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Abstract: Macrophytes, which are foundational to freshwater ecosystems, face significant threats
due to habitat degradation globally. Habitat suitability models are vital tools used to investigate
the relationship between macrophytes and their environment. This study addresses a critical gap
by developing a Geographic information system-based HSM tailored for small lakes, which are
often overlooked in ecological studies. We included various abiotic predictors to model the potential
macrophyte habitat for several small lakes in southern Bavaria (Germany). Key factors such as the
distance to groundwater inflow, depth, availability of photosynthetically active radiation (PAR),
and littoral slope were identified as significant predictors of macrophyte occurrence. Notably, the
HSM integrates remote sensing-based data to derive PAR availability at the growing depths of the
macrophytes using Sentinel-2 MSI data. Integration of an MSI-based time series of PAR availability
enabled the introduction of a temporal component allowing monitoring and predicting changes in
macrophyte habitats over time. The modeled habitat suitability score correlates highly (R = 0.908)
with macrophyte occurrence. We see great promise in using habitat modeling for macrophytes as
a tool for water management; in particular, the use of Sentinel-2 MSI data for habitat suitability
modeling holds promise for advancing water management. By demonstrating the efficacy of GIS-
and remote sensing-based HSM, we pave the way for future applications of this innovative approach
in ecological conservation and resource management.

Keywords: habitat suitability; macrophytes; inland waters; remote sensing; GIS; habitats; lakes

1. Introduction

Freshwater ecosystems are among the most endangered habitats worldwide [1,2].
They are valuable for studying aquatic ecosystems under changing conditions. Lakes, as
relatively closed ecosystems with distinct cycles, food webs, and species pools, serve as
scaled-down model systems for global change studies [3,4].

Macrophytes function as foundational species [5] in lakes around the world. They
are photosynthetic aquatic organisms, visible to the naked eye, including charophytes,
bryophytes, pteridophytes, and spermatophytes [6]. Macrophytes play key roles in nutrient
cycling [7,8], structuring phytoplankton [9], zooplankton communities [10,11], and modi-
fying habitats [12,13]. They enhance habitat complexity [14] and influence trophic webs
by providing detritus [15,16]. Additionally, they provide ecosystem services such as water
purification, disease management, wastewater treatment, erosion regulation, and food pro-
vision [17]. At the same time, however, various anthropogenic threats and climatic shifts
cause a decline in macrophyte diversity globally [18,19]. As photosynthetic organisms,
macrophytes rely on light within the range of photosynthetically active radiation (PAR) [20].
In aquatic ecosystems, PAR decreases with depth, quantified by the attenuation coefficient
(KdPAR), which is influenced by turbidity [20]. Climate change is expected to increase
turbidity [21], thereby raising KdPAR and reducing PAR, adversely affecting macrophytes.
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In Europe, authorities map macrophytes in lakes larger than 50 ha within a three-
year cycle, leaving a significant research gap for smaller lakes, which constitute 80 to
90% of European lakes [22]. However, high monitoring costs and time constraints make
comprehensive macrophyte monitoring challenging. Thus, decision-makers require cost-
effective approaches to support macrophyte monitoring in small lakes. To address this,
we aim to use models that predict macrophyte distribution and potential habitats, which
can be used to support monitoring and identify areas of interest that are not included in
regular monitoring.

Modeling techniques are widely used for studying species–environment relation-
ships [23]. These techniques facilitate the mapping of current and potential species dis-
tributions and predict how these distributions may change in response to environmental
alterations. Such models can provide valuable insights into environmental management
decisions [24]. However, the accuracy of model predictions depends heavily on the quality
and quantity of input parameters, and their transferability is often limited [25–27]. Model
development requires careful selection of predictors, models, and validation methods
tailored to the species, region, and spatial and temporal scale of interest [23,28]. In this
study, we use the term ’habitat suitability model’ (HSM) to describe potential habitats of
freshwater macrophytes [29]. In the literature, however, several different terms are used
interchangeably, e.g., habitat suitability model, species distribution model, or ecological
niche model [30,31].

In general, a combination of various scale-dependent abiotic and biotic factors in-
fluence the distribution and abundance of macrophytes in lakes [32–34]. Abiotic factors
comprise local or lake-specific environmental factors, such as water chemistry [35], tem-
perature [36], littoral slope [37,38], and the availability of PAR [39,40]. They are more
influential than broader geographic, climatic, or historical conditions [41,42]. Biotic factors
influencing macrophyte habitats constitute herbivory, epiphytic growth, and competition
among plants [15,43–45]. However, in our study region, there is limited understanding of
such biotic interactions and their role in determining macrophyte diversity. We, therefore,
focus on abiotic factors and their potential to characterize the potential macrophyte habitat,
laying the foundation for a model-based analysis of macrophyte occurrence in our study
region. To this end, we developed an HSM using geographic information system (GIS) tech-
niques and remote sensing data for a series of small freshwater lakes in southern Germany.
Our focus is on abiotic factors affecting submerged and floating-leaved angiosperms and
charophytes, referred to as ’macrophytes’. Concerning the integration of remote sensing
data, we focus on inferring the availability of PAR on the lake bottom. PAR availability,
traditionally determined using proxies such as measurements of Secchi disk depth, has
been identified as an important predictor of macrophyte occurrence that can be inferred
from remote sensing data with high temporal and spatial resolution [46]. Despite its poten-
tial, to the best of our knowledge, remote sensing-derived PAR availability has not been
incorporated into HSMs or other aquatic ecological models.

Therefore, our objectives are to (1) determine the potential habitat of macrophytes in
small lake systems, (2) discuss the HSM as a practical tool for decision-makers and water
resource managers, and (3) illustrate the added value of remote sensing for modeling and
monitoring in small-scale freshwater environments.

2. Materials and Methods
2.1. Study Site

The Osterseen Lake District (47.79°N, 11.30°E) is located in southern Bavaria
(Germany) and developed from dead-ice formations during the last glacial period. The
pre-alpine region experiences a temperate climate with high annual precipitation, averaging
1250.4 mm [47], and moderate annual temperatures, with a mean of 8.6 ◦C [48].
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There are 19 interconnected lakes in the Lake District with a total surface area of
215 hectares and maximum depths ranging from 5 to 30 m. Despite the area’s high pre-
cipitation, most lakes are sustained either directly or indirectly through other lakes by
groundwater inflow (Figure 1). They are notably categorized as hard-water lakes due to
their elevated CaCO3 concentrations, resulting in a saturation index (Ω) of 4.8 ± 1.2 [49]
and slight alkalinity (pH ranging from 7.5 to 8.8) [50]. Experts assumed that initially,
all the lakes were oligotrophic [51]. However, ongoing agricultural activities around the
southernmost lakes and municipal wastewater inflows from the village of Iffeldorf until
the mid-1980s led to eutrophication [50]. Nowadays, the lakes display a distinct trophic
gradient, with the southern lakes exhibiting eutrophic conditions and the northern lakes
maintaining oligotrophic conditions (see Figure 1; Table 1) [52]. Based on this gradient,
the lakes are categorized as southern (eutrophic), northern (oligotrophic), and central and
eastern (meso- and meso-oligotrophic) lakes, presenting a unique model system to address
ecological questions.

Figure 1. The Osterseen Lake District in Upper Bavaria, Germany. The trophic state of the lakes (white
to black) and groundwater inflow locations (red dots). Basemap: Sentinel-2A MSI L2A 11.08.2023
T32, CRS: WGS 84 EPSG:32632.
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Table 1. List of lakes and abbreviations in the Osterseen Lake District.

Lake Name Abbr. Trophic State Surface
Area [ha]

Max.
Depth [m] Cluster

Ursee US Oligotrophic 2.75 11.8

no
rt

he
rnGartensee GAS Oligotrophic 7.89 14.2

Gröbensee GS Oligotrophic 7.81 15.8
Lustsee LS Oligotrophic 7.16 18
Stechsee STS Oligotrophic 9.50 15.4

Ameisensee AS Meso-oligotrophic 5.28 19.8

ce
nt

ra
l

Öst. Breitenauersee OBS Meso-oligotrophic 2.40 16.3
West. Breitenauersee WBS Meso-oligotrophic 6.49 17.8
Ostersee OS Meso-oligotrophic 118.48 30.1

Eishausseee ES Mesotrophic 6.99 19.8

ea
st

er
nHerrensee HS Oligotrophic 2.72 11.5

Bräuhaussee BS Mesotrophic 3.96 13.1
Fischkaltersee FKS Mesotrophic 2.71 11.9
Forchensee FOS Meso-oligotrophic 0.84 9.4

Fohnsee FS Mesotrophic 19.65 24.1

so
ut

he
rnWolfelsee WOS Mesotrophic 1.02 6.1

Sengsee SES Eutrophic 5.03 15.1
Schiffhüttensee SHS Eutrophic 1.35 6.4
Waschsee WS Eutrophic 1.08 5.5

Due to the temperate climate, the lakes are dimictic, i.e., they experience two periods
of full water column mixing in the spring and fall. However, Lake ES is an exception, as it is
only partially mixed and, thus, classified as meromictic [50]. During the stratified phases of
the lakes, some of the southern lakes are also subject to cycles of calcite supersaturation [49].
During these states, the affected lake waters are highly turbid with Secchi depths < 2 m
due to calcite precipitation within the water column. Additionally, high calcite conditions
favor phytoflagellate (Phacotus lenticularis) abundances, which may further influence the
carbonate chemistry within the lakes [49]. The northern lakes, except Lake LS, experience
surface inflows from the adjacent Staltacher Moor, which introduce high levels of humic
acid into the lake water and lead to a brownish water color.

2.2. Modeling Habitat Suitability

Habitat suitability refers to a habitat’s capacity to sustain specific species [29]. It is
linked to environmental factors, influencing the likelihood of the species’ presence in a
particular area [53]. As previously mentioned, human activities are major contributors to
the decline in lake habitats [18]. Therefore, studying lake habitat suitability is crucial as it
provides insights into their quality.

We used a linear additive approach to forecast the suitability of the lakes in our study
region for macrophyte occurrence. Therefore, the HSM determines the environmental
abiotic factors that specific macrophytes prefer or avoid to assess the presence of these
factors across a landscape, resulting in a suitability index. Using a geographic information
system (GIS), these index values can be visualized and studied to identify suitable habitat
areas for the species. It is essential to understand that the modeling results reflect the
potential suitability of a habitat for a species, not its actual presence. Model inputs were
selected based on the literature [37,38,54–56], comparable studies [57], and region-specific
observations; these inputs encompass bathymetric data, littoral slope, PAR availability, and
the distance to groundwater inflows.

The HSM was constructed using the most important abiotic predictors to gener-
ate an overall suitability score for each pixel. We employed the method described by
Fleming et al. [57], which was adopted from work by Malczewski [58]. Using this method,
non-binary layers (xi) were combined into a dimensionless score, where equal weighting of
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each input simplifies to the mean value of the layers (xi). Binary layers for PAR availability
(PAR1/0) served to pre-select viable habitats as follows:

HSS = PAR1/0 ∗ xi (1)

The output of the model is a dimensionless habitat suitability score (HSS), set to the
range from 0 to 100, which expresses the habitat suitability for freshwater macrophytes
during the growth season from March to September.

2.3. Model Input

In this section, we outline the input parameters for our HSM and describe how we
derived the inputs from raw data.

2.3.1. Satellite Data

We used Sentinel-2 MSI data to gather spatiotemporal information about direct irra-
diance, irradiance geometry, and KdPAR (see Figure 2). The sensor was selected due to
its high data availability, good radiometric resolution, sufficient spatial resolution, and
high temporal resolution. A total of 139 level-1 top-of-atmosphere scenes (processing
baseline 05.09) were acquired from January to December 2023 with a maximum cloud
coverage threshold of 75% from the Copernicus Data Space Environment. These scenes
underwent atmospheric correction using the ACOLITE processor (update from 26 February
2024) following the dark spectrum fitting approach using the SWIR-based glint correction
algorithm [59,60]. To mitigate the effects of land adjacency and filter out atmospheric
conditions with unreasonably high NIR values retrieved by ACOLITE, the land–water
masking wavelength was adjusted from the default 1600 nm to the 865 nm bands, and the
SWIR/NIR masking threshold increased to 0.05.

Sentinel-2 MSI
A/B

Bathymetry 
Data Points

BioSonic
MxEchosounder

2023

PAR availability
at bottom depth

Macrophyte
Mappings

Bathymetry map

Slope/Aspect

TriOS
RAMSES

KdPAR

Postition of
ground-water

inflows

Distance to
closest ground-

water inflow

Habitat Suitability
Model
(HSM)

Validation

Satellite derived
KdPAR Validation

ACOLITE DSF
& Irradiance

Approximation

Figure 2. Overview of the workflow including data processing (round-cornered boxes), HSM and
PAR model construction (square boxes), and validation (oval boxes).

ACOLITE provides an implementation of the quasi-analytical algorithm (QAAv6) to
estimate inherent optical water properties [61]. Two algorithms are available for KdPAR
retrieval using QAAv6, i.e., the “QAAv6-KPAR-Lee” [62] and the unpublished second
version fit to Kd490 QAAv6 outputs named “QAAv6-KdPAR-Nechad”. For this study, both
methods were evaluated. To do so, we first applied ACOLITE’s inherent water masking and



Remote Sens. 2024, 16, 2339 6 of 22

the normalized difference water index (NDWI) to select valid water pixels. Then we used
the normalized ratio between the 492 nm and 665 nm MSI bands to mask shallow water
pixels. The remaining water pixels were then aggregated to determine the average KdPAR,
which is used as an input parameter to the HSM for each lake. For validation, a square of
3 × 3 10 m MSI pixels was extracted at the geolocation of in situ KdPAR measurements.
The median of the 9 pixels was combined into a macro-pixel. We made spatiotemporal
match-ups for the same day (±12 h) and geolocation (±20 m) of the in situ measurements,
which are described further in the next section.

Figure 3 shows a comparison of satellite-derived KdPAR and in situ-measured KdPAR
using the TriOS RAMSES radiometer. Table 2 provides additional statistics and accuracy
measures. A total of 21 spatiotemporal match-ups between in situ and remotely sensed data
were obtained. Figure 3 and Table 2 show that the two algorithms performed similarly. The
in situ measurements ranged from 0.47 to 1.05 m−1. In comparison, the remotely sensed
data covered a broader range, as follows: 0.37 to 1.22 m−1 using the Nechad algorithm
and 0.41 to 1.39 m−1 using the Lee algorithm. The satellite-derived KdPAR tended to
underestimate lower values (<0.8 m−1) and overestimate higher ranges, resulting in a mean
bias error of 0.05 m−1 for KdPARNechad and 0.04 m−1 for KdPARNechad (Table 2). Specifically,
KdPARLee underestimates to a lesser extent than KdPARNechad for lower values. For higher
KdPAR values, however, our analysis indicates that KdPARLee overestimates more than
KdPARNechad. The intercept and slope of the linear regression fit shown in Table 2 and
Figure 3 suggest that KdPARNechad was more accurate across the entire range of KdPAR.
Nevertheless, most of our data were in the lower range of <0.8 with a mean in situ KdPAR
of 0.63. Therefore, the Pearson correlation coefficient r and the coefficient of determination
R2 favor KdPARLee, as they underestimate less at lower values. Consequently, we selected
KdPARLee for further processing.

Figure 3. Macropixel (30 × 30 m) match-ups from Sentinel-2 MSI and in situ KdPAR measurements
using the QAAv6 Nechad algorithm (a) and the QAAv6 Lee algorithm (b).

Table 2. Statistical overview on in situ and remotely sensed KdPAR and match-up quality metrics
(MBE is the mean bias error). All values refer to m−1 except for R and R2.

Mean Min Max Slope Intercept r R2 MBE

KdPARRAMSES 0.63 0.47 1.05
KdPARNechad 0.58 0.37 1.25 1.22 −0.19 0.85 0.73 0.05
KdPARLee 0.59 0.41 1.39 1.4 −0.29 0.88 0.77 0.04

The algorithm by Lee et al. [61] was applied to the entire dataset to compute KdPAR.
Figure 4 displays the results for each lake as mean values per month. Data were available for
every month in 2023 except for March. During this month, cloud coverage and atmospheric
conditions prevented retrieving KdPAR from Sentinel-2 MSI data. Figure 4 illustrates
temporal patterns, with clear water phases in May and November (low KdPAR) and phases
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of high attenuation from August to October in almost all lakes. Differences between lakes
within the same months were less pronounced.

Figure 4. Monthly means of KdPAR for each lake in 2023 derived from Sentinel-2 MSI data using the
QAAv6 Lee algorithm; the months (1 = January and 12 = December) are shown on the X-axis.

Finally, we also approximated the clear sky downwelling direct solar irradiance
(Ed(λ)) for a horizontal surface from Sentinel-2 using ACOLITE’s irradiance function
(https://github.com/acolite/acolite/issues/61, accessed on 26 Febuary 2024). For each
Sentinel-2 MSI scene, a single Ed(λ) value was retrieved along with the solar zenith and
azimuth angles.

2.3.2. Radiometric Field Data

We used in situ data measured during the summer of 2023 to validate the remote
sensing KdPAR results (see Figure 2). Spectral measurements of irradiance and radiance
with the TriOS RAMSES radiometer from above the water surface to a depth of 5 m were
used to calculate KdPAR.

Kd(λ) was calculated as follows:

Kd(λ) =
1
z
∗ log(

Ed0(λ)
Edz(λ)

) (2)

ref. [63], where z denotes the water depth, Ed0(λ) denotes the downwelling irradiance
per wavelength, λ denotes the below water surface, and Edz(λ) denotes downwelling
irradiance per wavelength at water depth z.

Kd(λ) was then transformed to average Kd within the range of PAR, hereafter referred
to as KdPAR:

KdPAR =

∫ 700nm
400nm

Kd(λ)

700 − 400
(3)

2.3.3. Bathymetric Data

Lake bathymetry or water depth has been extensively studied in relation to macro-
phyte occurrence and growth [38,54,56,64]. Previous studies have mainly focused on
maximum depths determined by PAR availability or under-water pressure. However,
little is known about minimum depths, which may also play an important role in habitat
suitability in our study region. In our HSM, water depth was treated as a positive indicator,

https://github.com/acolite/acolite/issues/61
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with greater depth considered more suitable, as the maximum depth is constrained by
a threshold for minimum PAR availability (see the subchapter on PAR availability). We
used water depth data collected by the Bavarian State Office for the Environment in 2001
along transects across the whole lake chain using a sonar device [65]. The bathymetry
data (n = 141,046) were interpolated individually for each lake using ordinary kriging
(R Version 4.2.2. [66], R package: gstat [67,68]), to a cell size of 2 × 2 m. The resulting
gridded bathymetry is shown in Figure 5. To use water depth as a predictor for the HSM,
the depth was standardized to a range between 0 and 1 using the method presented by
Fleming et al. [57]:

Vz = 1 − zi − zmin
zmax − zmin

(4)

where zi is the original depth value at a particular pixel, zmin, and zmax are the minimum
and maximum depth values of the dataset, and Vi is the standardized depth value for that
particular pixel.

Figure 5. Abiotic predictors for the HSM: (a) PAR availability above threshold, (b) water depth,
(c) distance to the nearest groundwater inflow, and (d) littoral slope.
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2.3.4. Littoral Slope

Similar research has already used the littoral slope as a predictor of suitable macro-
phyte habitats [57]. This approach is based on the findings of Duarte and Kalff [37],
who identified the littoral slope as a key predictor of macrophyte biomass. Moreover,
Florêncio et al. [69] also established a significant correlation between macrophyte abun-
dance and littoral slope. They suggest that gentle-sloping habitats are more suitable
than steep-sloping habitats. We calculated the littoral slope and the aspect from our
bathymetric data (see Figure 2) using the Python package xarray-spatial (version 0.3.5,
https://github.com/makepath/xarray-spatial, accessed on 10 August 2022). Both littoral
slope (see Figure 5d) and aspect were used as inputs to calculate PAR availability. As a
predictor of the HSM, the littoral slope was standardized from degrees to a range between
0 and 1 following Fleming et al. [57] as in Equation (4).

2.3.5. PAR Availability

The availability of PAR has long been recognized as a key limiting factor for macro-
phyte occurrence [39,40,56,70,71]. Therefore, we assume that PAR availability is an im-
portant indicator for identifying potential macrophyte habitats in our study region. We
define PAR according to Mõttus et al. [72] as being the electromagnetic radiation in the
wavelength region between 400 and 700 nm. PAR availability was estimated throughout
the water column and at bottom depth considering water-depth/bathymetry, downwelling
direct irradiance, irradiance geometry, irradiance exposition, attenuation of PAR within the
water column, and surface reflectance/albedo. For Ed(λ) and irradiance geometry, we used
the data extracted with ACOLITE (see Figure 2). Ed(λ) in [mW m−2 nm−1]. Processing to
PAR in [µ mol m−2 s−1] was conducted using the equation adopted from Mõttus et al. [72]:

PAR =
1
hc

∫ 700nm
400nm

Ed(λ)λdλ∫ 700nm
400nm

Ed(λ)dλ
(5)

with h being Planck’s constant in [µJ/s] and c the speed of light in [m/s]. The availability
of PAR at the surface (PARs) was then calculated using the sun’s zenith angle (θ) to account
for Lambert’s cosine law:

PARs = PAR ∗ cos(θ) (6)

For PAR availability at the lake bottom, we had to consider the effect of refraction
as described by Snell’s law and consider the exposure toward the sun, i.e., littoral slope
and aspect. Thus, the angle of incidence of PAR at the bottom depth was calculated using
Equation (7):

θZ = cos(arccos(θ) · cos(θtilt) + sin(θ) · sin(θtilt) · cos(α − αaspect)) (7)

where θtilt is the tilt of the lake bottom, αaspect refers to the aspect of the lake bottom, α is
the sun azimuth angle and θ the sun zenith angle adjusted for refraction. All angles were
converted to radians beforehand. The resulting θz represents the angle of incidence for
PAR at the lake bottom, also in radians. This angle was needed for the last step, where we
calculated PAR availability at the lake bottom (PARz) using the Lambert–Beer law. This
law describes the decrease in PAR throughout the column of water [73], expanding it to
include irradiance geometry, as described in Equation (8).

PARZ = PAR ∗ (1 − 0.03) ∗ e
−KdPAR∗ z

sin(θp) ∗ θz (8)

where z is the water depth and θp is the refraction-adjusted solar zenith angle, accounting
for angle-specific path lengths through the water column. Based on our radiometric in
situ measurements, an average albedo of 3% for the water surface was assumed. Effects of

https://github.com/makepath/xarray-spatial
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mirror-like reflection, such as sun-glint, were not considered in estimating PAR availability
at the lake bottom.

To incorporate PAR availability into the model, the data were aggregated along the
temporal axis. Consequently, we calculated the median PAR availability for each pixel
for the growing season (March to September 2023). Unlike the other predictors, PAR
availability was implemented in the model as binary input, represented by values of 1 or 0.
A minimum threshold of PAR availability must be exceeded during the growing season
to consider a pixel as a potentially suitable habitat (value = 1). We selected a minimum
threshold of 1.3% for PAR availability based on the analysis of hydroacoustic macrophyte
mappings (see subchapter “Model Validation”) and our calculations of PAR availability.
This threshold will be discussed in the Discussion section. The resulting spatial distribution
of PAR availability in binary format is displayed in Figure 5a.

2.3.6. Distance to Groundwater Inflow

Some lakes in the Osterseen Lake District are fed directly by groundwater sources
while others are not [50]. As we expect the influence of direct cold groundwater inflow to
be an important parameter for the presence or absence of macrophytes, an analysis of its
effect seems promising. The groundwater sources provide cold inflow (around 8–10 °C)
throughout the year, moderating the warm temperatures during summer and the lower
temperatures in winter [50]. Furthermore, groundwater inflow has been associated with
higher conductivity and lower pH levels in the respective lakes [50]. Therefore, it was
assumed that groundwater inflow could serve as a plausible predictor for the spatial
distribution of macrophytes and consequently included in our HSM.

To achieve this, we digitized geospatial data on the locations of groundwater inflows
from Zwirglmaier et al. [50] in QGIS. Then, the Euclidean distance to the nearest ground-
water inflow for each pixel was calculated with the spatial.distance.euclidean function of the
SciPy Python package (version 1.10.1, https://scipy.org/, accessed on 27 November 2023),
which resulted in the data shown in Figure 5c. The obtained parameter was considered a
negative predictor, where a greater distance from an inflow corresponds to a less suitable
habitat. It was also standardized to values between 0 and 1 following the procedure of
Fleming et al. [57].

2.4. Model Validation

Since the HSM presented in this study is built to identify potential habitat suitability
rather than actual habitats, validation is only partially viable. However, evaluating how
well actual habitats coincide with modeled potential habitat suitability should provide a
sufficient basis to discuss the validity of our model. We, therefore, conducted hydroacoustic
field mappings of actual macrophyte habitats in July and August 2023 using the BioSonics
Habitat Echosounder MX-200 and processed the data with the corresponding software
Visual Aquatic Version 1.0.0.13146 (BioSonics Inc. Seattle, WA, USA 2002–2020). The single-
beam echosounder was fitted with a 204.8 kHz–8.3° beam width transducer. Our plant
detection settings within Visual Aquatic were set to a plant detection threshold of −60 dB,
a plant detection length criterion of 25 cm, and a maximum plant depth of 10 m. These
settings were found to result in plausible mappings for macrophyte presence within our
study region. The data were used to evaluate how well the HSS and individual model
inputs correlate with actual macrophyte occurrence. To do this, we converted the presence
and absence of data into probabilities of occurrence relative to the model inputs or HSS. In
practical terms, this involved calculating the ratio of presence to absence measurements for
each value of the HSS or the model parameters.

3. Results

After outlining our methodology, we present our results, including the macrophyte
occurrence in correspondence to the model inputs and the macrophyte habitat suitability
in the Osterseen Lake District.

https://scipy.org/
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3.1. Model Input and Macrophyte Occurrence

To provide insight into the relation of the model inputs to actual habitats, presence
and absence data from hydroacoustic macrophyte mappings were used. The relationships
between macrophyte occurrence probability and each of the four abiotic predictors are
presented in Figure 6. Macrophytes predominantly occurred in the lower ranges of 1–10%
PAR availability. A significant negative correlation was observed between PAR availability
and macrophyte occurrence probability, with a Pearson correlation coefficient of r = −0.45
(Appendix A: Table A1). The littoral slope appears to have little linear influence on macro-
phyte occurrence, but distance correlation analysis [74,75] suggests significant non-linear
correlation (R = 0.41, p-valuedcor = 0.003, Appendix A: Table A1). A maximum macrophyte
occurrence probability (0.4) is observed at around 10° of the littoral slope, which decreases
toward gentler and steeper slopes. Contrarily, both the distance to the nearest ground-
water inflow and the water depth, showed significant linear negative correlations with
macrophyte occurrence probability (Pearson’s r = −0.53 and −0.68, p < 0.001, Appendix A:
Table A1). Distance correlation analysis indicated an especially high correlation for depth
(R = 0.757, p-valuedcor < 0.001, Appendix A: Table A1). The probability of macrophyte
occurrence decreases with increasing distance from the groundwater inflow. Water depth
shows a peak in the probability of occurrence at about 3–4 m depth. The probability then
decreases on both sides. At about 10 m depth, macrophyte occurrence is unlikely.

Figure 6. Comparison between the probability of macrophyte occurrence based on sonar mappings
and abiotic predictors: (a) PAR availability, (b) water depth, (c) distance to the nearest groundwater
inflow, and (d) littoral slope.

3.2. Model

The HSM result is represented by the habitat suitability score (HSS), modeled over
the growing season 2023 (May to September), ranging between 0 and 100. The HSS was
compared with in situ hydroacoustic mappings representing actual habitats, as depicted
in Figure 7. Our modeled HSS and the actual habitats strongly correlate with Pearson’s
r = 0.908 (n = 24,073). This robust correlation indicates that the HSS is a suitable measure
for assessing potential habitats within our study region. The fitted function allows us to
interpret the HSS in terms of probability of occurrence.

The probability of occurrence was used to pinpoint sensible thresholds for high,
medium, and low habitat suitability within the HSS. Figure 7 reveals that for an HSS above
67.1, the probability of occurrence (>50%) exceeds the probability of absence. This means
it is more likely for macrophytes to be present in habitats with HSS > 67.1 than to be
absent. Therefore we used this threshold to identify highly suitable macrophyte habitats.
Additionally, we also included an HSS threshold for medium habitat suitability (HSS > 54.7),
which translates to a probability of macrophyte occurrence greater than 33% (see Figure 7).
An HSS < 54.7 would be interpreted as having a low habitat suitability. Figure 8 presents the
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habitat suitability in the Osterseen lakes, categorized as low, medium, or high, based on the
corresponding probability of macrophyte occurrence (low > 33%, medium = 33–50%, and
high > 50%). Due to a lack of sufficient valid pixels for determining KdPAR, the lakes WS,
FKS, and FOS were excluded from the model. More detailed representations of the modeled
habitat suitability, along with sonar macrophyte presence and absence, are depicted in
Figure 9. These maps allow us to identify regions of high macrophyte habitat suitability
and those with low habitat suitability.

Figure 7. Scatter correlation plot between the modeled habitat suitability score (HSS) and macrophyte
occurrence probability from sonar mappings. The horizontal dotted lines indicate macrophyte
occurrence of 33% and 50%, respectively.

Figure 8. Modeled habitat suitability for macrophytes in 2023. (a) Central, southern, and eastern
lakes, (b) northern lakes.
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Overall, Figure 8 reveals distinct spatial variations in habitat suitability. Areas with
high habitat suitability were predominantly concentrated in the moderately shallow regions
near areas with groundwater inflows. According to the modeled HSS, the two northern
lakes, US and GAS, the central lakes, AS and OBS, as well as the eastern half of the lake OS
are rather unsuitable macrophyte habitats. These locations are considerably distant from
groundwater inflows.

Figure 9 shows more detailed views of areas of high potential habitat suitability,
along with the tracks of the hydroacoustic macrophyte habitat mapping. Figure 9b,c show
examples in Lake WBS and Lake FKS where modeled potential habitats align well with the
patterns of the actual habitats. In contrast, in Figure 9a,d, the potential habitats differ from
actual habitats.

Figure 9. Modeled habitat suitability for 2023 and the actual presence of macrophytes as measured
with hydroacoustic mappings. (a) Western Bay of Lake Großer Ostersee (OS), (b) Shallow side-arm of
Lake Westlicher Breitenauersee (WBS), (c) Lake Fischkaltersee (FKS), and (d) Lake Lustsee (LS).

4. Discussion

After presenting our results, we will interpret them in the following section. The
aim of our study was to establish the potential habitat of macrophytes based on abiotic
predictors, providing a practical tool for decision-makers and water resource managers, and
illustrating the added value of remote sensing for modeling and monitoring in freshwater
environments. Therefore, we will discuss the selected habitat predictors, consider their
impact on habitat selection, and identify additional abiotic and biotic predictors that could
explain the differences between the modeled potential and actual habitats. Then we will
evaluate the integration of remotely sensed data into the HSM and examine the potential
role of an HSM with remotely sensed data as a tool for water management.
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4.1. Habitat Predictors

The HSM evaluates habitat suitability based on four abiotic predictors: the availability
of PAR, littoral slope, water depth, and distance to groundwater inflows. These factors
account for the spatial and temporal patterns observed within our score.

Each lake showed littoral areas where the requirements for PAR availability were
met (Figure 5a). The availability of PAR depends on the water depth, KdPAR, irradiance
geometry, and irradiance; therefore, the results are related. Clear lakes with low KdPAR,
such as Lake LS, exhibit relatively large depths that remain above the PAR threshold,
reaching a maximum of approximately 5 m. In contrast, lakes with higher KdPAR, such
as Lake GS and US, have their maximum growing depths above the PAR threshold
at around 4 m during the mean growing season. This can be attributed to the higher
attenuation by humic acids in the water of the northern lakes. South-facing littoral slopes
generally show higher PAR availability compared to north-facing slopes; however, the
differences are small since refraction dampens these effects. Overall, the availability of
PAR limits habitable zones to littoral areas and shallow banks. A pixel’s suitability is
further influenced by both littoral slope and water depth on a small scale (<50 m), while
on a larger scale (>50 m), the proximity to the nearest groundwater inflow appears to
determine favorable regions.

Our analysis of viable habitats for macrophytes seems to be largely plausible as
evidenced by high correlations in Figure 7. In single cases, the model underestimates
habitat suitability (Figure 9a); only in Lake LS does the model overestimate the habitat
suitability compared to actual macrophyte occurrence (Figure 9d).

We found that macrophytes appear to prefer the environmental conditions provided
by greater water depths rather than the higher availability of PAR in the shallow littoral
(Figure 6). We suspect that cooler water temperatures and stronger stratification may
contribute to this observation.

The low PAR availabilities under which we observed macrophytes in our study area
were particularly notable. Middelboe and Markager [56] described a general threshold
of 5.1% (corrected for 3% albedo) as the average minimum light availability requirement
for charophytes and caulescent angiosperms. Using remotely sensed PAR, we found
this to be the mean PAR availability under which macrophytes were observed in our
study region (Table A1); the 25% quantile of PAR availability values with macrophyte
occurrence served as the minimum threshold for PAR requirements, i.e., 1.3%. Middelboe
and Markager [56] reported similar ranges of surface irradiance at maximum growing
depth averaged from multiple studies. Some differences, however, are observed between
the PAR availability presented in this study and the surface irradiance at maximum growing
depth by Middelboe and Markager [56]. These differences can be attributed to the use of
irradiance geometry in calculating PAR availability. Furthermore, we considered average
KdPAR values for each lake, which introduce uncertainties due to possible spatial variability.
Near groundwater inflows, the local KdPAR could be lower than the lake average due to
the inflow of clear water, resulting in higher PAR values being available at the depths where
macrophytes are growing. This phenomenon may also explain incorrectly underestimated
habitat conditions in Figure 9a. Nonetheless, it is useful to work with average KdPAR
values for each lake, as it can only be retrieved in optically deep water, of which there are
few valid pixels in each lake. The alternative to using directly retrieved remotely sensed
KdPAR from the MSI data would introduce noise as well as spatial and temporal gaps in
the HSM.

Unexpectedly, the littoral slope had a non-linear correlation to the occurrence
of macrophytes (Figure 6 and Table A1). Macrophyte occurrence in relationship to
the littoral slope seemed to form an optimum curve that peaks around a 10° slope
(Figure 6). Thus, the data from our small lakes did not entirely support the general
assumption made by previous models where macrophyte habitat suitability declines
with increasing slope angles. For instance, Fleming et al. [57] selected slope as a
primary predictor for potential macrophyte habitats within their study region. Steep
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slopes are known to have a negative impact on plant biomass [37,69], suggesting
poorer growing conditions at steeper slopes. However, moderate littoral slopes could
offer more suitable habitats than gentle slopes due to better exposure to the sun and,
therefore, higher PAR availability.

The probability of macrophyte occurrence showed a significant negative linear correla-
tion (Pearson’s r = −0.532) with our study-specific predictor, i.e., the distance to the nearest
groundwater inflow (Table A1). Short distances to groundwater inflows seem to favor
macrophyte presence, while large distances appear to limit viable habitats. We suspect
that the cold inflow of groundwater during the summer and the reduced attenuation of
PAR near these inflows facilitate macrophyte occurrence. Additionally, nutrients could be
locally introduced through the groundwater inflow.

When aggregated into the HSS score, these predictors showed a Pearson correlation of
r = 0.908 with the habitat preferences of freshwater macrophytes in the Lake District.

4.2. Modeled Potential Habitats vs. Actual Habitats

Modeled potential habitats and actually measured habitats overlap in most cases.
However, there are a few locations where the two differ. This was at least partially expected
due to the fallacious absences, referring to the absence of a species even when the habitat
requirements are met. Such absences can be caused by the limited dispersal of a species,
local extinction, patch sizes too small to host a viable population, or biotic interactions
such as competition or succession stages. These cases are inevitable simplifications when
modeling habitats [53].

Apart from fallacious absences, additional abiotic factors could play a role. A commonly
used predictor not considered in this study is wind and wave fetch [54,57,76,77]. Strong winds
or waves can dislodge plants and increase suspended sediment concentrations, which
impact light availability [57]. Compared to the lakes investigated by Hudon et al. [54],
Fleming et al. [57], and Tang et al. [77], the lakes in our study are relatively small. Wind and
fetch hardly develop waves, so this process might not significantly affect the macrophytes.
Another possible abiotic input into an HSM could involve the chemical and physical
properties of the lake water and the sediment. Harrow-Lyle and Kirkwood [78] identified
the availability of nutrients, such as sodium, magnesium, and potassium, as important
factors for the habitat preferences of Nitellopsis obtusa. Rey-Boissezon and Auderset Joye [79]
found that water conductivity helped discriminate the habitat preferences of Charophyte
species. Bornette and Puijalon [55] stated that dissolved carbon, nitrogen, and phosphorous
are the driving nutrients for aquatic plant life. Their availability cannot only limit the
presence or absence but also influence species richness.

Other than abiotic factors, biotic factors also control the actual occurrence of macro-
phytes. Carps, present in the Lake District, are known to feed on macrophytes and cause
uprooting and disturbance through their feeding behavior, negatively affecting both abun-
dance and biomass [80,81]. Additionally, the growth of periphyton, which can colonize
macrophytes, was found to attenuate up to 80% of light in experiments in the Osterseen
Lake District [51] This can, consequently, limit the macrophyte abundance as well. These
biotic factors cannot be included in abiotic models such as the one used in this study,
and should, therefore, be considered when drawing conclusions from modeled potential
habitats to actual habitats.

In summary, despite the uncertainties inherent in potential habitat suitability modeling,
our study successfully developed a robust model that effectively explains the majority of
macrophyte presences and absences. Users, however, should be aware of the potential
uncertainties when modeling potential habitats and relating them to actual habitats.

4.3. Employing Remote Sensing in Habitat Modeling and Monitoring

Having demonstrated that remotely sensed data can be used in habitat suitability
modeling, we will discuss the benefits and implications of its further use.
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Remote sensing offers a multitude of use cases but is generally regarded primarily
as a source of data. In limnological settings, remote sensing can provide information on
water transparency (dissolved organic carbon, turbidity, Secchi depth), biotic properties
(algal blooms, phenology, species composition), hydrology (water level and bathymetry),
as well as temperature and ice cover [82]. Remote sensing applications in lake research are
increasing. Nevertheless, only 9% of the studies on climate-related shifts regarding lake
ecosystems involve remote sensing data [83].

In our study, we used Sentinel-2 MSI data to assess PAR availability, complementing
an existing in situ dataset across spatial, temporal, and quantitative dimensions. We used
139 MSI scenes to introduce a temporal dimension to the HSM that would not have been
available otherwise. The time series allows us to monitor the PAR availability over an
entire growing season or even an entire year to develop an HSM. This approach offers
valuable insights into temporal light dynamics. For instance, Figure A1 demonstrates
monthly variations, revealing two interesting effects. PAR availabilities of above 100%
occur at the lake bottom during the winter months. This is caused by low sun zenith angles,
when incoming radiation is refracted below the water surface to higher angles, leading
to higher PAR availabilities at the lake bottom depth than above the water surface. The
other observable effect is how light attenuation and the zenith angle compete against each
other in the penetration depth of light, resulting in a maximum penetration depth in May.
Analyses such as these, if done in situ, would be labor- and cost-intensive and limited
to single measurement locations. Remote sensing allows us to efficiently gather a large
dataset, with in situ data only required for quality control.

Nevertheless, using remotely sensed data presents its own set of challenges. Cloud
coverage hindered retrieving KdPAR data for every lake, during each month, as depicted
in Figure 4. Apart from cloud cover, we encountered typical constraints inherent in op-
tical water remote sensing applications. These included the need to correct for or flag
out pixels affected by sun glint, adjacency effects, and instances where existing atmo-
spheric correction algorithms may prove insufficient. These challenges demand a com-
prehensive understanding of remote sensing and often deter inexperienced users from
considering its application in water monitoring [84]. As the demand for ready-to-use
products increases, the availability of ready-made datasets for the assessment of water
parameters derived from remotely sensed data also tends to increase. One example is
the extensive open-access catalog of reprocessed remote sensing products from the Coper-
nicus Marine Service CMEMS (https://data.marine.copernicus.eu/products, accessed
on 2 March 2024). Remotely sensed products are also becoming more readily available
for inland water applications, such as the water datasets from the Copernicus Global
Land Operations Service CGLOPS (https://land.copernicus.eu/global/, accessed on 2
March 2024) or the data acquired for lakes in the ESA Climate Change initiative CCI-lakes
(https://climate.esa.int/en/projects/lakes/, accessed on 2 March 2024). This trend is
extending the benefits of remote sensing to a wider user base.

In summary, integrating remote sensing data into an HSM facilitates the expansion of
the model across multiple dimensions, as shown in this study. Additionally, it offers a cost
and time-efficient way to gather various key water parameters in near real-time.

4.4. GIS and Remote Sensing-Supported HSMs as Tools for Water Management

Finally, we explore the tangible applications of GIS and remote sensing-supported
HSMs in water management, highlighting their practical utility and relevance in real-
world scenarios.

It is not entirely novel to support HSMs designed for water resource management
purposes, such as macrophyte re-establishment projects, with GIS data [57]. The simplicity
of linear-weighted GIS models, such as the one presented in this study, allows users to
easily recreate them on their own or expand them. Due to their straightforward nature
and lack of fitting to specific datasets, these models are expected to be more transferable

https://data.marine.copernicus.eu/products
https://land.copernicus.eu/global/
https://climate.esa.int/en/projects/lakes/
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than statistical models [85]. Therefore, such HSMs could serve as valuable tools for water
resource planning and regulation efforts.

The novelty of our research lies in the addition of remote sensing data and the deriva-
tion of PAR availability from the data, introducing a temporal dimension to our model.
Therefore, the model may be used to monitor changing macrophyte habitats over time.
Global losses in aquatic vegetation are observed [18], driven by changes in climate and
land use. Furthermore, global warming appears to drive local changes, such as Chara
spp. continuing to exhibit wintergreen in Germany or the increased frequency of obser-
vations of invasive Najas intermedia in Germany [86]. Temporal HSMs can monitor how
habitat distribution responds to change and can predict potential habitat distribution for
future scenarios. Rising water levels, changes in trophic state, or changes in morphology
could be simulated with such models to plan how habitats will respond to water manage-
ment measures. This could help manage uncertainties in environmental planning and aid
decision-making [24]. A further potential use case could be the monitoring of invasive
species’ habitats. Potential habitats for invasive macrophytes are predicted to increase in the
northern hemisphere [19]. Florêncio et al. [69] demonstrated how the habitat preferences of
the invasive macrophyte Hydrillyla verticillata differed from the habitat preferences of the
native macrophyte Egeria najas. HSMs could leverage these differences to identify habitats
at risk of species invasion [24,87]. Another potential application could involve identifying
areas for habitat conservation or for re-establishing ecosystems. Habitats of species facing
significant threats of extinction can be pinpointed using HSMs and then evaluated for
protective measures [24]. We firmly believe that developing species-specific models is a
crucial step toward more effective HSMs for management purposes. They could help in
understanding climate change-driven shifts in species composition and displacements
of one species by another. Such a model would require extensive knowledge about the
species-specific habitat requirements, either through experiments or derived from presence
and absence data. Remote sensing data could play a pivotal role in this, especially if in situ
data are sparse.

In essence, GIS and remote sensing-supported HSMs offer a straightforward yet
powerful approach to monitoring habitats under changing conditions, providing both
versatility and transparency. Their ability to map habitats in present and future scenarios
makes them promising tools for addressing ecological challenges and guiding decision-
making processes.

5. Conclusions

In this study, we explored the practical application of GIS and remote sensing-
supported HSMs to analyze the potential habitat of freshwater macrophytes in water
management, highlighting their utility in real-world scenarios. While using GIS data to
support HSMs for water resource management is not new, our study introduced the nov-
elty of integrating remote sensing data, adding a temporal dimension to HSMs built for a
series of small lakes in the Lake Osterseen District (Germany). We were able to determine
the potential habitats of macrophytes in our lake system. We identified PAR availability
derived from Sentinel-2 MSI data, the distance to the nearest groundwater inflow, the water
depth, and the littoral slope as suitable predictors of potential macrophyte habitats. These
remote sensing-supported temporal HSMs can monitor and predict changes in macrophyte
habitats during a growing season, but also in response to global and local environmental
changes. They can also be used to monitor invasive species habitats and identify areas for
conservation or ecosystem re-establishment and are therefore a practical tool for decision-
makers. For a better understanding of habitat requirements, we see the development of
species-specific models as a crucial step toward more effective HSMs, especially when
combined with remote sensing data. In essence, GIS and remote sensing-supported HSMs
offer a versatile and transparent approach to monitor and predict habitats under changing
conditions, aiding in ecological challenges and decision-making processes.
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HSM habitat suitability model
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Appendix A

Table A1. The statistical evaluation of abiotic predictors of macrophyte occurrences. Pearson
correlation coefficient r and p-value, and distance correlation coefficient R and p-valuedcor were
calculated based on the probability of occurrence from Figure 6.

%PAR Slope Distance to Inflow Depth

count 5637.0 6276.0 6509.0 6509.0
mean 5.21 13.33 293.95 3.85
std 5.68 6.39 267.55 1.56
min 0.0 0.66 0.88 0.35
25% 1.3 8.64 84.08 2.75
50% 3.53 12.52 198.52 3.75
75% 6.92 17.81 492.31 4.78
max 50.7 42.62 1150.76 10.8
r −0.445 0.131 −0.532 −0.678
p-value 0.001 0.397 0.0 0.0
R 0.676 0.41 0.486 0.757
p-valuedcor 0.0 0.003 0.0 0.0
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Figure A1. Mapped mean PAR availability in the % of the above surface PAR at the bottom depth for
the eastern lake cluster (ES, BS, FOS, FKS, and HS).
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