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Abstract: Additive manufacturing processes are prone to production errors. Specifically, the unique
physical conditions of Laser-Directed Energy Deposition (DED-L) lead to unexpected process anoma-
lies resulting in subpar part quality. The resulting costs and lack of reproducibility are two major
barriers hindering a broader adoption of this innovative technology. Combining sensor data with
data from relevant steps before and after the production process can lead to an increased under-
standing of when and why these process anomalies occur. In the present study, an IoT-based data
mining framework is presented to assess the stability of processing Ti6Al4V on an industrial-grade
DED-L machine. The framework employs an edge-cloud computing methodology to collect data
efficiently and securely from various steps in the part lifecycle. During manufacturing, multiple
sensors are employed to monitor the essential process characteristics in situ. Mechanical properties of
the 160 printed specimens were obtained using appropriate destructive testing. All data are stored on
a central database and can be accessed via the web for data analytics. The results prove the successful
implementation of the proposed IoT framework but also indicate a lack of process stability during
manufacturing. The occurring part errors can only be partially correlated with anomalies in the in
situ sensor data.

Keywords: Industry 4.0; process monitoring; edge computing; sensors; digital twin; additive
manufacturing; directed energy deposition; laser metal deposition

1. Introduction

The unique characteristics of additive manufacturing (AM) have led to its increasing
adoption in numerous industries and academic fields. AM is a general term for multi-
ple production technologies that construct physical objects by a layer-wise deposition of
material at pre-defined positions [1]. This production methodology stands in contrast
to traditional, subtractive manufacturing technologies, where parts are manufactured by
removing material from a larger workpiece. Laser-Directed Energy Deposition (DED-L), a
metal AM technology, is of particular interest in academia and industry due to its superb
trade-off between production time and part complexity [2,3]. In DED-L, a high-power laser
is utilized to create a melt pool consisting of blown metal powder on a substrate material.
By moving either the laser head or the base plate, and melting the existing structures and
newly applied powder, metallic structures with unique designs and material parameters
can be created layer by layer [4]. Nonetheless, the lack of product quality and the resulting
costs for the extensive trial and error iterations to achieve defect-free part fabrication hinder
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the broader adoption of DED-L in industrial applications [5]. The typical quality issues as-
sociated with DED-L are porosity, residual stress, cracking, and the high surface roughness
of the final parts [4]. This missing process stability associated with DED-L can be correlated
with the complex physical phenomena involved in the laser-powder interaction as well as
the cyclic thermal loading of the layer-wise manufacturing process [6,7].

To address this persisting issue, various scientific and industrial efforts have been
started to enhance the understanding of the process–structure–property relationship for
DED-L [8]. These investigations are focused on correlating the properties of the final part
to the conditions during the printing process. In this regard, Chen et al. [9] pointed out
that a proper qualification of the metal powder before the printing process is of utmost
importance for the properties of the final part. Measurements obtaining the particle size
distribution, the flowability, and the degree of sphericity have proven to be crucial factors
in the final part quality. During the process, the collection and analysis of in situ data
enhance the understanding of when and why process instabilities occur [10]. Tang et al. [11]
and Liu et al. [12] condensed the field of sensor systems and monitoring techniques that
are applicable to DED-L. Multiple scientific publications indicated that the essential char-
acteristic to be monitored in situ during the DED-L process is the melt pool created by
the high-power laser [11,13,14]. The monitoring of the melt pool is generally carried out
with cameras in the visible and infrared spectrum [11]. In addition to its temperature and
geometrical features, the distance between the melt pool and the deposition head is another
critical factor in assessing the stability of the DED-L process [15].

The combination of such monitoring data with the data obtained from the DED-L
machine results in a virtual representation of the real manufacturing process. Such a
representation, often referred to as a digital twin (DT), can also be utilized to enhance the
understanding of the DED-L process [16]. By combining the sensor and machine data,
the DT of the process creates transparency in understanding what kind of measurements
were obtained at which location and point in time during the manufacturing process [17].
As a result, errors in the final part can be traced back to anomalies in the process data.
Hartmann et al. [18], Reisch et al. [19], and Chen et al. [20] showcased the applicability of
fusing data streams from multiple sensors with the Tool Center Point (TCP) of AM systems.
The resulting DTs of the respective AM process can be used for sophisticated data analytics
to find outliers, anomalies, and correlations to the quality of the final part. Different
destructive and non-destructive techniques can be used to assess the final part quality after
the process. Yang et al. [21] provided an extensive review of different analytical methods
and concluded that destructive techniques are the most reliable tools to accurately assess
the capability of DED-L parts. In summary, it can be stated that data from multiple steps of
the part production process must be collected and analyzed to further the understanding
of the process–structure–property relationship for DED-L.

The collection and analysis of such data can be facilitated by incorporating elements
of Industry 4.0 in the part production process [22,23]. The term Industry 4.0 defines
the fourth industrial revolution, characterized by the integration of digital technologies
into manufacturing processes, such as the Internet of Things (IoT), artificial intelligence
(AI), cloud computing, and big data analytics. Efficiency, productivity, and adaptability
of manufacturing processes are hereby increased while the resulting smart factories are
capable of making decentralized and data-based decisions [22–24]. As Luściński [25]
pointed out, the convergence toward such smart factories is currently still in progress.
A necessity to unlock this potential is the consistent collection of data from the relevant
processes and machines [25,26].

Edge computing has proven to be a crucial computing paradigm to increase the
efficiency of consistent communication between data sources and central data storage [27].
Edge devices are specialized computing units positioned at the edge of a network, meaning
close to the processes and machines from which data is generated. The incoming data
is immediately processed and pre-defined data points are subsequently transferred to
a cloud server [28]. In comparison to a direct connection between the data-producing
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entity and the cloud, applying edge devices has been shown to improve latency, reliability,
and computational load management in Industry 4.0 applications [27]. Moreover, edge
devices can also ensure a secure and private data transfer that is in line with Industry 4.0
requirements [28].

In the context of AM, Wang et al. [29] proposed a framework for a smart AM factory
that is capable of collecting data from all parts of the AM value chain. In this framework, all
relevant data points are collected in a centralized cloud computer and made accessible via a
structured database. To ensure effective information processing, a computing architecture,
consisting of multiple edge IPCs that are efficiently collecting and processing data, is
presented. However, the actual application for a real AM system was not in the scope of
this research work. The work of Guo et al. [30] showcased a real application of a cloud-edge
architecture for visualization and control of the Fused Deposition Modeling (FDM) process.
The authors utilize an edge IPC to process and upload the monitoring data as well as to
control the FDM system. The cloud serves as the central data-gathering entity on which
machine learning models and other analytical tools are trained. While the benefits of this
approach are clearly presented, the application is still limited to a low-cost FDM printer
unsuited for industrial-grade manufacturing operations. The same limitation is valid for
the SMART Manufacturing System presented by Demčák et al. [31]. The authors also
employ a desktop FDM printer in combination with a camera and laser displacement
sensor to monitor the printing process in situ. The presented quality control system
combines the in situ data with information derived from the process preparation and
multiple post-process instruments. A different application of an IoT-based AM framework
in the field of FDM is proposed by Wang et al. [32]. The developed cloud platform is
the basis for the training of neural networks capable of evaluating the final part quality.
The approach is very convincing but the authors state that more sophisticated IoT tools,
such as edge computing, are needed for further industrial applications. Majeed et al. [33]
combined IoT devices (smart sensors, RFID tags, and scanners) with AM and sustainable
manufacturing into a framework for improved decision-making during the manufacturing
process. Big-data-based analytics are utilized to improve decision-making by visualizing
the hidden knowledge from the process data. This approach integrates multiple steps
in the value chain of the AM part production but is implemented solely for the selective
laser melting technology. Moreover, the framework neglects the need for an edge device
capable of working with and ensuring the timewise accuracy of high-frequency data that is
produced by the in situ monitoring of AM processes [34]. Another relevant framework was
described by Haghnegahdar et al. [35], who deem AM an “inherently suitable solution for
integration into cloud-based systems”. Their approach is centred around the concept of
an intelligent cloud system that is continuously monitoring and controlling AM processes.
However, no real application of the cloud-based system has been presented in their research
work. The most advanced IoT-based framework for AM was proposed by Liu et al. [36].
Multiple edge devices were deployed at all stages of the AM product lifecycle to collect
and transfer data to the central cloud storage. The lifecycle stages included product design,
process planning, manufacturing, post-processing, and quality measurements. While this
approach is the most extensive exploration in the field of IoT-based data management
for industrial AM, it is only applied to the production of eight samples with one metal
Powder Bed Fusion (PBF) technology. Other metal AM technologies were not considered,
and assessments of the overall process stability were not presented due to the low number
of tested samples. To the authors’ best knowledge, the only application of an IoT-based
metal AM framework outside of metal PBF is the industrial IoT system monitoring the
Laser Wire-DED technology developed by Martikkala et al. [37]. The architecture is based
on multiple edge IPCs processing the data streams from different sensors. The processed
data are saved in the time-series database InfluxDB and visualized with the open-source
software Grafana (https://grafana.com/). Nonetheless, the scope of this research work
was limited to only collecting data from the sensor systems and did not include data from
other stages in the product lifecycle.

https://grafana.com/
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With regard to the presented literature for applying Industry 4.0 frameworks to AM,
it can be stated that the implementation of an IoT-based architecture for the DED process
category, incorporating data from multiple steps in the product lifecycle is a goal yet to be
reached. This research work presents such a framework and applies it to the production
of multiple DED-L parts with titanium. Real-time, in situ monitoring data is collected
from multiple sensors and the DED-L system with an edge device. The DED-L process
data is combined with pre-process feedstock evaluations, process planning information
as well as post-process part quality assessment data into one centralized cloud database.
Statistical data mining techniques are subsequently employed to extract knowledge from
the data sets. The overall stability of the DED-L process is hereby evaluated and measures
to improve the monitoring setup are derived.

2. Materials and Methods

This section describes the overall setup of the IoT framework employed to assess
the process stability of the DED-L process. The description starts with the employed
hardware systems for printing and analyzing the parts and feedstock. Following this, the
utilized sensor systems, monitoring the DED-L process, are presented and their integration
in the production setup is explained. Afterward, the proposed digital architecture for
collecting and analyzing the process data is outlined. The interaction with this process
data in the front end is subsequently described, while the presentation of the experimental
methodology to assess the stability of the DED-L process marks the end of this section.

2.1. Hardware Systems

To fulfill the prerequisites of the proposed study, several machines must be deployed
across the entirety of the process chain. The process chain is divided into three distinct
phases: the pre-processing, the process itself, and the post-processing, each depending on
specific types of machinery, as described below. Additional information for all machines is
summarized in Table A1 of Appendix A.

2.1.1. Pre-Process Machines for Feedstock Assessment

In the pre-processing analysis, the delivered powder Ti6Al4V grade 5 is tested for
several characteristics with a Hall flowmeter, Camsizer X2, and Granudrum machines.
The Hall flowmeter (custom-made) provides the results of the flow rate, the bulk and tap
density as well as the Hausner ratio of the powder, by the used Hallow-system test. The
Camsizer X2 (Microtrac Retsch GmbH, Haan, Germany) measures the particle size distri-
bution through dynamic image analysis according to ISO 13322-2 [38]. The Granudrum
(Granutools, Awans, Belgium) measures the avalanche angle of response. Those charac-
teristics describe the powder material and must lie within the thresholds provided by the
powder manufacturer Eckart TLS GmbH. As Ti6Al4V is highly reactive, an oxygen level of
less than 50 parts per million (ppm) must be obtained throughout all print jobs [39].

2.1.2. Industrial Grade DED-L System

The DED-L system employed for this study is a BeAM Modulo 400 (AddUp, Cébazat,
France), presented in Figure 1 (left). This machine is used in industrial processes for repair
and cladding operations, the addition of features to existing components as well as the
creation of near-net shape geometries. It consists of an IPG YLS 2000 laser (IPG Photonics
Corporation, Oxford, MA, USA) and its chiller, with a maximum laser power of 2 kW with
a wavelength of 1070 nm, and a gantry Computer Numerical Control (CNC) (Siemens AG,
Munich, Germany) machine. The unique characteristic of this machine is the inert gas
process chamber, which can be flooded with Argon, to reduce the oxygen level. As a result,
the risk of oxidation during manufacturing is mitigated, enabling the processing of highly
reactive materials such as titanium and Inconel [40]. Typically, the processed powder has a
grain diameter of 45–100 µm. The powder is delivered via a vibratory feeder, traversing
through hoses to reach the nozzle. This nozzle is mounted on the Z-axis of a CNC machine.
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The nozzle moves in three linear axes, while the build platform consists of two rotational
axes. The typical build rate for this nozzle of the Modulo 400 is 90–150 cm3/h [40]. Figure 1
illustrates the DED-L machine with the integrated sensor systems.
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2.1.3. Post-Processing Machines for Heat Treatment and Quality Assessment

After the specimens are produced on the substrate plate, the residual stress must be
released first. Only after the stress release, further machining of the specimens is possible.
For this, a Nabertherm N41/h furnace (Nabertherm GmbH, Lilienthal, Germany) is used.
This furnace enables to heat the parts to 1280 ◦C [41]. Therefore, it can release the residual
stress common for steel and titanium parts manufactured with DED-L. After the residual
stress release, the near-net shape produced specimens are machined with the milling
machine DMU 50 ecoline (DMG Mori, Nagoya, Japan) to the desired contour of a DIN
50125 Form E specimen [42]. Subsequently, these contours are cut from the substrate plate
with the wire Electrical Discharge Machine (EDM) Fanuc ROBOCUT α-C600iB (Fanuc
Corporation, Oshino-mura, Japan) to their final form.

Several material tests are performed on the specimens, starting with the material
testing machine from ZwickRoell Z100 (ZwickRoell, Ulm, Germany). The Z100 is designed
for quasi-static and static tests in tensile and compression directions with a load of up to 100
kN. The load may vary from rapid, static, oscillating, or alternating. Every displacement
and force peak is recorded in high resolution and time-synchronized at 500 Hz on all
measuring channels [43]. The machine measures the Young’s modulus, tensile strength,
yield strength, and several additional parameters, which are less relevant for this study.
Finally, the remaining specimens are prepared for density and porosity analysis, which
is carried out by microscopy with a VHX-5000 microscope (Keyence Corporation, Ōsaka,
Japan). The approach for the density analysis is derived from the work of Möller [44]
and Jothi Prakash et al. [45], who presented a viable procedure to assess the porosity and
density of Ti6Al4V-parts manufactured with DED-L via microscopy.

2.2. Sensors

For this study, a total of 18 sensor systems were employed for data collection within
and outside of the BeAM Modulo 400. The sensor systems are divided into two categories.
As was already pointed out in Section 1, the melt pool remains the most important char-
acteristic to be monitored during DED-L [11,13,14]. Therefore, category A incorporated
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all data streams directly concerned with the monitoring of the melt pool. Those included
the integrated Optical Coherence Tomography (OCT) system and near-infrared camera
detailed in Sections 2.2.1 and 2.2.2 as well as the data coming from the DED-L machine. The
second category, category B, consists of the sensor systems employed to collect data from
the environment inside and outside of the machine. These sensor systems are presented
in Section 2.2.3. The data points from category A were sampled with a 500 Hz frequency
since this was the maximum obtainable frequency for the machine data. For category
B, lower frequencies were deemed sufficient as changes within and outside of the build
chamber environment do not occur rapidly during the DED-L process [46]. The product
specifications and frequencies for all employed sensor systems can be found in Table A2 of
Appendix A.

2.2.1. Integrated OCT-System

In DED-L, the stand-off distance between the melt pool and the nozzle is a critical
parameter to be observed during the printing process. Only a constant stand-off distance
guarantees a stable and safe part production [15]. To be able to observe the stand-off
distance, the OCT (Precitec GmbH & Co. KG, Gaggenau, Germany) system from Precitec
was integrated into the machine, presented in Figure 1 (right). The system works by
emitting laser light waves into the deposition spot and measures the back-reflected laser
light. Interferometry is used to detect the interference patterns created by the reflected
laser light, allowing a precise 1D measurement with a frequency of up to 70 kHz [47]. The
measurement data is filtered by a median filter internally on the field-programmable gate
array of the OCT system. Subsequently, the filtered data are provided via analog output to
the Industrial Edge with a 500 Hz frequency. Nevertheless, the quality of the OCT data in
the DED-L process is still a field of research due to the disturbance of the signal through
the moving powder.

2.2.2. Integrated Near-Infrared Camera

To observe the melt pool dimensions, the near-infrared camera Clamir (New Infrared
Technologies, Madrid, Spain) with a resolution of 64 × 64 pixels was integrated into the
optical path of the processing laser, as shown in Figure 1 (right). In contrast to the OCT
system, the camera detects the emitted light of the melt pool due to thermal radiation. The
emitted radiation is subsequently translated into the width of the melt pool by a real-time
processing unit positioned on top of the camera [48]. After the calibration of the pixel-to-
mm ratio, the measured values are also transmitted via analog output to the Industrial
Edge with a 500 Hz frequency. These data are later used to validate the stability of the
process.

2.2.3. Integrated Environment Sensors

To monitor the environment within and outside of the machine, 16 sensors were
employed to collect process data. Most of these sensor systems are positioned within
the build chamber and create transparency regarding the temperatures, gas flows, inert
chamber gas properties, and pressures present during the experimental runs. Those signals
are read directly through the programmable logic control (PLC) of the machine. In order to
also observe the environment of the machine cell, Balluff environmental sensors BCM0002
(Balluff GmbH, Neuhausen a.d.F., Germany) are placed on top of the machine [49]. These
sensors capture the outer machine environment by monitoring the temperature, humidity,
pressure, and vibration throughout the manufacturing processes. The Balluff sensors
are connected via I/O-Link to an OPC-UA master, which provides the data through an
OPC-UA connection to the Industrial Edge.

2.3. Digital Architecture

The hardware systems, analytical processes, and sensor systems described in the
previous sections produce data at different steps in the DED-L product lifecycle. The
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obtained data points from the pre-process and post-process qualification machines (see
Sections 2.1.1 and 2.1.3) are manually inserted into the cloud database. During the process,
the Industrial Edge IPC from Siemens AG (Siemens AG, Munich, Germany) functions as the
central data processing entity for all machine and sensor data streams. The runtime of this
edge device is based on an industrial-grade Linux system with Open Container Initiative
(OCI) standards to ensure secure data processing on the device. Moreover, the edge-cloud
communication is handled via an SSL-secured HTTPS connection providing an encrypted
data transfer between the edge and the cloud [50]. As it was pointed out by Jia et al. [34],
time synchronization between multiple, independent data streams remains one of the
toughest challenges to be solved within IoT frameworks. In the present architecture,
the edge device functions as the Network Time Protocol (NTP) server to which all other
monitoring devices are assigned. As a result, all devices run on the same clock which
minimizes errors in the synchronization of the data streams on the edge IPC. Figure 2
shows the digital architecture connecting all systems with the cloud platform.
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All in situ data points are processed on the edge device and subsequently transferred
to the cloud where they are combined with data coming from the other stages of the DED-L
product lifecycle. As it was pointed out by Liu et al. [36], the structure of a database repre-
senting a product lifecycle is crucial for efficient data management and analysis. Therefore,
a customized AM data model structure containing four DED-L product lifecycle steps was
defined. The considered product lifecycle starts with the feedstock assessment where the
powder is identified and qualified. Subsequently, the process planning parameters describ-
ing the actual printing process must be defined. All data points generated before printing
are inserted manually into the data model. Once the process starts, in situ data from the
machine and the sensors are automatically transferred to the database via the cloud-edge
framework. After the build job is finished, post-process analytical data characterizing the
final part quality are manually entered into the database. The data model was implemented
with TimescaleDB (2.7.0, Timescale Inc., New York, NY, USA), an open-source time-series
database built upon PostgreSQL (14, PostgreSQL Global Development Group). The central
entity of the DED-L data model is the respective print job. All related data coming from
feedstock assessment, process planning, in-process data monitoring, and post-process part
quality analytics are mapped to their respective print job. The structure of the DED-L data
model is depicted in Figure 3.
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2.4. Front End with Digital Shadow

The data stored in the created data model structure can be accessed via a web-based
user interface (UI). The UI is a web application built using Typescript with Angular (13.1.2,
Alphabet Inc., Mountain View, CA, USA). It runs on a local Linux server with an internet
connection. All required applications, like the database, Data Transfer Object (DTO) model-
ing, and the front end itself, are run on isolated Docker containers and are connected within
a Docker Compose (2.6.0, Docker, Inc., Palo Alto, CA, USA) network. Registered users can
enter the UI via the web and insert new entries in the database with standard REST-API
commands for HTTP. Figure 4 depicts the UI of the analytics platform showcasing an
exemplary sensor outlier detection for melt pool width data from a print job (blue), the
corresponding rolling average (red), and the lower and upper bounds (grey) derived from
the standard deviation of the rolling mean average. All relevant entries from the database
and necessary logical operators can be selected via pre-defined dropdown menus. The
corresponding views are directly displayed on the web page. The users can also directly
compare the data of different print jobs and utilize a direct connection to Tableau and
Jupyter Notebook for more sophisticated data analytics.
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The main purpose of the analytics platform is the visualization and analysis of the
DED-L process data. As was already established, such virtual representations of real
processes are often referred to as digital twins (DT). However, the term DT encompasses a
multitude of meanings in the academic and industrial sphere [51]. For the present work,
the definition to be used in the following is derived from the work of Kritzinger et al. [52].
The authors presented a three-term methodology to differentiate between the various
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applications of DTs. The distinction was made between a digital model, a digital shadow,
and a digital twin. The digital model does not use any automated data exchange between
the physical and the digital object. The digital shadow does so in one direction while
the digital twin has an automated, bidirectional data flow between the real and digitized
object. In the proposed framework, the data transfer from the actual DED-L process to the
cloud is automated but not bidirectional. Therefore, the correct term for the present virtual
representation of the in situ data is digital shadow. The digital shadow consists of the data
points from the employed sensor systems and the data collected from the DED-L machine.
In the described framework, the digital shadow can also be accessed and analyzed in the
front-end user interface. Figure 5 showcases an example of a digital shadow of the DED-L
process, combining the position data with the measured melt pool width.
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2.5. Methodology

To assess the stability of the DED-L process, a total of 160 specimens were printed and
analyzed. These 160 specimens were derived from 10 printing processes each comprising
four sub-print jobs to test the machine’s capability when handling different build strategies.
From each of the four sub-print job sections, four samples for post-process analytics were
taken. The design of the printed parts with the respective sub-print jobs can be viewed
in Figure 6. In total, each printed part consisted of eight walls and two cuboids. The
eight walls are dissected into two groups of four walls each. For the first group (a), the
build strategy was layer-wise, meaning that all four layers were built up simultaneously
layer-by-layer. For the second group (b), every wall was built one at a time before moving
to the next one. For the cuboids, two build strategies were employed. The first cuboid (c)
was printed with a parallel build strategy of depositing layer next to layer along the long
axis. For the second cuboid (d), the build strategy changed to a 45◦ zigzag build visualized
in Figure 6.
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Through systematic analysis of all data points described in Section 2.3, an effective
evaluation of the overall performance of the DED-L process can be achieved. The first step
in the analysis process is the utilization of descriptive statistics to understand the main
features of each dataset obtained. By employing mean, median, and quantile calculations,
insights about the central tendencies, variabilities, and distributions of the respective data
set can be perceived. To identify anomalies in the data sets, two strategies were followed.
For the feedstock assessment and the post-process quality characteristics, pre-defined
thresholds were used for data evaluation. These thresholds were either taken from the
literature or material supplier and are detailed in the respective Sections 3.1 and 3.4. The
second strategy concerned the in situ data coming from the sensor systems monitoring
the melt pool and process environment. Due to the extreme physical conditions in DED-L,
the in situ monitoring is prone to noise as lots of outliers can be expected throughout
an experimental run [6]. As the goal of the present study is the overall evaluation of
process stability across multiple DED-L print jobs, critical boundaries have to be defined
within which a print job can be deemed acceptable. These boundaries should focus on the
overall distribution of process data and not on specific outlier data points. To define such
boundaries, the present study employs the empirical method which suggests that 68%,
95%, and 99.7% of all data in a given set fall into one, two, and three standard deviations
of the mean, respectively [53]. The employed sample standard deviation (Equation (1))
was conducted using the python-library pandas with the method pandas.DataFrame.std(),
where xi is an individual data point in the data set x while x stands for the mean, and n
contains the number of all data points in the data set x [54].

s =

√√√√√ n
∑

i=1
(xi − x)2

n − 1
(1)

The standard deviation from the mean is used as the basis for the boundary setting
to determine which print jobs can be identified as acceptable. However, an important
distinction must be made between the in-process data from the melt pool (Sections 2.2.1
and 2.2.2) and the environment (Section 2.2.3) sensor systems. As was already pointed out,
the melt pool is the essential characteristic to be monitored during DED-L [11,13,14]. The
environment sensors are also important tools to monitor the DED-L process. However,
their respective monitored process characteristics have a less significant influence on the
final part quality. The authors consequently propose a rigorous boundary setting when
analyzing the melt pool monitoring data and a less strict setting when dealing with the
environmental data.

In the proposed approach, the boundaries for the melt pool data are set based on one
standard deviation from the mean. For the environmental data, the boundaries are set
based on two standard deviations from the mean. In both cases, a print job is declared
to be acceptable when the respective boundary is not crossed by the box displaying the
interquartile range (IQR) for the considered sensor data. The IQR contains the middle 50%
of an ordered data set and is calculated as the difference between its 75th (Q3) and the 25th
percentile (Q1). A visualization of this approach with three exemplary box plots can be
seen in Figure 7.
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Box plots are commonly used for visualizing the distribution of a dataset by displaying
the IQR (green box), median (black line in the green box), and whiskers (horizontal lines
outside of the green box). The whiskers extend the IQR to the maximum and minimum
values within 1.5 times the IQR from the first and third quartile, respectively. For the
proposed approach, the example in the middle, showcasing the IQR box slightly crossing
the threshold, would be deemed a borderline print job for which the acceptability must be
further evaluated based on the post-process data.

3. Results

This section presents the results of the stability assessment of the DED-L process
derived from the described IoT-based data mining framework. A total of 160 specimens
were manufactured and tested to validate the prescribed framework and assess the stability
of the DED-L process. The 160 specimens resulted from ten print jobs with four build
strategies each. Of these four build strategies, four specimens were cut each leading to 16
specimens per print job. Each print job produced data at all four steps in the described
lifecycle of DED-L parts (see Figure 3). The subsequent sections cover the analysis of data
derived from the feedstock assessment (Section 3.1), the process planning (Section 3.2), the
in situ data from the sensors systems (Section 3.3), and the post-process tests evaluating the
final parts (Section 3.4). Based on these analyses, the overall stability of the DED-L process
is discussed in Section 4.

3.1. Feedstock Assessment

For the first step in the lifecycle, the feedstock assessment, the described machines
in Section 2.1.1 were used to quantify the quality of the metal powder batches. In total,
two material batches were used during the production runs. The first batch was used
for print jobs 1 to 8 and the second batch for print jobs 9 and 10, respectively. For both
batches, the flow rate, bulk, Hausner ratio, particle size distribution, and avalanche angle of
response were all within the acceptable thresholds provided by the powder manufacturers.
Therefore, no outliers were spotted for the feedstock assessment lifecycle step.

3.2. Process Planning

Before assessing the stability of the DED-L process, a suitable process parameter set
had to be found. Several parameter sets with varying feed rates and laser powers were
tested by printing test samples and analyzing them subsequently. After finding the optimal
process parameters, they remained constant throughout all experiments. As a result, the
only dynamic process planning parameter during each production run then was the build
strategy which was altered four times for every part, as described in Section 2.5. The
manufacturing of complex parts generally requires the combination of different build
strategies in one print job. Therefore, the approach of changing the build strategy multiple
times during each production run further quantifies the process’ capability to be used in
the production of complex and critical parts. Regarding the process planning step, the
respective data sets therefore contained no anomalies or unexpected deviations from the
norm.

3.3. In Situ Process Data

As mentioned in Section 2.2, the in-process sensors were divided into category A,
containing the integrated sensor systems directly monitoring the melt pool, as well as
category B, consisting of the environmental sensors positioned within and outside of the
build chamber. For the first, melt-pool-related category, the data coming from the Clamir
and OCT systems were considered. Unfortunately, the OCT data can not be utilized
for analysis since calibration issues resulting in insufficient data remained during the
experimental runs. Therefore, the melt pool width data coming from the Clamir system
was taken as the sole indicator for process stability in category A. Derived from the logic
presented in Section 2.5, Figure 8 shows the box plots of the melt pool width data for
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all print jobs and the four build strategies employed. The red lines represent the single
standard deviation which is added to and subtracted from the mean of the entire data set
of the respective build strategy.
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Regarding the overall distribution of the melt pool width data, it can be stated that
print jobs 1 to 5 tend to have bigger IQRs and a more skewed distribution for the two
wall-related build strategies when compared to their counterparts for print jobs 6 to 10. The
wider spread in the middle 50% of the data points shows a more heterogeneous distribution
within those data sets. This could imply a less stable manufacturing process for those print
jobs which must be quantified with the post-process quality analytics. For the two cuboid
build strategies, this effect can not be seen as the IQR boxes indicate a more consistent
spread for those data sets.

As detailed in Section 2.5, all print jobs falling within the red lines should be deemed
acceptable. Consequently, there are several borderline and outlier cases indicating anoma-
lies in the melt pool width data. The two obvious outlier cases are print job 4 for the wall
layer-by-layer sub-print job and print job 1 for the cuboid parallel build strategy. The
IQRs of these two print jobs cross the red standard deviation mark. Moreover, for the wall
layer-by-layer build strategy, print jobs 1, 2, 3, and 10 as well as print jobs 1, 3, and 5 for the
wall one-by-one build strategy can be considered borderline print jobs as they almost touch
the standard deviation mark. For the cuboid parallel build strategy, multiple print jobs can
further be identified that are close to crossing the standard deviation, namely print jobs 6,
7, and 9. For the cuboid zigzag print jobs, the data are more evenly distributed, indicating
a more stable manufacturing process for this build strategy.
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When summarising the analysis of the melt pool data, it can therefore be stated that
multiple print jobs within the two wall-related build strategies as well as the cuboid parallel
build strategy do not show the characteristics of a stable melt pool data distribution. Solely
for the cuboid zigzag build strategy, a stable process can be estimated, as all print jobs are
evenly distributed without touching the single standard deviation mark.

In addition to the melt pool-related category A, the data coming from the environ-
mental sensors inside and outside of the machine also contained relevant insights into
the experimental runs. As pointed out in Section 2.2.3, a total of 16 sensors were used to
capture the environmental conditions inside and outside of the machine. The threshold
boundaries within which a print job can be deemed acceptable for the environmental data
were set to two standard deviations above and below the mean.

Inside the building chamber, the data from the employed sensor systems can be
grouped into gas flow, pressure, gas properties, and temperature data sets. The respective
sensors within each group showed similar behavior throughout the experiments. Figure 9
presents an example for each data group collected within the build chamber across all
print jobs for the sub-print job wall layer-by-layer. The first group, the gas flow sensors,
remained constant throughout all experimental runs. As the monitored gas flows are
directly controlled by the PLC of the machine, this consistency in the data can be expected.
Consequently, no outliers were detected for the gas flow sensors. The pressure sensors
showed some dynamic behavior across the print jobs but the respective IQRs never came
close to the threshold boundaries. It can be assumed that the pressure within the build
chamber is influenced by the extreme physical conditions created by the high-power laser
system. Moreover, the movement of the axes during production might also cause variations
in the pressure measurements. The observed dynamic behavior can consequently be
expected when considering the pressure data within the build chamber. Regarding the
inert chamber gas properties, measuring the humidity and oxygen level, a low dynamic
behavior can be attested, too. However, this data group showed clear deviations during
the experiments as can be seen in Figure 9 on the lower left side. The fourth data group
covering the temperature sensors within the build chamber shows very dynamic behavior
and outliers crossing the two standard deviation mark. As the high-power laser heats the
substrate and metal powder, temperature variations can be expected subsequently within
the build chamber.
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L system is positioned within a sealed-off room, strong dynamics can also be observed for 
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In addition to some of the sensors within the build chamber, the sensor systems
placed outside of the machine show dynamic behavior throughout all print jobs. Figure 10
visualizes the process data for the employed vibration, temperature, humidity, and pressure
sensors across all print jobs for the sub-print job wall layer-by-layer. The dynamic behavior
of the vibration can be directly attributed to the movements of the machine during the
manufacturing processes. The same is valid for the temperature sensor as the machine is
emitting heat from its build chamber to the environment. Even though the DED-L system is
positioned within a sealed-off room, strong dynamics can also be observed for the humidity
and pressure sensors positioned outside of the machine. It can be assumed that the opening
of the door or windows in the sealed-off room during the experiments might have resulted
in the observed humidity and pressure behavior. For all sensors positioned outside of the
machine, outliers were detected.
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To summarise the environmental data coming from the sensors within and outside
of the build chamber, it can be stated that several print jobs outside of the pre-defined
threshold of two standard deviations were identified. Within the build chamber, strong
differences in the dynamic behavior can be observed for the different sensor data groups.
In contrast, the sensor systems positioned outside of the build chamber showed dynamic
behavior throughout all experimental runs. As multiple critical print jobs were identified,
the informative value of the different sensor systems will be further evaluated in Section 4
based on the post-process data detailed in the next paragraph.

3.4. Post-Process Data

As the in-process data analysis indicated a lack of process stability based on multiple
outliers detected in the sensor data, post-process part testing is used to validate this
assumption. The tests and machinery described in Section 2.1.3 were employed to quantify
the quality of the 160 specimens. The resulting information evaluating the Young’s modulus,
tensile strength, yield strength, and density of each specimen indicated some degree
of variability during the print jobs. Figure 11 displays the mean values of all quality
characteristics of the four specimens taken from every build strategy for all ten print jobs.
The thresholds for each test are displayed as red lines and are derived from the work of
Möller [44].
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yield strength (c), and density (d) with the respective upper and lower thresholds (red dashed lines).

All print jobs are within the acceptable range for the Young’s modulus, tensile strength,
and yield strength measurements. In contrast, the density measurements show multiple
outliers. The discrepancy in the measurement results between the first three and the fourth
test can be attributed to the different measurement objectives. For the Young’s modulus,
tensile strength, and yield strength, the objective is to quantify the strength of the parts
along the printed track. For the density measurements, the inter-layer robustness is tested.
The measured density values below the threshold of 99.75% indicate a lack of fusion
between adjacent layers during the build-up, which can be interpreted as cracks inside the
specimen. Since the tensile tests were performed along the track, this lack of fusion does
not influence the shown parameters, which are in the given boundaries. The lack of fusion
can have three different origins. The first origin might be the stand-off distance between
the nozzle and the part. Since the powder stream and the processing laser have a defined
focus, a deviation in the stand-off distance leads to less induced energy and less molten
powder. As mentioned in Section 2.2.1, the observation with the OCT system used was not
feasible at the time of this study. The second origin could be the fluctuation in the powder
stream, which was not measured during this study since industrial in situ powder stream
measuring solutions at the current time are not present in the market. The third cause of
the lack of fusion could be the cooling and shrinking of the part, which again results in an
increased stand-off distance. Especially for the layer-by-layer wall build strategy, with an
increased time between each layer, this could have been an important issue.

Broken down into the respective sub-print jobs, the wall layer-by-layer build strategy
shows five, the wall one-by-one five, and the cuboid parallel six faulty print jobs. As
Ruiz et al. [55] pointed out, the observed porosities are typical but detrimental defects in
DED-L manufactured parts. The respective print jobs can hence not be deemed acceptable
even though the other post-process measurements might be in line with their respective
thresholds. As a result, a total of 16 sub-print jobs show inadequate part characteristics.

4. Discussion

Based on the findings of Sections 3.3 and 3.4, it can be summarized that the DED-L
process did not run stable throughout the ten print jobs. This instability is most obvious
when considering the density measurements indicating porosities and lack of fusion for
16 sub-print jobs. The results imply the need to further optimize the process parameter
sets for the different sub-print jobs. By investigating different variations in the laser power
and feed rate for each sub-print job, a more stable process across all print jobs could be
achieved.
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While the data from the melt pool width and environmental sensors also indicate a
lack of process stability, it must be stated that a clear correlation between sensor data and
post-process data can not be established. This statement is best shown when considering the
detected outlier print jobs for the melt pool width data. Based on the presented boundary
approach, using a single standard deviation from the mean, two print jobs clearly intersect
the upper threshold boundary. These are the wall layer-by-layer section of print job 4 as
well as the cuboid parallel section of the first print job. Print job 4 also shows an outlier
in the density data for the wall layer-by-layer sub-print job. For print job 1, however, no
outlier can be detected in the post-process quality tests. The same is valid for the skewed
print jobs 1 to 5 for the wall sub-print job types. Here, the IQRs of the melt pool width
data are skewed and multiple borderline cases can be identified. Nevertheless, print jobs
1 and 5 are not prone to any outliers in the post-process data for either of the wall sub-
print jobs. Moreover, the borderline print job 10 of the wall layer-by-layer strategy, does
not correspond to any outlier in the post-process tests as well. Considering the cuboid
parallel strategy, the melt pool width data indicates anomalies for print jobs 6, 7, and 9.
Based on the post-process measurements, these print jobs are indeed outliers, but subpar
density measurements were detected for print jobs 2, 4, and 8, too. Derived from these
inconsistencies, the obtained melt pool width data can only be deemed capable of tracking
the process in situ to some extent. Derived from the presented approach of using a single
standard deviation to identify outliers, the data correctly showed that the overall process
stability was not given throughout all print jobs. The proposed boundaries for the melt
pool width data also correctly implied that the cuboid zigzag sub-print jobs should not
be prone to errors in the final part quality. For the three remaining sub-print job types,
the detected outliers only partially correspond with the measured quality outliers in the
post-process tests. It can therefore be assumed that more dedicated calibration efforts and
the inclusion of additional sensor data, such as the presented OCT system, might lead to
more tangible results in future research works.

The environmental data shows even less correlation with the post-process measure-
ments. Although multiple sensor systems indicated outliers for different print jobs, no
systematic trace back to the post-process quality measurements can be observed. This
implies that no environmental sensor contains informative value about the final part quality
for the ten print jobs. This could be explained by considering that the occurring manu-
facturing error, the lack of fusion, is not monitorable by the environmental sensor set.
Subsequently, the proposed threshold strategy of using two standard deviations to identify
outliers does not lead to tangible results either. Nonetheless, the dynamic behavior of the
sensor systems shows that they are capable of tracking the process conditions inside and
outside of the machine. It can hence be assumed that major environmental shifts within
and outside of the DED-L system can be detected with these sensor systems in future
production runs.

5. Conclusions

Considering all data sets presented, the proposed implementation of an IoT-based
data mining architecture for the DED process category, incorporating data from multiple
steps in the product lifecycle, has been achieved. Data from the feedstock assessment,
process planning, in situ sensors, and post-process quality tests were combined into one
data model tailored toward the DED-L process. The major results of the presented research
work are summarized below:

• A total of 18 sensors were integrated into an industrial-grade DED-L system to collect
data from the melt pool and machine environment during multiple printing processes.

• An edge IPC was employed to pre-process and fuse the data streams from the sensors
with the data coming from the DED-L machine to create a digital shadow of each print
job.

• All in situ data points were transferred into the cloud and subsequently stored in a
database alongside the corresponding data sets from all other lifecycle steps.
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• To identify anomalies in the sensor data, thresholds were defined based on the standard
deviation from the mean and the interquartile range of the respective data sets.

• Ten print jobs consisting of four sub-print jobs, each representing a different build
strategy, were manufactured to test the capabilities of the proposed framework.

• For the feedstock assessment as well as the process planning stage, no anomalies were
detected in the data.

• Considering the in situ sensor data, the proposed boundaries indicated multiple
sub-print jobs as potentially anomalous.

• The post-process data for the Young’s modulus, tensile, and yield strength exhibited
no outliers, while the density tests identified anomalies in a total of 16 sub-print jobs.

• As these 16 sub-print jobs can only be partially traced back to anomalies in the in situ
sensor data, a clear need for a more sophisticated sensor setup and calibration can be
derived from this study.

Future research work will subsequently be focused on a further refinement of the
utilized as well as the integration of additional sensor systems. As the OCT system is already
installed in the machine, this will be the first additional sensor data for consideration in
future experiments. Further, the integration of a powder flow measuring system, as well as
the temperature monitoring of the melt pool shall be integrated into the machine to gain
even more insight into the process. The data captured by these sensors might clarify the
origin of the lack of fusion observed in this study and could be used for closed-loop process
control in future studies.
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Appendix A

Table A1. List of machines.

Machine Name Process Used for Characteristics

Pre-process feedstock assessment

Hall flowmeter Flowmeter Characterization of bulk and tap density,
powder flowrate, and Hausner ratio

Density-based on 25 cm3 of volume;
powder flow–based on 50 g of powder

passing defined funnel

Camsizer X2 Dynamic image analysis Particle size distribution Measures powder
from 0.8 mm to 8 mm in a dispersion

Granudrum Optical based rheometer Avalanche angle of response Recording of images
with a 2 Hz frequency
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Table A1. Cont.

Machine Name Process Used for Characteristics

DED-L system

Beam Modulo
400 DED-L Specimen near-net-shape

manufacturing
2 kW IPG laser source, inert gas

chamber, vibration powder feeder

Post-process machining

Nabertherm
N41/h Furnace Stress release of specimens Up to 1280 ◦C, no

controlled atmosphere

DMU 50
ecoline Milling machine Specimen form milling 5-axis milling, up to 8000 revolutions

per minute

ROBOCUT
α-C600iB Wire EDM Final specimen form cutting Minimum step size of the drives:

0.0001 mm

Post-process quality testing

ZwickRoell
Z100 Tensile tests

Measuring of E-Module E
the Elongation at Break At

Tensile Strength Rm, Yield Strength Rp0,2

Max. testing force 100 kN. Rapid,
static, oscillating, or alternating force

application possible.

Keyence
VHX-5000 Digital microscope Determining the porosity

and density of specimens 4 K imaging with a zoom up to 6000×

Table A2. List of machine data and sensor systems.

Sensor Name Frequency Process Parameters Source

Machine data 500 Hz X, Y, Z, B, C, speed, laser power Numerical control unit

Environmental data
inside of the machine 2 Hz

Gas flow:
Hopper speed,

Forming gas flow rate,
Central gas flow rate,

Inert gas flow rate
Pressure:

Chamber pressure,
Forming gas pressure,
Central gas pressure

Inert chamber gas properties:
Chamber oxygen level,

Chamber oxygen percentage,
Chamber humidity

Temperature:
Chamber temperature,

Table temperature

PLC

Environmental data
outside of the machine 0.3 Hz

Vibration
Temperature

Humidity
Pressure

OPC UA

OCT sensor 500 Hz read out Stand-off distance Edge IPC

Clamir camera 500 Hz read out Melt pool width Edge IPC
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