
Technical University of Munich
TUM School of Medicine and Health

Developing Ensemble Learning and Neural Network
Architectures for Technical Variation Removal and Missing

View Imputation in Multi-Timepoint Omics Data

Siyu Han

Complete reprint of the dissertation approved by the TUM School of Medicine and
Health of the Technical University of Munich for the award of the

Doktor der Naturwissenschaften (Dr. rer. nat.).

Chair:
Prof. Dr. Radu Roland Rad

Examiners:
1. Prof. Dr. Eleftheria Zeggini
2. Prof. Dr. Dmitrij Frishman

The dissertation was submitted to the Technical University of Munich on 8 August 2024
and accepted by the TUM School of Medicine and Health on 4 December 2024.

Abstract

Advancements in omics technologies have provided data spanning multiple timepoints,
offering unique insights into individual-level temporal dynamics and unprecedented op-
portunities for personalized healthcare. However, the complexity and technical chal-
lenges inherent in multi-timepoint omics data introduce issues such as technical varia-
tions and missing views, which greatly hinder the translation to healthcare applications.
This thesis introduces two computational tools, TIGER and LEOPARD, developed to
enhance quality control in multi-timepoint omics data, particularly within metabolomics
and proteomics.

TIGER: Large multi-timepoint metabolomics datasets inevitably contain unwanted
technical variations that can obscure meaningful biological signals and affect how this
information is applied to personalized healthcare. Although many methods have been
developed to handle these variations, the underlying assumptions of existing tools often
apply to only a few specific scenarios and are likely not effective for analysis of multi-
timepoint data. To address this gap, TIGER (Technical variation elImination with
ensemble learninG architEctuRe)–a robust, non-parametric method is developed and
released as a user-friendly R package. TIGER integrates the random forest algorithm
into an adaptable ensemble learning architecture. Evaluation shows that TIGER out-
performs four popular methods in robustness and reliability across three human datasets
covering both targeted and untargeted metabolomics data. Additionally, a case study
aimed at identifying age-associated metabolites illustrates how TIGER can be used in
longitudinal analyses. A dynamic website is also developed to evaluate the performance
of TIGER and the patterns revealed in our longitudinal analysis.

LEOPARD: Large longitudinal studies typically involve high-dimensional multi-view
datasets, with each view corresponding to data from distinct biochemical classes or
technological platforms. However, various factors, such as measurement dropout, in-
appropriate sample storage, and platform limitations, can lead to incomplete views.
This issue restricts data extrapolation, yet to date, well-established solutions tailored
to this critical challenge are still lacking. In this thesis, an innovative neural network

iii

Abstract

architecture, LEOPARD (missing view compLetion for multi-timEpoint Omics data via
rePresentation disentAnglement and tempoRal knowleDge transfer), has been specif-
ically developed to complete missing views in multi-timepoint omics data. By disen-
tangling longitudinal omics data into content and temporal representations, LEOPARD
transfers the temporal knowledge to the omics-specific content, thereby completing miss-
ing views. The effectiveness of LEOPARD is validated through extensive simulations
on three benchmark datasets. Compared to four conventional imputation methods,
LEOPARD yields the most robust results across the benchmark datasets. LEOPARD-
imputed data also achieve the highest agreement with observed data in our case studies
for age-associated metabolites detection, estimated glomerular filtration rate-associated
proteins identification, and chronic kidney disease prediction. To the best of our knowl-
edge, this work represents the first step toward a generalized approach to addressing
missing views in longitudinal omics data. Additionally, the concept of omics data fac-
torization provides a novel perspective for predictive healthcare that extends beyond
data imputation.
Together, TIGER and LEOPARD enhance the reliability and reproducibility of com-

plex multi-timepoint omics datasets, enabling researchers to conduct more robust anal-
yses of biological processes and health outcomes.

iv

Zusammenfassung

Fortschritte in Omics-Technologien haben Daten über mehrere Zeitpunkte hinweg bere-
itgestellt und bieten einzigartige Einblicke in die zeitlichen Dynamiken auf individueller
Ebene und geben so beispiellose Möglichkeiten für die personalisierte Medizin. Die
Komplexität und die technischen Herausforderungen, die in Multi-Timepoint-Omics-
Daten (mit mehreren Zeitpunkten) inhärent sind, führen jedoch zu Problemen wie
technischen Variationen und fehlenden Ansichten, die die Umsetzung für medizinische
Anwendungen erheblich behindern. Die vorliegende Dissertation stellt zwei comput-
ergestützte Werkzeuge vor, TIGER und LEOPARD, die entwickelt wurden, um die
Qualitätskontrolle in Multi-Timepoint-Omics-Daten, insbesondere in der Metabolomik
und Proteomik, zu verbessern.

TIGER: GroßeMulti-Timepoint-Metabolomics-Datensätze enthalten zwangsläufig un-
erwünschte technische Variationen, die relevante biologische Signale verdecken und die
Anwendung dieser Informationen in der personalisierten Gesundheitsversorgung beein-
trächtigen können. Obwohl viele Methoden entwickelt wurden, um Variationen zu
adressieren, gelten die zugrunde liegenden Annahmen bestehender Algorithmen oft nur
für einige spezifische Szenarien und sind wenig effektiv für die Analyse von Multi-
Timepoint-Daten. Um diese Lücke zu schließen, wurde TIGER (Technical variation
elImination with ensemble learninG architEctuRe) entwickelt als eine robuste, nicht-
parametrische Methode und als benutzerfreundliches R-Paket veröffentlicht. TIGER
integriert den Random-Forest-Algorithmus in eine anpassungsfähige Ensemble Learning
Architektur. Die Evaluierung zeigt, dass TIGER in Bezug auf Robustheit und Zu-
verlässigkeit in drei menschlichen Datensätzen, die sowohl gezielte als auch ungezielte
Metabolomics-Daten abdecken, vier populäre Methoden übertrifft. Darüber hinaus zeigt
eine Fallstudie, die darauf abzielt, alters-assoziierte Metaboliten zu identifizieren, wie
TIGER in longitudinalen Analysen verwendet werden kann. Eine dynamische Website
wurde entwickelt, um die Leistung von TIGER zu bewerten und die in unserer longitu-
dinalen Analyse aufgedeckten Muster zu identifizieren.

v

Zusammenfassung

LEOPARD: Große longitudinale Studien umfassen typischerweise hochdimensionale
Datensätze mit vielen Ansichten, wobei jede Ansicht verschiedenen biochemischen Klassen
oder technologischen Plattformen entspricht. Verschiedene Faktoren wie fehlende Mes-
sungen, unsachgemäße Probenlagerung und Plattformbeschränkungen können jedoch zu
unvollständigen Ansichten führen. Dieses Problem schränkt die Datenextrapolation ein,
und es gibt derzeit keine etablierten Lösungen, um diese kritischen Herausforderungen
zu adressieren. Das innovative neurale Netzwerk LEOPARD (missing view compLetion
for multi-timEpoint Omics data via rePresentation disentAnglement and tempoRal
knowleDge transfer) wurde speziell entwickelt, um fehlende Ansichten inMulti-Timepoint-
Omics-Daten zu vervollständigen. Durch das Entflechten longitudinaler Omics-Daten
in Darstellungen von Inhalt und Zeit extrapoliert LEOPARD das die zeitliche En-
twicklung auf den Omics-spezifischen Inhalt und vervollständigt so die fehlenden An-
sichten. Die Wirksamkeit von LEOPARD wurde durch umfangreiche Simulationen an
drei Benchmark-Datensätzen validiert. Im Vergleich zu vier konventionellen Imputation-
smethoden liefert LEOPARD die robustesten Ergebnisse über die Benchmark-Datensätze
hinweg. LEOPARD-imputierte Daten erreichen auch die höchste Übereinstimmung
mit beobachteten Daten in unseren Fallstudien zur Detektion von alters-assoziierten
Metaboliten, zur Identifikation von Proteinen, die mit der geschätzten glomerulären Fil-
trationsrate assoziiert sind, und zur Vorhersage chronischer Nierenerkrankungen. Die
Ergebnisse liefern zum ersten Mal einen Schritt zu einem generalisierten Ansatz zur
Behandlung von fehlenden Ansichten in longitudinalen Omics-Daten. Darüber hinaus
bietet das Konzept der Omics-Daten-Faktorisierung eine neuartige Perspektive für die
prädiktive Gesundheitsversorgung, die über die Datenimputation hinausgeht.
Insgesamt verbessern TIGER und LEOPARD die Zuverlässigkeit und Reproduzier-

barkeit komplexer Multi-Timepoint-Omics-Datensätze und ermöglichen es Forschern, ro-
bustere Analysen biologischer Prozesse und gesundheitlicher Ergebnisse durchzuführen.

vi

Acknowledgments

First and foremost, I am profoundly grateful to my direct supervisor, P.D. Dr. Rui
Wang-Sattler, for her invaluable guidance and insight. Her great support has been
fundamental in shaping this research, and her constant encouragement provided me
with the motivation to overcome numerous challenges in my research.
I would also like to extend my sincere thanks to my thesis committee members, Prof.

Dr. Eleftheria Zeggini and Prof. Dr. Dmitrij Frishman for their constructive feedback
and suggestions. Their input greatly improved the quality of this work.
I would also like to thank my group members, Dr. Marcela Covic, Dr. Jialing Huang,

Dr. Makoto Harada, Shixiang Yu, and Jianhong Ge for their collaboration. A special
mention goes to Mengya Shi for her invaluable support during my research.
I am thankful to Prof. Dr. Annette Peters and Dr. Na Cai for their valuable support

and the discussions that always provided fresh perspectives on my research.
Furthermore, I am thankful to the Institute of Translational Genomics family: Dr. Iris

Fischer, Dr. Anne Weyand, Dr. Bahar Sanli-Bonazzi, Dr. Konstantinos Hatzikotoulas,
Dr. Will Rayner, Dr. Nancy Yu, Dr. Grace Png, Peter Kreitmaier, Georgia Katsoula,
Ana Luiza Arruda, Yue Huang, Zhengyuan Xue, Barbara Puzek, Shibo Chen, Young-
Chan Park, and all the others whose names I may not have mentioned, but whose help
have been equally important. Their support and companionship have been invaluable
throughout my doctoral journey.
I express my appreciation to my collaborators, Dr. Paolo Casale, Dr. Christian Gieger,

Prof. Dr. Barbara Thorand, Prof. Dr. Giuseppe Matullo, Prof. Dr. Flora Sam, Prof.
Dr. Karsten Suhre, Dr. Ying Li, Prof. Dr. Barbara Thorand, Dr. Cornelia Prehn, Prof.
Dr. Jerzy Adamski, Dr. Agnese Petrera, Dr. Stefanie M. Hauck, Prof. Dr. Christian
Herder, Prof. Dr. Michael Roden, Dr. Mark Ibberson, Prof. Dr. Geneviève Derumeaux,
Dr. Josefina Lascano Maillard, and Olivier Martin for their valuable feedback on my
work.
I also thank my friends and peers, Lianyun Huang, Siyue Jia, SimonWengert, Jonathan

Adam, Jiesheng Lin, and Mariana Ponce-de-Leon for their help and support.

vii

Acknowledgments

I would like to acknowledge all KORA study group members and participants for
their long-term commitment to the KORA study. Without their contributions, this
work would not have been possible.

I appreciate the funding and resources provided by the Innovative Medicines Initiative
2 Joint Undertaking (JU) under grant agreement No 821508 (CARDIATEAM), which
made this research possible. Additionally, I would like to thank the HELENA Conference
Travel Grants and the DZD NEXT Conference Travel Grant for their financial support.

I would like to express my deepest gratitude to my family for their support and
understanding. Their love and patience have been a constant source of strength. I am
deeply grateful for their belief in me, and their sacrifices have made this achievement
attainable.

Thank you all.

viii

Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

List of Figures xiii

List of Tables xv

Abbreviations xvii

1 Introduction 1
1.1 Data from KORA Study . 1

1.1.1 Metabolomics Data . 2
1.1.2 Proteomics Data . 2

1.2 Criteria for Quality Control . 2
1.3 Missing Mechanism . 4

2 TIGER for Technical Variation Removal 7
2.1 Overview . 7

2.1.1 State of the Art . 8
2.1.2 Current Challenges . 10
2.1.3 Contribution . 11

2.2 Methods . 12
2.2.1 Benchmark Datasets Construction 12

2.2.1.1 Targeted Metabolomics Datasets 13
2.2.1.2 Untargeted Metabolomics Datasets 14

ix

CONTENTS

2.2.2 Ensemble Learning Architecture 15
2.2.2.1 Base Model . 16
2.2.2.2 Meta Model . 16

2.2.3 TIGER Algorithm . 17
2.2.3.1 Variable Selection . 17
2.2.3.2 Model Construction . 19
2.2.3.3 Data Correction . 20

2.2.4 Evaluation Metrics . 21
2.3 Performance Evaluation . 21

2.3.1 Evaluation of the Ensemble Learning Architecture 21
2.3.2 Evaluation on the Targeted Metabolomics Dataset 24
2.3.3 Evaluation on Untargeted Metabolomics Datasets 25
2.3.4 Computational Speed Analysis . 28

2.4 Case Study . 30
2.4.1 Data Imputation . 30
2.4.2 Cross-Kit Adjustment . 31
2.4.3 Analysis for Aging Trends . 32

2.5 Discussion . 34
2.6 Reproducibility and Availability . 36

2.6.1 Data . 37
2.6.2 R Package . 37
2.6.3 Dynamic Website . 37

3 LEOPARD for Missing View Imputation 39
3.1 Overview . 39

3.1.1 Existing Methods and Their Limitations 40
3.1.2 Contribution . 41

3.2 Methods . 42
3.2.1 Benchmark Datasets Construction 44

3.2.1.1 MGH COVID Dataset . 44
3.2.1.2 KORA Datasets . 45

3.2.2 CGAN Architecture as a Reference Method 46
3.2.2.1 Architecture Design and Implementation 46
3.2.2.2 Hyperparameter Optimization 48

x

CONTENTS

3.2.3 LEOPARD Architecture . 48
3.2.3.1 Architecture Design and Implementation 50
3.2.3.2 Ablation Test . 52
3.2.3.3 Further Hyperparameter Optimization 54

3.2.4 Strategy for Performance Evaluation 56
3.2.4.1 Methods Configuration 57
3.2.4.2 Evaluation Metrics . 58

3.3 Performance Evaluation . 59
3.3.1 Representation Disentanglement of LEOPARD 59
3.3.2 Evaluation of Missing View Completion: Mono-Omics Datasets . . 61
3.3.3 Evaluation of Missing View Completion: Multi-Omics Datasets . . 63
3.3.4 Analysis on Extremely High PB Values 64
3.3.5 Evaluation on Missing Values in Observed Views 64

3.4 Case Studies . 68
3.4.1 Regression analysis . 68
3.4.2 Classification analysis . 69

3.5 Applicability Analysis . 72
3.5.1 Minimum Training Samples Required for Robust Results 72
3.5.2 Arbitrary Temporal Knowledge Transfer 73

3.6 Discussion . 74
3.7 Reproducibility and Availability . 76

3.7.1 Data . 77
3.7.2 Python Package . 77
3.7.3 Reproducible Figures . 77

4 Conclusion and Outlook 79

Bibliography 81

A Supplementary Figures 95

B Supplementary Tables 101

C Package Manual: TIGER 117

D Package Manual: LEOPARD 135

xi

List of Figures

2.1 Illustration of Technical Variation . 14
2.2 Overview of the Ensemble Learning Architecture 15
2.3 Performance Evaluation of the Ensemble Learning Architecture 23
2.4 Performance of Technical Variation Removal: RSD and MAPE 26
2.5 Performance of Technical Variation Removal: Cumulative RSD and MAPE 27
2.6 Performance of Technical Variation Removal: PCA 29
2.7 Concentration of Metabolite C14:1 from the KORA Datasets 33
2.8 Overview of the Dynamic Website . 38

3.1 Description of Missing View Problem . 40
3.2 Overview of the Architecture of LEOPARD 49
3.3 Ablation Test on Losses . 53
3.4 Hyperparameter Tuning: Network Width and Depth 54
3.5 Hyperparameter Tuning: Contrastive Loss 55
3.6 Representation Disentanglement Process of LEOPARD 60
3.7 Evaluation of Missing View Completion: PB 62
3.8 Evaluation of Missing View Completion: UMAP 63
3.9 Analysis on the Variables with High PB 65
3.10 Evaluation on Missing View Completion with Missing Values: PB 66
3.11 Evaluation on Missing View Completion with Missing Values: UMAP . . 67
3.12 Volcano Plots for Regression Analyses . 68
3.13 Multi-Metric Evaluation for Classification Analyses 70
3.14 Analysis on the Minimum Number of Training Samples 73
3.15 Analysis on Arbitrary Style Transfer . 74

A.1 Evaluation of Each of Multiple Imputations: PB 95
A.2 Evaluation of Each of Multiple Imputation: UMAP 96
A.3 Age-Associated Metabolites in Each of Multiple Imputations 97

xiii

LIST OF FIGURES

A.4 eGFR-Associated Proteins in Each of Multiple Imputations 97
A.5 CKD Prediction in Each of Multiple Imputations: KORA Metabolomics . 98
A.6 CKD Prediction in Each of Multiple Imputations: KORA Multi-Omics . . 99

xiv

List of Tables

2.1 Methods for Technical Variation Removal 9
2.2 Summary of Benchmark Datasets for Technical Variation Removal 13
2.3 Hyperparameter Tuning for Non-Ensemble Models 22
2.4 Evaluation of Different Numbers of Highly Correlated Variables 24
2.5 Technical Variation Removal: Targeted Metabolomics Data 25
2.6 Technical Variation Removal: Untargeted Metabolomics Data 28
2.7 Case Study: Result of Missing Value Imputation 30
2.8 Case Study: Data Characteristics . 32

3.1 Methods for Data Imputation . 41
3.2 Summary of Benchmark Datasets for Missing View Completion 43
3.3 Case Study: CKD Prediction on KORA Metabolomics Dataset 71
3.4 Case Study: CKD Prediction on KORA Multi-Omics Dataset 72

B.1 QC Results of Targeted Metabolomics: KORA S4-F4-FF4 101
B.2 QC Results of Proteomics from Inflammation Panel: KORA S4-F4 112

xv

Abbreviations

AdaIN Adaptive Instance Normalization.
AUPRC Area Under the Precision-Recall Curve.
AUROC Area Under the Receiver Operating Characteristic

curve.

BCE Binary Cross-Entropy.
BMI Body Mass Index.
BRF Balanced Random Forest.

CART Classification And Regression Trees.
CC Correlation Coefficient.
cGAN conditional Generative Adversarial Networks.
CKD Chronic Kidney Disease.
CRAN Comprehensive R Archive Network.
CUDA Compute Unified Device Architecture.
CV Cross Validation.

eGFR estimated Glomerular Filtration Rate.

GAN Generative Adversarial Networks.
GLMM Generalized Linear Mixed Model.
GPL GNU General Public Licence.
GPU Graphics Processing Unit.

HbA1c Hemoglobin A1c.

ICA Independent Component Analysis.
IQR InterQuartile Range.

xvii

Abbreviations

k-NN k-Nearest Neighbors.
KORA Cooperative Health Research in the Region of

Augsburg.

LC-MS Liquid Chromatography-Mass Spectrometry.
LEOPARD missing view compLetion for multi-timEpoint

Omics data via rePresentation disentAnglement and
tempoRal knowleDge transfer.

LM Linear Model.
LOD Limits of Detection.
LOESS LOcally Estimated Scatterplot Smoothing, also

known as local polynomial regression.
LOOCV Leave-One-Out Cross Validation.

MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MAR Missing At Random.
maskObs percentage of masked data in Observed views.
MCAR Missing Completely At Random.
MICE Multivariate Imputation by Chained Equations.
MNAR Missing Not At Random.
MSE Mean Squared Error.

NF Normalization Factor.
NPX Normalized Protein eXpression.
NT-Xent Normalized Temperature-scaled Cross-entropy.

obsNum Number of observed samples in an incomplete view.
OS Operating System.

PB Percent Bias.
PBS Phosphate-Buffered Saline.
PCA Principal Component Analysis.
PEA Proximity Extension Assay.

xviii

Abbreviations

PMM Predictive Mean Matching.
PReLU Parametric Rectified Linear Unit.

QC Quality Control.

ReLU Rectified Linear Unit.
RF Random Forest.
RMSE Root Mean Square Error.
RSD Relative Standard Deviation, also known as

coefficient of variation.

SERRF Systematic Error Removal using Random Forest.
SVM Support Vector Machine.

TIGER Technical variation elImination with ensemble
learninG architEctuRe.

UMAP Uniform Manifold Approximation and Projection.

WT Wavelet Transform.

XGB eXtreme Gradient Boosting.

xix

1 Introduction

The expansion of omics technologies has profoundly impacted biomedical research, facil-
itating the extensive analysis of biological systems at multiple timepoints. This provides
great opportunities for advancing personalized medicine but also introduces complex an-
alytical challenges. Ensuring the accuracy and reliability of multi-timepoint omics data
analysis is critical for valid scientific insights.
With a focus on improving data reliability and completeness, we introduce two novel

computational tools, TIGER (Technical variation elImination with ensemble learninG
architEctuRe) and LEOPARD (missing view compLetion for multi-timEpoint Omics
data via rePresentation disentAnglement and tempoRal knowleDge transfer), which en-
hance the quality control processes within multi-timepoint omics studies. These method-
ologies not only refine data quality but also pave the way for more robust biological
research and healthcare applications.
This chapter provides an overview of the primary multi-timepoint omics data utilized

in this study, including the specific omics technologies and study design employed. It also
details the metrics used to assess the quality and reliability of omics data. Furthermore,
this chapter discusses the mechanisms of missing data within the omics datasets. By
laying the foundation and introducing fundamental concepts of multi-timepoint omics
data Quality Control (QC), this chapter establishes the connection between omics data
and the development and evaluation of advanced computational tools that are discussed
in subsequent chapters.

1.1 Data from KORA Study

The KORA study plays a crucial part in this thesis. The metabolomics and proteomics
data are used for performance evaluation and case studies during the development of
TIGER and LEOPARD. In this thesis, the data from the KORA study [1] are extracted
from the baseline survey (KORA S4, examined between 1999 and 2001), the first follow-
up study (KORA F4, 2006 - 2008), and the second follow-up (KORA FF4, 2013 - 2014).

1

1 Introduction

1.1.1 Metabolomics Data

We use targeted metabolomics data at three timepoints from the KORA cohort: S4,
F4, and FF4. The metabolite profiling of KORA S4 (March - April 2011), F4 (August
2008 - March 2009), and FF4 (February - October 2019) serum samples spans more than
a decade, during which analytical procedures have been upgraded several times. The
samples of KORA F4 were measured with the analytical kit AbsoluteIDQ® p150 (p150,
BIOCRATES Life Sciences AG, Innsbruck, Austria), while the samples of KORA S4
and FF4 were quantified with AbsoluteIDQ® p180 (p180). Kits p150 and p180 allow
simultaneous quantification of 163 and 188 metabolites, respectively. To evaluate the
technical variation introduced by different kits, samples of 288 individuals from the F4
study were remeasured using the p180 kit (September - October 2019). We use KORA
F4 (Original) and F4 (Remeasured) to distinguish the two subsets of the KORA F4
dataset.
During the measurement, the Phosphate-Buffered Saline (PBS) samples were allo-

cated to each 96-well kit plate as negative controls for the subsequent QC procedures.
Additionally, three different manufacturer-provided QC samples (QC1, QC2, and QC3)
were also allocated to each kit plate. For the p180 kit, each plate additionally quantified
five identical pooled EDTA-plasma QC samples (Sera Laboratories International Ltd.,
Hull, United Kingdom) [2], denoted by QC. Manufacturer-provided QC1, QC2, and QC3
varied due to the platform update, but the pooled EDTA-plasma QC remained the same.
Although plasma and serum metabolite concentration profiles are different, they are also
highly correlated [3]. Additionally,

1.1.2 Proteomics Data

The proteomics data used in this thesis are from two timepoints, S4 and F4. The
data are measured using plasma (S4, February 2020) and serum (F4, December 2016 -
January 2017) samples with the Olink® Target 96 Inflammation panel (Olink Proteomics,
Uppsala, Sweden) [4]. The panel includes 92 protein biomarkers and uses the Proximity
Extension Assay (PEA) technology to measure their relative abundance [5].

1.2 Criteria for Quality Control

In proteomics and metabolomics studies, several QC criteria are widely used to examine
the reliability and reproducibility of the data. These criteria help identify potential

2

1.2 Criteria for Quality Control

errors and variations, thus enabling more robust downstream biological analyses. This
section details the definitions and calculations of three key QC metrics: detection rate,
Limits of Detection (LOD), and Relative Standard Deviation (RSD).

1. Limits of Detection (LOD)

LOD represents the lowest concentration of a substance that can be reliably distin-
guished from the background noise. LOD can be calculated for the entire dataset
or separately for each plate or batch. In our QC process for the metabolomics
data, we calculate LOD for each plate using the following formula:

LODm,p = 3×median(PBSm,p), (1.1)

where p denotes a plate and m denotes a specific metabolite. PBS samples rep-
resent the background noise level. To compute the percentage of samples above
LOD, we use the following formulas:

above_LOD_numberm,p =

np∑
i=1

I(xm,p,i > LODm,p), (1.2)

above_LOD_ratiom =

∑
p above_LOD_numberm,p

N
, (1.3)

where x represents metabolite concentration, i denotes different subject samples,
np denotes the total number of subject samples in plate p, and I(condition) is an
indicator function that is 1 if the condition is true and 0 otherwise. N is the total
subject sample number. Typically, a variable will be kept if 50-75% of its subject
samples are above LOD.

2. Detection Rate

The detection rate for each variable is calculated using subject samples as the
ratio between the number of detected (non-zero, non-missing) values and the total
number of samples.

3. Relative Standard Deviation (RSD)

RSD, also known as the coefficient of variation, is a unitless and standardized
measure of dispersion of a data distribution. It is defined as the ratio of the
standard deviation to the arithmetic mean:

3

1 Introduction

RSD =
σ

µ
, (1.4)

where σ and µ denotes standard deviation and arithmetic mean, respectively. RSD
is computed for each metabolite measured from QC samples. As the metabolomics
data from the same type of QC samples should theoretically be identical (but in
reality have fluctuations due to technical variations), a low RSD indicates low
technical variation. A variable will be kept if its RSD is lower than a cutoff,
which generally ranges from 15-30%. In addition to the overall RSD, intraRSD
and interRSD can also be calculated to assess the variation within and between
plates:

• IntraRSD evaluates the variation within a single plate or batch. For each
plate or batch, the QC samples are used to measure the RSD for each plate,
and then the RSD values are averaged across plates.

• InterRSD evaluates the variation between plates or batches. The mean of the
QC samples is first computed across each plate/batch, and then the interRSD
is obtained by computing RSD using these means from different plates.

interRSD =
σmeans
µmeans

, (1.5)

where σmeans is the standard deviation of the means and µmeans is the mean
of the means across different plates or batches.

In this thesis, these QC criteria are used to improve the quality of the benchmark
datasets. The results of these QC criteria calculated on the targeted metabolomics data
and proteomics data from the KORA study can be found in Tables B.1 and B.2,
respectively.

1.3 Missing Mechanism

In multi-omics data analysis, missing data is a common challenge due to the complexity
and difficulties of data acquisition. Understanding the mechanisms behind missing data
is essential for addressing them effectively. The mechanism of missing data can be
broadly categorized into three types:

4

1.3 Missing Mechanism

1. Missing Completely At Random (MCAR)

Definition: The likelihood of missing data is independent of observed and unob-
served data. The missingness has no relationship to the values of any data.

Example: Random technical failures during profiling processing that lead to miss-
ing data points across the dataset.

2. Missing At Random (MAR)

Definition: The probability of missing data is related to the observed data but
not to the unobserved data.

Example: For a dataset that includes genomics and proteomics data, the missing
protein expression levels may be related to some observed genomic variations that
influence protein expression.

3. Missing Not At Random (MNAR)

Definition: The missingness is related to the unobserved data itself, meaning that
the missing data depends on the missing values.

Example: In a health survey, individuals with poor health may skip questions
related to their health status to avoid disclosure. The missing data on health
status is directly related to their health conditions.

Identifying the underlying missing mechanisms can help select suitable imputation
methods and analytical techniques to address missing data. However, determining the
missingness mechanism in the multi-omics data context is challenging. Existing methods
[6, 7, 8] also adopt the strategy of avoiding ”featurizing missingness” to mitigate the risk
of making invalid assumptions and resulting in biased results.

5

2 TIGER for Technical Variation Removal

This chapter introduces TIGER, a robust method developed to address technical vari-
ation in metabolomics data. We begin by discussing the challenges of technical varia-
tions and the limitations of current solutions (Section 2.1). Next, we detail the TIGER
methodology and its ensemble learning architecture (Section 2.2). TIGER is then bench-
marked against several state-of-the-art tools (Section 2.3) and evaluated in a multi-
timepoint scenario (Section 2.4). The discussion (Section 2.5) explores the performance
of different methods and highlights issues of overfitting and underfitting in established
methods. Finally, we conclude with the reproducibility and availability section (Sec-
tion 2.6), which provides information on obtaining the ready-to-use TIGER package,
along with the relevant data and scripts.

2.1 Overview

Metabolomics provides a unique perspective to quantitatively characterize small molecule
(< 1500 Dalton), metabolites, which can represent the metabolic status of a subject.
Liquid Chromatography-Mass Spectrometry (LC-MS) is widely used in metabolomics
studies for its high sensitivity and extensive metabolite coverage, making it ideal for de-
tecting and quantifying a broad range of metabolites. Metabolomics analyses facilitate
the identification of biomarkers and improve the understanding of biological pathways
in health and metabolic diseases such as diabetes [9, 10, 11]. With the rapid growth of
metabolomics data, techniques from fields such as data modeling and statistical analysis
have enabled the effective identification of metabolites that are related to the phenotype
of interest [12]. Despite significant advances in recent years, unwanted technical varia-
tion still remains a critical issue in the current metabolomics workflow [13] and prevents
the translation of metabolomics analyses in personalized healthcare.
Unwanted technical variation can cause detectable differences between samples ir-

respective of biological variation. These variations greatly affect the accuracy of the

7

2 TIGER for Technical Variation Removal

measurements and further lead to false discoveries [14, 15]. The main sources of these
variations include, but are not limited to:

• plate effects or batch effects: Due to the large sample size, samples might be
processed in different plates or batches rather than all together. Those differences
in instrument calibration and operator handling can lead to inconsistencies in the
measured data.

• temporal drifts: Analytical signals may change over time during long analytical
runs, which causes drifts in the detected metabolite levels.

• analytical platforms: The changes or updates of analytical platforms will yield
different metabolite profiles and levels.

In metabolomics experiments, biological variation of interest is inevitably confounded
with systematic errors or technical variations. These can be categorized as intra- and
inter-batch technical variation [16]. Intra-batch variation generally refers to the incre-
mental changes in instrumental response during the measurement of a batch of samples
[17]. And inter-batch variation occurs when samples in a large-scale study have to be
separated into batches [18]. Broadly speaking, temporal drifts within a single batch
can be regarded as intra-batch variation, while changes in analytical platforms can be
considered as measurements taken in two separate batches, thus representing inter-batch
variation. These unwanted technical variations are challenging, even impossible, to con-
trol during measurement [19, 15]. Therefore, it is critical to ”normalize” or ”adjust” raw
metabolomics data to remove these variations for a reliable downstream analysis [20].

2.1.1 State of the Art

Many practical methods and tools (Table 2.1) have been proposed to address technical
variations within metabolomics data.
One of the most common approaches is to use Normalization Factor (NF). For each

metabolite of each batch, the raw metabolite values of the QC samples in this batch act
as test values, while the averaged metabolite value of the QC samples from all batches
is used as the target value. The NF is the median [21] or mean [22] of the ratios of the
test values relative to the target value. Each metabolite from each batch has its own
NF to capture the deviation caused by the potential variations. For subject samples,
the deviation can be finally offset by dividing the values of subject samples by the

8

2.1 Overview

corresponding NF. In this case, the method can be viewed as fitting a linear equation
where the calculated NF acts as the slope term.

In addition to linear regression, Locally Estimated Scatterplot Smoothing (LOESS,
also known as Local Polynomial Regression), is also being applied to eliminate technical
variation [23, 24]. LOESS offers greater model flexibility compared to the linear equation
used by NF. Compared to a straight line determined by NF, LOESS fits a polynomial
curve by assigning greater weights to points closer to the one being estimated. The
rationale is that QC samples temporally close to a given subject sample can better
characterize the temporal drifts it experiences compared to those QC samples that are
farther away. A LOESS model for removing technical variation is typically trained using
injection order information.

More recently, a machine learning-based method, SERRF (Systematic Error Removal
using Random Forest) [25], has been developed to normalize large-scale untargeted
metabolomics data. The study of SERRF demonstrates that technical variation in the
intensity of one compound can be modeled by the intensities of other compounds. By
training an RF [27] model to regress unwanted systematic variation, SERRF has sur-
passed many popular methods, including NOMIS (Normalization using Optimal selection
of Multiple Internal Standards) [28], cubic splines normalization [29], and an SVM-based
method [30], on several benchmark datasets.

QC-based methods such as NF, LOESS, and SERRF utilize QC samples to train their
models for technical variation removal. In scenarios where QC samples are unavailable,
WaveICA [26] is a viable alternative. WaveICA utilizes the Wavelet Transform (WT) [31]
and the Independent Component Analysis (ICA) [32, 33] to capture and remove technical
variation. Assuming that metabolite intensities exhibit temporal trends over injection

Table 2.1: Methods for Technical Variation Removal

Method Algorithm Data
Type

QC-
Based

Injection
Order

Multiple
QC

Reference

NF Linear
equation

Various Yes No No [21, 22]

LOESS LOESS Various Yes Required No [23, 24]
SERRF RF Untargeted Yes Required No [25]
WaveICA WT & ICA Untargeted No Required No [26]
TIGER Ensemble

learning
Various Yes Support Support This study

9

2 TIGER for Technical Variation Removal

order, WaveICA first uses WT to decompose the trend into multi-scale data with different
frequencies. Subsequently, ICA is used to detect and remove unwanted variation within
the multi-scale data. The normalized data are finally reconstructed using the inverse
WT. The experiments show that WaveICA outperforms ComBat (combatting batch
effects when Combining Batches) [34], a well-known QC-free method based on empirical
Bayes, as well as QC-RLSC (Quality Control-based Robust LOESS Signal Correction)
[35].

Although these established methods are valuable and help to remove the technical
variations within metabolomics data, they are subject to limitations:

• One underlying assumption of NF is that the fluctuation in one metabolite value
can be balanced by the values of other metabolites, but it has been argued that
this assumption is only valid in limited practical scenarios [36, 28].

• The normalization capability of LOESS is boosted by its more flexible algorithm,
but the model of LOESS neglects the potential associations between metabolites
and tends to overfit the data. Regarding data structure, LOESS can hardly be
applied to datasets that contain more variables (metabolites) than samples [25].

• SERRF is one of the most robust methods, but its model trained on QC samples
cannot guarantee to yield satisfactory results on subject samples–this is also the
issue of most QC-based methods.

• WaveICA is not afflicted by the common issues of QC-based methods. However,
it assumes that biological variation mainly exists in the data with high frequency,
while temporal drifts are in the low-frequency part. This assumption may result
in the removal of biological variation present in the low-frequency area.

2.1.2 Current Challenges

Recently, the routine use of well-characterized QC samples has been recognized as an
effective strategy to improve the external validity of large-scale metabolomics studies.
[20, 37, 38]. QC samples can not only help eliminate temporal drifts, batch effects, and
other technical variations but also help achieve better inter-laboratory reproducibility,
enabling effective comparison of data from different platforms and centers [39].
With the advancement of computational health and machine learning, an increasing

number of QC-based methods, such as SERRF, are now employing machine learning
algorithms to remove technical variation. In this context, metabolite values of QC and

10

2.1 Overview

subject samples are typically used as training and test data, respectively. A traditional
machine learning model is generally trained and fine-tuned on a training set that is highly
representative of unseen examples. However, in our case, QC samples may not be fully
representative of subject samples. Due to underfitting and overfitting, many QC-based
methods only yield weak performance on subject samples [40, 26]. Additionally, the
same QC samples are often divided into two subsets for model training and validation,
which further makes the evaluation result too optimistic–strong evaluation performance
obtained on the validation set (i.e. QC samples) does not guarantee a satisfactory result
on the test set (i.e. subject samples).
To improve generalization ability, datasets of many cohorts or studies integrated multi-

ple types of QC samples, sometimes corresponding to different metabolite concentration
levels, into the measurements. The availability of multiple types of QC samples pro-
vides more flexibility and better reproducibility for metabolomics data pre-processing.
However, almost none of the existing methods is able to process the datasets with dif-
ferent kinds of QC samples. With the growth of QC-provided metabolomics datasets,
the development of highly flexible and readily adaptable QC-based methods become a
necessity.

2.1.3 Contribution

Our contribution toward addressing these challenges can be summarized as follows:

• An ensemble learning architecture is developed to enhance model performance on
noisy metabolomics datasets. The architecture is more robust to noisy data and
mitigates and risk of overfitting on QC samples used for training.

• Based on our ensemble learning architecture, we developed TIGER, a novel al-
gorithm for eliminating technical variation in metabolomics data. Benchmarked
against several widely-used methods, TIGER shows the most robust and reliable
performance on both targeted and untargeted metabolomics datasets for eliminat-
ing intra- and inter-batch technical variation. TIGER can leverage multiple types
of QC samples and demonstrates strong performance on cross-kit adjustment. This
feature greatly improves data reproducibility and enables the integration of exper-
imental data from different analytical kits.

• A case study is performed to illustrate how TIGER can be applied to longitudinal
analysis. The case study suggests that many important patterns only appear after

11

2 TIGER for Technical Variation Removal

data adjustment, which emphasizes the importance of technical variation removal
for downstream analysis.

• Comprehensive evaluation indicates that multiple metrics should be considered to
assess the performance of technical variation removal, to avoid potential under-
correction and over-correction issues.

• TIGER is released as a user-friendly R package, available on Comprehensive R
Archive Network (CRAN). It can be easily installed in R using the command
install.packages("TIGERr"). A detailed manual is provided to assist users in
applying TIGER to various scenarios. Additionally, a dynamic website (https:
//han-siyu.github.io/TIGER_web/) has been developed, allowing users to inter-
actively compare TIGER with other popular methods and review patterns revealed
in our longitudinal analysis.

2.2 Methods

TIGER eliminates the technical variation using an adaptable ensemble learning archi-
tecture. This section describes the framework of this architecture and further illustrates
how it can be adapted to build TIGER.

2.2.1 Benchmark Datasets Construction

Data from the KORA study [1], the P20 Negative dataset (negative mode, from the
Functional Cardio-Metabolomics study), [25] and the Amide dataset of WaveICA [26]
are used are benchmark datasets to evaluate the performance of technical variation re-
moval (Table 2.2). The data in the KORA study are the concentrations of targeted
metabolites, while the data in the P20 Negative and the Amide measure the compounds
or peak intensities of untargeted metabolomics data. Fig. 2.1 illustrates the techni-
cal variation of one variation selected from each benchmark dataset. The KORA FF4
dataset contains intra-batch plate effects, while the P20 Negative and Amide datasets
exhibit inter-batch technical variation. Additionally, the Amide dataset also shows very
strong temporal drifts where the variable intensity decreases as the injection order. Over-
all, the KORA FF4 has the lowest technical variation, while the Amide dataset shows the
highest fluctuation. These three datasets exemplify different types of technical variation
and demonstrate the variation at different levels of severity.

12

https://han-siyu.github.io/TIGER_web/
https://han-siyu.github.io/TIGER_web/

2.2 Methods

Table 2.2: Summary of Benchmark Datasets for Technical Variation Removal

Dataset
Targeted Untargeted

S4 F4 F4 FF4 P20 Amide(Original) (Remeasured) Negative
Batch Count1 22 38 4 29 4 4
Variable Count2 103 103 103 103 268 6402
Subject Count 1614 3061 288 2218 1174 644
QC Count

QC 114 NA 22 145 125 85
QC1 22 38 4 29 NA NA
QC2 22 38 4 29 NA NA
QC3 22 38 4 29 NA NA

Median RSD
QC 0.092 NA 0.088 0.118 0.275 0.514
QC1 0.095 0.123 0.077 0.109 NA NA
QC2 0.080 0.125 0.068 0.107 NA NA
QC3 0.080 0.107 0.072 0.109 NA NA

Median MAPE
QC 0.074 NA 0.070 0.095 0.226 0.417
QC1 0.073 0.099 0.054 0.087 NA NA
QC2 0.060 0.098 0.048 0.082 NA NA
QC3 0.063 0.088 0.055 0.088 NA NA

1Plates for KORA S4, F4, and FF4. Batches for P20 Negative and Amide.
2KORA data include 103 metabolites. P20 Negative contains 268 lipids. Amide has 6,402 peaks.

2.2.1.1 Targeted Metabolomics Datasets

Data from KORA FF4 is used for method evaluation where QC are selected as training
samples, while QC1, QC2, QC3, and subject samples are used as test data (see Fig. 2.1 for
an example variable from KORA FF4). In our case study, datasets of three timepoints,
namely KORA S4, F4, and FF4, are used for longitudinal analysis. See the chapter
Introduction for a detailed data description of the KORA cohort.
Quality inspection [41, 42] is applied to the metabolomics data. Only the metabolites

that are shared by KORA S4, F4, and FF4 and satisfy all the following criteria will be
used in this study (Table B.1):

• Metabolites are available for both the p150 and p180 kits

• At least 50% of the measured sample values are above the LOD of its corresponding
plates

13

2 TIGER for Technical Variation Removal

• The percentage of missing values is lower than 10%

• The median RSD of different QC samples is lower than 25%

• The spearman CCs between the KORA F4 (Remeasured) and F4 (Original) are
above 0.5

Finally, 103 targeted metabolites are selected to construct the target metabolomics
datasets.

2.2.1.2 Untargeted Metabolomics Datasets

The P20 Negative and Amide are two ready-to-use datasets provided by SERRF and
WaveICA. Relevant quality inspection has been conducted in their original studies. P20
Negative dataset is based on plasma samples and acquired using a validated lipidomics
assay [25]. In P20 Negative, 1,174 subject samples and 125 identical QC samples were
separated into four batches (Fig. 2.1). Each sample has 268 lipids (Table 2.2).

(a) Raw data

(b) TIGER normalized data

Figure 2.1: Illustration of Technical Variation. (a) Raw data of selected metabolites from
datasets KORA FF4, P20 Negative, and Amide. Solid dots in each dataset represent
QC samples which should be identical. The fluctuations in the QC samples are
caused by technical variations. Semi-transparent dots, which are subject samples,
generally suffer from similar technical variations as the QC samples. (b) Metabolite
values after being normalized by TIGER. The x-axis indicates the injection order,
and the y-axis represents metabolite concentration (µM) or intensity. Samples from
different batches are distinguished by colors.

14

2.2 Methods

𝑤! = exp MAPE! "#

𝑤′! =
𝑤!
∑!𝑤!

!
,
"𝑦,𝑤′,

...
!𝑦!!𝑦"!𝑦#!𝑦$

𝜑# 𝜑$ 𝜑% 𝜑!

Test
set

Normalized
Data

Training
Folds

Validation
Fold

Meta Model

Base Models

𝜃$ 𝜃# 𝜃" 𝜃!

Figure 2.2: Overview of the Ensemble Learning Architecture. The architecture includes
several base models and one meta model. The base models are trained with different
hyperparameter sets, while the meta model assigns weights to base models such that
high-performing base models can obtain great weights.

Dataset Amide is based on plasma samples processed with a UHPLC-QTOF/MS
system [26]. 644 subject samples and 85 identical QC samples were collected from four
batches, and each sample has 6402 detected peaks (Fig. 2.1 and Table 2.2).
The P20 Negative and Amide datasets only provide one kind of QC sample, 80% of

which will be used as training sets, while the remaining QC samples and all subject
samples are used as test sets.

2.2.2 Ensemble Learning Architecture

The ensemble learning architecture designed in this study is inspired by the idea of super
learner [43] and tailored for the cases where training samples are limited and cannot fully
represent test samples. The architecture is comprised of several base models and one
meta model. The base models are trained with different hyperparameter sets, which
could mitigate the potential overfitting issue. The meta model assigns weights to base

15

2 TIGER for Technical Variation Removal

models such that high-performing base models can obtain great weights, but information
from underperforming learners can be considered as well (Figure. 2.2).

2.2.2.1 Base Model

The ensemble model has n base models. Each base model is determined by θi, a hy-
perparameter set from pool {θ1, θ2, ..., θn}. The base model ϕi(·) is a machine learning
model of the form:

ϕi(y ∼ X) = φ(y ∼ X |θi). (2.1)

where X and y represent variable and response; φ(·) denotes a function that can be
generalized to various approximators, such as SVM, k-Nearest Neighbors (k-NN), or
user-defined functions.
When fitting base models, a specific training set, D = {y ∼ X|m ∈ 1 : M,d ∈ 1 : D}

including M instances and D variables, will be shuffled randomly and split into K folds
for Cross Validation (CV). For any fold k ∈ {1, 2, ...,K}, base models are trained with
K − 1 training folds {y−k ∼ X−k} and evaluated on the remaining validation fold Xk:

ŷi,k = ϕi(Xk|y−k ∼ X−k), (2.2)

where ŷi,k is the predicted result of the validation fold {Xk} produced by ϕi(·|y−k ∼
X−k), the base model ϕi trained with the training folds {y−k ∼ X−k}. The prediction
results obtained on the validation folds are collected and concatenated for training the
meta model in the next stage:

ŷi = {ŷi,1, ŷi,2, ..., ŷi,k}. (2.3)

Finally, all base models are re-trained with the whole training set to make full use of all
available information.

2.2.2.2 Meta Model

Meta model Φ(·) corresponds to a model of the form:

Φ(y ∼ X) =

n∑
i

wiϕi(y ∼ X). (2.4)

16

2.2 Methods

Unlike many blending models that directly average the predictions of all ensemble mem-
bers, the architecture here assigns each base model a weight wi which is transformed
from the loss of each validation set via a softmax-like formula:

wi =
exp(−ℓi)∑n
i exp(−ℓi)

, (2.5)

where ℓi is the loss of the corresponding base model ϕi(·), defined as follows:

ℓi = L(ŷi, y), (2.6)

L(ŷ, y) = 1

M

M∑
m=1

|ŷ(m) − y(m)|
y(m)

. (2.7)

L(·) is the loss function that quantifies the Mean Absolute Percentage Error (MAPE);
ŷ
(m)
i denotes the m-th values predicted by ϕi(·) in CV, and y(m) is the corresponding
target value.
The numerator of Eq. 2.5 calculates the exponential of the negative loss of each in-

dividual base model, and the denominator sums over the exponentials. This ensures
base models with small losses have more weights, but learners with large losses can also
contribute to the prediction. This alleviates the overfitting problem caused by specific
hyperparameter sets, and the resulting ensemble model can outperform the constituent
models.

2.2.3 TIGER Algorithm

TIGER iterates many times during the correction (Alg. 1). Only one metabolite will
be processed in one iteration. In each iteration, TIGER constructs ensemble models
separately for different batches. The model construction can be outlined in three steps:
variable selection, model construction, and data correction.

2.2.3.1 Variable Selection

The Correlation Coefficient (CC) values between any two metabolites are calculated
separately for training (i.e. QC samples in a general case) and test samples (i.e. subject
samples). For a metabolite to be processed, other metabolites with CC values greater
than 0.5 in both training and test samples are selected. Then, the intersection of the
selected metabolites determines t highly correlated metabolites.

17

2 TIGER for Technical Variation Removal

Alg. 1: Overview of TIGER Algorithm
Input: QD,B: QC samples with D metabolites from B batches
Input: SD,B: subject samples to be normalized
Output: S′

D,B: normalized data of subject samples
▷ start iteration of normalization process

1 for d ∈ D do
▷ d: index of the metabolite to be processed

▷ step 1: variable selection
2 vQ =highlyCorrelatedMetabolites(Qd,B)
3 vS =highlyCorrelatedMetabolites(Sd,B)
4 v = vQ ∩ vS ▷ intersection of vQ and vS

▷ v: selected variables for metabolite d
5 for b ∈ B do

▷ b: index of batch
▷ step 2: model construction

6 training set Dd,b = {Qd,b, Qv,b}
▷ Qd,b: data of objective metabolite
▷ Qv,b: data of selected metabolites

7 build ensemble model Φd,b(·) with Dd,b ▷ to Alg. 2
▷ step 3: data correction

8 apply Φd,b(·) to Sd,b
9 concatenate results

10 output normalized dataset S′
D,B

To ensure stable and consistent performance across different iterations, the number of
highly correlated metabolites is limited to a specific range [tmin, tmax]. If t < tmin, the
top tmin metabolites with the highest CC values in both training and test samples will
be selected. If t > tmax, only the top tmax metabolites will be selected.
TIGER supports Pearson product-moment correlation and Spearman’s rank correla-

tion to compute CC values. Additionally, partial correlation [44] is supported for variable
selection, such that pairwise CC values are conditioned on the correlation with all other
metabolites, and indirect associations between distantly related metabolites are ignored
[45]. By default, TIGER uses rank-based CC.
The training set is constructed with the data of highly correlated metabolites. This

design not only reduces the model complexity but also accounts for potential interactions
between metabolite values. Furthermore, the variation introduced by temporal drifts,
well position effects, and other unobserved noise are reflected in the correlations. As a
result, the model can capture relevant information even if details such as injection order

18

2.2 Methods

Alg. 2: Procedures of training ensemble model in TIGER
Input: D = {y,X}: training set with response y and variables X
Input: {θ1, θ2, ..., θn}: hyperparameter sets for random forest
Input: K: number of folds for cross-validation
Output: normalized metabolomics data
▷ start to build base models

1 compute error ratio y′ by Eq. 2.9
2 DRF = {y′, X}
3 shuffle DRF and split the dataset into K folds
4 for i ∈ {1, 2, ..., n} do
5 for k ∈ {1, 2, ...,K} do
6 train ψ(y′−k ∼ X−k|θi) using the training folds
7 predict ŷ′i,k = ψ(Xk|y′−k ∼ X−k) ▷ error ratio
8 transform ŷi,k = yk/(ŷ

′
i,k + 1) ▷ concentration

9 get ŷi by Eq. 2.3
10 train ψ(y′ ∼ X|θi) using the whole training set
11 get base model ϕi(y ∼ X) by Eq. 3.7 and Eq. 2.8

▷ start to fit meta model
12 for i ∈ {1, 2, ..., n} do
13 compute loss ℓ′i = L(ŷi, ȳ) by Eq. 2.7
14 for i ∈ {1, 2, ..., n} do
15 compute weight wi by Eq. 2.5
16 fit meta model Φ(y ∼ X) =

∑n
i wiϕi(y ∼ X)

and well position are not available. Users can still choose to explicitly include injection
order and well position in the training data to train TIGER, though it might not be
necessary.

2.2.3.2 Model Construction

The ensemble learning architecture designed in this study is a general framework that
can be extended to various use cases. In the implementation of TIGER, the architecture
is further tailored to suit the task of technical variation removal. Alg. 2 shows how the
model is constructed in TIGER using our ensemble learning architecture.
Specifically, the base model φ(·) in TIGER is defined as:

φ(y ∼ X |θi) =
y

ψ(y ′ ∼ X |θi) + 1
(2.8)

19

2 TIGER for Technical Variation Removal

where ψ(·) is an RF model trained with θi, one hyperparameter combination from the hy-
perparameter pool. By default, the pool contains {mtry_percent = {0.2, 0.4, 0.6,
0.8}, nodesize_percent = {0.2, 0.4, 0.6, 0.8}}. Users can include more hyper-
parameters into the pool. Response y in Eq. 2.8 denotes the raw values of a metabolite
to be processed, while variable X denotes the raw values of y ’s highly correlated metabo-
lites. The RF model ψ(·) predicts y ′, the error ratio of y , defined as:

y ′ =
y − ȳ

ȳ
(2.9)

where ȳ is the mean or median of y . When fitting the meta model, ȳ is used as the
target value to compute the loss in Eq. 2.6. If a training set has more than one kind of
QC sample, then ȳ and y ′ will be calculated separately for each kind.
In the R package of TIGER, ȳ can be configured to be calculated for the whole

dataset or each batch. By default, TIGER computes mean-based ȳ from the whole
dataset (ȳ = ȳall). In batch-specific case (ȳ = ȳbatch), the obtained metabolite value will
be additionally multiplied by a factor, ȳall/ȳbatch, to offset inter-batch variations. This
will make the algorithm more aggressive and competent to process the datasets with
strong batch effects.
Overall, for a specific training set D = {y ∼ X}, TIGER first transforms y, the raw

metabolite values of a metabolite to be processed, into the corresponding error ratio y′

(Eq. 2.9). Then y′ and X are fed into an RF model ψ(·). Accordingly, the predicted
result of ψ(·) is also an error ratio denoted by ŷ′. The predicted error ratio is then
converted back to metabolite values by equation ŷi = y/(ŷ′ + 1). Subsequently, the
output of TIGER’s base models ŷi and ȳ are passed to the meta model, and the loss
is obtained by Eq. 2.6. Thus, the weight assigned to each base model is based on how
close the predicted metabolite value ŷi is to the target value ȳ.

2.2.3.3 Data Correction

Given the cross-validated weights, base models can be combined together for data cor-
rection. The outcomes are the weighted sums of the predicted results of all base models.

In the implementation of TIGER, test samples are scheduled to be processed on the
fly during the model construction, rather than being corrected in a separate step, to
avoid redundant computational costs. Parallel computing is supported to accelerate
computational speed.

20

2.3 Performance Evaluation

2.2.4 Evaluation Metrics

RSD is one of the most widely used metrics to evaluate data variation. As a low RSD
indicates low technical variation, the RSD should decrease after processing the dataset
with technical variation removal tools.
In this study, we also include the MAPE as an evaluation metric. MAPE is one of

the most common measures in machine learning to evaluate the difference ratio between
true values and predicted values (Eq. 2.7). MAPE is also computed for each metabolite
measured from QC samples. A lower MAPE indicates the predicted value is closer to its
target value, which is defined as the average of the corresponding metabolite values. The
MAPE generally decreases after processing the dataset with technical variation removal
tools.
Considering that some datasets only provide one kind of QC, while training and testing

using the same kind of QC may lead to an over-optimistic evaluation, we further use
Principal Component Analysis (PCA) plots to compare the clustering of both QC and
subject samples before and after applying technical variation removal tools. Successful
removal of technical variations will result in samples, through may be from different
batches, clustering together in the PCA plot.

2.3 Performance Evaluation

In this section, we first introduce several established metrics that can be used for evalu-
ating the performance of technical variation removal. Then, we assess how our ensemble
learning architecture performs in the task of technical variation removal. Finally, we
benchmark TIGER against four popular methods–NF, LOESS, SERRF, and WaveICA–
on three benchmark datasets: KORA FF4, P20 Negative, and Amide.
The targeted metabolomics data of the KORA FF4 dataset, from a single batch but

spread across 29 plates, are used to assess the removal of intra-batch technical variation.
The untargeted metabolomics data of the P20 Negative and Amide datasets, which
include data from four batches, are used to evaluate the removal of inter-batch technical
variation.

2.3.1 Evaluation of the Ensemble Learning Architecture

Three machine learning algorithms with different complexities, namely k-NN [46], ran-
dom forest [47] and extreme gradient boosting (XGB) [48, 49], are selected as base

21

2 TIGER for Technical Variation Removal

Table 2.3: Hyperparameter Tuning for Non-Ensemble Models

Model Hyperparameter Value

k-NN k [1, 2, 3, 4]
algorithm kd_tree

RF
ntree [100, 300, 500]
mtry in ratio [0.1, 0.2, 0.4, 0.6, 0.8, 1]
samplesize [1, 2, 3, 4]

XGB

booster gbtree
objective reg:squared error
eval_metric rmse
eta 0.01
max_depth [3, 6, 9]
min_child_weight [1, 2, 3, 4]
subsample [0.6, 0.8, 1]
colsample_bytree [0.6, 0.8, 1]
early_stopping_rounds 50

Values determined by 5-fold CV and grid search are shown in bold.

models to validate the ensemble learning architecture. We compare the performance of
each machine learning algorithm under ensemble and non-ensemble settings. The non-
ensemble models are fine-tuned using grid search with a 5-fold CV (Table 2.3). Ensemble
models are trained using the same hyperparameters as the corresponding non-ensemble
models. All models are trained with QC and tested with QC1, QC2, QC3, and subject
samples from the KORA FF4 dataset. The KORA FF4 dataset includes four types of
QC samples, allowing for training and testing with different QC sample types, which
can provide more reliable results.

As shown in Fig. 2.3, all ensemble models show some improvements upon their non-
ensemble predecessors, which demonstrates the effectiveness of our ensemble learning
architecture. k-NN and XGB give the best and the worst results among non-ensemble
models. After adopting the ensemble learning strategy, these two algorithms yielded
the least and the greatest improvement. Model complexity may account for this fact:
models trained with high complexity algorithms, such as XGB, can capture not only
patterns of technical variation but also random noises in the training set, and thus may
not generalize well on the unseen examples, which greatly differs from the training data.
A model with low complexity, such as k-NN, is less prone to overfit the training set but
has limited flexibility to improve accuracy.

22

2.3 Performance Evaluation

QC1 QC2 QC3

raw k−NN k−NN
(ensemble)

RF RF
(ensemble)

XGB XGB
(ensemble)

raw k−NN k−NN
(ensemble)

RF RF
(ensemble)

XGB XGB
(ensemble)

raw k−NN k−NN
(ensemble)

RF RF
(ensemble)

XGB XGB
(ensemble)

0.05

0.10

0.15

0.20

(a) RSD of QC samples (KORA FF4) before and after applying different machine learning algorithms

QC1 QC2 QC3

raw k−NN k−NN
(ensemble)

RF RF
(ensemble)

XGB XGB
(ensemble)

raw k−NN k−NN
(ensemble)

RF RF
(ensemble)

XGB XGB
(ensemble)

raw k−NN k−NN
(ensemble)

RF RF
(ensemble)

XGB XGB
(ensemble)

0.05

0.10

0.15

0.20

(b) MAPE of QC samples (KORA FF4) before and after applying different machine learning algorithms

Figure 2.3: Performance Evaluation of the Ensemble Learning Architecture. The
performance of k-NN, RF, and XGB are evaluated under both non-ensemble and
ensemble scenarios. Each dot represents the RSD (a) or MAPE (b) value of one
metabolite. The results show that ensemble models improve performance over their
non-ensemble predecessors. The y-axis has been sqrt-transformed.

Algorithm RF is selected to build the base models in TIGER as it helps to achieve
the best performance on both RSD and MAPE with moderate complexity. After incor-
porating the RF algorithm into the ensemble learning architecture, the medians of RSD
and MAPE are 14.43% and 14.79% better than the original model.

To achieve a good balance between model performance and computational complex-
ity, we further evaluate different values for tmin and tmax during the variable selection
phase. The performance is evaluated using parallel computing with 8 cores on a machine
equipped with an Intel® Core™ i9-10885 processor, 32 GB of memory, and a 64-bit Win-
dows 10 Operating System (OS). As shown in Table 2.4, in the most extreme scenario,
TIGER is able to perform normalization with only one available variable and obtain a
median of RSD of 0.0570 (QC2) and a median of MAPE of 0.0581 (QC2). Based on the
evaluation result, tmin and tmax are set as five and ten for TIGER’s default setting.

In our evaluation, only one type of QC sample (pooled EDTA-plasma, denoted as
QC) was used for training, but we expect the performance can be further boosted if the
training set includes additional types of QC samples. This will help the meta model
compute more reliable weights to ensure a better generalization ability.

23

2 TIGER for Technical Variation Removal

Table 2.4: Evaluation of Different Numbers of Highly Correlated Variables

tmin tmax
Time

(seconds)
Median of RSD Median of MAPE

QC1 QC2 QC3 QC1 QC2 QC3
1 1 54.81 0.055 0.057 0.062 0.055 0.058 0.062
1 5 114.50 0.052 0.054 0.059 0.048 0.050 0.053
5 5 126.11 0.051 0.053 0.058 0.047 0.050 0.051
5 10 148.85 0.050 0.051 0.057 0.044 0.045 0.048
10 10 162.39 0.052 0.052 0.059 0.046 0.045 0.049
15 20 208.05 0.051 0.051 0.056 0.044 0.044 0.047
20 20 237.53 0.051 0.052 0.056 0.043 0.043 0.046
25 30 288.32 0.051 0.051 0.057 0.043 0.042 0.046
30 30 301.83 0.051 0.052 0.056 0.043 0.043 0.046
35 40 336.38 0.051 0.052 0.057 0.042 0.043 0.046
40 40 368.18 0.050 0.052 0.057 0.042 0.043 0.045
45 50 402.18 0.051 0.051 0.057 0.042 0.042 0.045
50 50 430.69 0.050 0.051 0.057 0.043 0.042 0.045
55 60 463.64 0.051 0.051 0.057 0.042 0.042 0.045
60 60 497.64 0.051 0.051 0.056 0.042 0.042 0.045
65 70 531.70 0.051 0.051 0.056 0.042 0.042 0.045
70 70 568.68 0.051 0.052 0.056 0.042 0.042 0.045
75 80 596.33 0.051 0.052 0.056 0.041 0.042 0.045
80 80 632.97 0.051 0.052 0.057 0.041 0.042 0.045
85 90 670.61 0.051 0.052 0.057 0.041 0.042 0.045
90 90 701.89 0.051 0.052 0.057 0.041 0.042 0.045
95 all 745.46 0.051 0.053 0.057 0.041 0.042 0.045
all all 787.71 0.051 0.053 0.057 0.041 0.042 0.046
The selected hyperparameters are indicated in bold.

2.3.2 Evaluation on the Targeted Metabolomics Dataset

We first evaluated different methods on the targeted metabolomics data from the KORA
FF4 dataset. SERRF and WaveICA are developed for untargeted metabolomics data.
But our evaluation showed that they may be applicable to targeted metabolomics data
as well.

Different methods yield similar RSD and MAPE values on the three manufacturer-
provided QC samples (Table 2.5). All methods are able to lower the RSD, which means
the normalized values are less dispersed than the raw values. The low medians of MAPE
of the data processed by TIGER, NF, and SERRF also suggest good performances of
these methods. However, the metabolite values seem to further deviate from the target

24

2.3 Performance Evaluation

Table 2.5: Technical Variation Removal: Targeted Metabolomics Data

Method Median of RSD Median of MAPE
QC1 QC2 QC3 QC1 QC2 QC3

raw 0.109 0.107 0.109 0.087 0.082 0.088
TIGER 0.050 0.051 0.057 0.044 0.045 0.048
NF 0.057 0.060 0.066 0.046 0.048 0.054
LOESS 0.063 0.069 0.069 0.544 0.544 0.543
SERRF 0.094 0.098 0.099 0.074 0.076 0.076
WaveICA 0.078 0.083 0.086 0.253 0.254 0.274
Performance is evaluated on the KORA FF4 dataset.
Bold number indicates the best result.

values after being processed by LOESS and WaveICA–the median of MAPE (QC2)
increases from 0.082 (raw) to 0.544 and 0.254, respectively (Fig. 2.4).

The cumulative curves (Fig. 2.5) show how the variable percentage changes with the
increase of RSD or MAPE. TIGER has the fastest growing curves with the increase
of RSD and MAPE. Around 93% of the metabolites have RSD values lower than 0.1
after being processed by TIGER, compared with 41% for raw data and 85%, 85%, 52%,
and 70% for data processed by LOESS, NF, SERRF, and WaveICA, at the same cut-
off. This indicates the dataset processed by TIGER has less variation and is of better
quality than the other four methods. TIGER also greatly lowers the error ratio–99% of
metabolites have MAPE values lower than 10%, better than its two best counterparts
(NF and SERRF) by factors of 4% and 8%.

Overall, TIGER achieves the best performance among all investigated methods and
strikes a superior balance between RSD and MAPE. The evaluation results show that
TIGER outperforms the other four methods and effectively eliminates the intra-batch
technical variation. Fig. 2.1 illustrates the normalized results of one metabolite after
TIGER’s normalization. A detailed metabolite-level comparison between TIGER and
its benchmarking partners is available on our dynamic website (https://han-siyu.
github.io/TIGER_web/).

2.3.3 Evaluation on Untargeted Metabolomics Datasets

Two untargeted metabolomics datasets, P20 Negative and Amide, are further used for
performance evaluation. As the Amide dataset contains stronger technical variation (

25

https://han-siyu.github.io/TIGER_web/
https://han-siyu.github.io/TIGER_web/

2 TIGER for Technical Variation Removal

KORA FF4 − QC2

raw TIGER NF LOESS SERRF WaveICA

0.05

0.10

0.30

P20 Negative − QC

raw TIGER NF LOESS SERRF WaveICA

0.1

1.0

10.0

Amide − QC

raw TIGER NF LOESS SERRF WaveICA

0.01

0.10

1.00

10.00

raw TIGER NF LOESS SERRF WaveICA

(a) RSD of QC samples before and after being processed by different methods

KORA FF4 − QC2

raw TIGER NF LOESS SERRF WaveICA

0.03

0.10

0.30

1.00

3.00

P20 Negative − QC

raw TIGER NF LOESS SERRF WaveICA

0.03

0.10

0.30

1.00

3.00

Amide − QC

raw TIGER NF LOESS SERRF WaveICA

 0.01

 0.10

 1.00

 10.00

100.00

(b) sdohtemtnereffidybdessecorpgniebretfadnaerofebselpmasCQfoEPAM

Figure 2.4: Performance of Technical Variation Removal: RSD and MAPE. RSD (a)
and MAPE (b) values are calculated on the QC samples from datasets KORA
FF4, P20 Negative, and Amide. Each dot represents the corresponding metric
value of one metabolite or variable, while the box shows the overall distribution.
The performance in this figure is obtained by TIGER’s ready-to-use R package, and
the performance here slightly differs from the result in Fig. 2.3 which is obtained
from the fine-tuned model. The y-axis has been log10-transformed.

Table 2.6) than the KORA FF4 and P20 Negative datasets, the target value (in Eq. 2.7),
an argument of TIGER, is configured to compute based on each batch.

Fig. 2.4 and Table 2.6 show that TIGER effectively lowers the technical variations and
improves the data quality of the P20 Negative dataset: the median of RSD is reduced
by 19.06% (from 0.274 of raw data to 0.084), while the median of MAPE is reduced by
14.67% (from 0.212 of raw data to 0.065). From the cumulative curves (Fig. 2.5), we
notice that only 3.73% of the metabolites in the raw test set have RSD values ranging
from 0 to 0.2, while the percentage increases to 91.42% after being processed by TIGER.
TIGER also outperforms the other methods with 96.27% of metabolites achieving MAPE
lower than 0.2, compared with 51.49%, 70.15%, 86.57%, and 43.66% for LOESS, NF,
SERRF, and WaveICA, respectively.

The evaluation on the Amide dataset shows that all methods manage to lower the
RSD of QC samples (Fig. 2.4 and Table 2.6), while WaveICA has the lowest median
of RSD. In the cumulative curves (Fig. 2.5), WaveICA outperforms its counterparts by
achieving the result that 76.27% of the metabolites achieve achieve RSD lower than 0.3.

26

2.3 Performance Evaluation

K

0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.6 0.8 0.0 0.3 0.6 0.9 1.2 1.5

0

20

40

60

80

100

%
 o

f
V

a
ri

a
b
le

s

m r r

RSD

raw TIGER NF LOESS SERRF WaveICA

K

0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.6 0.8 0.0 0.3 0.6 0.9 1.2 1.5

0

20

40

60

80

100

MAPE

%
 o

f
V

a
ri

a
b
le

s

m r r

Figure 2.5: Performance of Technical Variation Removal: Cumulative RSD and
MAPE. Cumulative RSD (a) and MAPE (b) curves are calculated on QC samples
from the KORA FF4, P20 Negative, and Amide datasets. The x-axis shows differ-
ent metrics, and the y-axis is the percentage of variables. The curve captures the
overall performance of a method, which indicates how effectively the batch effects
are eliminated within certain ranges of metric values or the percentage of vari-
ables. Some values in Amide unexpectedly become negative after being processed
by WaveICA, thus the RSD curve of WaveICA does not start from zero.

By contrast, around 50.48%, 45.95%, 45.94%, and 41.95% of the metabolites yield RSD
below the same threshold, after being processed by LOESS, TIGER, SERRF, and NF,
respectively. However, we notice that the WaveICA-normalized data contain counter-
intuitive negative values, causing its cumulative RSD curve not to start from the origin
(0.0%). In terms of MAPE, the evaluation reveals similar good performance among
TIGER, LOESS, NF, and SERRF, while WaveICA gets the highest median of MAPE.
This result is also reflected in the corresponding cumulative curves.

Except for WaveICA, all other methods are trained and evaluated using the same QC
samples, which could lead to a too-optimistic evaluation. To have a reliable assessment,
PCA analysis is further performed to evaluate how each method generalizes to the subject
samples. Fig. 2.6 shows four clusters, representing four batches of the raw data of
the P20 Negative and Amide datasets, respectively. Similar samples in the PCA plot

27

2 TIGER for Technical Variation Removal

Table 2.6: Technical Variation Removal: Untargeted Metabolomics Data

Method Median of RSD Median of MAPE
P20 Negative Amide P20 Negative Amide

raw 0.274 0.511 0.212 0.415
TIGER 0.084 0.321 0.065 0.255
NF 0.170 0.347 0.135 0.252
LOESS 0.097 0.261 0.195 0.246
SERRF 0.133 0.320 0.116 0.251
WaveICA 0.128 0.146 0.230 0.983
Performance is evaluated on the P20 Negative and Amide datasets.
Bold number indicates the best result.

should be clustered together. Therefore, no clear clusters of different batches should
be observed after applying normalization methods. After being normalized by TIGER,
SERRF, and WaveIC, the QC and subject samples in the P20 Negative and Amide
datasets are clustered together without distinct batch differences, which demonstrates
that these methods effectively eliminate the technical variations within the data. By
contrast, after normalized by NF, QC and subject samples still contain strong batch
effects, which means NF underfits the data.

From the RSD and MAPE results in Fig. 2.4 and Table 2.6, it seems that LOESS
achieves the best performance on the Amide dataset. However, the PCA plots shows
that the batch effect can still be detected in its subject samples, while QC samples cluster
tightly. This suggests that LOESS suffers from overfitting with a favorable result on QC
samples but a substandard performance on subject samples. Based on our evaluation,
TIGER achieves the most compact clusters for both QC and subject samples, proving
that TIGER’s capability for technical variation removal. Fig. 2.1 shows the normalized
results of certain metabolites after applying TIGER.

2.3.4 Computational Speed Analysis

As one dataset generally has only a small number of QC samples for model training, the
increase of samples may not make a big impact on the complexity of TIGER. Addition-
ally, by default, TIGER selects between 5 and 10 highly correlated variables to train
each model; therefore, an increase of variables does not greatly raise the complexity of
each ensemble model. However, the running time will increase with the number of vari-
ables and batches, as TIGER builds different ensemble models for different metabolites

28

2.3 Performance Evaluation

LOESS SERRF WaveICA

raw TIGER NF

−60 −30 0 30 60 −60 −30 0 30 60 −60 −30 0 30 60

−20

−10

0

10

20

−20

−10

0

10

20

PC1

P
C
2

(a) PCA score plot of P20 Negative dataset before and after being processed by different methods

LOESS SERRF WaveICA

raw TIGER NF

−100 −50 0 50 −100 −50 0 50 −100 −50 0 50

−40

0

40

80

−40

0

40

80

PC1

P
C
2

Subject QC Subject QC

(b) PCA score plot of Amide dataset before and after being processed by different methods

Figure 2.6: Performance of Technical Variation Removal: PCA. QC samples and sub-
ject samples are represented by solid points and semi-transparent dots. Samples
from different batches, marked with different colors, are expected to mix together
after normalization. (a) For P20 Negative dataset, the dataset processed by NF
has evident batch effects in both QC and subject samples, which suggests that NF
underfits the data. (b) For the Amide dataset, LOESS overfits the data. The
QC samples cluster in one group after LOESS’s normalization, but subject samples
from different batches are still separated.

29

2 TIGER for Technical Variation Removal

and batches. For a dataset with D variables and B batches or plates, TIGER needs
to train D × B models to normalize the whole dataset. TIGER takes 2 minutes 28.85
seconds, 2 minutes 21.75 seconds, and 57 minutes 30.46 seconds to process the KORA
FF4 (103 variables, 22 plates), P20 Negative (268 variables, 4 batches), and Amide (6402
variables, 4 batches) datasets in parallel with 8 cores. In this case, TIGER takes around
140 seconds to build 1,000 models when 20 ∼ 30 QC samples per batch are available
for model training. The evaluation of different numbers of highly correlated variables
(Table 2.4) shows that the running time of TIGER increases approximately linearly with
the number of variables. TIGER trades model complexity for a robust prediction, but
the increased cost is still acceptable.

2.4 Case Study

The case study is conducted to illustrate how TIGER can be integrated into longitudinal
analysis. This case study, which includes missing data imputation, intra- and inter-batch
technical variation removal, cross-kit adjustment, and mixed effects modeling, may serve
as a practical analysis pipeline for longitudinal studies.

2.4.1 Data Imputation

KORA F4 (Original) has a few missing values that need to be imputed. To ensure an
accurate result, a masked dataset with simulated missing values is created using KORA
F4 (Original). Out of 3,061 individuals of 103 metabolites (315,283 data points), six
missing values are scattered in the data of four metabolites (PC aa C32:2, PC ae C42:4,
SM (OH) C14:1 and SM C20:2). A subset without missing values is first extracted
from F4 (Original). For each of these four metabolites, we randomly masked 10 values
with the assumption that data of one specific metabolite are MCAR [50]. The resulting
masked dataset is then imputed by four popular algorithms [51, 52] namely Predictive
Mean Matching (PMM) [53], Classification And Regression Trees (CART) [54], k-NN
imputation [55], and Linear Model (LM) [56]. The results are evaluated with MAPE,

Table 2.7: Case Study: Result of Missing Value Imputation

PMM k-NN LM CART
MAPE 0.122 0.130 0.132 0.159
Bold number indicates the best result.

30

2.4 Case Study

measuring the difference between the original and imputed values. Based on the result
(Table 2.7), method PMM achieves the best performance and is selected to impute the
missing values in KORA F4 (Original).

2.4.2 Cross-Kit Adjustment

In this case study, we aim to correct datasets measured at three timepoints, namely
the KORA S4, F4 (Original), and FF4. The three datasets exhibit obvious inter-batch
technical variation (see the raw data distributions in Fig. 2.7). Effective data correction
and adjustment will help ensure a reliable downstream analysis. Considering that all
three datasets provided the same kind of pooled EDTA-plasma QC sample (QC, five
per plate), we use QC to correct the datasets of three timepoints. And the KORA F4
(Original) is adjusted using the 288 repeated measurements of the F4 (Remeasured).
The metabolite concentration levels of the KORA FF4 are used as a reference to align

the other datasets for inter-batch correction. After the data correction, the metabolite
concentration levels of the KORA S4 and F4 will match the levels of the KORA FF4.
Intra-batch technical variation within the data from 29 plates of the KORA FF4 is first
eliminated using TIGER. When normalizing the S4, the target values ȳ (Eq. 2.9) are
calculated from the FF4 so that TIGER attempts to remove the inter-batch technical
variation by minimizing the discrepancy between the S4 and FF4. TIGER by default
eliminates the technical variation within the input dataset, in which the target values
are automatically computed using the input dataset itself. Here, TIGER is configured
to calculate the target values from another dataset.
The adjustment of the KORA F4 consists of two steps: (1) Data of the KORA F4

(Remeasured) were generated from four plates of the p180 kit. Data correction is first
performed through the method we used for the S4 to combat intra- and inter-batches,
such that the values in the F4 (Remeasured) are aligned to the FF4. (2) Then the
samples with repeated measurements in the F4 (Original) are used as training samples
for cross-kit adjustment. In a broad sense, the noises introduced by different kits can be
categorized as inter-batch technical variation, but the noises are further amplified due
to the change of analytical kit. In this case, each of these 288 subject samples can be
considered as one kind of QC sample. The remeasured data are used as target values to
minimize the difference between the KORA F4 (Remeasured) and F4 (Original). After
the cross-kit adjustment, the KORA F4 (Original) is comparable to FF4.
To evaluate the quality of the adjusted data, the RSD values of QC1, QC2, and QC3

are calculated on the raw F4 (Original) and adjusted F4 (Original). After TIGER’s

31

2 TIGER for Technical Variation Removal

Table 2.8: Case Study: Data Characteristics

Characteristics Samples from S4 Samples from F4 Samples from FF4
Age (years) 61.75 ± 4.90 68.75 ± 4.90 75.75 ± 4.90
Sex (female, %) 49.73 49.73 49.73
BMI (kg/m2) 26.18 ± 3.10 27.05 ± 3.18 27.00 ± 3.39
Systolic blood
pressure (mmHg)

127.37 ± 15.93 124.00 ± 15.73 119.55 ± 16.72

Fasting glucose in
serum (mg/dl)

96.95 ± 8.90 96.01 ± 9.30 101.01 ± 13.77

HbA1c (%) 5.57 ± 0.33 5.54 ± 0.30 5.58 ± 0.38
N = 374. Values are percentage or mean ± standard deviation.

adjustment, the median of RSD calculated on QC1, QC2, and QC3 reduce from 0.1225,
0.1251, and 0.1070 to 0.0967, 0.0953, and 0.0914, respectively.

While RSD indicates data dispersion, our primary concern is how closely the ad-
justed remeasured data aligns with the normalized remeasured data. Because QC1,
QC2, and QC3 are different in KORA F4 (Original) and F4 (Remeasured), we cannot
directly compute MAPE on these manufacturer-provided QC samples. To investigate
how well TIGER performs on cross-kit adjustment, we further perform 4-fold stratified
CV analysis using the 288 samples with remeasurements from the normalized KORA
F4 (Remeasured) and the F4 (Original). MAPE is computed on each validation fold
to quantify the difference between the adjusted original data and the normalized re-
measured data. In the KORA F4 (Original), the 288 original measured samples were
spread across 38 plates. For each plate, we randomly and equally split the samples
into four groups. Groups of each plate are combined together to construct 4 folds for
stratified CV. After TIGER’s adjustment, the median and mean of MAPE were reduced
by 16.81% (from 0.250 to 0.081) and 19.29% (from 0.296 to 0.103) respectively, which
indicates that TIGER is effective for cross-kit adjustment.

2.4.3 Analysis for Aging Trends

We further use raw and TIGER normalized datasets of KORA S4, F4, and FF4 to
investigate age-associated metabolites. To weaken the influence of diseases and medi-
cal treatments on metabolite concentration, subject samples from KORA are screened
according to their corresponding phenotype data. For each timepoint, we exclude in-
dividuals with obesity, defined as the Body Mass Index (BMI) > 35 kg/m2, or with

32

2.4 Case Study

QC − raw

S4
(N = 114)

F4 (Remeasured)
(N = 22)

FF4
(N = 145)

0.025

0.050

0.075

0.100

C
o

n
c
e

n
tr

a
ti
o

n
 o

f
C

1
4

:1
 (

M
)

Repeated Subject − raw

F4 (Original)
(N = 288)

F4 (Remeasured)
(N = 288)

0.0

0.1

0.2

0.3

Subject − TIGER

S4
(N = 374)

F4 (Original)
(N = 374)

FF4
(N = 374)

0.0

0.1

0.2

0.3

0.40.4

Subject − raw

S4
(N = 374)

F4 (Original)
(N = 374)

FF4
(N = 374)

0.0

0.1

0.2

0.3

0.40.4

Dataset

Figure 2.7: Concentration of Metabolite C14:1 from the KORA Datasets. The box
of the S4 in the first panel is higher than that of both the F4 (Remeasured) and
FF4 for the identical QC samples. The second plot shows that the values of the F4
(Original) are higher than the values in F4 (Remeasured). The last two plots show
the concentration of C14:1 from the S4, F4, and FF4 with and without TIGER’s
normalization. The raw values of subject samples theoretically suffer from similar
technical variations to the raw values of QC and remeasured samples. N denotes
the number of samples.

hypertension, defined as the systolic blood pressure > 160 mmHg, or with type 1 or
type 2 diabetes. Non-fasting samples are also removed. The remaining data available
at all three timepoints consist of 374 individuals. The average age of these participants
from KORA S4, F4, and are 61.75, 68.75, and 75.75 years old. The mean values of BMI,
fasting glucose, and Hemoglobin A1c (HbA1c) were relatively stable during the 14 years
investigation, whereas the mean of systolic blood pressure decreased (Table 2.8).

We use a linear mixed-effects model [57] with a random intercept to investigate the
relationships between each of the 103 metabolites and age. Overall, 73 metabolites
in the normalized data are significantly associated with age with Bonferroni correction
(P -value < 0.05/103). By contrast, 89 metabolites in the raw data are detected as
significant. We notice 38 metabolites show different significance of age associations
in raw and TIGER normalized data. Fig. 2.7 shows the concentration distribution of
metabolite C14:1 (Tetradecenoylcarnitine). Estimated from the raw data, the regression
coefficient of C14:1 ∼ age is -5.68e-04 (P -value = 0.0038). When fitting the model
using the data processed by TIGER, the regression coefficient goes to 3.16e-03 (P -
value = 3.04e-91). The positive correlation found in C14:1 is consistent with recent
longitudinal studies showing that C14:1 and C18:1 (Octadecenoylcarnitine) are among
the most age-dependent metabolites [58], and many fatty acids, including C14:1 and
C18:1, are significantly increased in midlife [59]. The positive correlation between C14:1

33

2 TIGER for Technical Variation Removal

and age can only be revealed in the corrected data, which confirms TIGER’s effectiveness
in technical variation removal. We also notice the positive correlation between age and
C18:1. Fitting the models with raw and TIGER corrected data, the regression coefficients
of C18:1 ∼ age are 2.45e-3 (P -value = 8.13e-53) and 3.14e-3 (P -value = 5.81e-90),
respectively. This result implies TIGER does not impair true biological variations within
the data.
The detailed association results are available on TIGER’s dynamic website, where

readers can interactively examine the aging trends associated with different metabolites.

2.5 Discussion

In this study, we developed TIGER, a reliable method for technical variation removal
in metabolomics data powered by an adaptable ensemble learning architecture. Eval-
uated with targeted and untargeted metabolomics datasets, TIGER outperforms four
widely-used methods (NF, LOESS, SERRF, and WaveICA) on both intra- and inter-
batch technical variation removal tasks. A case study was performed to illustrate how
TIGER can be used for the detection of true aging-associated metabolites in longitudinal
datasets.

Now more and more advanced machine learning models have been developed to capture
the complex but subtle structure hidden within the data. However, a highly sophisti-
cated model may not be robust enough for a dataset with a limited sample size or a
large quantity of noise, which is often the case in the omics data. To tackle these issues,
an ensemble learning architecture was devised. Instead of turning a weak learner into
a strong one or searching for a specific hyperparameter combination that achieves the
lowest training error, the architecture improves a model’s robustness to data variation
and mitigates the risk of overfitting by considering the output from multiple learners.
The fundamental concept behind the proposed ensemble architecture is that even base
models with weaker performance can contribute to lowering the technical variation and
provide information to the ensemble, potentially outperforming a fine-tuned individual
model. This advantage broadens the application scope of our ensemble learning ar-
chitecture, extending its use case beyond technical variation removal in metabolomics
data.

In this study, we used three metrics–RSD, MAPE, and PCA–to evaluate different
methods. Relying solely on RSD could lead to overly optimistic results and the problem
of over-correction, where biological variations are also removed during normalization.

34

2.5 Discussion

In our case study, MAPE can provide additional insight into TIGER’s performance
by quantifying how much the adjusted KORA F4 (Original) data deviate from the F4
(Remeasured) data. Additionally, as the repeated subject samples exhibit both technical
and biological variations, RSD in this scenario becomes less applicable, making MAPE
a more practical metric for reliable evaluation.

We further observed that LOESS and WaveICA displayed different patterns with the
increase of technical variation. LOESS achieved the most balanced result among the
five methods on the QC samples (Figs. 2.4). However, its normalized subject data still
showed strong batch effects (Fig. 2.6). This problem may be explained by the fact that
the LOESS-based model captures data patterns that only exist in QC samples and do
not fully reflect the entire datasets, thus yielding unfavorable results for subject sam-
ples. Although QC samples can be split into training (80%) and test sets (20%), the
evaluation still entails the risk of producing over-optimistic results. The method may
yield worse results if the training samples are more distinct from the subject samples.
To avoid potential bias, we highly recommend using different kinds of evaluation metrics
and methods, including, but not limited to, RSD, MAPE, and PCA, to perform data
evaluation. Furthermore, it is also beneficial to introduce several kinds of QC samples
into the acquisition process of metabolomics data. In the evaluation of the KORA FF4,
identical pooled EDTA-plasma QC samples were used to train QC-based methods, while
manufacturer-provided QC plasma samples (QC1, QC2, and QC3) and subject serum
samples were used to construct the test set and evaluate performance. The overall data
distribution of the QC can greatly differ from the distributions of QC1, QC2, and QC3.
Therefore, a method with good results on QC1, QC2, and QC3 will theoretically general-
ize robustly on subject samples. The strong performance of TIGER in the evaluation of
the KORA dataset demonstrates that TIGER is effective in reducing technical variation,
even if the training data are not fully representative of the test data.

Another observation is that as the technical variation increases, the performance of
NF becomes weaker. This linear equation-based method was only inferior to TIGER in
the evaluation of the KORA FF4 dataset, but it was surpassed by LOESS, SERRF, and
WaveICA on the P20 Negative and Amide datasets. We speculated that this might result
from the limited capability of a linear equation in capturing complex data patterns. The
raw data of the KORA FF4 used in this study is already of quite high quality. When
applied to a dataset with a large quantity of variation, such as the Amide dataset, NF
underfits the data and fails to yield satisfactory results. By contrast, SERRF gradu-
ally outperformed LOESS and WaveICA with the increase of technical variation. The

35

2 TIGER for Technical Variation Removal

favorable performances achieved by TIGER and SERRF may be partly owing to the
robustness of the RF algorithm that underlies the methods. The ensemble learning ar-
chitecture further improves TIGER’s effectiveness and robustness, thus achieving better
overall performances than SERRF across the three datasets.

We also observed intriguing phenomena from WaveICA’s performance. In terms of
RSD, WaveICA gradually outperformed other QC-based tools with the increase in data
variability. WaveICA achieved the best RSD on Amide dataset, proving WaveICA’s
effectiveness for batch effect removal, especially when QC samples are not available.
However, its high MAPE should not be ignored–this may involve a risk of over-correction.
The negative values generated by WaveICA may also hinder the subsequent biological
analysis and make the data less interpretable.

In our case study, TIGER was applied to a longitudinal analysis involving data col-
lected at three timepoints and measured with two different kits. We demonstrated that
TIGER considerably reduced the technical variation introduced by different kits and im-
proved the homogeneity and comparability of data. Previous studies have shown that the
concentrations of many metabolites, including C14:1 and C18:1, are positively correlated
with age [41, 60, 59, 58]. We found these associations often become more apparent only
after the technical variations are mitigated. Our findings also indicate that many other
metabolites are associated with age, as detailed on our interactive website. It would be
of great significance to perform in-depth investigations to validate these findings.

TIGER is designed to provide practical and customizable functions for eliminating
technical variations, including systematic errors introduced by different analytical kits.
To the best of our knowledge, TIGER is the first ready-to-use tool that facilitates cross-
kit adjustment. In this study, the adjustment was evaluated using kits from two different
versions. The performance of TIGER with two completely different kits has not been
tested, as adjusting data from entirely distinct sources may lead to misleading results.
Although TIGER does not make any assumptions about the data source and is theoret-
ically applicable to any numeric data measured using various techniques, in this study,
it was only evaluated using data from LC-MS analysis.

2.6 Reproducibility and Availability

In order to ensure the reproducibility and accessibility of our computational method,
all relevant data, code, and documentation have been made available, and a dynamic
website has been developed to provide variable-level performance evaluation.

36

2.6 Reproducibility and Availability

2.6.1 Data

KORA FF4’s QC data are included in TIGER’s R package. The cohort data that
support the findings of this study are operated by Helmholtz Munich and available via
the KORA platform https://www.helmholtz-munich.de/en/epi/cohort/kora upon
reasonable request.
P20 Negative dataset, provided by SERRF as a demo dataset, is available at https:

//slfan2013.github.io/SERRF-online/. The dataset is downloaded and used with
the consent of the authors.
Amide dataset is included in WaveICA’s R package and available at https://github.

com/dengkuistat/WaveICA. The dataset was downloaded and used in compliance with
the copyright policy of the publisher.

2.6.2 R Package

The R implementation of TIGER, TIGERr, is a free R package under the GNU General
Public Licence (GPL). The package is developed with the help of dependencies ppcor [44],
randomForest [47], caret [61], and pbapply [62]. The manual, included in Appendix C,
is generated with roxygen2 [63].

TIGER is compatible with almost all widely-used OS, includingWindows, UNIX/Linux,
and macOS. Users can install TIGER in R via command install.packages("TIGERr"),
and an appropriate version, as well as dependencies, will be installed automatically. The
package has been included in CRAN. The package is also available at CRAN (https://
CRAN.R-project.org/package=TIGERr) and GitHub (https://github.com/HAN-Siyu/
TIGER).

2.6.3 Dynamic Website

The dynamic website (accessible at https://han-siyu.github.io/TIGER_web/) is a
shiny-based application [64] which supports interactive figures for the detailed results
of KORA-derived datasets. Packages including shinydashboard [65], flexdashboard [66],
ggplot2 [67], ggsci [68], and plotly [69] are employed in the background to control layouts,
output figures, and enable interactive features.
The dynamic website features two functional modules: one for method evaluation

results and another for longitudinal analysis. Users can input the name of a metabolite
of interest to compare the results from different methods and to examine its concentration
distribution. Relevant statistics are displayed when the cursor hovers over the plots.

37

https://www.helmholtz-munich.de/en/epi/cohort/kora
https://slfan2013.github.io/SERRF-online/
https://slfan2013.github.io/SERRF-online/
https://github.com/dengkuistat/WaveICA
https://github.com/dengkuistat/WaveICA
https://CRAN.R-project.org/package=TIGERr
https://CRAN.R-project.org/package=TIGERr
https://github.com/HAN-Siyu/TIGER
https://github.com/HAN-Siyu/TIGER
https://han-siyu.github.io/TIGER_web/

2 TIGER for Technical Variation Removal

Function modules

Input range to adjust axis Sum and ratio of multiple metabolites are supported.

Hover text for

additional annotation

Tabsets showing different results

Figure 2.8: Overview of the Dynamic Website.

38

3 LEOPARD for Missing View Imputation

In this chapter, we present LEOPARD, a pioneering method for imputing missing views
in multi-timepoint omics data. We begin with an overview (Section 3.1) of existing
methods and their limitations, followed by a detailed explanation of the contributions
made by LEOPARD. The methods section (Section 3.2) elaborates on the construction of
benchmark datasets and the architecture of LEOPARD, including hyperparameter opti-
mization and ablation tests. LEOPARD is evaluated through comprehensive simulations
(Section 3.3), case studies (Section 3.4), and applicability analysis (Section 3.5). The
discussion (Section 3.6) provides insights into the broader application of LEOPARD, its
limitations, and potential caveats. In the reproducibility and availability section (Sec-
tion 3.7), we provide details on how to access the reproducible scripts so that LEOPARD
can be deployed and tested by other researchers.

3.1 Overview

The rapid advancement of omics technologies has enabled researchers to obtain high-
dimensional datasets across multiple views, enabling unprecedented explorations into
the biology behind complex diseases [70]. In biomedical analysis, multi-view datasets
integrate multiple types of biological information or different perspectives of the same
biological phenomenon. Each ”view” represents a different type of data or a different
aspect of the same biological system, capturing different biological processes or molecular
characteristics. For example, different views can correspond to different types of omics
data, or data acquired through different platforms, each contributing a partial or entirely
independent perspective on complex biological systems [71].

While advancements in multi-omics measurements have increased throughput and en-
abled the acquisition of multiple views in a single assay [72], data preprocessing, analysis,
and interpretation remain significant and important challenges. One of the most press-
ing challenges is the presence of missing data [73], which at its best (when missingness
occurs at random) reduces statistical power, and at its worst (when it is not random)

39

3 LEOPARD for Missing View Imputation

Adversarial Loss

Generator

Multi-Task
Discriminator

AdaIN

Reconstruction

Generation

Reconstruction Loss

Observed Data
(Table 1)

Contrastive
Loss

Content
Encoder

Temporal
Encoder

Representation Loss

Generated Data

Reconstructed
Data

Timepoint 1
Sample 1

Sample 2

…

Timepoint 2
Sample 1

Sample 2

… …

View 1 (e.g., metabolomics)

…

…

…

Var11 Var12 … Var1n

View 2 (e.g., proteomics)

Data

D
en

si
ty

c
Observed
Imputation 1
Imputation 2

d

a

View 1

View 2

…

…

…

…

…

…

…

…

…

…

Timepoint 1

…

…

…

View 1
Timepoint 2

…

…

…

…

…

…

…

b

Data

D
en

si
ty

Timepoint 1 (Observed)
Timepoint 2 (Observed)
Imputation

e

(Fig. 2a)

Representation
Disentangler

(Fig. 2b, 2c)

Var21 Var22 … Var2n

…

f
Regression and classification analyses (Figs. 7, 8)

Estimate

H1 C0
C2

C14:1−OH
C14:1C5

C12

C14:2

C18:1

C16:2
C10C3

C16C18

C18:2

C4

Orn

−0.02 0.00 0.02

2

4

6

8

- l
og

10
(P

-v
al

ue
)

LEOPARD

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

Precision-Recall Curve

Comparison with different imputation methods (Figs. 3, 4)

LEOPARD

UMAP1

U
M

AP
2

obsNum = 0

0.2

0.4

0.6

0.8

1.2

Pe
rc

en
t b

ia
s *

*

Imputation methods

Figure 3.1: Description of Missing View Problem. a, An example of a missing view in a
longitudinal multi-omics dataset. In this instance, View 1 and View 2 correspond
to metabolomics and proteomics data, respectively. Data of View 1 at Timepoint
2 are absent. b, An example of data density calculated from a variable in observed
data (Timepoint 1 and Timepoint 2) and imputed data. The data density indicates
a distribution shift across the two timepoints. Imputation methods developed for
cross-sectional data cannot account for the temporal changes within the data, and
their imputation models built with data from one timepoint, such as Timepoint 1,
might not be appropriate for inferring data from another timepoint, such as Time-
point 2. c, Compared to Raw data, data of Imputation 1 may exhibit lower MSE
than data of Imputation 2, but Imputation 1 potentially lose biological variations
present in the data.

can lead to biased discoveries. Unlike missing data points that may be scattered across
the entire dataset, a missing view refers to the complete absence of all features from a
certain view, as shown in Fig. 3.1a. In longitudinal studies that can span decades, the
problem of missing views in multi-timepoint omics data becomes increasingly common
due to factors such as dropout in omics measurements, experimental errors, or unavail-
ability of specific omics profiling platforms at certain timepoints. The missing view is at
least MAR, or even MNAR if the missingness is related to the unobserved data them-
selves. The incompleteness of these datasets hinders multi-omics integration [74] and
investigations into predisposing factors (such as age and genetics), enabling factors (such
as healthcare service and physical activity), and biomarkers for diseases. However, there
is a lack of tailored methods for this critical issue.

3.1.1 Existing Methods and Their Limitations

Missing view imputation or completion refers to the estimation of missing omics data in a
multi-view context. The task of missing view imputation in the multi-timepoint scenario
is more complex than cross-sectional missing value imputation, as it needs to harmonize
data distributions across views [75] and capture temporal patterns [76] (Fig. 3.1a).

40

3.1 Overview

Table 3.1: Methods for Data Imputation

Method Imputation
Type

Missing
Data

Multi-
Timepoint

Environment Reference

PMM Multiple Values No R [21, 22]
GLMM Multiple Values Yes R [23, 24]
missForest Single Values No R [25]
cGAN Single Views No Python [26]
LEOPARD Single Views Yes Python This study

Generic methods (Table 3.1), such as PMM [77], missForest [78], and KNNimpute [79],
learn direct mappings between views from observed data without missingness. However,
this strategy is inadequate or suboptimal [80] for longitudinal data, as it precludes in-
vestigations into temporal variation, which can be of great interest: the learned map-
pings may overfit the training timepoints, making them unsuitable for inferring data
at other timepoints, especially when biological variations cause distribution shifts over
time (Fig. 3.1b). To address the complexities of longitudinal data, numerous effective
imputation methods have been developed based on the Generalized Linear Mixed Model
(GLMM) [81]. Existing studies have also explored the use of spline interpolation and
Gaussian processes to extrapolate or interpolate missing timepoints [82, 83]. However,
the typically limited number of timepoints in current human cohorts can restrict the
effectiveness of these longitudinal methods. Given these challenges, there is a grow-
ing need for view completion methods that are specifically designed for multi-timepoint
omics data. While metrics like the Mean Squared Error (MSE) and Percent Bias (PB)
are commonly used to evaluate imputation results [52], these quantitative metrics alone
may not fully capture data quality in the context of omics data. As depicted in Fig. 3.1c,
data imputed by method 1 may have a lower MSE than that imputed by method 2, but
at a loss of biologically meaningful variations. Further case studies would be helpful to
evaluate imputation methods.

3.1.2 Contribution

In this paper, we introduce LEOPARD (missing view completion for multi-timepoint
omics data via representation disentanglement and temporal knowledge transfer), a
neural network-based approach that offers a novel and effective solution to this chal-
lenge. LEOPARD extends representation disentanglement [6] and style transfer [84]
techniques, which have been widely applied in various contexts such as image classifi-

41

3 LEOPARD for Missing View Imputation

cation [85], image synthesis [86], and voice conversion [87], to missing view completion
in longitudinal omics data. LEOPARD factorizes omics data from different timepoints
into omics-specific content and timepoint-specific knowledge via contrastive learning.
Missing views are completed by transferring temporal knowledge to the corresponding
omics-specific content.
We demonstrate the effectiveness of LEOPARD through extensive simulations using

human proteomics and metabolomics data from the MGH COVID study [88] and the
KORA cohort [1]. Additionally, we perform two case studies using real omics data to
assess whether biological information is preserved in the imputed data, providing a com-
prehensive assessment of LEOPARD’s performance in both regression and classification
tasks.

In summary, the key contributions of this study are:

• We propose LEOPARD, a novel method tailored for missing view completion in
multi-timepoint omics data that applies representation disentanglement and style
transfer in an innovative manner.

• Our study shows that generic imputation methods designed for cross-sectional data
are not suitable for longitudinal data, emphasizing the need for tailored approaches.
Additionally, we highlight that canonical evaluation metrics do not adequately
reflect the quality of imputed biomedical data. Further investigations, including
regression and classification analyses, can augment these metrics in the assessment
of imputation quality and preservation of biological variations.

• Our research reveals that omics data across timepoints can be factorized into con-
tent and temporal knowledge, providing a foundation for further explorations into
biological temporal dynamics. This insight offers a novel perspective for predictive
healthcare that extends beyond the problem of data imputation.

• LEOPARD is a python-based tool available on GitHub (https://han-siyu.github.
io/TIGER_web/). The manual is provided in the jupyter-notebook format to help
users train their own models for their datasets.

3.2 Methods

In our missing view completion problem, we are given a generalized dataset XN
V,T that

includes omics data from N individuals across multiple views (V) and timepoints (T).

42

https://han-siyu.github.io/TIGER_web/
https://han-siyu.github.io/TIGER_web/

3.2 Methods

Table 3.2: Summary of Benchmark Datasets for Missing View Completion

MGH COVID KORA metabolomics KORA multi-omics
Omics type proteomics metabolomics metabolomics,

proteomics
View1

v1 panel: cardiometabolic class: GPL omics: metabolomics
v2 panel: inflammation class: non-GPL omics: proteomics

Variable number
v1 322 70 104
v2 295 36 66

Timepoint
t1 D0 F4 S4
t2 D3 FF4 F4

Time span 3 days 7 years 7 years
Sample number2

Total 218 2,085 1,062
Training 140 1,335 680
Validation 35 333 170
Test 43 417 212

1The views in the MGH COVID dataset correspond to two Olink® panels: Explore 384 cardiometabolic
(v1) and Explore 384 inflammation (v2). The 106 metabolites in the KORA metabolomics dataset are
classified into five analyte classes: 70 glycerophospholipids (GPL), 15 acylcarnitines, 11 sphingolipids,
9 amino acids, and 1 monosaccharide. One view (v1) comprises 70 metabolites from the GPL class,
while the other view (v2) comprises 36 metabolites from the other classes. The views in the KORA
multi-omics dataset correspond to the metabolomics data from the Biocrates AbsoluteIDQ® p180 kit
and the proteomics from the Olink® Target 96 Inflammation panel.
2The samples from each dataset are split into training, validation, and test sets in a 64%, 16%, and
20% ratio, respectively. The test data in v2 at t2 are masked for performance evaluation.

For simplification, we consider data from two views v1,v2 and two timepoints t1,t2. Data
in XN

V=v2,T=t2 are set to be incomplete. The samples from each dataset are split into
training, validation, and test sets in a 64%, 16%, and 20% ratio, respectively. We use
Dsplit

v,t to denote data split from different views and timepoints. The test data in v2 at
t2 (i.e. Dtest

v=v2,t=t2) are masked for performance evaluation. We attempt to develop a
model that captures the mappings between v1 and v2, while simultaneously extracting
temporal knowledge from t1 and t2 using all observed data in the training set.

43

3 LEOPARD for Missing View Imputation

3.2.1 Benchmark Datasets Construction

We evaluate LEOPARD using three real longitudinal omics datasets. These distinct
datasets are designed based on data variations, time spans, and sample sizes. The first
two are mono-omics datasets, constructed with the proteomics data from the MGH
COVID study and the metabolomics from the KORA cohort, respectively. Views in
both datasets correspond to panels or biochemical classes. Missingness in these datasets
exemplifies a common issue encountered in longitudinal studies where data from certain
panels or biochemical classes are incomplete in some but not all timepoints. The third
dataset is a multi-omics dataset consisting of both metabolomics and proteomics data
from the KORA cohort. In this dataset, views correspond to different omics. This
dataset exemplifies the situation where data of a type of omics is incomplete.

3.2.1.1 MGH COVID Dataset

The MGH COVID study includes plasma proteins measured for patients at three time-
points: on day 0 (D0) for all patients on the day they were hospitalized for COVID, and
on days 3 (D3) and 7 (D7) for patients still hospitalized then. We utilize proteomics data
from D0 (t1) and D3 (t2), which have the largest sample sizes (N = 218, one duplicated
sample removed), to construct the first mono-omics dataset.
The proteomics data from the MGH COVID study were obtained using plasma sam-

ples and the Olink® Explore 1536 platform (Olink Proteomics, Watertown, MA, USA),
which consists of 1,472 proteins across four Olink® Explore 384 panels: inflammation,
oncology, cardiometabolic, and neurology [88]. The platform enables relative quantifica-
tion of analyte concentrations in the form of log2-scaled Normalized Protein eXpression
(NPX) values, where higher values correspond to higher protein levels. We selected pro-
teins listed in the Cardiometabolic and Inflammation panels to construct the two views
for the MGH COVID proteomics dataset, and the inflammation view was assumed to
be incomplete. The proteins are processed based on the following QC criteria:

• The protein should have no missing values.

• For a specific protein, at least 50% of measured sample values are equal to or above
LOD.

After quality inspection, a total of 322 and 295 proteins from the Cardiometabolic
(v1) and Inflammation (v2) panels are selected.

44

3.2 Methods

3.2.1.2 KORA Datasets

Data from the KORA study are extracted from S4, F4, and FF4 [89, 90]. We use
metabolomics data (N = 2,085) from F4 (t1) and FF4 (t2) from the KORA cohort
to construct the second mono-omics dataset. We additionally use metabolomics and
proteomics data (N = 1,062) from the KORA S4 (t1) and F4 (t2) to construct the
multi-omics dataset.
As the benchmark datasets are used for evaluating imputation results, some QC crite-

ria are different from the ones we used in the previous chapter to evaluate TIGER. Here,
only metabolites meeting the following QC criteria [42, 91] are selected (Table B.1):

• The metabolite should be available in both p150 and p180 measured data.

• The metabolite should have no missing values.

• For a specific metabolite, at least 50% of measured sample values are equal to or
above LOD of corresponding plates.

• The median RSD of QC samples should be < 25%.

• The Spearman CC of the metabolite values measured by the KORA F4 (Remea-
sured) and F4 (Original) should be > 0.5.

After QC procedures, the metabolite data are further normalized using TIGER [92]
with its default setting to remove the plate effects. For the multi-omics dataset, TIGER
was also used to remove the technical variation introduced by different kits following our
previous protocol [92, 93].

As to proteomics data, only proteins that pass the following QC criteria are selected
(Table B.2):

• The protein should have no missing values.

• For a specific protein, at least 75% of the measured sample values are equal to or
above LOD.

For the KORA metabolomics dataset, 106 targeted metabolites satisfy all criteria and
are categorized into five analyte classes: acylcarnitine, amino acid, glycerophospholipid,
sphingolipid, and monosaccharide. Two view groups are constructed by 70 glycerophos-
pholipids (v1) and 36 metabolites from the other four classes (v2). For the KORA

45

3 LEOPARD for Missing View Imputation

multi-omics dataset, 104 metabolites (v1) and 66 proteins (v2) satisfy all QC criteria
and are selected to construct two views (3.2).

To evaluate LEOPARD’s capability for arbitrary temporal knowledge transfer, we
further expanded the KORA metabolomics dataset to include data from S4 (as t1) and
FF4 (as t3), spanning approximately 14 years. We divide the metabolites into two
views, following the same strategy as the original KORA metabolomics dataset. Due to
different QC results across the two analytical kits, two metabolites, specifically PC aa
C38:1 in v1 and C16:2 in v2, are excluded. The final dataset comprises 102 metabolites
with 614 individuals who have data at both timepoints. These samples are also divided
into training, validation, and test sets with a ratio of 64%, 16%, and 20% respectively,
corresponding to 393, 98, and 123 samples. The data in Dtest

v=v2,t=t3 are masked for
performance evaluation.

3.2.2 CGAN Architecture as a Reference Method

Existing neural network-based missing view completion methods [94, 95, 96] have shown
remarkable performance in the field of computer vision. Given their inapplicability
to omics data, we designed a conditional Generative Adversarial Networks (cGAN)[97]
model specifically tailored for omics data, as a reference method. The cGAN extends
the original GAN [98] model by introducing additional information into the generation
process, thereby providing more control over the generated output. Our adapted archi-
tecture is inspired by VIGAN (View Imputation via Generative Adversarial Networks)
[99] and a method proposed by Cai et al. [7], both initially designed for multi-modality
image completion. In our context, the completion of missing views is conditioned on
the data from observed views. Moreover, we enhanced the baseline cGAN model with
an auxiliary classifier28 to ensure that the imputed view can be paired with the corre-
sponding observed view.

3.2.2.1 Architecture Design and Implementation

In the training phase, the generator of the cGAN is trained on observed data from
the training set to capture the mappings between two views. The discriminator guides
the generator to produce data with a distribution similar to that of actual data. The
discriminator also has an auxiliary classifier [100] to ensure the generated data can be
paired with input data. In the inference phase, the generator utilizes the mappings it has
learned from the observed data to impute the missing view in the test set. Compared to

46

3.2 Methods

methods PMM and missForest, our cGAN model has the potential to learn more complex
mappings between views. However, these three methods are not able to capture temporal
changes within longitudinal data and can only learn from samples where both views are
observed.
Specifically, the generator GcGAN learns the complex mappings between Dtrain

v=v1,t and
Dtrain

v=v2,t, with t = t1 in our case. The reconstruction loss Lrec_cGAN quantifies the differ-
ences between the actual and reconstructed data. The discriminator DcGAN computes
the adversarial loss Ladv_cGAN by distinguishing if data are real (Dtrain

v=v2,t=t1) or gener-
ated (D̂train

v=v2,t=t1). DcGAN also has an auxiliary classifier that computes the auxiliary loss
Laux_cGAN by predicting whether the pairs of views are real, i.e.,Dtrain

v=v1,t=t1, Dtrain
v=v2,t=t1,

or fake, i.e., Dtrain
v=v1,t=t1, D̂train

v=v2,t=t1. The final loss is defined as:

LcGAN = wrec_cGAN×Lrec_cGAN+ wadv_cGAN×Ladv_cGAN + waux_cGAN×Laux_cGAN ,

(3.1)
where wrec_cGAN , wadv_cGAN , and waux_cGAN are weights for the corresponding losses.
After training, the generator GcGAN is applied to Dtest

v=v1,t=t2 to generate D̂test
v=v2,t=t2.

The generator of the cGAN model consists of several residual blocks [101] and uses
the Parametric Rectified Linear Unit (PReLU) [102] as its activation function. Each
residual block includes batch normalization [103] as necessary. MSE loss serves as
Lrec_cGAN . Both the MSE loss and the Binary Cross-Entropy (BCE) loss are considered
for Ladv_cGAN and Laux_cGAN , determined by the hyperparameter tuning experiments.
MSE and BCE losses are defined as:

LMSE =
1

N
∥xi − x̂i∥2, (3.2)

LBCE = − 1

N

N∑
i=1

[
yi log

(
ŷi
)
+
(
1− yi

)
log

(
1− ŷi

)]
, (3.3)

where N is the number of samples, xi and x̂i represents the true and estimated values
for the i-th sample, while yi and ŷi represents the true and predicted labels for the i-the
sample.
The cGAN model is trained with the Adam optimizer [104], with a mini-batch size of

16 for the MGH COVID dataset and 32 for the two KORA-derived datasets. The model
is implemented using PyTorch [105] (v1.11.0), PyTorch Lightning [106] (v1.6.4), and

47

3 LEOPARD for Missing View Imputation

tensorboard [107] (v2.10.0), and run on a Graphics Processing Unit (GPU) operating
the Compute Unified Device Architecture (CUDA, v11.3.1).

3.2.2.2 Hyperparameter Optimization

We utilize the training (64%) and validation (16%) sets from the KORA metabolomics
dataset, which has the largest sample size among the three benchmark datasets, to
optimize the hyperparameters. We employ a grid search over various combinations
of hidden layer size, numbers of residual blocks, batch normalization, and weights for
different losses. We determine the number of training epochs based on early stopping
triggered by the MSE reconstruction accuracy calculated on the observed data from the
validation sets. Our experiments include variations in the number of hidden neurons for
both the generator and discriminator, with options including 32, 64, 128, and 256. The
number of residual blocks spanned from 2 to 6.

The final hyperparameters comprise five residual blocks of 64 neurons each for the
generator and three hidden layers of 128 neurons each for the discriminator. Batch nor-
malization is incorporated into the first four residual blocks of the generator and the last
two layers of the discriminator to stabilize the learning process and accelerate conver-
gence. A weight of 0.5 to Lrec_cGAN and a weight of 0.25 to Ladv_cGAN and Laux_cGAN

are determined. The MSE loss is selected for both Ladv_cGAN and Laux_cGAN . The
determined hyperparameters are fixed and used in all evaluations.

3.2.3 LEOPARD Architecture

As illustrated in Fig. 3.2d, the LEOPARD architecture comprises several hierarchical
components. First, data of each view are transformed into vectors of equal dimensions
using corresponding pre-layers. Subsequently, omics data of all views are decomposed
into content and temporal representations. The content encoder captures the intrinsic
content of the views, while the temporal encoder extracts knowledge specific to different
timepoints. A generator then reconstructs observed views or completes missing views by
transferring the temporal knowledge to the view-specific content using Adaptive Instance
Normalization (AdaIN) [84]. Lastly, we use a multi-task discriminator to discriminate
between real and generated data.
The LEOPARD model is trained by minimizing four types of losses: contrastive loss,

representation loss, reconstruction loss, and adversarial loss. An ablation test is per-
formed to evaluate the contribution of each loss. Minimizing Normalized Temperature-

48

3.2 Methods

Adversarial Loss

Generator

Multi-Task
Discriminator

AdaIN

Reconstruction

Generation

Reconstruction Loss

Observed Data
(Table 1)

Contrastive
Loss

Content
Encoder

Temporal
Encoder

Representation Loss

Generated Data

Reconstructed
Data

Timepoint 1
Sample 1

Sample 2

…

Timepoint 2
Sample 1

Sample 2

… …

View 1 (e.g., metabolomics)

…

…

…

Var11 Var12 … Var1n

View 2 (e.g., proteomics)

Data

D
en

si
ty

c
Observed
Imputation 1
Imputation 2

d

a

View 1

View 2

…

…

…

…

…

…

…

…

…

…

Timepoint 1

…

…

…

View 1
Timepoint 2

…

…

…

…

…

…

…

b

Data

D
en

si
ty

Timepoint 1 (Observed)
Timepoint 2 (Observed)
Imputation

e

(Fig. 2a)

Representation
Disentangler

(Fig. 2b, 2c)

Var21 Var22 … Var2n

…

f
Regression and classification analyses (Figs. 7, 8)

Estimate

H1 C0
C2

C14:1−OH
C14:1C5

C12

C14:2

C18:1

C16:2
C10C3

C16C18

C18:2

C4

Orn

−0.02 0.00 0.02

2

4

6

8

- l
og

10
(P

-v
al

ue
)

LEOPARD

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

Precision-Recall Curve

Comparison with different imputation methods (Figs. 3, 4)

LEOPARD

UMAP1

U
M

AP
2

obsNum = 0

0.2

0.4

0.6

0.8

1.2

Pe
rc

en
t b

ia
s *

*

Imputation methods

Figure 3.2: Overview of the Architecture of LEOPARD. The architecture of LEO-
PARD. Omics data from multiple timepoints are disentangled into omics-specific
content representation and timepoint-specific temporal knowledge by the content
and temporal encoders. The generator learns mappings between two views, while
temporal knowledge is injected into content representation via the AdaIN opera-
tion. The multi-task discriminator encourages the distributions of reconstructed
data to align more closely with the actual distribution. Contrastive loss enhances
the representation learning process. Reconstruction loss measures the MSE be-
tween the input and reconstructed data. Representation loss stabilizes the training
process by minimizing the MSE between the representations factorized from the
reconstructed and actual data. Adversarial loss is incorporated to alleviate the
element-wise averaging issue of the MSE loss.

scaled Cross-entropy (NT-Xent)-based contrastive loss [108] optimizes the factorization
of data into content and temporal representation. For both representations, minimiz-
ing the contrastive loss brings together the data pairs from the same view or timepoint
and pushes apart the data pairs from different ones, so that the encoders learn similar
intrinsic content (or temporal knowledge) across timepoints (or views). The represen-
tation loss, also computed on content and temporal representations, measures the MSE
of the representations factorized from the actual and reconstructed data. LEOPARD
minimizes this loss based on the intuition that the representations of the actual and
reconstructed data should be alike. The reconstruction loss measures the MSE between
imputed and observed values. Previous studies [109, 110, 111] have demonstrated that
the optimization of MSE loss often results in averaged outputs, leading to blurring ef-
fects when generating images. In our context, this might diminish biological variations
present in omics data. To alleviate this issue, we use adversarial loss to encourage the
predicted distribution to align more closely with the actual distribution.

49

3 LEOPARD for Missing View Imputation

LEOPARD has three unique features compared to conventional architectures for multi-
view data completion:

• Instead of focusing on direct mappings between views, which can only be learned
from paired data where both views are present, LEOPARD formulates this im-
putation task in terms of representation learning and style transfer. This allows
LEOPARD to utilize all available data, including observations present in only one
view or timepoint.

• It incorporates contrastive loss to disentangle the representations unique to views
and timepoints, which enables the model to learn more generalized and structured
representations. Our experiments show that this is of importance to improve data
quality.

• It uses the multi-task discriminator to solve multiple adversarial classification tasks
simultaneously by yielding multiple binary prediction results, which has been
proven to be more efficient and effective than a discriminator for a multi-class
classification problem [112].

3.2.3.1 Architecture Design and Implementation

View-specific pre-layers Ev
pre are used to embed input data xiv,t ∈ Dtrain

v,t of different
views into dimensionally uniform embeddings z_preiv,t. Here, i represents the data from
the i-th individual. The representation disentangler of LEOPARD comprises a con-
tent encoder Ec and a temporal encoder Et, both shared by input data across different
views and timepoints. This module learns a timepoint-invariant content representation
z_contentiv,t and temporal feature z_temporaliv,t from z_preiv,t. Following the encoding
process, the generator G employs the AdaIN technique to re-entangle content represen-
tation and temporal knowledge:

AdaIN(z_content, z_temporal) =

σ(z_temporal)× z_content− µ(z_content)
σ(z_content) + µ(z_temporal)

(3.4)

where µ and σ denote the mean and standard deviation operations respectively. View-
specific post-layers Ev

post convert the re-entangled embeddings back to omics data x̂iv,t.
The discriminatorD is trained to classify whether an input is a real sample or a generated

50

3.2 Methods

output coming from G and Ev
post. D produces the same number of outputs as the source

classes of the observed data, each corresponding to one view at one timepoint. For a
sample belonging to source class cv,t, we penalize D during the update cycle of D if its
output incorrectly classifies a real data instance as false or a generated data instance as
true for cv,t; when updating G, we only penalize G if D correctly identifies the generated
data instance as false for cv,t.

In our study, we define the contrastive loss Lcon as the mean of the NT-Xent losses
calculated separately for content and temporal representations. The NT-Xent loss is
formulated as follows:

LNT-Xent
(
zi, zj

)
= − log

exp
(
sim

(
zi, zj

)
/τ

)∑2N
k=1 1[k ̸=i] exp (sim (zi, zk) /τ)

, (3.5)

where zi and zj are embeddings of a positive pair (i, j); τ is a temperature factor that
scales the similarities; 1[k ̸=i] is an indicator function that equals 1 when k ̸= i and 0
otherwise. Function sim (·) denotes cosine similarity, defined as:

sim (a, b) =
a · b

∥a∥∥b∥
. (3.6)

In each training iteration, we generate data for the missing view before calculating
the loss. This allows the generated data to be factorized into corresponding content and
temporal representations, further facilitating loss minimization.

For the LNT-Xent calculated on content representations, positive pairs are defined as
⟨z_contentiv=v1,t=t1, z_contentiv=v1,t=t2⟩ and ⟨z_contentiv=v2,t=t1, z_contentiv=v2,t=t2⟩,
which are the same kind of content embeddings from the same individuals across different
timepoints. Similarly, the positive pairs of temporal representations are from the same
timepoint but different views including ⟨z_temporaliv=v1,t=t1, z_temporaliv=v2,t=t1⟩ and
⟨z_temporaliv=v1,t=t2, z_temporaliv=v2,t=t2⟩. The representation loss Lrep is the mean
of the MSE losses calculated for content and temporal representations. For each type
of representation, LEOPARD measures the MSE between the representation factorized
from the actual data and reconstructed data. The reconstruction loss Lrec quantifies
the discrepancies between the actual and reconstructed data. Any missing values in
the observed view are encoded as the mean values across each specific variable, and
these mean-encoded values are excluded from the computation of Lrec during back-
propagation. This strategy enhances the robustness of LEOPARD in scenarios where

51

3 LEOPARD for Missing View Imputation

input data contain missing values. The generator can arbitrarily produce data for any
source classes given the content and temporal representations.

To ensure the representation disentangler can capture the highly structured data pat-
tern, we only compute the Lrec on the data generated from content and temporal rep-
resentations derived from different source classes. For instance, ⟨z_contentiv=v1,t=t1,
z_temporaliv=v2,t=t1⟩ or ⟨z_contentiv=v2,t=t2, z_temporaliv=v1,t=t1⟩. Data generated from
representation pairs of the same views and timepoints, such as ⟨z_contentiv=v1,t=t2,
z_temporaliv=v1,t=t2⟩ are not used for optimization. This design imposes additional re-
straints, and LEOPARD is tamed to learn more generalized representations, which helps
prevent overfitting.

Similar to the cGAN model described in the previous section, the adversarial loss Ladv

is also computed based on the MSE. The final loss of LEOPARD is defined as:

LLEOPARD = wcon × Lcon + wrep × Lrep + wrec × Lrec + wadv × Ladv, (3.7)

where wcon, wrep, wrec, and wadv are the weights of the losses. The encoders, generator,
and discriminator of LEOPARD are built from blocks of layers without skip connections.
Each block starts with a dense layer. An instance normalization layer [113] is added after
the dense layer for the content encoder. The encoders and generator use the PReLU as
their activation functions, while the discriminator uses the sigmoid function. A dropout
layer [114] is incorporated after the activation layer, where necessary.

The LEOPARD model is trained with the Adam optimizer, with a mini-batch size of
64. The model is implemented under the same computational environment as the cGAN
model.

3.2.3.2 Ablation Test

We conduct a comprehensive ablation study to assess the individual contributions of
the four distinct losses incorporated into our LEOPARD architecture. By excluding
each loss, we benchmark the performance against a baseline setting that only utilizes
reconstruction loss. The ablation test is performed with the training and validation sets
from the KORA metabolomics dataset. Grid search is used to determine the optimal
weights for the losses, and the median of PB computed from the validation set is used
to quantify the performance. The network layer numbers and sizes are consistent during
the evaluation. We use three hidden layers for the generator and encoders, with each

52

3.2 Methods

layer containing 64 neurons. The weight for reconstruction loss is fixed at 1, while the
weights for the other three losses vary across 0.01, 0.05, 0.1, 0.5, and 1. The number of
training epochs is determined by the model’s saturation point in learning, which is when
the median of PB computed on the validation set ceases to decrease significantly. Our
experiments show that all four losses contribute to lowering PB in the imputed data.

0.20

0.22

0.24

0.26

0.28

0.30

0 250 500 750 1000 1250 1500 1750 2000
Step

M
ed

ia
n

of
 p

er
ce

nt
 b

ia
s

Loss rec rec + rep rec + con rec + adv

a

0.20

0.22

0.24

0.26

0.28

0.30

0 250 500 750 1000 1250 1500 1750 2000
Step

M
ed

ia
n

of
 p

er
ce

nt
 b

ia
s

Loss rec + rep + adv rec + con + adv rec + rep + con rec + rep + con + adv

b

Figure 3.3: Ablation Test on Losses. The ablation test evaluates the contribution of four
losses: reconstructive loss (rec), representation loss (rep), contrastive loss (con),
and adversarial loss (adv). Grid search strategy is used to determine the optimal
weights for different losses, and the median PB computed from the validation set
is used to quantify the performance. The network layers are consistent during the
evaluation. The plot shows the performance of reconstruction loss combined with
(a) a single loss and (b) multiple losses, using the optimal weight of each loss. The
weight for rec is fixed at 1, and the weights for the other losses vary across 0.01,
0.05, 0.1, 0.5, and 1. The optimal weights for different losses in each combination
are: rec + rep (wrep = 0.01), rec + con (wcon = 0.01), rec + adv (wadv = 0.5), rec
+ rep (wrep = 0.01) + adv (wadv = 1), rec + con (wcon = 0.01) + adv (wadv = 1),
rec + rep (wrep = 0.5) + con (wcon = 0.01), rec + rep (wrep = 0.1) + con (wcon =
0.1) + adv (wadv = 1).

53

3 LEOPARD for Missing View Imputation

The optimal weights include wrec = 1, wcon = 0.1, wrep = 0.1, and wadv = 1. The
performance of each loss combination at their optimal weights is summarized in Fig. 3.3.

3.2.3.3 Further Hyperparameter Optimization

The training and validation sets from the KORA metabolomics dataset are further used
to optimize LEOPARD’s hyperparameters, aiming to effectively capture data structure
for existing data reconstruction and achieve robust generalization for missing data im-
putation. The weights for different losses have been determined in the ablation test. We
then conduct a grid search across various combinations of hidden layer size, hidden layer
number, dropout rate, projection head, and temperature for contrastive loss.

The number of hidden neurons within the encoders, generator, and discriminator vary
across 32, 64, 128, and 256, with the number of layers ranging from 2 to 4, and dropout

encoder layer number = 2 encoder layer number = 3 encoder layer number = 4

A
daIN

 block num
ber = 2

A
daIN

 block num
ber = 3

A
daIN

 block num
ber = 4

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

0.20

0.25

0.30

0.20

0.25

0.30

0.20

0.25

0.30

Step

M
ed

ia
n

of
 p

er
ce

nt
 b

ia
s

Layer size 32 64 128 256

Figure 3.4: Hyperparameter Tuning: Network Width and Depth. Grid search strat-
egy is used to determine the optimal layer number for the content and temporal
encoders, AdaIN block number for the generator, and size for each layer. The me-
dian PB computed from the validation set is used to quantify the performance.
The model achieves the lowest median PB with a setting of three layers for the
encoders, each containing 64 neurons, and three AdaIN blocks for the generators,
each including a 64-neuron layer.

54

3.2 Methods

encoder layer number = 2 encoder layer number = 3 encoder layer number = 4

A
daIN

 block num
ber = 2

A
daIN

 block num
ber = 3

A
daIN

 block num
ber = 4

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

0.20

0.25

0.30

0.20

0.25

0.30

0.20

0.25

0.30

Step

M
ed

ia
n

of
 p

er
ce

nt
 b

ia
s

Layer size 32 64 128 256

Figure 3.5: Hyperparameter Tuning: Contrastive Loss. Based on the hyperparameters
determined in the previous experiments, we further fine-tuned the projection head
and temperature used in our contrastive loss. We use grid search to evaluate the
performance of LEOPARD without a projection head and with a projection head
of different output sizes. The temperature varies across 0.05, 0.1, 0.5, 1, 5, 10, and
30. Based on our experiments, LEOPARD is trained with a temperature of 0.05
without using a projection head.

rates of 0%, 30%, and 50%. Our findings show that higher numbers of hidden neurons
and layers tend to yield worse performance in terms of median PB (Fig. 3.4). LEOPARD
is configured with three 64-neuron layers incorporated into both content and temporal
encoders and the generator. The discriminator includes two hidden layers, each having
128 neurons. Dropout is not used.

The projection head and temperature are two important hyperparameters that control
the performance of contrastive learning. The projection head is a compact network con-
sisting of one full connected hidden layer with the same layer size as the input dimension,
a Rectified Linear Unit (ReLU) [115] and one output layer. The temperature is a scalar
that scales the similarities before the softmax operation. Some previous experiments
performed on image datasets emphasized the importance of the projection head and re-
ported different output sizes yielded similar results [108]. We evaluate the performance

55

3 LEOPARD for Missing View Imputation

of LEOPARD both without a projection head and with a projection head of the output
size varying across 16, 32, 64, 128, 256, and 512. The temperature is fined-tuned across
0.05, 0.1, 0.5, 1, 5, 10, and 30. Based on our experiments, LEOPARD is trained with a
temperature of 0.05 and without using a projection head (Fig. 3.5).
The determined hyperparameters, including loss weights, remain unchanged in all our

performance evaluations.

3.2.4 Strategy for Performance Evaluation

Due to the lack of established methods specifically designed for missing view completion
in multi-timepoint omics datasets, we benchmark LEOPARD against three widely rec-
ognized generic imputation methods: missForest, PMM, and GLMM, as well as a cGAN
model designed for this study. The cGAN serves as a reference model to demonstrate
how existing neural network approaches, typically suited for cross-sectional data, perform
in longitudinal scenarios. MissForest, as a representative non-parametric method, was
chosen for its robustness and ability to handle complex, non-linear relationships among
variables. PMM and GLMM, both implemented within the Multivariate Imputation by
Chained Equations (MICE) [51] framework, represent established multiple imputation
methods that not only address missing values but also allow for the assessment of im-
putation uncertainty. GLMM, with its ability to capture temporal patterns inherent
in longitudinal data, is particularly advantageous for data imputation in longitudinal
scenarios.
We assess the performance of LEOPARD, cGAN, missForest, PMM, and GLMM on

Dtest
v=v2,t=t2 of each benchmark dataset. During training, the methods build models using

data from Dtrain
v=v1,t=t1, Dtrain

v=v2,t=t1, and Dtrain
v=v1,t=t2, along with different numbers of training

observations (obsNum) from Dtrain
v=v2,t=t2. By varying obsNum, we assess how additional

observed data from t2 affects their imputation performances. When obsNum is zero,
data of v2 at t2 are assumed as completely missing, and GLMM cannot be trained due
to limited longitudinal information. In this scenario, we train a [56] to complete the
missing view. This additionally allows us to evaluate how the performance of GLMM
compares to that of the simpler LM method.
Apart from missing views, the presence of missing data points in observed views is

also very common in omics analysis. Therefore, LEOPARD is designed to tolerate a
small number of missing data points in the observed views. We further use the KORA
metabolomics dataset, which has the largest sample size, to evaluate the performance
of different methods when observed views contain missing values. We simulate missing

56

3.2 Methods

values by randomly masking 1%, 3%, 5%, 10%, and 20% of the data in the observed
views (maskObs) under the assumption that data points are MCAR. The experiment is
repeated 10 times for each specified proportion.

3.2.4.1 Methods Configuration

The LEOPARD and cGAN models are trained using the hyperparameters previously
described. For missForest, the imputation is performed using a 100-tree RF [27] model,
with the maximum number of iterations (maxit) set to 10. Multiple imputations by
PMM, LM, and GLMM are performed using the R packages mice [51] and micemd
[116]. Each method’s imputations are performed five times (m = 5) with a maxit value
set to five. The PMM model is built using argument method = "pmm". When obsNum
= 0, data of v2 at t2 are assumed to be completely missing. In this scenario, the LM
method is trained using method = "norm". When obsNum is a non-zero value, the
GLMM model is as built using method = "2l.glm.norm".
All methods used only the data in the training sets to build imputation models.

Their performance is evaluated on Dtest
v=v2,t=t2. Different imputation methods may require

specific data structures for input: cGAN and LEOPARD first build imputation models
using training data, then apply the built models to test set to complete missing views.
In contrast, the input data for other methods can be an incomplete matrix with missing
values coded as NA. We adapt the input data accordingly to accommodate these specific
requirements:

• Method cGAN only learns from samples where both views are present. Therefore,
its training data only include training data from the first timepoint (Dtrain

v=v1,t=t1 and
Dtrain

v=v2,t=t1) and data of different obsNum from the second timepoint (Dtrain
v=v1,t=t2

and Dtrain
v=v2,t=t2).

• LEOPARD can additionally learn from data where only one view is available.
In addition to Dtrain

v=v1,t=t1 and Dtrain
v=v2,t=t1, the entire Dtrain

v=v1,t=t2 is included in its
training. The variation of obsNum only affects the number of observed samples
from Dtrain

v=v2,t=t2.

• The input data for missForest combine training data (includingDtrain
v=v1,t=t1, Dtrain

v=v2,t=t1,
Dtrain

v=v1,t=t2, and data of different obsNum fromDtrain
v=v2,t=t2) and test data (Dtest

v=v1,t=t2),
with NA filling the masked data in the matrix.

57

3 LEOPARD for Missing View Imputation

• For the multiple imputation methods in MICE family, the input data are con-
structed with training data (identical to that used for missForest) and test data
(including Dtest

v=v1,t=t1, Dtest
v=v2,t=t1 and Dtest

v=v1,t=t2). To ensure test data remain un-
used for model training, a logical vector with TRUE assigned to test samples is
passed to the ignore argument. Masked values are filled with NA in the matrix.

• When building the GLMM model, the input data additionally contain sample IDs
and timepoint labels. A constant residual error variance is assumed for all individu-
als. Building a GLMMmodel for a large dataset is extremely time-consuming; thus,
for the MGH COVID dataset, we select the top 100 highly Spearman-correlated
proteins for each protein requiring imputation. The selected proteins are incorpo-
rated into the imputation process by passing to the argument predictorMatrix.

3.2.4.2 Evaluation Metrics

Two evaluation metrics, PB and UniformManifold Approximation and Projection (UMAP)
[117], are used for performance evaluation. PB and UMAP are also calculated for each
individual imputation of the multiple imputation methods. When evaluating maskObs,
the PB values are averaged across 10 repetitions, and the UMAP plots visualize the
repetition that exhibits the lowest median of PB.
PB is selected as a performance metric as it quantifies the relative deviation of im-

puted values from actual observations, offering a more straightforward interpretation
compared to metrics like Root Mean Square Error (RMSE), MSE, and Mean Absolute
Error (MAE). PB is calculated for each variable using the formula:

PBi =
1

m

m∑
imp =1

median


∣∣∣x̂i(imp) − xi

∣∣∣
xi

, (3.8)

where x̂i(imp) is the imputed value for the i-th variable from the imp-th imputation, while
m is the number of imputations determined by the argument m in multiple imputation
methods. For single imputation methods, LEOPARD, cGAN, and missForest, m = 1.
PB results for each imputation method are visualized using dot and box plots, with each
dot representing a variable in the specific dataset.
PB offers a variable-level assessment of imputation performance, while UMAP visual-

ization illustrates overall similarities between observed and imputed datasets, providing
a dataset-level evaluation. For the evaluation using UMAP, we first fit a UMAP model
using the data of Dtrain

v=v2,t=t1 and Dtrain
v=v2,t=t2. We then use the fitted model to embed the

58

3.3 Performance Evaluation

data of Dtest
v=v2,t=t1, Dtest

v=v2,t=t2, and D̂test
v=v2,t=t1, where D̂test

v=v2,t=t2 represents the imputed
data for Dtest

v=v2,t=t2 produced by different imputation methods. For PMM, LM, and
GLMM, D̂test

v=v2,t=t2 is the average of all estimates from their multiple imputations. An
imputation method is considered effective if the distribution of D̂test

v=v2,t=t2 embeddings is
highly similar to that of the Dtest

v=v2,t=t2 embeddings. The UMAP models are fitted with
the identical configurations described in the prior section.

3.3 Performance Evaluation

In this section, we provide a comprehensive evaluation of LEOPARD’s performance.
Initially, we employ UMAP to demonstrate LEOPARD’s effectiveness in representation
disentanglement. Following this, we benchmark LEOPARD against standard imputation
tools using both the mono-omics and multi-omics datasets to validate its effectiveness
and robustness across different data types. Additionally, we conduct a analysis of the
variables that result in high PB to reveal potential areas for improvement and understand
the limitations of the method. To evaluate the adaptability of LEOPARD, we lastly
examine LEOPARD’s performance in scenarios where the observed views contain missing
values, which are essential for real-world applications where incomplete data is common.

3.3.1 Representation Disentanglement of LEOPARD

We use the KORA multi-omics dataset to examine if LEOPARD can effectively disen-
tangle content and temporal representations from omics data. The disentanglement of
content and temporal representations is evaluated using the KORA multi-omics dataset.
In this analysis, the model is trained for 600 epochs to ensure that the contrastive loss
stabilizes and reaches full saturation (Fig. 3.6a). We use the UMAP for visualizing the
content and temporal representations of the validation set across different views and
timepoints. As the training progresses, we expect similar representations to gradually
cluster together in UMAP, while dissimilar ones form distinct clusters.
The disentanglement progress is visualized with the following steps: First, content

and temporal representations are factorized from the metabolomics (t1 and t2) and pro-
teomics data (t1). Then the generator imputes the proteomics data (t2) by incorporating
the temporal information from the metabolomics data (t2) into the content representa-
tion from the proteomics data (t1). The generated proteomics data (t2) are then fed to
the content and temporal encoders to extract the corresponding representations. Sub-
sequently, these content or temporal representations of both the observed and imputed

59

3 LEOPARD for Missing View Imputation

0

1

2

3

4

5

5 30 60 100 200 300 450 600
Epoch

C
on

tra
st

iv
e

lo
ss

Loss
Content representation
Temporal representation

a

Epoch 200 Epoch 300 Epoch 450 Epoch 600

Epoch 5 Epoch 30 Epoch 60 Epoch 100

UMAP1

U
M

AP
2

b

Epoch 200 Epoch 300 Epoch 450 Epoch 600

Epoch 5 Epoch 30 Epoch 60 Epoch 100

UMAP1

U
M

AP
2

c

Data source
v1, t1 (observed)
v2, t1 (observed)
v1, t2 (observed)
v2, t2 (imputed)

Figure 3.6: Representation Disentanglement Process of LEOPARD. a shows the con-
trastive loss computed for content and temporal representations. b-c show the
UMAP embeddings of content (b) and temporal (c) representations at various
training epochs. Representations encoded from data of v1 and v2 (metabolomics
and proteomics, depicted by blue and red dots) at timepoint t1 and t2 (S4 and
F4, depicted by dark- and light-colored dots) are plotted. The data of v2 at t2 are
imputed data produced after each training epoch, while the other data are from
the observed samples in the validation set.

60

3.3 Performance Evaluation

data are standardized to ensure all latent variables have a mean of zero and a standard
deviation of one. Afterward, two separate UMAP models are built using the R package
umap [118], each fitted to the content and temporal representations, with a configu-
ration of n_neighbors = 15 and min_dist = 0.1. Lastly, scatter plots are generated
using the R packages ggplot2 [67] and ggsci [68]. Each point in the plot represents an
individual sample, and the color indicates the data sources. The visualization epochs
are selected experimentally to illustrate the progress of representation disentanglement
during the training process.
As the model trains, the contrastive loss decreases (Fig. 3.6a), indicating that LEO-

PARD is increasingly able to encode the representations for different views and time-
points. The content representation embeddings (Fig. 3.6b) of observed v1 (in blue)
and v2 (in red) separate rapidly during training (epoch 5), but those of the imputed
v2 for t2 (in light red) do not mix with those of the observed v2 at t1 (in dark red).
This suggests that while LEOPARD can distinguish between v1 and v2 after only a few
training epochs, it is not yet capable of producing high-quality v2 for t2 that have similar
content information as the observed v2 at t1. After 30 epochs of training, the content
representation of v2 at t2 is better encoded, with its embeddings mixing with those of
v2 at t1. Similar trends are observed in the temporal representations (Fig. 3.6c), where
embeddings of each timepoint (t1 and t2 in dark and light colors, respectively) gradually
form their corresponding clusters as training progresses. We notice that the temporal
representations take more epochs than the content representations to form distinct clus-
ters. Even after 100 epochs, some temporal representation embeddings of t1 are still
mixed with those of t2. However, after around 450 epochs, LEOPARD is demonstrably
able to encode temporal information that is unique to t1 and t2.

3.3.2 Evaluation of Missing View Completion: Mono-Omics Datasets

For the MGH COVID proteomics dataset, missForest overall exhibits the lowest PB,
whereas LEOPARD performs slightly worse than missForest and its neural network-
based counterpart, cGAN (Fig 3.7, upper row). When compared to LM, GLMM does not
show improved performance. As obsNum increases, the PB values of all methods tend
to decrease, and the performance gap between LEOPARD and missForest diminishes.
Specifically, when obsNum is 100, the UMAP representation (Fig. 3.7, upper row) reveals
that the clusters of the imputed data generated by all five methods (green dots) closely
approximated the actual data (blue dots), indicating high similarity between the imputed
and original datasets.

61

3 LEOPARD for Missing View Imputation

obsNum = 0 obsNum = 25 obsNum = 50 obsNum = 100

M
G

H
 C

O
VID

 proteom
ics0.0

0.4
0.8

1.6

2.4

3.2

obsNum = 0 obsNum = 50 obsNum = 100 obsNum = 200

KO
R

A
 m

etabolom
ics

0.0
0.2

0.4

0.6

0.8

1.2

Pe
rc

en
t b

ia
s

obsNum = 0 obsNum = 50 obsNum = 100 obsNum = 200

KO
R

A
 m
ulti−om

ics

LEOPARD
cGAN

missForest
PMM LM

LEOPARD
cGAN

missForest
PMM

GLMM

LEOPARD
cGAN

missForest
PMM

GLMM

LEOPARD
cGAN

missForest
PMM

GLMM

1.0

2.0

3.0

6.0

0.1
0.3

Imputation methods

*
*

**

*

*
ns ***

Figure 3.7: Evaluation of Missing View Completion: PB. PB evaluated on D̂test
v=v2,t=t2 of

the MGH COVID proteomics dataset (upper row), KORA metabolomics dataset
(middle row), and KORA multi-omics dataset (lower row). Each dot represents
a PB value for a variable. Please note that LM is used for imputation instead of
GLMM when obsNum = 0. Significance level: not significant (ns), P < 0.05 (*),
P < 0.01 (**), and P < 0.001 (***).

Interestingly, we observe that missForest, despite yielding the best performance for the
MGH COVID dataset, produces the most unstable result for the KORA metabolomics
dataset, showing the largest InterQuartile Range (IQR) of 0.186 when obsNum is 0
(Fig. 3.7, middle row). In comparison, LEOPARD achieves the smallest IQR of 0.094
under the same condition, while cGAN, PMM, and LM obtain IQR values of 0.125, 0.132,
and 0.166, respectively. As obsNum increases to 200, LEOPARD, cGAN, missForest,
and PMM lower their median PB values to 0.142, 0.172, 0.177, and 0.204, respectively.
However, GLMM obtains a median PB of 0.291 and does not outperform LM. From the
UMAP plots generated from the data imputed under obsNum = 200, we notice a large
amount of the embeddings from D̂test

v=v2,t=t2 generated by missForest and PMM are mixed
with those of Dtest

v=v2,t=t1, instead of Dtest
v=v2,t=t2, implying that they overfit to t1 and do

not generalize well to the second timepoint (Fig. 3.8, middle row). Moreover, the UMAP
embeddings of D̂test

v=v2,t=t2 from missForest, PMM, and GLMM only partly overlap with

62

3.3 Performance Evaluation

LEOPARD cGAN missForest PMM GLMM M
G

H
 C

O
VID

 proteom
ics

KO
R

A
 m

etabolom
ics

KO
R

A
 m
ulti−om

ics

UMAP1

U
M

AP
2

Observed data (t1) Observed data (t2) Imputed data (t2)

Figure 3.8: Evaluation of Missing View Completion: UMAP. UMAP models are initially
fitted with the training data from the MGH COVID proteomics dataset (upper row,
t1: D0, t2: D3), KORA metabolomics dataset (middle row, t1: F4, t2: FF4), and
KORA multi-omics dataset (lower row, t1: S4, t2: F4). Subsequently, the trained
models are applied to the corresponding observed data (represented by red and blue
dots for t1 and t2) and the data imputed by different methods (represented by green
dots) under the setting of obsNum= 100 for the MGH COVID dataset and obsNum
= 200 for the two KORA-derived datasets. The distributions of red and blue dots
illustrate the variation across the two timepoints, while the similarity between the
distributions of blue and green dots indicates the quality of the imputed data. A
high degree of similarity suggests a strong resemblance between the imputed and
observed data.

those of Dtest
v=v2,t=t2, suggesting that some variations in the observed data have not been

captured. In contrast, the embeddings of the data imputed by LEOPARD widely spread
within the embedding space of the observed data, which demonstrates that LEOPARD
has effectively learned and approximated the observed data’s distribution.

3.3.3 Evaluation of Missing View Completion: Multi-Omics Datasets

In contrast to mono-omics datasets, where both views are from the same omics type,
multi-omics datasets require imputation methods to capture more intricate relationships
between omics data to ensure accurate results. In our evaluation of the KORA multi-
omics data, all methods show some extremely high PB values when obsNum is 0 (Fig. 3.7,

63

3 LEOPARD for Missing View Imputation

lower row). As obsNum increases to 200, LEOPARD greatly reduces its median PB from
0.152 to 0.061, outperforming its closest competitor, cGAN, which reduces its median
PB from 0.158 to 0.076. In contrast, the performances of missForest (from 0.156 to
0.159) and PMM (from 0.177 to 0.131) do not show similar improvements. GLMM
reduces its median PB from 0.176 to 0.163 as obsNum increases from 50 to 200. The
UMAP visualization further reveals a limited ability of missForest, PMM, and GLMM
to capture signals from the t2 timepoint, as their embeddings of D̂test

v=v2,t=t2 cluster with
Dtest

v=v2,t=t1, not Dtest
v=v2,t=t2 (Fig. 3.8, lower row). LEOPARD’s performance is further

validated by a high similarity between the distributions of the imputed and observed
data embeddings in the UMAP space.
We also calculated the PB and UMAP of each individual imputation of the multiple

imputation methods (PMM, LM, and GLMM). The results can be found in Appendix
Figs. A.1 and A.2.

3.3.4 Analysis on Extremely High PB Values

We then investigate the extremely high PB values (> 0.8) observed in the KORA multi-
omics dataset. Under obsNum = 0, we notice that proteins with low abundance (< 4.0)
tend to exhibit extremely high PB in the imputed values (Fig. 3.9). For instance, SCF
(stem cell factor), with a median abundance of 9.950, has a PB of 0.090 calculated from
the LEOPARD-imputed data. In contrast, NT3 (Neurotrophin-3), with a much lower
median abundance of 0.982, shows a PB of 1.187 calculated from the same imputed
data. Increasing obsNum can substantially lower these extremely high PB values for
LEOPARD and cGAN, but makes no similar contributions for missForest, PMM, and
GLMM.

3.3.5 Evaluation on Missing Values in Observed Views

We further evaluate how different methods perform when observed views contain miss-
ing values. Our findings indicate that all the methods experienced an increase in PB
when the observed views contain missing values (Fig. 3.10). However, LEOPARD and
missForest are robust to the missing data points in terms of PB. In contrast, cGAN and
GLMM exhibit high sensitivity to those missing values. Method cGAN does not show
similar improvement with the increase of obsNum as it performs in Fig. 3.7 (middle row)
and is gradually surpassed by missForest. GLMM overall exhibits higher PB than the
other methods.

64

3.3 Performance Evaluation

AXIN1

MCP−4

NT−3

SCF

SIRT2

AXIN1

MCP−4

NT−3

SCF

SIRT2

AXIN1

MCP−4

NT−3

SCF

SIRT2

AXIN1

MCP−4NT−3

SCF

SIRT2

AXIN1

MCP−4

NT−3

SCF

SIRT2

AXIN1

MCP−4

NT−3

SCFSIRT2

AXIN1

MCP−4
NT−3 SCF

SIRT2

AXIN1

MCP−4

NT−3

SCF

SIRT2

AXIN1

MCP−4

NT−3

SCF

SIRT2

AXIN1

MCP−4NT−3

SCF

SIRT2

AXIN1

MCP−4

NT−3
SCF

SIRT2

AXIN1

MCP−4NT−3 SCF
SIRT2

AXIN1

MCP−4

NT−3

SCF

SIRT2

AXIN1

MCP−4

NT−3

SCF

SIRT2

AXIN1

MCP−4NT−3

SCF

SIRT2

AXIN1
MCP−4

NT−3 SCF
SIRT2

AXIN1

NT−3 SCFSIRT2
MCP 4

AXIN1

MCP−4

NT−3

SCF

SIRT2

AXIN1

MCP−4NT−3

SCF

SIRT2

AXIN1

MCP−4NT−3

SCF

SIRT2

obsNum = 0 obsNum = 50 obsNum = 100 obsNum = 200

LEO
PA

R
D

cG
A

N
m

issForest
PM

M
LM

 / G
LM

M

2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14

0.1

0.4

0.8

1.6

3.2

0.1

0.4

0.8

1.6

3.2

0.1

0.4

0.8

1.6

3.2

0.1

0.4

0.8

1.6

3.2

0.1

0.4

0.8

1.6

3.2

Median of protein abundance

Pe
rc

en
t b

ia
s

Median concentration < 4.0
Percent bias < 0.8

Median concentration < 4.0
Percent bias > 0.8 Others

Figure 3.9: Analysis on the Variables with High PB. The proteins with low abundance
(median concentration < 4.0) tend to exhibit extremely high PB (> 0.8) in the
imputed values obtained under obsNum = 0. The extremely high PB values of
LEOPARD can be lowered by increasing obsNum. Please note that LM is used for
imputation instead of GLMM when obsNum = 0.

65

3 LEOPARD for Missing View Imputation

The UMAP plots (Fig. 3.11) further demonstrate that LEOPARD’s performance re-
mains comparable to scenarios with no missing data in the observed views (Fig. 3.8,
middle row), unlike the other methods which display overfitting or a great loss of data
variation. Although LEOPARD outperforms other methods, we observed a change in
the distribution of the imputed data (blue dots): as maskObs increases, these blue dots
begin to shrink toward their center and become more concentrated. This leads to a
reduced coverage of the outer areas of the ground truth embeddings (green dots) and
suggests that the imputed data might not capture the full variability of the data when
the proportion of missing data is high.

obsNum = 0 obsNum = 50 obsNum = 100 obsNum = 200

m
askO

bs = 1%
m

askO
bs = 3%

m
askO

bs = 5%
m

askO
bs = 10%

m
askO

bs = 20%

LEOPARD
cGAN

missForest
PMM LM

LEOPARD
cGAN

missForest
PMM

GLMM

LEOPARD
cGAN

missForest
PMM

GLMM

LEOPARD
cGAN

missForest
PMM

GLMM

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Imputation methods

Av
er

ag
e

of
 p

er
ce

nt
 b

ia
s

Figure 3.10: Evaluation on Missing View Completion with Missing Values: PB. The
average PB are computed for Dtest

v=v2,t=t2 of the KORA metabolomics dataset
across 10 repeated completions, under each proportion of masked data points
in the observed views (maskObs). In each repetition, the data points are masked
randomly. Each dot represents a PB value for a variable. Please note that LM is
used instead of GLMM when obsNum = 0.

66

3.3 Performance Evaluation

maskObs = 1% maskObs = 3% maskObs = 5% maskObs = 10% maskObs = 20%

LEO
PA

R
D

cG
A

N
m

issForest
PM

M
G

LM
M

UMAP1

U
M

AP
2

Observed data (t1) Observed data (t2) Imputed data (t2)

Figure 3.11: Evaluation on Missing View Completion with Missing Values: UMAP.
UMAP models are initially fitted with the training data from the KORA multi-
omics dataset (t1: S4, t2: F4). Subsequently, the trained models are applied to the
corresponding observed data (represented by red and blue dots for t1 and t2) and
the data imputed by different methods (represented by green dots) under obsNum
= 200 and varying maskObs. Please note that, for each maskObs, only the
repetition that exhibits the lowest median of PB are visualized. The distributions
of red and blue dots illustrate the variation across the two timepoints, while the
similarity between the distributions of blue and green dots indicates the quality
of the imputed data. A high degree of similarity suggests a strong resemblance
between the imputed and observed data.

67

3 LEOPARD for Missing View Imputation

3.4 Case Studies

Since evaluation metrics can sometimes oversimplify the assessment of imputed data
quality, we further perform several case studies, covering both regression and classifica-
tion tasks, to investigate whether biological signals are preserved in the imputed data
obtained at obsNum = 0.

3.4.1 Regression analysis

The regression models are fitted using the observed data and different imputed data
corresponding to Dtest

v=v2,t=t2. We employ multivariate linear regression models for each
of the observed or imputed data. The imputed data of LEOPARD, cGAN, missForest,
PMM, and LM are obtained under the setting of obsNum = 0. The performance of
LEOPARD, cGAN, and missForest are evaluated on their imputed data directly, while
two multiple imputation methods, PMM and LM, are evaluated by pooling their multiple

C18:1
C2

C18

C16

C18:2

C5

C14:1

Orn

C4

C0C14:2

C12

H1

C16:2

C14:1−OH

C3

C10

SM (OH) C16:1

LEOPARD cGAN missForest PMM LM

−0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02
0

2

4

6

8

Estimate

−
lo

g 1
0(

P
−v

al
ue
)

a

IL12B

CXCL9 TNFRSF9

CSF1IL10
IL15RA IL10RB

CCL3

HGF FGF21 CSF1

LEOPARD cGAN missForest PMM LM

−0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02
0

2

4

6

8

Estimate

−
lo

g 1
0(

P
−v

al
ue
)

b

Figure 3.12: Volcano Plots for Regression Analyses. a, Volcano plots display age-
associated metabolites detected in the Dtest

v=v2,t=t2 and D̂test
v=v2,t=t2 (obsNum = 0)

of the KORA metabolomics dataset (N = 417). 18 significant metabolites (P -
value < 0.05/36) identified in the observed data are shown in blue. Replicated
metabolites from the data imputed by different methods are marked with labels.
a, Volcano plots display eGFR-associated proteins detected in the Dtest

v=v2,t=t2 and
D̂test

v=v2,t=t2 (obsNum = 0) of the KORA multi-omics dataset (N = 212). 28 signif-
icant metabolites (P -value < 0.05/66) identified in the observed data are shown
in blue. Replicated metabolites from the data imputed by different methods are
marked with labels.

68

3.4 Case Studies

estimates using Rubin’s rules [56]. In both analyses, we apply a Bonferroni correction to
adjust the P -value significance threshold to mitigate the risk of false positives in multiple
testing.
For the KORA metabolomics dataset (N = 417), we use the concentration of each

metabolite as the response variable and age as the predictor variable, while controlling for
sex, to detect age-associated metabolites. Of the 18 metabolites significantly associated
with age after a Bonferroni correction for multiple testing (P < 0.05/36) in the observed
data, 17 are also significant in the data imputed by LEOPARD (see Fig. 3.12a). Among
these 17 metabolites, several, including C14:1 (Tetradecenoylcarnitine), C18 (Octade-
canoylcarnitine), C18:1 (Octadecenoylcarnitine), and Orn (Ornithine), have been vali-
dated by previous research [119, 58, 120, 59] showing that they might be particularly
relevant in aging and age-related metabolic conditions. In contrast, only one metabolite
is significantly associated with age in the data imputed by missForest. No metabolite is
identified as significant in the data imputed by cGAN, PMM, and LM. The results on
each imputation of PMM and LM are shown in Appendix Fig. A.3.
We then use the KORA multi-omics dataset (N = 212) to identify proteins associated

with the estimated Glomerular Filtration Rate (eGFR), controlling for age and sex.
The eGFR values are computed from serum creatinine, sex, race, and age, using the
Chronic Kidney Disease Epidemiology Collaboration equation [121]. The NPX values
of each protein are used as the response, while the eGFR values as the predictor. In
the observed data, 28 proteins are significantly associated with eGFR after a Bonferroni
correction (P < 0.05/66). Of these 28 proteins, 10 proteins remain significant in the
data imputed by LEOPARD (see Fig 3.12b), while one is significant in the data from
cGAN, and none is identified as significant in the data from missForest, PMM, and LM.
Among the 10 proteins detected from the LEOPARD-imputed data, eight (TNFRSF9,
IL10RB, CSF1, FGF21, HGF, IL10, CXCL9, and IL12B) have been validated by prior
research [4]. The results on each imputation of PMM and LM are shown in Appendix
Fig. A.4.

3.4.2 Classification analysis

We further train Balanced Random Forest (BRF) [122] models using the Python library
imbalanced-learn [123] to predict Chronic Kidney Disease (CKD). The BRF is specifi-
cally selected to address the dataset imbalance and reduce the risk of overfitting to the
majority class. The BRF models are individually fitted using the observed and different
imputed data of Dtest

v=v2,t=t2 obtained under the setting of obsNum = 0, corresponding to

69

3 LEOPARD for Missing View Imputation

0.00

0.15

0.30

0.45

0.60

0.75

0.90

ACC F1 TPR TNR PPV
Metrics

Pe
rfo

rm
an

ce

groundtruth

missForest

LEOPARD

PMM

cGAN

LM 0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Se
ns

iti
vi

ty

groundtruth (AUROC=0.831)
LEOPARD (AUROC=0.719)
cGAN (AUROC=0.555)
missForest (AUROC=0.486)
PMM (AUROC=0.543)
LM (AUROC=0.590) 0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

groundtruth (AUPRC=0.474)
LEOPARD (AUPRC=0.268)
cGAN (AUPRC=0.177)
missForest (AUPRC=0.135)
PMM (AUPRC=0.186)
LM (AUPRC=0.166)

0.00

0.15

0.30

0.45

0.60

0.75

ACC F1 TPR TNR PPV
Metrics

Pe
rfo

rm
an

ce

groundtruth

missForest

LEOPARD

PMM

cGAN

LM 0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Se
ns

iti
vi

ty

groundtruth (AUROC=0.862)
LEOPARD (AUROC=0.725)
cGAN (AUROC=0.551)
missForest (AUROC=0.589)
PMM (AUROC=0.631)
LM (AUROC=0.665) 0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

groundtruth (AUPRC=0.593)
LEOPARD (AUPRC=0.435)
cGAN (AUPRC=0.198)
missForest (AUPRC=0.230)
PMM (AUPRC=0.282)
LM (AUPRC=0.339)

a

b

Figure 3.13: Multi-Metric Evaluation for Classification Analyses. CKD classification
evaluated using Dtest

v=v2,t=t2 and D̂test
v=v2,t=t2 (obsNum = 0) from (a) the KORA

metabolomics dataset (N = 416, Npositive = 56, Nnegative = 360) and (b) the
KORA multi-omics dataset (N = 212, Npositive = 36, Nnegative = 176). Models
are trained using the BRF algorithm with identical hyperparameters and evaluated
using LOOCV. Evaluation metrics in the bar plot include true positive rate (TPR,
also known as sensitivity), true negative rate (TNR, also known as specificity),
positive predictive value (PPV, also known as precision), accuracy (ACC), and F1
score. The dashed lines in the ROC and PR curves represent the performance of
a hypothetical model with no predictive capability.

36 metabolites from the KORA metabolomics dataset (N = 416, one sample removed
due to a missing CKD label) and 66 proteins from the KORA multi-omics dataset (N
= 212). CKD cases are defined as having an eGFR < 60 mL/min/1.73m2 [124]. In the
two datasets, 56 and 36 individuals are identified as CKD cases, respectively.
Due to the limited sample size, we validate the performance using the LOOCV strat-

egy, allowing maximal use of data for both training and validation. The models for
LEOPARD, cGAN, and missForest are trained using their respective imputed data, while
the models for PMM and LM are trained on the average estimates across their multi-
ple imputations. All models are trained with default hyperparameters (criterion =
"gini", min_samples_split = 2, min_samples_leaf = 1, max_features = "sqrt",

70

3.4 Case Studies

Table 3.3: Case Study: CKD Prediction on KORA Metabolomics Dataset

Method TPR TNR PPV ACC F1 Score AUROC PRRPC
observation 0.643 0.800 0.333 0.721 0.439 0.831 0.474
PMM 0.125 0.897 0.159 0.511 0.140 0.543 0.186
LM 0.161 0.903 0.205 0.532 0.180 0.590 0.166
missForest 0.268 0.744 0.140 0.506 0.184 0.486 0.135
cGAN 0.268 0.789 0.165 0.528 0.204 0.555 0.177
LEOPARD 0.571 0.747 0.260 0.659 0.358 0.719 0.268
Bold indicates the highest performance among imputation methods.

bootstrap = True), except that n_estimators is set to 1000 and class_weight is set
to "balanced_subsample".

Performance metrics were calculated using the R package caret [61]. These metrics
provided a comprehensive understanding of the predictive power of the observed and
imputed data. The ROC curves are plotted to illustrate the trade-off between sensitiv-
ity and 1-specificity at varying decision thresholds. Considering the imbalance in our
dataset, and with our primary interest in the positive class, which is also the minority,
we further plot PR curves to depict the trade-off between precision and recall at different
thresholds for the classifiers trained with the different data. For PR curves, the baseline
performance of a non-discriminative model is determined by the proportion of positive
cases (56/416 = 0.135 for the KORA metabolomics dataset and 36/212 = 0.170 for the
KORA multi-omics dataset). Both the ROC and PR curves are plotted using the R
package precrec [125].

For the KORA metabolomics dataset, the observed data obtain an F1 Score of 0.439,
and the data imputed by LEOPARD achieves the closest performance with an F1 Score
of 0.358 (Fig. 3.13a, Table 3.3). LEOPARD also outperforms its competitors in terms of
accuracy, sensitivity, precision, Area Under the Receiver Operating Characteristic curve
(AUROC), and Area Under the Precision-Recall Curve (AUPRC). The proteins from the
KORA multi-omics dataset perform better than the metabolites from the metabolomics
dataset for this task. The F1 Score increases to 0.544 for the observed data of the KORA
multi-omics dataset. LEOPARD outperforms its competitors with an F1 Score of 0.403,
an AUROC of 0.725, and an AUPRC of 0.435 (Fig. 3.13b, Table 3.4). The prediction
results on each individual imputation of PMM and LMM are displayed in Appendix
Figs. A.5 and A.6.

71

3 LEOPARD for Missing View Imputation

Table 3.4: Case Study: CKD Prediction on KORA Multi-Omics Dataset

Method TPR TNR PPV ACC F1 Score AUROC PRRPC
observation 0.778 0.778 0.418 0.778 0.544 0.862 0.593
PMM 0.667 0.494 0.212 0.580 0.322 0.631 0.282
LM 0.611 0.562 0.222 0.587 0.326 0.665 0.339
missForest 0.583 0.562 0.214 0.573 0.313 0.589 0.230
cGAN 0.500 0.545 0.184 0.523 0.269 0.551 0.198
LEOPARD 0.667 0.665 0.289 0.666 0.403 0.725 0.435
Bold indicates the highest performance among imputation methods.

3.5 Applicability Analysis

We next explore how many training samples are required for LEOPARD to have ro-
bust view completion and assess the performance of LEOPARD in completing different
missing views at different timepoints. These analyses reveal LEOPARD’s utility and
adaptability in different analytical scenarios.

3.5.1 Minimum Training Samples Required for Robust Results

The evaluation is performed on Dtest
v=v2,t=t2 of our three benchmark datasets by varying

the number of training samples from 20 to 160 and obsNum from 0 to 50. Each condition
is tested 10 times with different samples randomly selected from the training sets. The
performance is evaluated by PB averaged across these repetitions. Fig. 3.14 simplifies
the boxplot and shows the median and the IQR of the averaged PB values calculated
for the variables in the imputed data.
Across all datasets, average PB generally decreases with more training samples, in-

dicating an improvement in view completion. Consistent with our previous evaluation,
PB values decrease as obsNum increases. Additionally, we notice that the average PB
steadily decreases for the MGH COVID proteomics dataset, which exhibits the small-
est variation between the two timepoints in our UMAP plots (Fig. 3.8). In contrast,
the average PB for the other two datasets shows some fluctuations, particularly for the
KORA multi-omics dataset, which shows the most obvious variation between two time-
points. When obsNum = 0, the MGH COVID proteomics and the KORA metabolomics
datasets require about 120 training samples to obtain stable results; the KORA multi-
omics dataset, however, exhibits a wide range of PB under this condition. When we
increase obsNum to 20, the performance stabilizes with approximately 60 to 80 samples

72

3.5 Applicability Analysis

MGH COVID proteomics KORA metabolomics KORA multi−omics

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

20 30 50 80 120 160 20 30 50 80 120 160 20 30 50 80 120 160
Number of training samples

Av
er

ag
e

of
 p

er
ce

nt
 b

ia
s

obsNum 0 10 20 30 40 50

Figure 3.14: Analysis on the Minimum Number of Training Samples. For each bench-
mark dataset, the average PB is evaluated on Dtest

v=v2,t=t2 across 10 repeated com-
pletions for each combination of training sample sizes and obsNum. The bar
indicates the median and the IQR of the average PB values for different variables.
In each repetition, the samples are selected randomly. Please note that the maxi-
mum obsNum cannot exceed the number of training samples, and the full training
set of the MGH COVID proteomics dataset contains only 140 samples.

used for training LEOPARD. Based on our evaluation, at least 80 training samples may
be required for robust view completion.

3.5.2 Arbitrary Temporal Knowledge Transfer

In the previous evaluation, we assess the performance of each method on Dtest
v=v2,t=t2 from

the benchmark datasets. We then extend our analysis by evaluating LEOPARD’s per-
formance on individually masked test sets: Dtest

v=v1,t=t1, Dtest
v=v1,t=t2, and Dtest

v=v2,t=t1 from
the KORA metabolomics dataset. This approach allows us to assess LEOPARD’s capa-
bility to arbitrarily complete any views at any timepoints within this dataset. Moreover,
LEOPARD is evaluated using the expanded KORA metabolomics dataset to complete
the masked test set Dtest

v=v2,t=t3, using the training data from Dtrain
v=v1,t=t1, Dtrain

v=v2,t=t1, and
Dtrain

v=v1,t=t3. This analysis further enables us to explore LEOPARD’s capability to com-
plete views across a long time span. LEOPARD is trained using the same hyperparam-
eters as we used in the previous experiments.
Our results reveal that some metabolites exhibit high PB values at obsNum = 0

(Fig. 3.15) due to their low concentrations. While different completions show variability
in their performances, PB generally decreases as obsNum increases. This evaluation

73

3 LEOPARD for Missing View Imputation

view 1 timepoint 1 view 1 timepoint 2 view 2 timepoint 1 view 2 timepoint 3

0 50 100 200 0 50 100 200 0 50 100 200 0 50 100 200
0.0

0.2

0.4

0.6

0.8

obsNum

Pe
rc

en
t b

ia
s

Figure 3.15: Analysis on Arbitrary Style Transfer. The first three panels illustrate LEO-
PARD’s performance evaluated on Dtest

v=v1,t=t1, Dtest
v=v1,t=t2, and Dtest

v=v2,t=t1 of the
KORA metabolomics dataset, with varying obsNum. The fourth panel displays
LEOPARD’s performance on the extended KORA metabolomics dataset, where
it completes the missing view Dtest

v=v2,t=t3 using the training data at t1. Each dot
represents a PB value for a variable.

demonstrates that LEOPARD can transfer extracted temporal knowledge to different
content representations in a flexible and generalized way. However, additional observa-
tions from the incomplete view may be necessary to ensure robust results, particularly
for metabolites with low concentrations.

3.6 Discussion

We developed LEOPARD, a novel architecture for missing view completion designed
for multi-timepoint omics data. The performance of LEOPARD was comprehensively
assessed through simulations and case studies using three real human omics datasets.
Additional interesting findings emerged from our evaluation.

As illustrated in the UMAP plots, the MGH COVID proteomics data (Fig. 3.8 upper
row) from D0 (t1, in red) and D3 (t2, in blue) show relatively low variation, while
the KORA metabolomics data (Fig. 3.8 middle row) from F4 (t1, in red) and FF4
(t2, in blue) exhibit more substantial variations, potentially due to biological variations
spanning seven years and technical variation from different analytical kits in the KORA
data. In the MGH COVID dataset, we observed that LEOPARD performs slightly
worse than its competitors. This can be attributed to the inherent differences in the
representation learning process of LEOPARD and its competitors. By directly learning
mappings between views, the methods developed for cross-sectional data can exploit the
input data to learn detailed, sample-specific patterns, while the representation learning
in LEOPARD primarily focuses on more compact and generalized structures related to
views and timepoints, potentially neglecting detailed information specific to individual
samples. The MGH COVID dataset, having a high similarity between the data from D0

74

3.6 Discussion

and D3, allows the cross-sectional imputation methods to effectively apply the mappings
learned from one timepoint to another. As the data variation between two timepoints
increases, LEOPARD’s advantages become increasingly evident, while its competitors
tend to overfit the training data and fail to generalize well to the new timepoint (Fig. 3.8,
middle and lower rows).
For the KORA multi-omics dataset, we observed that the extremely high PB values are

associated with low analyte abundances. For the same absolute error in imputed values,
a variable with a low analyte abundance will have a higher absolute error ratio, leading
to a higher PB than those variables with high abundances. Additionally, protein levels
quantified using the Olink platform are represented as relative quantities. Data from
different measurements also contain technical variations that arise from experimental
factors and normalization methods used for relative quantification. When obsNum is
0, LEOPARD is trained without any data from v2 at t2, and thus cannot account for
the technical variations exclusive to that part. By incorporating a few observed samples
from the second timepoint into the training process, the model can better capture the
data distribution and technical variation of the missing part, which contributes to a
substantial reduction in high PB values.
As data imputation inevitably incurs a loss of information, we conducted case studies

to assess the preservation of biological information in the imputed data. Despite all five
imputation methods producing similar PB when obsNum is 0 (Fig. 3.7 lower row), the
case studies showed that the data imputed by LEOPARD provided performance closest
to the observed data, while the data imputed by cGAN, missForest, PMM, and LM
showed a substantial loss of biological information (Figs. 3.12 and 3.13). This outcome
highlights the importance of case studies for a reliable evaluation of imputed data.
Arbitrary style transfer, a concept from the computer vision field underpinning LEO-

PARD, allows the style of one image to be transferred to the content of another. This
study demonstrates that LEOPARD inherits this capability and has the potential for ar-
bitrary temporal knowledge transfer. Our experiments also demonstrate that LEOPARD
can yield robust results with approximately 80 samples. Moreover, LEOPARD not only
completes missing views for downstream analyses, but also facilitates the exploration
of temporal dynamics. By analyzing the extracted temporal embeddings, LEOPARD
could enable the inference of the temporal ordering of omics changes, which would be
particularly valuable when there is a discrepancy between biological and chronological
order. As the number of data timepoints increases, LEOPARD is expected to offer new
opportunities in predictive healthcare with multi-timepoint omics data.

75

3 LEOPARD for Missing View Imputation

While LEOPARD demonstrates superior performance over existing generic imputa-
tion methods on missing view completion, it is important to consider the limitations and
caveats of this study. To align with real-world settings, we defined QC criteria based on
existing studies when constructing our benchmark datasets, and consequently, only the
most detectable proteins and metabolites were selected. This could inflate the metrics of
both LEOPARD and other methods reported in this study. The performance on these
selected variables may not accurately reflect that of the overall proteins and metabolites,
especially those showing more variability in their abundance. LEOPARD typically re-
quires observed views to be complete so that temporal and content representations can
be extracted. Considering the common occurrence of missing values in real-world omics
data, LEOPARD is designed to tolerate a small proportion while maintaining optimal
robustness. However, we observed that LEOPARD struggles to capture the full diversity
present in the ground truth as maskObs increases to 20% (Fig. 3.11). It is preferable
for the input data for LEOPARD to contain less than 10% missing data points. Higher
proportions of missing values are ideally addressed by generic imputation methods be-
fore processing with LEOPARD. Additionally, we assumed that the missing data were
MCAR. Additional bias could be introduced if data points are MAR or MNAR in real-
world scenarios. Finally, our experiments were restricted by data availability to three
timepoints, but in principle LEOPARD can accommodate additional timepoints and is
well-suited for analyses involving multiple omics per timepoint.
With advancements in omics measurement technology and the growing availability

of longitudinal data, missing view in multi-view, multi-timepoint data is becoming a
prominent issue. Our study demonstrates that established generic methods, originally
developed for missing data points or cross-sectional data, do not produce robust results
in this new context. This highlights the necessity for specialized methods, and our
method, LEOPARD, represents an early attempt to address this issue. We anticipate
further developments in imputation methods that exhibit high generalization ability,
robustness to low analyte abundance, and preservation of biological variations.

3.7 Reproducibility and Availability

Similar to the previous chapter, we have ensured the reproducibility and accessibility of
this computational method by making all relevant files publicly available. Additionally,
we provide a script to reproduce the figures presented in this study to facilitate detailed
performance evaluation.

76

3.7 Reproducibility and Availability

3.7.1 Data

The MGH COVID study procedures were approved by the Mass General Brigham (for-
merly Partners) Human Research Committee, the governing institutional review board
at Massachusetts General Hospital. The proteomics data, published by the original
authors, are freely available for investigators from Mendeley Data (http://dx.doi.
org/10.17632/nf853r8xsj). The MGH COVID proteomics dataset constructed in this
study is available at our GitHub repository (https://github.com/HAN-Siyu/LEOPARD).

The protocol of the KORA study was approved by the Ethics Committee of the
Bavarian Chamber of Physicians. All study participants provided written informed
consent. The KORA data are governed by the General Data Protection Regulation
and national data protection laws, with additional restrictions imposed by the Ethics
Committee of the Bavarian Chamber of Physicians to ensure data privacy of the study
participants. Therefore, the data cannot be made freely available in a public reposi-
tory. However, researchers with a legitimate interest in accessing the data may submit
a request through an individual project agreement with KORA via the online portal
(https://www.helmholtz-munich.de/en/epi/cohort/kora). Upon receipt of the re-
quest, the data access committee will review the application and, subject to approval,
provide the researcher with a data usage agreement.

3.7.2 Python Package

The source code and implementation details of LEOPARD are freely available at our
GitHub repository (https://github.com/HAN-Siyu/LEOPARD). Detailed documenta-
tion and examples can be found in the package manual (Appendix D).

3.7.3 Reproducible Figures

Relevant data and code can be found in a separate script in the jupyter-notebook format
to reproduce the main figures in this study. The script can be downloaded from our
GitHub repository (https://github.com/HAN-Siyu/LEOPARD).

77

http://dx.doi.org/10.17632/nf853r8xsj
http://dx.doi.org/10.17632/nf853r8xsj
https://github.com/HAN-Siyu/LEOPARD
https://www.helmholtz-munich.de/en/epi/cohort/kora
https://github.com/HAN-Siyu/LEOPARD
https://github.com/HAN-Siyu/LEOPARD

4 Conclusion and Outlook

In this thesis, two novel computational methods, TIGER and LEOPARD, were devel-
oped to improve the data reliability and completeness for multi-timepoint omics. This
chapter will summarize the contributions and discuss some possibilities for future work.
TIGER was specifically designed for the removal of technical variation in metabolomics

data, leveraging an ensemble learning architecture to enhance robustness and mitigate
overfitting. This method demonstrated superior performance over four widely-used tech-
niques, effectively preserving biological signals while reducing technical noise. Now
TIGER has been used in both cross-sectional and longitudinal biological analyses, such
as biomarker discovery for metabolic syndrome [93] and standardized implementation
of batch correction [126]. The successful application of TIGER underscores its poten-
tial in revealing true biological variations that might otherwise be obscured by technical
variations.
LEOPARD, on the other hand, was developed to address the problem of missing view

in multi-timepoint omics datasets. Through comprehensive simulations and case studies,
LEOPARD showcased its ability to disentangle temporal and content representations,
thereby providing insights for investigating temporal dynamics of multi-timepoint omics
data. The method’s robustness was further validated across various datasets, revealing
its robust performance compared to generic imputation techniques.
Both methods were comprehensively evaluated using multiple metrics to ensure their

reliability and effectiveness. The reproducibility and accessibility of these methods were
ensured by making relevant data, code, and documentation publicly available. By pro-
viding comprehensive scripts to reproduce the figures and results, this work facilitates
further research and application in the field.
Future research could focus on expanding the application scope of TIGER and LEO-

PARD:

• TIGER offers greater flexibility than existing tools by supporting different types
of QC samples, utilizing injection order and well position for data modeling, and
enabling parallel computing. However, as a QC-based method, TIGER’s applica-

79

4 Conclusion and Outlook

bility is limited by the availability of QC samples. Developing a QC-free method
would be highly beneficial for this field.

• LEOPARD, representing the first attempts for missing view completion in multi-
timepoint omics data, shows promise but may not be suitable for datasets with
very small sample sizes due to its neural network-based approach. Enhancing
LEOPARD’s applicability to small datasets by developing strategies to maintain
robustness and accuracy with limited data would increase its versatility.

• Expanding the application of TIGER and LEOPARD beyond metabolomics and
proteomics to other types of omics data, such as lipidomics and transcriptomics,
could provide significant benefits for omics researchers, offering a more compre-
hensive toolkit for analyzing complex biological systems.

Overall, TIGER and LEOPARD offer effective solutions for addressing technical varia-
tions and missing view in multi-timepoint omics analysis. The methodologies presented
in this thesis provide valuable insights for future innovations in omics data analysis.
The robust performance of TIGER and LEOPARD highlights their potential to enhance
omics research and healthcare applications.

80

Bibliography

[1] R. Holle, M. Happich, et al. KORA - A research platform for population
based health research. Gesundheitswesen, 67(SUPPL. 1), 2005. doi:10.1055/
s-2005-858235.

[2] M. Haid, C. Muschet, et al. Long-Term Stability of Human Plasma Metabolites
during Storage at −80 °C. Journal of Proteome Research, 17(1):203–211, jan 2018.
doi:10.1021/acs.jproteome.7b00518.

[3] Z. Yu, G. Kastenmüller, et al. Differences between human plasma and serum
metabolite profiles. PloS one, 6(7):e21230, 2011.

[4] C. Herder, J. M. Kannenberg, et al. A Systemic Inflammatory Signature Re-
flecting Cross Talk Between Innate and Adaptive Immunity Is Associated With
Incident Polyneuropathy: KORA F4/FF4 Study. Diabetes, 67(11):2434–2442,
nov 2018. URL: https://diabetesjournals.org/diabetes/article/67/11/
2434/40270/A-Systemic-Inflammatory-Signature-Reflecting-Cross, doi:
10.2337/db18-0060.

[5] M. Lundberg, A. Eriksson, et al. Homogeneous antibody-based proximity exten-
sion assays provide sensitive and specific detection of low-abundant proteins in
human blood. Nucleic acids research, 39(15):e102–e102, 2011.

[6] L. Tran, X. Liu, et al. Missing Modalities Imputation via Cascaded Residual Au-
toencoder. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4971–4980. IEEE, jul 2017. URL: http://ieeexplore.ieee.org/
document/8100011/, doi:10.1109/CVPR.2017.528.

[7] L. Cai, Z. Wang, et al. Deep Adversarial Learning for Multi-Modality Missing Data
Completion. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery Data Mining, pages 1158–1166, New York, NY, USA, jul
2018. ACM. doi:10.1145/3219819.3219963.

81

http://dx.doi.org/10.1055/s-2005-858235
http://dx.doi.org/10.1055/s-2005-858235
http://dx.doi.org/10.1021/acs.jproteome.7b00518
https://diabetesjournals.org/diabetes/article/67/11/2434/40270/A-Systemic-Inflammatory-Signature-Reflecting-Cross
https://diabetesjournals.org/diabetes/article/67/11/2434/40270/A-Systemic-Inflammatory-Signature-Reflecting-Cross
http://dx.doi.org/10.2337/db18-0060
http://dx.doi.org/10.2337/db18-0060
http://ieeexplore.ieee.org/document/8100011/
http://ieeexplore.ieee.org/document/8100011/
http://dx.doi.org/10.1109/CVPR.2017.528
http://dx.doi.org/10.1145/3219819.3219963

BIBLIOGRAPHY

[8] V. Swamy, M. Satayeva, et al. MultiModN- Multimodal, Multi-Task, Interpretable
Modular Networks. sep 2023. URL: http://arxiv.org/abs/2309.14118, arXiv:
2309.14118.

[9] S. Li, Y. Park, et al. Predicting network activity from high throughput
metabolomics. PLoS Comput Biol, 9(7):e1003123, 2013.

[10] D. S. Wishart. Emerging applications of metabolomics in drug discovery and
precision medicine. Nature reviews Drug discovery, 15(7):473, 2016.

[11] P. Sen, S. Lamichhane, et al. Deep learning meets metabolomics: A methodological
perspective. Briefings in Bioinformatics, 22(2):1531–1542, 2021.

[12] C. H. Johnson, J. Ivanisevic, and G. Siuzdak. Metabolomics: beyond biomarkers
and towards mechanisms. Nature reviews Molecular cell biology, 17(7):451–459,
2016.

[13] Z. Pang, J. Chong, et al. MetaboAnalystR 3.0: Toward an optimized workflow for
global metabolomics. Metabolites, 10(5):186, 2020.

[14] P. L. Auer and R. W. Doerge. Statistical design and analysis of RNA sequencing
data. Genetics, 185(2):405–416, 2010.

[15] S. C. Hicks and R. A. Irizarry. quantro: A data-driven approach to guide the
choice of an appropriate normalization method. Genome Biology, 16(1):1–8,
2015. URL: http://dx.doi.org/10.1186/s13059-015-0679-0, doi:10.1186/
s13059-015-0679-0.

[16] A. M. De Livera, D. A. Dias, et al. Normalizing and integrating metabolomics
data. Analytical chemistry, 84(24):10768–10776, 2012.

[17] J. Kuligowski, Á. Sánchez-Illana, et al. Intra-batch effect correction in liquid
chromatography-mass spectrometry using quality control samples and support vec-
tor regression (QC-SVRC). Analyst, 140(22):7810–7817, 2015.

[18] A. O. Tokareva, V. V. Chagovets, et al. Normalization methods for reducing
interbatch effect without quality control samples in liquid chromatography-mass
spectrometry-based studies. Analytical and Bioanalytical Chemistry, 413(13):3479–
3486, 2021.

82

http://arxiv.org/abs/2309.14118
http://arxiv.org/abs/2309.14118
http://arxiv.org/abs/2309.14118
http://dx.doi.org/10.1186/s13059-015-0679-0
http://dx.doi.org/10.1186/s13059-015-0679-0
http://dx.doi.org/10.1186/s13059-015-0679-0

BIBLIOGRAPHY

[19] A. Scherer. Batch effects and noise in microarray experiments: sources and solu-
tions, volume 868. John Wiley & Sons, 2009.

[20] R. Wehrens, J. A. Hageman, et al. Improved batch correction in untargeted MS-
based metabolomics. Metabolomics, 12(5):88, 2016.

[21] W. Wang, H. Zhou, et al. Quantification of proteins and metabolites by mass
spectrometry without isotopic labeling or spiked standards. Analytical chemistry,
75(18):4818–4826, 2003.

[22] J. Huang, C. Huth, et al. Machine learning approaches reveal metabolic signa-
tures of incident chronic kidney disease in individuals with prediabetes and type
2 diabetes. Diabetes, 69(12):2756–2765, 2020. doi:10.2337/db20-0586.

[23] B. Li, J. Tang, et al. Performance evaluation and online realization of data-driven
normalization methods used in LC/MS based untargeted metabolomics analysis.
Scientific reports, 6(1):1–13, 2016.

[24] W. S. Cleveland and S. J. Devlin. Locally weighted regression: an approach to
regression analysis by local fitting. Journal of the American statistical association,
83(403):596–610, 1988.

[25] S. Fan, T. Kind, et al. Systematic Error Removal Using Random Forest for Normal-
izing Large-Scale Untargeted Lipidomics Data. Analytical Chemistry, 91(5):3590–
3596, 2019. doi:10.1021/acs.analchem.8b05592.

[26] K. Deng, F. Zhang, et al. WaveICA: A novel algorithm to remove batch effects
for large-scale untargeted metabolomics data based on wavelet analysis. Analytica
chimica acta, 1061:60–69, 2019.

[27] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[28] M. Sysi-Aho, M. Katajamaa, et al. Normalization method for metabolomics data
using optimal selection of multiple internal standards. BMC bioinformatics, 8(1):1–
17, 2007.

[29] C. Workman, L. J. Jensen, et al. A new non-linear normalization method for
reducing variability in DNA microarray experiments. Genome biology, 3(9):1–16,
2002.

83

http://dx.doi.org/10.2337/db20-0586
http://dx.doi.org/10.1021/acs.analchem.8b05592

BIBLIOGRAPHY

[30] H. Luan, F. Ji, et al. statTarget: A streamlined tool for signal drift correction
and interpretations of quantitative mass spectrometry-based omics data. Analytica
chimica acta, 1036:66–72, 2018.

[31] I. Daubechies. The wavelet transform, time-frequency localization and signal anal-
ysis. IEEE Transactions on Information Theory, 36(5):961–1005, 1990. URL:
http://ieeexplore.ieee.org/document/57199/, doi:10.1109/18.57199.

[32] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and ap-
plications. Neural networks, 13(4-5):411–430, 2000.

[33] E. Renard, S. Branders, and P.-A. Absil. Independent component analysis to
remove batch effects from merged microarray datasets. In International Workshop
on Algorithms in Bioinformatics, pages 281–292. Springer, 2016.

[34] W. E. Johnson, C. Li, and A. Rabinovic. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics, 8(1):118–127, 2007.

[35] W. B. Dunn, D. Broadhurst, et al. Procedures for large-scale metabolic profiling of
serum and plasma using gas chromatography and liquid chromatography coupled
to mass spectrometry. Nature protocols, 6(7):1060–1083, 2011.

[36] A. M. D. Livera, M. Sysi-Aho, et al. Statistical methods for handling unwanted
variation in metabolomics data. Analytical chemistry, 87(7):3606–3615, 2015.

[37] C. Brunius, L. Shi, and R. Landberg. Large-scale untargeted LC-MS metabolomics
data correction using between-batch feature alignment and cluster-based within-
batch signal intensity drift correction. Metabolomics, 12(11):1–13, 2016.

[38] B. Li, J. Tang, et al. NOREVA: normalization and evaluation of MS-based
metabolomics data. Nucleic acids research, 45(W1):W162—-W170, 2017.

[39] A. P. Siskos, P. Jain, et al. Interlaboratory reproducibility of a targeted
metabolomics platform for analysis of human serum and plasma. Analytical chem-
istry, 89(1):656–665, 2017.

[40] X. Shen, X. Gong, et al. Normalization and integration of large-scale metabolomics
data using support vector regression. Metabolomics, 12(5):1–12, 2016.

[41] Z. Yu, G. Zhai, et al. Human serum metabolic profiles are age dependent. Aging
cell, 11(6):960–967, 2012.

84

http://ieeexplore.ieee.org/document/57199/
http://dx.doi.org/10.1109/18.57199

BIBLIOGRAPHY

[42] R. Wang-Sattler, Z. Yu, et al. Novel biomarkers for pre-diabetes identified by
metabolomics. Molecular Systems Biology, 8(615), 2012. doi:10.1038/msb.2012.
43.

[43] M. J. Van der Laan, E. C. Polley, and A. E. Hubbard. Super learner. Statistical
applications in genetics and molecular biology, 6(1), 2007.

[44] S. Kim. ppcor: an R package for a fast calculation to semi-partial correlation
coefficients. Communications for statistical applications and methods, 22(6):665,
2015.

[45] J. Krumsiek, K. Suhre, et al. Gaussian graphical modeling reconstructs pathway
reactions from high-throughput metabolomics data. BMC Systems Biology, 5,
2011. doi:10.1186/1752-0509-5-21.

[46] A. Beygelzimer, S. Kakadet, et al. FNN: Fast Nearest Neighbor Search Algorithms
and Applications, 2019. R package version 1.1.3. URL: https://CRAN.R-project.
org/package=FNN.

[47] A. Liaw and M. Wiener. Classification and Regression by randomForest. R News,
2(3):18–22, 2002. URL: http://cran.r-project.org/doc/Rnews/.

[48] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pages 785–794, 2016.

[49] T. Chen, T. He, et al. xgboost: Extreme Gradient Boosting, 2021. R package
version 1.4.1.1. URL: https://CRAN.R-project.org/package=xgboost.

[50] D. B. Rubin. Inference and Missing Data. Biometrika, 63(3):581, dec
1976. URL: https://www.jstor.org/stable/2335739?origin=crossref, doi:
10.2307/2335739.

[51] S. van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by
chained equations in r. Journal of Statistical Software, 45(3):1–67, 2011. URL:
https://www.jstatsoft.org/v45/i03/.

[52] S. Van Buuren. Flexible imputation of missing data. CRC press, 2018.

[53] R. Little and D. Rubin. Statistical Analysis with Missing Data, Third Edi-
tion, volume 793 of Wiley Series in Probability and Statistics. Wiley, apr 2019.

85

http://dx.doi.org/10.1038/msb.2012.43
http://dx.doi.org/10.1038/msb.2012.43
http://dx.doi.org/10.1186/1752-0509-5-21
https://CRAN.R-project.org/package=FNN
https://CRAN.R-project.org/package=FNN
http://cran.r-project.org/doc/Rnews/
https://CRAN.R-project.org/package=xgboost
https://www.jstor.org/stable/2335739?origin=crossref
http://dx.doi.org/10.2307/2335739
http://dx.doi.org/10.2307/2335739
https://www.jstatsoft.org/v45/i03/

BIBLIOGRAPHY

URL: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119482260,
doi:10.1002/9781119482260.

[54] L. L. Doove, S. Van Buuren, and E. Dusseldorp. Recursive partitioning for missing
data imputation in the presence of interaction effects. Computational statistics &
data analysis, 72:92–104, 2014.

[55] L. Torgo. Data Mining with R, learning with case studies. Chapman and Hall/CRC,
2010. URL: http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR.

[56] D. B. Rubin. Multiple Imputation for Nonresponse in Surveys, volume 81 of
Wiley Series in Probability and Statistics. Wiley, jun 1987. URL: https://
onlinelibrary.wiley.com/doi/book/10.1002/9780470316696, doi:10.1002/
9780470316696.

[57] A. Kuznetsova, P. B. Brockhoff, and R. H. B. Christensen. lmerTest package:
Tests in linear mixed effects models. Journal of Statistical Software, 82(13):1–26,
2017. doi:10.18637/jss.v082.i13.

[58] B. F. Darst, R. L. Koscik, et al. Longitudinal plasma metabolomics
of aging and sex. Aging, 11(4):1262–1282, feb 2019. URL: http:
//www.ncbi.nlm.nih.gov/pubmed/30799310http://www.pubmedcentral.nih.
gov/articlerender.fcgi?artid=PMC6402508, doi:10.18632/aging.101837.

[59] C. Pararasa, J. Ikwuobe, et al. Age-associated changes in long-chain fatty acid
profile during healthy aging promote pro-inflammatory monocyte polarization via
PPAR γ. Aging cell, 15(1):128–139, 2016.

[60] R. Chaleckis, I. Murakami, et al. Individual variability in human blood metabolites
identifies age-related differences. Proceedings of the National Academy of Sciences,
113(16):4252–4259, 2016.

[61] M. Kuhn. Building Predictive Models in R Using the caret Package. Journal of
Statistical Software, 28(5), 2008. URL: http://www.jstatsoft.org/v28/i05/,
doi:10.18637/jss.v028.i05.

[62] P. Solymos and Z. Zawadzki. pbapply: Adding Progress Bar to ’*apply’ Functions,
2020. R package version 1.4-3. URL: https://CRAN.R-project.org/package=
pbapply.

86

https://onlinelibrary.wiley.com/doi/book/10.1002/9781119482260
http://dx.doi.org/10.1002/9781119482260
http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316696
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316696
http://dx.doi.org/10.1002/9780470316696
http://dx.doi.org/10.1002/9780470316696
http://dx.doi.org/10.18637/jss.v082.i13
http://www.ncbi.nlm.nih.gov/pubmed/30799310 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6402508
http://www.ncbi.nlm.nih.gov/pubmed/30799310 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6402508
http://www.ncbi.nlm.nih.gov/pubmed/30799310 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6402508
http://dx.doi.org/10.18632/aging.101837
http://www.jstatsoft.org/v28/i05/
http://dx.doi.org/10.18637/jss.v028.i05
https://CRAN.R-project.org/package=pbapply
https://CRAN.R-project.org/package=pbapply

BIBLIOGRAPHY

[63] H. Wickham, P. Danenberg, et al. roxygen2: In-Line Documentation for R, 2020. R
package version 7.1.1. URL: https://CRAN.R-project.org/package=roxygen2.

[64] W. Chang, J. Cheng, et al. shiny: Web Application Framework for R, 2021. R
package version 1.6.0. URL: https://CRAN.R-project.org/package=shiny.

[65] W. Chang and B. Borges Ribeiro. shinydashboard: Create Dashboards with ’Shiny’,
2018. R package version 0.7.1. URL: https://CRAN.R-project.org/package=
shinydashboard.

[66] R. Iannone, J. Allaire, and B. Borges. flexdashboard: R Markdown Format for Flex-
ible Dashboards, 2020. R package version 0.5.2. URL: https://CRAN.R-project.
org/package=flexdashboard.

[67] H. Wickham. ggplot2. Springer New York, New York, NY, 2009. URL:
https://ggplot2.tidyverse.orghttps://link.springer.com/10.1007/
978-0-387-98141-3, doi:10.1007/978-0-387-98141-3.

[68] N. Xiao. ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for ’ggplot2’,
2018. R package version 2.9. URL: https://CRAN.R-project.org/package=
ggsci.

[69] C. Sievert. Interactive Web-Based Data Visualization with R, plotly, and shiny.
Chapman and Hall/CRC, 2020. URL: https://plotly-r.com.

[70] S. V. Vasaikar, A. K. Savage, et al. A comprehensive platform for an-
alyzing longitudinal multi-omics data. Nature communications, 14(1):1684,
mar 2023. URL: http://www.ncbi.nlm.nih.gov/pubmed/36973282http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC10041512, doi:
10.1038/s41467-023-37432-w.

[71] B. B. Avants, N. J. Tustison, and J. R. Stone. Similarity-driven multi-view em-
beddings from high-dimensional biomedical data. Nature computational science,
1(2):143–152, feb 2021. doi:10.1038/s43588-021-00029-8.

[72] K. Vandereyken, A. Sifrim, et al. Methods and applications for single-cell and
spatial multi-omics. Nature reviews. Genetics, pages 1–22, mar 2023. doi:10.
1038/s41576-023-00580-2.

87

https://CRAN.R-project.org/package=roxygen2
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=flexdashboard
https://CRAN.R-project.org/package=flexdashboard
https://ggplot2.tidyverse.org https://link.springer.com/10.1007/978-0-387-98141-3
https://ggplot2.tidyverse.org https://link.springer.com/10.1007/978-0-387-98141-3
http://dx.doi.org/10.1007/978-0-387-98141-3
https://CRAN.R-project.org/package=ggsci
https://CRAN.R-project.org/package=ggsci
https://plotly-r.com
http://www.ncbi.nlm.nih.gov/pubmed/36973282 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC10041512
http://www.ncbi.nlm.nih.gov/pubmed/36973282 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC10041512
http://dx.doi.org/10.1038/s41467-023-37432-w
http://dx.doi.org/10.1038/s41467-023-37432-w
http://dx.doi.org/10.1038/s43588-021-00029-8
http://dx.doi.org/10.1038/s41576-023-00580-2
http://dx.doi.org/10.1038/s41576-023-00580-2

BIBLIOGRAPHY

[73] R. Mitra, S. F. McGough, et al. Learning from data with structured missingness.
Nature Machine Intelligence, 5(1):13–23, jan 2023. URL: https://www.nature.
com/articles/s42256-022-00596-z, doi:10.1038/s42256-022-00596-z.

[74] J. E. Flores, D. M. Claborne, et al. Missing data in multi-omics integration:
Recent advances through artificial intelligence. Frontiers in artificial intelligence,
6:1098308, 2023. doi:10.3389/frai.2023.1098308.

[75] L. Zhang, Y. Zhao, et al. Multi-View Missing Data Completion. IEEE Transactions
on Knowledge and Data Engineering, 30(7):1296–1309, 2018. doi:10.1109/TKDE.
2018.2791607.

[76] R. Rosato, E. Pagano, et al. Missing data in longitudinal studies: Comparison of
multiple imputation methods in a real clinical setting. Journal of Evaluation in
Clinical Practice, 27(1):34–41, feb 2021. doi:10.1111/jep.13376.

[77] R. J. A. Little. Missing-Data Adjustments in Large Surveys. Journal of
Business Economic Statistics, 6(3):287–296, jul 1988. URL: http://www.
tandfonline.com/doi/abs/10.1080/07350015.1988.10509663, doi:10.1080/
07350015.1988.10509663.

[78] D. J. Stekhoven and P. Bühlmann. MissForest–non-parametric missing value im-
putation for mixed-type data. Bioinformatics (Oxford, England), 28(1):112–8, jan
2012. doi:10.1093/bioinformatics/btr597.

[79] O. Troyanskaya, M. Cantor, et al. Missing value estimation methods for DNA
microarrays. Bioinformatics (Oxford, England), 17(6):520–5, jun 2001. doi:10.
1093/bioinformatics/17.6.520.

[80] M. D. Samad and L. Yin. Non-linear regression models for imputing longitudinal
missing data. In 2019 IEEE International Conference on Healthcare Informatics
(ICHI), pages 1–3. IEEE, jun 2019. doi:10.1109/ICHI.2019.8904528.

[81] M. H. Huque, J. B. Carlin, et al. A comparison of multiple imputation methods
for missing data in longitudinal studies. BMC Medical Research Methodology,
18(1):168, dec 2018. URL: https://bmcmedresmethodol.biomedcentral.com/
articles/10.1186/s12874-018-0615-6, doi:10.1186/s12874-018-0615-6.

88

https://www.nature.com/articles/s42256-022-00596-z
https://www.nature.com/articles/s42256-022-00596-z
http://dx.doi.org/10.1038/s42256-022-00596-z
http://dx.doi.org/10.3389/frai.2023.1098308
http://dx.doi.org/10.1109/TKDE.2018.2791607
http://dx.doi.org/10.1109/TKDE.2018.2791607
http://dx.doi.org/10.1111/jep.13376
http://www.tandfonline.com/doi/abs/10.1080/07350015.1988.10509663
http://www.tandfonline.com/doi/abs/10.1080/07350015.1988.10509663
http://dx.doi.org/10.1080/07350015.1988.10509663
http://dx.doi.org/10.1080/07350015.1988.10509663
http://dx.doi.org/10.1093/bioinformatics/btr597
http://dx.doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/10.1109/ICHI.2019.8904528
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-018-0615-6
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-018-0615-6
http://dx.doi.org/10.1186/s12874-018-0615-6

BIBLIOGRAPHY

[82] B. Velten, J. M. Braunger, et al. Identifying temporal and spatial patterns of
variation from multimodal data using MEFISTO. Nature Methods, 19(2):179–
186, feb 2022. URL: https://www.nature.com/articles/s41592-021-01343-9,
doi:10.1038/s41592-021-01343-9.

[83] B. Velten and O. Stegle. Principles and challenges of modeling
temporal and spatial omics data. Nature Methods, 20(10):1462–1474, oct
2023. URL: https://www.nature.com/articles/s41592-023-01992-y,
doi:10.1038/s41592-023-01992-y.

[84] X. Huang and S. Belongie. Arbitrary Style Transfer in Real-Time with Adaptive
Instance Normalization. In 2017 IEEE International Conference on Computer
Vision (ICCV), pages 1510–1519. IEEE, oct 2017. doi:10.1109/ICCV.2017.167.

[85] F.-E. Yang, J.-C. Chang, et al. A Multi-Domain and Multi-Modal Representa-
tion Disentangler for Cross-Domain Image Manipulation and Classification. IEEE
Transactions on Image Processing, 29:2795–2807, 2020. doi:10.1109/TIP.2019.
2952707.

[86] Y. Choi, Y. Uh, et al. StarGAN v2: Diverse Image Synthesis for Multiple Do-
mains. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 8185–8194. IEEE, jun 2020. doi:10.1109/CVPR42600.2020.
00821.

[87] J.-c. Chou and H.-Y. Lee. One-Shot Voice Conversion by Separating Speaker and
Content Representations with Instance Normalization. In Interspeech 2019, pages
664–668, ISCA, sep 2019. ISCA. doi:10.21437/Interspeech.2019-2663.

[88] M. R. Filbin, A. Mehta, et al. Longitudinal proteomic analysis of se-
vere COVID-19 reveals survival-associated signatures, tissue-specific cell
death, and cell-cell interactions. Cell reports. Medicine, 2(5):100287,
may 2021. URL: https://linkinghub.elsevier.com/retrieve/pii/
S2666379121001154http://www.ncbi.nlm.nih.gov/pubmed/33969320http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC8091031,
doi:10.1016/j.xcrm.2021.100287.

[89] S. Yu, S. Han, et al. Prediction of Myocardial Infarction Using a Combined Gen-
erative Adversarial Network Model and Feature-Enhanced Loss Function. Metabo-

89

https://www.nature.com/articles/s41592-021-01343-9
http://dx.doi.org/10.1038/s41592-021-01343-9
https://www.nature.com/articles/s41592-023-01992-y
http://dx.doi.org/10.1038/s41592-023-01992-y
http://dx.doi.org/10.1109/ICCV.2017.167
http://dx.doi.org/10.1109/TIP.2019.2952707
http://dx.doi.org/10.1109/TIP.2019.2952707
http://dx.doi.org/10.1109/CVPR42600.2020.00821
http://dx.doi.org/10.1109/CVPR42600.2020.00821
http://dx.doi.org/10.21437/Interspeech.2019-2663
https://linkinghub.elsevier.com/retrieve/pii/S2666379121001154 http://www.ncbi.nlm.nih.gov/pubmed/33969320 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC8091031
https://linkinghub.elsevier.com/retrieve/pii/S2666379121001154 http://www.ncbi.nlm.nih.gov/pubmed/33969320 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC8091031
https://linkinghub.elsevier.com/retrieve/pii/S2666379121001154 http://www.ncbi.nlm.nih.gov/pubmed/33969320 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC8091031
http://dx.doi.org/10.1016/j.xcrm.2021.100287

BIBLIOGRAPHY

lites, 14(5):258, apr 2024. URL: https://www.mdpi.com/2218-1989/14/5/258,
doi:10.3390/metabo14050258.

[90] J. M. Ratter-Rieck, M. Shi, et al. Omentin associates with serum metabolite
profiles indicating lower diabetes risk: KORA F4 Study. BMJ Open Diabetes
Research Care, 12(2):e003865, mar 2024. URL: https://drc.bmj.com/lookup/
doi/10.1136/bmjdrc-2023-003865, doi:10.1136/bmjdrc-2023-003865.

[91] J. Huang, M. Covic, et al. Validation of Candidate Phospholipid Biomarkers of
Chronic Kidney Disease in Hyperglycemic Individuals and Their Organ-Specific
Exploration in Leptin Receptor-Deficient db/db Mouse. Metabolites, 11(2):89,
2021.

[92] S. Han, J. Huang, et al. TIGER: technical variation elimination for metabolomics
data using ensemble learning architecture. Briefings in bioinformatics, 23(2), mar
2022. doi:10.1093/bib/bbab535.

[93] M. Shi, S. Han, et al. Identification of candidate metabolite biomark-
ers for metabolic syndrome and its five components in population-
based human cohorts. Cardiovascular diabetology, 22(1):141, jun
2023. URL: http://www.ncbi.nlm.nih.gov/pubmed/37328862http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC10276453,
doi:10.1186/s12933-023-01862-z.

[94] M. Yang, Y. Li, et al. Partially View-aligned Representation Learning with Noise-
robust Contrastive Loss. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1134–1143. IEEE, jun 2021. doi:10.1109/
CVPR46437.2021.00119.

[95] J. Wen, Z. Zhang, et al. Unified Embedding Alignment with Missing Views Infer-
ring for Incomplete Multi-View Clustering. Proceedings of the AAAI Conference
on Artificial Intelligence, 33(01):5393–5400, jul 2019. doi:10.1609/aaai.v33i01.
33015393.

[96] M. Ma, J. Ren, et al. SMIL: Multimodal Learning with Severely Missing Modality.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(3):2302–2310,
may 2021. doi:10.1609/aaai.v35i3.16330.

[97] M. Mirza and S. Osindero. Conditional Generative Adversarial Nets. nov 2014.
arXiv:1411.1784.

90

https://www.mdpi.com/2218-1989/14/5/258
http://dx.doi.org/10.3390/metabo14050258
https://drc.bmj.com/lookup/doi/10.1136/bmjdrc-2023-003865
https://drc.bmj.com/lookup/doi/10.1136/bmjdrc-2023-003865
http://dx.doi.org/10.1136/bmjdrc-2023-003865
http://dx.doi.org/10.1093/bib/bbab535
http://www.ncbi.nlm.nih.gov/pubmed/37328862 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC10276453
http://www.ncbi.nlm.nih.gov/pubmed/37328862 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC10276453
http://dx.doi.org/10.1186/s12933-023-01862-z
http://dx.doi.org/10.1109/CVPR46437.2021.00119
http://dx.doi.org/10.1109/CVPR46437.2021.00119
http://dx.doi.org/10.1609/aaai.v33i01.33015393
http://dx.doi.org/10.1609/aaai.v33i01.33015393
http://dx.doi.org/10.1609/aaai.v35i3.16330
http://arxiv.org/abs/1411.1784

BIBLIOGRAPHY

[98] I. Goodfellow, J. Pouget-Abadie, et al. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, oct 2020. doi:10.1145/3422622.

[99] C. Shang, A. Palmer, et al. VIGAN: Missing View Imputation with Generative
Adversarial Networks. Proceedings : ... IEEE International Conference on Big
Data. IEEE International Conference on Big Data, 2017:766–775, 2017. doi:
10.1109/BigData.2017.8257992.

[100] A. Odena, C. Olah, and J. Shlens. Conditional Image Synthesis with Auxiliary
Classifier GANs. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, pages 2642–2651. JMLR.org, 2017. doi:10.
5555/3305890.3305954.

[101] K. He, X. Zhang, et al. Deep Residual Learning for Image Recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778. IEEE, jun 2016. doi:10.1109/CVPR.2016.90.

[102] K. He, X. Zhang, et al. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification. In 2015 IEEE International Conference
on Computer Vision (ICCV), pages 1026–1034. IEEE, dec 2015. doi:10.1109/
ICCV.2015.123.

[103] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In Proceedings of the 32nd Interna-
tional Conference on International Conference on Machine Learning - Volume 37,
ICML’15, pages 448–456. JMLR.org, 2015. doi:10.5555/3045118.3045167.

[104] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. dec 2014.
arXiv:1412.6980.

[105] A. Paszke, S. Gross, et al. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. dec 2019. arXiv:1912.01703.

[106] W. Falcon, J. Borovec, and N. Eggert. PyTorchLightning/pytorch-lightning: Bug
fixes, new docs, jan 2020. URL: https://doi.org/10.5281/zenodo.3620922,
doi:10.5281/zenodo.3620922.

[107] M. Abadi, A. Agarwal, et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. mar 2016. URL: http://arxiv.org/abs/
1603.04467, arXiv:1603.04467.

91

http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1109/BigData.2017.8257992
http://dx.doi.org/10.1109/BigData.2017.8257992
http://dx.doi.org/10.5555/3305890.3305954
http://dx.doi.org/10.5555/3305890.3305954
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.5555/3045118.3045167
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1912.01703
https://doi.org/10.5281/zenodo.3620922
http://dx.doi.org/10.5281/zenodo.3620922
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467

BIBLIOGRAPHY

[108] T. Chen, S. Kornblith, et al. A Simple Framework for Contrastive Learning of Vi-
sual Representations. In Proceedings of the 37th International Conference on Ma-
chine Learning, ICML’20. JMLR.org, 2020. doi:10.48550/arXiv.2002.05709.

[109] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond
mean square error. nov 2015. arXiv:1511.05440.

[110] H. Zhao, O. Gallo, et al. Loss Functions for Image Restoration With Neural
Networks. IEEE Transactions on Computational Imaging, 3(1):47–57, mar 2017.
doi:10.1109/TCI.2016.2644865.

[111] A. Mustafa, A. Mikhailiuk, et al. Training a Task-Specific Image Reconstruction
Loss. In 2022 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pages 21–30. IEEE, jan 2022. doi:10.1109/WACV51458.2022.00010.

[112] M.-Y. Liu, X. Huang, et al. Few-Shot Unsupervised Image-to-Image Translation.
may 2019. arXiv:1905.01723.

[113] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance Normalization: The Missing
Ingredient for Fast Stylization. jul 2016. URL: http://arxiv.org/abs/1607.
08022, arXiv:1607.08022.

[114] N. Srivastava, G. Hinton, et al. Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. J. Mach. Learn. Res., 15(1):1929–1958, jan 2014.

[115] A. F. Agarap. Deep Learning using Rectified Linear Units (ReLU). mar 2018. URL:
http://arxiv.org/abs/1803.08375, arXiv:1803.08375, doi:10.48550/C.

[116] V. Audigier and M. Resche-Rigon. micemd: Multiple Imputation by Chained Equa-
tions with Multilevel Data, 2023. URL: https://cran.r-project.org/package=
micemd.

[117] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction. feb 2018. arXiv:1802.03426.

[118] T. Konopka. umap: Uniform Manifold Approximation and Projection, 2023. URL:
https://cran.r-project.org/package=umap.

[119] C. M. Chak, M. E. Lacruz, et al. Ageing investigation using two-time-point
metabolomics data from KORA and CARLA studies. Metabolites, 9(3):44, 2019.

92

http://dx.doi.org/10.48550/arXiv.2002.05709
http://arxiv.org/abs/1511.05440
http://dx.doi.org/10.1109/TCI.2016.2644865
http://dx.doi.org/10.1109/WACV51458.2022.00010
http://arxiv.org/abs/1905.01723
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
http://dx.doi.org/10.48550/C
https://cran.r-project.org/package=micemd
https://cran.r-project.org/package=micemd
http://arxiv.org/abs/1802.03426
https://cran.r-project.org/package=umap

BIBLIOGRAPHY

[120] W. Liu, Y. Liu, et al. Metabolic Biomarkers of Aging and Aging-related Diseases
in Chinese Middle-Aged and Elderly Men. The Journal of nutrition, health and
aging, 22(10):1189–1197, dec 2018. URL: https://linkinghub.elsevier.com/
retrieve/pii/S1279770723010540, doi:10.1007/s12603-018-1062-0.

[121] A. S. Levey, L. A. Stevens, et al. A new equation to estimate glomeru-
lar filtration rate. Annals of internal medicine, 150(9):604–12, may
2009. URL: http://www.ncbi.nlm.nih.gov/pubmed/19414839http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2763564,
doi:10.7326/0003-4819-150-9-200905050-00006.

[122] F. Pedregosa, G. Varoquaux, et al. Scikit-learn: Machine Learning
in Python. J. Mach. Learn. Res., 12:2825–2830, 2011. URL:
http://dl.acm.org/citation.cfm?id=1953048.2078195%5Cnhttp:
//dl.acm.org/ft_gateway.cfm?id=2078195&type=pdf, arXiv:1201.0490,
doi:10.1007/s13398-014-0173-7.2.

[123] G. Lemaître, F. Nogueira, and C. K. Aridas. Imbalanced-learn: A Python Toolbox
to Tackle the Curse of Imbalanced Datasets in Machine Learning. Journal of
Machine Learning Research, 18(17):1–5, 2017. URL: http://jmlr.org/papers/
v18/16-365.html.

[124] J. Nano, B. Schöttker, et al. Novel biomarkers of inflammation, kidney function
and chronic kidney disease in the general population. Nephrology Dialysis Trans-
plantation, 37(10):1916–1926, sep 2022. doi:10.1093/ndt/gfab294.

[125] T. Saito and M. Rehmsmeier. Precrec: fast and accurate precision-recall and
ROC curve calculations in R. Bioinformatics (Oxford, England), 33(1):145–
147, jan 2017. URL: http://www.ncbi.nlm.nih.gov/pubmed/27591081http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5408773,
doi:10.1093/bioinformatics/btw570.

[126] D. T. Leach, K. G. Stratton, et al. malbacr: a package for standardized im-
plementation of batch correction methods for omics data. Analytical Chemistry,
95(33):12195–12199, 2023.

93

https://linkinghub.elsevier.com/retrieve/pii/S1279770723010540
https://linkinghub.elsevier.com/retrieve/pii/S1279770723010540
http://dx.doi.org/10.1007/s12603-018-1062-0
http://www.ncbi.nlm.nih.gov/pubmed/19414839 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2763564
http://www.ncbi.nlm.nih.gov/pubmed/19414839 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2763564
http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00006
http://dl.acm.org/citation.cfm?id=1953048.2078195%5Cnhttp://dl.acm.org/ft_gateway.cfm?id=2078195&type=pdf
http://dl.acm.org/citation.cfm?id=1953048.2078195%5Cnhttp://dl.acm.org/ft_gateway.cfm?id=2078195&type=pdf
http://arxiv.org/abs/1201.0490
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://jmlr.org/papers/v18/16-365.html
http://jmlr.org/papers/v18/16-365.html
http://dx.doi.org/10.1093/ndt/gfab294
http://www.ncbi.nlm.nih.gov/pubmed/27591081 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5408773
http://www.ncbi.nlm.nih.gov/pubmed/27591081 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5408773
http://dx.doi.org/10.1093/bioinformatics/btw570

A Supplementary Figures

obsNum = 0 obsNum = 25 obsNum = 50 obsNum = 100

PM
M

LM
 / G

LM
M

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.0
0.4
0.8

1.6

2.4

0.0
0.4
0.8

1.6

2.4

Multiple imputations

Pe
rc

en
t b

ia
s

a

obsNum = 0 obsNum = 50 obsNum = 100 obsNum = 200

PM
M

LM
 / G

LM
M

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Multiple imputations

Pe
rc

en
t b

ia
s

b

obsNum = 0 obsNum = 50 obsNum = 100 obsNum = 200

PM
M

LM
 / G

LM
M

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1.0

2.0

3.0

0.1
0.3

1.0

2.0

3.0

0.1
0.3

Multiple imputations

Pe
rc

en
t b

ia
s

c

Figure A.1: Evaluation of Each of Multiple Imputations: PB PB values are calculated
on the MGH COVID proteomics (a), KORA metabolomics (b), and KORA multi-
omics datasets (c), with varying obsNum. The imputation is performed five times
(m = 5). Please note that LM is used when obsNum = 0.

95

A Supplementary Figures

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

PM
M

G
LM

M

UMAP1

U
M

AP
2

a

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

PM
M

G
LM

M

UMAP1

U
M

AP
2

b

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

PM
M

G
LM

M

UMAP1

U
M

AP
2

c

Observed data (t1) Observed data (t2) Imputed data (t2)

Figure A.2: Evaluation of Each of Multiple Imputation: UMAP UMAP representations
of each individual imputation (Imputation 1 to 5) of methods PMM and GLMM
and corresponding observed data of three benchmark datasets. UMAP models are
initially fitted with the training data from the MGH COVID proteomics dataset
(a, t1: D0, t2: D3), KORA metabolomics dataset (b, t1: F4, t2: FF4), and KORA
multi-omics dataset (c, t1: S4, t2: F4). Then the trained models are applied to the
corresponding observed data (red and blue dots for t1 and t2) and each individual
imputation of PMM and GLMM (green dots) under the setting of obsNum = 100
for the MGH COVID dataset and obsNum = 200 for the two KORA-derived
datasets.

96

SM (OH) C16:1

SM (OH) C16:1 SM (OH) C16:1

SM (OH) C16:1

SM (OH) C16:1

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

PM
M

LM

−0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02

0

2

4

6

8

0

2

4

6

8

Estimate

−
lo

g 1
0(

P
−v

al
ue
)

Figure A.3: Age-Associated Metabolites in Each of Multiple Imputations The age-
associate metabolites identified from each individual imputation (Imputation 1 to
5) of methods PMM and LM. The evaluation is performed on Dtest

v=v2,t=t2 (N = 417)
of the KORAmetabolomics dataset, under obsNum = 0. 18 significant metabolites
(P < 0.05/36) identified from the observed data are shown in blue. Replicated
metabolites from the imputed data (obsNum = 0) are marked with labels.

CCL23 IL12B

Imputation 1 Imputation 2 Imputation 3 Imputation 4 Imputation 5

PM
M

LM

−0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02 −0.02 0.00 0.02

0

2

4

6

8

0

2

4

6

8

Estimate

−
lo

g 1
0(

P
−v

al
ue
)

Figure A.4: eGFR-Associated Proteins in Each of Multiple Imputations The eGFR-
associated proteins identified from each individual imputation (Imputation 1 to 5)
of methods PMM and LM. The evaluation is performed on Dtest

v=v2,t=t2 (N = 212)
of the KORA multi-omics dataset, under obsNum = 0. 28 significant metabolites
(P < 0.05/66) identified from the observed data are shown in blue. Replicated
metabolites from the imputed data (obsNum = 0) are marked with labels.

97

A Supplementary Figures

0.0

0.2

0.4

0.6

0.8

ACC F1 TPR TNR PPV
Metrics

Pe
rfo

rm
an

ce

PMM 1 PMM 2

PMM 3 PMM 4 PMM 5
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Se
ns

iti
vi

ty
PMM 1 (AUROC=0.509)
PMM 2 (AUROC=0.567)
PMM 3 (AUROC=0.481)
PMM 4 (AUROC=0.537)
PMM 5 (AUROC=0.567) 0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

PMM 1 (AUPRC=0.132)
PMM 2 (AUPRC=0.154)
PMM 3 (AUPRC=0.127)
PMM 4 (AUPRC=0.157)
PMM 5 (AUPRC=0.151)

a

0.0

0.2

0.4

0.6

0.8

ACC F1 TPR TNR PPV
Metrics

Pe
rfo

rm
an

ce

LM 1 LM 2

LM 3 LM 4 LM 5
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Se
ns

iti
vi

ty

LM 1 (AUROC=0.476)
LM 2 (AUROC=0.592)
LM 3 (AUROC=0.601)
LM 4 (AUROC=0.616)
LM 5 (AUROC=0.498) 0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

LM 1 (AUPRC=0.122)
LM 2 (AUPRC=0.176)
LM 3 (AUPRC=0.157)
LM 4 (AUPRC=0.206)
LM 5 (AUPRC=0.140)

b

Figure A.5: CKD Prediction in Each of Multiple Imputations: KORA Metabolomics
The performance of CKD prediction on the KORA metabolomics dataset using
each of the 5 multiple imputations produced by methods PMM (a) and LM (b).
Methods are evaluated on Dtest

v=v2,t=t2 (N = 416, Npositive = 56, Nnegative = 360),
under obsNum = 0. PMM 1 to 5 and LM 1 to 5 indicate different individ-
ual imputations from PMM and LM, respectively. Models are trained using the
BRF algorithm with identical hyperparameters and evaluated using LOOCV. The
barplot (left) shows multi-metric performance. The dashed lines in the ROC (mid-
dle) and PR (right) curves represent the performance of a hypothetical model with
no predictive capability.

98

0.0

0.2

0.4

0.6

Pe
rfo

rm
an

ce

a

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Se
ns

iti
vi

ty

PMM 1 (AUROC=0.560)
PMM 2 (AUROC=0.661)
PMM 3 (AUROC=0.561)
PMM 4 (AUROC=0.494)
PMM 5 (AUROC=0.645) 0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n

PMM 1 (AUPRC=0.228)
PMM 2 (AUPRC=0.295)
PMM 3 (AUPRC=0.185)
PMM 4 (AUPRC=0.161)
PMM 5 (AUPRC=0.360)

0.0

0.2

0.4

0.6

Pe
rfo

rm
an

ce

b

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity

Se
ns

iti
vi

ty

LM 1 (AUROC=0.550)
LM 2 (AUROC=0.691)
LM 3 (AUROC=0.640)
LM 4 (AUROC=0.665)
LM 5 (AUROC=0.544) 0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Recall

Pr
ec

is
io

n
LM 1 (AUPRC=0.208)
LM 2 (AUPRC=0.361)
LM 3 (AUPRC=0.259)
LM 4 (AUPRC=0.274)
LM 5 (AUPRC=0.205)

ACC F1 TPR TNR PPV
Metrics

PMM 1 PMM 2

PMM 3 PMM 4 PMM 5

ACC F1 TPR TNR PPV
Metrics

LM 1 LM 2

LM 3 LM 4 LM 5

Figure A.6: CKD Prediction in Each of Multiple Imputations: KORA Multi-Omics
The performance of CKD prediction on the KORA multi-omics dataset using each
of the 5 multiple imputations produced by methods PMM (a) and LM (b). Meth-
ods are evaluated on Dtest

v=v2,t=t2 (N = 212, Npositive = 36, Nnegative = 176), under
obsNum = 0. PMM 1 to 5 and LM 1 to 5 indicate different individual imputations
from PMM and LM, respectively. Models are trained using the BRF algorithm
with identical hyperparameters and evaluated using LOOCV. The barplot (left)
shows multi-metric performance. The dashed lines in the ROC (middle) and PR
(right) curves represent the performance of a hypothetical model with no predic-
tive capability.

99

B Supplementary Tables

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

Acylcarnitine

C0 0.056 1.000 0.080 1.000 0.797 0.068 1.000
C2 0.056 1.000 0.106 1.000 0.872 0.097 1.000
C3 0.076 1.000 0.115 1.000 0.827 0.065 1.000
C3:1 0.402 0.053 0.377 0.005 -0.049 0.356 0.006
C3-DC (C4-OH) 0.244 0.198 0.423 0.099 0.384 0.212 0.803
C3-OH 0.509 0.030 0.978 0.050 -0.028 1.029 0.000
C4 0.077 1.000 0.114 1.000 0.830 0.108 1.000
C4:1 0.201 0.513 0.353 0.105 0.081 0.159 0.562
C5 0.089 0.991 0.163 1.000 0.722 0.111 0.998
C5:1 0.250 0.020 0.274 0.018 0.315 0.176 0.022
C5:1-DC 0.344 0.279 0.468 0.075 0.255 0.206 0.123
C5-DC (C6-OH) 0.264 0.653 0.368 0.521 0.442 0.174 0.167
C5-M-DC 0.280 0.026 0.516 0.038 0.220 0.364 0.023

101

B
Supplem

entary
Tables

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4 (continued)

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

Acylcarnitine

C5-OH (C3-DC-M) 0.352 0.216 0.261 0.140 0.300 0.219 0.203
C6 (C4:1-DC) 0.104 0.665 0.138 0.840 0.694 0.087 0.167
C6:1 0.305 0.059 0.362 0.026 0.193 0.176 0.002
C7-DC 0.183 0.719 0.302 0.674 0.806 0.128 0.652
C8 0.093 0.615 0.179 0.493 0.898 0.080 0.914
C8:1 NA NA 0.097 0.991 0.000 NA NA
C9 0.214 0.979 0.345 0.930 0.884 0.143 0.966
C10 0.071 0.994 0.138 0.983 0.914 0.073 1.000
C10:1 0.082 0.755 0.112 0.354 0.866 0.112 0.585
C10:2 0.158 0.963 0.154 0.542 0.630 0.142 0.315
C12 0.066 0.968 0.098 0.887 0.889 0.079 0.883
C12:1 0.103 0.271 0.133 0.024 0.849 0.114 0.671
C12-DC 0.123 0.000 0.165 0.000 0.034 0.240 0.000
C14 0.099 0.977 0.116 0.444 0.840 0.116 0.953
C14:1 0.106 1.000 0.207 1.000 0.731 0.152 1.000
C14:1-OH 0.190 0.792 0.183 0.668 0.695 0.127 0.524
C14:2 0.147 0.990 0.127 0.994 0.850 0.158 0.984
C14:2-OH 0.257 0.554 0.263 0.441 0.262 0.165 0.402
C16 0.073 1.000 0.108 1.000 0.754 0.101 1.000
C16-OH 0.307 0.226 0.258 0.018 0.353 0.196 0.043

102

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4 (continued)

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

C16:1 0.123 0.799 0.111 0.023 0.743 0.156 0.226

Acylcarnitine

C16:1-OH 0.258 0.340 0.210 0.013 0.616 0.163 0.590
C16:2 0.287 0.920 0.197 0.611 0.685 0.184 0.536
C16:2-OH 0.276 0.081 0.199 0.011 0.210 0.182 0.009
C18 0.099 1.000 0.113 0.999 0.791 0.133 1.000
C18:1 0.076 1.000 0.139 0.999 0.789 0.078 1.000
C18:1-OH 0.265 0.093 0.350 0.010 0.384 0.174 0.006
C18:2 0.092 0.999 0.119 1.000 0.790 0.100 1.000

Amino acid

Ala 0.131 1.000 NA NA NA 0.064 1.000
Arg 0.140 0.998 0.075 1.000 0.564 0.133 1.000
Asn 0.108 1.000 NA NA NA 0.091 1.000
Asp 0.118 1.000 NA NA NA 0.120 1.000
Cit 0.125 1.000 NA NA NA 0.121 1.000
Gln 0.150 1.000 0.143 1.000 0.369 0.137 1.000
Glu 0.151 1.000 NA NA NA 0.112 1.000
Gly 0.130 1.000 0.087 1.000 0.798 0.112 1.000
His 0.164 0.999 0.112 1.000 0.413 0.111 1.000
Ile 0.172 1.000 NA NA NA 0.091 1.000
Leu 0.162 0.991 NA NA NA 0.106 1.000
Lys 0.180 1.000 NA NA NA 0.136 1.000103

B
Supplem

entary
Tables

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4 (continued)

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

Amino acid

Met 0.150 1.000 0.147 1.000 0.551 0.117 1.000
Orn 0.168 1.000 0.117 1.000 0.739 0.125 1.000
Phe 0.140 0.999 0.090 1.000 0.464 0.106 1.000
Pro 0.119 1.000 0.104 1.000 0.800 0.095 1.000
Ser 0.150 1.000 0.096 1.000 0.544 0.132 1.000
Thr 0.164 0.998 0.119 1.000 0.670 0.092 1.000
Trp 0.146 1.000 0.075 1.000 0.484 0.114 1.000
Tyr 0.173 0.999 0.086 1.000 0.612 0.102 1.000
Val 0.158 1.000 0.200 1.000 0.573 0.099 1.000
xLeu NA NA 0.094 1.000 NA NA NA

Biogenic amine

Ac-Orn 0.202 0.796 NA NA NA 0.219 1.000
ADMA 0.231 0.670 NA NA NA 0.163 1.000
alpha-AAA 0.597 0.999 NA NA NA 0.172 1.000
c4-OH-Pro NA NA NA NA NA 0.122 1.000
Carnosine 0.898 0.040 NA NA NA 0.116 1.000
Creatinine 0.143 0.999 NA NA NA 0.057 1.000
DOPA 0.183 0.453 NA NA NA 0.178 1.000
Dopamine 0.246 0.001 NA NA NA 0.157 1.000
Histamine 0.438 0.905 NA NA NA 0.121 0.366
Kynurenine 0.122 0.978 NA NA NA 0.107 1.000

104

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4 (continued)

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

Biogenic amine

Met-SO 0.252 0.996 NA NA NA 0.144 1.000
Nitro-Tyr 0.607 0.077 NA NA NA 0.114 1.000
OH-Pro - 0.023 NA NA NA NA NA
PEA 0.226 0.006 NA NA NA 0.090 0.000
Putrescine 0.409 0.939 NA NA NA 0.083 0.957
Sarcosine 0.287 0.044 NA NA NA NA NA
SDMA 0.330 0.980 NA NA NA 0.175 1.000
Serotonin 0.464 0.998 NA NA NA 0.085 1.000
Spermidine 0.244 0.992 NA NA NA 0.068 1.000
Spermine 0.162 0.100 NA NA NA 0.058 1.000
t4-OH-Pro NA NA NA NA NA 0.137 1.000
Taurine 0.138 0.975 NA NA NA 0.073 1.000
total DMA 0.201 0.996 NA NA NA 0.140 1.000

Glycerophospholipid

lysoPC a C6:0 NA NA 0.821 0.224 NA NA NA
lysoPC a C14:0 0.061 0.000 0.280 0.201 0.432 0.112 0.000
lysoPC a C16:0 0.062 1.000 0.114 1.000 0.610 0.105 1.000
lysoPC a C16:1 0.068 1.000 0.111 1.000 0.833 0.112 1.000
lysoPC a C17:0 0.073 1.000 0.203 1.000 0.778 0.113 1.000
lysoPC a C18:0 0.065 1.000 0.111 1.000 0.731 0.087 1.000
lysoPC a C18:1 0.066 1.000 0.122 1.000 0.818 0.122 1.000105

B
Supplem

entary
Tables

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4 (continued)

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

Glycerophospholipid

lysoPC a C18:2 0.066 1.000 0.101 1.000 0.846 0.124 1.000
lysoPC a C20:3 0.082 1.000 0.118 1.000 0.815 0.089 1.000
lysoPC a C20:4 0.070 1.000 0.096 1.000 0.808 0.099 1.000
lysoPC a C24:0 0.198 0.252 0.250 0.089 0.011 0.119 0.000
lysoPC a C26:0 0.407 0.454 0.348 0.609 -0.042 0.377 1.000
lysoPC a C26:1 0.083 0.000 0.111 0.000 0.102 0.265 0.994
lysoPC a C28:0 0.335 0.254 0.321 0.481 0.016 0.272 0.992
lysoPC a C28:1 0.327 0.990 0.227 0.998 0.176 0.273 1.000
PC aa C24:0 0.222 0.716 0.271 0.778 0.000 0.122 0.996
PC aa C26:0 0.249 0.059 0.386 0.114 -0.109 0.261 0.297
PC aa C28:1 0.098 1.000 0.108 1.000 0.789 0.113 1.000
PC aa C30:0 0.092 1.000 0.127 1.000 0.793 0.080 1.000
PC aa C30:2 1.457 0.558 0.709 0.043 -0.022 2.637 0.828
PC aa C32:0 0.083 1.000 0.126 1.000 0.688 0.136 1.000
PC aa C32:1 0.079 1.000 0.132 1.000 0.880 0.209 1.000
PC aa C32:2 0.113 1.000 0.205 0.999 0.806 0.176 1.000
PC aa C32:3 0.086 1.000 0.105 1.000 0.715 0.143 1.000
PC aa C34:1 0.070 1.000 0.125 1.000 0.717 0.124 1.000
PC aa C34:2 0.063 1.000 0.172 1.000 0.236 0.150 1.000
PC aa C34:3 0.066 1.000 0.152 1.000 0.766 0.139 1.000

106

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4 (continued)

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

Glycerophospholipid

PC aa C34:4 0.067 1.000 0.107 1.000 0.882 0.112 1.000
PC aa C36:0 0.311 1.000 0.200 1.000 0.707 0.264 1.000
PC aa C36:1 0.071 1.000 0.106 1.000 0.845 0.169 1.000
PC aa C36:2 0.065 1.000 0.094 1.000 0.664 0.119 1.000
PC aa C36:3 0.062 1.000 0.117 1.000 0.676 0.107 1.000
PC aa C36:4 0.066 1.000 0.122 1.000 0.743 0.120 1.000
PC aa C36:5 0.057 1.000 0.142 1.000 0.910 0.129 1.000
PC aa C36:6 0.093 1.000 0.156 1.000 0.893 0.105 1.000
PC aa C38:0 0.112 1.000 0.163 1.000 0.852 0.081 1.000
PC aa C38:1 0.274 1.000 0.205 0.998 0.544 0.179 1.000
PC aa C38:3 0.058 1.000 0.087 1.000 0.834 0.100 1.000
PC aa C38:4 0.059 1.000 0.081 1.000 0.848 0.082 1.000
PC aa C38:5 0.059 1.000 0.111 1.000 0.814 0.099 1.000
PC aa C38:6 0.071 1.000 0.116 1.000 0.864 0.084 1.000
PC aa C40:1 0.157 0.143 0.164 0.091 0.636 0.141 0.178
PC aa C40:2 0.186 1.000 0.146 1.000 0.649 0.105 1.000
PC aa C40:3 0.146 1.000 0.134 1.000 0.721 0.126 1.000
PC aa C40:4 0.063 1.000 0.088 1.000 0.754 0.147 1.000
PC aa C40:5 0.065 1.000 0.079 1.000 0.841 0.069 1.000
PC aa C40:6 0.064 1.000 0.076 0.000 0.890 0.072 1.000107

B
Supplem

entary
Tables

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4 (continued)

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

Glycerophospholipid

PC aa C42:0 0.114 1.000 0.140 1.000 0.871 0.089 1.000
PC aa C42:1 0.135 1.000 0.162 1.000 0.795 0.099 1.000
PC aa C42:2 0.161 1.000 0.161 1.000 0.733 0.101 0.999
PC aa C42:4 0.114 1.000 0.136 1.000 0.591 0.124 1.000
PC aa C42:5 0.089 1.000 0.115 1.000 0.809 0.085 1.000
PC aa C42:6 0.100 0.961 0.133 0.675 0.755 0.193 1.000
PC ae C30:0 0.184 1.000 0.325 0.997 0.566 0.135 1.000
PC ae C30:1 0.512 0.837 0.492 0.941 0.074 1.183 0.492
PC ae C30:2 0.265 1.000 0.182 0.934 0.226 0.160 0.001
PC ae C32:1 0.089 1.000 0.105 1.000 0.564 0.168 1.000
PC ae C32:2 0.104 1.000 0.134 1.000 0.616 0.187 1.000
PC ae C34:0 0.105 1.000 0.113 1.000 0.787 0.155 1.000
PC ae C34:1 0.072 1.000 0.123 1.000 0.693 0.129 1.000
PC ae C34:2 0.072 1.000 0.128 1.000 0.834 0.141 1.000
PC ae C34:3 0.070 1.000 0.107 1.000 0.901 0.110 1.000
PC ae C36:0 0.216 1.000 0.380 1.000 0.580 0.167 1.000
PC ae C36:1 0.126 1.000 0.128 1.000 0.756 0.111 1.000
PC ae C36:2 0.072 1.000 0.146 1.000 0.808 0.110 1.000
PC ae C36:3 0.069 1.000 0.138 1.000 0.798 0.123 1.000
PC ae C36:4 0.063 1.000 0.126 1.000 0.815 0.116 1.000

108

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4 (continued)

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

Glycerophospholipid

PC ae C36:5 0.067 1.000 0.103 1.000 0.847 0.117 1.000
PC ae C38:0 0.086 1.000 0.127 1.000 0.875 0.121 1.000
PC ae C38:1 0.189 0.997 0.147 1.000 0.445 0.232 0.961
PC ae C38:2 0.143 1.000 0.143 1.000 0.579 0.213 1.000
PC ae C38:3 0.088 1.000 0.116 1.000 0.717 0.107 1.000
PC ae C38:4 0.060 1.000 0.132 1.000 0.739 0.107 1.000
PC ae C38:5 0.061 1.000 0.123 1.000 0.759 0.114 1.000
PC ae C38:6 0.066 1.000 0.104 1.000 0.850 0.116 1.000
PC ae C40:0 NA NA 0.082 0.011 NA NA NA
PC ae C40:1 0.142 1.000 0.137 1.000 0.755 0.090 1.000
PC ae C40:2 0.116 1.000 0.122 1.000 0.788 0.088 1.000
PC ae C40:3 0.095 1.000 0.112 1.000 0.688 0.088 1.000
PC ae C40:4 0.085 1.000 0.107 1.000 0.769 0.080 1.000
PC ae C40:5 0.061 1.000 0.094 1.000 0.647 0.120 1.000
PC ae C40:6 0.060 1.000 0.120 1.000 0.809 0.058 1.000
PC ae C42:0 0.127 0.372 0.183 0.147 0.392 0.119 0.026
PC ae C42:1 0.196 1.000 0.147 1.000 0.530 0.108 1.000
PC ae C42:2 0.164 1.000 0.187 1.000 0.659 0.102 1.000
PC ae C42:3 0.113 1.000 0.130 1.000 0.754 0.105 1.000
PC ae C42:4 0.079 1.000 0.109 1.000 0.812 0.111 1.000109

B
Supplem

entary
Tables

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4 (continued)

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

Glycerophospholipid

PC ae C42:5 0.065 1.000 0.075 0.999 0.842 0.072 0.983
PC ae C44:3 0.204 1.000 0.140 1.000 0.466 0.117 1.000
PC ae C44:4 0.120 1.000 0.128 1.000 0.776 0.141 1.000
PC ae C44:5 0.056 1.000 0.084 1.000 0.860 0.086 1.000
PC ae C44:6 0.064 1.000 0.090 1.000 0.859 0.081 1.000

Sphingolipid

SM (OH) C14:1 0.111 1.000 0.137 1.000 0.745 0.141 1.000
SM (OH) C16:1 0.110 1.000 0.096 1.000 0.789 0.136 1.000
SM (OH) C22:1 0.104 1.000 0.152 1.000 0.673 0.165 1.000
SM (OH) C22:2 0.110 1.000 0.136 1.000 0.697 0.101 1.000
SM (OH) C24:1 0.148 1.000 0.186 1.000 0.650 0.192 1.000
SM C16:0 0.105 1.000 0.137 1.000 0.547 0.088 1.000
SM C16:1 0.098 1.000 0.124 1.000 0.713 0.152 1.000
SM C18:0 0.136 1.000 0.106 1.000 0.702 0.073 1.000
SM C18:1 0.090 1.000 0.118 1.000 0.783 0.107 1.000
SM C20:2 0.131 0.999 0.174 0.999 0.526 0.139 1.000
SM C22:3 4.690 0.434 0.583 0.558 0.019 0.931 0.825
SM C24:0 0.109 1.000 0.152 1.000 0.431 0.168 1.000
SM C24:1 0.105 1.000 0.157 1.000 0.565 0.146 1.000
SM C26:0 0.405 1.000 0.537 1.000 0.567 0.274 1.000
SM C26:1 0.197 1.000 0.259 1.000 0.669 0.262 1.000

110

Table B.1: QC Results of Targeted Metabolomics: KORA S4-F4-FF4 (continued)

Biochemical Class Metabolite
KORA S4 KORA F4 KORA FF4

RSD ≥ LOD∗ RSD ≥ LOD∗ CC∗∗ RSD ≥ LOD∗

Monosaccharide H1 0.056 1.000 0.077 1.000 0.624 0.066 1.000
∗the proportion of subject samples metabolite values ≥ LOD.
∗∗the Spearman CC between the metabolite values measured with the tow different kits.

111

B
Supplem

entary
Tables

Table B.2: QC Results of Proteomics from Inflammation Panel: KORA S4-F4

Biomarker UniProt ID
KORA S4 KORA F4

IntraRSD InterRSD ≥ LOD∗ IntraRSD InterRSD ≥ LOD∗

4E-BP1 Q13541 0.058 0.642 1.000 0.038 0.086 1.000
ADA P00813 0.069 0.294 1.000 0.037 0.088 1.000
ARTN Q5T4W7 NA NA 0.061 NA NA 0.047
AXIN1 O15169 0.051 0.484 0.984 0.045 0.087 0.899
BDNF P23560 NA NA NA 0.028 0.081 0.731
Beta-NGF P01138 NA NA 0.014 0.036 0.076 1.000
CASP-8 Q14790 0.062 0.480 0.863 0.071 0.359 0.993
CCL11 P51671 0.058 0.142 1.000 0.028 0.069 1.000
CCL19 Q99731 0.055 0.157 1.000 0.029 0.070 1.000
CCL20 P78556 0.073 0.213 1.000 0.032 0.071 1.000
CCL23 P55773 0.054 0.123 1.000 0.029 0.061 1.000
CCL25 O15444 0.060 0.108 1.000 0.032 0.076 1.000
CCL28 Q9NRJ3 0.074 0.120 1.000 0.041 0.146 0.990
CCL3 P10147 0.065 0.127 1.000 0.033 0.090 1.000
CCL4 P13236 0.061 0.146 1.000 0.028 0.058 1.000
CD244 Q9BZW8 0.072 0.213 1.000 0.022 0.089 1.000
CD40 P25942 0.053 0.253 1.000 0.025 0.078 1.000
CD5 P06127 0.061 0.208 1.000 0.031 0.093 1.000
CD6 P30203 0.116 0.286 1.000 0.038 0.129 1.000
CD8A P01732 0.084 0.142 1.000 NA NA NA

112

Table B.2: QC Results of Proteomics from Inflammation Panel: KORA S4-F4 (continued)

Biomarker UniProt ID
KORA S4 KORA F4

IntraRSD InterRSD ≥ LOD∗ IntraRSD InterRSD ≥ LOD∗

CDCP1 Q9H5V8 0.103 0.125 1.000 0.039 0.096 1.000
CSF-1 P09603 0.057 0.082 1.000 0.022 0.088 1.000
CST5 P28325 0.048 0.119 1.000 0.024 0.066 1.000
CX3CL1 P78423 0.084 0.130 1.000 0.037 0.108 1.000
CXCL1 P09341 0.055 0.430 1.000 0.025 0.058 1.000
CXCL10 P02778 0.060 0.157 1.000 0.031 0.060 1.000
CXCL11 O14625 0.056 0.380 1.000 0.025 0.058 1.000
CXCL5 P42830 0.045 0.401 1.000 0.027 0.058 1.000
CXCL6 P80162 0.056 0.302 1.000 0.024 0.089 1.000
CXCL9 Q07325 0.055 0.128 1.000 0.032 0.054 1.000
DNER Q8NFT8 0.042 0.096 1.000 0.023 0.080 1.000
EN-RAGE P80511 0.079 0.282 1.000 0.049 0.110 1.000
FGF-19 O95750 0.057 0.133 1.000 0.029 0.084 1.000
FGF-21 Q9NSA1 0.063 0.111 1.000 0.031 0.073 1.000
FGF-23 Q9GZV9 0.083 0.092 0.186 0.050 0.076 0.998
FGF-5 P12034 0.089 0.085 0.234 0.043 0.087 0.975
Flt3L P49771 0.063 0.116 1.000 0.027 0.081 1.000
GDNF P39905 0.089 0.121 0.541 0.085 0.084 0.905
HGF P14210 0.053 0.148 1.000 0.025 0.075 1.000
IFN-gamma P01579 0.069 0.141 1.000 NA NA 0.015113

B
Supplem

entary
Tables

Table B.2: QC Results of Proteomics from Inflammation Panel: KORA S4-F4 (continued)

Biomarker UniProt ID
KORA S4 KORA F4

IntraRSD InterRSD ≥ LOD∗ IntraRSD InterRSD ≥ LOD∗

IL-1 alpha P01583 NA NA 0.050 NA NA 0.031
IL-10 P22301 0.095 0.162 0.997 0.053 0.104 1.000
IL-10RA Q13651 0.082 0.097 0.674 0.026 0.092 0.735
IL-10RB Q08334 0.065 0.096 1.000 0.031 0.104 1.000
IL-12B P29460 0.066 0.133 1.000 0.032 0.069 1.000
IL-13 P35225 0.070 0.119 0.094 NA NA 0.051
IL-15RA Q13261 0.087 0.099 1.000 0.056 0.105 0.976
IL-17A Q16552 0.100 0.131 0.539 0.049 0.093 0.670
IL-17C Q9P0M4 0.067 0.058 0.441 0.062 0.069 0.777
IL-18 Q14116 0.056 0.149 1.000 0.030 0.064 1.000
IL-18R1 Q13478 0.053 0.111 1.000 0.030 0.076 1.000
IL-2 P60568 NA NA 0.002 NA NA 0.001
IL-20 Q9NYY1 NA NA 0.036 NA NA 0.046
IL-20RA Q9UHF4 0.076 0.092 0.113 NA NA 0.070
IL-22RA1 Q8N6P7 0.090 0.147 0.129 NA NA 0.002
IL-24 Q13007 NA NA 0.045 NA NA 0.065
IL-2RB P14784 NA 0.018 0.082 NA NA 0.046
IL-33 O95760 NA NA 0.019 NA NA 0.020
IL-4 P05112 NA 0.024 0.103 NA NA 0.081
IL-5 P05113 0.084 0.156 0.099 NA NA 0.274

114

Table B.2: QC Results of Proteomics from Inflammation Panel: KORA S4-F4 (continued)

Biomarker UniProt ID
KORA S4 KORA F4

IntraRSD InterRSD ≥ LOD∗ IntraRSD InterRSD ≥ LOD∗

IL-6 P05231 0.053 0.124 0.985 0.044 0.107 0.979
IL-7 P13232 0.077 0.204 1.000 0.027 0.060 0.999
IL-8 P10145 0.057 0.139 1.000 0.030 0.089 1.000
LAP TGF-beta-1 P01137 0.053 0.173 1.000 0.100 0.166 0.999
LIF P15018 0.054 0.074 0.043 NA NA 0.050
LIF-R P42702 0.072 0.111 1.000 0.034 0.101 1.000
MCP-1 P13500 0.049 0.112 1.000 0.029 0.060 1.000
MCP-2 P80075 0.089 0.165 1.000 0.027 0.080 1.000
MCP-3 P80098 0.077 0.091 0.895 0.065 0.103 0.970
MCP-4 Q99616 0.048 0.327 1.000 0.030 0.095 1.000
MMP-1 P03956 0.047 0.282 1.000 0.023 0.054 1.000
MMP-10 P09238 0.049 0.114 1.000 0.027 0.088 1.000
NRTN Q99748 NA NA 0.044 NA NA 0.028
NT-3 P20783 0.077 0.128 0.996 0.048 0.105 0.993
OPG O00300 0.046 0.120 1.000 0.023 0.050 1.000
OSM P13725 0.065 0.169 1.000 0.023 0.069 0.996
PD-L1 Q9NZQ7 0.060 0.155 1.000 0.048 0.096 1.000
SCF P21583 0.042 0.089 1.000 0.021 0.058 1.000
SIRT2 Q8IXJ6 0.070 1.002 0.870 0.054 0.097 1.000
SLAMF1 Q13291 NA 0.044 0.359 0.064 0.107 1.000115

B
Supplem

entary
Tables

Table B.2: QC Results of Proteomics from Inflammation Panel: KORA S4-F4 (continued)

Biomarker UniProt ID
KORA S4 KORA F4

IntraRSD InterRSD ≥ LOD∗ IntraRSD InterRSD ≥ LOD∗

ST1A1 P50225 NA NA 0.870 0.064 0.140 0.955
STAMBP O95630 0.067 0.864 1.000 0.036 0.092 1.000
TGF-alpha P01135 0.090 0.105 1.000 0.031 0.095 1.000
TNF P01375 0.061 0.095 1.000 NA NA 0.041
TNFB P01374 0.077 0.103 1.000 0.044 0.088 1.000
TNFRSF9 Q07011 0.063 0.109 1.000 0.030 0.097 1.000
TNFSF14 O43557 0.066 0.352 1.000 0.028 0.078 1.000
TRAIL P50591 0.049 0.092 1.000 0.027 0.072 1.000
TRANCE O14788 0.082 0.134 1.000 0.046 0.088 1.000
TSLP Q969D9 NA NA 0.061 NA NA 0.008
TWEAK O43508 0.065 0.139 1.000 0.023 0.062 1.000
uPA P00749 0.044 0.115 1.000 0.025 0.046 1.000
VEGF-A P15692 0.067 0.132 1.000 0.029 0.076 1.000
∗the proportion of subject samples protein values ≥ LOD.

116

C Package Manual: TIGER

117

Package ‘TIGERr’
January 4, 2022

Type Package
Title Technical Variation Elimination with Ensemble Learning Architecture
Version 1.0.0
Author Siyu Han [aut, cre], Jialing Huang [aut], Francesco Foppiano [aut], Cor-

nelia Prehn [aut], Jerzy Adamski [aut], Karsten Suhre [aut], Ying Li [aut], Giuseppe Mat-
ullo [aut], Freimut Schliess [aut], Christian Gieger [aut], Annette Peters [aut], Rui Wang-
Sattler [aut]

Maintainer Siyu Han <siyu.han@helmholtz-muenchen.de>

Acknowledgments TAI Yun-hsiu, WANG Ruoyu, CHENG Ming, GUO Yuan, LI Han, FAN Linrui
Description The R implementation of TIGER.

TIGER integrates random forest algorithm into an innovative ensemble learning architec-
ture. Benefiting from this advanced architecture, TIGER is resilient to out-
liers, free from model tuning and less likely to be affected by specific hyperparameters.
TIGER supports targeted and untargeted metabolomics data and is competent to perform both in-
tra- and inter-batch technical variation removal. TIGER can also be used for cross-kit adjust-
ment to ensure data obtained from different analytical assays can be effectively com-
bined and compared.
Reference: Han S. et al. (2022) <doi:10.1093/bib/bbab535>.

License GPL (>= 3)
Depends R (>= 3.5.0)
Imports parallel (>= 2.1.0),

pbapply (>= 1.4-3),
ppcor (>= 1.1),
randomForest (>= 4.6-14),
stats (>= 3.0.0)

BugReports https://github.com/HAN-Siyu/TIGER/issues

Encoding UTF-8
LazyData true
RoxygenNote 7.1.1

R topics documented:
compute_RSD . 2
compute_targetVal . 2
FF4_qc . 4
run_TIGER . 5
select_variable . 11

1

2 compute_RSD

Index 14

compute_RSD Compute RSD (relative standard deviation)

Description

This function computes the RSD (relative standard deviation) of the values in input_data. Missing
values are removed before the computation automatically.

Usage

compute_RSD(input_data)

Arguments

input_data a numeric vector

Details

The RSD in this function is computed by:

sd(input_data,na.rm = TRUE) / mean(input_data,na.rm = TRUE).

Value

The RSD of the values in input_data is computed, as a numeric of length one.

Examples

RSD_1 <- compute_RSD(c(1:10))

data(FF4_qc) # load demo dataset

RSD of QC:
RSD_2 <- sapply(FF4_qc[FF4_qc$sampleType == "QC", -c(1:5)], compute_RSD)
quantile(RSD_2)

RSD of different types of QC samples:
(each metabolote has its own RSD)
RSD_3 <- aggregate(FF4_qc[-c(1:5)], by = list(Type = FF4_qc$sampleType),

FUN = compute_RSD)

compute_targetVal 3

compute_targetVal Compute target values for ensemble learning architecture

Description

This function provides an advanced option to calculate the target values of one reference dataset
(i.e. QC_num, numeric values of quality control samples). The generated target values (a list) can be
further passed to argument targetVal_external in function run_TIGER such that TIGER can align
the test_samples with the reference dataset. This is useful for longitudinal datasets correction and
cross-kit adjustment. See case study section of our original paper for detailed explanation.

Usage

compute_targetVal(
QC_num,
sampleType,
batchID = NULL,
targetVal_method = c("mean", "median"),
targetVal_batchWise = FALSE,
targetVal_removeOutlier = !targetVal_batchWise,
coerce_numeric = FALSE

)

Arguments

QC_num a numeric data.frame including the metabolite values of quality control (QC)
samples. Missing values and infinite values will not be taken into account. Row:
sample. Column: metabolite variable. See Examples.

sampleType a vector corresponding to QC_num to specify the type of each QC sample. QC
samples of the same type should have the same type name. See Examples.

batchID a vector corresponding to QC_num to specify the batch of each sample. Ignored
if targetVal_batchWise = FALSE. See Examples.

targetVal_method

a character string specifying how the target values are computed. Can be "mean"
(default) or "median". See Details.

targetVal_batchWise

logical. If TRUE, the target values will be computed based on each batch, other-
wise, based on the whole dataset. Setting TRUE might be useful if your dataset
has very obvious batch effects, but this may also make the algorithm less robust.
See Details. Default: FALSE.

targetVal_removeOutlier

logical. If TRUE, outliers will be removed before the computation. Outliers are
determined with 1.5 * IQR (interquartile range) rule. We recommend turning
this off when the target values are computed based on batches. See Details.
Default: !targetVal_batchWise.

coerce_numeric logical. If TRUE, values in QC_num will be coerced to numeric before the com-
putation. The columns cannot be coerced will be removed (with warnings). See
Examples. Default: FALSE.

4 compute_targetVal

Details

See run_TIGER.

Value

If targetVal_batchWise = FALSE, the function returns a list of length one containing the target
values computed on the whole dataset.

If targetVal_batchWise = TRUE, a list containing the target values computed on different batches
is returned. The length of the returned list equals the number of batch specified by batchID.

Examples

data(FF4_qc) # load demo dataset
QC_num <- FF4_qc[-c(1:5)] # only contain numeric metabolite values.

target values computed on the whole dataset:
tarVal_1 <- compute_targetVal(QC_num = QC_num,

sampleType = FF4_qc$sampleType,
batchID = FF4_qc$plateID,
targetVal_method = "mean",
targetVal_batchWise = FALSE,
targetVal_removeOutlier = TRUE)

target values computed on batches:
tarVal_2 <- compute_targetVal(QC_num = QC_num,

sampleType = FF4_qc$sampleType,
batchID = FF4_qc$plateID,
targetVal_method = "mean",
targetVal_batchWise = TRUE,
targetVal_removeOutlier = FALSE)

If coerce_numeric = TRUE,
columns cannot be coerced to numeric will be removed (with warnings):
tarVal_3 <- compute_targetVal(QC_num = FF4_qc[-c(4:5)],

sampleType = FF4_qc$sampleType,
batchID = FF4_qc$plateID,
targetVal_method = "mean",
targetVal_batchWise = TRUE,
targetVal_removeOutlier = FALSE,
coerce_numeric = TRUE)

identical(tarVal_2, tarVal_3) # identical to tarVal_2

Not run:

will throw errors if input data have non-numeric columns
and coerce_numeric = FALSE:

tarVal_4 <- compute_targetVal(QC_num = FF4_qc,
sampleType = FF4_qc$sampleType,
batchID = FF4_qc$plateID,
targetVal_method = "mean",
targetVal_batchWise = TRUE,
targetVal_removeOutlier = FALSE,
coerce_numeric = FALSE)

End(Not run)

FF4_qc 5

FF4_qc Accompanying QC samples of KORA FF4 (demo data)

Description

This demo dataset, a data.frame with 232 samples (rows) and 108 variables (columns). The dataset
includes four types of quality control (QC) samples from 29 kit plates:

• QC1 (N = 29, one per plate),

• QC2 (N = 29, one per plate),

• QC3 (N = 29, one per plate),

• QC (N = 145, five per plate).

The columns include sample ID, sample type, plate ID, well position, injection order and the con-
centrations of 103 selected targeted metabolites. These QC samples are measured with the cohort
samples of KORA FF4 (Cooperative Health Research in the Augsburg Region, the second follow-
up study, 2013–2014) using the analytical assay Biocrates AbsoluteIDQ® p180 (BIOCRATES Life
Sciences AG, Innsbruck, Austria).

In our paper, we used QC as training samples, while QC1, QC2, QC3 and cohort samples were used
as test samples. The cohort data are operated by Helmholtz Zentrum München and available via
KORA platform https://www.helmholtz-muenchen.de/en/kora/index.html upon reasonable
request. See Reference for detailed information.

Usage

data(FF4_qc)

Reference

Han S. et al. TIGER: technical variation elimination for metabolomics data using ensemble learn-
ing architecture. Briefings in Bioinformatics (2022) bbab535. https://doi.org/10.1093/bib/
bbab535.

run_TIGER Run TIGER to eliminate technical variation

Description

Use TIGER algorithm to eliminate the technical variation in metabolomics data. TIGER supports
targeted and untargeted metabolomics data and is competent to perform both intra- and inter-batch
technical variation removal.

6 run_TIGER

Usage

run_TIGER(
test_samples,
train_samples,
col_sampleID,
col_sampleType,
col_batchID,
col_order = NULL,
col_position = NULL,
targetVal_external = NULL,
targetVal_method = c("mean", "median"),
targetVal_batchWise = FALSE,
targetVal_removeOutlier = !targetVal_batchWise,
selectVar_external = NULL,
selectVar_corType = c("cor", "pcor"),
selectVar_corMethod = c("pearson", "spearman"),
selectVar_minNum = 5,
selectVar_maxNum = 10,
selectVar_batchWise = FALSE,
mtry_percent = seq(0.2, 0.8, 0.2),
nodesize_percent = seq(0.2, 0.8, 0.2),
...,
parallel.cores = 2

)

Arguments

test_samples (required) a data.frame containing the samples to be corrected (for example,
subject samples). This data.frame should contain columns of

• sample ID (required): name or label for each sample,
• sample type (required): indicating the type of each sample,
• batch ID (required): the batch of each sample,
• order information (optional): injection order or temporal information of

each sample,
• position information (optional): well position of each sample,
• metabolite values (required): values to be normalised. Infinite values are

not allowed.

Row: sample. Column: variable. See Examples.

train_samples (required) a data.frame containing the quality control (QC) samples used for
model training. The columns in this data.frame should correspond to the columns
in test_samples. And test_samples and train_samples should have the
identical column names.

col_sampleID (required) a character string indicating the name of the column that specifies the
sample ID of each sample. The values in this column will not affect the data
correction process but can act as labels for different samples. See Examples.

col_sampleType (required) a character string indicating the name of the column that specifies the
type (such as QC1, QC2, subject) of each sample. This column can be used to
indicate different kinds of QC samples in train_samples. QC samples of the
same type should have the same type name. See Examples.

run_TIGER 7

col_batchID (required) a character string indicating the name of the column that specifies the
batch ID of each sample. See Examples.

col_order (optional) NULL or a character string indicating the name of the column that con-
tains the injection order or temporal information (numeric values). This can
explicitly ask the algorithm capture the technical variation introduced by injec-
tion order, which might be useful when your data have very obvious temporal
drifts. If NULL (default), train_samples and test_samples should have No
column contains injection order information.

col_position (optional) NULL or a character string indicating the name of the column that
contains the well position information (numeric values). This can explicitly
ask the algorithm capture the technical variation introduced by well position,
which might be useful when the well position has a great impact during data
acquisition. If NULL (default), train_samples and test_samples should have
No column contains well position information.

targetVal_external

(optional) a list generated by function compute_targetVal. See Details.
targetVal_method

a character string specifying how target values are to be computed. Can be
"mean" (default) or "median". Ignored if a list of external target values has
been assigned to targetVal_external.

targetVal_batchWise

logical. If TRUE, the target values will be computed based on each batch, other-
wise, based on the whole dataset. Setting TRUE might be useful if your dataset
has very obvious batch effects, but this may also make the algorithm less robust.
Default: FALSE. Ignored if a list of external target values has been assigned to
targetVal_external.

targetVal_removeOutlier

logical. If TRUE, outliers will be removed before the computation. Outliers
are determined with 1.5 * IQR (interquartile range) rule. We recommend turn-
ing this off when the target values are computed based on batches. Default:
!targetVal_batchWise. Ignored if a list of external target values has been
assigned to targetVal_external.

selectVar_external

(optional) a list generated by function select_variable. See Details.
selectVar_corType

a character string indicating correlation ("cor", default) or partial correlation
("pcor") is to be used. Can be abbreviated. Ignored if a list of selected variables
has been assigned to selectVar_external. Note: computing partial correla-
tions of a large dataset can be very time-consuming.

selectVar_corMethod

a character string indicating which correlation coefficient is to be computed.
One of "spearman" (default) or "pearson". Can be abbreviated. Ignored if a
list of selected variables has been assigned to selectVar_external.

selectVar_minNum

an integer specifying the minimum number of the selected metabolite variables
(injection order and well position are not regarded as metabolite variables). If
NULL, no limited, but 1 at least. Default: 5. Ignored if a list of selected variables
has been assigned to selectVar_external.

selectVar_maxNum

an integer specifying the maximum number of the selected metabolite variables
(injection order and well position are not regarded as metabolite variables). If

8 run_TIGER

NULL, no limited, but no more than the number of all available metabolite vari-
ables. Default: 10. Ignored if a list of selected variables has been assigned to
selectVar_external.

selectVar_batchWise

(advanced) logical. Specify whether the variable selection should be performed
based on each batch. Default: FALSE. Ignored if a list of selected variables
has been assigned to selectVar_external. Note: the support of batch-wise
variable selection is provided for data requiring special processing (for example,
data with strong batch effects). But in most case, batch-wise variable selection
is not necessary. Setting TRUE can make the algorithm less robust.

mtry_percent (advanced) a numeric vector indicating the percentages of selected variables ran-
domly sampled as candidates at each split when training random forest models
(base learners). Note: providing more arguments will include more base learn-
ers into the ensemble model, which will increase the processing time. Default:
seq(0.2,0.8,0.2).

nodesize_percent

(advanced) a numeric vector indicating the percentages of sample size used
as the minimum sizes of the terminal nodes in random forest models (base
learners). Note: providing more arguments will include more base learners
into the ensemble model, which will increase the processing time. Default:
seq(0.2,0.8,0.2).

... (advanced) optional arguments (except mtry and nodesize) to be passed to
randomForest for model training. Arguments mtry and nodesize are deter-
mined by mtry_percent and nodesize_percent. See randomForest and Ex-
amples. Note: providing more arguments will include more base learners into
the ensemble model, which will increase the processing time.

parallel.cores an integer (== -1 or >= 1) specifying the number of cores for parallel computa-
tion. Setting -1 to run with all cores. Default: 2.

Details

TIGER can effectively process the datasets with its default setup. The following hyperparameters
are provided to customise the algorithm and achieve the best possible performance. These hyper-
parameters are also practical for some special purposes (such as cross-kit adjustment, longitudinal
dataset correction) or datasets requiring special processing (for example, data with very strong tem-
poral drifts or batch effects). We recommend users to examine the normalised result with different
metrics, such as RSD (relative standard deviation), MAPE (mean absolute percentage error) and
PCA (principal component analysis), especially when using advanced options of TIGER.

Hyperparameters for target value computation

• targetVal_external

TIGER by default captures and eliminate the technical variation within the input dataset, and
the target values are automatically computed from train_samples. The target values can
also be calculated from a reference dataset using function compute_targetVal and then
passed to this function as an argument. This will enable TIGER to align test_samples
with the reference dataset. In this case, train_samples is still the accompanying QC sam-
ples of test_samples. And argument targetVal_external accepts external target val-
ues (a list). If the list of external target values is provided, values in targetVal_method,
targetVal_batchWise and targetVal_removeOutlier will be ignored.

• targetVal_method

run_TIGER 9

The target values can be the mean or median values of metabolite values. The target values of
different kinds of QC samples are computed separately. "mean" is recommended here, but the
optimal selection can differ for different datasets.

• targetVal_batchWise

The target values can be computed from the whole dataset or from different batches. By
default, the target values are computed based on the whole dataset. Computing based on
batches (targetVal_batchWise = TRUE) is only recommended when the samples has very
strong batch effects. For example, we set this as TRUE when normalising WaveICA’s Amide
dataset in our original paper.

• targetVal_removeOutlier

If computing is based on the whole dataset (targetVal_batchWise = TRUE), users can re-
move the outliers in each metabolite by setting targetVal_removeOutlier as TRUE. This
can weaken the impact of extreme values. If targetVal_batchWise = FALSE, it is generally
not recommended to remove outliers, as we assume the input data have strong batch effects
and contain extreme values—we hope TIGER can take these into account. Code for checking
outliers is adapted from boxplot.stats.

Hyperparameters for variable selection

• selectVar_external:
This argument accepts a list of selected variables generated by select_variable. This is
helpful when you want to use the same selected variables to correct several datasets. You can
also pass a self-defined list to this argument, as long as the self-defined list has similar data
structure as the one generated by select_variable.

• selectVar_corType and selectVar_corMethod:
TIGER supports Pearson product-moment correlation ("pearson") and Spearman’s rank cor-
relation ("spearman") to compute correlation coefficients ("cor") or partial correlation coef-
ficients ("por") for variable selection. See cor and pcor for further details.

• selectVar_minNum and selectVar_maxNum:
For an objective metabolite to be corrected, the intersection of its top t highly-correlated
metabolites calculated from training and test samples are selected to train the ensemble model.
The highly-correlated metabolites are the ones with correlation coefficients greater than 0.5
(the objective metabolite itself will not be regarded as its highly-correlated metabolite). Ar-
guments selectVar_minNum and selectVar_maxNum are used to avoid selecting too many or
too few metabolites. Selecting too many metabolites can lower the process, sometimes even
lower the accuracy.

• selectVar_batchWise:
Advanced option designed for special cases. Setting it TRUE might be useful when your data
have very obvious batch effects.

Hyperparameters for model construction

• mtry_percent, nodesize_percent and ...:
Advanced options to specify mtry, nodesize and other related arguments in randomForest
for a customised ensemble learning architecture. See Examples.

Value

This function returns a data.frame with the same data structure as the input test_samples, but the
metabolite values are the normalised/corrected ones. NA and zeros in the original test_samples
will not be changed or normalised.

10 run_TIGER

Reference

Han S. et al. TIGER: technical variation elimination for metabolomics data using ensemble learn-
ing architecture. Briefings in Bioinformatics (2022) bbab535. https://doi.org/10.1093/bib/
bbab535.

Examples

data(FF4_qc) # load demo dataset

QC as training samples; QC1, QC2 and QC3 as test samples:
train_samples <- FF4_qc[FF4_qc$sampleType == "QC",]
test_samples <- FF4_qc[FF4_qc$sampleType != "QC",]

col_sampleID includes labels. You can assign names for different samples:
train_samples$sampleID <- "train"
test_samples$sampleID <- "test"

Use default setting and
include injection order and well position into feature set:
test_norm_1 <- run_TIGER(test_samples = test_samples,

train_samples = train_samples,
col_sampleID = "sampleID", # input column name
col_sampleType = "sampleType", # input column name
col_batchID = "plateID", # input column name
col_order = "injectionOrder", # input column name
col_position = "wellPosition", # input column name
parallel.cores = 2)

If the information of injection order and well position is not available,
or you don't want to use them:
train_data <- train_samples[-c(4:5)] # remove the two columns
test_data <- test_samples[-c(4:5)] # remove the two columns

test_norm_2 <- run_TIGER(test_samples = test_data,
train_samples = train_data,
col_sampleID = "sampleID",
col_sampleType = "sampleType",
col_batchID = "plateID",
col_order = NULL, # set NULL
col_position = NULL, # set NULL
parallel.cores = 2)

If use external target values and selected variables with
customised settings:
target_val <- compute_targetVal(QC_num = train_samples[-c(1:5)],

sampleType = train_samples$sampleType,
batchID = train_samples$plateID,
targetVal_method = "median",
targetVal_batchWise = TRUE)

select_var <- select_variable(train_num = train_samples[-c(1:5)],
test_num = test_samples[-c(1:5)],
train_batchID = train_samples$plateID,
test_batchID = test_samples$plateID,
selectVar_corType = "pcor",
selectVar_corMethod = "spearman",

select_variable 11

selectVar_minNum = 10,
selectVar_maxNum = 30,
selectVar_batchWise = TRUE)

test_norm_3 <- run_TIGER(test_samples = test_samples,
train_samples = train_samples,
col_sampleID = "sampleID",
col_sampleType = "sampleType",
col_batchID = "plateID",
col_order = "injectionOrder",
col_position = "wellPosition",
targetVal_external = target_val,
selectVar_external = select_var,
parallel.cores = 2)

The definitions of other hyperparameters correspond to
randomForest::randomForest().
If want to include more hyperparameters into model training,
put hyperparameter values like this:
mtry_percent <- c(0.4, 0.8)
nodesize_percent <- c(0.4, 0.8)
replace <- c(TRUE, FALSE)
ntree <- c(100, 200, 300)

test_norm_4 <- run_TIGER(test_samples = test_data,
train_samples = train_data,
col_sampleID = "sampleID",
col_sampleType = "sampleType",
col_batchID = "plateID",
mtry_percent = mtry_percent,
nodesize_percent = nodesize_percent,
replace = replace,
ntree = ntree,
parallel.cores = 2)

test_norm_4 is corrected by the ensemble model consisted of base learners
trained with (around) 24 different hyperparameter combinations:
expand.grid(mtry_percent, nodesize_percent, replace, ntree)

Note: mtry and nodesize are calculated by mtry_percent and nodesize_percent,
duplicated hyperparameter combinations, if any, will be removed.
Thus, the total number of hyperparameter combinations can be less than 24.
This is determined by the shape of your input datasets.

select_variable Select variables for ensemble learning architecture

Description

This function provides an advanced option to select metabolite variables from external dataset(s).
The selected variables (as a list) can be further passed to argument selectVar_external in func-
tion run_TIGER for a customised data correction.

12 select_variable

Usage

select_variable(
train_num,
test_num = NULL,
train_batchID = NULL,
test_batchID = NULL,
selectVar_corType = c("cor", "pcor"),
selectVar_corMethod = c("spearman", "pearson"),
selectVar_minNum = 5,
selectVar_maxNum = 10,
selectVar_batchWise = FALSE,
coerce_numeric = FALSE

)

Arguments

train_num a numeric data.frame only including the metabolite values of training samples
(can be quality control samples). Information such as injection order or well
position need to be excluded. Row: sample. Column: metabolite variable. See
Examples.

test_num an optional numeric data.frame including the metabolite values of test sam-
ples (can be subject samples). If provided, the column names of test_num
should correspond to the column names of train_num. Row: sample. Column:
metabolite variable. If NULL, the variables will be selected based on train_num
only. See Examples.

train_batchID NULL or a vector corresponding to train_num to specify the batch of each sam-
ple. Ignored if selectVar_batchWise = FALSE. See Examples.

test_batchID NULL or a vector corresponding to test_num to specify the batch of each sample.
Ignored if selectVar_batchWise = FALSE. See Examples.

selectVar_corType

a character string indicating correlation ("cor", default) or partial correlation
("pcor") is to be used. Can be abbreviated. See Details. Note: computing
partial correlations of a large dataset can be very time-consuming.

selectVar_corMethod

a character string indicating which correlation coefficient is to be computed.
One of "spearman" (default) or "pearson". Can be abbreviated. See Details.

selectVar_minNum

an integer specifying the minimum number of the selected variables. If NULL,
no limited, but 1 at least. See Details. Default: 5.

selectVar_maxNum

an integer specifying the maximum number of the selected variables. If NULL,
no limited, but ncol(train_num) -1 at most. See Details. Default: 10.

selectVar_batchWise

(advanced) logical. Specify whether the variable selection should be performed
based on each batch. Default: FALSE. Note: if TRUE, batch ID of each sample
are required. The support of batch-wise variable selection is provided for data
requiring special processing (for example, data with strong batch effects). But
in most case, batch-wise variable selection is not necessary. Setting TRUE might
make the algorithm less robust. See Details.

select_variable 13

coerce_numeric logical. If TRUE, values in train_num and test_num will be coerced to numeric
before the computation. The columns cannot be coerced will be removed (with
warnings). See Examples. Default: FALSE.

Details

See run_TIGER.

Value

If selectVar_batchWise = FALSE, the function returns a list of length one containing the selected
variables computed on the whole dataset.

If selectVar_batchWise = TRUE, a list containing the selected variables computed on different
batches is returned. The length of the returned list equals the number of batch specified by test_batchID
and/or train_batchID.

Examples

data(FF4_qc) # load demo dataset

QC as training samples; QC1, QC2 and QC3 as test samples:
train_samples <- FF4_qc[FF4_qc$sampleType == "QC",]
test_samples <- FF4_qc[FF4_qc$sampleType != "QC",]

Only numeric data of metabolite variables are allowed:
train_num = train_samples[-c(1:5)]
test_num = test_samples[-c(1:5)]

If the selection is performed on the whole dataset:
based on training samples only:
selected_var_1 <- select_variable(train_num = train_num,

test_num = NULL,
selectVar_batchWise = FALSE)

also consider test samples:
selected_var_2 <- select_variable(train_num = train_num,

test_num = test_num,
selectVar_batchWise = FALSE)

If the selection is based on different batches:
(In selectVar_batchWise, batch ID is required.)
selected_var_3 <- select_variable(train_num = train_num,

test_num = NULL,
train_batchID = train_samples$plateID,
test_batchID = NULL,
selectVar_batchWise = TRUE)

If coerce_numeric = TRUE,
columns cannot be coerced to numeric will be removed (with warnings):
(In this example, columns of injection order and well position are excluded.
Because we don't want to calculate the correlations between metabolites and
injection order/well position.)
selected_var_4 <- select_variable(train_num = train_samples[-c(4,5)],

train_batchID = train_samples$plateID,
selectVar_batchWise = TRUE,
coerce_numeric = TRUE)

14 select_variable

identical(selected_var_3, selected_var_4) # identical to selected_var_3

Not run:

will throw errors if input data have non-numeric columns
and coerce_numeric = FALSE:

selected_var_5 <- select_variable(train_num = train_samples[-c(4,5)],
coerce_numeric = FALSE)

End(Not run)

Index

boxplot.stats, 8

compute_RSD, 2
compute_targetVal, 2, 6, 8
cor, 9

FF4_qc, 4

pcor, 9

randomForest, 8, 9
run_TIGER, 2, 3, 5, 11, 12

select_variable, 7, 9, 11

15

D Package Manual: LEOPARD

135

How to Train Your LEOPARD

August 2, 2024

1 Intro
This notebook provides a brief instruction for training your own LEOPARD. You can also use the
following code to reproduce the result of the MGH COVID dataset reported in our paper. The
result may vary slightly with each run due to the stochastic mechanisms involved. Any questions
regarding the code, please contact the zookeeper: Siyu Han (siyu.han@tum.de)

1.1 Step 1: Import required modules
Before proceeding, ensure that the following dependencies are properly installed: - python: 3.79 -
numpy: 1.23.5 - pandas: 1.4.4 - scikit-learn: 1.0.2 - pytorch: 1.11.10 - pytorch_lightning: 1.6.4 -
tensorboard: 2.10.0 - cuda (if use GPU): 11.3

The listed version numbers represent those utilized during our development. We cannot guarantee
the compatibility or identical outcomes with different versions.

[1]: import torch
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger

from src.data import *
from src.train import TrainLEOPARD

1.2 Step 2: Prepare dataset
This is done by the function prepare_dataset(). This function does the following things: 1. load
data and format them into training/validation/test sets with the function load_split_data(). 2.
scale data use a scaler with the function scale_data(). 3. create an instance of OmicsDataset
class using scaled data for each data split.

The function prepare_dataset() receives arguments for the following parameters: - data_dir: a
string to specify the folder containing the data of two views (A and B) and two timepoints (1 and
2). The data are saved in .csv files with names like “vA_t1_test.csv”, “vB_t1_train.csv”. “v”
and “t” denote views and timepoints. “v*_t*_train.csv” used for model training and validation.
Missing values can be encoded as NA. Even if data from view B at timepoint 2 are completely
missing, you still need to provide a “vB_t2_train.csv” file with the corresponding sample ID and
variable ID, and missing values are indicated with NA. “v*_t*_test.csv” is optional and only used
for performance evaluation. Default: "data\MGH_COVID" - valSet_ratio: a numeric value between
0 and 1 to specify the ratio of data from “v*_t*_train.csv” used for constructing the validation

1

set. Default: 0.2 - trainNum: a numeric value or "all" indicating how many samples will be
randomly selected from the training data for training. Default: "all" - obsNum: a numeric value or
"all" indicating how many samples from “vB_t2_train.csv” will be used for training. Default: 0 -
use_scaler: a string to indicate which scaler is used to scale data. Support "standard", "robust",
and "minmax". Description of the scalers please refer to the User Guide of sklearn.preprocessing.
Default: "standard" - set_seed: a numeric value to set seed for reproducible results. Default: 1 -
save_data_dir: None or a path used for saving the indices of samples used in training. Default: “

[2]: obsNum = 0
trainNum = "all"

loaded_data = prepare_dataset(data_dir="data/MGH_COVID", valSet_ratio=0.2,
trainNum=trainNum, obsNum=obsNum,
use_scaler="standard", set_seed=1,␣

↪save_data_dir=None)

+ loading data:
-load vA_t1 as vA_t1
-load vA_t2 as vA_t2
-load vB_t1 as vB_t1
-load vB_t2 as vB_t2

+ Data scaling using standard scaler:
- vA_t1: use scaler_vA
- vA_t2: use scaler_vA
- vB_t1: use scaler_vB
- vB_t2: use scaler_vB

1.3 Step 3: Create an instance of the TrainLEOPARD class
The pytorch code of LEOPARD is organized into TrainLEOPARD, a LightningModule. LEOPARD
is fully customizable. You can adapt your LEOPARD using the following parameters when instan-
tiating an instance of the TrainLEOPARD class: - train_set, val_set, test_set: data prepared by
prepare_dataset() for training, validation and test - scaler_viewA, scaler_viewB: scaler used
by prepare_dataset() to transform data in two views - pre_layers_viewA, pre_layers_viewB:
pre-layers for view A and view B to convert them to the same dimension. Default: [64], [64] -
post_layers_viewA, post_layers_viewB: post-layers for view A and view B to convert embed-
dings back to data in the original dimension. Default: [64], [64]

• encoder_content_layers: layers for the content encoder. A list where the length indicates
the total number of layers, and each element specifies the size of the corresponding layer.
Default: [64, 64, 64]

• encoder_content_norm: a list indicates if using normalization for the layers in the content en-
coder. Supported "instance", "batch", and "none". Default: ["instance", "instance",
"instance"]

• encoder_content_dropout: a list specifies dropout rate for each layer in the content encoder.
Default: [0, 0, 0]

• encoder_temporal_layers: layers for the temporal encoder. Default: [64, 64, 64]

2

• encoder_temporal_norm: if use normalization for the layers in the temporal encoder? Sup-
ported "instance", "batch", and "none". Default: ["none", "none", "none"]

• encoder_temporal_dropout: dropout rate for each layer in the temporal encoder. Default:
[0, 0, 0]

• generator_block_num: how many layers/blocks are used for the generator. Default: 3

• generator_norm: if use normalization for the layers in the generator? Supported "instance",
"batch", and "none". Default: ["none", "none", "none"]

• generator_dropout: dropout rate for each layer in the generator. Default: [0, 0, 0]

• merge_mode: re-entangle content and temporal representations by concatenation ("concat")
or AdaIN ("adain")? Default: "adain"

• discriminator_layers: layers for the multi-task discriminator. Default: [128, 128]

• discriminator_norm: if use normalization for the layers in the discriminator? Supported
"instance", "batch", and "none". Default: ["none", "none"]

• discriminator_dropout: dropout rate for each layer in the discriminator. Default: [0, 0]

• reconstruction_loss: use "MSE" or "MAE" to compute reconstruction loss? Default: "MSE"

• adversarial_loss: use "MSE" or "BCE" to compute adversarial loss? Default: "MSE"

• weight_reconstruction, weight_adversarial, weight_representation,
weight_contrastive: weights for different losses. Default: 1, 1, 0.1, 0.1

• contrastive_temperature: temperature for NT-Xent-based contrastive loss. Default: 0.05

• lr_G, lr_D: learning rate for generator process (encoders and generator) and discrimination
process (discriminator). You need to tune this for your own datasets. Default: 0.0005,
0.0005

• b1_G, b1_D: beta_1 for Adam Optimizer. Default: 0.9, 0.9

• lr_scheduler_G, lr_scheduler_D: "none" or use "LambdaLR" or "SGDR" as lr scheduler?
Default: "none", "none"

• use_projection_head: if use projection head for contrastive learning? Default: False

• projection_output_size: set output size of projection head. Ignored if
use_projection_head=False. Default: 0

• batch_size: batch size. You need to adjust this based on your sample size. Default:
32

• note: add some additional texts as a hyperparameter to label each run. Default: "obsNum_"
+ str(obsNum)

Some hyperparameters (especially lr_G, lr_D, and batch_size) may need to be tuned for your own
datasets.

[3]: my_leopard = TrainLEOPARD(train_set=loaded_data['train_set'],␣
↪val_set=loaded_data['val_set'],

3

test_set=loaded_data['test_set'],
scaler_viewA=loaded_data['scaler_viewA'],␣

↪scaler_viewB=loaded_data['scaler_viewB'],

pre_layers_viewA=[64], pre_layers_viewB=[64],
post_layers_viewA=[64], post_layers_viewB=[64],

encoder_content_layers=[64, 64, 64],
encoder_content_norm=['instance', 'instance',␣

↪'instance'],
encoder_content_dropout=[0, 0, 0],

encoder_temporal_layers=[64, 64, 64],
encoder_temporal_norm=['none', 'none', 'none'],
encoder_temporal_dropout=[0, 0, 0],

generator_block_num=3,
generator_norm=['none', 'none', 'none'],
generator_dropout=[0, 0, 0],
merge_mode='adain',

discriminator_layers=[64, 64],
discriminator_norm=['none', 'none'],
discriminator_dropout=[0, 0],

reconstruction_loss='MSE', adversarial_loss='MSE',
weight_reconstruction=1, weight_adversarial=1,
weight_representation=0.1,
weight_contrastive=0.1,
contrastive_temperature=0.05,

lr_G=0.0005, lr_D=0.0005, b1_G=0.9, b1_D=0.9,
lr_scheduler_G='none', lr_scheduler_D='none',

use_projection_head=False, projection_output_size=0,
batch_size=32, note="obsNum_" + str(obsNum))

1.4 Step 4: Create an instance of the Trainer class
This is done by calling Trainer() from pytorch_lightning. Trainer can help you train
your LEOPARD. Here we use the following settings (please refer to its Docs for a compre-
hensive parameter explanation): - enable_progress_bar: show progress bar? Default: True -
log_every_n_steps: a numeric value that specifies the interval, in steps, at which metrics should
be logged. Default: 3 - max_epochs: a numeric value that defines the maximum number of epochs
the training loop should run. Default: 100 - gpus: a value indicating which GPUs to use. De-
fault: 1 if torch.cuda.is_available() else None - logger: a tensorboard logger responsible
for logging training/validation metrics and other experiment details.

4

[4]: save_dir = os.path.join("lightning_logs", "trainNum_" + str(trainNum))
name = "obsNum_" + str(obsNum)

trainer = pl.Trainer(
enable_progress_bar=False,
log_every_n_steps=3,
max_epochs=199,
gpus=1 if torch.cuda.is_available() else None,
logger=TensorBoardLogger(save_dir=save_dir, name=name)

)

GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs

1.5 Step 5: Train your LEOPARD
Now let’s train your LEOPARD!

Optional: you can also visualize the training process with the logger. Use the %tensorboard magic
command or call it in command line: tensorboard --logdir *save_dir* --port 8080 (use your
own save_dir and port number)

In tensorboard, you can monitor the losses computed on the training set and validation set (if you
have one), which can help mitigate the risk of overfitting. For example, you might want to stop
the training process if the reconstruction loss starts to increase.

[]: # optional: invoke TensorBoard with the %tensorboard magic command.

%load_ext tensorboard
%tensorboard --logdir lightning_logs

[5]: # train a LEOPARD

trainer.fit(my_leopard)

Missing logger folder: lightning_logs\trainNum_all\obsNum_0
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]

| Name | Type | Params
--
0 | loss_F_reconstruction_noReduction | MSELoss | 0
1 | loss_F_reconstruction | MSELoss | 0
2 | loss_F_adversarial | MSELoss | 0
3 | leopard | LEOPARD | 134 K
--
134 K Trainable params
0 Non-trainable params

5

134 K Total params
0.538 Total estimated model params size (MB)
C:\Users\SiyuHan\anaconda3\envs\LEOPARD\Lib\site-
packages\pytorch_lightning\trainer\connectors\data_connector.py:245:
PossibleUserWarning: The dataloader, val_dataloader 0, does not have many
workers which may be a bottleneck. Consider increasing the value of the
`num_workers` argument` (try 16 which is the number of cpus on this machine) in
the `DataLoader` init to improve performance.

category=PossibleUserWarning,
C:\Users\SiyuHan\anaconda3\envs\LEOPARD\Lib\site-
packages\pytorch_lightning\trainer\connectors\data_connector.py:245:
PossibleUserWarning: The dataloader, train_dataloader, does not have many
workers which may be a bottleneck. Consider increasing the value of the
`num_workers` argument` (try 16 which is the number of cpus on this machine) in
the `DataLoader` init to improve performance.

category=PossibleUserWarning,

1.6 Step 6: Impute and export data
You can impute the missing data and writing them into a .csv file. If you have ground truth for
“vB_t2_test.csv”, you can also export percent bias of the imputed data.

[6]: # impute data
imputed_data = trainer.predict(my_leopard, my_leopard.test_dataloader())[0]

LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
C:\Users\SiyuHan\anaconda3\envs\LEOPARD\Lib\site-
packages\pytorch_lightning\trainer\connectors\data_connector.py:245:
PossibleUserWarning: The dataloader, predict_dataloader 0, does not have many
workers which may be a bottleneck. Consider increasing the value of the
`num_workers` argument` (try 16 which is the number of cpus on this machine) in
the `DataLoader` init to improve performance.

category=PossibleUserWarning,

[7]: # create folder for output
output_dir = os.path.join(save_dir, name, "version_" + str(trainer.logger.

↪version), "results")

if not os.path.exists(output_dir):
os.mkdir(output_dir)

export imputed data
pd.DataFrame(imputed_data["generated_data"]).to_csv(

os.path.join(output_dir, "imputedData_obs" + str(obsNum) + ".csv"),␣
↪index=False

)

6

[]: # export percent bias (only when groundtruth is available)
pd.DataFrame(imputed_data["raw_percentBias"]).to_csv(

os.path.join(output_dir, "PB_obs" + str(obsNum) + ".csv"),␣
↪index=False

)

1.7 End
This manual is prepared based on our analysis and has been tested on our benchmark datasets.
Please let us know if you found any issues.

7

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Data from KORA Study
	1.1.1 Metabolomics Data
	1.1.2 Proteomics Data

	1.2 Criteria for Quality Control
	1.3 Missing Mechanism

	2 TIGER for Technical Variation Removal
	2.1 Overview
	2.1.1 State of the Art
	2.1.2 Current Challenges
	2.1.3 Contribution

	2.2 Methods
	2.2.1 Benchmark Datasets Construction
	2.2.1.1 Targeted Metabolomics Datasets
	2.2.1.2 Untargeted Metabolomics Datasets

	2.2.2 Ensemble Learning Architecture
	2.2.2.1 Base Model
	2.2.2.2 Meta Model

	2.2.3 TIGER Algorithm
	2.2.3.1 Variable Selection
	2.2.3.2 Model Construction
	2.2.3.3 Data Correction

	2.2.4 Evaluation Metrics

	2.3 Performance Evaluation
	2.3.1 Evaluation of the Ensemble Learning Architecture
	2.3.2 Evaluation on the Targeted Metabolomics Dataset
	2.3.3 Evaluation on Untargeted Metabolomics Datasets
	2.3.4 Computational Speed Analysis

	2.4 Case Study
	2.4.1 Data Imputation
	2.4.2 Cross-Kit Adjustment
	2.4.3 Analysis for Aging Trends

	2.5 Discussion
	2.6 Reproducibility and Availability
	2.6.1 Data
	2.6.2 R Package
	2.6.3 Dynamic Website

	3 LEOPARD for Missing View Imputation
	3.1 Overview
	3.1.1 Existing Methods and Their Limitations
	3.1.2 Contribution

	3.2 Methods
	3.2.1 Benchmark Datasets Construction
	3.2.1.1 MGH COVID Dataset
	3.2.1.2 KORA Datasets

	3.2.2 CGAN Architecture as a Reference Method
	3.2.2.1 Architecture Design and Implementation
	3.2.2.2 Hyperparameter Optimization

	3.2.3 LEOPARD Architecture
	3.2.3.1 Architecture Design and Implementation
	3.2.3.2 Ablation Test
	3.2.3.3 Further Hyperparameter Optimization

	3.2.4 Strategy for Performance Evaluation
	3.2.4.1 Methods Configuration
	3.2.4.2 Evaluation Metrics

	3.3 Performance Evaluation
	3.3.1 Representation Disentanglement of LEOPARD
	3.3.2 Evaluation of Missing View Completion: Mono-Omics Datasets
	3.3.3 Evaluation of Missing View Completion: Multi-Omics Datasets
	3.3.4 Analysis on Extremely High PB Values
	3.3.5 Evaluation on Missing Values in Observed Views

	3.4 Case Studies
	3.4.1 Regression analysis
	3.4.2 Classification analysis

	3.5 Applicability Analysis
	3.5.1 Minimum Training Samples Required for Robust Results
	3.5.2 Arbitrary Temporal Knowledge Transfer

	3.6 Discussion
	3.7 Reproducibility and Availability
	3.7.1 Data
	3.7.2 Python Package
	3.7.3 Reproducible Figures

	4 Conclusion and Outlook
	Bibliography
	A Supplementary Figures
	B Supplementary Tables
	C Package Manual: TIGER
	D Package Manual: LEOPARD

