Differential Forms II

(Differential forms in differential and algebraic topology) Prof. M.M.Wolf (TUM 2024)

Literature

- **•** R. Bott, L.W. Tu: **[Differential Forms in Algebraic Topology](https://link.springer.com/book/10.1007/978-1-4757-3951-0)**, Springer, 1982
- S. Morita: **[Geometry of Differential Forms](https://books.google.de/books?id=5N33Of2RzjsC&printsec=frontcover&hl=de&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false)**, American Mathematical Society, 2001
- G.E. Bredon: **[Topology and Geometry](https://link.springer.com/book/10.1007/978-1-4757-6848-0)**, Springer, 1993
- Ib H. Madsen, Jorgen Tornehave: **[From Calculus to Cohomology](https://books.google.de/books?id=YexnQgAACAAJ&source=gbs_ViewAPI&redir_esc=y)**: De Rham Cohomology and Characteristic Classes, Cambridge University Press, 1997.
- W. Grezd, S. Hulperin, R. Vanstone, Connections, Curvature and Cohomology. Vol I: **[De Rham Cohomology of Manifolds and Vector bundles](https://www.sciencedirect.com/bookseries/pure-and-applied-mathematics/vol/47/part/PA)**, Academic Press, 1972

Homological algebra, Hayer-Vitbris & Cech-de Rham

\nDef.: Let R be a ring. A sequence A of R-modules Aⁱ

\n...
$$
\rightarrow
$$
 Aⁱ⁻¹ d₂ Aⁱ d₃ Aⁱ⁺¹ d₄ Aⁱ⁺¹ e₄ and R-module

\nhomomorphisms: $d: A^{i} \rightarrow A^{i+1}$ is called a complex if $d^{2} = 0$

\nand it is called an exact sequence if

\n $\left[\ln \left[\left(d: A^{i-1} \rightarrow A^{i}\right)\right] = \ker \left[\left(d: A^{i} \rightarrow A^{i+1}\right)\right]\right]$.

- <u>remarks:</u> . Clearly, we have i.g. a different map $d_i : A \rightarrow A''$ for every i and mainly drop the index i' in d; out of lazyness.
	- o Our main interest lies in:
		- (i) R= 2 , Aⁱ abelian groups and d a group homomorphism. (i) R = R, A vector spaces and d a linearmap.
	- ^A collection of abeliangroups or vertorspaces indexed by an integer is called graded and often viewed as direct sum $\mathcal{P}A_i = A$
	- o One (somewhat artificially & unnecessorily) distinguishes between

\n
$$
cochain complexes and chain complexes depending on whether d\n \uparrow
\n \downarrow
\n \uparrow
\n \downarrow
\n<
$$

Lemma: (i) $0 \longrightarrow n \stackrel{\rho}{\longrightarrow} N$ is exact iff f is injective $\lim_{\delta \to 0} 1 \xrightarrow{f} N \longrightarrow 0$ is exact if f is surjective

proof: (i) Note that $0 \rightarrow 17$ is a uniquely defined homomorphism that has image 0 in H . This is the level of f if it is injectue.

- (ii) The leveral of $N\rightarrow\mathcal{O}$ is N , which equals the image of f if f is swjective.
- $Q:$ What can be said about the case of an exact sequence $0 \longrightarrow R \stackrel{\rho}{\longrightarrow} N \longrightarrow 0$ 2

 $Def:$ An exact sequence of the form $O \longrightarrow A \xrightarrow{f} B \xrightarrow{\psi} C \longrightarrow O$ is called short exact sequence.

examples: \bigcirc For any R-module homomorphism ψ . $B \to C$ the sequence $Ker \gamma \stackrel{\longrightarrow}{\longrightarrow} K \stackrel{\longrightarrow}{\longrightarrow} \ell \rightarrow \gamma \longrightarrow O$ is exact.

2 For any submodule A of an R-module B the sequence

$$
O \longrightarrow A \longrightarrow B \longrightarrow B/A \longrightarrow O \quad is \, exact.
$$

In fact, up to isomorphisms, every short exact sequence is of the forms 0 de.

proof: $[of the claimed equivalence]$ $\downarrow h$ $O \rightarrow A \xrightarrow{f} B \xrightarrow{V} C \rightarrow O$, if it is exact, ψ has to be surjective s.t. C= Imp. Moreover, Ker ψ = $\lim_{n \to \infty} f(x) = A$ where the Last isomorphism is due to injectivity of f .

> Given a sequence as in Θ , we can define $A = \ker \gamma$ EB and argue that by the ^{'1st} isomorphism them. Im $(\psi) \approx B/ker \psi \approx B/A$. \Box

recall: The length of an R-module M is length of the longest chain of submodules, i.e. $\lfloor \log_4 th (n) \rfloor = \sup \{ \sqrt{nh_0 \sqrt{n}} \}$ $0 = M_0 \subsetneq M_1 \subsetneq ... \subsetneq M_n = \square \}$. If M is a vector space, then length (M) = dim (M) .

> The above equivalunce shows the following relation between the lengths of the modules of a short exact sequence $O\neg A \neg B \neg C \neg O$:

$$
length_{1}(B) = length(A) + length(C)
$$

In general:

Lumma:	\n $1f \quad O \longrightarrow A^n \xrightarrow{d_1} A^n \xrightarrow{d_n} \dots \xrightarrow{d_{n-1}} A^n \longrightarrow O$ \n $1f \quad O \longrightarrow A^n \xrightarrow{d_1} A^n$ \n	\n $\sum_{i=1}^{n} (-1)^i \text{length}(A^i) = O$ \n	\n $1f \quad \text{length}(A^i) = O$ \n
\n $1f \quad \text{modulus of finite length } (h_1) \text{ and } h_2 \quad \text{length}(A^i) = O$ \n	\n $1f \quad \text{length}(A^i) = O$ \n		

Consequently we can infer one ofthe lengths from the others

Lemma:	\n $\begin{array}{r}\n \begin{array}{r}\n \begin{array}{r}\n \begin{array}{r}\n \end{array} \\ \end{array}$ \n	\n $\begin{array}{r}\n \begin{array}{r}\n \begin{array}{r}\n \end{array} \\ \end{array}$ \n	\n $\begin{array}{r}\n \end{array}$																			
--------	---	--	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------------------------------------

 $\lim_{\Delta t \to 0} \int_{0}^{1} f(x) \, dx \to 0 \quad B \longrightarrow 0 \quad B \longrightarrow 0 \quad B \longrightarrow 0$ where $B \subseteq A^3$ is a submodule, then $A^7 \xrightarrow{d_1} A^2 \xrightarrow{d_2} A^3 \xrightarrow{d_3} A$ A is exact

proof: (i) The 1st sequence is exact of
$$
A^2
$$
 since $lm d_1 = kc d_2$ and exact at
\n \overline{B} as $\overline{B} = lm d_2$. The 2nd sequence is exact at \overline{B} as the middle map
\nis an inclusion (and thus injective) and exact at A^3 as $\overline{B} = kc r d_3$.

 i ii) Exactuss at A^2 follows from Ind_a= l wd, l Toreover, exactuses of the 1^{5^+} sequence at B and of the 2^{nd} at A^3 means that I_{1} and $2^{n}B$ Kerds implying exactness at A^3 .

Def.: of
$$
A, B
$$
 are complexes, a cochain map $F: A \rightarrow B$ is a

\n**coluchon of homomorphisms** $F: A \rightarrow B'$ s.f. $F \circ d \cdot d \cdot F$, i.e.

\n**the diagram** $\cdots \longrightarrow A^{i} \xrightarrow{d} A^{i+1} \longrightarrow \cdots$ commutes k.

\n**the diagram** $\cdots \longrightarrow A^{i} \xrightarrow{d} A^{i+1} \longrightarrow \cdots$ commutes k.

\n**the complex set** A, B, C with cochain maps

\n $O \longrightarrow A \xrightarrow{F} B \xrightarrow{G} C \longrightarrow O$

\n**with complex set** A, B, C with cochain maps

\n $O \longrightarrow A \xrightarrow{F} B \xrightarrow{G} C \longrightarrow O$

\n**with complex set** $A \rightarrow B$ and $A \rightarrow B$ is the same.

\n**Thus** \cdots \cd

 $= \left[\begin{array}{cc} F(\omega + d\eta) \end{array} \right] = \left[\begin{array}{cc} F(\omega) + dF\eta \end{array} \right] = \left[\begin{array}{cc} F(\omega) \end{array} \right].$

Strictly speaking, there are three different types of F in this story, which we could (but do not) denote differently.

. In any short wast sequence, F is injective and G surjective.

Lemma: Consider a commutative diagram of homomorphisms of finitedimensional F -vector spaces of the following type: $A \longrightarrow B \longrightarrow C \longrightarrow O$ $A \xrightarrow{d} B \xrightarrow{v} C \longrightarrow C$ If the horizontal sequences are wact, then $|t\cdot E\beta| = |t\cdot E\beta| + |t\cdot E\beta|$ proof: Let $\{a_i\}_{i=1}^m$ and $\{c_{\delta}\}_{i=1}^n$ be bases for A and C, respectively. Surjectivity of Ψ

allows us to pick $b_i \in B$ s.t. $\Psi(b_i) = c_i$. Exacturess at B then demands Hhat $\lim_{\eta} \eta = \ker \psi$ so that dim B = dim ker ψ to $\lim_{\eta} \psi = \lim_{\eta} \lim_{\eta} \psi + \lim_{\eta} \psi$. Hunce, $b_1, ..., b_{n_1}$ $f(a_1), ..., f(a_n)$ is a basis of B . Commutativity of the diagram leads to β ($f(a_i)$) = $f(\alpha(a_i))$ \in span $\left\{ \begin{array}{cc} f(a_i) \\ f(a_i) \end{array} \right\}$ and $\beta_1(b_i) = \int_0^1 \mathbf{y} \cdot \mathbf{\psi}(b_i)$ with $\mathbf{\psi}^{-1} : c_i \mapsto b_i$. So if we represent B in this basis, the two diagonal blocks are representations

> of a and y , resp.. Hence $trLp3$: $trLx3 + trLy3$. \Box

remark: from here one could prove the Hopf trace formula and then proceed to the Lefschetz fixed point than. We will however follow a different rante...

Lemma: (2)₃2₃ Lemma) For any short exact sequence of
complexs 0
$$
\rightarrow
$$
 A $\stackrel{F}{\rightarrow}$ B $\stackrel{G}{\rightarrow}$ C \rightarrow 0 and any corresponding i
three is a homomorphism S: Hⁱ(c) \rightarrow Hⁱ⁺¹(A) called
the connecting homomorphism, s.t. the following sequence
is exact: ... $\stackrel{\delta}{\rightarrow}$ Hⁱ(A) $\stackrel{F}{\rightarrow}$ Hⁱ(B) $\stackrel{G}{\rightarrow}$ Hⁱ(c) $\stackrel{\delta}{\rightarrow}$ Hⁱ⁺¹(A) $\stackrel{F}{\rightarrow}$...

Let ce C'represent a cohomology class, i.e. dc=0. Surjectivity of G implies \vec{a} b \vec{e} B^i : $Gb = c$. Then $Gob = dGb = dc = 0$ Hince, db eller G = Im F s.t. \exists a E Aⁱ⁺¹: Fa = db. Then again Fola = $dFa = d^2b = 0$. By injectivity of F this means $da = 0$ s.t. a represents a cohomology class in $H^{i+1}(A)$. S is then defined as $S: H^i(C) \ni [c] \mapsto [a] \in H^{i+1}(A)$, i.e. $SL_2: [F^i_{odd}G^i_{c}]$ (f.b.p.: well-defineduces, linearity, exactuess)

 \Box

This means that every shoot wast sequence of cochain complexes $O \rightarrow A \stackrel{F}{\rightarrow} B \stackrel{G}{\rightarrow} C \rightarrow 0$ induces a long ceast sequence in cohomology. The latter is sometimes written compactly as an $H^*(A) \longrightarrow H^*(B)$ exact triangle:

Let M = UUV be a smooth manifold that is the union of two $Def.$ open submanifolds U.V. Given the commutative diagram of $u_0 v$ $\frac{3v^3}{2} u_0 v$ the inclusions

Mayer-Vietoris short exact sequence is defined as

$$
\begin{array}{ccc}\nO & \longrightarrow & \Omega(u \circ V) \xrightarrow{\cdot} & \Omega(u) \circ \Omega(V) \xrightarrow{\cdot} & \Omega(u \circ V) \xrightarrow{\cdot} & O \\
\end{array}
$$
 (*)

where $i(\omega) = (i \zeta(\omega), i \zeta(\omega))$ and $j(\omega_{n_1} \omega_1) = j \zeta(\omega_1) - j \zeta(\omega_1)$.

remark: Here,
$$
\Omega(\dots)
$$
 is unobrstood as de Rham complex, i.e. equipped

\nwith the exterior derivative. So $H^*(\dots)$ is de Rham cohomology.

\nA useful convention is that $\Omega^k H \cdot \{0\}$ for all $k \in -\infty$,

Thm.: (*) is as the name suggests a short exact sequence of cochain complexes. It induces a long eact sequence in cohomology (the M.V. long a. seq.) $\cdots \xrightarrow{\delta} H^k(u_0v) \xrightarrow{i} H^k(u) \circ H^k(v) \xrightarrow{j} H^k(u_0v) \xrightarrow{\delta} H^{k+i}(uvv) \rightarrow \cdots$

exactness of (x) is understood as exactness of remork: $\sigma \longrightarrow \Omega^{\kappa}(u \circ v) \longrightarrow \Omega^{\kappa}(u) \circ \Omega^{\kappa}(v) \longrightarrow \Omega^{\kappa}(u \circ v) \rightarrow 0 \quad \forall k.$

i is injective since every non-zuo form on UUV has to be non-zoo $proof$: on either U or V. So the sequence is exact at $D(U\circ V)$. Since $s^{*} \circ i^{*}$ = $s^{*} \circ i^{*}$ we have $Im(i)$ = $ker(i)$. Conversely, if (ω_{n}, ω_{i}) = $ker(j)$, then $w_1|_{U_1}$ = $w_2|_{U_1}$ and we can define a k-form we R (U_1 V) via $w = \begin{cases} w_1 & \text{or} \quad u \\ w_2 & \text{or} \quad v \end{cases}$ so that $(w_1, w_2) = i(w)$ and thus $|m(i)| \geq k \text{ or } l(j)$. Finally, to show that is surjective, consider any we $\Omega^{\nu}(U \wedge V)$ and let $\{\cdot,\cdot\}$ be a smooth part of unity on $U\circ V$ subordinate to $\{U,V\}$. $Define \quad \omega_1 := \begin{cases} \n\int_{2}^{\infty} \omega_0 \cos U_0 V \\ \n0 & \text{or} \quad I \wedge V \n\end{cases}$ w_2 := $\begin{cases} \begin{cases} \begin{cases} \begin{cases} \end{cases} & \text{on} \quad V_0 \cup \end{cases} \\ \begin{cases} \begin{cases} \end{cases} & \text{on} \quad V \setminus U \end{cases} \end{cases} \end{cases}$ s upp f_1 Then $\int_{0}^{1} (\omega_{11} - \omega_{2}) = \omega_{1} \Big|_{U_{1}V} + \omega_{2} \Big|_{U_{1}V}$ $supp f_2$ = $(f_1 + f_2)$ w = w

So (x) is indeed a short teact sequence of complexes. Exactules of the M.V. long wact sequence then follows from the Zigzag Lemma.

For $n \ge 1$, $H^{k}(\mathcal{S}^{n}) \simeq \begin{cases} R & \text{if } k \in \{0, n\} \\ 0 & \text{otherwise} \end{cases}$ $Prop.$

We know that $H^o(S^n) \cong \mathbb{R}$ and $H^1(S^n) \cong \mathbb{R}$. $prod:$ For $n \ge 2$, set $U := S'' \setminus \{ (0, ..., 0, -1) \}$, $V := S'' \setminus \{ (0, ..., 0, 1) \}$. Then $S^n = U_0 V$, U and V are different phic to R^n by stereogr. proj., and UnV is homotopy equivalent to $R^{n}\setminus\{o\}$ and thus to S^{n-1} . The beginning of the M.V. Long exact sequence is $0 \rightarrow H^{\circ}(\mathcal{S}^{\prime\prime}) \rightarrow H^{\circ}(\mathcal{U}) \oplus H^{\circ}(\mathcal{U}) \rightarrow H^{\circ}(\mathcal{U} \wedge \mathcal{V}) \rightarrow H^{\circ}(\mathcal{S}^{\prime\prime}) \rightarrow H^{\circ}(\mathcal{U}) \oplus H^{\circ}(\mathcal{V})$ As the alternating sum of dimensions has to vanish, we conclude $H^1(S^n) = 0$. Next consider n, k>2 and the part of M.V. L.e.s. $\underbrace{\mu^{\kappa-l}(\mu)\oplus H^{\kappa-l}(\nu)\longrightarrow H^{\kappa-l}(\mu\wedge\nu)\longrightarrow H^{\kappa}(S^*)\longrightarrow H^{\kappa}(\mu)\oplus H^{\kappa}(\nu)}_{\stackrel{\pi}{\circ}}\longrightarrow H^{\kappa}(\mu\wedge\mu)\oplus H^{\kappa}(\nu)}_{\stackrel{\pi}{\circ}}$ So $H^{\kappa-l}(\mathcal{S}^{n-l}) \cong H^{\kappa}(\mathcal{S}^n)$, which proves the claim since it reduces the case $k=n$ to (1) and the case 2sken to (2) . \Box

As a second application we show that de Rham cohomology groups are often finite-dimensional:

 $Def_{\cdot \cdot}$ An open cover $\{u_{\lambda}\}_{\lambda \in A}$ of a smooth manifold Π is called a good cover if for every finite subset $S \in A$ $\bigcap_{\lambda \in S} U_{\lambda}$ is either empty or diffeomorphic to $R^{dim(H)}$.

remarks: Equipping Π with a Riemannian metric and using geodesically convex neighborhoods one can show that any open cover admits a refinement that is a good cover.

. Every compact π admits a finite good cover (i.e. one with μ 1<0).

Example: S".

\nDefine the
$$
(2n+2)
$$
 open half spaces

\n
$$
u_{2,r} = \left\{ (x_{n_1}, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \pm x_i > 0 \right\}.
$$
\nThen the $(2n+2)$ sets

\n
$$
u_{i, \pm} := S^n \cap \mathbb{R}^{n+1}_{i, \pm}
$$
\nare a finite good cover for S".

- Thm.: If a smooth manifold M admits a finite good cover, then $H^k(\Pi)$ is finite-dimensional for every k .
- proof: We use induction on the number n of open sets in a good cover. Suppose the theorem holds for any Π with good cover of size $|A|$ =n (certainly true for $n = 1$). Let be a good cover. Then $U\wedge V$ admits $\overline{}\hspace{0.1cm}\overline{}\hspace{0.1cm}...$ a finite good cover $U_n \wedge V_1 \dots \wedge U_n \wedge V_n$ By induction hypothesis, the cohomology groups of U, V and $U \cap V$ are finite-dimensional. Now consider $\ldots \rightarrow H^{\kappa l}(U \wedge V) \stackrel{\delta}{\rightarrow} H^{\kappa}(U \cup V) \stackrel{i}{\rightarrow} H^{\kappa}(U) \oplus H^{\kappa}(V) \rightarrow \ldots$ Since dim $ln (i) \le dim H^k(u) \otimes H^k(v) < \infty$ and dim $ker(i) = dim Im(S) \le dim H^{k-l}(U \cap V) < \infty$ we have $\dim H^{k}(U \cup V) = \dim Im(i) + \dim ker(i) < \infty$. 口

Let M= M, K Hz be a product of smooth manifolds. can $H_{a}^{*}(n)$ be expressed in terms of $H_{a}^{*}(n_{a})$ and $H_{a}^{*}(n_{a})$? How Consider the projections $H_1 \lt H_2$ $\overline{\pi_1} \gt H_1$ we set H_1 and $\eta \in \tilde{\mathcal{N}} H_1$. $\pi_{n}^{*}(\omega)$ $\pi_{n}^{*}(\eta)$ e $\Lambda^{k+1}\Pi$ is closed if both ω and η are and Then it is usuat if either w or η is and the other one is closed (e.g. if $\omega = d\alpha + \pm h \epsilon \omega - \pi_i^* (\omega) \wedge \pi_i^* (\eta) = d \pi_i^* (\alpha) \wedge \pi_i^* (\eta) \pm \pi_i^* (\alpha) \wedge \underline{d \pi_i^* (\eta)} = d \pi_i^* (\alpha) \wedge \pi_i^* (\eta)$ $= 0 sin \omega d \eta = 0$ This shows that $(u,\eta) \mapsto \pi_i^*(\omega) \wedge \pi_i^*(\eta)$ after building equivalence classes gives a well-defined bilinear map $H_h^k(H_n) \times H_h^k(H_1) \longrightarrow H_h^{k+l}(H_n \times H_n)$ and thus a linear map $H_{n}^{u}(n_{1})\otimes H_{n}^{L}(n_{1}) \longrightarrow H_{n}^{u_{1}}(n_{1} \times n_{2})$.
Considering all degrees we obtain a linear map:
Considering all degrees we obtain a linear map:
 $\left\{\begin{array}{c} \text{Recall : the **transer product} \ (n_{1} \vee n_{2}) \text{ is a vec, space whose basis is } \{v_{1} \otimes w_{2}\} \text{ if } \{v_{1**$

$$
\kappa\colon \left(\bigoplus_{\kappa} H_{\mathfrak{A}}^{\kappa}(H_{\mathfrak{A}})\right) \otimes \left(\bigoplus_{\iota} H_{\mathfrak{A}}^{\iota}(H_{\mathfrak{A}})\right) \longrightarrow \bigoplus_{\kappa} H_{\mathfrak{A}}^{\kappa\kappa}(H_{\mathfrak{A}} \times H_{\mathfrak{A}})
$$

Using a Mayor-Vietories argument and the 'Five Lemma' one can prove by induction on the number of elements in a good cover:

Thus: (Kūnneth formula) If M, and M2 have finite good covers, then

K is an isomorphism. Hince,

$$
H_{\mathbf{a}}^{\mathbf{m}}(\mathfrak{n}_{\mathbf{a}}\times\mathfrak{n}_{\mathbf{a}})\cong\bigoplus_{\mathbf{k}=0}^{\infty}H_{\mathbf{a}}^{\mathbf{k}}(\mathfrak{n}_{\mathbf{a}})\otimes H_{\mathbf{a}}^{\mathbf{m}\cdot\mathbf{k}}(\mathfrak{n}_{\mathbf{a}})
$$

and the Betti numbers of $H_{n_1}H_2$ and $H_1 \ltimes H_2$ are related by:

$$
\beta_m(h, \kappa H_2) = \sum_{\kappa=0}^m \beta_{\kappa}(H_1) \beta_{m-k}(H_2)
$$

remark: By recussion this can easily be extended to higher products:

$$
\beta_{m} (n_{1} \times ... \times n_{n}) = \sum_{\substack{k \in \{0,...,m\}^{n} \\ \sum_{i} k_{i} = m}} \beta_{k_{1}}(n_{1}) \cdot ... \cdot \beta_{k_{n}}(n_{n})
$$

Example: For the n-boxs
$$
T^{n} := \frac{S^{n} \times ... \times S^{n}}{n + \text{times}}
$$
 we can use that $\beta_{0}(S^{n}) = \beta_{n}(S^{n}) = \gamma$

\nto obtain $\beta_{m}(T^{n}) = \sum_{k \in \{0,1\}^{n}} \underbrace{\beta_{k_{1}}(S^{n}) \cdot ... \cdot \beta_{k_{n}}(S^{n})}_{T} = \binom{m}{m}$.

\n
$$
\beta_{L}(S^{n}) = 0
$$
\nThis implies that $\chi(T^{n}) = \sum_{k=0}^{n} (-1)^{k} \beta_{k}(T^{n}) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} T^{n-k}$

\n
$$
= (1 - 1)^{n} = 0
$$

Another consequence is that way LwIEH" (T") can be represented uniquely by a web $\mathbb{R}^k T^n$, $\omega_c := \sum_{1 \le i_1 < ... \le i_k \le n} c_{i_1...i_k}$ dx_{in} $\alpha ... \wedge dx_{i_k}$ with const. coefficients.

<u>Cor.:</u> Let M., M. be smooth manifolds with finite good covers, then $\chi(n_{1} \times n_{2}) = \chi(n_{1}) \cdot \chi(n_{1})$

$$
\frac{\text{proof:} \quad \chi(n_{\eta} \times n_{\eta}) = \sum_{k} (-1)^{k} \beta_{k} (n_{\eta} \times n_{\eta}) = \sum_{k} \sum_{k_{\eta} \neq k_{\eta} = k} (-1)^{k_{\eta} + k_{\eta}} \beta_{k_{\eta}} (n_{\eta}) \beta_{k_{\eta}} (n_{\eta})
$$
\n
$$
= \sum_{k_{\eta} \neq k_{\eta}} (-1)^{k_{\eta} + k_{\eta}} \beta_{k_{\eta}} (n_{\eta}) \beta_{k_{\eta}} (n_{\eta}) = \chi(n_{\eta}) \chi(n_{\eta}). \qquad \Box
$$

Cech cohomology

motivation of the Mayer. Vietoris againment can be extended to covers $spoint:$ by arbitrarily many open sets.

- · In case of a good cover the cohomology depends only on the intusection proputes of the open sets.
- Def.: Let $u := \{u_i\}_{i \in I}$ be a cour of a topological space by now-empty open sets. For every kear define $\mathbb{E}_k \coloneqq \left\{ (i_{\alpha_1 + \dots + \alpha_k}) \in \underline{\mathbb{I}}^{u+1} \mid U_{i_{\alpha_1} \alpha_2 \dots \alpha_k} U_{i_{\alpha}} * \emptyset \right\}$ For every $i \in \mathbb{Z}^{k+1}$, $r \in \{0, ..., k\}$ set $i^{(r)} := (i_{0,1}, ..., i_{r+1}, i_{r+1}, ..., i_k) \in \mathbb{Z}^k$ and $C^{k}(\mathcal{U}, \mathbb{R}) := \left\{ c \in \mathbb{R}^{3_{k}} \middle| V\pi eS_{k+1} V eS_{k} : c(t_{\pi(\sigma_{1}, \cdots, \hat{\tau}_{\pi(k)})}) = s_{\gamma}h(\pi) c(i) \right\}.$
- <u>remarks:</u> "ie 3_k is called a Cech K-simplex, $c \in C^{k}(U, \mathbb{R})$ a Cech K-cochain. o Finituress of the cover (i.e., II | < 00) implies that the vector spaces $C^k(\mathcal{U}, \mathbb{R})$ we finite-dimensional.
- examples: . C° (U, R) > c, a Cech-O-cochain, assigns a real number to evoy element U ; EU.
	- o C¹ (U, R) DC, a Cech-1-cochain, assigns a real number c ((i,j)) to every ordered non-empty intersection $U_i \wedge U_j \triangleq \emptyset$ s.t. $c(U_i \cup j) = -c(U_i \cup j)$.

$$
\underline{\mathsf{Lumma:}} \quad O \longrightarrow C^{o}(\mathcal{U}, \mathbb{R}) \stackrel{\delta}{\longrightarrow} C^{1}(\mathcal{U}, \mathbb{R}) \stackrel{\delta}{\longrightarrow} C^{1}(\mathcal{U}, \mathbb{R}) \stackrel{\delta}{\longrightarrow} ... \text{ becomes}
$$

a cochain complex, called Cech complex (with real coefficients), when equipped with the coboundary operator $\delta: C^{k}(u, \mathbb{R}) \to C^{k+1}(u, \mathbb{R}),$ $\Big(\xi_{c}\Big)(i) := \sum_{n=0}^{\lfloor k+1\rfloor} (-1)^n c(i^n) \enspace .$ proof: $(Hart S^2 = 0)$. For ie S_{max} and ce $C^{k}(U_{1}R)$ we have $(\delta \circ \delta c)(i) = \sum_{\sigma = 0}^{k+2} (-i)^{\sigma} (\delta c)(i^{\sigma i})$ = $\sum_{0 \leq s \leq r \leq k+2}$ $(-1)^{r+s}$ $c(i^{r_1s_1}) + \sum_{0 \leq r \leq s \leq k+2}$ $(-1)^{r+s-1}$ $c(i^{r_1s_1}) = 0$.

Def .: The Cech cohomology groups are defined as

$$
H^{k}(\mathcal{U}_{+}\mathbb{R}) := \frac{k \epsilon r \cdot \delta : C^{k}(\mathcal{U}_{+}\mathbb{R}) \to C^{k+1}(\mathcal{U}_{+}\mathbb{R})}{\int_{\mathcal{U}_{+}} \delta : C^{k+1}(\mathcal{U}_{+}\mathbb{R}) \to C^{k}(\mathcal{U}_{+}\mathbb{R})}
$$

 $\frac{1}{\sqrt{2}}$

remark: note the genwality: this definition works for any open cover of any top. space.

example:
$$
H^o(\Upsilon, \mathbb{R}) = \ker \mathcal{S} : C^o(\Upsilon, \mathbb{R}) \to C^{\prime}(\Upsilon, \mathbb{R})
$$
 is the space of all $c \in \mathbb{R}^T$
\nthat satisfy $(\mathcal{S}c) L^{\prime}(i) = c(i) - c(j) = 0$ whenever $U_i \cap U_j \ast \emptyset$.
\nThat is, for any $c \in H^o(\Upsilon, \mathbb{R})$ there is a locally constant function f
\n $s.t. f|_{U_i} = c(i)$. Hence, for a smooth manifold M , $H^o(\Upsilon, \mathbb{R}) \cong H^o(\mathbb{M})$
\nif the cover is sufficiently fine $(e.g. for a 'good corr')$.

Lemma:	\n $Let \mathcal{U}: \{u_i\}_{i \in \mathbb{I}} \quad be \text{ on open cover of a smooth manifold } H \text{ and}$ \n $\{\hat{T}_i\}_{i \in \mathbb{I}} \text{ a smooth parhikon of unity subordinates to } U$. The map\n $\begin{bmatrix}\n C^k(\mathcal{U}, \mathbb{R}) \rightarrow \mathcal{Q}^k H : c \mapsto \omega_c := \sum_{i \in \mathbb{Z}_K} c_i(i_{\infty, \dots, i_M}) \hat{T}_i \text{ of } \hat{T}_{i_A} \land \dots \land d_i_{i_M}\n \end{bmatrix}$ \n
\n $is \text{ a cochain map. That is, } \omega_{sc} = \frac{\omega_{sc} - \omega_{c}}{\omega_{sc} - \omega_{c}} = \frac{1}{\omega_{sc} - \omega_{c}}$ \n	
\n $is \text{ a nonomorphism on cohomology}$ \n $H^k(\mathcal{U}, \mathbb{R}) \rightarrow H^k(\mathbb{R})$ \n	
\n $\frac{\rho_{\text{root}}}{\omega_{sc}} = \sum_{i \in \mathbb{Z}_{k+1}} (\mathcal{S}_c)(i) \hat{T}_{i_0} d_{i_1} \land \dots \land d_{i_{k+1}}^0$ \n	
\n $= \sum_{i \in \mathbb{Z}_{k+1}} c_i(\hat{S}_c)(i) \hat{T}_{i_0} d_{i_1} \land \dots \land d_i_{i_{k+1}}$ \n	
\n $= \sum_{i \in \mathbb{Z}_{k+1}} c_i(i_{\dots, \dots, i_M}) \hat{T}_{i_0} d_{i_1} \land \dots \land d_{i_{k+1}}$ \n	
\n $\sum_{i \in \mathbb{Z}} d_i^2 = 0 \leftrightarrow \sum_{i \in \mathbb{Z}_{k+1}} c_i(-1)^n \sum_{i \in \mathbb{Z}_{k+1}} c_i(i_1) \hat{T}_{i_0} d_{i_1} \land \dots \land d_i_{i_{k+1}}$ \n	
\n $\sum_{i \in \mathbb{Z}} \hat{T}_i = 1 \Rightarrow \sum$	

If U is a good cover of a smooth manifold M, then the map T hm.: induced on cohomology in the Lemma is an isomorphism. That is, $H^k(\mathcal{U}, \mathbb{R}) \cong H^k(\mathbb{M})$ V_k .

<u>consequences:</u> . All good covers of M lead to the same Cech cohomology. . Cohomology only depends on infusection combinatorics of a good cover. o If Madmits a finite good cover, then $H_{il}^{k}(n)$ are finite-dimensional.

One combines the de Pham complex and the Each complex into proof idea: a double complex called the Cech-de Pham complex.

This is constructed s.t.

o the first row is the de Rham complex o the first column is the Cech complex . all other rows and columns we exact sequences Then a Mayer-Vietods type obiagram chasing argument can be carried out that shows that $H^k(\mathcal{U}, \mathbb{R}) \cong H^k_{\lambda}(\mathbb{N})$. \square

open problem: the minimal ur. of elements of a good cover of a manifold lits so-called covering type) is only known for the simplest examples. It is unknown for the Klein bottle (For 8) and for the two-holed torus (sarface of gruns 2, where it between 6 and 10).

remarks: . As $C^u(\mathcal{U}, \mathbb{R})$ are finite-dimensional (for a finite cover \mathcal{U}) the computation of Cech cohomology is linear algebra from the start in contrast to de Pham cohomology, where R^kM is infinite dimensional.

. Note that the Cech k-simplex is indeed (combinatorially) a simplex.

In the case of S^1 :

An abstract simplicial complex is a family of sets that is closed under taking subsets.

The simplicial complex corresponding to an open over of ^a top spare is called the nerve (or nerve complex) of the cover. Laray's nerve theorem states that the nerve of a good cover of a top. space X is a simplicial complex whose grometric realization is homotopy equivalent to X (and thus has the same (co)homology).

Poincaré duality revisited

In order to formulate a more general vession of the Poincaré duality than. (that does not require the manifold to be compact) we need a variant of de Rham cohomology that considers only compactly supported diff. forms.

Def.: For a smooth manifold M, we define:

 R^{k} $\pi := \{ w \in R^{k}$ $\pi \mid \text{supp}(\omega) = \frac{1}{2} e^{\frac{1}{2} \pi i \left(w_{p} + \delta \right)}$ is compact H_c (θ) $k(r)$ $(d: \Omega_c^H \rightarrow \Omega_c^H)$ $\overline{Im\left(d\colon \Omega_c^{k+l}\Pi\to \Omega_c^{k} \Pi\right)}$ the compactly supported de Rham cohomology

remarks: . For compact Π_{c} clearly $H_{c}^{k}(M)$ = $H_{c}^{k}(M)$.

- \circ \mathcal{D}_{c}^{k} M is a vector space s.t. d: \mathcal{D}_{c}^{k} M \rightarrow \mathcal{D}_{c}^{k+1} M so the def. makes sense. However, there is an issue with 'functoriality': If $f: M \rightarrow N$ is smooth and we $\lambda_{\epsilon}^{k}N$ then supp $(f^{\ast}\omega)$ of f^{-1} (supp (ω)) may not be compact. So one has to restrict the class of maps:
- $Def...$ A map $f: M \rightarrow M$ is called proper if preimages of compact sets under f are compact.
- $Csc: \bigoplus$ If $f: M \rightarrow N$ is a proper smooth map, then the pullback under f is a cochain map f^* : Ω_c^k N \rightarrow Ω_c^k H and thus induces a homomorphism f^k : $H_k^k(\nu) \longrightarrow H_k^k(\nu)$.
	- (2) $H_c^k(n)$ is invariant under proper homotopies. In particular, if M and N are homeomorphic, then $H_{c}^{u}(H) \cong H_{c}^{u}(N)$.

The proofs follow the ones of S^k M H^k M exactly. The last point is due to the fact that homeomorphisms are proper maps.

Some differences between $H_c^{K}(n)$ and $H_o^{K}(n)$:

 (i) $k=0$: $H_c^{\circ}(M)$ consists of all $f \in C^{\circ}(M)$ for which $df = 0$ and supplf) is compact. This means that on any non-compact component of M , f has to be zero. So $dim (H_c^o(n))$ = # of <u>compact</u> connected components

 $\lim_{h \to 0} H_{c}^{k}(H)$ is not a homotopy invariant since for instance by (i) we get $H_c^{\circ}(\{\rho\})$ = R but $H_c^{\circ}(\mathbb{R}^n)$ = $\{\rho\}$ for any new.

 $liii$ Mayer-Vietoris: the pullback-by-the-inclusionidea that considers restrictions does no longer work i.g.. However, it can be replaced by a push-forward-by-the-inclusion idea since every compactly supported K-form can be extended by zero. In this way one obtains a M.V. wast sequence that goes in the opposite direction within the K-th level:

$$
\dots \longrightarrow H_c^k(u_0v) \longrightarrow H_c^k(u) \otimes H_c^k(v) \longrightarrow H_c^k(u_0v) \longrightarrow H_c^{k+1}(u_0v) \longrightarrow \dots
$$

This again enables a proof of the l ünneth formula.

\n
$$
4\pi r
$$
 (R) = R (compaved to $H_n^2(R) = \{0\}$). To see this consider the
\n $\text{inlegrakour map } \int_R : D_c^2(R) \to R_1 \cup \to \int_L \cup ... \text{ This is linear derivative.}$ \n

\n\n $\text{Therefore, if } \cup \text{ is exact, i.e. } \text{the } \text{is} \text{ a. compactly supported } f \in L^{\infty}(R)$ \n

\n\n $\text{inducts a surface in the form of the following equations, if } \cup \text{ is the function of the function } \cup_{R} \cup \text{ is } \mathcal{O} \cup \text{ is$

 G envalizing this idea leads to the following:

 \overline{D} ef.c Let M be a smooth oriented n-dim manifold (without boundary).

and Kelo n2. We define the Poincaré pairing

$$
H_a^k(n) \times H_c^{n-k}(n) \longrightarrow R
$$
, $(I\omega I, L\gamma I) \mapsto \int_R \omega \wedge \gamma$

and the related Poincaré duality operator

$$
P_n^{\kappa} : H_n^{\kappa}(n) \longrightarrow (H_n^{\kappa+\kappa}(n))^\dagger \colon L \omega I \mapsto \left(L \eta I \mapsto \int_n \omega \wedge \eta \right)
$$

example: If M is connected, Men P_{17}° maps $1 \in \mathbb{R} \cong H_{4}^{\circ}(\mathbb{N})$ to $(\eta \mapsto \int_{\eta} \eta) \epsilon (H_c^{\nu} \ln)$.

- Thm.: (Poincaré duality) Let M be a smooth oriented n-dim. manifold (u) (without boundary), and $k \in \{0, ..., n\}$. Then the Poincaré duality operator is a vector space isomorphism. Consequently, $H_{\mu}^{u}(n) \cong (H_{\mu}^{k}(n))^{*}$.
- remark: This can be proven via a Maxu-Victors agament. If It has a finite good cover, then this can be done by induction on the number of elements in a good cover. In fact, under this additional assumption, we get: Cor .: Let M be a smooth oriented n-dim. manifold (without boundary) with finite good cover, and $k \in \{0, ..., n\}$. Then the Poincaré pairing is a nondegenvate bilinear map s.f. dim $H_{n}^{k}(n)$ = dim $H_{c}^{n-k}(n)$.
- remark: This uses Hhat (i) finite good cover implies that $dim(H_{\rho}^{u}(M))$, dim $(H_{c}^{u\cdot u}(M))<\infty$ and Lii for any fruite dim. vector space V , we have $V^4 = V$.

<u>examples:</u> $H_n^k(m) \approx \begin{cases} R_n^{k-1} & \text{if } m \geq 0 \end{cases}$ $H_n^k(m) \approx \begin{cases} R_n^{k-1} & \text{if } m \geq 0 \end{cases}$ $\underline{n} = S^{h}: H_{h}^{k}(h) \approx H_{c}^{k}(h) \approx \begin{cases} R_{i} k \epsilon \{0, h\} \\ 0 \end{cases}$ M connected, oriented wolin; $H_n^{\circ}(M) \cong R \cong H_n^{\circ}(M)$ and H_{ν} (H) R_+ M compact M non-compact \int = H_c (n)

remark: Orientability is crucial for Poincaré duality. E.g. for the Möbius strip Π = $[0,1] \times (0,1) / \sim$ we have $(\rightarrow \infty e)^{i}$ $H_{\alpha}^{o}(n) \approx R$ $H_{\alpha}^{2}(n) \approx 0$ $H_{\alpha}^{\dagger}(H) \cong \mathbb{R}$ but $H_{\alpha}^{\dagger}(H) \cong 0$ $H_{\rho}^{2}(n) \simeq 0$ $H_{c}^{8}(n) \simeq 0$

More generally, one can show that on any non-orientable mainfold closed top forms are always exact. That is if H is any non-orientable n -dim. smooth manifold, then $H_{\infty}^{n}(M) \approx 0 \approx H_{c}^{n}(M)$.

Cor.
$$
\int Def
$$
: Let Π be oriented u -dium, and $u: S \hookrightarrow \Pi$

\na oriented k -dim. $subd$ of h -dium. \int of \int .

\nThen there is a unique \int \int

proof: As $S \in \Pi$ is closed $supp(\gamma)_{S}$ is closed not only in S but also in Π . Since supp $\eta|_{S}$ suppl η) a S is a closed subset of a compact set, $\iota^* \eta$ also has compact support on S , so $\int c^* \eta$ is well defined.

By Stokes' thus. it induces a linear functional
\n
$$
H_c^u(H) \rightarrow \mathbb{R}
$$
, i.e. an element of $(H_c^u(H))$ ^{*}. Using the
\ninverse of the Poincaré duality operator $H_c^{m,u}(H) \rightarrow (H_c^u(H))$ ^{*}
\ngives a unique cohomology class $L \omega J \in H_c^{n,u}(H)$ s.f.
\n $\int_t^t \eta = \int_{\eta} \eta \wedge \omega$.

examples ^I If M is compait and oriented we can take 5 7 So the Poiniari dual of M in M is In HEIM

2) Let
$$
n
$$
 be obtained, and T be a orientable, top closed
submanifold of n with boundary $\partial T = S$. Then the Poincaré dual of
 S in n is 0: using Stokes' $\#$ \vdash \vdash

The Poincaré dual behaves wicely under differmarphisms:

Prop.: Let Π be oriental smooth indim., $f: M \rightarrow M$ an orientationpreserving diffeomorphism, and $w_S \in H^{n-1}_a(\Pi)$ the Poincaré dual of $S \subseteq M$. Then $\omega_s = f^* \omega_{f(s)}$.

remable: If
$$
f: n \rightarrow n
$$
 is orientable-reversing, then $w_s = f^*w_{f(s)}$.

\nproof:

\nThe characteristicing property of the Poincaré dual gives

\n
$$
V \n\eta \in H_c^k(n)
$$
\n
$$
\int \eta \wedge w_{f(s)} = \int \eta \cdot \int_{f(s)} f^* \eta = \int \int f^* \eta \wedge w_s
$$
\n
$$
\int \eta \wedge w_{f(s)} = \int \int f^* \eta \cdot \int_{f(s)} f^* \omega_s
$$
\n
$$
\int \eta \wedge w_{f(s)} = \int \int f^* \eta \wedge f^* w_{f(s)}
$$
\n
$$
\int \eta \wedge w_{f(s)} = \int \int f^* \eta \wedge f^* w_{f(s)}
$$
\n
$$
\int \eta \wedge w_{f(s)} = \int \int f^* \eta \wedge f^* w_{f(s)}
$$
\n
$$
\int \eta \wedge w_{f(s)} = \int \int f^* \eta \wedge f^* w_{f(s)}
$$
\n
$$
\int \eta \wedge w_{f(s)} = \int \int f^* \eta \wedge f^* w_{f(s)}
$$
\n
$$
\int \eta \wedge w_{f(s)} = \int \int f^* \eta \wedge f^* w_{f(s)}
$$
\n
$$
\int \eta \wedge w_{f(s)} = \int \int f^* \eta \wedge f^* w_{f(s)}
$$
\n
$$
\int \eta \wedge w_{f(s)} = \int \int f^* \eta \wedge g^* \wedge g^
$$

$$
\frac{\text{proof: By the previous prop.}, we know that $w_{s} = f^{*} w_{f(s)}$.
\n
$$
\text{However, since } f \cong id, we have f^{*} = id^{*}: H_{n}^{w^{k}(n)} \to H_{n}^{w-k}(m).
$$
\n
$$
\text{So } w_{s} = w_{f(s)}.
$$
$$

Def .: Let M be an oriented, in-dim. smooth manifold with f inite good cover, and SER a k-dim. compact, oriented submanifold. The compact Poincaré dual of Sin M is the unique $L \omega$] ϵ $H_c^{\mu-k}(n)$ for which V L_{η}] ϵ $H_{n}^{k}(n)$: $\int_{S} \eta$ = $\int_{R} \eta \wedge \omega$.

- $\frac{r$ mouks: . Compacturess of S is assumed so that $\int_{\varsigma} \eta$ is well-defined for all η .
	- o Existence and uniqueness follow from the fact that the 'Poincaré pairing' on the r.h.s. is non-degenerate. o If M is compact, then 'Poincaré dual' = 'comp. Poincaré dual'.

Thm. (Localization principle) Let M be an oriented, n-dim. smooth manifold with

finite good cover, and SER a k-dim. compact, oriented submanifold. For every open neighborhood U of S there is a representative $w \in \Omega_c^{n-k}(n)$ of the compact Poincaré dual of S in M s.t. supp $(\omega) \in U$.

remark: the same holds for the Poincaré dual of any top. closed submanifold, but this requires a different proof strategy.

 $proof$: As a compact submanifold of U, S has a compact Poinciné dual [ũ] ϵ H'a^{n-k} (u) in U. As is has compact support, we can extend it to we $\Omega_c^{n-k}(M)$ s.t. $\omega|_u = \widetilde{\omega}$, $\omega|_{m/n} = 0$ and $\zeta_t \omega = \widetilde{\omega}$.

Examples (aiming at fixed point theory):

1 Let π be a compact, oriented smooth n-dim. manifold and $\Delta = \{ (x, x) | x \in \Pi \}$ c $\Pi x \Pi$ the diagonal submanifold of $H_1 \times H_2$. What is the Poincaré dual of \triangle in $H_1 \times H_2$? We denote it by [f] and note that $[f]$ ϵ H_{λ}^{n} (n_{κ} n) as $dim (n)$ - dim (Δ) = $2n - n = n$

Let
$$
\pi_i : \Pi \times \Pi \rightarrow \Pi
$$
 be the canonical projection such the *i*'th factor
with $i \in \{1, 2\}$. If $\{L\omega_i^i\}$ | $i \in \{1, ..., \beta_i\} = \dim(H_n^i(n))\}$ is a basis
of $H_n^i(n)$, Pointcoré pairing gives a dual basis
 $\{L\nu_i^{n-i}\} | i \in \{1, ..., \beta_{n-i}\} \}$ s.t. $\int_{\Pi} \omega_i^i \wedge \nu_k^{n-i} = S_{ik}$.

From the Känneth formula and its derivahian we know that
\n
$$
(\pi_i^* \omega_i^j) \wedge (\pi_i^* \nu_i^{n-j})
$$
 represents a basis of $H_n^m(n \times n)$.
\nSo $[f] = \sum_{i,j,k} c_{i,j,k} [(\pi_i^* \omega_i^j) \wedge (\pi_i^* \nu_i^{n-j})]$ for some $c_{ijk} \in R$.
\nBy definition of the Poincwe dual we have

$$
\frac{\int_{\pi} \eta \wedge \eta = \int_{\Delta} \eta \sin \rho \pi h \sin(\omega - \rho \pi - \eta) = (\pi_{1}^{*} \vee_{S}^{h-r} \wedge \pi_{2}^{*} \omega_{E}^{r})}{\int_{\pi_{1}^{*} \cup_{S}^{h}} \frac{\int_{\Delta} \eta \sin \rho \pi h \sin(\omega - \rho \pi - \eta) \sin(\omega - \rho \pi)}{(\pi_{1}^{*} \vee_{S}^{h-r} \wedge \pi_{2}^{*} \omega_{E}^{*})}
$$

RHS: define $L: \Pi \rightarrow \Pi_K \Pi$, $(L \times) := (K_1 \times)$. Then $\pi_1 \circ L : \pi_1 \circ L = id$

$$
so that \quad \int_{\Delta} \mathcal{D} = \int_{\mathcal{T}} \underbrace{c^* \left(\overline{\pi}_1^* \nu_S^{h-r} \wedge \overline{\pi}_2^* \omega_i^r\right)}_{\mathcal{I} \left(\overline{\pi}_1 \circ \iota\right)^{\mathcal{I}} \nu_S^{h-r} \wedge \left(\overline{\pi}_1 \circ \iota\right)^{\mathcal{I}} \left(\omega_i^r\right)}
$$
\n
$$
= \left(\overline{\pi}_1 \circ \iota\right)^{\mathcal{I} \cdot \nu_{\mathcal{I}}} \wedge \left(\overline{\pi}_1 \circ \iota\right)^{\mathcal{I} \cdot \left(\omega_i^r\right)}
$$
\n
$$
= \int_{\mathcal{T}} \underbrace{\nu_S^{h-r} \wedge \omega_i^r}_{\mathcal{I}} = (-1)^{r \cdot (n-r)} \int_{\mathcal{T}} \omega_i^r \wedge \nu_S^{h-r}
$$
\n
$$
= (-1)^{r \cdot (n-r)} \delta_{\mathcal{I} \cdot S}
$$

LHS:
$$
\int \eta \wedge \phi = \sum_{i \in K} c_{i k} \int \left(\pi_{i}^{*} v_{s}^{n-r} \wedge \pi_{2}^{*} \omega_{\epsilon}^{r} \right) \wedge \left(\pi_{i}^{*} v_{k}^{j} \right) \wedge \left(\pi_{2}^{*} v_{k}^{n-j} \right)
$$

\n
$$
= \dots = c_{srt} (-1)^{n \cdot r}
$$
\nSo $c_{srt} = (-1)^{n \cdot r + r - (n-r)} \delta_{\epsilon_{i} s} = (-1)^{r} \delta_{\epsilon_{i} s}$ and thus
\n
$$
\boxed{[0, 1]} = \sum_{i \in K} (-1)^{i} \left[\left(\pi_{i}^{*} v_{k}^{j} \right) \wedge \left(\pi_{2}^{*} v_{k}^{n-j} \right) \right]
$$

12) Let
$$
f: \Pi \rightarrow \Pi
$$
 be a cwooth function on a coppat₁ oritated, and
\nand $\Gamma_f := \{ (x, f(x)) | x \in \Pi \} \subseteq \Pi x \Pi$ its graph.
\n π follow \square ① we compute its *Point* about $\Gamma_f \} \in H_a^1(n \times \Pi)$.
\n $A_{\text{gain}}(kt - \omega_i^i - \text{represent a basis of } H_a^i(n) + t, \omega_i^i \wedge \omega_i^{m_i} s = S_{\text{in}}$
\nand $(\pi_n^* \omega_i^i) \wedge (\pi_a^* \nu_k^{m_i} s) = \text{represent a basis of } H_a^i(n \times \Pi)$.
\n ω expand $f^* : H_a^i(n) \rightarrow H_a^i(n) \text{ as } f^*(\text{E}\omega_i^i) \rightarrow \frac{\pi}{k} E_{ki}^i \omega_k^i \Rightarrow s_{\text{in}}$
\n ω ω $(\pi_n^* \omega_i^i) \wedge (\pi_a^* \nu_k^{m_i} s) = \text{represent a basis of } H_a^i(n \times \Pi)$.
\n ω expand $f^* : H_a^i(n) \rightarrow H_a^i(n) \text{ as } f^*(\text{E}\omega_i^i) \rightarrow \frac{\pi}{k} E_{ki}^i \omega_k^i \Rightarrow s_{\text{in}}$
\n $\frac{\pi}{k}$ $\frac{1}{k}$ $\frac{1}{k}$ $C_{\text{in},i,k} [\text{Im}_{k} * \omega_i^i) \wedge (\pi_{k}^* \nu_{k}^* s)]$
\nBy Poincaré duality :
\n $\frac{1}{k!} \pi \wedge f_{\text{in}}^i \in \frac{1}{k!} \pi$ parbiconder for $\eta := \{\pi^* \nu_s^{m-k} \wedge \pi_t^* \omega_c^m\}$
\n $\frac{1}{k!} \pi$ $\frac{1}{k!} \pi$
\n $\frac{1}{k!} \pi$ $\frac{1}{k!} \pi$ $\frac{1}{k!} \pi$ $\frac{1}{k!} \pi$
\n $\frac{1$

Def.: Let
$$
f: M \rightarrow M
$$
 be a smooth map on a smooth n-dim, main-fold

\nIt with finite-dim. $H_{x}(H)$ (e.g. with H additionally a finite good cover).

\nThe Leftschets number of f is defined as:

$$
L(f) := \sum_{s=0}^{n} (-1)^s + \Gamma\left(f^* : H_n^s(n) \to H_n^s(n)\right)
$$

remark: From the definition we obtain two important properties: If $f = g$ are homotopic, then $LL(f) = LLg$

 $2)$ If ϕ is a diffeomorphism, then $L(\phi \circ f \circ \phi^{-1}) = L(f)$

Thus: If
$$
f: N \rightarrow M
$$
 is smooth on a compact, oriented manifold M,
\n $\Delta := \{ (x,x) | x \in H \} \in H \times H$ and $E f_{f} J \in H_{n}^{n}(H \times H)$ is the

Poincwe dual of He graph
$$
\Gamma_f
$$
 in $1xM$, then

$$
\Gamma_f = L(f)
$$

$$
\text{Proof:} \qquad \int_{\Delta} \varphi_{f} := \int_{\Delta^{2} \alpha(n)} L^{*} \varphi_{f} = \int_{\Pi} \alpha^{*} L^{*} \varphi_{f} = \sum_{i,j,k} (-1)^{5} \mathcal{F}_{ik}^{i} \int_{\Pi} \omega_{i}^{j} \wedge \omega_{k}^{n-j}
$$
\n
$$
\Delta^{2} \wedge L^{*} \wedge L^{*}
$$

 \square

Excursion into Intersection theory

Def.: Let k_1L be submanifolds of a smooth manifold M .

Transversality is 'generic' and can be achieved by 'small perturbations'. This is the content of many transversality theorems. $E.g.:$

 $Prop.$: Let k_1L be smooth submanifolds of \mathbb{R}^n . Then $k \phi(L+x)$ for a.e. xeR^N .

Thus: Let k_1L be compact, oriented, transversal submanifolds of an oriented smooth manifold M. The Poincaré dual $\lceil w_{k,n}\rceil$ is $H_n^k(\mathsf{n})$ of knL in M can be expressed by the Poincaré duals of K and L as $w_{k n L} = w_k \wedge w_L$.

- remarks: o Defining an orientation of KAL from K, Land M requires an orduring of Kand L. In this way, $w_{\text{KAL}} = w_{\text{LAK}} \cdot (-1)^{\text{codim}(k) \cdot \text{codim}(L)}$.
	- o Since degree(ω_{k_0}) = codim (k_0) = codim (k) + codim (L) = deg (ω_k) + degl ω_L), the wedge product is the natural guess for the Poincaré dual of Kal in M . We slip the proof that it really does the job.

 $Def.:$ Let k_1L be two oriented compact submanifolds of an oriented manifold M s.t. dim (k) + dim (L) = dim (M) and KAL.

For any peknL, let $A = (a_{1}, \ldots, a_{n})$ and $B = (b_{1}, \ldots, b_{n})$

be positivaly oriented bases of Tpk and TpL, respectively.

With
$$
\epsilon(p) = \begin{cases} +1 & \text{if } (A,B) \text{ is } \begin{cases} \text{positive by} \\ \text{negative by} \end{cases} \text{ oriented in } T_pT
$$

define the intersection number $\boxed{\Gamma(k_1L) = \sum_{p \in k_1L} \epsilon(p)}$.

 $\epsilon(p)$ is the orientation of knP at p .

Corr. Let kil be compact, oriented, transversal submanifolds of an oriented compact smooth manifold M with Poiniare duals w_k and w_k and dim (k) + dim (L) = dim (n). Then

$$
\underline{\mathbf{T}}(k_1L) = \int_{\mathcal{D}} \omega_{k} \wedge \omega_{L}.
$$

proof: As $w_{u} \wedge w_{L}$ is the Poincavé dual of KnL and $LI^{e}H_{c}^{e}(M)$, we can write $\int_{\Pi} w_{k} \wedge w_{L} = \int_{k \wedge L} 1 = \sum_{\begin{subarray}{c} k \neq k \\ k \neq k \end{subarray}} \varepsilon(p)$

where $E(p) \in \pm 1$ is the orientation assigned to p . \Box

Now consider the case where $k = \Delta$ and $L = P_f$ for a Smooth map $f: \Pi \rightarrow \Pi$. Then $\Delta \cap T_f$ corresponds to the set of fixed points of f .

Def.: • A fixed point pH of a smooth map
$$
f: M \rightarrow M
$$
 is called non-degenerate if $df: T_{p}T \rightarrow T_{p}T$ does not have

\n1 as an eigenvalue, i.e. $det(d_{pf} - 1) \neq 0$.

\n• f is a Leftstate map if all its fixed points are non-degenerate.

Prop. : Let f: M = M be a smooth map on a compact, oriented M. 1) f has only non-deg. fixed points iff A to F. 2) If $\triangle \wedge \Gamma_f$, then $\boxed{\square (\triangle, \Gamma_f)} = \frac{\sum_{p=f(p)} s_{gn} \det(\omega_f f - \omega)}{p = f(p)}$

proof: Let p = f (p), and en ..., en a positively oriented basis of TpM determining positively oriented bases

$$
(e_{1}, e_{2}), \ldots, (e_{n}, e_{n}) \text{ of } T_{(p,p)} \Delta
$$
\n
$$
(e_{1}, d_{p}f e_{2}), \ldots, (e_{n}, d_{p}f e_{n}) \text{ of } T_{(p,p)} \Gamma_{f} \text{ and}
$$
\n
$$
(e_{2}, 0), \ldots, (e_{n}, 0), (0, e_{2}), \ldots, (0, e_{n}) \text{ of } T_{(p,p)} \text{ and}
$$

The map from the latter to the former two
\n
$$
T_{(p,p)}HxH \rightarrow T_{(p,p)}\Delta \oplus T_{(p,p)}F
$$
 is represented by a matrix $\begin{pmatrix} 1 & 11 \\ 1 & d_{p}f \end{pmatrix}$
\n $\Delta \wedge \Gamma_{f}$ iff this is an isomorphism which in turn is equivalent
\n $\Gamma_{0} \oplus \Gamma_{f}$ if this is an isomorphism which in turn is equivalent
\n $\Gamma_{0} \oplus \Gamma_{f}$ if $\begin{pmatrix} 1 & 11 \\ 1 & d_{p}f \end{pmatrix} = \det \begin{pmatrix} 1 & 11 \\ 0 & d_{p}f-11 \end{pmatrix} = \det (d_{p}f-1)$. Its sign decides
\nsubtract upper rows from lower ones

wether the orientation of $T_{(p,p)}$ HxM matches the one of $T_{(p,p)} \triangle \oplus T_{(p,p)}$ of. \Box

remark: note that the choice of orientation on TpM does not matter

Lefschetz fixed point theorem

 $recall: $x \in \Pi$ is a fixed point of $f : M \rightarrow H$ if $x = f(x)$, which is$

 Thm .: $(Leftschet_{\mathcal{E}} \text{ fixed point } H_{hm.})$

Let $f: M \rightarrow N$ be smooth on a compact, orientable manifold M . Then f has a fixed point if $L(f) \star o$.

proof: Suppose there is no fixed point, i.e. $\Gamma_f \wedge \Delta = \emptyset$. Then $u = \pi_K \pi \setminus \Delta$ is open and contains I_f^2 . According to the localization principle, there is a representative $\varphi_f \in \Omega^{\text{h}}(\mathfrak{n}_{\kappa}\mathfrak{n})$ of the (compact) Poincaré dual $L f_{f}$ $\in H_{\text{L}}^{n}$ (MxM) of the graph Γ_{f} in MxM s.t. supp $(f_{f}) \in U$. In other words, f_{f} = 0. Then $L(f) = \int_{A} f_{f} = 0$. \Box This theorem can be extended in several directions:

 \circ One can exploit that $L(f)$ is invariant under homotoples of f and e.g. deform f s.t. all its fixed points become non-degenerate $(in$ which case f is a Lefschetz map)

For Lefschet²
$$
f
$$
 we can use that
\n
$$
L(f) = \int_{\Delta} \rho_f = \int_{H \times H} \rho_f \wedge \rho_{\Delta} = I(\rho_f, \Delta) = \sum_{p^* f(p)} sgn\left(dt \mid \Delta - d_p f\right)
$$

So
$$
|L(f)|
$$
 is a low-bound on the number of fixed points.
\n $(If f: C^n \rightarrow C^n$ is holomorphic, then $det (d_0f - 1/)$ so for
\n $evvy$ fixed point s.f. $L(f)$ becomes the ur. of fixed points.
\n ln this way, out can t.g. gef 'Second's than.' as a corollary.)

Cases with boundary can be reduied to cases without by \circ

- (i) using a homotopy to ensure that IM contains no fixed point Iii gluing together two copies of ^M along the boundary sit N is N is without boundary.
- Nonorrentable cases can be reduced to orientable ones by \circ

(i) embedding
$$
M \hookrightarrow \mathbb{R}^N
$$
 and 'thickting' M in the normal
direction. The result $H_{\mathfrak{m}} = M'$ is then ofintable (since \mathbb{R}^N is) and
with the projection $\pi : M \rightarrow M$, $f \circ \pi$ and f have the same fixed pts.

As ^a result one obtains

Thw Lefschetz Kopf fixed pointthem

Let $f: M \rightarrow N$ be smooth on a compact manifold M with boundary.

 11 f is smoothly homotopic to a Lefschetz map (which has the same Lefschetz number).

(ii) If f is Lefschets, then
$$
L(f) = \sum_{p \cdot f(p)} sgn\left(\det(\mathbf{1} \cdot \mathbf{d}_p f)\right)
$$

 r emarks: \circ We emphasize again that LLf) = Lg) if f =g humotopic. $I = \iint f \approx id$, Hen $\left| L(f) = \chi(n) \right|$ as tr[id^{*}: H_{il}lm) → H_{il}lm] = $\beta_i(n)$. So $x(n)$ can be interpreted as self-intersection number: $X(n) = 0$ if π can be olisplaced from itself by a map homotopic to the identity.

Example Let ^M Un f VEC VV ¹ Then 21M ⁰ proof consider ^V ein UNITA for some Hit echt and f Ulm Ucr Uns UV Then f has no fixed point since flu ^u Uv ^a ¹ Moreover f id via Uns ^U explitu te 0,1 So 0 L f LLidl M

Clearly, this applies to every compact connected Lie group.

- Cor .: Let H be a compact smooth manifold with boundary and $\chi(n) \neq 0$. Then every smooth map $f: N \rightarrow N$ that is homotopic to the identity has a fixed point. proof: $f = id$ implies that $L(f) = L(id)$. The result follows from $Llid$ = $\chi l n$) = 0.
- \Box $rel.$ E.g. $\chi(S^{2n}) = 2$ Knew.
- Lemma: If $f: N \rightarrow N$ is smooth on a connected, compact manifold with boundary, then $\left| t \in \int f^* \cdot H_n^{\circ}(m) \to H_n^{\circ}(m) \right| = 1$. $proo f$: If we $\Omega^e \Pi$ is s.f. $L \cup I \in H_{n}^{\circ}$ (n), then $I \subset R$ $V_{\rho} e H$: $\omega(\rho) = c$. Since $(f^*\omega)(p) = \omega(f(p)) = c$, we have $f^*: \Box \Box \rightarrow \Box'$, so f^* = id: $H^*(m) \rightarrow H^*(m)$. \Box
- $\frac{\rho_{top}}{\rho}$... Let M be a smooth, connected, compact manifold with boundary that satisfies $H_n^k(n) \le 0$ VK O. Then every smooth $f: M \to M$ has ^a fixed point

$$
\text{prox}\left\{\begin{array}{ll} \vdots & \Lambda(f) \vdots & \hbox{if } \Gamma f^* \colon \text{H}_{\Lambda}^{\circ}(n) \to \text{H}_{\Lambda}^{\circ}(n) \end{array}\right\} = 1, \qquad \qquad \square
$$

Cor : (Brouwer fixed point them.) Let M be a contractible compact smooth manifold with boundary. Then every continuous map $f: M \rightarrow M$ has a $f(x,d)$ point.

proof: Suppose there was no fixed point. Using compactness we can approximate f by a smooth map $\widetilde{f} : H \rightarrow H$ that also has no fixed point. However, $\Lambda(\tilde{f}) = 1$ since $\beta_k(n) = \begin{cases} 1, & k=0 \\ 0, & k \in \mathbb{Z} \end{cases}$

For the real projective space RPⁿ := Sⁿ/
$$
\sim
$$
 where x \sim (- \times) one can
show that $H_n^*(RP^n) \approx \begin{cases} H_n^*(R^n) & n \text{ even} \\ H_n^*(S^n) & n \text{ odd} \end{cases}$. This implies:

- $Cor.:$ For n even, every continuous map $f: \mathbb{RP}^n \to \mathbb{RP}^n$ has a fixed point.
- remark: RP" is not contractible for any new. So Brouwe's fixed point theorem does not apply.

Degree theory

 $Thm./Def.$: Let M, N be smooth oriented manifolds of the same dimension in and with finite good covers. If N is connected and $f: M \rightarrow N$ a smooth proper map, there is a unique $deg(f) \in \mathbb{R}$, called the degree of f , s.f. $\begin{array}{ccc} \nabla \cup \in \mathcal{R}_c^{\omega} \mathcal{N}: & \int f^* \omega = \deg(f) \int \omega \end{array}.$

remarks: o Note that any continuous map $f: n \rightarrow \mathcal{N}$ is proper if M is compact. o deg Lf) is also known as Brouwer degree / topological degree/mapping degree

proof: Since f is proper, the pullback induces a map $f^* : H_c^{\eta}(\mathcal{N}) \to H_c^{\eta}(In)$. Poincaré duality together with connectedness of N implies that $H_{c}^{n}(N) = \mathbb{R}$ and $H_{c}^{n}(M) = \mathbb{R}^{m}$, where $m := #$ convected comp. of M. $S_\text{perioding}$ we get that $|$ deglf) via the com. diagram: $H_{c}^{n}(\omega) \ni \Box \rightarrow \int_{N} \omega \in \mathbb{R}$ H_{ϵ} (H) \geq $\lfloor \frac{1}{n} \rfloor$ $\binom{n}{n}$ \geq $\frac{1}{n}$ $\in \mathbb{R}$ with M= U_{isi} M;) we vect space
counciled define $\begin{pmatrix} a_{\alpha} & a_{\alpha} & a_{\beta} \\ a_{\beta} & a_{\beta} & a_{\beta} \end{pmatrix}$ R

Since any
$$
\omega \in \Omega_c^{\infty}(N)
$$
 and also any $f^* \omega \in \Omega_c^{\infty}(M)$ is
a closed form (as n^* dim(M) = dim(M)) they are representhibves
of cohomology classes and $deg(f) \int_W = \sum_{\substack{n \\ n \\ n}} f^* \omega = \int_{\Pi_i} f^* \omega$.
Uniqueness follows by considering any ω with $\int_W \omega \neq 0$.

example:	\n $If \quad f: H \rightarrow U$ \n	\n $a \quad \text{different operations} \quad H$ \n	\n $Thus \quad \text{or} \quad \text{otherwise}$ \n	\n $Thus \quad \text{or} \quad \text{otherwise}$ \n	\n $x \text{ times} \quad \text{or} \quad \text{otherwise}$ \n	\n $\int f^* \omega = \frac{f}{\omega} \int \omega = \frac{f}{\omega} \int \omega$ \n	\n $\int f^* \omega = \frac{f}{f(\omega)} \int \omega$ \n	\n $\int \omega$ \n	\n \int																								
----------	-------------------------------------	---	---	---	--	---	---	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	-----------

Thm.: Let M, N, K be oriented smooth n-dim. manifolds with finite good covus, and N and K connected. If $H \xrightarrow{f} N \xrightarrow{h} K$ are proper smooth maps, then: proper homotopy! (i) Homotopy invariance: $f \stackrel{\sqrt{d}}{\approx} g \Rightarrow deg(f) = deg(g)$ deg(hog) = deg(h) deg(g) (ii) Mulkplicativity: If yell is any regular value of f , then: (iii)

recall: y is a regular value if	diag(f) = $\sum_{p \in f^{-1}(i,y)}$	sign(det(d_p f))
By Sard's thm. the set of regular values is open and blue.	In particular, $deg(f) \in \mathbb{Z}$	

remark: note that if the manifolds are compact, then proper and 'finite good cover' are guaranteed by compactness. proof: (i) If there is a proper homotopy between f of g , then $f^* = g^* : H_c^h(D) \rightarrow H_c^h(D)$. Since the degree only depends on this induced map, we have $deg(f) = deg(g)$. (i) For any $[\omega] \in H_c^{\circ}(M)$ by def. It uniqueness of the degree: $\int_{l_2} (h \cdot g)^{\kappa} \omega = \int_{l_1} g^{\kappa}(h^{\kappa} \omega) = \deg(g) \int_{l_1} h^{\kappa} \omega = \deg(g) \deg(h) \int_{l_1} \omega$ = deg $(h \cdot g)$ (iii) By the 'regular value thus.' $f^{-1}(1y)$ is a smooth submanifold of dimension dim (n) -dim (v) = 0. So it is a discrete set which is finite due to the fact that f is proper. So $f^{-1}(\{\gamma\}) = \{p_{11} \dots p_{k}\} \subseteq M$. Since det $(d_{P,f})$ \neq O there are open neighborhoods U_i api s.t. flu_i is a diffeomorphism onto a neighborhood ofy. W.L.o.g. we assume the U_i 's disjoint and s.t. $f(u_i)$ = V V i and $f^{-1}(V) = U u_i$. Pick any we $\Omega_c^{n}(V)$ with $1 = \int \omega = \int \omega$

If
$$
w: = \frac{1}{2\pi} d\Theta
$$
 is the standard volume from on S, then $f^*w = w \cdot w$.

So
$$
deg(f) = n
$$
.

Prop.: Let M, N be smooth n-dim. oriented manifolds with finite good covers and N connected. If a smooth proper map f: M+N is not surjective, then $deg(f) = 0$.

proof: Suppose
$$
y \in N \setminus f(n)
$$
. Then y is a regular value with

\n
$$
f^{-1}(\{y\}) = \emptyset
$$
\nSo $deg(f) = 0$.

\nFrom have we can obtain a generalization of the fundamental

\ntheorem of algebra:

 $Thw..$ Let $f: N\nrightarrow N$ be a proper map between oriented non-compact, n-dim.</u> manifolds with finite good cover, where N is connected. If f is orientation preserving (and thus non-singular) outside a compact set C_i then f is surjective.

proof: Since
$$
f
$$
 is $\rho \circ \rho \circ \rho \circ \rho$, $f^{-1}(f(c))$ is compact. Hence, f is a point
\ncompact due to $\rho \circ \rho \circ \rho$.
\n $x \in M \setminus f^{-1}(f(c))$, which f has $\rho \circ \rho \circ \rho$ is a regular value (since all $\rho \circ \rho$ is $\rho \circ \rho$ is a regular value (since all ρ is ρ is in C) and
\n $\rho \circ \rho \circ \rho$ is a regular value (since all ρ is ρ is in C) and
\n $\rho \circ \rho \circ \rho$ is a real value of ρ is a ρ is a real value.

remarks: of MI { critical points} is connected, we can replace orientation preserving by 'non-singular', since $M\setminus\{$ critical points $\}$ > p \mapsto sgu olet $(d_{\rho}f)$ is then constant $+1$ or -1 .

However, in particular if dim (M) = 1 , this may not be convected. Eg. for $N = N = \mathbb{R} \int f(x) dx$ f critical points $\frac{1}{2} \pm \frac{1}{2}0$ and despite this being compact, f is not switchive.

- <u>Lemma:</u> Let $F: C^n \to C^n$ be represented by $f: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ when representing C° = $\mathbb{R}^{n} \times \mathbb{R}^{n}$ in turns of real and imaginary part. If F is holomorphic, then $V\rho \in \mathbb{R}^{2n}$: det $(d_{\rho}f) > 0$.
- proof: Holomorphic means that the obtrivative at each point is given by a complex linear map. At any given point let this be represented by a complex Iacobian matrix $Z = X + iY$ with $X, Y \in \mathbb{R}^{n \times n}$. The Sacobian of f is then $3 = \begin{pmatrix} x & -y \\ y & x \end{pmatrix} = u^* \begin{pmatrix} \overline{z} & 0 \\ 0 & \overline{z} \end{pmatrix} u$ where $U := \frac{1}{\sqrt{2}} \left(\frac{1}{1} \frac{d\mu}{d\mu} + i \frac{1}{2} \mu \right)$ is a unitary. Hence, det (3) = $|det (2)|^2 > 0$. \square
	- So for holomorphic maps, we can replace orientation preserving by 'non-singular'. The fundamental thus of algebra then becomes a special case of the above them. due to the following:

<u>Lemma:</u> Every non-constant polynomial $f: C \rightarrow C$ is a proper map.

proof: Since $|f(t)| \rightarrow \infty$ as $|z| \rightarrow \infty$, the preimage of bounded sets has to be bound. Due to continuity, we get closed to be closed. Since for C we have compact = closed + bounded f is a proper map.

remark: note that this also implies that the set of critical points

C:=
$$
\{ \ge \epsilon \ C \ | \ f'(z) = 0 \}
$$
 of any non-constant polynomial

is compact since f' is a ain a polynomial (and $C = \emptyset$ if f' is const.).

In some cases deglf) has a close relation to the Lefschetz number: Prop.: Let M be a connected compact oriented n-dim. manifold and $F: M \rightarrow M$ a smoothmap Then

$$
H = Sn or if n is odd and B = RPn, then:
$$

$$
\Lambda(f) = 1 + (-1)^n \deg(f)
$$

proof: Due to compactness of 17,
$$
H_c^u(n) = H_a^u(n)
$$
 and by Poincaré-duality
\ndim $(H_b^h(n)) = 1$. By definition of deg(f) we have for any we $H_a^h(n)$:
\n $f^* w = deg(f) w$. So $tr[f^*: H_a^h(n) \rightarrow H_a^h(n)] = deg(f)$.
\nFor $\Pi \in \{S^n, RP^{2k+1}\}$ we have $H_a^m(n) = \{0\}$ for all $m \notin \{0, n\}$.
\nHowever, $tr[f^*: H_a^o(n) \rightarrow H_a^o(n)] = 1$ due to connectedness.

The degree can also serve as an obstruction to extending a map:

Prop.: Let $F: N \rightarrow H$ be smooth between compact, connected, oriented manifold	
where $dim(H) = n = dim(M) \cdot 1$ and N has a boundary ∂N .	
Then $f := F _{\partial N}$ has $deg(f) = 0$.	
proof:	Consider $w \in \mathbb{R}^n H$ with $\int_{H} w = 1$. Then
$deg(f) = \int_{\partial N} f^* w = \int_{N} dF^* w = \int_{N} F^* dw = 0$.	1

The degree of maps into $S^{\prime\prime}$ is particularly important. Partly due to: Thu . (Hopf degree theorem) Let M be a compact connected. oriented n-dim. manifold and $f,g\colon\thinspace N\to S^*$ two smooth maps.

$$
f \cong g \iff \deg(f) = \deg(g)
$$

 $Def..$ Let $\pi, \nu \in \mathbb{R}^{n+m+l}$ be two disjoint, closed, oriented submanifolds

of dimensions
$$
dim (n) = m
$$
 and $dim (N) = n$. Their $linking number$
is defined as $l(n, N) := deg(F: nxN \rightarrow S^{n+m})$,
where $F(x,y) := \frac{x-y}{\|x-y\|}$.

If $m_1 n > 1$, then using homotopy invariance of the degree one can for instance show that if ^M is contractible to ^a point without intersecting N , then $l(H, U)$:0.

The winding number is a special case of the linking number, where N is ^a single point

Ventorfields flows

 $Recall$: A smooth vector field \times on a smooth manifold M can equivalently</u>

be characterized as

(cantion: the same symbol is used for both)

The space $\mathcal{X}(n)$ of all smooth vectorfields on M is a Lie algebra. That is a vector space with a bilinear, alternating map $L_{1}: 1: x(M) \times x(M) \longrightarrow x(M)$, called Lie bracket, that satisfies the Zacobi identity $[X_1 EY_1 \ge 2] + [Y_1 EZ_1 \times 2] + [Z_1 EX_1 \times 2] = 0$. In this case, $[XX,Y] = XY - YX$.

 $Def.:$ (Pullback of a vector field) Let $f: N \rightarrow N$ be a local diffeomorphism and $Y \in X(N)$. The pullback of Y by f is defined as the vector field $f^*(y) \in \mathfrak{X}(m)$ that maps $\n n \Rightarrow p \Leftrightarrow (d_{\rho}f)^{-1} \gamma_{f(p)} e \overline{f_{p}} \eta$

 r emark: for a general smooth map, $f^*(x)$ cannot be defined consistently.

 $Def.:$ A curve $y:(a,b)\rightarrow n$ is called an integral curve of a vector field $X \in \mathcal{X}(n)$ if $\forall t \in (a,b)$ felt $\int \psi(t) = X_{\mathcal{X}(0)}$ or equivalently, for any $fe^{c^{n}(n)}$: $(f \cdot r)^{n}(t) = X_{f^{(k)}}f$ X is called complete if each of its integral curves can be defined $\forall t \in \mathbb{R}$. If the image of γ is in a chart $(u_i \times)$ and $X_p = \sum_i v_i(p) \frac{\delta x_i}{\delta x_i} \bigg|_p$. $x_i(t) = x_i \circ g(t)$ then $\frac{d}{dt}$ x; (t) = $v_i(y^{(t)})$ = $[v_i \circ x^*](x_i(t), ..., x_n(t))$ is a system of ODEs for $x_i(t)$.

> Given an initial value, this will have a unique (maximal) solution. Note that a reparametrization of an integral curve is i.g. not an integral curve anymore. However, for any pell we can choose an integral curve, denoted by $\forall p : \mathcal{I}_p \rightarrow \mathcal{H}_1$ s.t. $\forall p^{(p)} = p$. This leads to a map $\phi(\underline{t,p}) = \frac{\phi(t)}{n}$ is:
 $\frac{\phi(t)}{n}$ is:
 $\frac{\phi(t)}{n}$ II for $\phi_L(\rho) = \phi(\ell_{\ell,\rho})$ we have:

> > ϕ_{\circ} = id and $\phi_{\epsilon} \circ \phi_{s} = \phi_{\epsilon \epsilon}$ (for switable $t_{1} s$)

This motivatis the following:

 $Def.$ Let M be a smooth manifold, U an open mighborhood of $\{0\}\times M$ in $\mathbb{R} \times \mathbb{M}$. A smooth map $\phi: \mathsf{U} \to \mathsf{\Pi}$ with $\phi_\epsilon \coloneqq \phi(\epsilon_i \cdot) : \mathsf{\Pi} \to \mathsf{\Pi}$ is called ^a flow on ^M if (i) ϕ_{a} = id (i) $\phi_{\epsilon} \circ \phi_{s} = \phi_{\epsilon+s}$ whenever defined. The infinitesimal gunerator of α flow ϕ is the vector field $X: C^{\infty}(M) \to C^{\infty}(M)$, $f \mapsto (M \circ \rho \mapsto \frac{\partial}{\partial t}\Big|_{t \in \Omega} f \cdot \varphi(t, \rho)$

A flow is called global if $U = \mathbb{R} \times \mathbb{N}$.

- remarks: . X is a linear derivation as a result of its definition via a derivative. If $\gamma_p(t) = \varphi(t, \rho)$ then $\gamma_p(\circ) = \rho$ and $X_p = \gamma_p(o)$.
	- . The term local flow is somethimes used to emphasize that a flow is not necessarily global. A maximal flow is one for which U cannot be extended further.

Results on existence & uniqueness of ODE solutions lead to:

Then. For every smooth vector field X as a smooth manifold M there is a unique maximal flow whose inf. generator is X.

> In particular: complete vector field \longleftrightarrow global flow Deciding whether this is the case may not be easy , but there are useful/insightful sufficient conditions:

Prop.: Let \times be a smooth vector field on n .

(i) $supp (x) = \{p \in H \mid x_{p} * o\}$ compact $\Rightarrow X$ is complete

(ii) If $\gamma: \mathbb{Z} \rightarrow \mathbb{N}$ is an integral curve with max. domain Σ , then $\overline{r(L)}$ compact \Rightarrow $\overline{L} = \mathbb{R}$

remark: In particular, if M is compact, then every XE X(M) is a complete vertor field

 $Def.$: On a smooth manifold M we define the diffeomorphism group Diff $(n) = \begin{cases} F: n \to n + F \text{ is } C^{\infty} \text{ different from } C \end{cases}$

 $\frac{C_0 \cdot C_1}{C_1}$ For any flow ϕ on π the map R it $\mapsto \phi_e \in D$ if (H) is a group homomorphism (from $(\mathbb{R}, +)$ into $\mathrm{Diff}(H)$ with composition) So if M is compact, every smooth vector field generates a commutative one parameter subgroup of transformations

 \overline{I} hm.: (Poincaré-Hopf I) On a compact, connected smooth manifold Π there exists a nowhere-vanishing vertor field $X \in \mathcal{X}(M)$ if $\mathcal{X}(M) = 0$.

proof: | of the 'only if' part, which does not require connectedness.)
Suppose X is nowhere vanishing and
$$
\phi
$$
 is the corresponding
flow. Then all ϕ_t are homopic (with homotopy ϕ). Due
to compactness and the fact that $x_p \neq 0$ by the is an $\varepsilon > 0$ s.t.
 ϕ_{ε} has no fixed point. So

$$
D = L(\phi_{\varepsilon}) = L(id) = \chi(m)
$$

remark: noncompact manifolds always admit nowhere vanishing vectorfields.

 $Cor.$ (Hairy ball than.) On an even dimensional sphere S^{2n} there is no nowhere vanishing vector field.

remark: ... and therefore no Lorentzian metric.

$$
\frac{\text{prob}\cdot f}{\chi\left(\frac{\zeta^{2N}}{2}\right)}=2
$$

An approach for proving the "if part" in the Poincaré-Hopf then is better understood when ionsidering ^a more quantitative version.

Def.: Let Π be a smooth manifold, XE *(M), and pe M an isolated zero of X. Let $f: B = \{ x \in \mathbb{R}^n | ||x|| \in I \} \rightarrow \Pi$ extend to a local diffeomorphism s.t. $f(\circ)=p$ is the only zero of X in $f(B)$. Define the index $index(X, p) := deg(P)$ where $f: S^{n+1} \rightarrow S^{n+1}$ $f'(y) = \frac{f^{*}(x)}{\| f^{*}(x) \|}$

Zeros of a vector field and the corresponding index:

Thm.: (Poincaré-Hopf I) Let M be a compact smooth manifold,

and $X \in \mathcal{X}(H)$ with only a finite set of zeros

 $2:$ $\{$ $p \in H \mid X_{p} = 0 \}$. Then

$$
\chi(n) = \sum_{\rho \in \mathfrak{D}} \text{ index}(X, \rho)
$$

remarks: . This still holds for manifolds with boundary if X is outward-pointing at the boundary.

> . An alternative/equivalent way of also defining the index and proving the theorem as corollary of Lefschetz-Hopf is:

$$
x(n) = L(id) = L(\phi_{\epsilon}) = \sum_{p=\phi_{\epsilon}(p)} \underbrace{sgn(det(\underline{\pi}-d_{p}\phi_{\epsilon}))}_{\equiv index(x_{1}p)}
$$

Def A triangulation of ^a topological spare M is ^a homeomorphism between the geometric realization of ^a simplicial complex and M

remark: For smooth manifolds, triangulations always exist and can be chosen s.t. the restriction to individual simplexes is smooth.

One can construct a vector field X s.t.

- ω every simplex σ is assigned to a zero with index $(X, p) = (-q)^{dim(q)}$
- Lii) there are no other zeros.

For instance:

The Poincaré-Hopf theorem then gives:

 T hm. For any smooth n-dim. manifold M : $\chi(n) = \sum_{i=0}^{n} (-1)^{i} k_{i}$ where k_{i} is the nr. of

 $\stackrel{\bullet}{\uparrow}$

i-dim. simplices in a triangulation of n .

 $runarks:$ o for $n=2$ this gives the famous $X = U - E + F$

o needless to say, but the k_i 's olepsud on the choice of triangulation while $X(m)$ doesn't.

 $Def.$: Let $M \in \mathbb{R}^{n+1}$ be a compact nti-dim. smooth manifold with boundary ∂M . The Gaussmap $v: \partial M \to S^{n}$ is s.t. $v(q)$ is the unique outward pointing unit vector that is orthogonal to the tangent plane of IM at p. The Gauss curvature of IM at p is $k(\rho) := det(d_{\rho} \nu)$.

 r_{max} . Since we can identify T_{max} S^{n} = $\nu(\rho)^{\perp}$ = T_{ρ} an, we can regard $d\rho v$: T_{ρ} d $n \rightarrow T_{\rho}$ d n s.f. det $(d\rho v)$ makes sense.

For n: I the curvature at p is $k(p) = \frac{1}{R}$ where R is the radius of a ball dangent to the curre at p. In n dimensions, there

are n principal curvatures', which are the eigenvalues of dpx.

The standard volume form volone statt can be expressed in terms σ . of the Souss map as $(v_{0}l_{\partial n})_{p}(v_{n},...,v_{n})$ = $del(v_{0})_{n}v_{n},...,v_{n})$ where we view $v_{n_1}...v_{n_k}$ view E^{int} geometrically.

$$
W_{1}H_{1}(vol_{S^{n}})_{x}(f_{1},...,f_{n}) = det(x_{1}f_{1},...,f_{n}) \quad V_{x \in S}^{n} we obtain
$$
\n
$$
(\gamma^{*}vol_{S^{n}})_{p}(v_{1},...,v_{n}) = (vol_{S^{n}})_{v(p)}(d_{p}v v_{1},...,d_{p}v v_{n})
$$
\n
$$
= det(\gamma_{p})_{1}d_{p}v v_{1},...,d_{p}v v_{n})
$$
\n
$$
= det(d_{p}v) det(\gamma_{p})_{1}v_{1}...,v_{n})
$$
\n
$$
= k(p) (vol_{\partial\Pi})_{p}(v_{1},...,v_{n}).
$$
\n
$$
S_{0}
$$
\n
$$
= \gamma^{*}(vol_{S^{n}})_{1}.
$$

Thm.: (Gauss-Bonnet) If 3H is an even-obin. boundary of an n+1-dim

\ncompact smooth submanifold
$$
H \subseteq \mathbb{R}^{n+1}
$$
, then

\n
$$
\int_{\partial H} K \text{ vol}_{\partial H} = \frac{1}{2} Vol(S^n) \times (3H)
$$
\nwhere Vol(S^n) := $\int_{S^n} vol_{S^n} = \frac{2^{n+1} m!}{n!} \pi^m = \begin{cases} \frac{4!}{5} \pi^2 + n! & n \neq 2 \\ \frac{8!}{5} \pi^2 + n! & n = 4 \end{cases}$

note: While the L.h.s. is grometrical, the r.h.s. is purely topological.

$$
\frac{\text{proof:}}{\text{and}} \int K \text{vol}_{\text{dH}} = \int \nu^*(vol_{S^n}) = \frac{deg(\nu)}{S^n}
$$

Since, by Sard's thun., reg. values are open and dense, there is a pair $\{y_i-y\}$ is S^n of regular values of v . Then $deg(\vee) = \sum_{sgn}(det(d_{p}v)) = \frac{1}{2} \sum_{sgn}(det(d_{p}v))$

$$
\int e^{\epsilon \nu^{-1}(\{\gamma\})} e^{\epsilon \nu^{-1}(\{\gamma, -\gamma\})}
$$

Now construct a vector field X_p on 217 by projecting y onto T_{p} am. Since X_{p} = $\circ \Leftrightarrow y \perp T_{p}$ am $\Leftrightarrow pez$, Poincaré-Hopf leads to χ (2M) = \sum_{ρ} index (X, ρ) . sgn (det (dpv)), if $v(p)$ \rightarrow A closer look reveals that index (X, p) (-1) - $i \in \mathbb{Z}$ $(0, 0)$ - γ So if a is even, then $deg(v) = \frac{1}{2} \chi(\partial M)$. \Box

For odd-dim, compact hypersurfaces, we have χ COM = 0 and the statement is not true. Hower, a slightly different strategy leads to:

$Thm.:$ (Gauss-Bonnet \mathbb{I}) If ∂M is the boundary of an nti-dim compact

smooth submanifold $M \in \mathbb{R}^{n+1}$, then $\left[\int_{\partial H} k \text{ vol}_{\partial H} = Vol(S^n) \chi(H)\right].$

Instead of proving this I which can againbe done by exploiting Poincaré-Hopf to show that $deg(v)$ = $\chi(n)$), we show how the two theorems imply each other if n is even:

Lemma: Let M be a compact orientable manifold with boundary IM.

If M has odd dimension, then $2x(n) = x(\sqrt{3n})$.

proof: (sketch) We take two copies M, and M2 of M and glue them together at the boundary. The resulting manifold Mr is then

an odd-dimensional orientable compact

Fiber bundles - a quick walk-through

Loosely speaking ^a fiber bundle is ^a topological spare E that looks locally like ^a product Bx ^F

- \overline{Det} .: Let $E_i B_i F$ be topological spaces and $\pi : E \rightarrow B$ a continuous surjection. (E, B, π, F) is a fiber bundle with typical fiber F if for every pEB there is an open neighborhood $u \in B$ and a homeomorphism $\varphi \colon \pi^{\cdot \cdot}(u) \to u \times F \text{ s.t. }$ the following commutes: $\pi^{-1}(u) \xrightarrow{f} u \star F$
	- Projs
	- A smooth fiber bundle is one for with E B ^F are smooth manifolds and all involved maps are smooth.
	- . B: base space
	- E total space
	- \cdot in: (bundle) projection
	-

- \circ { $(u_{\alpha_1} \ell_{\alpha})$ }: Local trivialization $F : [0,1]$
- · A section of a fiber bundle is a cont. map $\sigma : B \rightarrow E$ s.t. $\pi \circ \sigma = id_B$

examples: \circ A product space $E = B \times F$ is a trivial fiber bundle.

- The tangent bundle TM of ^a smooth manifold is an instance of a vector bundle, i.e. a fiber bundle, where F is a vector space.
- \circ The klein bottle with $B = S^1 = F$ is an instance of a sphere bundle, i.e. a fiber bundle, where F is a sphere.
- · A covering space is a fiber bundle for which π is a local homeomorphism, and consequently F a discrete space. $E.g.: \circ E = S$ is a two-fold covering of $B = R P$ $\qquad \qquad \qquad \qquad \qquad \qquad \qquad$ with $\pi: S^n \to \mathbb{RP}^n$, $x \mapsto \ell x$ where $x \sim -x$. Incre F= \mathbb{Z}_2 \circ $E = S$ uit is a two-fold covering of $B = SO(3)$.
- · Smooth sections on TM are exactly the vector fields.
- $Def::$ Two (smooth) fiber bundles $\pi: E \rightarrow B$, $\pi': E' \rightarrow B$ with typical fiber F are isomorphic if there is a $\frac{(diff)}{hom}$ comorphism $\phi: E \rightarrow E'$ s.f. $\pi' \circ \phi \circ \pi$.
A hundle is trivialized for the set in the set of the set of $E \xrightarrow{\phi} E'$ A bundle is trivializable (or just trivial) if it is isomorphic to the trivial bundle E^{\prime} = $B \times F$.
- $\frac{Prop.:}{E}$ Every (smooth) fiber bundle with contractible B is trivializable.

 $Def.: \circ A$ (smooth) vector bundle is a (smooth) fiber bundle where the typical fiber and each F_{κ} is $\pi^{-1}(\{k\})$ is a vector space and where the homeomorphisms of can be chosen s.t. $f'(x_i \cdot) : F \to F_x$ is a vector space isomorphism.

- The rank of ^a vertor bundle is the dimension of ^F
- \circ Two (smooth) vector bundles over the same B are isomorphic if there exists a (smooth) continuous map $\phi : E \rightarrow E'$ s.t. $\pi : \pi \circ \varphi$ and ϕ maps each F_{κ} as vector space isomorphically onto F_{κ} . o A vector bundle (E', B', π', F') is a subbundle of a vector bundle (E, B, π, F) if $E' \subseteq E$ and each fiber F'_x is a vector subspace of F_x .
- remarks: o Although not evident from the above characterization a (smooth) vector bundle isomorphism ϕ : $E \rightarrow E'$ is s.t. ϕ^{-1} is again a (smooth) v.b. isomorphism.
	- · Analogous to Whitney's embedding thin .: every smooth vector bundle over ^a smooth manifold B is ^a subbundle of ^a trivial vector bundle To make this more precise, we introduce the following:
- Def.: The Whitney sum of two vector bundles $(E_{1}, B_{1}, F_{i}, F_{i})$ ie $\{1, 2\}$ is the vector bundle $(E_{\eta} \otimes E_{i\eta} B_{\eta} \pi_{\eta} F_{\eta} \otimes F_{\eta})$ with $E_n \oplus E_2 := \left\{ \begin{array}{l} (e_n, e_2) \in E_n \times E_2 \mid \pi_n(e_1) = \pi_2(e_2) \end{array} \right\}$ and $\pi : (e_1, e_2) \mapsto \pi_n(e_2)$. Note that we can regard e.g. E_n as a subbundle of $E_n \oplus E_n$ $\circ i\alpha \qquad \iota: \, \mathsf{E}_{\,\alpha} \,\mapsto\, \mathsf{E}_{\,\alpha} \,\oplus\, \mathsf{E}_{\,\alpha\, \longrightarrow\, \iota} \,:\, (\,\rho_{\,\iota}\, v\,)\,\,\longmapsto\, \big(\, \ (\,\rho_{\,\iota}\, v\,)\, \,,\, \, (\,\rho_{\,\iota}\, v\,)\,\big)\,\, .$
- Thm.: For every smooth vector bundle $(E_i B_i \pi_i F)$ there is a smooth vector bundle $(\tilde{E}, B, \tilde{\pi}, \tilde{F})$ s.t. their Whitney sum $E \oplus \widetilde{E}$ is trivial.

An important example of such a pair of Whitney sum inverse vector bundles is the tangent bundle & normal bundle.

- $Def.:$ Let $H \in W$ be an embedded smooth submanifold. The normal bundle NM of M in W is defined as the vector bundle $NM \xrightarrow{\pi} N$ where $MH = U \{ M_p \wedge T_p \wedge T_p \wedge T_p \}$ and $\pi : \mathcal{N}_p M \mapsto p$.
- <u>remark:</u> If Δ = MxM is the diagonal submanifold, then Δ and $\Gamma\Delta$ are isomorphic vector bundles.
- T hm.: If M is a smooth manifold embedded in some \mathbb{R}^N , then $Tm\otimes Nm$ is trivial (with typical fiber R^{N}).

A general criterion for a vector bundle to be trivial is the following: $P_{\text{rep.i}}$ A rank k vector bundle (E, B, π, F) is trivializable iff ther exist K continuous sections $s_i : B \rightarrow E$ a.t. for all $peB : s_n(p), ..., s_n(p)$ are linearly independent

proof: If E is isomorphic to $B \times R^{k}$, then we can set $s_i(p) = (p_i e_i)$ for any basis $e_{n_1} \dots e_{n_k}$ of \mathbb{R}^k .

Conversely, we define $\phi: E \to B \times \mathbb{R}^k$ s.f. for any $(\rho_1 v) \approx \kappa \epsilon E$ with $v = \sum_{i=1}^{m} v_i s_i(p)$ we set ϕ $(k) = (p_1(v_1, ..., v_k))$. \Box

- remark So ^a tangent bundle TM is trivializable in whish case the manifold M is called parallelizable) iff there are dim (M) . vector fields $X^{(n)}_{\epsilon_1,\ldots,\epsilon_n}$ $X^{(k)}_{\epsilon_1} \in \mathbb{R}$ (M) s.t. $V_{\rho \epsilon}$ M: span $\left\{X^{(i)}_{\rho}\right\}_{i=1}^{k}$ = T_{ρ} π . Note that ^a parallelizable manifold is automatically orientable
- $Cor.:$ Let G be a Lie group (i.e. a group that is also a smooth m anifold with smooth group operations). G is parallelizable.
- proof: For any gelf define $L_g: G \rightarrow G$, $h \mapsto g \cdot h$ (which is smooth also in g) and let $v_1, ..., v_n$ be a basis of TeG (with 'e' the identity of G). Then for any $p \in G$, $X_p^{(i)} := d_e L_p v$; forms a basis of $T_p G$. \Box

Thm.: Let $E \xrightarrow{\pi} H$ be a smooth vector bundle of rank r over an n -dim. smooth manifold M . (i) $H_{\hat{\mu}}^{k}(\mathsf{E}) \approx H_{\hat{\mu}}^{k}(n)$ $\forall k$ (ii) If E, M are oriented and have finite good cover, then $H_c^k(E) \approx H_c^{k-r}(m)$ Vk (Thom duality) proof: Lil By considering the zoo section $s_o: M \rightarrow E_+ \times \rightarrow (s, o)$ we see that E is homotopy equivalent to M since $\pi \circ s_{0} = id_{H}$ and $s_{0} \circ \pi \cong id_{E}$ via the homotopy $H: \mathbb{R}_k \to \mathbb{E}$, $(t, (p,v)) \mapsto (p, tv)$. $1ii$ Using Poincaré duality twice together with $1i$ we get:

$$
H_c^{k}(E) \approx H_a^{n+r-k}(E) \approx H_a^{n+r-k}(n) \approx H_c^{k-r}(n).
$$

Def .: If M is a compact, connected, oriented smooth manifold and E an oriented smooth vertor bundle over M of rank ^r we define the Thom class $\tau(E) \in H_c^{\Gamma}(E)$ as the compact Poincaré dual of M in E (embedded via the zero sections) and the Euter class $e(E) e H_{n}^{r}(H)$ as $s_{e}^{*}(\tau(E))$. In the definition of the Euter class we could have used any smooth section:

 L emmas e (E) = $s^*(\tau(E))$ for any smooth section $s: M \rightarrow E$ proof: Since s is homotopic to s_0 via $H: \mathbb{R} \times \mathbb{M} \longrightarrow E_1$ $(E, p) \mapsto E_S(p) + (n-k) s_o(p)$. \mathbf{D}

 \overline{I} Inm.: Let M be an oriented, compact, connected smooth manifold and $E \xrightarrow{\pi} H$ an oriented smooth vector bundle. If E admits a nowhere vanishing smooth section, then $e(E)$ = 0.

proof: Let
$$
s: M \rightarrow E
$$
 be such a smooth section, and let
\n $\tau \in \mathcal{L}_{c}(E)$ be such that $Et \in H_{c}(E)$ is the Thom class.
\nDue to the compactness of M and the support of τ , we can choose a c \in R s.t. the range of $\tilde{s} := c \cdot s$ has empty interest from
\nwith $supp(\tau)$. Thus $e(E) = \tilde{s}^{*}(Et) = \tilde{s}^{*}\tau = 0$.

<u>remark:</u> If $E = TM$ is the tangent bundle, then $e(TM) = \mathcal{X}(M) \cdot \mu$ where $\mu \in \mathcal{R}^n(M)$ is any volume form of M with $\int_M \mu \in \mathcal{A}$. Hence, $\pi \left[\frac{\int_{H} e(TH) = \chi(H)}{\int_{H} e(TH)} \right]$ s.f. the thin, generalizes the result that $\chi(n)$ = o if there exists a n.w.v. vector field. This is the Gauss-Bounet-Chern thm.

The Euler class is an example of a 'characteristic class'.

Informally, a characturistic class is a mapping $(E \xrightarrow{\pi} B) \longrightarrow H^*(B)$ that associates to every bundle a chomology class of its base space in a way that is invariant under bundle isomorphisms.