significant difference between the two groups. While the focus of AD research is on the
adaptive immune system, comparatively little is known about the role of M1 macrophages
in AD [52]. M1 macrophages exhibit pro-inflammatory effects, as they release the cytokines
IL-1β, IL-6, IL-12, IL-23, iNOS, MCP-1 and TNF-α, while M2 macrophages tend to have an
anti-inflammatory and wound-healing-promoting effect through the production of IL-10,
VEGF and TGF-β [53,54]. M2 macrophages, on the other hand, are the dominant type
in allergic diseases such as bronchial asthma [53,55]. In general, the polarization of M1
macrophages is also induced by IFN-γ, GM-CSF and LPS in the course of a disturbed
barrier [56]. In terms of AD, an increased amount of macrophages have been observed in
acute and chronic AD lesions compared to non-lesional and healthy skin [52,57].

Additionally, in an AD mouse model, a similar M1/M2 ratio was observed in skin
lesions; however, no classification into phenotypes or endotypes was evaluated [58]. The
continuous M1 polarization in the high IFNG AD subgroup might promote a chronic
inflammatory state [53]. Nevertheless, those results were derived from a mathematical
approach and validation experiments are needed to confirm these findings. The relevance
of IFN-γ-defined AD subgroups for treatment decisions is an intriguing but unanswered
question. In our data, both subgroups share a strong Th2/type 2 signature. While the
expression of IL4RA and IL13RA1 correlates more with the low IFNG AD cohort, their
comparison with the dupilumab response genes shows a great overlap between both
groups. This observation is in line with a recent publication demonstrating the consistent
efficacy of dupilumab in intrinsic and extrinsic AD [59]. However, whether high and low
IFNG subgroups represent stable endotypes remains uncertain and can only be conclusively
addressed through prospective studies assessing treatment responses. Our study has some
limitations. First, due to a lack of publicly available gene expression datasets during JAK
inhibition, no comparison with a JAK inhibitor response signature could be performed.
Second, further clinical information on superinfections and disease duration was not
available. While the results of the digital cytometry analysis revealed significant differences
in M1 macrophages, there has been no protocol established to directly isolate this cell type
from a skin biopsy and validate those findings experimentally. However, the strength of this
study lies in its large transcriptome dataset, from 48 patients, of lesional and autologous
non-lesional biopsies, combined with extensive clinical parameters. Classifying IFNG
subgroups using the elbow method is a robust and novel methodology and provides a solid
foundation for future therapeutic response evaluations in large AD transcriptome cohorts.

In clinical practice, treatment decisions require a careful evaluation of the individual
effect/side-effect ratio. The long-term observation of tofacitinib, a pan-JAK inhibitor,
in rheumatoid arthritis patients showed an increased risk of cardiovascular events and
malignancies in patients over 50 years [60]. In general, the overall cardiovascular risk in AD
patients is still controversial. On the one hand a meta-analysis indicated an increased risk of
CVD correlating with AD disease severity [61]; on the other hand, the absolute attributable
risk for CVD associated with AD was shown to be rather low and is associated with age
and comorbidities, such as smoking [62,63]. However, recent short-term evaluations of JAK
inhibitors in AD do not show an increased risk of cardiovascular events [64], with caveats
such as the fact that long-term data for dermatology are currently not available. Thus, in
this study, the high IFNG AD group showed a higher average age, suffered more frequently
from arterial hypertension and had an upregulation of the pathway for cardiovascular
disease. These results may suggest that the high IFNG subgroup may require further
investigation regarding cardiovascular comorbidities and adverse events associated with
JAKi in elderly patients. Despite these concerns, our data demonstrate that both groups
exhibit a strong dupilumab response signature, indicating that targeting type 2 cytokines
is a safe and effective approach for both subgroups. Future research might identify other
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modes of action targeting both type 2 cytokines and IFN-γ with a better risk–benefit profile
in elderly patients. To the best of our knowledge, this is the first transcriptome analysis
investigating high and low IFNG groups in an AD cohort using lesional and autologous
non-lesional skin specimens from 48 patients.

In summary, this study provides further insights into the heterogeneity of AD and
sheds light on the complexity of the immune pathways of AD subgroups. Differences
in the clinical characteristics and the cellular composition of the high and low IFNG AD
subgroups warrant future research on additional immune pathways, such as type 1-related
pathways, involved in AD pathogenesis aside from type 2 immunity. Through a detailed
characterization of individual immune deviations, a personalized approach to treatment
decisions might allow for better response outcomes in the future.

4. Materials and Methods
4.1. Study Cohort

The transcriptome analysis of the lesional and non-lesional skin of 48 patients with AD
(male n = 33, female n = 15) is a sub-analysis derived from the transcriptome project “IMCIS”
(Head: Professor Kilian Eyerich) from the Biobank Biederstein [65]. The study design and
data protection rules were approved by a local ethics committee (Klinikum Rechts der Isar,
44/16 S, 5590/12). The study was designed in line with the guidelines of the Declaration
of Helsinki. After obtaining informed consent from all patients, clinical, histological and
laboratory parameters were evaluated. Additionally, punch biopsies (6 mm) from the
lesional and non-lesional skin of each patient were collected. One-third of the biopsies were
used for RNA analysis, one-third for histological analysis and one-third for the isolation of
lesional T cells.

4.2. RNAseq Library Preparation, Sequencing, Mapping and Quantification

Samples were procured and aligned as described previously [65]. In summary, first,
the isolation of RNA from skin biopsies, using the QIAzol Lysis Reagent (Qiagen, Venlo,
The Netherlands) and the miRNeasy Mini Kit (Qiagen), was performed. Next, RNASeq
libraries were prepared using the TruSeq Stranded Total RNA Kit (Illumina, San Diego, CA,
USA) according to the manufacturer’s protocol for high sample volumes. Finally, samples
were sequenced on an Illumina HiSeq4000 (paired-end, read length of 2 × 150 bp, average
output of 40 million reads per sample). The STAR Aligner was used for sequence alignment
using the human genome reference hg38. The RNAseq count data were normalized by the
median of ratios method, implemented in the DESeq2 protocol, and then transformed using
the variance-stabilizing transformation from the Bioconductor (https://bioconductor.org/,
27 May 2024) package DESeq2 (https://bioconductor.org/packages/release/bioc/html/
DESeq2.html, 28 May 2024).

4.3. Cluster Analysis (Elbow Method, K-Mean Clustering) and RNAseq Analysis

For the cluster analysis, normalized counts of IFNG expression in lesional skin sam-
ples were obtained, which were previously generated using the R (version 4.2.1) package
DESeq2 [66] with respect to the condition lesional (n = 46) vs. non-lesional (n = 46). Through-
out the analysis, the dataset was corrected for both gender and batch effects, executed
through a design function in the DESEQ2 protocol. In alignment with the gender correction
protocol, all Y-chromosome-associated genes were initially excluded. To determine the
optimal number of clusters regarding lesional IFNG expression, the elbow method was
applied in Python 3.7, employing the sklearn (https://scikit-learn.org/, 28 May 2024) and
matplotlib (https://matplotlib.org/, 28 May 2024) packages. Subsequently, unsupervised
k-means clustering was performed for the optimal number of clusters, determined via
the elbow method in R (Version 4.2.1). Next, a re-analysis of the AD cohort was per-
formed according to the DESeq2 protocol from Bioconductor, as described above, and
the AD cohort was divided based on the groups established by the k-means clustering
results, contrasting the lesional and non-lesional samples and comparing the lesional

https://bioconductor.org/
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://scikit-learn.org/
https://matplotlib.org/
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transcriptomes of the high and low IFNG AD groups. Subsequently, a gene set enrich-
ment analysis was conducted in R using the clusterProfiler package (https://bioconductor.
org/packages/release/bioc/html/clusterProfiler.html, 28 May 2024), org.Hs.eg.db (https:
//bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html, 28 May
2024) and the Gene Ontology (GO) database (https://geneontology.org/, 28 May 2024).
The criteria for significance were stringent, setting cut-offs at a fold change (FC) of +/−1
and a false discovery rate (FDR) less than or equal to 0.05.

4.4. Digital Cytometry/Deconvolution—CIBERSORTx

For the immune phenotyping of the bulk RNA sequencing data, a deconvolution
algorithm was run on the CIBERSORTx platform (https://cibersortx.stanford.edu/, 28 May
2024), as previously described [67]. LM22, a gene matrix of 22 distinct human hematopoietic
cell populations, was used as the signature matrix [68]. The analysis was performed for the
parameters’ batch correction in B-mode (comparing RNASeq with microarray data) and
quantile normalization. The deconvolution algorithm was performed with 50 permutations.

4.5. Gene Set Variation Analysis

A gene set variation analysis (GSVA) was performed in R (4.2.1) as part of the bio-
conductor package (version 3.18), as previously described [69], on the counts per million
(CPM) data of the whole AD cohort (lesional vs. non lesional data of all 46 patients).
Subsequently, the results were displayed for lesional (Disease), non-lesional (Healthy),
Cluster 3 (high IFNG AD) and Cluster 1 (low IFNG AD) samples. The publicly available
gene set from the meta-analysis-derived atopic dermatitis (MADAD) study [27], as well
as gene sets for cardiovascular/artherosclerosis-associated genes [28–30,70] and immune
associated genes [29,31], were analyzed. For the analysis of type 1 and 2 keratinocyte
response genes, 2D keratinocytes were stimulated with IFN-γ (20 ng/mL), for type 1, and
IL-13 (20 ng/mL), for type 2 conditions, for 16 h and whole-genome expression arrays
(SurePrint G3 Human GE 8X60K BeadChip (#G4858A-028004, Agilent Technologies, Santa
Clara, California, CA, USA) were performed according to the manufacturer’s instructions,
as described previously [32]. Cut-offs were set as a p-value ≤ 0.05 and fold change ≥ 1.

4.6. Inform Algorithms and Comparison with Dupilumab Signature

The identification of the most important co-expressed genes in the high and low
IFNG AD groups was performed, as previously described, with the INfORM software
(https://github.com/Greco-Lab/INfORM, 28 May 2024) [34], using FKPMs of the DEGs
as the data background. The settings were left as default. As also previously described, the
algorithm was performed without mrnetb to reduce computation time [71]. To compare the
top co-expressed genes with the dupilumab signature, RNA sequencing data from Wk16
(16 weeks after initiation of dupilumab treatment) vs. Wk0 (the baseline transcriptome
before initiating dupilumab treatment), derived from Guttman-Yassky et al., were filtered
for FDR ≤ 0.05 and |log2FC| ≥ 1 [33] and compared to the co-expressed gene network of
the high and low IFNG DEGs via the online Venny 2.1.0 tool (https://bioinfogp.cnb.csic.
es/tools/venny/, 28 May 2024).

4.7. Visualization

The data were visualized in GraphPadPrism9, in R (version 4.2.1), using the pack-
ages ggplot2 (https://ggplot2.tidyverse.org/, 28 May 2024), enrichplot (https://www.
bioconductor.org/packages/release/bioc/html/enrichplot.html, 28 May 2024), DOSE
(https://www.bioconductor.org/packages/release/bioc/html/DOSE.html, 28 May 2024),
EnhancedVolcano (https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.
html, 28 May 2024), cnetplot (https://rdrr.io/bioc/enrichplot/man/cnetplot.html, 28 May
2024) and ggforty (https://cran.r-project.org/web/packages/ggfortify/index.html, 28
May 2024); in Biorender (license included https://www.biorender.com/, 28 May 2024); in
Python (3.7), with the package Matplotlib; and in Adobe Illustrator (Version 28.5).

https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
https://geneontology.org/
https://cibersortx.stanford.edu/
https://github.com/Greco-Lab/INfORM
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
https://ggplot2.tidyverse.org/
https://www.bioconductor.org/packages/release/bioc/html/enrichplot.html
https://www.bioconductor.org/packages/release/bioc/html/enrichplot.html
https://www.bioconductor.org/packages/release/bioc/html/DOSE.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://rdrr.io/bioc/enrichplot/man/cnetplot.html
https://cran.r-project.org/web/packages/ggfortify/index.html
https://www.biorender.com/
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4.8. Analysis of the Secretome of Lesional T Cells

Primary human lesional T cells were isolated from fresh skin biopsies of patients with
AD (n = 7) by their migration towards an IL-2 gradient, as described previously [72–74].
Briefly, biopsies were incubated in T cell proliferation medium (RPMI 1640 medium con-
taining 5% human serum (Sigma-Aldrich, St. Louis, MO, USA), 2 mmol/L glutamine,
1 mmol/L sodium pyruvate, 1% non-essential amino acids, 100 U/mL penicillin and
100 mg/mL streptomycin (all reagents from Invitrogen, Carlsbad, CA, USA) supplemented
with 60 U/mL IL-2 (Proleukin, Novartis, Basel, Switzerland) until the lesional T cells that
had emigrated from the biopsy reached a confluence of 30–50%. The T cell proliferation
medium, supplemented with IL-2, was replenished three times a week. After the isolation
phase, emigrated lesional T cells were expanded using α-CD3 (0.75 µg/mL pre-coated, BD
Biosciences) and α-CD28 (0.75 µg/mL, soluble, BD Biosciences, Franklin Lakes, NJ, USA)
stimulation. For supernatant generation, cells were re-stimulated with α-CD3/α-CD28
for 3 days and the supernatant was characterized by an enzyme-linked immunosorbent
assay (ELISA) for IL-4 (BD, 555194), IFN-γ (R&D Systems, DY285B, Minneapolis, MN,
USA) and IL-22 (R&D Systems, DY782) according to the manufacturer’s recommenda-
tions. Supernatants from patients 6–7 and from patients 1–5 were pooled in equimolar
ratios and their protein levels were analyzed by a multiplex ELISA, using the Pro Hu-
man Cytokine 27-plex Assay (Bio-Rad Laboratories, Hercules, CA, USA) according to the
manufacturer’s recommendation.

4.9. Language Editing

Language editing, grammar correction and translation tasks were performed with
the assistance of DeepL, ChatGPT4 and Grammarly. All analyses and text content in this
manuscript originate from the authors and were not created by AI.

4.10. Statistical Analysis

For the statistical analysis of the deconvolution proportion between the high and low
IFNG AD groups (Figure 4), in terms of age (Figure 1) and gene expression (Figure 3), a
paired t-test was performed. For the age analysis of Figure S1, a one-way ANOVA test
was used. Values were displayed as mean ± standard error of mean (SEM). The analysis
between the Z-scores of the different clusters in the GSVA was conducted using a mixed-
effect analysis with Tukey’s multiple comparison test. The significance levels were defined
as p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***) and p ≤ 0.0001 (****).
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