
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

A Quantum Software Experimentation
Interface to a Superconducting Quantum

Computer

Teodor-Adrian Mihaescu

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

A Quantum Software Experimentation Interface to a
Superconducting Quantum Computer

Eine Quanten-Software-Experimentier-Schnittstelle zu
einem supraleitenden Quantencomputer

Author: Teodor-Adrian Mihaescu
Examiner: Prof. Dr. rer. nat. Christian Mendl
Assistant advisor: M. Sc. Martin Knudsen
Submission Date: July 9th, 2024

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

July 9th, 2024 Teodor-Adrian Mihaescu

Acknowledgments

I would like to thank the following people for helping out with the organizational,
research, and implementation parts of this project:

My advisor, Martin Knudsen, for all his patience, guidance, and support throughout all
the stages of this project.

Prof. Dr. Christian Mendl, for his valuable insights and feedback on the work done.
The Walther-Meißner-Institute team, for providing the necessary infrastructure and
resources for testing the implementation on real research-grade quantum hardware.

vii

“If you are not completely confused by quantum mechanics, you do not understand it.”

-John Archibald Wheeler

viii

Abstract

In the context of quantum hardware needing to operate in highly controlled environ-
ments (such as laboratories and research centers), networking communication is essential.
This information exchange usually takes place between the quantum development toolkits
and the actual quantum hardware and simulators, that execute the declared quantum cir-
cuits and algorithms. This thesis proposes and explores a solution to this topic, a quantum
software experimentation interface between the quantum development Python library qib
(developed at the Technical University Munich) and the simulators and superconduct-
ing quantum hardware provided by the infrastructure available at the Walther-Meißner-
Institute. It further offers analysis, testing, and architectural details about the implemen-
tation, providing insights into the challenges, proposed solutions, and potential future
extensions of such an interface, to serve as a guide for future developers and researchers
willing to implement or extend a similar infrastructure. As a proof of concept, the im-
plemented interface was successfully used to run an iterative hybrid quantum-classical
algorithm that converged on an actual quantum processor.

ix

Contents

 Acknowledgements vii

 Abstract ix

 I. Introduction and Background Knowledge 1

 1. Introduction 2
 1.1. Implementation Context . 2

 1.1.1. The Walther-Meißner-Institute (WMI) 2
 1.1.2. The qib Python Package . 2

 1.2. Thesis Goals . 3

 2. Quantum Computing 4
 2.1. Quantum Theory Background . 4
 2.2. Superconducting Quantum Computational Environments 6

 2.2.1. Qubits Characterization . 7
 2.2.2. Qubits Initialization . 7
 2.2.3. Decoherence Times . 9
 2.2.4. Quantum Gates . 9
 2.2.5. Measurement . 10

 3. Quantum Software 11
 3.1. The Tools We Have at Hand . 11
 3.2. Limitations of Quantum Software . 13
 3.3. The Generic Execution Flow of Quantum Computation 16

 3.3.1. Declaration and Transpilation . 16
 3.3.2. Serialization and Information Exchange 18
 3.3.3. Compilation and Execution . 20
 3.3.4. Measurement and Results Processing 21
 3.3.5. Thesis Focus . 21

 3.4. Industry Standards and Data Representations 21
 3.4.1. OpenQASM . 22
 3.4.2. The Quantum Object (Qobj) Data Structure 26

 3.5. Qiskit - The Open-Source Quantum Software Development Kit 27

x

Contents

 II. Designing a Software Development Interface for Quantum Backends 32

 4. The Quantum Computational Environment at the WMI 33
 4.1. The Walther-Meißner-Institute . 33
 4.2. The Quantum Backends available at WMI . 33
 4.3. The WMI Backend API and its Architecture 35

 5. qib - The Python Package for Quantum Software Experimentation 38
 5.1. The Architecture of qib . 39
 5.2. Gate-based quantum computing in qib . 40

 6. Extending qib by implementing an Interface Module for Quantum Backend
Communications 44

 6.1. Extending qib for Quantum Backends . 44
 6.2. The Workflow of executing Quantum Experiments in qib 48
 6.3. qib Implementation of the WMI Backends Interface 50
 6.4. The Networking Architecture of Quantum Backend Communications 52
 6.5. Other Extensions to qib . 59
 6.6. Extending qib for future providers . 59

 III. Experiments, Results, and Conclusions 65

 7. Experimental Results and Tests 66
 7.1. Testing the implementation . 66
 7.2. Basic Experiments . 67
 7.3. Hybrid Quantum-Classical Experiment . 72

 8. Conclusions 83

 Appendix 85

 A. Quantum Gate Decomposition 85

 B. Parameter-shift Rule 91

 Bibliography 93

xi

Part I.

Introduction and Background
Knowledge

1

1. Introduction

Quantum Computing represents a significant leap from classical computing, harnessing
the principles of quantum mechanics to process information. Unlike classical bits, quan-
tum bits (qubits) can exist simultaneously in multiple states, enabling quantum computers
to solve certain complex problems much faster than their classical counterparts.

In recent years, quantum computing has transitioned from a largely theoretical field to
one with practical applications and active hardware development. An area of particular
growth and challenge within quantum computing is quantum software – the develop-
ment of algorithms, protocols, and tools for programming and utilizing quantum com-
puters. Unlike classical software, quantum software must be compatible with the unique
behaviors and constraints of quantum mechanics, making its development a complex and
rapidly evolving field.

This thesis will provide some context-related background knowledge on the current
state of quantum software development, particularly in the area of network communica-
tion between quantum software development frameworks and superconducting quantum
computers or quantum simulators. It will explore the limitations, already-proposed solu-
tions, and potential research trajectories in this area, and most importantly include detailed
insights on the implementation process of a quantum software development backend in-
terface.

1.1. Implementation Context

1.1.1. The Walther-Meißner-Institute (WMI)

The Walther-Meißner-Institute (WMI), with its focus on quantum computing research, pri-
marily emphasizes the hardware aspect of this technology. One of its research fields fo-
cuses on the development aspect of superconducting quantum computers. WMI’s facilities
and expertise in quantum hardware provide a fruitful setting for exploring the practical
aspects of quantum computing. They also provide the hardware environment for this the-
sis’s implementation part, with their superconducting quantum computer setting, used for
different kinds of quantum experiments, as well as quantum applications.

1.1.2. The qib Python Package

On the software side, the qib Python package facilitates an academic toolkit for quan-
tum software development and experimentation. Developed at the Technical University

2

1.2. Thesis Goals

of Munich, qib offers a software development and experimentation framework for quan-
tum algorithms, providing researchers and developers with the resources to create and
test quantum programs. This package aims to bridge the gap between theoretical quan-
tum computing and practical quantum algorithm implementations. While still in its early
development stages, it lacks certain features that such a toolkit should provide, integra-
tion with various quantum hardware or simulator backends being one of these missing
features, and also representing the main focus for this thesis.

1.2. Thesis Goals

The core goal of this thesis involves extending the qib quantum development toolkit. The
objective is to enable qib to interface with various backends, particularly focusing on one
of the superconducting quantum computers available at the WMI, and other simulators.
This extension aims to streamline the process of running and testing quantum algorithms
on actual quantum hardware, thereby fostering a more cohesive integration of software
and hardware in the quantum computing domain.

Further splitting this core goal, the thesis will be structured and defined by the following
sub-goals:

1. Interfacing Quantum Software with Hardware: Investigating the interfaces between
quantum software development toolkits and quantum hardware. A significant focus
will be on implementing and performing these interactions over web APIs, an essen-
tial aspect of Quantum-as-a-Service (QaaS) platforms.

2. Implementing a Quantum Software Interface for qib: Expanding a Python quan-
tum software toolkit to support communication with different quantum backends,
thereby broadening its applicability and utility in the quantum computing ecosys-
tem.

3. Analyzing Implementation Results: Testing, and analyzing results of the imple-
mentation at goal 2, comparing it with other existent solutions in the context of ar-
chitecture, performance, and integration.

This first part (Part I) of the thesis sets the foundation for understanding the current
developments in quantum computing and quantum software. It aims to provide a context-
related overview, offering insights into the evolution, current state, and challenges in this
field (i.e. goal 1). It also introduces theoretical concepts and practical tools, which will
be instrumental in the implementation part of this thesis. The second part (Part II) delves
deeper into the implementation aspect of the subject at hand (i.e. goal 2). In the end, part 3
(Part III) aims to test, analyze, and draw conclusions based on the resulting data, covering
the 3rd, and final goal of this thesis.

3

2. Quantum Computing

2.1. Quantum Theory Background

Quantum Computing [40], an emerging field at the interface of quantum physics and com-
puter science, aims to address complex problems using quantum algorithms that are chal-
lenging for classical computers to solve. A critical aspect of quantum computing’s capabil-
ity lies in specific quantum properties: qubits, superposition, entanglement, and quantum
gate operations.

While quantum computers share the concept of bits with classical computers, a quan-
tum bit (qubit) can exist in both states (0 and 1) simultaneously, thanks to superposition.
This unlocks massive parallel processing capabilities. Entangled states, like Bell states [6],
are another key concept where linked qubits are intricately connected, enabling features
like quantum teleportation. While several other quantum computational models exist ([8],
[1]), this thesis focuses on the most common and intuitive one: the qubit gate-based model
[33]. This approach relies on sequences of quantum gates to perform computations (sim-
ilar to how classical computers use gates in their circuits) and qubits (as the fundamental
unit of quantum information, capable of existing in a superposition of both 0 and 1 states
simultaneously, similar to how classical computers use bits for storing data in binary for-
mat).

Quantum gates, similar to logic gates in classical computing, are operations that can be
applied on a set of qubits in order to change their quantum state. They are usually repre-
sented as matrices, and are reversible and unitary, meaning they preserve the total prob-
ability of a system. Quantum circuits represent a sequence of quantum gates that execute
quantum computations, which are inherently parallel and reversibly modeled. Gate-based
quantum circuits act on qubits, much like classical circuits act on normal bits, but their op-
erations are uniquely influenced by the principles of quantum mechanics. Unlike classical
logic gates which produce definitive outcomes, quantum gates manipulate the probabil-
ities of a qubit’s state. Fundamental quantum gates include the Pauli X, Y, Z gates, the
Hadamard gate (H gate), and the controlled gates (CX, CY, CZ gates) for two-qubit opera-
tions. For some of the fundamental thesis-relevant quantum gate representations and their
mode of operation see Table 2.1 .

4

2.1. Quantum Theory Background

Gate
Circuit

Representation
Matrix

Representation

(I) Identity Gate: A single-qubit
quantum gate that leaves the qubit
state unchanged.

I I =

(
1 0
0 1

)

(X) Pauli-X Gate: A single-qubit
quantum gate that rotates the qubit
state by π radians (180◦) about the
x-axis.

X X =

(
0 1
1 0

)

(Y) Pauli-Y Gate: A single-qubit
quantum gate that rotates the qubit
state by π radians (180◦) about the
y-axis.

Y Y =

(
0 −i
i 0

)

(Z) Pauli-Z Gate: A single-qubit
quantum gate that rotates the qubit
state by π radians (180◦) about the
z-axis.

Z Z =

(
1 0
0 −1

)

(H) Hadamard Gate: A single-
qubit quantum gate that rotates
the qubit state about the x+z-
axis, changing the computation ba-
sis from |0⟩ , |1⟩ to |+⟩ , |−⟩ and vice-
versa.

H H = 1√
2

(
1 1
1 −1

)

(SX) Square Root of X Gate: A
single-qubit quantum gate that ro-
tates the qubit state by

√
X about

the x-axis.

√
X SX =

(
1 + i 1− i
1− i 1 + i

)

(RX) Rotation-X Gate: A single-
qubit quantum gate that rotates the
qubit state by a given angle θ (in ra-
dians) about the x-axis.

RX(θ) RX(θ) =

(
cos(θ2) −i sin(θ2)

−i sin(θ2) cos(θ2)

)

(RY) Rotation-Y Gate: A single-
qubit quantum gate that rotates the
qubit state by a given angle θ (in ra-
dians) about the y-axis.

RY (θ) RY (θ) =

(
cos(θ2) − sin(θ2)

− sin(θ2) cos(θ2)

)

5

2. Quantum Computing

(RZ) Rotation-Z Gate: A single-
qubit quantum gate that rotates the
qubit state by a given angle θ (in ra-
dians) about the z-axis.

RZ(θ) RZ(θ) =

(
e−iθ/2 0

0 eiθ/2

)

(iSWAP) iSwap Gate: A 2-qubit
quantum gate that swaps the states
of the qubits, and phases the |01⟩
and |10⟩ amplitudes by i.

iSWAP =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1



(CZ) Controlled-Z Gate: A single-
qubit quantum gate that applies a Z
gate to the target qubit only when
the state of the control qubit equals
|1⟩.

qcontrol

qtarget Z
CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



Table 2.1.: Context-relevant quantum gates representations and mode of operation. Also,
refer to [40] and [49].

Hardware-wise there are many ways of realizing quantum information processing de-
vices, also known as quantum computers. These include: optical techniques (i.e. electro-
magnetic radiation) [31], schemes based on methods of trapping atoms, such as ion traps
[17], [34], neutral atom traps [21], or even nuclear magnetic resonance (NMR) [11]. How-
ever, one of the most promising and widely used approaches is based on superconducting
circuits [32]. Superconducting quantum computing is a rapidly evolving field, with many
companies and research labs working on developing quantum computers based on super-
conducting circuits. Some of the most prominent ones are IBM, Google, Rigetti, and Intel.
This paper centers on superconducting quantum computing, as the development part of
this thesis mainly revolves around building a communication interface for such a quantum
computer.

2.2. Superconducting Quantum Computational Environments

As mentioned in section 2.1 , there are many ways of realizing quantum hardware, and
more possibilities are yet to be explored. Although not the main focus of this thesis, it
is still good to get a general understanding of how the quantum hardware, which lies at
the other end of the communication flow, is implemented and behaves. In the scope of
this thesis, the actual WMI quantum hardware that has been used is implemented using
superconducting quantum computational mechanisms [32].

6

2.2. Superconducting Quantum Computational Environments

This section will offer a quick overview of how this computational paradigm works,
based on the 5 main DiVincenzo criteria [16] used for realizing quantum information
processing hardware. Thus, a further explanation of how different components (such as
qubits, gates, circuits, etc.) of a superconducting quantum computing environment work
and are implemented will be provided.

Since the mathematical concepts and actual physical realization principles are out of the
scope of this thesis, the information provided in this section will be rather superficial. For
a deeper understanding of the presented topics, please refer to (P. Krantz, et. al.) [32],
which was used as the basis for the provided explanations.

Although partially out-of-scope, this chapter is particularly relevant in light of the fol-
lowing two arguments:

1. Since this whole process requires a lot of precision, control, and advanced physical
systems, quantum devices need to be centrally available, in highly controlled en-
vironments, such as laboratories. This is one of the main reasons why distributed
infrastructures (i.e. cloud) are needed to access these quantum devices remotely, and
why the communication between quantum software environments (usually realized
on classical machines) and quantum hardware is so important.

2. Since the entire development pipeline for such a system undergoes multiple com-
plex stages (from the development of the quantum algorithms to the actual execu-
tion, taking place on the quantum hardware), having a general undestanding of the
hardware implementation of the system is beneficial for understanding the system
and its limitations as a whole. For example, certain noise or calibration errors might
propagate and lead to unexpected or unwanted results.

2.2.1. Qubits Characterization

A qubit, the fundamental unit of quantum information, requires clear definition of its
states (|0⟩ and |1⟩) and well-characterized properties for scalability. Superconducting qubits
exploit quantum effects in nanoscale circuits to encode information. These lithographically-
defined circuits mimic atoms with quantized energy levels, controllable through Joseph-
son junctions (see Figure 2.1). Different designs (charge, flux, etc.) offer trade-offs between
noise sensitivity and operational parameters.

2.2.2. Qubits Initialization

Similar to classical computing, quantum systems should be able to initialize registers (i.e.
qubits’ state) to a known value before the start of the computation. This also guarantees
that quantum error correction can be applied to a newly available set of qubits in a state of
low entropy. There are two main approaches to performing this step:

7

2. Quantum Computing

Figure 2.1.: (a) Josephson qubit circuit, in which the nonlinear inductance LJ (depicted by
the Josephson subcircuit within the dashed orange box) is paralleled by a ca-
pacitance, Cs.
(b) The Josephson inductance transforms the quadratic energy potential
(dashed red) into a sinusoidal form (solid blue), resulting in non-equidistant
energy levels.
(Source: A Quantum Engineer’s Guide to Superconducting Qubits, FIG 1, page 5 [32]).

1. By “naturally” cooling the system down, such that it reaches the ground state of its
Hamiltonian.

2. By measuring a system, which further projects its state into a desired initial state.

In superconducting qubit systems, initialization is achieved through active and passive
methods. Active initialization involves applying a sequence of microwave pulses to drive
the qubit into its ground state. This method is fast but requires precise control over the
pulse parameters. Passive initialization (cooling), on the other hand, relies on the natural
relaxation of the qubit to its ground state over time, a process determined by the qubit’s
energy relaxation time T1.

Superconducting qubits operate at very low temperatures, close to absolute zero, facili-
tated by dilution refrigerators. This extreme cooling is essential to reduce thermal energy
that can cause excitations in the qubits, thus naturally bringing them to their lowest energy
state (i.e. ground state). Techniques such as feedback control based on real-time qubit state
measurement can also be used to enhance initialization fidelity.

As mentioned before, such a process requires highly advanced physical types of ma-
chinery and control systems (such as dilution refrigerators), which are usually available
in specialized laboratories. This is one of the reasons why the communication between
quantum software environments and quantum hardware is so important, as it allows for
remote access to these systems.

8

2.2. Superconducting Quantum Computational Environments

2.2.3. Decoherence Times

Decoherence time describes the ability of a qubit (or any quantum system) to maintain
its state (i.e. quantum coherence) long enough when interacting with the environment, a
crucial property for performing quantum computations. It encompasses both the energy
relaxation time T1 and the phase coherence time T2, representing the actual ability of the
qubit to maintain its state and coherence. Decoherence time is a sensitive value in a quan-
tum system, since if it is too long, the capability of the quantum computer tends to shift
towards that of a classical one. On the other hand, if the decoherence time is too short, the
unique quantum features for the specific computational style might not act as expected.

Superconducting qubits achieve extended decoherence times through engineering ef-
forts aimed at minimizing interaction with the environment, which can introduce noise
and loss. Materials science advancements, such as the development of purer supercon-
ducting materials and optimized fabrication processes, reduce sources of decoherence. As
this decoherence time process can increase the noise and loss of a quantum system, this
can also affect the actual development of quantum algorithms and the results of the com-
putations.

2.2.4. Quantum Gates

Quantum gates, sequences of transformations, manipulate qubit states and dictate a quan-
tum system’s power. Implementing gates in quantum physical systems involves applying
specific Hamiltonians (H1, H2, ...) at precise times to achieve desired transformations. In
simpler terms, this translates to manipulating qubits with specific controls (Hamiltonians)
at defined moments.

In the context of this paper and in the context of quantum software development in
general, abstract language specifications such as QASM (see subsection 3.4.1) are used
to describe quantum circuits, gates, and other quantum-related instructions. Since these
specifications can not be directly understood or converted by the actual quantum hard-
ware/device, to bridge this gap, compilers translate the QASM code into a series of control
signals. These signals manipulate the qubits by precisely adjusting their Hamiltonians –
essentially fine-tuning the system’s energy landscape.

In superconducting quantum computers, these control signals come in the form of shaped
microwave pulses and magnetic field adjustments. By carefully adjusting the intensity and
duration of these pulses over time, the compiler creates the specific Hamiltonian sequences
needed in order to precisely implement and execute the given gates. This allows the quan-
tum computer to translate the abstract algorithm (e.g. from OpenQASM) into the physical
manipulations required to achieve the desired quantum transformations. Qubit coupling
(shared resonators, direct links) enables two-qubit gates (such as CNOT, CPHASE), crucial
for quantum algorithms. Entanglement, on the other hand, is engineered through circuit
design and tailored pulses. For a more technically-accurate representation of the above-
mentioned process refer to Figure 2.2 .

9

2. Quantum Computing

Figure 2.2.: (a) A typical qubit drive setup schematic.
(b) Example of how a gate sequence is converted into a waveform produced
by the arbitrary waveform generator (AWG).
(c) The effect of a pulse on a |0⟩ state.
(Source: A Quantum Engineer’s Guide to Superconducting Qubits, FIG 13, page 29 [32]).

2.2.5. Measurement

Similar to classical computing, quantum computations require reading the final state. In
the quantum world, this translates to probabilities (|0⟩ with probability p and |1⟩ with
probability 1− p). Ideally, measurements shouldn’t alter the qubit’s state, which is crucial
for error correction and certain algorithms. Therefore, fast and accurate (high-fidelity)
measurements are essential.

Superconducting qubits leverage dispersive readout within circuit QED. Here, the qubit
is detuned from a resonator, causing a state-dependent shift in the resonator’s frequency.
By measuring this shift, the qubit’s state is revealed, converting the quantum informa-
tion into a readable classical signal. Optimizing readout involves maximizing this signal
compared to background noise.

This technique balances isolation (preventing decoherence) with rapid readout. While
minimally disruptive (especially with few photons), the qubit can still decay (T1-relaxation)
during measurement, limiting fidelity.

The aspect of measurement is also a very relevant one in the context of quantum soft-
ware development. Since the results of the quantum computations are usually read out
through such measurements, the fidelity and accuracy of these operations are crucial for
the overall success of the executed quantum algorithms. Since measurement results are
subject to various noise and error inconsistencies, the quantum software development pro-
cess usually involves multiple iterations of such operations (also known as shots), in order
to minimize the influence of noise and errors and maximize the fidelity of the end-result.

10

3. Quantum Software

3.1. The Tools We Have at Hand

Quantum software is at the heart of making quantum computing accessible and practical.
Serrano et al. (2022) [57] provide a comprehensive review of the main quantum software
components and platforms, emphasizing the need for quantum programming languages
and computing environments that abstract low-level technology details. This abstraction
is crucial for advancing quantum computing technology by making it more accessible to
programmers who may not have a deep understanding of the underlying quantum me-
chanics. The Talavera Manifesto for Quantum Software Engineering and Programming
[45] also highlights the complexity of quantum computers and the need for the develop-
ment of specialized programming languages and computing environments. According to
Serrano et al. (2022), most existing environments lack features desired for the advance-
ment of quantum computing, as outlined in the manifesto. The manifesto thus stresses
the importance of developing quantum software engineering techniques and tools to en-
sure the practical feasibility of quantum software. It serves as a guideline and a call to
action for the development of robust, user-friendly quantum programming environments
and languages, which are essential for harnessing the full potential of quantum computing
technology.

The manifesto goes into even more detail, by specifying some principles and criteria that
quantum software development and quantum software engineering should follow, such
as:

1. It must be technology-agnostic in regards to quantum programming languages
and technologies: designs solutions to work across different quantum programming
languages and technologies without preference.

2. It must endorse the coexistence between quantum and classical computing: facili-
tates the integration of new quantum algorithms using classical reverse engineering
methods and supports the use of traditional techniques to help assimilate quantum
programming.

3. It must support quantum software project management effectively: manages quan-
tum software projects to meet both operational and business objectives, emphasizing
the creation of accurate and adaptive estimation methods for quantum software de-
velopment based on existing models.

11

3. Quantum Software

4. It must take into account the continuous development of quantum software: em-
phasizes the need for quantum software to be routinely updated and refined through-
out its entire lifecycle.

5. It must aim to deliver quantum software with minimum defects: creates quantum
programs with as few issues as possible and establishes mechanisms for their early
detection and resolution.

6. It must prioritize high-quality maintenance of quantum software: stresses the im-
portance of both the process and the product in quantum software, with the goal of
achieving and sustaining high-quality standards.

7. It must take into consideration quantum software reusability: encourages the de-
velopment of quantum software in a way that allows for components to be reused,
facilitating the creation of software libraries and architectural patterns for quantum
computing.

8. It must emphasize the importance of security and privacy from the outset: commits
to ensuring that quantum information systems are secure and protect user privacy
from the beginning of the software development process.

9. It must cover the importance of governance and management in quantum soft-
ware: underlines the need for awareness and adherence to organizational structures,
processes, policies, and frameworks, as well as an understanding of the infrastruc-
ture and services associated with quantum software and the responsibilities of the
providing organizations.

Although very hard/impossible to meet all these criteria at this point in time, quantum
software engineering and development should strive to meet as many of them as possi-
ble. These very same principles were also considered in the architectural decisions and
implementation work done on qib and its extensions (i.e. the implementation part of this
thesis).

Despite the current limitations and apparent inaccessibility to quantum software devel-
opment, progress has been made in the field in recent years. With multiple toolkits, plat-
forms, libraries, simulators, and other similar tools emerging from different backgrounds
(e.g. academic, commercial, etc..), and different stakeholders coming into play.

Quantum software technologies can be classified into several key categories, such as
(1) programming languages and compilers [23] [10] [59], (2) simulation platforms, (3)
machine learning libraries [61] [19] [43], (4) optimization tools [41] [67], (5) cryptography
and security libraries [65] [14], and (6) hardware control software [9] [3].

In the scope of this thesis, the focus is on quantum software technologies from categories
1, 2, 3, and 6. Where, qib (chapter 5) and Qiskit (section 3.5) fall under the first category,
both being toolkits that provide a quantum programming and compilation environment.
The quantum simulators that have been used (such as the Qiskit Aer Simulator available

12

3.2. Limitations of Quantum Software

at the WMI section 4.2) for testing purposes fall in the second category. While the hard-
ware infrastructure currently available and developed at WMI (section 4.2) falls in the last
one. Although Quantum ML libraries have not been directly used, some experiments in-
volving quantum machine learning have been performed (section 7.3) in order to test the
developed module, where ML-specific algorithms have been implemented, resembling
some of the features or functionalities that tools under the 3rd category provide.

3.2. Limitations of Quantum Software

Quantum software faces several limitations, such as hardware dependence, limited ap-
plication scope, and the lack of mature and accessible development tools and platforms.
These limitations are actively being addressed through research and development. Some
of the ones that also influenced the implementation and design decisions of this thesis are
discussed below:

1. Noise and Error Rates: Quantum computers are highly susceptible to errors due to
environmental noise, resulting in limitations in quantum software’s reliability. Ball
et al. (2020) [5] discuss the development of software tools for quantum control that
improve quantum computer performance by mitigating noise and errors. These tools
facilitate the efficient execution of quantum logic operations and algorithms with
built-in robustness to errors, without complex logical encoding.

2. Limited Qubit Connectivity: The limited interaction distance between qubits in
quantum hardware architectures is a significant constraint. Saeedi et al. (2011) [55]
proposed methods to optimize quantum circuits for linear nearest-neighbor archi-
tectures, including template matching optimization and exact synthesis approaches.
These methods aim to realize circuits for architectures with limited qubit interaction,
reducing quantum cost significantly.

3. Scalability Issues: Quantum software’s scalability is constrained by the limited num-
ber of qubits and coherence time in current quantum computers. Akbar et al. (2022)
[2] highlight the need for software-intensive methodologies and tools for develop-
ing quantum software applications that can operate effectively on these emerging
quantum hardware technologies.

4. Complexity of Quantum Algorithms: The complexity and unorthodox nature of
quantum algorithms present a steep learning curve for programmers. To bridge the
gap, Garcı́a-Alonso et al. (2022) [18] proposed the Quantum API Gateway, an adap-
tation of the API Gateway pattern, recommending the best quantum computer for
running specific quantum services at runtime. This helps in managing the complex-
ity of combining quantum algorithms with traditional software.

13

3. Quantum Software

5. Integration with Classical Computing: The integration of quantum computing with
existing classical computing infrastructure is challenging. Perelshtein et al. (2022)
[44] introduced a hybrid quantum cloud based on a memory-centric and heteroge-
neous multiprocessing architecture. This demonstrates how hybrid algorithms, inte-
grating quantum and classical computing, can provide advantages in various fields.

Some of the challenges that quantum computation presents are especially visible in the
deployment of quantum software. Unlike classical software, which can be executed on
the same hardware it is deployed on, quantum software requires a specialized quantum
processing unit (QPU) and further communication channels between this QPU and the
development environment. This distinction leads to additional limitations, such as:

1. Hardware Dependency [30]: Quantum software is inherently dependent on quan-
tum hardware. QPUs, necessary for executing quantum software, are not as uni-
versally accessible as classical computing resources. Their specialized nature, along
with the requirement for extremely low temperatures, makes them less adaptable to
conventional IT environments.

2. Compatibility Issues [7]: The diversity in quantum computing technologies (e.g.,
superconducting qubits, trapped ions) leads to compatibility issues. Quantum soft-
ware developed for one type of QPU may not be directly executable on another,
limiting the software’s versatility and increasing development time and costs.

3. Connectivity Challenges [39]: Interfacing quantum software with quantum hard-
ware typically requires high-speed, secure, and reliable communication channels.
Furthermore, both ends of the interface should be compatible, accepting the same
transpilation, serialization, and configuration standards. All these add an extra layer
of complexity and communication overhead, that needs to be managed by all the
stakeholders involved in the development of a quantum application.

4. Single-Use Deployment [35]: In contrast to classical applications, which are de-
ployed once and can be invoked multiple times, quantum applications require new
deployments for each invocation. This is a fundamental shift in the deployment life-
cycle, necessitating a more dynamic and flexible approach. Different solutions have
been proposed to this issue, but many of them still struggle with fully achieving the
QA principles of the Talavera Manifesto [45].

5. External Hosting of Code [35]: Unlike traditional cloud models like Infrastructure-
as-a-Service (IaaS), where the application code is hosted on the same environment
it is executed on, Quantum-as-a-Service (QaaS) does not currently support on-site
hosting of quantum applications. Consequently, the quantum application code must
be hosted on an external, conventional computing resource. This separation adds
complexity, as the quantum code must be compiled and managed externally before
being deployed to a quantum computer.

14

3.2. Limitations of Quantum Software

Additionally, the quantum software ecosystem currently lacks the maturity seen in clas-
sical computing. Quantum programming languages, development environments, and de-
bugging tools are still in their nascent stages. This lack of mature tooling further compli-
cates the deployment process. Nevertheless, all these limitations create a fertile ground for
further solution designs and research trajectories, such as:

1. Enhanced Software Development Kits (SDKs) [20]: To bridge the gap between
classical hosting environments and quantum hardware, robust SDKs capable of effi-
ciently compiling quantum algorithms and managing their deployment on quantum
computers during runtime are essential. These SDKs must handle the complexities
of translating high-level quantum algorithms into hardware-specific instructions, ac-
counting for the nuances of different quantum computing platforms.

2. Orchestration and Automation Tools [18], [66]: Given the repeated deployment ne-
cessity, there’s a pressing need for sophisticated orchestration tools that can auto-
mate the deployment process, making it as efficient and less resource-intensive as
possible. These tools would handle the scheduling and management of quantum
computations, optimizing the use of quantum resources.

3. Hybrid Computing Models [36]: Since quantum computers excel at specific types of
problems, integrating them into hybrid models where they work alongside classical
computers can optimize performance. This approach requires developing frame-
works and platforms that seamlessly integrate quantum and classical computing re-
sources.

4. Quantum Cloud Integration Models [22], [51]: Research into more advanced QaaS
models, which might allow for closer integration between the quantum application
code and the quantum hardware, can reduce the overhead and complexity of the
current deployment model.

5. Quantum Resource Management: Exploring efficient ways to manage quantum re-
sources, considering their unique constraints and capabilities, is crucial. This in-
cludes research into quantum job scheduling, error correction mechanisms, and op-
timizing quantum circuit compilation.

6. Quantum-Ready Deployment Technologies: Adapting existing deployment tech-
nologies to accommodate quantum applications or developing new technologies
specifically designed for quantum computing environments will be a significant re-
search area. This involves rethinking deployment models and possibly creating
quantum-native deployment paradigms.

7. Security and Reliability in Quantum Deployment [15]: As quantum computing
becomes more prevalent, ensuring the security and reliability of deployed quantum
applications, especially in a cloud-based context, will be a major area of concern. This

15

3. Quantum Software

includes research into quantum cryptography and secure quantum communication
protocols.

In summary, while quantum computing presents significant opportunities, it also intro-
duces a set of unique challenges in software development and deployment. Addressing
these challenges requires a concerted effort in developing new tools, models, and frame-
works, specifically tailored to the quantum computing paradigm.

Addressing these limitations is also one of the main concerns of this thesis. By imple-
menting a quantum software interface for communicating with various quantum comput-
ers and quantum simulator backends, the aspect of quantum software-to-hardware inter-
action and deployment automation is particularly addressed.

3.3. The Generic Execution Flow of Quantum Computation

As one of the main topics and concerns of this paper, this section focuses on offering an
overview of a generic execution flow of a gate-based quantum computation, starting from
writing the source code and sending experiments over the network, to the execution and
results measurement processes that take place on the actual quantum device, and within
its quantum environment (also known as the quantum backend

1
). A deeper dive into each

one of the steps of this process will be provided, as well as explanations of how each step
is relevant to the context of this thesis. The reader is encouraged to refer to the following
diagram (see Figure 3.1) for a general understanding and road-map of the explanations
provided below.

3.3.1. Declaration and Transpilation

The first step encompasses the processes that a quantum algorithm undergoes within the
library, SDK, or quantum framework where it is being developed [58]. As for now, this
step takes place exclusively on a different machine, a classical one. It all starts with the
quantum developer or researcher writing source code that defines the quantum algorithm
in the specific quantum programming language of the tool that they are using (e.g. see
 Figure 3.2). This code is usually all about defining initial, human-readable circuits, that can
be later processed by the development environment, and at the end sent to and executed
by the quantum backend.

Once the source code becomes available, it can be optimized and transpiled [29] within
the classical environment, so that both elements of system-dependent configurations and
system-independent ones can be applied to the defined quantum algorithm. This part
is the most complex one of this step [48], and it is usually system and tool-dependent,
involving rewriting and optimization procedures, such as:

1Please note that this term might also refer to quantum simulators, or other quantum processor environments
able to execute code, measure results, and send them back to the requester.

16

3.3. The Generic Execution Flow of Quantum Computation

Quantum Development Environment APIs Environment Quantum Physical Environment

Algorithm Declaration

Circuit Validation

Circuit Transpialtion

Circuit Serialization

Compilation

Execution

Error Correction

MeasurementResults PropagationResults Interperation

Results Visualization
SD

O

System Dependent

Optional

Jobs Execution Management

Execution Request Propagation

O

SD

SD

Error Correction

Provider Authentication

O

Gate Decomposition
SD

Optimization
SD

O

QPU
(Quantum Processing Unit)

SD

* Everything here is System Dependent by definition

Figure 3.1.: A generic example of a quantum computation execution flow.
First column: The execution steps that take place in the classical development
environment of a quantum algorithm.
Second column: The serialization and information exchange steps that take
place between the classical and quantum environments (usually part of the
logic provided by the APIs and the involved communication channels).
Third column: The execution steps that take place in the quantum environment
(quantum backend).

• Mapping logical qubits to physical qubits on the quantum device, considering con-
nectivity constraints.

• Optimizing the circuit by reducing gate counts and depth through gate cancellations
and merging, using various optimization passes.

• Decomposing high-level gates into the native gate set supported by the target quan-
tum device.

• Scheduling gates to minimize the overall circuit execution time, taking into account
the qubit coherence times.

• etc.

This whole step is called transpilation (and not compilation) because it accurately de-
scribes the process (an important distinction in quantum computing) because the aim is

17

3. Quantum Software

Figure 3.2.: Defining a quantum algorithm in IBM Quantum Learning (for Qiskit)[25].

to adapt the circuit for execution on specific hardware without changing the circuit’s fun-
damental behavior or the results it produces. The process involves translating an abstract
quantum circuit into a functionally equivalent one that is tailored to the constraints and
characteristics of a specific quantum device. This process results in a circuit that operates
at the same level of the programming language as the original.

3.3.2. Serialization and Information Exchange

Once the source code (i.e. quantum algorithm, circuit, etc.) is written and transpiled, the
result can be serialized [37] and sent over the network, to the targeted quantum backend
(be it an actual quantum hardware machine, simulator, or other types of quantum pro-
cessors). The serialization and de-serialization process usually takes place on both ends.
Thus, it requires some kind of API implementation and intermediate common language
declaration for the communication to be viable. More specifically, this communication
takes place between the classical environment where the source code is defined and stored,
and the actual quantum environment that is responsible for executing the provided algo-
rithms/experiments.

Furthermore, active communication channels need to be implemented between the two
environments, such that a response-reply mechanism can be established between the sys-
tems. In order to understand why the communication channels are required, one could
take the following scenario as an example:

1. The classical system identifies itself and authenticates to the quantum system, such
that execution of experiments on the system becomes available and the communica-

18

3.3. The Generic Execution Flow of Quantum Computation

Figure 3.3.: The OpenQASM 2.0 version of the defined algorithm.

tion channel is established in a secure manner

2
 .

2. The classical system submits an experiment (a quantum algorithm), with specific
configurations and options for it (e.g. the number of shots i.e. how many times the
experiment should be repeated before the final measurement is performed and the
results are sent back) to the quantum backend over the established communication
channel. It further receives a reply from the backend that the request is valid (or
invalid), and that its execution has been queued (or rejected).

3. (If valid) The quantum system further processes the received experiment, compiles
it, and executes it on the actual quantum processor. It keeps track of the experiment
(e.g. by storing it into a database) and updates its status, depending on the progress
it made.

4. The classical system can query the quantum system for results, or the current execu-
tion status, over the same communication channel that was previously established.

5. Once the experiment finished its execution on the quantum processor, the quantum
system can send the results back to the classical system over the communication
channel.

6. The received experiment results, can be further interpreted and used within the clas-
sical system for all types of quantum applications (e.g. hybrid computation).

2This usually involves some kind of secret (e.g. an API Key) that gets exchanged between the two systems
and that is later needed by the classical system for it to be authenticated and authorized by the backend
environment of the quantum system.

19

3. Quantum Software

The term ”communication channels” doesn’t necessarily refer to an active communi-
cation mechanism, such as message queues or active TCP connections, but rather to an
establishment of a mechanism (e.g. a stateless one) that allows classical environments and
quantum environments to identify, store, and refer to a common set of experiments, execu-
tion jobs, configurations, and various other relevant metadata, needed during the process.
In other words, the two environments must be synchronized and keep a record of what,
when, how, and with which results certain experiments were, are, or will be executed on
the targeted quantum backend.

This whole step can usually be implemented in practice, by using intermediate represen-
tation specifications, such as OpenQASM (subsection 3.4.1)(see Figure 3.3) and common
data structures definitions, like Qobj (subsection 3.4.2). As for the networking part, imple-
menting classical RESTful APIs [52] that communicate over the HTTP protocol is usually
enough to establish a well-defined set of rules and definitions for a viable communication
between the environments. For more details regarding industry standards and actual data
specifications, refer to section 3.4 .

One of the biggest limitations and current subject of research in the field is how to real-
ize this whole step by using a technology- and system-agnostic approach (see section 3.1).
Various solutions have been proposed over the years [18]. Since different types of quantum
systems require different types of interaction, it is hard to define a clear set of data speci-
fications and intermediate representations that can be uniformly applied to any quantum
computation in the world. Although difficult to ensure uniformity on a general world-
wide scale, the path is being slowly paved, with language specifications such as Open-
QASM (subsection 3.4.1) or OpenPulse [9] bridging the gap between the abstract aspects
of quantum algorithms and the physical implementations of quantum systems.

3.3.3. Compilation and Execution

Once the information (i.e. experimentation request) reaches the quantum backend, the lat-
ter is responsible for validating, de-serializing, and compiling [34] the circuits to the phys-
ical representation required for the execution to be adequately performed on the quantum
processor (e.g. pulses that should be applied in a specific order, for a specific time, to spe-
cific qubits). The backend is also responsible for identifying, storing, and being available
to read or write data about the quantum experiments performed on its end. On request,
it should offer the required information to its invokers (e.g. the classical system that re-
quested the execution of the experiment).

Since the actual compilation and execution process is system-dependent and out of
scope for this thesis, this step will be not explained in detail. But for a clearer under-
standing of how the actual compilation is performed within a superconducting quantum
computer, such as the one available at the WMI, refer to section 2.2 . Also, for further details
about quantum simulator processors, refer to section 3.5 where an explanation on how the
Qiskit simulator (such as the one at the WMI) is working was provided.

20

3.4. Industry Standards and Data Representations

3.3.4. Measurement and Results Processing

At the end of the execution step, for most algorithms there is usually a measurement in-
volved [53], a physical one, that is performed within the actual quantum processor. How-
ever in practice, multiple measurements are performed for such an experiment, and the
result is then digitalized and interpreted as a statistical probability distribution of these
measurements. The quantum system should be aware of these results and store them
somewhere, such that when the classical system requires them, it is able to send them over
the established network channel.

After the results have been received by the classical system, this system will be respon-
sible for interpreting and using them accordingly, depending on the given quantum appli-
cation scenario that is being executed.

The actual measurement operation that is performed within the quantum processor is
again out of scope. But feel free to refer to subsection 2.2.5 for more details about how this
operation is performed within a superconducting quantum computing environment.

As for processing and interpreting the results, this flow is similar to the one performed
in the second step (Serialization and Information Exchange), just reverted: the quantum
backend is the sender this time, with the classical system receiving the results, de-serializing
them, and interpreting them accordingly.

3.3.5. Thesis Focus

This thesis (especially the implementation part) mostly focuses on the second step (Se-
rialization and Information Exchange) since this is the main goal of expanding the qib
framework with a backend module (a module able to exchange information between qib’s
definitions, and various quantum backends).

While step three (Compilation and Execution) is mostly out of scope, steps one (Dec-
laration and Transpilation) and four (Measurement and Results Processing) are also
within the scope of the thesis. This is because some declaration-, validation-, and
optimization-related processes had to be performed, in order for qib to be compatible with
and ready for a standardized intermediate representation and serialization. Tasks such as
adding new gates, implementing control flow instructions, and extending existing compo-
nents with serialization-ready functionalities, were needed in order for qib to be prepared
for a coherent information exchange with various backends.

For more design decisions and implementation details, refer to Part II .

3.4. Industry Standards and Data Representations

This section mainly focuses on the thesis-scope relevant standard data representations and
data models used in quantum software development and experimentation. Quantum in-
terface languages will be discussed, such as OpenQASM, how circuits can be represented

21

3. Quantum Software

for such a language in Qobj notation, what are the benefits of these kinds of representa-
tions, why have they been chosen for the implementation part of this thesis, as well as
other similar industry standards that have helped throughout the research and develop-
ment stages of this thesis.

3.4.1. OpenQASM

OpenQASM (Open Quantum Assembly Language) [12] is a quantum interface lan-
guage, inspired by the classical assembly languages, and based upon the quantum as-
sembly language (QASM) [17], [60], [4]. It is designed to facilitate the representation
and simulation of quantum algorithms on quantum computing devices. Its scope lies in
the ability to provide a bridge between the abstract aspects of quantum computing and the
practical implementation of quantum software. OpenQASM allows researchers and devel-
opers to describe quantum circuits in a way that can be executed on quantum computers,
thereby enabling the exploration of quantum computing applications and the develop-
ment of quantum algorithms.

As the source reference [12] describes, OpenQASM uses the key concept of Interme-
diate Representation (IR) for representing quantum computations. Thus, OpenQASM is
neither a source language description of this computation, nor the actual instructions that
will be performed on the quantum hardware itself, but it’s rather something in-between,
providing an interface between these two. See section 3.3 for more details about the exe-
cution flow of quantum computation, and where these IRs languages come into play.

The structure of OpenQASM is designed to be intuitive, allowing for the concise repre-
sentation of quantum operations. It supports a variety of quantum gates and operations,
including conditional operations based on classical logic, which are essential for imple-
menting complex quantum algorithms. The language is also flexible, supporting the de-
scription of both idealized quantum circuits and those that take into account the physical
constraints of real quantum hardware.

The human-readable form of OpenQASM, inspired by C and assembly languages, con-
sists of multiple instruction sets that can be used in order to describe a circuit (see Table 3.1

for examples of the core instructions). Also, see Figure 3.4 and Source Code 3.1 for an
example of such a circuit description.

The same syntax can be used in order to define new (user-defined) unitary gates. See
 Source Code 3.2 and Figure 3.5 for a specific example of this scenario.

Everything mentioned above mainly focuses on the features provided by OpenQASM
2.0, but in 2022 OpenQASM 3.0 [13] came up. It is more capable than its predecessor,
being able to also express concepts on a more fine-grained physical layer. OpenQASM 3.0
introduces some valuable new features, such as:

• Syntax improvements

• New control flow statements, e.g. loops

22

3.4. Industry Standards and Data Representations

Statement Description Example
Structural Statements

OPENQASM version; Denotes a file in Open
QASM format (first line of
the file)

OPENQASM 2.0;

qreg name[size]; Declare a named register of
qubits

qreg q[5];

creg name[size]; Declare a named register of
bits

creg c[5];

include "filename"; Open and parse another
source file

include \qib.inc";

gate name(params)
qargs body

Declare a unitary gate See example in Source
Code 3.2

// comment text Comment a line of text // this is a
comment

Instructions
U(theta,phi,lambda)
qubit|qreg;

Apply built-in single qubit
gate(s)

U(pi/2,2*pi/3,0)
q[0];

CX
qubit|qreg,qubit|qreg

Apply built-in single qubit
gate(s)

CX q[0],q[1];

measure qubit|qreg
-> bit|creg;

Make measurement(s) in Z
basis

measure q -> c;

reset qubit|qreg; Prepare qubit(s) in |0⟩ reset q[0];
if(creg==int) qop; Conditionally apply quan-

tum operations
if(c==5) CX
q[0],q[1];

Table 3.1.: OpenQASM instruction sets examples.

23

3. Quantum Software

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 // declare the quantum and classical registers that will be used
4 qreg q[5];
5 creg c[5];
6

7 // column 1
8 cx q[2],q[1];
9

10 // column 2
11 x q[1];
12 h q[2];
13 s q[3];
14 y q[4];
15

16 // column 3
17 t q[2];
18 z q[3];
19

20 // column 4
21 tdg q[2];
22 z q[3];
23

24 // column 5
25 x q[1];
26 h q[2];
27 sdg q[3];
28 y q[4];
29

30 // column 6
31 cx q[2],q[1];
32

33 // column 7
34 measure q[0] -> c[0];
35 measure q[1] -> c[1];
36 measure q[2] -> c[2];
37 measure q[3] -> c[3];
38 measure q[4] -> c[4];

Source Code 3.1.: OpenQASM circuit definition instructions example.

24

3.4. Industry Standards and Data Representations

q0|0⟩

q1|0⟩ X X

q2|0⟩ H T T † H

q3|0⟩ S Z Z S†

q4|0⟩ Y Y

Figure 3.4.: Circuit visual representation of the OpenQASM instructions in Source
Code 3.1 .

q[0]

cu1(π2)

q[1]

=

U(0, 0, π4)

U(0, 0,−π
4) U(0, 0, π4)

Figure 3.5.: Circuit visual representation of the unitary gate defined in Source Code 3.2 .

• Timing and optimization statements, e.g. the delay statement

• Continuous gates, gate modifiers, and new non-unitary operations (i.e. non-destructive
projective measurement and reset)

For the live specification of both OpenQASM 2.0 and 3.0, see: [27] and [26]
In the scope of this thesis, the OpenQASM 2.0 specification was mainly used for IRs

of the quantum particles, gates, and circuits. All these, in the context of the performed
experiments and data representation through the network. OpenQASM-serialized infor-
mation, together with configurations and other metadata were packaged in Qobj data
structures and sent over the network to quantum processors (i.e. backend instances) (See

 subsection 3.4.2 for more details on the Qobj data structure, and how it was used in the
implementation part of this thesis.).

Although OpenQASM 2.0 was the reference point (fully supporting its syntax), some
additional statements, like the delay instruction, only found in OpenQASM 3.0, have still
been implemented.

The scope of OpenQASM extends beyond merely defining quantum circuits. It serves
as a core tool in the quantum computing ecosystem, enabling the simulation of quantum
circuits, the optimization of quantum algorithms, and the interfacing with quantum hard-
ware, although further discussing this topic would be out of scope. With its open-source

25

3. Quantum Software

1 gate cu1(theta) a,b
2 {
3 U(0,0,theta/2) a;
4 CX a,b;
5 U(0,0,-theta/2) b;
6 CX a,b;
7 U(0,0,theta/2) b;
8 }
9 cu1(pi/2) q[0],q[1];

Source Code 3.2.: OpenQASM statements for defining a new unitary gate.

nature, OpenQASM encourages community contributions and the sharing of quantum al-
gorithms, fostering collaboration and innovation within the field of quantum computing.

3.4.2. The Quantum Object (Qobj) Data Structure

Although, at its core, nothing more than a JSON-based data representation specification,
Qobjs are particularly good for ensuring a standardized data format for quantum exper-
iments. This data format is then used for transferring quantum computing specifications
between quantum software development environments, where source code is defined, and
quantum processor backends, which process, interpret, compile, and transfer the resulting
instructions to the actual hardware, responsible for the actual execution.

In the context of this thesis, Qobjs were used in order to pack the data in a standardized
format, that could be later sent over the wire (i.e. using HTTP requests) to the targeted
quantum backend. The same Qobjs are used by backends to communicate experiment
results and other necessary parameters to the quantum development kit in discussion. A
Qobj may be structured in different modes, and different implementations are used out
there. But for the scope of this thesis, IBM’s Qobj representation [37] [50] was mainly
followed, which is also one of the most popular data representation standards for quantum
computing.

The OpenQASM specification was used for serializing data structures, such as parti-
cles, gates, and circuits, that were later packed in Qobjs, and sent over the network (see

 Figure 3.6).

26

3.5. Qiskit - The Open-Source Quantum Software Development Kit

Figure 3.6.: Gate, backend (configuration), and experiment serialization using the Open-
QASM specification packed as Qobjs.

3.5. Qiskit - The Open-Source Quantum Software Development
Kit

This section introduces Qiskit, offering a quick overview of its architecture, features, and
capabilities. Explaining why it represented an important reference point in the scope of
this thesis, as well as for experimenting and testing out features, by using its custom sim-
ulator capabilities.

As a leading quantum computing framework developed by IBM Qiskit facilitates the
development and execution of quantum algorithms. It provides tools for creating quantum
circuits, simulating them on classical computers, and running them on actual quantum
hardware accessible through the IBM Quantum Experience platform. Qiskit is designed
to support the full quantum computing lifecycle, from experimentation and education to
research and application development.

Qiskit’s main features include:

27

3. Quantum Software

• Circuit Composition: Allows for the construction of quantum circuits using a com-
prehensive human-readable library of quantum gates and operations (by using Python
as a general-purpose programming language).

• Simulation: Offers simulators to emulate the execution of quantum circuits on clas-
sical hardware, providing insights into their behavior and outcomes of different ex-
periments.

• Execution on Real Quantum Hardware: Enables circuits to be run on IBM’s quan-
tum computers via the cloud, or other quantum hardware, via custom extensions of
the framework.

• Quantum Circuit Optimization: Offers tools for optimizing circuits to improve per-
formance and reduce quantum resource usage.

Quantum Device
(Computer, Simulator, etc.)

Qiskit Terra

Qiskit Aqua

Qiskit

Quantum Devices
(LOCAL/REMOTE, QPU/SIMULATOR)

QiskitProvider

Job

Experiment #1

Experiment #2

...

Backend #1

Backend #2

...

Backend

get_backend

run

retrieve_job

Figure 3.7.: Qiskit’s General Architecture Stack.
Left: The architecture stack showing Qiskit’s core components and their layer-
ing.
Right: The hierarchy of Qiskit’s core classes within the components.

Qiskit’s architecture is modular, comprising several components that work together
seamlessly (see Figure 3.7):

• Qiskit Terra: The foundation of the framework, offering the basic building blocks
for quantum circuits, and the interface for compilation and execution on different
quantum backends.

28

3.5. Qiskit - The Open-Source Quantum Software Development Kit

• Qiskit Aqua: A library of quantum algorithms and applications, facilitating the di-
rect application of quantum computing to real-world problems.

• Qiskit Aer: Provides high-performance simulators for testing and validating quan-
tum circuits and algorithms on classical hardware (not part of the core architecture).

• OpenQASM: An implementation of the OpenQASM quantum assembly language
(subsection 3.4.1), used by Qiskit (in general) and Qiskit Terra for specifying IRs for
the quantum circuits.

These components interconnect through Qiskit Terra, which serves as the core. Terra
translates high-level quantum circuit descriptions into executable code for simulators (Aer)
and quantum processors, utilizing OpenQASM for circuit representation. Aqua extends
Terra’s capabilities by offering a higher-level abstraction for algorithm implementation.

In contrast, for a comparison with the architecture stack provided by qib, in the context
of extending it for quantum backend interfaces and communications, see Figure 6.3 .

See Source Code 3.3 for a simple example of defining the source code for a circuit in
Qiskit and executing it on a Qiskit simulator, as a job (i.e. a package comprised of multiple
experiments i.e. quantum circuits).

Besides its ease of use, Qiskit has other advantages too, such as its open-source nature,
which allows for custom extensions (such as the custom simulator that was used in the
implementation part of this thesis), or the comprehensive and modular quantum tools
it provides which support a wide range of quantum computing activities. For a more
in-depth understanding of Qiskit and its features, see the Qiskit documentation [24].

In the scope of this thesis, Qiskit has represented an important reference point, both in
terms of its architecture as well as the standards it implements (e.g. OpenQASM, Qobj,
etc.). Since qib is a custom-made open-source quantum development framework, it has
many similar concepts or requirements to Qiskit, just on a different scale, and with a more
specialized academically-focused approach. This factor has contributed to how aspects
like data structures, serialization-methods, transpilation, validation, configuration, and
network are and were implemented inside of qib. For more details about the actual imple-
mentation and a comparison with Qiskit, see Part II .

One of the most relevant user-facing aspects of a quantum development framework is
how its workflow is designed, both in terms of architecture and User Experience (UX).
Since both Qiskit and qib have an imperative workflow, they should be designed in a
straightforward but configurable manner. See Figure 3.8 for a diagram representation of
Qiskit’s workflow

3
 . The workflow needs to be straightforward, so that no matter the user

types and their previous knowledge or background, they are able to perform experiments
in an intuitive manner. On the other side, the workflow needs to be highly-configurable,
so that experimentation can cover a vast majority of cases. Therefore, different parameters,

3Please note that this diagram reflects the workflow as it is structured at the moment of writing this paper.
Since Qiskit is still in active development, this might change in the future.

29

3. Quantum Software

1 from qiskit import QuantumCircuit, Aer, execute
2 from qiskit.visualization import plot_histogram
3

4 # Create a Quantum Circuit acting on a quantum register of two qubits
5 circuit = QuantumCircuit(2)
6

7 # Add a Hadamard gate on qubit 0, putting it into superposition
8 circuit.h(0)
9

10 # Add a CNOTgate on control qubit 0 and target qubit 1, creating entanglement
11 circuit.cx(0, 1)
12

13 # Map the quantum measurement to the classical bits
14 circuit.measure_all()
15

16 # Execute the circuit on the qasm simulator
17 simulator = Aer.get_backend('qasm_simulator')
18 job = execute(circuit, simulator, shots=1000)
19

20 # Grab results from the job
21 result = job.result()
22

23 # Returns counts
24 counts = result.get_counts(circuit)
25 print("\nTotal count for 00 and 11 are:", counts)
26

27 # Plot a histogram
28 plot_histogram(counts)

Source Code 3.3.: A simple example demonstrating the creation of a quantum circuit with
Qiskit, executing it on a simulator, and interpreting the results.

30

3.5. Qiskit - The Open-Source Quantum Software Development Kit

configuration properties (both static and dynamic), helper methods, and various metadata
have to be implemented within the given framework. For how this specific aspect has
been configured and treated within qib, refer to Part II , and specifically to the workflow
diagram in Figure 6.2 .

Gates Circuit

Circuit
(Transpiled)

Back-​endProvider

transpile

run

Options

Job Result

result

Configuration

Figure 3.8.: Generic execution workflow for Qiskit experiments.

Moreover, Qiskit has played a crucial role in performing tests in safe and simulated
environments within the implementation scope of the thesis. Custom Qiskit OpenQASM
simulators have been defined at WMI, so that experimentation could be performed on
them, as a first level of fallthrough. This offers big advantages and enhances productivity
within the process of quantum applications and experiments development, since:

• It offers a fail-safe layer to test different quantum algorithms before they run on the
actual physical quantum hardware.

• It offers a transparent and controllable environment, where different parameters
can be defined and configured accordingly, and the execution flow can be logically
understood and debugged.

• It minimizes resource consumption, by limiting the overhead of operating the actual
physical hardware and cluttering the network with pending requests and waiting
queues.

• It leverages Qiskit’s power and its modules, within the custom system where it is
implemented.

• It eliminates the complex barriers of communication and data interpretation that are
standing between the classical system and the quantum one, for testing purposes.

31

Part II.

Designing a Software Development
Interface for Quantum Backends

32

4. The Quantum Computational
Environment at the WMI

This chapter will delve deeper into the actual quantum computational environment at
the Walther-Meißner-Institute (WMI) and the superconducting quantum computer used
for the implementation part of this thesis. It will provide an overview of the hardware,
software, and tools available at the WMI for quantum computing research and experi-
mentation. This chapter will also discuss the challenges and opportunities presented by
the quantum computational environment at the WMI, setting the stage for the subsequent
chapters that focus on interfacing quantum software with this environment.

4.1. The Walther-Meißner-Institute

The Walther-Meißner-Institute [64] for Low Temperature Research (WMI) is a research in-
stitute operated by the Bavarian Academy of Sciences and Humanities (BAdW). WMI fo-
cuses on exploring physics at extremely cold temperatures. They conduct both fundamen-
tal and applied research in areas like quantum mechanics and technologies, superconduc-
tivity, magnetism, and spintronics. Additionally, they develop specialized methods and
tools for reaching and studying very low temperatures, measuring the properties of quan-
tum systems and exotic materials, and growing crystals and thin films for research. WMI
even runs a helium liquefier that provides liquid helium, essential for low-temperature
research, to both universities in Munich.

4.2. The Quantum Backends available at WMI

As deduced from their activity area, the WMI owns various custom-built quantum com-
puters and simulators for research and experimentation. These devices are known as
”quantum backends”, and are the actual quantum devices that execute quantum algo-
rithms and experiments. For this thesis, two of their quantum backends have been mainly
used: A Qiskit Simulator (Qiskit Aer) specifically configured for the WMI environment
and an actual superconducting quantum chip, which is able to execute quantum circuits
through various layers of abstraction, serialization, and communication protocols.

As follows, a brief characterization of these quantum backends, their configuration, dif-
ferentiating aspects, and capabilities will be provided.

33

4. The Quantum Computational Environment at the WMI

WMI Qiskit Simulator

Type Quantum Simulator
Technology Qiskit Aer Simulator
Available Qubits 3
Gate-calibrated
Qubits

1

all 3

Available Gates Identity, PauliX, PauliY, PauliZ, Hadamard, SX,
RX, RY, RZ, ISWAP, CZ

Maximum Shots 213

Coupling Map all 3 qubits are coupled with each other

Qiskit simulators are powerful tools that allow researchers and developers to test quan-
tum algorithms and circuits without the need for actual quantum hardware (For more
details about Qiskit in the context of this thesis, see page 27). This simulator is specifi-
cally configured for the WMI environment, providing a reliable and efficient platform for
implementing, testing, and debugging various circuits, algorithms, and features, before
executing them in a real quantum hardware-based environment.

The simulator at hand is a state vector simulator. This method tracks the probability
of every possible state the qubits in the circuit could be in. For small circuits with few
qubits, this is a straightforward approach. However, as the number of qubits grows, the
number of possible states explodes, making this method impractical for larger circuits.
Since only 3 qubits are available in this simulator, the state vector method is a viable option
for simulating quantum circuits.

The simulator is also a noiseless one, assuming perfect qubits, and thus being ideal for
obtaining clear results in an initial testing and debugging stage.

WMI Superconducting Quantum Chip

Type Quantum Computer
Technology Superconducting QPU
Available Qubits 3
Gate-calibrated
Qubits

only the first one (q[0])

Available Gates Identity, PauliX, PauliY, SX, RZ
Maximum Shots 216

Coupling Map no qubits are coupled between one-another

1Gate-calibrated qubits are qubits which are configured such that unitary quantum operations (i.e. gates and
control instructions) can be performed on them

34

4.3. The WMI Backend API and its Architecture

This quantum QPU (Quantum Processing Unit) is part of a superconducting quantum
computer, which is a type of quantum computer that uses superconducting circuits to
create and manipulate qubits (see section 2.2 for more details). This chip is a real quantum
device that can execute quantum circuits and algorithms, providing a platform for testing
and running quantum programs in a real quantum hardware environment.

This particular quantum computer was only calibrated for a limited number of gates and
qubits, thus considerably limiting the number of circuits, algorithms, and experiments that
could be executed and performed on it.

In comparison to a noiseless simulator, this quantum chip is a noisy quantum device.
This means that the qubits are not perfect, and the operations performed on them are
subject to errors. These errors can be due to various factors, such as qubit decoherence,
gate errors, and readout errors. The presence of noise in the quantum chip can affect
the results of quantum computations, making it more challenging to obtain accurate and
reliable results. Thus, it was mostly used in the final implementation stages, in order
to validate the results obtained in the simulator and to test the robustness of the entire
system. The effects of the noise will also be clearly visible in Part III , where the results of
the implementation will be analyzed and discussed.

4.3. The WMI Backend API and its Architecture

Although the architecture details of the WMI infrastructure are not openly available and
are out of the scope of this thesis, the main point of information exchange between the
quantum software toolkit (qib) and the Local Area Network (LAN) at WMI is the WMI
Backend API. So, everything besides the API itself and the actual quantum backends
(which have been previously discussed) will be treated as a black-box for the rest of this
thesis.

The WMI Backend API is a RESTful API that provides a communication gateway for the
quantum backend devices available at WMI. It allows users to interact with the quantum
backends, submit quantum circuits for execution, verify their execution status, and retrieve
the results of the performed quantum computations. The API is based on the OpenQASM
language (subsection 3.4.1) for specifying quantum circuits and the Qobj (subsection 3.4.2)
serialization standard for representing quantum circuits in a machine-readable form. Since
Qobj is a JSON-based data format, this can be directly included in the body of the HTTP
requests exchanged between the API endpoints and the client.

Architecture-wise the WMI Backend API is pretty straightforward, consisting of two
main endpoints: one for submitting experiments (in the form of a HTTP PUT request)
and one for querying the status and results of the already-submitted experiments (in the
form of a HTTP POST request). Refer to Figure 4.1 for a more visual representation of the
described API architecture.

As mentioned before, the experiments, submitted in OpenQASM format as circuit in-
structions, together with their options, and metadata are sent directly in the body of the

35

4. The Quantum Computational Environment at the WMI

WMI Backend
API

POST

PUT

Quantum
Client

send experiment(s)

receive status/results

Header: API Key
Body: Qobj containing experiment(s) information

receive confirmation

Body: JobID, Status

Body: Status, [Results]

query status/results

Header: API Key
Body: JobID

Figure 4.1.: The architecture of the WMI Backend API.

request, serialized as a Qobj (i.e. JSON) object. See Source Code 4.1 for such an example.
The WMI Backend API also provides authentication mechanisms to ensure secure access

to the quantum backends. Users are required to authenticate themselves using a valid API
key before they can interact with the quantum backends. This API key is generated by the
WMI Backend API and is unique to each user. It is used to authenticate the user’s identity
and authorize their access to the quantum backends. The API key is passed as a header in
the HTTP requests sent to the API endpoints, allowing the API to verify the user’s identity
and grant them access to the desired quantum backends.

36

4.3. The WMI Backend API and its Architecture

1 {
2 "qobj_id": "67b6aac3-8421-4995-b8ff-ac7167fb4b24",
3 "type": "QASM",
4 "schema_version": "1.3.0",
5 "experiments": [
6 {
7 "header": {
8 "qubit_labels": { "qubits": [["q", 0]] },
9 "n_qubits": 1,

10 "qreg_sizes": { "q": 1 },
11 "clbit_labels": { "clbits": [["c", 0]] },
12 "memory_slots": 1,
13 "creg_sizes": { "c": 1 },
14 "name": "ExampleExperiment",
15 "global_phase": 0.0,
16 "metadata": {}
17 },
18 "config": { "n_qubits": 1, "memory_slots": 1 },
19 "instructions": [
20 { "name": "rz", "params": [90], "qubits": [0] },
21 { "name": "measure", "qubits": [0], "memory": [0] }
22]
23 }
24],
25 "header": { "backend_name": "dedicated", "backend_version": "1.0.0" },
26 "config": {
27 "shots": 1024,
28 "memory": true,
29 "meas_level": 2,
30 "init_qubits": true,
31 "do_emulation": false,
32 "memory_slots": 1,
33 "n_qubits": 1,
34 "chip": "dedicated"
35 }
36 }

Source Code 4.1.: An example of a Qobj request body serialization for a simple quantum
circuit.

37

5. qib - The Python Package for Quantum
Software Experimentation

qib is a Python package developed at the Technical University of Munich, designed to
facilitate quantum software development and experimentation. It provides a comprehen-
sive toolkit for creating and testing quantum algorithms, circuits, and gates, enabling re-
searchers and developers to explore the capabilities and limitations of quantum comput-
ing. qib is designed to bridge the gap between theoretical quantum computing concepts
and practical implementations, offering a platform for developing and testing quantum
programs.

As a quantum development toolkit, qib has multiple features and modules working to-
gether to achieve different goals and workflow scenarios, some of these components/fea-
tures include:

• Quantum Circuits Representation: qib provides a module for creating and manip-
ulating quantum circuits, which are the fundamental building blocks of quantum
algorithms. Quantum circuits consist of quantum unitary operations (such as gates)
that operate on fields (such as qubits), which could have different properties and be
configured in different latices (i.e. coupling maps). This feature enables the execu-
tion of quantum computations. qib’s quantum circuit module allows users to define
quantum circuits, add quantum gates, and simulate their behavior.

• Tensor Networks: qib supports tensor network representations for quantum circuits,
which are essential for simulating and optimizing quantum computations.

• Quantum Algorithms: qib includes some already-implemented algorithms that can
be used out of the box, such as qubitization and variational quantum eigensolver
algorithms.

• Quantum Simulators: qib also provides quantum simulators, such as a statevector
simulator, as well as a tensor-network simulator. These simulators allow users to
simulate quantum circuits and algorithms, providing insights into their behavior and
performance.

Since qib’s development is still in progress, various modules and features are yet to be
added to the toolkit. One of these modules is the backend module, which is also the main
focus of this thesis. For more information regarding its architecture and implementation
details see chapter 6 .

38

5.1. The Architecture of qib

5.1. The Architecture of qib

As mentioned before, qib is structured in multiple Python modules, with different func-
tionalities and purposes. The modules of qib at the point of writing this thesis are:

• field: This module contains information and definitions for different types of quan-
tum particles, such as qubits, bosons, fermions, etc. As well as the Field class,
which acts as a bridge between the type of a particle and its lattice configuration.

• lattice: The lattice, also known as the coupling map, is a configuration of a group
of particles in a quantum system. This configuration describes how the particles are
displaced in the system, and how they interact with each other. This information is
especially important in the context of multi-qubit quantum operations. qib imple-
ments various lattice configurations, such as integer, layered, and triangular lattices.

• operator: This module contains definitions for all qib-implemented quantum oper-
ations that can be performed on particles in the scope of a quantum circuit. These
operators include unitary operators, such as quantum gates, but also control or mea-
surement operators, such as delay or barrier.

• circuit: This module mainly defines the Circuit class, which represents a quantum
circuit. The Circuit class contains a list of order-dependent quantum operations
that are applied to a set of particles (e.g. qubits) in a quantum system. The mod-
ule also contains functions for creating and manipulating quantum circuits, such as
appending gates, merging circuits, or converting the circuit to a tensor network.

• transform: This module mainly includes quantum encodings for fermionic field op-
erators.

• algorithms: This module contains already-implemented algorithms that can be used
within qib, such as the qubitization algorithm or the variational quantum eigensolver
algorithm.

• simulator: This module contains quantum simulators implemented in qib, for test-
ing and debugging purposes. The simulators currently include a statevector simula-
tor and a tensor-network simulator.

• tensor network: This module contains components used for the tensor network rep-
resentation feature of qib.

• backend: This is the module that was implemented in the scope of this thesis, and
it contains the interface module for quantum backend communications. For more
information on this module, see chapter 6 .

• util: This is an utilitarian module, containing auxiliary functions and parameters
used across qib’s modules, such as conversions, networking functions, or constants.

39

5. qib - The Python Package for Quantum Software Experimentation

In terms of project structure, qib is organized as a Python package, with the following
root directory structure:

• doc: Containing Sphinx-generated documentation for the qib package.

• examples: Containing various examples of qib’s features and use cases.

• src: Containing the actual source code of the qib package, structured in the modules
described above.

• tests: Containing unit tests for the qib package, ensuring the correctness of its func-
tionalities.

• Other files: Containing setup and configuration files, version control specific files,
the open-source license, etc.

For more details regarding qib, its architecture, source code, as well as some use-case
examples, see the official qib documentation [47] as well as the open-source code available
on GitHub [46].

5.2. Gate-based quantum computing in qib

Besides all the other features and modules that qib supplies, the main focus of this thesis
is on the ones that provide the necessary tooling for enabling gate-based quantum com-
puting. For the sake of simplicity, this bundle of modules will be called ”qibCORE” for the
remainder of this thesis. This chapter will dive deeper into the respective architecture of
qibCORE , as well as provide some examples of how gate-based quantum computing can
be performed using qib.

As seen in Figure 5.1 , the main classes and components

1
 of qibCORE interrelate with

each other in a loosely coupled manner (e.g. by using interface segregation and depen-
dency inversion principles), which allows for a high degree of extensibility, maintainabil-
ity, modularity, and configurability, when it comes to developing and utilizing qibCORE for
quantum software development. The most relevant classes of qibCORE are:

• Field: This class is responsible for defining the properties of a quantum field, ca-
pable of withholding quantum particles, such as qubits, bosons, fermions, etc. The
field also contains information about the coupling (i.e. lattice configuration) of the
respective particles. This setup makes qibCORE capable of modeling and simulating
complex quantum systems with a high degree of fidelity and configurability.

1For the sake of simplicity, some out-of-scope classes, methods, and members will not be discussed in this
context, or will be just shallowly mentioned.

40

5.2. Gate-based quantum computing in qib

Field

Particle Type

LatticeLattice

Qubit / Boson / Fermion / ...

Particle

Field

Index
int

Gate

Qubit

implementation

direct reference

indirect reference

Brick Lattice

Integer Lattice

...

AbstractOperator

Control Instruction

MeasureInstruction

...

IdentityGate

Qubit

PauliXGate

...

...

Qubits

Classical Bits
[int]

[Qubit]

Circuit

Operators
[Gate | CI]

Legend

Figure 5.1.: The architecture of gate-based quantum computing classes in qib (part of
qibCORE).

41

5. qib - The Python Package for Quantum Software Experimentation

• Particle: This is the base class that describes the properties of a particle (e.g. qubit) in
a given quantum system. It mainly contains a reference to the field that withholds the
given particle, as well as the particle index, which is later used as a unique identifier
of the given particle.

• Qubit: This class is an implementation of the Particle base class, representing the
most common type of particle found in a gate-based quantum computing system.
This will also be solely used in the context of this thesis.

• Gate: This class is one of the implementations of the AbstractOperator base class,
representing a base class of its own, for all the unitary quantum operations that could
be performed in a quantum circuit (i.e. quantum gates). Further implementations of
the Gate class, represent the actual quantum gates (such as the Identity, Pauli X,
Hadamard, etc. gates). The actual gate classes also define the specific behavior of the
gate (i.e. the matrix representation of the gate, the number of qubits it operates on,
etc.).

• Control Instruction: This class is another implementation of the AbstractOperator
base class, representing a base class for all control instructions of a quantum circuit

2
 . Control instructions are used to control the flow of a quantum circuit, by adding

barriers, delays, or other control operations. Moreover, in order to avoid unnecessary
complexity, the measurement operation was also defined as an implementation of the
Control Instruction base class.

• Circuit: This class stands at the core of gate-based computing in qib. It represents a
quantum circuit, containing a list of quantum operations (such as gates and control
instructions) that are applied to a set of particles (e.g. qubits) in a quantum system.
The Circuit class also contains methods for creating and manipulating quantum cir-
cuits, such as appending gates, merging circuits, or converting the circuit to a tensor
network.

As for a concrete example of how qib can be used for gate-based quantum computing,
consider the Python code snippet in Source Code 5.1 . This code snippet demonstrates a
basic example of how to create a quantum circuit in qib, add quantum gates to it, and
simulate its execution using the statevector simulator provided within qib.

2This class was added as part of the other extensions provided to qib in the scope of the backend module
implementation. See section 6.5 for more details.

42

5.2. Gate-based quantum computing in qib

1 import qib
2

3 # Define a qubit field with two sites
4 # (i.e. a quantum register containing two qubits)
5 field = qib.field.Field(qib.field.ParticleType.QUBIT,
6 qib.lattice.IntegerLattice((2,)))
7

8 # Define the two qubits of the field
9 qa = qib.field.Qubit(field, 0)

10 qb = qib.field.Qubit(field, 1)
11

12 # Define a standard Hadamard and CNOT gates and link them to the qubits
13 hadamard = qib.HadamardGate(qa)
14 cnot = qib.ControlledGate(qib.PauliXGate(qb), 1).set_control(qa)
15

16 # Construct a circuit out of the gates
17 my_circuit = qib.Circuit()
18 my_circuit.append_gate(hadamard)
19 my_circuit.append_gate(cnot)
20

21 # Simulate the circuit using the statevector simulator
22 statesim = qib.simulator.StatevectorSimulator()
23 result = statesim.run(my_circuit, [field], None)

Source Code 5.1.: A basic example of using qib for local/simulated gate-based quantum
computing.

43

6. Extending qib by implementing an
Interface Module for Quantum Backend
Communications

After offering theoretical and pragmatical insights into quantum computing and quan-
tum software development as a whole (Part I), and describing the setting of this thesis in
 chapter 4 and chapter 5 , this chapter finally delves deeper into the implementation work
that has been done in order to extend the qib toolkit to interface with quantum backends,
and particularly with the quantum backends provided by the Walther-Meißner-Institute
(WMI). This chapter covers the architecture, design choices, and implementation aspects
of the backend interface module, as well as various workflow, architectural, and network-
ing diagrams of the implemented solution.

As it was done with ”qibCORE” in the previous chapter, for simplicity reasons, the back-
end module of qib together with all its members will be referred to as ”qibBACK” for the
remainder of this thesis.

6.1. Extending qib for Quantum Backends

As seen in Figure 6.1 , qibBACK follows the same loosely-coupled architecture as qibCORE .
It uses the same design principles and patterns, in order to ensure uniformity and main-
tainability among the modules of qib. The architecture consists of some core classes, such
as the Experiment and QuantumProcessor classes, which ensure the main functional-
ity of quantum algorithms definition, initialization, validation, serialization, and execution
flows; as well as some auxiliary classes, mostly used for configuring the executed experi-
ments, or storing data, such as the ExperimentResults or the Options classes.

Since qib’s source code is entirely written in Python, no abstract classes are available
by default. However, the abc module was used in order to define such abstract classes,
methods or properties. This way, the backend module can be easily extended to support
other quantum backends and providers, just by implementing the abstract classes and
methods defined in the backend module (see section 6.6).

In Figure 6.1 there is also a certain distinction made between Functional Components
(i.e. mainly classes that ensure the functional/logical flow of executing quantum algo-
rithms on various quantum backends over the network) and Data Components (i.e. aux-
iliary classes that ensure the configuration and (meta)data storage of the quantum algo-
rithms and experiments). This distinction was made in order to ensure a clear separation

44

6.1. Extending qib for Quantum Backends

Quantum Processor

Options Experiment

Processor Configuration

Experiment Results

A Abstract Class

A

A A A

Functional Component Data Component

Gate Properties

Processor Credentials

references

Experiment Status

Experiment Type

submit_experiment

calls

returns

results

twait_for_results

calls

calls
async

sync

returns

returns

Figure 6.1.: The architecture diagram of the qib backend module.

of concerns and again to make the code more maintainable and extendable.
A short description (in the order of relevance) of each one of the components/classes of

qibBACK and their role in the module will be provided, as follows:

• Experiment: This core class is responsible for modeling an actual quantum exper-
iment that runs on a given quantum processor (i.e. backend). It has methods for
initializing, validating, serializing, and querying results (in both blocking and non-
blocking modes) for such an experiment. Although not a main feature of such an ex-
periment, and not implemented for the WMI provider, at the moment of writing this
thesis, the class also provides an abstract method for canceling an already-running
experiment.

• Quantum Processor: This core represents a model of the actual quantum device/back-
end on which the experiment will run. It contains the configuration of the processor
(see Processor Configuration), as well as provides methods for submitting a quan-
tum circuit to the backend, generating an Experiment object in the process.

45

6. Extending qib by implementing an Interface Module for Quantum Backend
Communications

• Processor Configuration: This is a helper class, used for configuring a quantum pro-
cessor/backend. It is meant to store configuration properties, that will be taken into
consideration when executing experiments on the given processor. This class is not
an abstract one, and it is not meant to be customizable by the different providers,
but rather to contain core properties, that can be found and configured in any type
of quantum backend (such as the name and version of the backend, the number of
qubits and available gates, desired query frequency, etc.).

• Processor Credentials: This is a small auxiliary class used for initializing and storing
the credentials of a given quantum processor at run time (credentials such as the API
Key of the backend gateway of the provider).

• Gate Properties: This helper class, is mainly used within the Processor Configu-
ration in order to define the properties of the gates that are available on a given
quantum processor. These properties include (but are not limited to): the name of
the gate, the number of qubits it acts on, as well as the optional parameters it takes.

• Options: This is an auxiliary class, used for configuring the execution of an exper-
iment. In contrast to the Processor Configuration, this class is a client-facing one,
and it is meant to be customizable by the user, in order to fine-tune the execution of
an experiment (such as the desired number of shots, the initialization mode of the
qubits, and other provider-specific properties that can be configured on-the-fly). It
is composed of both required and optional properties, with the required ones being
mandatory for the execution of an experiment (and being set by default with some
pre-given values, which can be changed by the user), and the optional ones being
also configurable by the user, but not mandatory for the execution of an experiment.

• Experiment Results: This data class mainly stores the results of a previously-executed
quantum experiment, together with a reference to the given experiment, and some
minimal functionality meant for post-processing/representing the results in the de-
sired way.

• Experiment Status: This is an enumerator class, representing the execution state of a
given experiment. The experiment can be in both non-terminal states (i.e.
INITIALIZING, QUEUED, RUNNING), as well as terminal ones (i.e. DONE, ERROR,
CANCELLED). For a full list and description of these states, see Table 6.2 .

• Experiment Type: This is also an enumerator class, representing the type of the ex-
ecuted experiment (i.e. the standard it uses for representing the gates and serializ-
ing the information). By default, currently only OpenQASM (see subsection 3.4.1)
is supported, with the future possibility of extending it for OpenPulse experiments,
other vendor-specific or custom standards, or flavor alterations of existing standards.

In terms of functionality, the backend module exposes and requires an implementation
for the following main methods:

46

6.1. Extending qib for Quantum Backends

• QuantumProcessor.submit experiment(NAME, CIRCUIT, OPTIONS): Re-
sponsible for submitting a quantum circuit to the processor, by creating, initializ-
ing, and validating an Experiment object, and returning it. The experiment will be
initialized using the given NAME, and its execution will be defined by the serialized
CIRCUIT and OPTIONS provided to this method. After the serialization and valida-
tion steps, the experiment will be automatically sent to the given quantum backend
over the network, as part of the submission process.

• Experiment.results(): The blocking mode of attaining the results of an
Experiment (or an error, if the experiment was unsuccessful). This method will
wait for the experiment to finish, and then return the results in the form of a
ExperimentResults object.

• Experiment.wait for results(): Same as Experiment.results(), but in
a non-blocking mode, utilizing Python’s asyncio capabilities.

• Experiment.query status(): This method is responsible for querying the cur-
rent status of an experiment, storing the results if the experiment has finished (or an
error, if the experiment was unsuccessful), and returning the ExperimentStatus
of the experiment. This method is also internally used by the wait for results()
and results()methods. The two methods are essentially calling the query status()
method in a loop, with the given query frequency, until the experiment reaches a ter-
minal state.

Some non-exposed, but still important methods of quantum backends that want to be
enabled within the module are:

• QuantumProcessor. send request(EXPERIMENT): This is the actual method
that sends the given EXPERIMENT to the quantum backend over the network. It is
backend-specific, and thus the logic needs to be defined in a custom manner for each
individual backend.

• QuantumProcessor. process response(EXPERIMENT, RESPONSE): Same as
the send request() method, this method is also backend-specific, and it is re-
sponsible for processing the response of the quantum backend after the experiment
has been submitted. The method will parse the given RESPONSE dictionary, and up-
date the given EXPERIMENT object with the results, or an error, if the experiment was
unsuccessful.

• Options.optional(): This method is responsible for returning the optional prop-
erties of the Options class, in a dictionary format. This method is not mandatory,
but it is recommended to be implemented, in order to provide a clear overview of the
configurable properties of the Options class, and make sure they are only included
in the serialization if explicitly specified by the user.

47

6. Extending qib by implementing an Interface Module for Quantum Backend
Communications

• Experiment. initialize(): This method is responsible for initializing the ex-
periment, by setting the initial state of the experiment and preparing it for the vali-
dation and submission steps. These preparation steps include serializing the experi-
ment to the given type (e.g. OpenQASM), generating a UUID value for the QobjID,
as well as ensuring that properties and members are set to their corresponding initial
value.

• Experiment. validate(): This method is responsible for validating the experi-
ment. Various validations are performed as part of this step, such as checking if the
number of shots does not exceed the maximum allowed one, checking if the number
and coupling of qubits in the submitted circuit is compatible with the configuration
of the processor (i.e. with the specification of the backend), checking if the utilized
gates are available and adequately configured by the backend, etc.

• Experiment.cancel(): This method is responsible for canceling an already-running
experiment. It is not mandatory to be implemented, but it is recommended to be im-
plemented, in order to provide a clear way of canceling an experiment, in case it is
needed.

• Experiment.as qasm(): This method is responsible for serializing the experi-
ment to the OpenQASM standard.

• Experiment.from json(JSON): This method is responsible for deserializing an
experiment from a JSON object, and initializing it with the given properties.

• ExperimentResults.get counts(BINARY): This method is responsible for re-
turning the counts of the results of the experiment, in a dictionary format. If the
BINARY parameter is set to True, the counts will be returned in binary format, as
opposed to its default behavior (False) that returns the counts in hexadecimal for-
mat.

• ExperimentResults.from json(JSON): This method is responsible for deseri-
alizing the results of an experiment from a JSON object, and initializing the
ExperimentResults object with the given values.

6.2. The Workflow of executing Quantum Experiments in qib

This section offers an overview of the generic workflow of executing quantum experi-
ments in qib, using the qibBACK module. The workflow is depicted in Figure 6.2 , and it
is grouped by modules, in order to provide a clear and structured view of the steps that
need to be taken in order to run a quantum experiment in qib.

The quantum developer begins by declaring the fields, qubits, and gate configuration of
the desired quantum circuit, steps that can be also seen in Source Code 5.1 . As opposed

48

6.2. The Workflow of executing Quantum Experiments in qib

1 import qib
2

3 # ... (see Source Code 6.1.)
4

5 # Initialize the desired quantum processor and experiment options
6 processor = qib.backend.wmi.WMIQSimProcessor(access_token = "AccessToken")
7 options = qib.backend.wmi.WMIOptions(
8 shots = 1024,
9 init_qubits = True,

10 do_emulation = False)
11

12 # Submit the experiment
13 experiment = processor.submit_experiment(
14 name = "MyFirstQuantumExperiment",
15 circuit = my_circuit,
16 options = options)
17

18 # Query and print the results of the experiment
19 results = experiment.results()
20 print(results.get_counts())

Source Code 6.1.: An example of running a quantum experiment in qib, using the qibBACK

module.

to the source code in Source Code 5.1 , now the developer uses the qibBACK module, and
more specifically the submit experiment method of the QuantumProcessor class, in
order to submit the experiment to the backend (see Source Code 6.1). This method will
automatically handle the initialization, serialization, and validation steps of the submitted
quantum circuit and options, and will return an Experiment object, which can be further
used for querying the results of the experiment.

The querying of the results can be realized in both a blocking or non-blocking mode,
by using the results or wait for results methods of the Experiment object respec-
tively. The results will be stored in an ExperimentResults object, which can be further
processed, analyzed, and post-processed by the quantum developer.

In comparison to Qiskit’s workflow (see Figure 3.8), qib’s workflow (see Figure 6.2) has
a more linear approach, that strives to simplify the execution of quantum experiments,
by reducing the number of steps needed to be taken by the quantum developer, while
still keeping the same degree of configurability and flexibility. One of the main differ-
ences is represented by the missing transpilation feature/step of qib, which is not yet
implemented (at the moment of writing this thesis). Moreover, the initialization, serial-

49

6. Extending qib by implementing an Interface Module for Quantum Backend
Communications

Qubits Gates

Circuit

Quantum
Processor

Experiment

Options

Configuration

submit_experiment

wait_for_results

query_status

async

Experiment
Results

results

sync

Fields

Part of qib Core Modules Part of qib Backend Module

Figure 6.2.: The workflow of executing quantum experiments in qib (grouped by mod-
ules).

ization, validation, and the (future) transpilation steps are automatically handled by the
submit experiment method, thus providing a more streamlined and user-friendly ex-
perience for the quantum developer.

6.3. qib Implementation of the WMI Backends Interface

A full architecture stack covering 3 different scenarios can be seen in Figure 6.3 , where the
backend module is shown as an interface between the qib core modules and the quantum
backends that it enables. As seen in the figure, contrary to Qiskit (see Figure 3.7), qib does
not explicitly provide an intermediate Provider base class that manages the backends
(QuantumProcessor classes in this case), but rather flattens this hierarchy, by directly
declaring all the functionalities of the backends of a provider, in a separate submodule of
qibBACK . This architectural decision was made in order to simplify the hierarchy of the
architecture while preserving the same sense of structure and modularity.

In this section, Scenario 1 and Sceenario 2 are particularly relevant, showing the archi-
tecture stack of qib, in the context of enabling it for the WMI backends (i.e. the quantum
computer and the Qiskit simulator, see chapter 4). In this context, the backend module
was extended with the following classes (see Figure 6.4):

• WMIQSimProcessor: This represents the actual implementation class of the quan-
tum processor for the Qiskit simulator backend provided by WMI (see section 4.2).
It extends the QuantumProcessor base class, and it is responsible for submitting
experiments to the WMI Qiskit simulator backend, as well as for processing the re-
sponses of the backend. The class also contains the configuration of the processor,

50

6.3. qib Implementation of the WMI Backends Interface

WMI Quantum Computer

WMI LAN

WMI Backend API

qib

WMI Qiskit Simulator

WMI Backend API Future Provider

Future Quantum Device

backend module

qib

backend module

qib

backend module

Figure 6.3.: The architecture stack of qib, with clear visibility on how the backend module
works as an interface.
Scenario 1 (1st column): The stack architecture of qib interacting with the WMI
quantum computer backend.
Scenario 2 (2nd column): The stack architecture of qib interacting with the WMI
Qiskit simulator backend.
Scenario 3 (3rd column): The stack architecture of qib interacting with a future
quantum provider/backend.

Quantum Processor Options ExperimentProcessor Configuration Experiment Results

A Abstract Class

A A A A

WMI QS Processor

WMI QC Processor

WMI Options WMI Experiment WMI Experiment
Results

Functional / Core Component

Data Component

Implementation

Gate Properties

Processor Credentials

Experiment Status

Experiment Type

Figure 6.4.: The architecture diagram of the qib backend module, with the WMI implemen-
tations.

51

6. Extending qib by implementing an Interface Module for Quantum Backend
Communications

as well as the credentials structure needed for the authentication of the user (i.e. the
hardcoded URL and the API Key that should be provided by the user at run-time).

• WMIQCProcessor: Same as the WMIQSimProcessor, this class represents the ac-
tual implementation class of the quantum processor for the WMI quantum computer
backend. It has a similar logic and behavior as its counterpart, but its configuration is
different, reflecting the slightly more restricted configuration of the actual quantum
machine (see section 4.2).

• WMIExperiment: This class reflects and defines the experimentation model used
among the backends provided by the WMI. In terms of functionality, it contains the
most relevant and core logic of executing quantum experiments on the WMI back-
ends, thus extending the architecture provided by the Experiment base class.

• WMIExperimentResults: This class extends the ExperimentResults base class,
and it is meant to be used for post-processing, deserializing, and representing the re-
sults obtained by the experiments previously executed on the WMI backends.

• WMIOptions: This class extends the Options base class, and it is meant to be used
for configuring and providing execution context for an experiment meant to be exe-
cuted on the WMI backends. This implementation includes a multitude of custom-
configurable WMI-specific properties, with some of the most relevant ones described
in Table 6.1 .

6.4. The Networking Architecture of Quantum Backend
Communications

When it comes to the networking part, qibBACK uses a HTTP RESTful type of communi-
cation, in order to send and receive the quantum experimentation data to and from the
quantum backends (i.e. from the APIs that the backends expose).

This section will further explore some networking scenarios that can occur when run-
ning quantum experiments in qib, using the WMI provider interface. The scenarios will
cover the default case of running a successful quantum experiment, as well as the cases
of running an invalid experiment, encountering a runtime error, and canceling a running
experiment.

Networking Flow of a Successful Quantum Experiment

 Figure 6.5 shows the networking flow of running a successful quantum experiment in qib,
using the WMI provider interface.

1Required options will be marked with a star symbol (*).

52

6.4. The Networking Architecture of Quantum Backend Communications

Option Name

1
 Description

∗int shots The number of shots that the backend should perform for the
given experiment. Default value: 1024

∗bool init qubits If the qubits should be initialized to the ground state |0⟩, or not.
Default value: True

∗bool do emulation If emulation should be performed in the quantum system be-
fore running the experiment. Emulation ensures that the qubits
will be in random states before execution. Default value:
False

float trigger time It corresponds to the duration of an acquisition loop, essentially
indicating how frequently experiments are repeated. Default
value: 0.001

str acquisition mode Specifies the method to be used when gathering information
about the quantum state. Different acquisition modes target
different aspects of the system’s properties. Default value:
’spectroscopy’

Table 6.1.: The most relevant options of the WMIOptions class, used for configuring the
execution of an experiment on the WMI backends.

The flow starts with the quantum developer initializing an object of its desired quantum
processor (e.g. WMIQCProcessor), defining the circuit(s) to be executed, and submitting
the experiment to the processor (via the submit experiment method), together with the
desired name and options. This gets then processed by qibBACK ’s internal logic, which sets
the Experiment Status to INITIALIZING, initializes, validates, and serializes the experi-
ment, and sends it to the WMI Backend API via an HTTP PUT request. The experiment
is sent as a Qobj (see subsection 3.4.2) serialized JSON object directly in the body of the
request.

If the submitted experiment is valid, this gets then acknowledged by the WMI Back-
end API with a 200 OK response, and the experiment (internally called execution ”Job”)
gets internally (i.e. within the WMI LAN) queued for execution. As mentioned before,
everything that takes place within the WMI LAN will be treated as a black-box, thus on a
general level, the main logic of the steps that follow (internally) include processes such as
request validation, job storing and scheduling, network internal communications via vari-
ous protocols, and finally the actual execution of the quantum experiment on the quantum
device. Once the experiment is acknowledged on qib’s side, the Experiment Status is set
to QUEUED.

At this point, the quantum developer can use methods such as get results,
wait for results, or query results in order to get the current status of the queued
experiment. These methods will further trigger a HTTP POST request to the WMI Back-
end API, querying the status of the experiment, by including its job id in the body of

53

6. Extending qib by implementing an Interface Module for Quantum Backend
Communications

qib

...

...

Quantum
Developer

WMI
Backend API

...

...

...

...

initialize processor

configure circuit

set experiment name and options

submit experiment

initialize experiment

validate experiment

serialize experiment

acknowledge experiment

return submitted experiment

200 OK

get results

send experiment
HTTP PUT

Quantum Device

query status

Experiment Status
INITIALIZING

Experiment Status
QUEUED

Job Status
ACTIVE

Job Status
FINISHED

Asynchronously (Out of Scope)
- validate request
- create and store running job (Database)
- schedule experiment job
- send experiment to Quantum Device
- respond to request
- wait for job termination (DONE, ERROR,
CANCELLED)
- update and store job status and results
(Database)

...

HTTP POST

query status
200 OK

sync/async queries with a
given interval

Experiment Status
DONE

return experiment results

Job Status
PENDING

Experiment Status
RUNNING

Figure 6.5.: The default networking flow of successfully running a quantum experiment in
qib, using the WMI provider interface.

the request. The API will then respond with a 200 OK acknowledgment response, con-
taining the current status of the experiment, and the Experiment Status will be updated
accordingly.

54

6.4. The Networking Architecture of Quantum Backend Communications

Experiment Status
(qib)

Job Status (WMI) Description

INITIALIZING — Experiment is being initialized and hasn’t yet
been sent to the quantum backend.

QUEUED PENDING Experiment has been successfully initialized,
validated, serialized, and sent to the quan-
tum backend, where is waiting for execution.

RUNNING ACTIVE Experiment is being executed.
DONE FINISHED Experiment was successfully executed, and

results are available.
CANCELLED CANCELLED Experiment execution has been cancelled.
ERROR OFFLINE or unknown Experiment initialization or execution en-

countered an error, and a corresponding er-
ror message is available.

Table 6.2.: All the possible states of an experiment in qib, and their corresponding states in
the WMI provider.

As noticed from the figure, the status of the experiment (qib) and of the job (WMI) goes
through different stages, these have different names and meaning for qib as they have for
WMI, hence a more detailed description and one-to-one mapping can be found in Table 6.2 .

Once the experiment is executed successfully, the WMI Backend API will respond with
a 200 OK acknowledgment response, containing the results of the experiment in the body
of the response. The Experiment Status will be set to DONE, and the results will be stored
in a ExperimentResults object, which will be returned to the quantum developer. The
results can then be further processed, analyzed, and visualized by the developer.

Networking Flow of an Invalid Quantum Experiment

As seen in Figure 6.6 , if the submitted experiment is invalid or contains misconfigured
serialization that still passes the qibBACK ’s internal logic and gets sent to the WMI Back-
end API, the API will respond with a 500 Internal Server Error acknowledgment
response to the initial HTTP PUT request, indicating that the submitted experiment is in-
valid.

This scenario can also be reproduced if the backend is offline, but in this case, the ac-
knowledgment response will contain the status: ’offline’ property in the message
body. In both cases, the Experiment Status will be set to ERROR, and the corresponding er-
ror message will be available for the quantum developer to query.

55

6. Extending qib by implementing an Interface Module for Quantum Backend
Communications

qibQuantum
Developer

WMI
Backend API

initialize processor

configure circuit

set experiment name and options

submit experiment

initialize experiment

validate experiment

serialize experiment

acknowledge experiment

raise Error

500 INTERNAL SERVER ERROR

send experiment
HTTP PUT

Quantum Device

Experiment Status
INITIALIZING

Validation Error Encountered
 ​Possible Causes:
 ​ ​- erroneous request or experiment data
 ​ ​- offline device or API
 ​ ​- internal server error
 ​ ​- etc.

...

Experiment Status
ERROR

Figure 6.6.: The networking flow of running an invalid quantum experiment in qib, using
the WMI provider interface.

Networking Flow of a Quantum Experiment encountering a Runtime Error

However, if a runtime error is encountered, as seen in Figure 6.7 , the WMI Backend API
will (at some point) respond with a 500 Internal Server Error acknowledgment
response to the HTTP POST request used for querying the status of the (successfully) sub-
mitted experiment. The occurance of this scenario is rather rare, but it can happen due to
various reasons, such as network issues, backend overload, or internal errors in the WMI
LAN.

Networking Flow of Canceling a Running Quantum Experiment

Although not yet implemented (i.e. at the moment of writing this thesis), Figure 6.8 shows
the potential networking scenario of canceling an already running quantum experiment.

56

6.4. The Networking Architecture of Quantum Backend Communications

qib

...

...

Quantum
Developer

WMI
Backend API

...

...

...

...

initialize processor

configure circuit

set experiment name and options

submit experiment

initialize experiment

validate experiment

serialize experiment

acknowledge experiment

return submitted experiment

200 OK

get results

send experiment
HTTP PUT

Quantum Device

query status

Experiment Status
INITIALIZING

Experiment Status
QUEUED

Job Status
ACTIVE

Job Status
OFFLINE / XXX

Asynchronously (Out of Scope)
- validate request
- create and store running job (Database)
- schedule experiment job
- send experiment to Quantum Device
- respond to request
- wait for job termination (DONE, ERROR,
CANCELLED)
- update and store job status and results
(Database)

...

HTTP POST

query status
500 INTERNAL SERVER ERROR

sync/async queries with a
given interval

Experiment Status
ERROR

Job Status
PENDING

raise Error

Runtime Error Encountered
 ​Possible Causes:
 ​ ​- defectous quantum device
 ​ ​- power or network failure (offline)
 ​ ​- etc.

...
Experiment Status

RUNNING

Figure 6.7.: The networking flow of running a quantum experiment that encounters a run-
time error in qib, using the WMI provider interface.

57

6. Extending qib by implementing an Interface Module for Quantum Backend
Communications

qibQuantum
Developer

WMI
Backend API

...

...

...

...

initialize processor

configure circuit

set experiment name and options

submit experiment

initialize experiment

validate experiment

serialize experiment

acknowledge experiment

return submitted experiment

200 OK

cancel experiment

send experiment
HTTP PUT

Quantum Device

cancel experiment

Experiment Status
INITIALIZING

Experiment Status
QUEUED

Job Status
ACTIVE

Job Status
CANCELLED

Asynchronously (Out of Scope)
- validate request
- create and store running job (Database)
- schedule experiment job
- send experiment to Quantum Device
- respond to request
- wait for job termination (DONE, ERROR,
CANCELLED)
- update and store job status and results
(Database)

...

HTTP DELETE

cancel experiment
200 OK

experiment cancelation confirmation

Job Status
PENDING

Experiment Status
CANCELLED

Figure 6.8.: The networking flow of canceling a running quantum experiment in qib, using
the WMI provider interface.

This scenario could be reproduced by calling the cancel method of the Experiment ob-
ject, which will send a HTTP DELETE request to the WMI Backend API, with the job id
of the running experiment. The API will then respond with a 200 OK acknowledgment

58

6.5. Other Extensions to qib

response, and the Experiment Status will be set to CANCELLED. The results of the exper-
iment will not be available, and the experiment will be removed from the queue of the
quantum backend.

6.5. Other Extensions to qib

In the process of extending qib for backend communications, and more specifically for the
WMI provider, some other extensions or features to the already existing qibCORE were also
necessary. In this section, some of these extensions will be briefly described, as follows:

1. New Gates: Since the WMI backends provide some gates that were not implemented
by default in qibCORE , these had to be implemented as children of the Gate base
class, in the qib.operator Python module of qibCORE . The implemented gates
are: Identity Gate, iSwap Gate, and the SX Gate (see Table 6.3).

2. Control Instructions: Although not part of the OpenQASM2 standard (see
 subsection 3.4.1), the barrier and delay control instructions (part of OpenQASM3)
were also provided by the WMI backends, and thus had to be added to qibCORE (see

 Table 6.3). This was achieved by creating a new deriving base class
ControlInstruction of the AbstractOperator base class. This newly created
base class was also used in order to implement the measure control instruction,
which is used in declaring a circuit, to specify where and what qubits should be
measured (i.e. projective measurement), and in which classical register(s) should the
result(s) be stored.

3. OpenQASM Serialization: Since OpenQASM serialization was necessary for gates,
circuits, and experiments to be sent to the WMI backends, new as qasm() methods
have been implemented for the Gate, Circuit, and Experiment classes. These
methods are responsible for serializing the given object to the corresponding Open-
QASM standard (see Figure 3.6).

4. Networking: As a requirement, for interacting with the designated backends over
the network, a simple networking submodule was added to the util module in
qibCORE , containing the necessary logic for performing HTTP requests and handling
responses, as well as for retrying requests on failure and handling error messages.
This submodule is used by the QuantumProcessor and Experiment classes in
qibBACK , in order to send and receive data to and from the quantum backends.

6.6. Extending qib for future providers

As both an academic as well as a research-focused toolkit, qib should be designed with
future quantum providers in mind (and not solely rely on the WMI backends available in

59

6. Extending qib by implementing an Interface Module for Quantum Backend
Communications

Quantum Operation Circuit Representation Description
Identity Gate

See Table 2.1 iSwap Gate
SX Gate

Delay Instruction Delay[100ns] A quantum instruction used to intro-
duce a controlled delay in the execution
of subsequent operations.

Barrier Instruction G1 G2

barrier

A quantum instruction used to prevent
certain qubits from being affected by
subsequent operations, ensuring their
state remains unchanged.

Measure Instruction A quantum instruction that collapses the
superposition of a qubit’s state to a clas-
sical state, providing an outcome that
can be observed and recorded.

Table 6.3.: The newly implemented gates and control instructions in qibCORE , as children
of the Gate and ControlInstruction base classes.

the present). One more reason for this extensibility property is represented by the very
nature of quantum computing itself, which is still undergoing a lot of changes, and ad-
vancements, as well as new technologies and providers emerging, that could potentially
be integrated into qib.

This section will dive deeper into the topic of extending qib for such future quantum
providers and more specifically enabling the current architecture of qibBACK for the back-
ends of these future providers. In this context, Scenario 3 from Figure 6.3 becomes partic-
ularly relevant. The section will explore this scenario, covering the architectural decisions
as well as the implementations that need to be performed in order to properly extend the
module in the future.

In order to extend qibBACK for a future quantum provider, the following steps must be
taken:

1. Create the provider sub-module. Create a new folder with the provider name, under
src/backend, and create a new init .py file within the folder, to initialize the
Python module. All the following Python implementations should be also declared
within this file (see Source Code 6.2).

2. Implement qibBACK ’s base classes. Implement the base classes provided by qibBACK ,
Options, Experiment, ExperimentResults, for the corresponding provider (see

60

6.6. Extending qib for future providers

1 from qib.backend.myprov.myprov_options import MyProvOptions
2 from qib.backend.myprov.myprov_experiment import MyProvExperiment,
3 MyProvExperimentResults
4

5 # Backend A
6 from qib.backend.myprov.myprov_backend_a import MyProvBackendA
7

8 # Backend B
9 from qib.backend.myprov.myprov_backend_b import MyProvBackendB

10

11 # ...

Source Code 6.2.: Template content of the init .py file for a newly-added provider
submodule in qibBACK .

 Source Code 6.3 and Source Code 6.4). Optionally, these classes can also be imple-
mented for each backend separately (if this is necessary in the given context).

3. Implement the corresponding processor classes for the given backends. For each
new backend of the provider, implement the corresponding processor class, extend-
ing the QuantumProcessor base class, and implementing the required methods for
submitting the experiments to the given backend (see Source Code 6.5).

61

6. Extending qib by implementing an Interface Module for Quantum Backend
Communications

1 from qib.backend.options import Options
2

3 class MyProvOptions(Options):
4 def __init__(self,
5 option1: str = "default_value1", # required option
6 option2: str = None # optional option
7 # ...
8):
9 self.option1: str = option1

10 self.option2: str = option2
11

12 def optional(self) -> dict:
13 optional: dict = {}
14 if self.option2: optional['option2'] = self.option2
15 return optional

Source Code 6.3.: Template of the Options class implementation for a newly-added
provider submodule in qibBACK .

62

6.6. Extending qib for future providers

1 from qib.circuit import Circuit
2 from qib.backend.myprov import MyProvOptions
3 from qib.backend import ExperimentStatus,
4 Experiment,
5 ExperimentResults,
6 ExperimentType
7

8 class MyProvExperiment(Experiment):
9 def __init__(self,

10 circuit: Circuit,
11 options: MyProvOptions,
12 exp_type: ExperimentType)
13 self.circuit: Circuit = circuit
14 self.options: MyProvOptions = options
15 self.exp_type: ExperimentType = exp_type
16 self._initialize()
17 self._validate()
18

19 def results(self) -> MyProvExperimentResults | None:
20 # implement accordingly
21

22 # ...
23

24

25 class MyProvExperimentResults(ExperimentResults):
26 # ...

Source Code 6.4.: Template of the Experiment and ExperimentResults classes imple-
mentations for a newly-added provider submodule in qibBACK .

63

6. Extending qib by implementing an Interface Module for Quantum Backend
Communications

1 from qib.circuit import Circuit
2 from qib.backend import QuantumProcessor, ProcessorConfiguration
3 from qib.backend.myprov import MyProvOptions, MyProvExperiment
4

5 class MyProvBackendA(QuantumProcessor):
6 def __init__(self):
7 # implement accordingly
8

9 @staticmethod
10 def configuration() -> ProcessorConfiguration:
11 return ProcessorConfiguration(
12 backend_name = 'BackendA'
13 backend_version = 'v1.5.6'
14 # ...
15)
16

17 def submit_experiment(circuit: Circuit,
18 options: MyProvOptions = MyProvOptions()
19) -> MyProvExperiment:
20 # implement accordingly

Source Code 6.5.: Template of the QuantumProcessor class implementation for a newly-
added backend of a newly-added provider submodule in qibBACK .

64

Part III.

Experiments, Results, and
Conclusions

65

7. Experimental Results and Tests

This chapter will dive deeper into the actual tests and experiments that have been per-
formed on the implementation of qibBACK . It will start by describing some automated
tests and basic experiments that were initially performed while implementing the logic of
qibBACK . Concluding with the most relevant and complex experiment performed in the
context of this thesis, a hybrid quantum-classical machine learning experiment. It was the
first successful hybrid quantum-classical algorithm to be run on the cloud interface pro-
vided by the WMI infrastructure, and the results were promising, thus testing the potential
and robustness of both qib and WMI architectures.

7.1. Testing the implementation

This section will shortly cover the automated tests performed on the qibBACK implemen-
tation. These tests mainly consist of automated Unit Tests (UTs), that were performed
using the Python unittest framework. Within qib, UTs are categorized in separate files
depending on the qib module that they are testing, containing separate test cases with
separate scenarios, covering the (potential) utilization scenarios of the qib toolkit.

For testing the logic implemented within qibBACK the test back.py file was extended
with the following scenarios:

• Performing experiments on the WMI Qiskit Simulator processor:

- Defining fields, qubits, gates, and circuits.

- Initializing, validating, and submitting experiments.

- Querying, retrieving, and validating mock results.

• Performing experiments on the WMI Qiskit Quantum Computer processor:

- Same scenarios as for the WMI Qiskit Simulator processor.

• Testing the validation steps of various Experiment objects in different scenarios:

- Validating the ”Shots exceeded” scenario (i.e. the submitted number of shots
does not exceed the maximum number of shots allowed on the processor).

- Validating the ”Gate not supported” scenario (i.e. used gates are supported by
the processor).

66

7.2. Basic Experiments

- Validating the ”Gate qubits not configured” scenario (i.e. used gates are con-
figured for the used qubits in the system of the processor).

- Validating the ”Gate parameters not configured” scenario (i.e. the parametrized
gates used in the experiment use the correct parameters, configured by the proces-
sor).

- Validating the ”Number of qubits exceeded” scenario (i.e. the number of
qubits used in the experiment does not exceed the maximum number of qubits al-
lowed on the processor).

For simulating the networking responses received by qibBACK in a real-life scenario,
mock data was used, in the form of JSON object files pre-loaded into Python dictionaries,
before performing the corresponding tests. Calls to mocked methods are then used in or-
der to simulate the behavior (i.e. retrieve the mocked responses) of the actual backends
(i.e. APIs). In this way, qibBACK can be tested without the need for an actual backend con-
nection, or cumbersome integration tests, that would require the actual quantum backends
(i.e. devices) to be up and running.

7.2. Basic Experiments

As part of the testing and experimentation stage, various basic experiments were per-
formed using the implemented interface, in order to validate, fine-tune, and optimize the
logic of qibBACK . These experiments were performed on both the WMI Qiskit Simulator
and the WMI Quantum Computer processors (with some of them being performed exclu-
sively on the simulator, because of the restrictions imposed by the quantum processor).

One of the first basic experiments that were performed was trying to reproduce all 4 Bell
States [6] on the WMI Qiskit Simulator backend.

Given:

|βxy⟩ ≡
|0, y⟩+ (−1)x|1, ŷ⟩√

2
, where ŷ is the negation of y. (7.1)

The 4 Bell States are defined as follows:

∣∣Φ+
〉
=

|00⟩+ |11⟩√
2

∣∣Φ−〉 = |00⟩ − |11⟩√
2∣∣Ψ+

〉
=

|01⟩+ |10⟩√
2

∣∣Ψ−〉 = |01⟩ − |10⟩√
2

(7.2)

The corresponding circuits (see Figure 7.1) were successfully executed on the simulator,
with the results being consistent with the expected Bell States (see Figure 7.2). This is
exactly what one would expect on running these circuits on a perfect simulator, where no
noise is introduced, but statistical error still exists. See Source Code 7.1 for the qib Python
code that has been used for this experiment.

67

7. Experimental Results and Tests

q0 H

|Φ+⟩
q1

q0 X H

|Φ−⟩
q1

q0 H

|Ψ+⟩
q1 X

q0 H Z

|Ψ−⟩
q1 X Z

Figure 7.1.: Circuits for generating the four Bell states. For the decomposed versions, used
in the experiments, see Figure A.1 .

Since not all gates are configured for the WMI machines, some of the experiments and
tests performed had to take advantage of the basic decomposition property of quantum
gates (i.e. matrices), see Appendix A for more details on how this was specifically applied
in the context of the necessary circuits and gates.

Unfortunately, this experiment could not be reproduced on the WMI Quantum Com-
puter, since it requires 2 calibrated qubits to be used, and the WMI Quantum Computer
only has one qubit that is calibrated and available for experiments.

As for a basic testing experiment performed on the WMI QPU, a simple implementation
of a circuit containing a SX Gate was executed (see Figure 7.3). The goal of this experi-
ment was to put the only qubit available and configured within the WMI QPU in a super-
position state. The results were successful, but the error rate can be noticed, as opposed
to its WMI Qiskit Simulator counterpart (see Figure 7.4). In addition to statistical errors,
experimental errors can now be also observed as a direct consequence of the noise present
in the quantum computer. This is a common issue in the quantum computing field, with
active research and new solutions trying to mitigate it as much as possible. The error rate
can be seen in the results of the experiment, as the probabilities of the states are not exactly
0.5, as they should be in the case of a perfect quantum computer. See Source Code 7.2 for
the qib Python code that has been used for this experiment.

68

7.2. Basic Experiments

Figure 7.2.: The results (i.e. states distribution) of the Bell States experiment on the WMI
Qiskit Simulator.

q0|0⟩
√
X

Figure 7.3.: The circuit for the SX Gate experiment on the WMI QPU.

69

7. Experimental Results and Tests

1 # Defines and returns the 4 Bell States circuits
2 def wmi_qs_bell_circuits() -> qib.Circuit[]:
3 field = qib.field.Field(
4 qib.field.ParticleType.QUBIT, qib.lattice.IntegerLattice((3,)))
5 q0 = qib.field.Qubit(field, 0)
6 q1 = qib.field.Qubit(field, 1)
7

8 # ...
9

10 return [circuit_phi_plus, circuit_phi_minus,
11 circuit_psi_plus, circuit_psi_minus]
12

13 # Initializes the backend, submits the given circuit,
14 # and returns the results
15 def wmi_qs_experiment(circuit: qib.Circuit, access_token: str) ->
16 qib.backend.ExperimentResults:
17 processor = qib.backend.wmi.WMIQSimProcessor(access_token)
18 options = qib.backend.wmi.WMIOptions(shots=4096)
19 experiment = processor.submit_experiment(
20 name = 'qib-integration-test-qs',
21 circ = circuit,
22 options = options)
23 results = experiment.results()
24 return results
25

26 # Plots the state distribution of the given results
27 def wmi_qs_plot_states(results_counts: list[dict]) -> None:
28 # ...
29

30 # Initialize the circuits and run the experiment
31 bell_circuits = wmi_qs_bell_circuits()
32 results_counts: list[dict] = []
33 for circuit in bell_circuits:
34 results = wmi_qs_experiment(circuit, access_token)
35 results_counts.append(results.get_counts(binary=True))
36

37 # Plot experiment results
38 wmi_qs_plot_states(results_counts)

Source Code 7.1.: Python code for running the Bell States experiment on the WMI Qiskit
Simulator.

70

7.2. Basic Experiments

1 # Defines and returns the Sx circuit
2 def wmi_qc_circuit():
3 field = qib.field.Field(
4 qib.field.ParticleType.QUBIT, qib.lattice.IntegerLattice((3,)))
5 q0 = qib.field.Qubit(field, 0)
6

7 circuit = qib.Circuit([
8 qib.SxGate(q0),
9 qib.MeasureInstruction([q0])

10])
11 return circuit
12

13 # Initializes the backend, submits the given circuit,
14 # and returns the results
15 def wmi_qc_experiment(circuit: qib.Circuit, access_token: str) ->
16 qib.backend.ExperimentResults:
17 processor = qib.backend.wmi.WMIQCProcessor(access_token=access_token)
18 experiment = processor.submit_experiment(
19 name = 'qib-integration-test-qc',
20 circ = circuit)
21 results = experiment.results()
22 return results
23

24 # Plots the state distribution of the given results
25 def wmi_qc_plot(counts: dict) -> None:
26 # ...
27

28 # Initialize the circuits and run the experiment
29 circuit = wmi_qc_circuit()
30 results = wmi_qc_experiment(circuit, access_token).get_counts(binary=True)
31

32 # Plot experiment results
33 wmi_qc_plot(results)

Source Code 7.2.: Python code for running the SX Gate experiment on the WMI QPU.

71

7. Experimental Results and Tests

Figure 7.4.: The results (i.e. states distribution) of the SX Gate experiment on the WMI
QPU. The error rate can be noticed in the count’s difference of the states.

7.3. Hybrid Quantum-Classical Experiment

Quantum State Tomography (QST) is the procedure used to experimentally determine
an unknown quantum state. Considering an unknown state |ψ⟩ of a single qubit, how
can one experimentally ascertain the state of |ψ⟩? If only a single copy of |ψ⟩ is available,
it is impossible to fully characterize it. This is because the qubit state is hidden before
measurement (i.e. any measurement could be the result of an infinite set of qubit states).
However, if a large number of copies of |ψ⟩ is available, it becomes possible to estimate the
state. For example, if |ψ⟩ is the quantum state produced by an experiment, one can repeat
the experiment multiple times to generate many copies of the state |ψ⟩.

QST is used to estimate what the state of a given quantum system is, an indispensable
technique necessary for realizing Quantum Process Tomography (QPT), that aims to char-
acterize the dynamics of a quantum system. Together, QST and QPT offer a comprehensive
toolkit for quantum system characterization, being closely interdependent in terms of the
accuracy and reliability of the overall results.

This experiment aimed to implement a single-qubit Quantum State Tomography process
on both WMI backends, by using a gradient descent algorithm for learning the quantum
state of the system. The main process consisted of training on the parameters of a uni-
versal quantum rotation gate, in order to reproduce (as accurately as possible) the initial
randomly pre-generated quantum state of the system.

The experiment was structured in 3 main stages (initialization, training, and testing),
which will be described as follows, together with the set-up, algorithms, and mathemat-
ical concepts that were necessary for realizing each stage. After that, the results of the
experiment will be presented, together with the conclusions, comments, and comparisons
between the two backend systems.

72

7.3. Hybrid Quantum-Classical Experiment

TRAINED_PARAMS -=
LEARNING_RATE * GRADIENT

2. Training1. Initialization 3. Testing

for STEP in MAX_STEPS

if COST < CONVERGENCE_THRESHOLD
then break

Calculate gradient partial derivatives COST = F(GOAL - CURRENT)

Plot Trained Data
(Optional)

Randomly Generate GOAL
State

Test Trained Parameters

Perform U3 rotation using the trained
paremters

Compare trained state with goal state

Quantum Step

Classical Step

Hybrid Step

Function-​level Execution Flow

Main Execution Flow

Calculate GRADIENT

Perform Gradient Descent
(Train U3 Parameters)

Get CURRENT Pauli observable
expectation values

Get PSR Pauli observable expectation
values

Figure 7.5.: The steps performed in the implemented Hybrid Quantum-Classical Algo-
rithm, and their nature.

The diagram in Figure 7.5 illustrates the nature of the Hybrid Quantum-Classical Al-
gorithm implemented for this experiment, highlighting the clear distinction between the
quantum, classical, and hybrid steps involved in the algorithm.

Stage 1: Initialization

In this initial stage of the experiment, a random quantum state is generated, by generating
two random rotation angles (θ and ϕ) in spherical coordinates and converting them to
their corresponding cartesian coordinates. This is the goal state that the algorithm should
be able to learn and reproduce, by training on the parameters of a universal quantum
rotation gate (see Figure 7.6).

73

7. Experimental Results and Tests

Ground State

θ = 150.85°, Φ = 60.72°
x ~ 0.238
y ~ 0.425
z ~ -0.873

Goal State

WMI Qiskit Simulator

Ground State

θ = 114.60°, Φ = 355.10°
x ~ 0.906
y ~ -0.078
z ~ -0.416

Goal State

WMI QPU

Figure 7.6.: An example of two randomly generated initial quantum states for the Hybrid
ML experiment on the WMI Qiskit Simulator (left) and the WMI Qiskit Quan-
tum Computer (right).

Stage 2: Training

This is the main stage of the experiment, consisting of an implementation of the gradient
descent algorithm [54] performed on the parameters (θ, ϕ, λ) of a universal quantum ro-
tation gate, more exactly the U3 gate (see Table 7.1). Since this gate is neither configured
nor available on the WMI backends, gate decomposition was performed (see Figure 7.7),
in order to decompose the U3 gate into a sequence of elementary gates that are supported
by the backends (for more information see Appendix A).

U3(θ, ϕ, λ) =

= RZ(λ)
√
X RZ(θ + π)

√
X RZ(ϕ+ π)

Figure 7.7.: Decomposing the U3 gate to WMI-available gates.

For the gradient descent algorithm, a simple Squared Euclidean Distance function was
used as the cost function F , which measures the difference between the goal state and the
current state of the system.

F =
∑

k∈{x,y,z}

u2k where uk(kgoal, kcurrent) = kgoal − kcurrent, for k ∈ {x, y, z} (7.3)

74

7.3. Hybrid Quantum-Classical Experiment

Circuit Representation Matrix Representation

U3(θ, ϕ, λ) U3(θ, ϕ, λ) =

 cos
(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

)


Table 7.1.: The U3 universal single-qubit quantum rotation gate, with 3 Euler angles.

U3(θ, ϕ, λ) H ⟨σX⟩

U3(θ, ϕ, λ) H S† ⟨σY ⟩

U3(θ, ϕ, λ) ⟨σZ⟩

Figure 7.8.: The circuits for the Pauli X, Y, and Z post-rotation measurements.
(Note: Decomposed versions have been used for PauliX and PauliY, in the actual experiment)

Here, kcurrent can be calculated as the expectation value of a Pauli observable, resulting
in Equation 7.6 . Because the expectation values of each Pauli observable depend on the
circuit state, they are functions of θ, ϕ, λ.

The end-goal was to minimize this cost function F , and to get as close as possible to the
goal state.

Min{F (θs, ϕs, λs)} (7.4)

In order to achieve this, the gradient

∇F =


∂F
∂θ

∂F
∂ϕ

∂F
∂λ

 (7.5)

was calculated at each iteration step of the algorithm by using repetitive rotations (i.e.
the decomposed U3 gate circuit) and post-rotation measurements

1
 (i.e. measurement

statistics in all 3 Pauli bases, see Figure 7.8) of the current system state

2
 .

1For performing the necessary post-rotation measurements, gate decomposition was again necessary, see
 Appendix A .

2The results of the measurements were then scaled and converted from a |0⟩ and |1⟩ distribution to a scaled
average of 1’s and -1’s, since that is the necessary context-relevant value of the Bloch Sphere’s cartesian
coordinate system.

75

7. Experimental Results and Tests

xcurrentycurrent
zcurrent

 =

⟨σx⟩
⟨σy⟩
⟨σz⟩

 (7.6)

The calculated gradient was then plugged into the gradient descent formula in order to
update the trained parameters of the U3 gate.

θiϕi
λi

 =

θi−1

ϕi−1

λi−1

− α ∗ ∇F, where i represents the current iteration step (7.7)

In order to calculate the gradient, one must calculate the three partial derivatives of it in
regards to the U3 gate parameters.

∂F

∂θ
,
∂F

∂ϕ
, and

∂F

∂λ
(7.8)

First, the chain rule was applied. By taking the formula of the cost function F from
 Equation 7.3 and considering Equation 7.6 , the first partial derivative of the gradient can
be formulated as:

∂F

∂θ
=
∂F

∂u
· ∂u
∂θ

=
∑

k∈{x,y,z}

∂u2k
∂uk

· −∂⟨σk⟩
∂θ

=
∑

k∈{x,y,z}

−2uk ·
∂⟨σk⟩
∂θ

(7.9)

For simplicity reasons:

Let
∂⟨σk⟩
∂θ

= Tk ,for k ∈ {x, y, z} (7.10)

Then the Parameter Shift Rule (PSR) [42] was necessary. PSR is a technique used in
quantum machine learning for calculating the gradient of a variational quantum circuit
with respect to its parameters. For more information on the Parameter Shift Rule in the
context of this thesis, see Appendix B .

Since one seeks to minimize the cost function with respect to the parameters of this
variational quantum algorithm, the PSR enables the computation of gradients, i.e. of the
partial derivatives needed for the final gradient calculation.

For example, given a quantum circuit with a single parametrized gate U(θ) and an ob-
servable X . The expectation value of the observable, where the circuit is in a particular
quantum state is given by:

E(θ) = ⟨0|U †(θ)XU(θ)|0⟩. (7.11)

Using the Parameter Shift Rule, the gradient is:

∂E(θ)

∂θ
=

1

2

(
E(θ +

π

2
)− E(θ − π

2
)
)
. (7.12)

76

7.3. Hybrid Quantum-Classical Experiment

This gradient can be used in the gradient descent update rule to optimize θ. This very
same technique has been used to optimize the θ, ϕ, and λ parameters of the U3 gate in the
context of this experiment. Lastly, with the PSR constants cPSR = 1

2 and sPSR = π
2

3
 , Tk

from Equation 7.10 can be written as:

Tk =
1

2
· [⟨σk(θcurrent + π/2, ϕcurrent, λcurrent)⟩ − ⟨σk(θcurrent − π/2, ϕcurrent, λcurrent)⟩],

for k ∈ {x, y, z} (7.13)

By expanding the sum in Equation 7.9 and taking into consideration Equation 7.13 the
resulting formula for the first partial derivative of the gradient can be written as:

∂F

∂θ
=
∂F

∂u
· ∂u
∂θ

= (−2ux · Tx) + (−2uy · Ty) + (−2uz · Tz),

where Tk =
1

2
·[⟨σk(θcurrent+π/2, ϕcurrent, λcurrent)⟩−⟨σk(θcurrent−π/2, ϕcurrent, λcurrent)⟩],

for k ∈ {x, y, z} (7.14)

Concluding, the formulas for the other two partial derivatives of the gradient are:

∂F

∂ϕ
=
∂F

∂u
· ∂u
∂ϕ

= (−2ux · Px) + (−2uy · Py) + (−2uz · Pz),

where Pk =
1

2
·[⟨σk(θcurrent, ϕcurrent+π/2, λcurrent)⟩−⟨σk(θcurrent, ϕcurrent−π/2, λcurrent)⟩],

for k ∈ {x, y, z} (7.15)

∂F

∂λ
=
∂F

∂u
· ∂u
∂λ

= (−2ux · Lx) + (−2uy · Ly) + (−2uz · Lz),

where Lk =
1

2
·[⟨σk(θcurrent, ϕcurrent, λcurrent+π/2)⟩−⟨σk(θcurrent, ϕcurrent, λcurrent−π/2)⟩],

for k ∈ {x, y, z} (7.16)

As for the hyperpatameters of the algorithm, the values were adapted for each backend
individually, in order to optimize the training process (this will be further discussed in

 section 7.3). The hyperparameters used for the training process are the following:

• Learning Rate (α): The step size at each iteration of the algorithm.

3see section B to understand why

77

7. Experimental Results and Tests

• Max Steps: The maximum number of iterations allowed for the algorithm.

• Convergence Threshold: The threshold value for the loss function, at which the
algorithm should stop.

The training algorithm described above is also programmatically represented in the
Python pseudocode at Source Code 7.3 .

Stage 3: Testing

Once the three Euclidean angles (i.e. parameters of the U3 gate) have been successfully
trained, with satisfactory accuracy, they are used in stage 3 for testing the actual results,
by performing a final rotation on the system and measuring the state in the Pauli X, Y, and
Z bases. The results are then compared with the initial goal state, in order to evaluate the
accuracy of the trained values. The goal is for the trained state (i.e. vector or cartesian
coordinates) to be as close as possible to the initial (randomly generated) state, with a
minimal error rate.

Results

The obtained results were mostly as expected, with the noiseless WMI Qiskit Simulator
backend (see Figure 7.9) providing more accurate results, as opposed to the noisy WMI
QPU backend (see Figure 7.10). Thus, the hyperparameter values were adjusted accord-
ingly, with a higher convergence criteria tolerance for the WMI QPU backend (0.1 instead
of 0.01). After optimizing the hyperparameters, convergence was attained pretty fast, with
the cost function usually reaching the convergence threshold in less than 10 iterations,
without overshooting, for both backends.

One of the main observations, a notable difference between the two backends, and an
unpredicted result was the length of the resulting trained quantum state vector in the
experiments concerning the WMI Quantum Processor, which was always less than 1. This
is a potential result of the noise present in the quantum system of the device, which can
lead to a deviation from the expected results, and can be a direct consequence of such
inaccurate/imperfect outcomes.

In terms of convergence steepness/speed, this is very much dependent on the learning
rate and the convergence threshold hyperparameters. Thus, on average, the WMI QPU
seems to be converging faster than the WMI Qiskit Simulator, this is mainly due to the
lower convergence threshold expectation, with the simulator fine-tuning the trained state
to a higher degree of accuracy.

78

7.3. Hybrid Quantum-Classical Experiment

1 goal = [RANDOM_X, RANDOM_Y, RANDOM_Z] # The randomly generated quantum state
2 initial_state = [0,0,0] # Ground State
3 learning_rate, max_steps, convergence_threshold # Hyperparameters
4

5 def F(goal, current) # Cost Function
6 def PAULI_X(theta, phi, lam) # Pauli X post-rotation measurement
7 def PAULI_Y(theta, phi, lam) # Pauli Y post-rotation measurement
8 def PAULI_Z(theta, phi, lam) # Pauli Z post-rotation measurement
9 # Partial derivative of the cost function with respect to theta

10 def D_THETA(goal, current)
11 # Partial derivative of the cost function with respect to phi
12 def D_PHI(goal, current)
13 # Partial derivative of the cost function with respect to lambda
14 def D_LAM(goal, current)
15

16 # Calculates and returns the gradient and cost of the current iteration step
17 def CALCULATE_GRADIENT(theta, phi, lam):
18 current = [PAULI_X(theta, phi, lam),
19 PAULI_Y(theta, phi, lam),
20 PAULI_Z(theta, phi, lam)]
21 gradient = [D_THETA(goal, current),
22 D_PHI(goal, current),
23 D_LAM(goal, current)]
24 cost = F(goal, current)
25 return gradient, cost
26

27 # Performs the gradient descent algorithm and returns the trained parameters
28 def GRADIENT_DESCENT(trained, learning_rate, max_steps, convergence_threshold):
29 for step in range(max_steps):
30 gradient, cost = CALCULATE_GRADIENT(theta, phi, lam)
31 trained -= learning_rate * gradient
32 if cost < convergence_threshold:
33 break
34 return trained
35

36 trained_params = GRADIENT_DESCENT(initial_state,
37 learning_rate,
38 max_steps,
39 convergenece_threshold)

Source Code 7.3.: Python pseudocode for the Quantum State Tomography training algo-
rithm.

79

7. Experimental Results and Tests

Ground State

θ = 150.85°, Φ = 60.72°
x ~ 0.238
y ~ 0.425
z ~ -0.873

Goal State

WMI Qiskit Simulator

Trained State

Intermediate States

x ~ 0.266
y ~ -0.406
z ~ -0.877

Figure 7.9.: The results of the Hybrid ML experiment on the WMI Qiskit Simulator.
(left) initial, goal, intermediate, and trained quantum states in Bloch Sphere
representation.
(right) the evolution of the cost function during training.

θ = 114.60°, Φ = 355.10°
x ~ 0.906
y ~ -0.078
z ~ -0.416

WMI QPU

Ground State

Goal State

Trained State

Intermediate States

x ~ 0.698
y ~ -0.083
z ~ -0.294

Figure 7.10.: The results of the Hybrid ML experiment on the WMI QPU.
(left) initial, goal, intermediate, and trained quantum states in Bloch Sphere
representation.
(right) the evolution of the cost function during training.

80

7.3. Hybrid Quantum-Classical Experiment

Discussion: Adjusting the Hyperparameters

θ = 72.25°, Φ = 271.87°
x ~ 0.031
y ~ -0.952
z ~ 0.305

WMI QPU

Ground State

Goal State

Trained State

Intermediate States

x ~ 0.029
y ~ -0.721
z ~ 0.260

Figure 7.11.: The results of the Hybrid ML experiment on the WMI QPU, while still ad-
justing the hyperparameters.
(left) initial (gray), goal (green), intermediate (red), and trained (blue) quan-
tum states in Bloch Sphere representation.
(right) the evolution of the cost function during training.

The process of adjusting the hyperparameters was not a straightforward task, especially
for the WMI QPU backend, where the noise represented a major factor in the training
process. Figure 7.11 depicts one of the runs performed on the WMI QPU backend, while
still adjusting the hyperparmeters. Here the main problem encountered during training
for this backend can be observed, mainly the fact that (with a smaller learning rate and
a stricter convergence threshold) the cost function did not converge properly. It attained
more accurate results than the one from Figure 7.10 , but still not accurate enough to reach
the threshold of 0.001. The highest accuracy (i.e. lowest cost function value) reached on
the WMI QPU backend was around 0.05, while the WMI Qiskit Simulator backend was
able to reach an accuracy of even 0.0002.

Nonetheless, the experiment was considered a success, with the results being accurate
enough in the provided context, and the infrastructure of qibBACK and WMI proving to
be robust and reliable. Multiple iterations of this experiment have been performed on
both WMI backends, with the end goal of stress-testing the implemented infrastructure
of qibBACK , while establishing a concrete, real-life scenario, of a valuable experiment that
can be performed on the platform. The platforms proved themselves to be reliable enough
for executing over 212 shots for each of the 21 jobs performed in each iteration step of an
average run, with over 860.160 shots and 210 jobs performed, for a run of 10 steps, in

81

7. Experimental Results and Tests

total. These numbers are an additional indicator of the scalability and robustness of the
implemented module, and the potential of the WMI backend infrastructure. Moreover, this
was the first time that such hybrid machine learning experiment was performed through
the web API of the Walther-Meißner-Institute, thus marking another successful result for
their infrastructure.

82

8. Conclusions

In conclusion, this thesis explores the topic of quantum software development using net-
working between various quantum actors through the proposed objective of defining and
implementing such an interface for enabling a quantum software development environ-
ment between the qib Python library, and the already-available infrastructure of the Walther-
Meissner Institute.

The implementation of the qib interface has been successful in providing a clear and con-
cise way to interact with the quantum hardware and simulators at the Walther-Meißner-
Institute. The interface has been designed to be as simple as possible, while still providing
the necessary functionality and customizability for the user. It has been implemented in
a way that allows for easy integration with existing quantum software development tools
and providers, such as Qiskit simulators or the WMI superconducting QPUs, and can be
easily extended to support even more providers and backends in the future.

Furthermore, the implementation was stress-tested through a hybrid iterative quantum-
classical experiment, which ended up converging on a solution, with decent accuracy, on a
real quantum hardware backend provided by the Walther-Meißner-Institute. The experi-
ment was a success, proving that the implemented infrastructure is consistent and reliable,
from a technical standpoint.

The infrastructure has been also unit- and integration-tested, undergoing multiple tests
and experimentation procedures, in both real-life and mocked scenarios. The results have
been consistent and the interface has been proven to be reliable and robust. Some statistical
and experimental errors have been noticed, especially when executing quantum circuits on
actual quantum hardware, which are normal and expected in the field. It is possible to still
mitigate and correct a bigger proportion of them in the future, by implementing features
such as quantum error correction or other transpilation/compilation methods that might
improve the accuracy and reliability of the platform.

More specifically, qibBACK can be further extended with features, such as: auto-mapping
qubits and scheduling gates based on the physical constraints of the backend, quantum er-
ror correction, proper transpilation (including circuit optimization, gate decomposition,
routing on restricted topology, translation to basis gates, etc.), and various other optimiza-
tion techniques (pulse-level optimization, resource estimation and management, dynamic
circuit reconfiguration, etc.).

83

Appendix

84

A. Quantum Gate Decomposition

Quantum Gate Decomposition is the process of breaking down complex quantum opera-
tions into sequences of simpler, universal quantum gates, such as those from the standard
set (e.g.,CNOT ,Hadamard, and single-qubit rotation gates). This decomposition is neces-
sary because physical quantum computers typically only implement a limited set of basic
gates. By decomposing more complex operations into these basic gates, one can execute
any quantum algorithm on actual quantum hardware. This process is relevant for the
practical implementation of quantum algorithms and for optimizing quantum circuits for
individual quantum backends.

Although normally, part of the quantum transpilation process [62], which was not yet
implemented within qibBACK , quantum gate decomposition was still manually performed
in the context of this thesis in order to perform quantum experiments on machines, that
wouldn’t normally support the gates used in the experiments

1
 . This appendix dives

deeper into the actual decompositions that have been performed and the logic that stands
behind them.

For a list of the available gates and backends configuration of the WMI quantum envi-
ronment, refer to section 4.2 . Based on that, the following gate decompositions have been
performed in the experiments conducted in this thesis:

Basic Experiment: Bell States

For generating the four quantum Bell states, executing the circuits in Figure 7.1 is nor-
mally necessary, but since the CX (or CNOT) and the Z gates are not configured on the
WMI backends, decomposing these two gates to WMI-available gates was necessary (see

 Figure A.1 for the performed decompositions).
The decompositions provided in Figure A.1 can also be validated mathematically. The

CX gate can be decomposed as follows:

CX = (H ⊗ I) · CZ · (H ⊗ I)

1Note that for some of the performed manual gate decompositions, the output generated by the Qiskit tran-
spiler was still used for reference [28]

85

A. Quantum Gate Decomposition

q0|0⟩ H

|Φ+⟩
q1|0⟩ H Z H

q0|0⟩ X H

|Φ−⟩
q1|0⟩ H Z H

q0|0⟩ H

|Ψ+⟩
q1|0⟩ X H Z H

q0|0⟩ H RZ(π)

|Ψ−⟩
q1|0⟩ X RZ(π) H Z H

Figure A.1.: The decomposed circuits for the 4 Bell States experiment. For the original
circuits see Figure 7.1 .

86

Where:

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , H =
1√
2

(
1 1
1 −1

)
, I =

(
1 0
0 1

)

The tensor product H ⊗ I is:

H ⊗ I =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


The Controlled-Z gate CZ is:

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Combining them, one gets:

CX =

 1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

·

 1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


As for the Z gate, it can be simply decomposed as:

Z = RZ(π)

Where:

Z =

(
1 0
0 −1

)
, RZ(θ) =

(
e−iθ/2 0

0 eiθ/2

)
For θ = π:

RZ(π) =

(
e−iπ/2 0

0 eiπ/2

)
=

(
−i 0
0 i

)
= −i ∗

(
1 0
0 −1

)
Since the global phase has no influence on measurement statistics (which was what was

needed in the context of the performed experiments), the assumption that global phase
−i = 1 has been made. Thus:

RZ(π) =

(
1 0
0 −1

)
= Z

87

A. Quantum Gate Decomposition

Hybrid Quantum-Classical Algorithm: The U3 Gate

One of the most crucial gates, for performing the QST experiment, was the U3 Gate [63],
unfortunately, such a generic gate is not supported by the WMI backends, so a decom-
position had to be used instead, after multiple trials and errors

2
 , the decomposition in

 Figure 7.7 has been chosen.
This gate decomposition can also be mathematically proven, as follows:

U3(θ, ϕ, λ) = RZ(ϕ+ π) · SX ·RZ(θ + π) · SX ·RZ(λ)

Where:

U3(θ, ϕ, λ) =

(
cos
(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

)) , RZ(α) =

(
e−iα/2 0

0 eiα/2

)
, SX =

1√
2

(
1 + i 1− i
1− i 1 + i

)
Applying the gates step-by-step:

RZ(λ) =

(
e−iλ/2 0

0 eiλ/2

)

SX ·RZ(λ) = 1√
2

(
1 + i 1− i
1− i 1 + i

)(
e−iλ/2 0

0 eiλ/2

)
=

1√
2

(
(1 + i)e−iλ/2 (1− i)eiλ/2

(1− i)e−iλ/2 (1 + i)eiλ/2

)

RZ(θ + π) =

(
−ie−iθ/2 0

0 ieiθ/2

)

RZ(θ + π) · (SX ·RZ(λ)) = 1√
2

(
−ie−iθ/2(1 + i)e−iλ/2 −ie−iθ/2(1− i)eiλ/2

ieiθ/2(1− i)e−iλ/2 ieiθ/2(1 + i)eiλ/2

)

SX·(RZ(θ+π)·(SX·RZ(λ))) = 1√
2

(
1 + i 1− i
1− i 1 + i

)
· 1√

2

(
−ie−i(θ/2+λ/2)(1 + i) −ie−i(θ/2−λ/2)(1− i)

iei(θ/2−λ/2)(1− i) iei(θ/2+λ/2)(1 + i)

)

RZ(ϕ+ π) =

(
−ie−iϕ/2 0

0 ieiϕ/2

)
RZ(ϕ+ π) · (SX · (RZ(θ + π) · (SX ·RZ(λ))))

2Initially the U2 gate was considered for this experiment, but a problem with the built implementation
yielded a partial Bloch Sphere coverage, which was insufficient for correctly performing the QST experi-
ment.

88

= RZ(ϕ+ π) · 1√
2

(
1 + i 1− i
1− i 1 + i

)
· 1√

2

(
−ie−i(θ/2+λ/2)(1 + i) −ie−i(θ/2−λ/2)(1− i)

iei(θ/2−λ/2)(1− i) iei(θ/2+λ/2)(1 + i)

)
Simplifying gives:

RZ(ϕ+ π) · SX ·RZ(θ + π) · SX ·RZ(λ) =
(

cos
(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

)) = U3(θ, ϕ, λ)

Quantum State Tomography: Post-rotation measurements

Another example of gate decomposition that had to be performed, was the post-rotation
gates used for measuring the outcome state of the quantum system, after performing the
U3 gate rotations, in all 3 Pauli bases (PauliX, PauliY, PauliZ). See Figure 7.8 for the actual
quantum circuits of these post-rotation measurements. These had to be further decom-
posed to the circuits in Figure A.2 , because the H and S† gates were not available on the
quantum backend.

U3(θ, ϕ, λ) RZ(π2)
√
X RZ(π2) ⟨σX⟩

U3(θ, ϕ, λ)
√
X RZ(π2) ⟨σY ⟩

Figure A.2.: Decomposing the post-rotation PauliX and PauliY circuits to WMI-available
gates.

The mathematical proof of these decompositions can be performed, as follows:

PauliX : H = RZ(
π

2
) ·

√
X ·RZ(π

2
)

PauliY : S† ·H = RZ(
π

2
) ·

√
X

Where:

H =
1√
2

(
1 1
1 −1

)
, RZ

(π
2

)
=

(√
2
2 − i

√
2
2 0

0
√
2
2 + i

√
2
2

)
,

√
X =

1

2

(
1 + i 1− i
1− i 1 + i

)
, S† =

(
1 0
0 −i

)
For PauliX:

RZ
(π
2

)
·
√
X =

(√
2
2 − i

√
2
2

)
1+i
2

(√
2
2 − i

√
2
2

)
1−i
2(√

2
2 + i

√
2
2

)
1−i
2

(√
2
2 + i

√
2
2

)
1+i
2



89

A. Quantum Gate Decomposition

Simplifying yields:

RZ
(π
2

)
·
√
X =

1√
2

(
i 1
1 −i

)
By multiplying with another RZ(π2) matrix, one gets:

1√
2

(
i 1
1 −i

)
·

(√
2
2 − i

√
2
2 0

0
√
2
2 + i

√
2
2

)

=
1√
2

i(√
2
2 − i

√
2
2

)
1
(√

2
2 + i

√
2
2

)
1
(√

2
2 − i

√
2
2

)
−i
(√

2
2 + i

√
2
2

)
=

1√
2

(
1 1
1 −1

)
= H

And for PauliY:(
1 0
0 −i

)
· 1√

2

(
1 1
1 −1

)
=

(√
2
2 − i

√
2
2 0

0
√
2
2 + i

√
2
2

)
· 1
2

(
1 + i 1− i
1− i 1 + i

)

1√
2

(
1 1
−i i

)
=

(√
2
2 − i

√
2
2

)
1+i
2

(√
2
2 − i

√
2
2

)
1−i
2(√

2
2 + i

√
2
2

)
1−i
2

(√
2
2 + i

√
2
2

)
1+i
2


1√
2

(
1 1
−i i

)
=

1√
2

(
−i 1
1 i

)
Assuming global phase −i = 1 again, this equation (i.e. matrix decomposition) proves

to be correct as well.

90

B. Parameter-shift Rule

The Parameter-shift Rule [42] is a technique used in quantum computing, especially within
the context of variational quantum algorithms. It allows for the computation of gradients
of quantum functions with respect to their parameters, which is essential for gradient-
based optimization methods. This appendix provides a detailed explanation of the pa-
rameter shift rule and its application in parameterized quantum gates.

Parameterized Quantum Circuits

A parameterized quantum circuit consists of a sequence of quantum gates, each of which
can depend on one or more parameters. The unitary operation implemented by such a
circuit can be expressed as a product of unitary operators:

U(θ) = UN (θN)UN−1(θN−1) · · ·U1(θ1) (B.1)

where each Ui(θi) is a unitary operator parameterized by θi.

Parameter Shift Rule

The parameter shift rule provides a way to compute the derivative of an expectation value
of an observable with respect to a gate parameter. Given the parametrized quantum circuit
scenario formulated in Equation B.1 , by isolating a single parameter θi and its associated
gate Ui(θi), one gets the following quantum circuit function

1
 :

f(θi) = ⟨0|U †
i (θi) ·B · Ui(θi)|0⟩ (B.2)

Where B is a quantum operator. For simplicity reasons, the unitary conjugation can be
rewritten as:

U †
i (θi) ·B · Ui(θi) = Lθi(B) (B.3)

WhereLθi(B) is a linear transformation applied on operatorB with respect to parameter
θi. Given this new, rewritten equation, the gradient of the function can be defined as:

1The zeros here indicate that the quantum circuit starts in the ground state, which was a common assumption
in the context of this paper if not explicitly stated otherwise.

91

B. Parameter-shift Rule

∇f(θi) = ⟨0|∇Lθi(B)|0⟩ ∈ R (B.4)

As has been proven in [56], in the special case of a gate U that can be generated by
a Hermitian operator with 2 unique eigenvalues

2
 , this gradient can be formulated as a

linear combination of the transformation L using different sets of parameters. Such that:

∇Lθi(B) = c[Lθi+s(B)− Lθi−s(B)] (B.5)

Thus, for a quantum function f(θ) representing the expectation value, the partial deriva-
tive with respect to a parameter θ can be expressed as:

∂f(θ)

∂θ
= c [f(θ + s)− f(θ − s)] , (B.6)

where c and s are constants dependent on the specific gate used (independent of θ). Typi-
cally, c = 1/2 and s = π/2 for common quantum gates [38].

2In the context of this thesis, all PSR applications involved such gates (e.g. the RZ(θ) gate)

92

93

Bibliography

[1] Dorit Aharonov et al. Adiabatic Quantum Computation Is Equivalent to Standard Quan-
tum Computation. Mar. 2005. DOI: 10.48550/arXiv.quant-ph/0405098 . arXiv:

 quant-ph/0405098 . (Visited on 02/06/2024).

[2] Muhammad Azeem Akbar, Arif Ali Khan, and Saima Rafi. “A Systematic Decision-
Making Framework for Tackling Quantum Software Engineering Challenges”. In:
Automated Software Engineering 30.2 (July 2023), p. 22. ISSN: 1573-7535. DOI: 10 .
1007/s10515-023-00389-7 . (Visited on 02/06/2024).

[3] ARTIQ (M-Labs). URL: https://m-labs.hk/ (visited on 02/06/2024).

[4] Steven Balensiefer, Lucas Kreger-Stickles, and Mark Oskin. “QUALE: Quantum Ar-
chitecture Layout Evaluator”. In: Quantum Information and Computation III. Vol. 5815.
SPIE, May 2005, pp. 103–114. DOI: 10.1117/12.604073 . (Visited on 02/06/2024).

[5] Harrison Ball et al. Software Tools for Quantum Control: Improving Quantum Computer
Performance through Noise and Error Suppression. July 2020. DOI: 10.48550/arXiv.
2001.04060 . arXiv: 2001.04060 [quant-ph] . (Visited on 02/06/2024).

[6] Saptashwa Bhattacharyya. Quantum Computing: Bell State and Entanglement with Qiskit.
Nov. 2022. (Visited on 02/06/2024).

[7] S. Bravyi et al. “The Future of Quantum Computing with Superconducting Qubits”.
In: Journal of Applied Physics (2022). DOI: 10.1063/5.0082975 . (Visited on 02/06/2024).

[8] H. Briegel et al. “Measurement-Based Quantum Computation”. In: Nat. Phys. 5 (Oct.
2009), pp. 19–26. DOI: 10.1038/nphys1157 .

[9] Lauren Capelluto and Thomas Alexander. “OpenPulse: Software for Experimental
Physicists in Quantum Computing”. In: American Physical Society (March Meeting).
Mar. 2020. (Visited on 02/06/2024).

[10] Cirq. URL: https://quantumai.google/cirq (visited on 02/06/2024).

[11] David G. Cory, Mark D. Price, and Timothy F. Havel. “Nuclear Magnetic Resonance
Spectroscopy: An Experimentally Accessible Paradigm for Quantum Computing”.
In: Physica D: Nonlinear Phenomena. Proceedings of the Fourth Workshop on Physics
and Consumption 120.1 (Sept. 1998), pp. 82–101. ISSN: 0167-2789. DOI: 10.1016/
S0167-2789(98)00046-3 . (Visited on 04/07/2024).

[12] Andrew W. Cross et al. Open Quantum Assembly Language. July 2017. arXiv: 1707.
03429 [quant-ph] . (Visited on 02/06/2024).

94

https://doi.org/10.48550/arXiv.quant-ph/0405098
https://arxiv.org/abs/quant-ph/0405098
https://doi.org/10.1007/s10515-023-00389-7
https://doi.org/10.1007/s10515-023-00389-7
https://m-labs.hk/
https://doi.org/10.1117/12.604073
https://doi.org/10.48550/arXiv.2001.04060
https://doi.org/10.48550/arXiv.2001.04060
https://arxiv.org/abs/2001.04060
https://doi.org/10.1063/5.0082975
https://doi.org/10.1038/nphys1157
https://quantumai.google/cirq
https://doi.org/10.1016/S0167-2789(98)00046-3
https://doi.org/10.1016/S0167-2789(98)00046-3
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429

Bibliography

[13] Andrew W. Cross et al. “OpenQASM 3: A Broader and Deeper Quantum Assembly
Language”. In: ACM Transactions on Quantum Computing 3.3 (Sept. 2022), pp. 1–50.
ISSN: 2643-6809, 2643-6817. DOI: 10.1145/3505636 . arXiv: 2104.14722 [quant-ph] .
(Visited on 02/06/2024).

[14] dev. OpenQKD. URL: https://openqkd.eu/ (visited on 02/06/2024).

[15] E. Diamanti et al. “Practical Challenges in Quantum Key Distribution”. In: npj Quan-
tum Information 2 (2016). DOI: 10.1038/npjqi.2016.25 . (Visited on 02/06/2024).

[16] David P. DiVincenzo and IBM. “The Physical Implementation of Quantum Compu-
tation”. In: Fortschritte der Physik 48.9-11 (Sept. 2000), pp. 771–783. ISSN: 00158208,
15213978. DOI: 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>
3.0.CO;2-E . arXiv: quant-ph/0002077 . (Visited on 02/09/2024).

[17] Mohammad Javad Dousti, Alireza Shafaei, and Massoud Pedram. Squash 2: A Hi-
erarchical Scalable Quantum Mapper Considering Ancilla Sharing. Dec. 2015. DOI: 10.
48550/arXiv.1512.07402 . arXiv: 1512.07402 [quant-ph] . (Visited on 02/06/2024).

[18] Jose Garcia-Alonso et al. “Quantum Software as a Service Through a Quantum API
Gateway”. In: IEEE Internet Computing 26.1 (Jan. 2022), pp. 34–41. ISSN: 1941-0131.
DOI: 10.1109/MIC.2021.3132688 . (Visited on 02/06/2024).

[19] Google Quantum AI. URL: https://quantumai.google/ (visited on 02/06/2024).

[20] Thomas Häner et al. “A Software Methodology for Compiling Quantum Programs”.
In: Quantum Science and Technology 3.2 (Apr. 2018), p. 020501. ISSN: 2058-9565. DOI:
 10.1088/2058-9565/aaa5cc . arXiv: 1604.01401 [quant-ph] . (Visited on
02/06/2024).

[21] Loı̈c Henriet et al. “Quantum Computing with Neutral Atoms”. In: Quantum 4 (Sept.
2020), p. 327. DOI: 10.22331/q-2020-09-21-327 . (Visited on 04/07/2024).

[22] IBM Quantum Computing. URL: https : / / www . ibm . com / www . ibm . com /
quantum (visited on 02/06/2024).

[23] IBM Quantum Computing — Qiskit. URL: https://www.ibm.com/quantum/www.
ibm.com/quantum/qiskit (visited on 02/06/2024).

[24] IBM Quantum Documentation — Qiskit. URL: https://docs.quantum.ibm.com/

(visited on 02/10/2024).

[25] IBM Quantum Learning — Qiskit. URL: https://quantum.ibm.com/composer

(visited on 02/10/2024).

[26] Introduction — OpenQASM 3.0 Specification Documentation. URL: https://openqasm.
com/versions/3.0/intro.html (visited on 02/06/2024).

[27] Introduction — OpenQASM Live Specification Documentation. URL: https://openqasm.
com/intro.html (visited on 02/06/2024).

95

https://doi.org/10.1145/3505636
https://arxiv.org/abs/2104.14722
https://openqkd.eu/
https://doi.org/10.1038/npjqi.2016.25
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://arxiv.org/abs/quant-ph/0002077
https://doi.org/10.48550/arXiv.1512.07402
https://doi.org/10.48550/arXiv.1512.07402
https://arxiv.org/abs/1512.07402
https://doi.org/10.1109/MIC.2021.3132688
https://quantumai.google/
https://doi.org/10.1088/2058-9565/aaa5cc
https://arxiv.org/abs/1604.01401
https://doi.org/10.22331/q-2020-09-21-327
https://www.ibm.com/www.ibm.com/quantum
https://www.ibm.com/www.ibm.com/quantum
https://www.ibm.com/quantum/www.ibm.com/quantum/qiskit
https://www.ibm.com/quantum/www.ibm.com/quantum/qiskit
https://docs.quantum.ibm.com/
https://quantum.ibm.com/composer
https://openqasm.com/versions/3.0/intro.html
https://openqasm.com/versions/3.0/intro.html
https://openqasm.com/intro.html
https://openqasm.com/intro.html

Bibliography

[28] Ali Javadi-Abhari et al. Quantum computing with Qiskit. 2024. DOI: 10 . 48550 /
arXiv.2405.08810 . arXiv: 2405.08810 [quant-ph] .

[29] Yanjun Ji, Sebastian Brandhofer, and I. Polian. “Calibration-Aware Transpilation for
Variational Quantum Optimization”. In: 2022 IEEE International Conference on Quan-
tum Computing and Engineering (QCE) (2022), pp. 204–214. DOI: 10.1109/QCE53715.
2022.00040 . (Visited on 02/10/2024).

[30] Peter J. Karalekas et al. “A Quantum-Classical Cloud Platform Optimized for Vari-
ational Hybrid Algorithms”. In: Quantum Science and Technology 5 (2020). DOI: 10.
1088/2058-9565/ab7559 . (Visited on 02/06/2024).

[31] Changsoon Kim et al. “Integrated Optics Technology for Quantum Information Pro-
cessing in Atomic Systems”. In: Conference on Lasers and Electro-Optics/Quantum Elec-
tronics and Laser Science Conference and Photonic Applications Systems Technologies (2007),
Paper JTuA24. Optica Publishing Group, May 2007, JTuA24. (Visited on 04/07/2024).

[32] Philip Krantz et al. “A Quantum Engineer’s Guide to Superconducting Qubits”. In:
Applied Physics Reviews 6.2 (June 2019), p. 021318. ISSN: 1931-9401. DOI: 10.1063/1.
5089550 . arXiv: 1904.06560 [cond-mat, physics:physics, physics:quant-ph] .
(Visited on 02/09/2024).

[33] Ryan LaRose. “Overview and Comparison of Gate Level Quantum Software Plat-
forms”. In: Quantum 3 (Mar. 2019), p. 130. ISSN: 2521-327X. DOI: 10.22331/q-
2019-03-25-130 . arXiv: 1807.02500 [quant-ph] . (Visited on 02/06/2024).

[34] D. Maslov. “Basic Circuit Compilation Techniques for an Ion-Trap Quantum Ma-
chine”. In: New Journal of Physics 19 (2016). DOI: 10.1088/1367-2630/aa5e47 .
(Visited on 02/10/2024).

[35] A. McCaskey et al. “A Language and Hardware Independent Approach to Quantum-
Classical Computing”. In: SoftwareX 7 (2017), pp. 245–254. DOI: 10.1016/J.SOFTX.
2018.07.007 . (Visited on 02/06/2024).

[36] A. McCaskey et al. “XACC: A System-Level Software Infrastructure for Heteroge-
neous Quantum–Classical Computing”. In: Quantum Science and Technology 5 (2019).
DOI: 10.1088/2058-9565/ab6bf6 . (Visited on 02/06/2024).

[37] David C. McKay et al. Qiskit Backend Specifications for OpenQASM and OpenPulse Ex-
periments. Sept. 2018. arXiv: 1809.03452 [quant-ph] . (Visited on 02/06/2024).

[38] Kosuke Mitarai et al. “Quantum Circuit Learning”. In: Physical Review A 98.3 (Sept.
2018), p. 032309. ISSN: 2469-9926, 2469-9934. DOI: 10.1103/PhysRevA.98.032309 .
arXiv: 1803.00745 [quant-ph] . (Visited on 06/25/2024).

[39] Thien Nguyen and A. McCaskey. “Enabling Pulse-Level Programming, Compila-
tion, and Execution in XACC”. In: IEEE Transactions on Computers 71 (2020), pp. 547–
558. DOI: 10.1109/TC.2021.3057166 . (Visited on 02/06/2024).

96

https://doi.org/10.48550/arXiv.2405.08810
https://doi.org/10.48550/arXiv.2405.08810
https://arxiv.org/abs/2405.08810
https://doi.org/10.1109/QCE53715.2022.00040
https://doi.org/10.1109/QCE53715.2022.00040
https://doi.org/10.1088/2058-9565/ab7559
https://doi.org/10.1088/2058-9565/ab7559
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550
https://arxiv.org/abs/1904.06560
https://doi.org/10.22331/q-2019-03-25-130
https://doi.org/10.22331/q-2019-03-25-130
https://arxiv.org/abs/1807.02500
https://doi.org/10.1088/1367-2630/aa5e47
https://doi.org/10.1016/J.SOFTX.2018.07.007
https://doi.org/10.1016/J.SOFTX.2018.07.007
https://doi.org/10.1088/2058-9565/ab6bf6
https://arxiv.org/abs/1809.03452
https://doi.org/10.1103/PhysRevA.98.032309
https://arxiv.org/abs/1803.00745
https://doi.org/10.1109/TC.2021.3057166

Bibliography

[40] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum In-
formation: 10th Anniversary Edition. Cambridge University Press, Dec. 2010. ISBN:
9780511976667. DOI: 10.1017/CBO9780511976667 . (Visited on 02/06/2024).

[41] Ocean™ Developer Tools — D-Wave. URL: https://www.dwavesys.com/solutions-
and-products/ocean/ (visited on 02/06/2024).

[42] Parameter-Shift Rules — PennyLane. URL: https://pennylane.ai/qml/glossary/
parameter%5C_shift/ (visited on 02/06/2024).

[43] PennyLane. URL: https://pennylane.ai/ (visited on 02/06/2024).

[44] Michael Perelshtein et al. Practical Application-Specific Advantage through Hybrid Quan-
tum Computing. May 2022. DOI: 10.48550/arXiv.2205.04858 . arXiv: 2205.
04858 [quant-ph] . (Visited on 02/06/2024).

[45] Mario Piattini et al. “The Talavera Manifesto for Quantum Software Engineering and
Programming”. In: ().

[46] Qc-Tum/Qib: Python Package for Quantum Circuits and Algorithms, Focusing on Quan-
tum Simulation. URL: https://github.com/qc-tum/qib (visited on 05/04/2024).

[47] Qib Documentation (Qib 0.1.0). URL: https://qib.readthedocs.io/en/latest/

(visited on 05/04/2024).

[48] Qiskit. How Does The Qiskit Transpiler Work? July 2021. (Visited on 02/10/2024).

[49] Qiskit’s Circuit Library. en. URL: https : / / docs . quantum . ibm . com / api /
qiskit/circuit_library (visited on 07/03/2024).

[50] Qobj. URL: https://docs.quantum.ibm.com/api/qiskit/qobj (visited on
02/06/2024).

[51] Quanten-Cloud-Computing-Service – Amazon Braket – AWS. URL: https://aws.
amazon.com/de/braket/ (visited on 02/06/2024).

[52] Leonard Richardson, Mike Amundsen, and Sam Ruby. RESTful Web APIs: Services for
a Changing World. 1st edition. Beijing Cambridge Farnham Köln Sebastopol Tokyo:
O’Reilly and Associates, Oct. 2013. ISBN: 978-1-4493-5806-8.

[53] S. Ritter et al. “An Elementary Quantum Network of Single Atoms in Optical Cavi-
ties”. In: Nature 484 (2012), pp. 195–200. DOI: 10.1038/nature11023 . (Visited on
02/10/2024).

[54] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2017. arXiv:
 1609.04747 .

[55] Mehdi Saeedi, Robert Wille, and Rolf Drechsler. “Synthesis of Quantum Circuits
for Linear Nearest Neighbor Architectures”. In: Quantum Information Processing 10.3
(June 2011), pp. 355–377. ISSN: 1570-0755, 1573-1332. DOI: 10.1007/s11128-010-
0201-2 . arXiv: 1110.6412 [quant-ph] . (Visited on 02/06/2024).

97

https://doi.org/10.1017/CBO9780511976667
https://www.dwavesys.com/solutions-and-products/ocean/
https://www.dwavesys.com/solutions-and-products/ocean/
https://pennylane.ai/qml/glossary/parameter%5C_shift/
https://pennylane.ai/qml/glossary/parameter%5C_shift/
https://pennylane.ai/
https://doi.org/10.48550/arXiv.2205.04858
https://arxiv.org/abs/2205.04858
https://arxiv.org/abs/2205.04858
https://github.com/qc-tum/qib
https://qib.readthedocs.io/en/latest/
https://docs.quantum.ibm.com/api/qiskit/circuit_library
https://docs.quantum.ibm.com/api/qiskit/circuit_library
https://docs.quantum.ibm.com/api/qiskit/qobj
https://aws.amazon.com/de/braket/
https://aws.amazon.com/de/braket/
https://doi.org/10.1038/nature11023
https://arxiv.org/abs/1609.04747
https://doi.org/10.1007/s11128-010-0201-2
https://doi.org/10.1007/s11128-010-0201-2
https://arxiv.org/abs/1110.6412

Bibliography

[56] Maria Schuld et al. “Evaluating Analytic Gradients on Quantum Hardware”. In:
Physical Review A 99.3 (Mar. 2019), p. 032331. ISSN: 2469-9926, 2469-9934. DOI: 10.
1103/PhysRevA.99.032331 . arXiv: 1811.11184 [quant-ph] . (Visited on
02/06/2024).

[57] Manuel A. Serrano et al. “Quantum Software Components and Platforms: Overview
and Quality Assessment”. In: ACM Computing Surveys 55.8 (Aug. 2023), pp. 1–31.
ISSN: 0360-0300, 1557-7341. DOI: 10.1145/3548679 . (Visited on 02/06/2024).

[58] Brian N. Siegelwax. What Is “Transpilation?” Dec. 2021. URL: https://levelup.
gitconnected.com/what-is-transpilation-4d12d51e2aa4 (visited on
02/10/2024).

[59] SoniaLopezBravo. Introduction to Q# & Quantum Development Kit - Azure Quantum.
Jan. 2024. URL: https://learn.microsoft.com/en-us/azure/quantum/
overview-what-is-qsharp-and-qdk (visited on 02/06/2024).

[60] K.M. Svore et al. “A Layered Software Architecture for Quantum Computing Design
Tools”. In: Computer 39.1 (Jan. 2006), pp. 74–83. ISSN: 1558-0814. DOI: 10.1109/MC.
2006.4 . (Visited on 02/06/2024).

[61] TensorFlow. URL: https://www.tensorflow.org/ (visited on 02/06/2024).

[62] transpiler. en. URL: https://docs.quantum.ibm.com/api/qiskit/transpiler

(visited on 06/16/2024).

[63] U3Gate. en. URL: https://docs.quantum.ibm.com/api/qiskit/qiskit.
circuit.library.U3Gate (visited on 06/18/2024).

[64] Walther-Meißner-Institut. URL: https://www.wmi.badw.de/home (visited on
05/09/2024).

[65] What Is Quantum Key Distribution (QKD) and How Does It Work? URL: https://
www . techtarget . com / searchsecurity / definition / quantum - key -
distribution-QKD (visited on 02/06/2024).

[66] Karoline Wild et al. “TOSCA4QC: Two Modeling Styles for TOSCA to Automate
the Deployment and Orchestration of Quantum Applications”. In: 2020 IEEE 24th
International Enterprise Distributed Object Computing Conference (EDOC). Eindhoven,
Netherlands: IEEE, Oct. 2020, pp. 125–134. ISBN: 978-1-72816-473-1. DOI: 10.1109/
EDOC49727.2020.00024 . (Visited on 02/06/2024).

[67] Leo Zhou et al. “Quantum Approximate Optimization Algorithm: Performance, Mech-
anism, and Implementation on Near-Term Devices”. In: Physical Review X 10.2 (June
2020), p. 021067. ISSN: 2160-3308. DOI: 10.1103/PhysRevX.10.021067 . arXiv:

 1812.01041 [cond-mat, physics:quant-ph] . (Visited on 02/06/2024).

98

https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1103/PhysRevA.99.032331
https://arxiv.org/abs/1811.11184
https://doi.org/10.1145/3548679
https://levelup.gitconnected.com/what-is-transpilation-4d12d51e2aa4
https://levelup.gitconnected.com/what-is-transpilation-4d12d51e2aa4
https://learn.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
https://learn.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
https://doi.org/10.1109/MC.2006.4
https://doi.org/10.1109/MC.2006.4
https://www.tensorflow.org/
https://docs.quantum.ibm.com/api/qiskit/transpiler
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.U3Gate
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.U3Gate
https://www.wmi.badw.de/home
https://www.techtarget.com/searchsecurity/definition/quantum-key-distribution-QKD
https://www.techtarget.com/searchsecurity/definition/quantum-key-distribution-QKD
https://www.techtarget.com/searchsecurity/definition/quantum-key-distribution-QKD
https://doi.org/10.1109/EDOC49727.2020.00024
https://doi.org/10.1109/EDOC49727.2020.00024
https://doi.org/10.1103/PhysRevX.10.021067
https://arxiv.org/abs/1812.01041

	Acknowledgements
	Abstract
	Introduction and Background Knowledge
	Introduction
	Implementation Context
	The Walther-Meißner-Institute (WMI)
	The qib Python Package

	Thesis Goals

	Quantum Computing
	Quantum Theory Background
	Superconducting Quantum Computational Environments
	Qubits Characterization
	Qubits Initialization
	Decoherence Times
	Quantum Gates
	Measurement

	Quantum Software
	The Tools We Have at Hand
	Limitations of Quantum Software
	The Generic Execution Flow of Quantum Computation
	Declaration and Transpilation
	Serialization and Information Exchange
	Compilation and Execution
	Measurement and Results Processing
	Thesis Focus

	Industry Standards and Data Representations
	OpenQASM
	The Quantum Object (Qobj) Data Structure

	Qiskit - The Open-Source Quantum Software Development Kit

	Designing a Software Development Interface for Quantum Backends
	The Quantum Computational Environment at the WMI
	The Walther-Meißner-Institute
	The Quantum Backends available at WMI
	The WMI Backend API and its Architecture

	qib - The Python Package for Quantum Software Experimentation
	The Architecture of qib
	Gate-based quantum computing in qib

	Extending qib by implementing an Interface Module for Quantum Backend Communications
	Extending qib for Quantum Backends
	The Workflow of executing Quantum Experiments in qib
	qib Implementation of the WMI Backends Interface
	The Networking Architecture of Quantum Backend Communications
	Other Extensions to qib
	Extending qib for future providers

	Experiments, Results, and Conclusions
	Experimental Results and Tests
	Testing the implementation
	Basic Experiments
	Hybrid Quantum-Classical Experiment

	Conclusions

	Appendix
	Quantum Gate Decomposition
	Parameter-shift Rule
	Bibliography

