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Abstract

Combinatorial optimization problems (COPs) arise as important issues in various
areas such as finance, telecommunication or industry. Specific examples in industry
are supply chain management, logistics or production planning. Since it remains chal-
lenging to solve them with classical methods, in recent years much effort has been put
into developing quantum algorithms to tackle these generally NP-hard problems. A
promising family of these quantum routines consists of recursive quantum optimiza-
tion algorithms (RQOAs). Although these algorithms display good results it remains
unclear whether quantum approaches can outperform classical solvers. Therefore,
this work investigates the performance of RQOAs. Specifically, to explore the role of
quantum correlations in these recursive algorithms, classical as well as quantum vari-
ations of the recursive quantum approximate optimization algorithm are applied to
MaxCut instances of different densities. Furthermore, various quantum-informed
recursive optimization (QIRO) routines based on the quantum approximate optim-
ization algorithm (QAOA) with up to depths p = 3 are used to solve maximum
independent set problems of sizes up to 160. This allows examining the perform-
ance of QIRO on relatively large problems with higher quality quantum correlations.
Lastly, the SetCover problem is identified as a real world COP from industry, a
QIRO algorithm is developed to solve it and first experiments thereof are conducted.
Throughout the thesis, higher depth QAOAs are simulated using advanced tensor
network techniques. The results of this work indicate that the recursive nature of
RQOAs itself already improves the performance of the underlying routines for ob-
taining correlations. Furthermore, the experiments show the strong performance
increase of RQOAs for larger problem instances when using correlations obtained
from higher depth QAOAs. This result emphasizes the importance of the quality
of quantum correlations in RQOAs. The investigations on the SetCover problem
highlight the current feasibility of simulating quantum routines for challenging and
industry-relevant problems. However, the used quantum algorithm performs worse
than a simple classical greedy solver, showing the limitations of currently available
quantum algorithms. Nonetheless, also in this case, quantum correlations of higher
quality help to improve the performance.
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Chapter 1

Introduction

In this introductory chapter I give a short explanation of the recent developments
in solving combinatorial optimization problems (COPs) with the help of quantum
routines. Based on this prior research on recursive quantum optimization (RQO)
algorithms, the motivation behind this thesis is given. In addition, I define the goals
and describe the outline of this work.

1.1 Motivation

Combinatorial optimization problems (COPs) are highly relevant in diverse sectors
across both science and industry, including logistics, finance, telecommunication,
and machine learning [1]. These problems involve finding an optimal solution from a
finite set of solutions. Achieving this is often NP-hard, making COPs challenging to
solve efficiently as the size of a problem increases. The complexity arises due to the
exponential growth of the solution space with increasing problem size, which makes
exhaustive classical search impractical for large instances.
A prototypical example of practical relevance is the so-called maximum independ-

ent set (MIS) problem. For a given problem graph consisting of vertices and edges,
the goal is to find a set of vertices with maximum size such that there is no edge
between two elements of the set. An example graph and a corresponding MIS can
be seen in part a) and b) of Fig. 1.1, respectively. The maximum independent set
has a size of six vertices and is obtained by a search of all possible solutions.
Traditionally, a variety of classical strategies have been employed to tackle COPs.

The simplest methods are heuristic greedy algorithms that rely on intuitive ap-
proaches but often achieve surprisingly good results. However, they frequently lack
a mathematical reasoning and proven performance bounds. More advanced classical
solving ideas are based on for example linear programming (LP) [2] and semidefinite
programming (SDP) relaxations [3]. These methods work by relaxing the original
combinatorial problem into a more tractable form and then finding approximate
solutions. While these approaches have been successful in many applications, they
often face limitations in terms of scalability and efficiency, especially for large-scale
problems.
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Chapter 1 Introduction

a) c) d)b)

Figure 1.1: In a) an example of a graph representation of a maximum independent set
problem is shown, in b) a maximum independent set of size six colored in green, in c)
a non-maximum independent set of size four found by the greedy MIN algorithm and
in d) a non-maximum independent set of size five obtained by a quantum-informed
recursive optimization routine with low quality quantum information.

For the MIS problem, a widely used greedy algorithm is the MIN routine. It
fixes iteratively one of the vertices with the lowest number of edges to be in the
independent set and deletes all vertices that are connected to the chosen vertex by
an edge. For the example of Fig. 1.1 it occurs that the MIN algorithm does not solve
the problem optimally but finds an independent set with only four vertices as shown
in illustration c) of the Figure. Of course the given example is hand-picked but
nevertheless indicates that already for simple and small problems classical routines
often reach their limitations.
In recent years, quantum computing has emerged as a promising alternative for

solving COPs. Quantum algorithms have the potential to leverage the principles of
superposition and entanglement to explore solution spaces more efficiently than clas-
sical algorithms. Among the various quantum algorithms proposed, the quantum
approximate optimization algorithm (QAOA) [4] has earned significant attention.
QAOA is a hybrid quantum-classical algorithm designed to find approximate solu-
tions to unconstrained binary optimization problems. It is particularly suitable for
implementation on noisy intermediate-scale quantum (NISQ) devices, which are the
current generation of quantum computers.
However, the practical performance of NISQ algorithms, including QAOA, in

providing speedups over classical methods for solving COPs remains an open ques-
tion. Several challenges have been identified with near-term variational approaches,
such as barren plateaus [5], which refer to regions in the optimization landscape
where the gradient is nearly zero, making training difficult. Additionally, the inher-
ent noise of quantum devices [6] poses a significant challenge to the reliable execution
of quantum algorithms. Another significant limitation of QAOA is its locality: At
any constant circuit depth, only qubits that are separated by less than a certain dis-
tance in the graph representation of a problem can interact. This locality limitation
of QAOA has been demonstrated in various studies [7–10].
To address the locality-induced limitations of QAOA, the recursive QAOA

(RQAOA) was introduced by Bravyi et al. [7, 11]. RQAOA operates by recursively
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1.1 Motivation

simplifying the problem based on correlations between problem variables obtained
from QAOA. The process involves iteratively computing these correlations and fixing
the variables until the problem is fully solved. This method introduces new connec-
tions between previously unlinked variables, effectively overcoming the locality con-
straint of QAOA. Extensions and generalizations of RQAOA have been proposed,
including analog quantum devices [12] and classical correlation-based shrinking pro-
cedures [13]. These recursive algorithms have shown improved performance over the
original QAOA for many problem instances [11, 14, 15]. However, it remains uncer-
tain whether the enhanced performance is due to the recursive shrinking procedure
or the quantum correlations. Therefore, it would be interesting to further investig-
ate which role correlations obtained from quantum routines play in these recursive
algorithms.
Building upon RQAOA, a new family of hybrid quantum-classical algorithms,

termed quantum-informed recursive optimization (QIRO) routines, has been intro-
duced by Finžgar et al. [12] and further developed by other researchers [16]. In
QIRO, information generated by quantum resources is used to recursively reduce
the size of the optimization problem through problem-specific classical optimiza-
tion routines. This approach leverages decades of research in classical combinatorial
optimization, allowing the tailoring of classical subroutines to specific optimization
problems, thereby enhancing the algorithm’s performance [12]. Coming back to the
MIS problem of Fig. 1.1, the QIRO algorithm as introduced in Ref. [12] using p = 1
QAOA is able to outperform the greedy MIN routine by finding an independent set
of size five as shown in part d) of the Figure. However, it requires correlations from
p = 2 QAOA to find the optimal MIS of size six. This finding already reveals the
importance of correlations obtained from higher depth QAOA, thus of high quality
quantum correlations. Conventionally simulating higher depth QAOA circuits for
large problems is computational very demanding. However, recent developments in
using tensor networks enable simulations of larger scale as before.
These prior works suggest that QIRO algorithms are promising tools for solving

COPs. However, experiments were only conducted on small system sizes [16] or
with low quality quantum correlations [12]. Thus, it is of interest to investigate the
performance of QIRO routines on larger problem sizes with quantum data of higher
quality to gain better insight into the capabilities of QIRO.
Apart from the promising results quantum optimization algorithms demonstrate

in general, critics often include that the issues solved by quantum routines are small
toy problems only designed for showing the potential of quantum algorithms [17].
Therefore, successfully applying recursive quantum algorithms to real world prob-
lems occurring in industry would be a step forward into the direction of overcoming
sceptics on quantum computing.

3



Chapter 1 Introduction

1.2 Goal of the thesis

This thesis aims to build on the above introduced developments in RQO algorithms.
On the one hand the goal is to investigate the role of correlations obtained from
quantum routines within shrinking routines to gain a better understanding on the
underlying mechanisms of RQO algorithms.
In addition, the thesis further explores the performance of QIRO routines in solv-

ing large-scale COPs. Here, the goal is to solve problems of larger size than usual
quantum experiments and maintaining high quality quantum correlations by integ-
rating advanced tensor network techniques to calculate quantum information. There-
fore, the thesis aims to push the boundaries of what can be achieved with hybrid
quantum-classical optimization algorithms.
A third goal of the thesis consists of tracking down a real world use case of a COP

that is of relevance in industry. A suitable RQO algorithm for this problem should
be developed and applied. Thus, one objective is to bring the family of recursive
quantum optimization algorithms closer to solving legitimate problems as they are
of high relevance in industry.

1.3 Outline

The remainder of the thesis is organized as follows. In Chapter 2 the background
information is explained, that is necessary to understand the tasks of this work.
Therefore, the examined COPs are introduced, the MaxCut, MIS and SetCover
problems. Subsequently, a short overview of tensor networks and how they can be
used for simulating quantum circuits is given in Sec. 2.2.4. Furthermore, different
quantum optimization algorithms are introduced in Part 2.3, namely the QAOA,
RQAOA and the QIRO family. In the succeeding Chapter 3 the background know-
ledge is used to analyse tensor network simulations of QAOA circuits on the present
problems. This analysis allows finding suitable parameter initialization methods
and optimizers for achieving good QAOA results. In Chapter 4 these parameter
initialization methods and optimizers are used to apply variations of RQAOA to
solve MaxCut instances with various densities. This allows analysing the role of
quantum correlations within recursive shrinking algorithms. Furthermore, experi-
ments are conducted on QIRO algorithms with high quality quantum correlations
for solving large scale MIS problems in order to further investigate the performance
of these routines. In addition, a QIRO algorithm for the SetCover problem is
developed and simulated to solve the real world problem of positioning sensors in a
production plant. In the last Chapter 5, a summary, conclusion and outlook is given.
Before continuing, it is noted that throughout the whole thesis, the performed

calculations and programming is done in the programming language Python and
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1.3 Outline

its libraries. Furthermore, it is important to clarify that all experiments of this
work were run on classical computers. Whenever it is talked about the execution of
a quantum algorithm, actually a classical simulation of the program running on a
quantum computer is meant.
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Chapter 2

Background

This chapter explains the background knowledge, which is necessary to understand
the content of the thesis. First, I introduce different problem classes that are studied
throughout the thesis. Then the basics of tensor networks are described before an
overview over different established quantum optimization algorithms is provided.
The explanations are given at a level comprehensible to readers with at least the
background of a graduate physics student having knowledge in quantum computing
and information theory. If the reader is familiar with the mentioned topics, he may
skip parts of this chapter.

2.1 Problem classes

Beginning this section, I describe quadratic unconstrained binary optimization
(QUBO) in general before explaining three explicit examples thereof, namely the
MaxCut, MIS and the SetCover problems. For each of these I will give the
QUBO and Ising formulation as well as a classical way of solving the problem.

2.1.1 Quadratic unconstrained binary optimization (QUBO)

Many of the optimization problems that are of importance in practical applications
can be formulated as mathematical models based on a cost function with quadratic
binary variables xis [18]. Examples are very diverse and range from portfolio optim-
ization in finance over supply chain optimization in industry to traffic management
in the public sector [19, 20]. These so-called quadratic unconstrained binary op-
timization (QUBO) problems are also of utterly importance in physics where they
occur naturally as Ising models with only one- and two-body interactions between
spins [21]. Solving QUBO instances consists of finding the set of xis that minimize
the cost function. Due to the widespread appearing of these problems, next to many
classical solvers such as exact, approximate or heuristic solvers with performance
guarantees [22] also quantum approaches have been developed in recent years.
Mathematically formulated, a QUBO corresponds to minimizing a quadratic func-

tion C with N binary variables x = (x1, x2, ..., xN ) ∈ {0, 1}N over all possible 2N

7



Chapter 2 Background

assignments [18]:

C(x) = J +

N∑
i=1

Jixi +

N∑
i=1

∑
j<i

Jijxixj , (2.1)

where J stands for a constant offset, Ji and Jij represent constant prefactors. Often
it is helpful to transform this formulation to an equivalent one with spin-like variables
zi ∈ {−1, 1} instead of the binaries xis, thus to an Ising formulation.

2.1.2 MaxCut problem

Here the MaxCut problem is defined and mathematically formulated. Further-
more, I introduce two classical solvers: Linear programming (LP) and the Goemans-
Williamson (GW) algorithm.

Definition and QUBO formulation

One prime example of a QUBO is the so-called MaxCut problem. It consists of
a weighted undirected graph G = (V,E) with N vertices V = {i}, edges E = {e}
and edge weights {we}. The present task is to find a subset of nodes such that the
summed up weights of the edges that connect the chosen subset and its complement
are maximized. More mathematically speaking, the aim is to look for a partition
W ⊆ V of all nodes that maximizes the weight

∑
e∈δ(W )we of the edge set δ(W ) :=

{ij ∈ E | i ∈W, j ∈ V \W} [23]. An example of a small MaxCut problem with all
weights we = 1 and its solution is shown in Fig. 2.1.

a) b)

Figure 2.1: In a) an example of a graph representation of a MaxCut problem with
all weights we = 1 is shown and in b) a possible solution colored in green.

Although the structure of the MaxCut is simple, it is one of the most studied
COPs because every QUBO problem can be transformed into a MaxCut with an
overhead of only one extra vertex and edges between this vertex and the original
edges [24–27]. Also, solving MaxCut instances for dense graphs with hundreds
of vertices generally already overstrains state-of-the-art algorithms [28] since it is
proven to be NP-hard [29].
The cost function optimization of the MaxCut QUBO formulation in terms of

8



2.1 Problem classes

binary variables xi ∈ {0, 1} is given by

min
x
CMaxCut (x) = min

x

−∑
ij∈E

wij(xi − xj)2
 = min

x

∑
ij∈E

wij(2xixj − xi − xj),

(2.2)
where xi = 1 stands for the vertex i included in the partition W and vice versa. The
intuition behind this cost function is clear given that the minimization is fulfilled
when the sum of weights of edges between the two different partitions is maximized.
However, in the case of MaxCut it is more natural to think of of the QUBO formula-
tion with Ising variables zi. This is achieved by inserting the mapping xi = 1

2(1 + zi)
into equation (2.2):

min
z
CMaxCut (z) = min

z

1

2

∑
ij∈E

wij(zizj − 1). (2.3)

Here, z ∈ {1,−1}N , and zi indicates whether vertex i is in the subset W or not.

Solving MaxCut by linear programming (LP)

MaxCut problems can be solved clasically by linear programming (LP) in the fol-
lowing way. For a weighted undirected graph G = (V,E), an edge-incidence vector
y ∈ {0, 1}|E| is defined such that ye = 0 indicates that edge e is not cut, while ye = 1
indicates that edge e is cut.
The MaxCut problem can be formulated as an integer linear program, given

by [30–33]:

max
∑
e∈E

ωeye, (2.4a)

s.t.
∑
e∈Q

ye −
∑

e∈C\Q
ye ≤ |Q| − 1,

|Q| odd, ∀Q ⊆ C cycle,

(2.4b)

0 ≤ ye ≤ 1, ∀e ∈ E, (2.4c)

ye ∈ {0, 1}, ∀e ∈ E, (2.4d)

Here, Eqs. (2.4b) are known as the odd-cycle inequalities, which are sufficient
to define a cut. Although solving the MaxCut problem using Eqs. (2.4a), (2.4b),
and (2.4d) is generally intractable, the linear relaxation defined by Eqs. (2.4a)–(2.4c)
can be efficiently solved in polynomial time. This relaxation, often addressed via

9



Chapter 2 Background

branch-and-bound techniques, provides an upper bound on the maximum cut [28].
If the relaxation results in an integer solution, the optimal solution to the problem
is immediately obtained.

Solving MaxCut with the Goemans-Williamson (GW) algorithm

Another approach to solve MaxCut problems is the so called Goemans-Williamson
(GW) algorithm based on semidefinite programming (SDP) [3]. It is the leading
polynomial-time approximation algorithm for MaxCut problems. The routine ap-
proximates the NP-hard integer quadratic formulation of MaxCut (as shown in
Eq. (2.2)) by a relaxed problem that expands the solution space to include all feas-
ible solutions of the integer problem, thus providing an upper bound on the integer
problem’s optimal solution.
In this relaxation, integer variables are substituted with multi-dimensional vectors

vi ∈ RN , normalized to the (N − 1)-dimensional unit sphere SN−1. The relaxed
optimization problem is formulated as:

max
{v1,v2,... }

1

2

∑
i<j

wij(1− vi · vj),

s.t. vi ∈ SN−1 ∀i ∈ V.
(2.5)

This relaxed formulation corresponds to the semidefinite program:

max
X

{〈1

4
L,X

〉
: diag(X) = e, X � 0

}
, (2.6)

where L := diag(Ae) − A is the graph Laplacian and e is the all-ones vector. The
inner product 〈a, b〉 = tr(abT) represents the Frobenius inner product of matrices
a, b ∈ RN×m. This generic semidefinite program can be solved in polynomial time
using various solvers such as cvxopt [34–36].
The matrix X represents the Gram matrix of the vectors {vi}. To retrieve the

vectors, one computes the Cholesky decomposition of X: X = BTB, which has
a computational complexity of O(N3). In the resulting matrix B, the ith column
corresponds to the vector vi.

2.1.3 Maximum independent set problem (MIS)

In this part, the maximum independent set (MIS) and its QUBO formulation are
introduced. In addition, I explain two classical greedy solvers, MIN and MAX.

10



2.1 Problem classes

Definition and QUBO formulation

In research, the MIS is another stereotypical example of a QUBO with a wide range of
applications in various fields, such as network design, portfolio optimization, schedul-
ing, resource allocation, and many more [37, 38]. Generally speaking, finding a MIS
solution is NP-hard [29].
In the language of graph theory, finding an independent set of an undirected graph

G = (V,E) with N vertices V and edges E consists of locating a subset of vertices
I ⊆ V such that no two vertices in the set are connected by an edge. The subsets
I with the highest cardinality are called a maximum independent set of the given
graph. The MIS problem is finding such a maximum subset. An example of a graph,
a non-maximum and a maximum independent set thereof are illustrated in Fig. 2.2.

a) b) c)

Figure 2.2: In a) an example of a graph representation of a MIS problem is shown,
in b) a non-maximum independent set colored in green and in c) a maximum inde-
pendent set colored in green.

Using the same logic as in the case of MaxCut, a QUBO cost function can be
constructed with x ∈ {0, 1}N indicating whether the vertices are included in the
MIS or not:

min
x
CMIS (x) = min

x

− N∑
i=1

xi + α
∑
ij∈E

xixj

 , (2.7)

where α is a constant. The intuition behind is maximizing the number of included
nodes

∑
i xi under the constraint that no neighbouring vertices are allowed in the

subset. To make sure that the constraint is fulfilled, α > 1 is required. Since I will be
using the Ising formulation of the problem later in this thesis, I introduce it here as
well. As in the case of MaxCut, it can be obtained by using the mapping between
xi and zi defined by xi = 1

2(1 + zi) such that it reads

min
z
CMIS (z) = min

z

− 1

N
−

N∑
i=1

zi +
α

4

∑
ij∈E

(1 + 2zi + 2zj + 4zizj)

 . (2.8)
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Classical greedy algorithms

Since a lot of effort has been put into finding efficient ways to solve the problem,
polynomial-time classical algorithms for approximating the optimal solution with
good performance have been developed [39–42]. A simple but very common classical
greedy approach is the so-called MIN algorithm [16]. It iteratively chooses a vertex
in the problem graph with the lowest degree, adds this vertex to the independent
set and removes all nodes that are adjacent to the chosen vertex until the graph
has no vertices any more. If multiple nodes have the same degree, one of them is
chosen randomly. An example application of MIN is given in Fig. 2.3. Literature
also provides a lower performance bound of the algorithm for a graph with maximum
vertex degree δ: For any graph, MIN reaches at least an approximation ratio of 3

δ+2
with respect to the optimal maximum independent set size [43].

Figure 2.3: An example of the MIN algorithm applied to a MIS problem. The green
vertex in each step indicates that it is included in the solution independent set and
all neighbours are removed.

An alternative approach is the MAX algorithm. It instead iteratively chooses a
vertex with maximal degree and removes it from the graph until there exist no edges
any more. The chosen solution independent set corresponds to all remaining vertices.
An example of MAX is shown in Fig. 2.4.

Figure 2.4: An example of the MAX algorithm applied to a MIS problem. The
red vertex in each step indicates that it is excluded from the graph. The solution
independent set is coloured in green representing the nodes that are left in the graph.

It is explicitly mentioned that there are more elaborate heuristic algorithms to
solve MIS problems but especially MIN is widely used as classical benchmark. Fur-
thermore, as can be seen later, there are interesting links between the introduced
heuristics and common quantum approaches.
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2.1.4 Set cover problem

A more complicated problem than MaxCut and MIS is the SetCover problem.
In this section I introduce the underlying question of the problem and that its QUBO
formulation requires different means of encoding than MaxCut and MIS. In addi-
tion, a simple classical solver and a use case example of the SetCover problem in
industry are described in detail.

Definition and QUBO formulation

The set up of the SetCover problem consists of a set U = {1, ..., n} and subsets
Vi ⊆ U with i ∈ {1, ..., N} such that

U =

N⋃
i=1

Vi. (2.9)

The question is now to find the smallest possible number of sets Vi that still cover all
elements of U . In general, finding such a set of sets is NP-hard [29]. Fig. 2.5 shows
a SetCover problem, a non-minimum solution and a minimum solution.

f

a) V3

V5

V2V1

V6

V4

f

b) V3

V5

V2V1

V6

V4

f

c) V3

V5

V2V1

V6

V4

Figure 2.5: In a) an example of the SetCover problem algorithm is illustrated. b)
shows a non-minimum solution to the problem and c) a minimum solution.

For finding a QUBO formulation of the problem, I follow Ref. [44] and define the
binary variables xi ∈ {0, 1} with i ∈ {1, ..., N} which indicate whether subset Vi is
included or not in the solution set of subsets. Furthermore, it is required to define an
integer M as the maximum number a single element α of U is included in all subsets
{Vi}. With this I further introduce variables xα,m ∈ {0, 1} with m ∈ {1, ...,M} that
are equal to 1 if the number of subsets Vi that include element α corresponds to m.
Otherwise xα,m is 0. Using these variables together with two constants A and B
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allows us now to define the QUBO cost function of the SetCover problem as

CSetCover (x) =A
n∑

α=1

(
1−

M∑
m=1

xα,m

)2

+A
n∑

α=1

 M∑
m=1

mxα,m −
∑
i:α∈Vi

xi

2

+B
N∑
i=1

xi.

(2.10)

This cost function has to be minimized over all xi and xα,m in order to find the
minimum solution to the SetCover problem. The reasoning behind this QUBO
formulation is as follows: The first term makes sure that only a single xα,m equals
1 for each element α. This must apply because every element has to be included a
fixed number of times. The second term ensures that the number of chosen subsets
Vi that include element α is actually equal to m. Minimizing the third summand
encodes the actual question of finding the minimum number of subsets. To make sure
that the x which minimizes the cost function fulfills these constraints, it is required
that A > B > 0. Instead of using M it is also possible to define an integer Mα for
each individual element α of U as the number this element is included in all subsets
{Vi}. This allows to minimize over less variables.
The Ising formulation of the problem with variables zi ∈ {1,−1} is rather lengthy

but since I use it in later Chapters, the formulation can be found in Appendix A.

Greedy MAX solver

A simple but already well performing classical greedy algorithm for solving the Set-
Cover problem consists of iteratively choosing the subset Vi with the highest number
of elements, including it in the solution and removing all elements in Vi from the
other subsets Vj and from U until U is empty. In case the cardinality of multiple
subsets equals each other, the algorithm chooses one randomly. I will call this al-
gorithm MAX throughout the remainder of the thesis. It is always clear from the
context whether MAX refers to the algorithm solving the MIS or the SetCover
problem. An example of applying MAX to a given problem is shown in Fig. 2.6.

Sensor positioning use case

A use case of the SetCover problem is sensor positioning in an industry production
plant where autonomous vehicles are used. The vehicles are moving in a dedicated
space between different locations. To ensure that they do not hit any obstacles or
even humans on their path, it is of utter importance to surveil this area. In practice,
this is done by sensors. Generally these sensors are very expensive. Therefore, it is
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solution: {V1} solution: {V1, V6} solution: {V1, V6, V3}
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Figure 2.6: The application of the MAX algorithm to a SetCover problem is shown.
The green boxes indicating the chosen subset Vi in each step and the red nodes the
elements of Vi that are also removed from the set U .

advantageous not to install them in each vehicle but to rather place them externally
at the facilities of the plant.
When doing so, all spots in the surveilled area need to be covered by the sensors’

range. At the same time, to save further costs using as few sensors as possible is
beneficial. Finding these is actually equivalent to solving a SetCover problem.
Discretizing the monitored area allows representing it as a set U that needs to be
fully covered by sensors. Therefore, the elements of U represent 3-dimensional cubes.
The sensors and their covered area can be imitated by subsets Vi. Their elements
consist of the discretized areas that a specific sensor installed at a certain spot can
cover. Thus, solving this SetCover problem allows finding the minimum number of
sensors that are required to monitor the whole area where the autonomous vehicles
are moving.

2.2 Tensor networks

In this section I will lay out the basics of tensors, tensor networks and operations that
are applied thereon. Furthermore, different types of tensor networks are presented
and how networks can be used to simulate quantum circuits.

2.2.1 Basic concepts of tensor networks

Tensor networks provide a powerful framework for representing and manipulating
high-dimensional data structures, which are essential in various fields, including sim-
ulations of quantum computing. A tensor is a multidimensional array. A tensor net-
work is a collection of tensors connected by edges, representing contractions between
tensors. Each edge stands for a summation over a shared index, allowing efficient
representation and computation of complex operations.
Mathematically, a tensor T of rank n is an element of the tensor product of n
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vector spaces:

T ∈
n⊗
i=1

Vi, (2.11)

where Vi are vector spaces. For example, a rank-2 tensor is a matrix, a rank-3 tensor
can be thought of as a cube of numbers, and so on [45].

2.2.2 Tensor operations

In tensor networks, several operations are fundamental for constructing and manip-
ulating the networks. The main tensor operations include the following:

Tensor contraction

Tensor contraction is the operation of summing over the common indices of two or
more tensors. It generalizes matrix multiplication to higher dimensions. For two
tensors T ij and Ujk, the contraction over the index j is given by:

(T · U)ik =
∑
j

T ijUjk. (2.12)

This operation is crucial for calculating physical quantities and simulating quantum
circuits [46].

Tensor decomposition

Tensor decomposition involves breaking down a tensor into a product of simpler
tensors. Common decompositions include the Singular Value Decomposition (SVD)
and the Tucker decomposition. For a matrix T , the SVD is given by:

T = UΣV †, (2.13)

where U and V are unitary matrices, and Σ is a diagonal matrix of singular values.
Decomposition techniques are used for truncating tensors to reduce computational
complexity while preserving essential features [47].

Tensor index permutation

Permuting the indices of a tensor reorders its dimensions without changing its values.
For a tensor T ijk, a permutation might result in T jik. This operation is often required
to align tensors correctly before performing contractions or other operations [45].
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Tensor reshaping

Reshaping changes the dimensions of a tensor while keeping the total number of
elements constant. For example, a tensor T with dimensions (2, 3, 4) can be reshaped
into dimensions (6, 4). This operation is useful in preparing tensors for specific
algorithms or decompositions [46].

2.2.3 Types of tensor networks

Several types of tensor networks are commonly used in simulating quantum comput-
ing and other fields, each with its own structure and advantages. Although most
types are not used for the later simulations of quantum circuits, the main types are
presented here for the purpose of completeness and giving a thorough overview:

Matrix product states (MPS)

Matrix product states are one-dimensional tensor networks that represent quantum
states of spin chains or one-dimensional systems. A MPS for a state |ψ〉 can be
expressed as:

|ψ〉 =
∑

i1,i2,...,iN

Tr(A
[1]
i1
A

[2]
i2
· · ·A[N ]

iN
)|i1, i2, . . . , iN 〉, (2.14)

where each A
[k]
ik

is a complex square matrix of order χ. The latter is the bond
dimension that determines the amount of entanglement that can be represented [47].
The indices ij go over the states in the computational basis, i.e., for qubits ij ∈ {0, 1}.

Projected entangled pair states (PEPS)

Projected Entangled Pair States (PEPS) generalize MPS to higher dimensions, mak-
ing them suitable for representing quantum states on lattices. A PEPS on a two-
dimensional lattice can be written as:

|ψ〉 =
∑
{i}

Tr(A
[1]
i1
A

[2]
i2
· · ·A[N ]

iN
)|i1, i2, . . . , iN 〉, (2.15)

where A[k]
ik

are tensors that connect with neighboring tensors on the lattice, forming
a network that can capture more complex entanglement structures than MPS [48].

Tree tensor networks (TTN)

Tree tensor networks (TTN) represent quantum states using a hierarchical structure.
They are particularly useful for capturing the entanglement in systems where the
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correlation length is large. A TTN for a state |ψ〉 is composed of tensors arranged
in a tree-like structure, where the leaves represent physical indices and the internal
nodes represent virtual indices:

|ψ〉 =
∑
{i}

T
[1]
i1i2

T
[2]
i3i4
· · ·T [n]

i2n−1i2n
|i1, i2, . . . , iN 〉, (2.16)

where T [k] are the tensors at each node of the tree [49].

Multiscale entanglement renormalization ansatz (MERA)

Multiscale entanglement renormalization ansatz (MERA) is a tensor network that
efficiently represents quantum states with scale-invariant structures. It is particularly
suited for critical systems and those with logarithmic corrections to the area law of
entanglement entropy. The MERA network includes disentanglers and isometries
that act on different scales of the system, allowing for an efficient representation of
states with long-range entanglement:

|ψ〉 =
∑
{i}
W [1]
i1i2
W [2]
i3i4
· · ·W [n]

i2n−1i2n
|i1, i2, . . . , iN 〉, (2.17)

where W [k] are tensors that include both isometries and disentanglers [50].

2.2.4 Tensor networks for simulating quantum circuits

Tensor networks are particularly well-suited for simulating quantum circuits due to
their ability to efficiently represent the exponential complexity of quantum states.
In quantum circuit simulation, tensor networks are used to represent both the state
of the quantum system and the operations (gates) applied to it.
A quantum circuit can be represented as a sequence of unitary operations Ui

applied to an initial state |ψ0〉:

|ψf 〉 = UL · · ·U2U1|ψ0〉, (2.18)

where each Ui can be decomposed into tensors representing the action of quantum
gates on the state-vectors. For instance, a two-qubit gate Uij acting on qubits i and
j can be represented as a rank-4 tensor U iji′j′ , with indices i, j representing the input
qubits and i′, j′ representing the output qubits [51].
The simulation involves contracting these tensors to compute the final state of the

system. The contraction process, which involves summing over shared indices, can be
performed efficiently using various algorithms, depending on the network structure.
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For example, in the case of MPS, the computational cost scales linearly with the
number of qubits N and polynomially with the bond dimension χ [47].

Consider a simple example of a quantum circuit with two qubits and two gates, U1

and U2. The initial state can be written as |ψ0〉 =
∑

i1,i2
αi1i2 |i1, i2〉. After applying

the first gate U1 and then U2, the final state is:

|ψf 〉 =
∑

i1,i2,j1,j2

U j1j22,k1k2
U i1i21,j1j2

αi1i2 |k1, k2〉, (2.19)

where the tensors U1 and U2 are contracted with the initial state tensor α to yield
the final state tensor.
By leveraging tensor networks, quantum circuit simulators can handle larger sys-

tems than traditional methods by exploiting the entanglement structure and sparsity
inherent in many quantum states. In comparison to state-vector simulations, tensor
network simulations do not require saving the whole state-vector that requires ex-
tensive memory. Applying a gate consists of a summation of a few indices instead
of a matrix transformations of the full state with the applied gate. This again saves
memory. Tensor network simulations have been important in advancing the under-
standing of quantum algorithms and their practical implementations [51–53].

2.3 Quantum optimization algorithms (QOAs)

In this section I introduce different quantum optimization algorithms (QOAs) that
have been developed in recent years to tackle the problem of solving combinatorial
optimization problems. Here, I will focus on the quantum approximate optimization
algorithm (QAOA), the recursive QAOA (RQAOA) and different variations of the
quantum-informed recursive optimization algorithm (QIRO) for solving MaxCut,
MIS and SetCover problems.

2.3.1 Quantum approximate optimization algorithm (QAOA)

Farhi et al. [4] introduced the quantum approximate optimization algorithm (QAOA)
as promising alternative to classical approaches for finding good approximate solu-
tions to unconstrained binary optimization problems. Since then the algorithm re-
ceived a lot of interest because of its universality and adaptive complexity. Further-
more, it can already now be deployed on noisy intermediate scale quantum (NISQ)
devices. In recent years the QAOA was successfully applied to MaxCut [4], MIS
[54, 55] and other QUBO problems such as binary paint shop [56], binary linear
least squares [57] or multi-knapsack problems [58]. From an application point of
view, researchers used the algorithm to solve problems in portfolio optimization [59,

19



Chapter 2 Background

60], object detection [61], text summarization [62], protein folding [63] and wireless
scheduling [64] to name a few examples.
Technically speaking, QAOA’s goal is to find a z ∈ {−1, 1}N such that the cost

function C : {−1, 1}N → R of a binary optimization problem is minimized. To
achieve this, the algorithm starts from the uniform superposition state |+〉 of N
qubits defined by

|+〉 =
1√
2N

∑
z∈{−1,1}N

|z〉 . (2.20)

In the next step, a sequence of parametrized layers UC(γi) and UM (βi) is applied to
the initial state. Here, γi and βi represent real-valued parameters. These layers are
defined by

UC(γi) = e−iγiHC (2.21)

and
UM (βi) = e−iβiHM . (2.22)

HC denotes the cost Hamiltonian that encodes the cost function C of a problem as

HC |z〉 = C(z) |z〉 ∀z ∈ {−1, 1}N , (2.23)

and HM is the so-called mixer Hamiltonian

HM =
N∑
i=1

Xi, (2.24)

where Xi is the Pauli-X operator applied on qubit i.
After applying the layers, the output state corresponds to

|Ψo(β,γ)〉 = e−iβpHM e−iγpHC · · · e−iβ1HM e−iγ1HC |+〉 , (2.25)

where p ∈ N is the so-called depth of the QAOA. The circuit representation of the
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algorithm is as follows:

p = 2
|+〉 p = 1

|0〉 H

UC(γ1) UM (β1) UC(γ2) UM (β2)

. . .

|0〉 H . . .

|0〉 H . . .

|0〉 H . . .

...
...

...
...

...
...

|Ψo〉

.

In the next step of the algorithm the expectation value F (β,γ) of the cost Hamilto-
nian with respect to the prepared state

F (β,γ) = 〈Ψo(β,γ)|HC |Ψo(β,γ)〉 (2.26)

is obtained by repeated measurements of the prepared state.
The process of obtaining the expectation value, together with a classical subroutine

are used iteratively to minimize the expectation value F (β,γ) with respect to the
parameters β and γ. In case of an optimal minimization, the ground state of the cost
Hamiltonian HC is obtained. This ground state corresponds to the optimal solution
of the original COP.
For the QUBO problems defined in 2.1, the corresponding cost Hamiltonians HC

coincide with their Ising formulations with the variables zi replaced by the corres-
ponding Pauli operator Zi and terms without variable supplemented by the identity
operator I. For example, in case of MaxCut the cost Hamiltonian becomes

HCMaxCut =
1

2

∑
ij∈E

wij(ZiZj − I) (2.27)

such that the QAOA circuit for an example with only nearest neighbour connections
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explicitly looks like

p = 2
|+〉 p = 1

|0〉 H
ZZγ1

ZZγ1 Xβ1
ZZγ2

ZZγ2 Xβ2 . . .

|0〉 H
ZZγ1

Xβ1
ZZγ2

Xβ2 . . .

|0〉 H
ZZγ1

Xβ1
ZZγ2

Xβ2 . . .

|0〉 H
ZZγ1 Xβ1 ZZγ2 Xβ2 . . .

...
...

...
...

...
...

|Ψo〉

.

The cost Hamiltonians and therefore QAOA circuits of the MIS and SetCover
problems have a more complicated structure than the MaxCut problem but follow
analogously.
A powerful tool for simulating p = 1 QAOA is the fact, that the expectation values

F (β,γ) can be calculated analytically as shown in Ref. [65]. These expectation values
are a sum of individual expectation values of the form

〈Ψo(β,γ)| JijZiZj |Ψo(β,γ)〉 (2.28)

or
〈Ψo(β,γ)| JiZi |Ψo(β,γ)〉 . (2.29)

Each of these terms can be expressed analytically as functions of the QAOA para-
meters β,γ. This allows an efficient and very fast calculation of p = 1 QAOA results.
Throughout the thesis, these expressions are used to evaluate p = 1 circuits.
Although researchers managed to gain good results using QAOA, it remains un-

clear whether the algorithm is able to outperform classical methods in solving COPs.
Various analyses were able to find certain problems of using QAOA in practice such
as barren plateaus [5], noise of quantum devices [66] or locality. Locality refers to the
fact that at constant circuit depth p only qubits can interact with each other that
are seperated less than a certain distance in the circuit. Thereby the performance
of QAOA is provable limited [7–10]. To overcome the issue of locality a recursive
variant of the QAOA can be used as will be explained in the next section.
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2.3.2 Recursive quantum approximate optimization algorithm
(RQAOA)

In order to overcome the known problem of locality of QAOA, Bravyi et al. [7,
11] proposed the recursive QAOA (RQAOA). The underlying idea of the algorithm
consists of iteratively using QAOA to eliminate a variable of the present problem to
shrink the problem to smaller sizes. The shrinking step allows non-local interactions
between qubits.
In this section I introduce the original form of the RQAOA and a variation thereof

with so-called recalculation intervals.

The original RQAOA

More technically speaking, the original RQAOA finds an approximation to the
ground state of a cost Hamiltonian HC of a given quadratic unconstrained Ising
problem using QAOA. Without loss of generality the Hamiltonian has the form

HC =
∑
ij∈E

wijZiZj . (2.30)

After the QAOA minimization, for every ij ∈ E the expectation values

bij = 〈ZiZj〉 ≡ 〈Ψ(βopt,γopt)|ZiZj |Ψ(βopt,γopt)〉 (2.31)

are calculated. Here, βopt and γopt stand for the optimized parameters after QAOA
minimization. The values bij are also referred to as correlations.
In a next step, the algorithms seeks the correlation bij with the highest absolute

value. Depending on the sign σij of bij the two variables zi and zj are said to be
correlated (bij > 0) or anti-correlated (bij < 0). The variable zi is now eliminated
by imposing the constraint

Zi = sgn(bij)Zj (2.32)

in the cost Hamiltonian. This step effectively decreases the number of variables of
the problem by one and possibly introduces new interaction terms in the Hamiltonian
between variables that were not connected before. It actually is equivalent to remov-
ing variable i and updating the weights of all neighbouring variables {k ∈ V | ik ∈ E}
of node i in the following way:

w′jk =

 ωjk + σijωik, if jk ∈ E

σijωik, if jk /∈ E.
(2.33)

The full RQAOA consists of repeating these steps of applying QAOA and shrinking
the problem iteratively, whereas the problem size decreases in every step. This is
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done until a certain threshold size of the remaining problem is reached. The smaller
problem can then be solved classically by for example a brute force approach. In a
last step the solution to the original problem has to be obtained by backtracking the
individual shrinking steps of the RQAOA in order to find the final value of every
variable zi.

RQAOA with recalculation intervals

An adaptation of the RQAOA consists of introducing recalculation intervals as we
have introduced them in Ref. [23]. When using a recalculation interval r, the usual
RQAOA procedure of optimizing a QAOA and finding the correlations bij is applied.
But now instead of doing only one shrinking step based on the correlations as defined
by Eq. (2.32), r reduction steps are done.
Technically this means choosing not only the correlation with the highest absolute

value but the r correlations with the r highest absolute values in descending order.
These are then used to shrink r times. After multiple shrinking steps, it may happen
that a node u associated with the correlation bsu no longer exists because it has been
merged with another node v. This scenario is illustrated in Fig. 2.7 taken from our
recent publication [23].
Initially, the correlations buv, bsu, but, and btv are computed for the input graph

on the left. These correlations are then sorted in descending order of their absolute
values. The graph on the left side is shrunk based on the highest correlation buv,
resulting in the output graph on the right, where node u has been combined with
node v.
The next highest correlation in the sequence is bsu. Since node u is no longer

present in the current graph, we reinterpret bsu as bsv. To ensure consistency, the
sign adjustment from the previous merging step is applied, setting bsv = σuv · bsu.
Additionally, similar rules are applied if nodes i and j have already been merged

with other nodes. If the nodes i and j to be merged are already part of the same
node k, this merging step is skipped, and the algorithm proceeds to the next highest
correlation. This skip does not count as a step in the process.

2.3.3 Quantum-informed recursive optimization algorithm (QIRO) for
MIS problems

Based on the RQAOA Finžgar et al. [12] introduced very recently the more general
class of so-called quantum-informed recursive optimization (QIRO) algorithms. The
basic idea of the algorithms is similar to RQAOA but here, also different correlations
are calculated and especially problem-specific update steps are used for reducing the
problem size recursively [12]. Furthermore, they introduced promising extensions to
the algorithms, such as backtracking. In this section I will focus on different instances
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Update rules
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Figure 2.7: The illustration shows the shrinking step of RQAOA that can be repeated
r times when using recalculation intervals in accordance with Eq. (2.32). The Figure
is taken from our own work [23].

of these QIRO algorithms for the specific case of MIS problems. In more detail, the
so-called MAXQ, MINQ, MMQ and 2-MMQ routines are discussed as introduced in
Refs. [16] and [12], respectively.

MAXQ algorithm

The MAXQ algorithm is inspired by the classical MAX greedy routine for solving
the MIS problem as explained in Sec. 2.1.3 [16]. For a given problem instance,
MAXQ uses QAOA to find a good approximation of the ground state of the problem
Hamiltonian. In the next step, all one-point correlations

bi = 〈Zi〉 ≡ 〈Ψ(βopt,γopt)|Zi |Ψ(βopt,γopt)〉 (2.34)

of the problem are calculated. Then, the correlation bi with the lowest value is
chosen and the corresponding variable i is fixed to not lie in the independent set. In
the graph representation of the problem, the corresponding node is removed. This
update rule is also shown in a more illustrative way in part (b) of Fig. 2.8 taken from
Ref. [12].
These steps of QAOA, correlation calculation and shrinking are now recursively

repeated until the problem graph is totally non-connected. The remaining nodes are
chosen to be the solution to the problem.
MAXQ is inspired by MAX because with p = 1 QAOA, it chooses the same

shrinking steps as the greedy MAX algorithm [16]. This means, the single variable
expectation values bi of p = 1 QAOA hold only information about the degree of the
corresponding node. The correlation with the lowest energy corresponds to the node
with the highest degree in the problem graph.
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MINQ algorithm

Analogously the MINQ routine is understood as the quantum equivalent to the MIN
algorithm [16]. It works the same way as MAXQ but instead of deleting the variable
i with the lowest correlation bi from the problem graph, the variable with the highest
value is chosen to be in the solution independent set. The corresponding vertex in
the graph and all nodes that are connected to the chosen vertex are removed and
fixed to not lie in the independent set. An example case can be found in illustration
(a) of Fig. 2.8 [12].
Similar to MAXQ, when using p = 1 QAOA for finding a ground state approxim-

ation and correlations, MINQ uses only information about the degrees of the graph
vertices. The vertex with the highest value corresponds to the one with the lowest
degree [16]. Therefore, in case of p = 1 MINQ represents the greedy MIN if the true
ground state of the problem Hamiltonian is found by QAOA.

MMQ algorithm

Combining MINQ and MAXQ leads to the MMQ algorithm [16]. Here, QAOA is
again used to find a good low energy state of the problem Hamiltonian before all
single variable correlations bi are calculated. Then the variable with the highest
absolute correlation value |bi| is picked. Depending on the sign of the correlation,
the MAXQ or MINQ shrinking rule is then applied: In case bi is negative, the node
i is removed from the graph and not included into the solution independent set. If
bi > 0, variable i is included into the solution independent set, its corresponding
vertex and all neighbouring variables are removed from the problem. These update
rules correspond to (a) and (b) in Fig. 2.8 [12].
These steps are repeated until only non-connected vertices are left in the problem

graph. These are also added to the solution independent set.

2-MMQ algorithm

An extension to the MMQ routine can be made by also taking correlations between
two variables into account as it has been done in the work of Finžgar et al. [12].
Throughout the thesis, I will call this extension 2-MMQ algorithm.
After using QAOA, 2-MMQ not only calculates one-point correlations bi but also

two-point correlations

bij = 〈ZiZj〉 ≡ 〈Ψ(βopt,γopt)|ZiZj |Ψ(βopt,γopt)〉 , (2.35)

analogously to RQAOA. It then picks the correlation with the highest absolute value
of all correlations {b1, ..., bN , b1,2, ..., bN,N−1}. Depending on the sign and whether it
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2.3 Quantum optimization algorithms (QOAs)

Figure 2.8: Update rules of the different shrinking algorithms for MIS problems. In
case of shrinking based on a positive one-point correlation (a) applies. I is used in
MINQ, MMQ and 2-MMQ. (b) showcases the example of a negative single variable
correlation as it is used in MAXQ, MMQ and 2-MMQ. For positive and negative two-
point correlations, the rules in (c) and (d) are used as it is the case in the 2-MMQ
algorithm. The figure is taken from Ref. [12].

is a single or two variable correlation, different shrinking rules are applied in a next
step [12]:

• In case a positive single variable correlation bi > 0 is chosen, the MINQ update
rule is used. Thus, the picked variable is fixed to lie in the independent set, its
vertex and all neighbouring ones are removed from the problem.

• If the correlation with the highest absolute value is negative and of a single
vertex bi < 0, 2-MMQ makes use of the MAXQ shrinking step, i.e., the chosen
vertex is removed and fixed to not lie in the independent set.

• When a positive two body term bij > 0 corresponds to the correlation with the
highest absolute value, both variables i and j are removed from the problem and
determined not to lie in the independent set. The reasoning behind is that this
correlation indicates that both variables i and j have the same affiliation with
respect to the independent set. Therefore, since the correlations are neighbours
they have to not be part of the independent set. Otherwise just this constraint
of the MIS problem is violated.

• In case of a negative two variable correlation bij < 0, 2-MMQ fixes all variables
that are neighbours of both nodes i and j not to be in the independent set.
They are also removed from the problem. The intuition behind is that the
correlation bij < 0 indicates i and j being in different partitions of the graph,
thus one of the variables is in the independent set and the other not. Therefore,
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to not violate the MIS constraint, all vertices connected to both variables i
and j are not part of the solution independent set.

These update rules are also summarized in Fig. 2.8 which is taken from Ref. [12].
As it is the case for the other shrinking algorithms as well, the steps of QAOA,
correlations calculation and shrinking are repeated until there are no variables left
or only non-connected ones. In the later case these variables are fixed to be part of
the solution independent set.

2.3.4 Quantum-informed recursive optimization algorithm (QIRO) for
SetCover problems

The QIRO framework can also be used to solve the SetCover problem as it is
introduced in Sec. 2.1.4. For example an adaptation of the just introduced MINQ
algorithm allows recursive shrinking of the problem with a guaranteed valid solution
to the SetCover problem.
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Figure 2.9: An example of the MINQ shrinking process on a SetCover problem.
The pictured case is not an optimal solution to the SetCover problem. In each
iteration the green subset mimics the one with the highest correlation. Thus, this
subset is included in the solution, respectively. In step d) of the procedure, subset
V1 is added to the solution such that the subset V2 indicated by red color has no
elements any more. Therefore, subset V2 is removed and not added to the solution.

In this case I first use QAOA to receive a good solution to the problem cost
function from equation (A.1). In the next step only the single qubit correlations bi
of variables zi are calculated. Each zi represents a possible subset Vi being included
in the solution or not. The correlations of the remaining variables zα,m are not used
within the shrinking procedure.
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2.3 Quantum optimization algorithms (QOAs)

In the next step, shrinking is applied on the variable zi with the highest correl-
ation value bi. The reduction step here consists of removing variable zi from the
problem and fixing the corresponding subset Vi to lie in the solution. Furthermore,
all elements of Vi are removed from the set U and subsets Vj . Thus, it can occur
that some subsets Vk are empty afterwards. These and the corresponding variables
zk are then removed as well and fixed not to be included in the solution.
These steps are applied in an iterative manner to the shrunk SetCover problem

until set U is empty or the problem small enough to be solved by a classical routine.
Since the QUBO formulation includes many ancilla qubits, the graphical represent-
ation of the shrinking routine in this problem is not intuitive and without natural
encoding. Nevertheless, an example of a shrinking behaviour is shown in Fig. 2.9.
In this case it is not an optimal solution to the problem. In panel d) of the Figure,
red-colored subset V2 and thus the corresponding variable z2 is removed without
being included into the solution because all of its elements have been removed as a
result of other shrinking steps.
It is explicitly mentioned at this point that the name MINQ is chosen for this

algorithm because of the similarity to the MINQ routine for the MIS problem. In
the case of SetCover, the name has no deeper meaning. Therefore, the reader
may not be confused when considering the greedy MAX algorithm for SetCover
problems from Sec. 2.1.4 as classical benchmark for the MINQ.
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Chapter 3

Analysis of tensor network simulations
of QAOA

Throughout this chapter I will introduce how in this thesis tensor networks are
used to encode and simulate QAOA circuits. Furthermore, I explain different types
of parameter γ, β initialization of QAOA. The importance of choosing a suitable
initialization method is shown in benchmarks of the different methods by numerical
experiments on MaxCut and MIS problems. In addition, within these experiments
a thorough search is conducted on which optimizers and hyperparameters are suitable
for finding good ground state approximations of the given problems using QAOA.

3.1 Simulation of higher depths QAOAs using tensor
networks

In this thesis the QAOA circuits of higher depths are simulated using tensor networks
similar to the explanation given in Sec. 2.2.4, however, with some adaptations. These
are based on prior research, especially the Qtensor library introduced in Refs. [67–
69]. First, the circuit needs to be mapped to a tensor network. This network is then
contracted in order to simulate the circuit. I provide the details of these two steps
in this section.

3.1.1 Encoding of QAOA as tensor network

The method to encode QAOAs as tensor networks used in this work requires a few
process steps that are explained in the following. Illustratively, these steps applied
to a p = 1 QAOA circuit of a simple MaxCut problem are shown in Fig. 3.1.
Although p = 1 circuits are not carried out with tensor networks in this thesis,
the example can be easily expanded to demonstrate how higher depth circuits are
simulated. In general, as already explained in Sec. 2.3.1, optimizing a QAOA for the
present problems does not require calculating the full output state of the circuit but
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Chapter 3 Analysis of tensor network simulations of QAOA

only obtaining expectation values of the form

〈Ψo(β,γ)| JijZiZj |Ψo(β,γ)〉 (3.1)

or
〈Ψo(β,γ)| JiZi |Ψo(β,γ)〉 . (3.2)

Furthermore, the quantum optimization algorithms investigated in this thesis are
based on correlations obtained from QAOA, i.e., they also require only expectation
values of the aforementioned form. This is also shown in part a) of the Figure.
Therefore, all quantum circuits that need to be evaluated have the structure as the
one in illustration b) of Fig. 3.1.
Before transferring such circuits to tensor networks, the so-called lightcone simpli-

fication as shown in part c) of the Figure is executed. It consists of removing all gates
and qubits that do not influence the expectation value to be evaluated. This occurs
because many gates are directly applied after their inverse leading to an output as
if no gate was applied at all.
Then, the remaining QAOA circuit to be evaluated is mapped to a tensor network.

This is done as explained in Sec. 2.2.4 by interpreting a quantum state of n qubits as
tensor from (C2)⊗n and a quantum gate as a tensor with input and output indices
for each qubit it acts on [70]. An input index corresponds to the output index of the
previous gate as outlined in part d) of Fig. 3.1.

3.1.2 Quantum circuit simulation by tensor network contraction

In this thesis, the exact simulation of a quantum circuit is achieved by contract-
ing the corresponding tensor network by so-called bucket elimination [71]. In this
procedure the different indices, thus edges, are contracted sequentially. Every step
consists of selecting an index i of the network and summing over the product of
all tensors containing this index. The computational complexity of this contraction
is highly sensitive to the sequence in which the tensor indices are contracted. The
complexity actually scales exponentially with the maximal rank of all intermediate
tensors throughout the contraction [67].
Therefore, optimizing the contraction sequence is essential to reduce the required

computational effort [72]. In this study, I employ a technique for determining an effi-
cient contraction order utilizing the line graph representation of the tensor network,
following Ref. [70]. In a line graph of a tensor network every vertex represents an
edge (index) of the original network. An edge between two vertices of a line graph
is present if the two (represented) corresponding edges of the tensor network share
a same node in the original network. This might sound confusing in the beginning
but it is helpful to see an example for overcoming the confusion. To illustrate such
a graph, part a) of Fig. 3.2 shows the line graph of the tensor network of Fig. 3.1.
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Figure 3.1: Part a) shows a simple MaxCut graph. The p = 1 QAOA circuit to
obtain the expectation value 〈Z1Z2〉 of the problem is pictured in b). The lightcone
simplification shrinks the quantum circuit in c). Illustration d) displays the tensor
network representation of the circuit of c).

Ref. [70] proofed mathematically and Ref. [68] showed numerically that further sim-
plifications can be done to such a line graph if tensors are diagonal. Since the ZZ
gates in QAOA circuits are diagonal this leads to significant computational savings.
The simplified line graph of illustration a) in Fig. 3.2 is pictured in part b) as an
example. For more details on these simplifications the reader is addressed to read
Refs. [68, 70].
The line graph representation can now be used to find a good contraction order of
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Line graph representation Simplified line graph representationa) b)

Figure 3.2: Illustration a) pictures the line graph representation of the tensor network
from graphic d) in Fig. 3.1. The colors of the edges are identical to the colors of the
nodes in the corresponding tensor network. This graph can be simplified to b) by
using rules from Ref. [70].

the corresponding tensor network by calculating a tree decomposition of the graph
with low treewidth [51]. A tree decomposition of a graph maps the graph into a
tree structure with bags of vertices, ensuring every vertex and edge of the graph is
included in at least one bag and that each vertex’s bags form a connected subtree.
The treewidth of the decomposition is the size of the largest bag minus one, and it
measures how close the graph is to being a tree. For more information please see
Ref. [73].
Having a tree decomposition of a line graph allows directly constructing a contrac-

tion order of the original tensor network with a maximal intermediate tensor rank
equal to the treewidth of the tree decomposition [51]. Although finding tree decom-
positions with low widths is generally a NP-hard problem, it is still advantageous
to use this approach for finding contraction orders because of the following reasons.
On the one hand, the line graph of a QAOA tensor network can be significantly sim-
plified as explained above. Therefore, good tree decompositions can be calculated
with less computational effort compared to directly obtaining a suitable contraction
order of the tensor network. On the other hand, finding tree decompositions with
low treewidths is a common problem in probabilistic graph theory and thus allows
knowledge transfer across different research fields [67]. Therefore, already estab-
lished methods can be used to find tree decompositions with low widths, such as the
Tamaki [74] or QuickBB [75] approaches. In the experiments of this thesis I use the
latter method.

3.2 Different methods of QAOA parameter initialization

A common problem of QAOA is finding the actual or at least a good approximation
to the minimum of the cost Hamiltonian of the given problem in the process of
classical optimization [76]. It often occurs that rather a local minimum of the energy
landscape with respect to parameters γ,β is found than the global one. It is actually
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3.2 Different methods of QAOA parameter initialization

known that the number of low-quality local minima increases exponentially with the
circuit depth p [55, 77].
Therefore, it is crucial that a good strategy is used to choose initial values of γ,β

in the beginning of the classical optimization routine within QAOA. This section
introduces various means of choosing initial parameters γ,β of QAOA circuits. In
particular, I will explain the methods transition states [78], interpolation [55], and
fixed angles for the specific case of MaxCut problems on regular graphs [79].

3.2.1 Transition states initialization

In general, transition states in an energy landscape E(γ,β) are defined as stationary
points with a single negative eigenvalue in the Hessian matrix [78]. A stationary
point fulfills the terms ∂iE(γ,β) = 0 for derivatives with respect to all variables.
The Hessian matrix is defined by Hij = ∂i∂jE(γ,β).
More illustratively speaking, a transition state corresponds to the generalization of

a saddle point in two dimensions to higher dimensions, where the energy landscape
decreases only in one positive and negative direction starting from the transition
state. This fact is nicely illustrated in Fig. 3.3 which is taken from Ref. [78]. From
this Figure, it also becomes clear that moving from the transition state into both
possible directions of the negative slope leads to two new minima.

Figure 3.3: In the middle a transition state of an energy landscape is pictured. Follow-
ing the two directions with negative slope leads to two new minima in the landscape.
The graphic is taken from Ref. [78].

In Ref. [78] the authors show that transition states in a QAOA energy landscape
with p+1 circuit layers can be constructed in the following way: Given the parameters
(γ∗,β∗) = (γ∗1 , ..., γ

∗
p , β
∗
1 , ..., β

∗
p) of a local minimum of the same QAOA with p layers,

the with zero padded parameter vectors

(γ∗1 , ..., γ
∗
j−1, 0, γ

∗
j , ..., γ

∗
p , β
∗
1 , ..., β

∗
i−1, 0, β

∗
i , ..., β

∗
p) (3.3)

lead to a transition state in the p + 1 energy landscape when i = j or j = i + 1
∀i ∈ [1, p] and for i = j = p+ 1.
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Applied in practice, this means that for every local minimum of a p QAOA,
Eq. (3.3) allows constructing 2p + 1 transition states in the energy landscape of
the corresponding p+ 1 QAOA. From each of these transition states two local min-
ima of the p+ 1 energy landscape can easily be reached by following the vector with
negative slope in both directions.
Because the parameters are padded only with zeros, the transition states of the

p + 1 QAOA have the same energy as the local minimum of the p QAOA of which
the parameters were taken. Therefore, when finding local minima starting from a
transition state in the p+1 case, it is guaranteed that the minima have lower energies
than the local minimum in the p energy landscape.
By using this reasoning, the authors of Ref. [78] propose a greedy recursive strategy

to find parameters γ,β of a QAOA that guarantees finding decreasing energy states
with increasing depth p. For finding such a low energy state for a specific p the
routine works as follows: In a first step a grid search is applied to find parameters
γ,β = γ1, β1 that lead to a low energy state for the p = 1 QAOA. Because there are
only two dimensions, this can be done efficiently. In the next step, these parameters
are used to generate the three transition states according to the above introduced
padding. Then, for each of the transition states the two corresponding local minima
are found by following the direction with negative slope both ways. From these six
new local minima, the lowest is chosen to create transition states for the p = 3 QAOA
energy landscape. This procedure is repeated recursively until the desired depth p
is reached.
For the remainder of the thesis I call this routine the transition states initialization

method. To find a minimum, starting from a transition state, I use different gradient
based standard algorithms as shown in the following Sections.

3.2.2 Interpolation initialization

Another method to initialize the QAOA optimization with suitable parameters γ,β
consists of using interpolation. Here, interpolation means using parameters from
lower depth QAOAs to find good parameters for a given depth p. Thorough research
on the parameters γ,β of low energy QAOA states and the relation to each other
with respect to different depths p has led to the following finding. Interpolating the
parameters of lower depth circuits that reveal low energy states allows finding good
initial parameters for higher depth circuits [55]. Thus, similar to the transition states
case, the routine requires knowing parameters from lower depth circuits that lead to
low energy states.
More technically speaking, starting from p = 1 QAOA, an optimization is conduc-

ted to find a low energy state with parameters γ,β = γ1, β1. In the next step the
routine constructs the initial parameters for the p = 2 QAOA based on interpolating
γ,β to one more layer of gates. This procedure is repeated recursively until the de-
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sired final depth of the QAOA is reached. Specifically, a well working interpolation
rule from Ref. [55] is given by

γp+1
i =

i− 1

p
γpi−1 +

p− i+ 1

p
γpi , (3.4)

where γp+1
i stands for the i-th entry of the initial γ value of the p+ 1 circuit and γpi

for the i-th entry of the optimized γ of the p QAOA. Furthermore, γp0 = 0 applies.
For β the method uses the same interpolation strategy by replacing γ with β in
Eq. (3.4).
This parameter choosing method is called interpolation initialization in this thesis.

I use different gradient based strategies to carry out the optimizations after choosing
the initial values.

3.2.3 Fixed angles initialization for MaxCut problems on k-regular
graphs

In the specific case of QAOA for MaxCut problems on k-regular graphs, I also
use the fixed angles conjecture from Refs. [79, 80]. A k-regular graph consists only
of vertices with exactly k neighbours. The fixed angles conjecture gives a worst-
case guarantee for the approximation ratio when using specific parameters γ,β in a
QAOA circuit for any MaxCut on a k-regular graph. The corresponding parameters
are given in Ref. [79], whereas the authors derived them by extensive numerical
simulations of QAOA circuits.
Because the performance guarantees for the graphs looked at in the thesis are below

80% [79], I will use the fixed angles as initial parameters for QAOA optimization
instead of directly applying them to calculate MaxCut energies and results.

3.3 Parameter optimization

This section showcases experiments for analysing parameter optimization within
tensor network simulations of QAOA. The experiments comprise executing differ-
ent parameter initialization methods in combination with different classical gradient
based optimization routines. The analysis allows choosing a suitable initialization
method and classical optimization routine for using QAOA on the investigated prob-
lem types. Firstly, the experiments on MaxCut problems are described in detail
before experiments on MIS instances. Finally a short reasoning behind parameter
optimization for the SetCover problem is given.
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3.3.1 MaxCut parameter optimization

In the case of simulating QAOA circuits for MaxCut problems, the analysis is
conducted by benchmarking the final QAOA energies of the initialization methods
from Sec. 3.2 in combination with different gradient based optimization routines with
various learning rates against each other.
To be more precise, simulations of QAOA for depths p ∈ {1, 2, 3} are carried out

on 20 different random 3-regular graphs for the graph sizes n ∈ {50, 100, 150, 200}.
In case of p = 1 the analytic formulas from Sec. 2.3.1 are used and p ∈ {2, 3} circuits
are executed using tensor networks as explained in Part 3.1. I simulate each of
these instances with transition states, interpolation and fixed angles initialization of
the QAOA parameters γ,β. These simulations in turn are conducted using each of
the optimizers stochastic gradient descent (SGD), RMSProp and Adam with different
learning rates (lr) to find minima in the QAOA energy landscape. For more details
of these optimizers the reader is invited to read Ref. [81]. These optimizers are
standard tools in machine learning to find minima in complicated landscapes and
are all based on gradient descent methods. In every optimization routine, 50 steps
are taken. Furthermore, I also used random initialization of the parameters with
optimization as a benchmark. To have a fair comparison, random initializations on a
specific problem instance are carried out as often as the transition states initialization
uses different transition states at a given depth p. So for p = 2, three different
random initializations are simulated, for p = 3 five different ones. Out of the results
of different random initializations on the same graph, the best one is chosen for
benchmarking. The results for the n = 50 instances are shown in Fig. 3.4.
In the Figure, for each combination of classical optimizer and parameter initializ-

ation the negative mean and corresponding standard deviation of the energies of the
QAOA output states are plotted. The light colored bars correspond to the energies
achieved by pure initialization without optimization. The full colored bars in turn
show the energies after optimization. Therefore, in the case of p = 1, the transition
states and interpolation initializations are only full colored since they use a grid
search of the parameters and thus do not require an optimization.
As a result, one can conclude the following insights. For increasing p the energies of

the QAOA output states decrease (remember, the Figure shows the negative energy
values) systematically as expected. This fact resembles an incitement to benchmark
the different depths as inputs for shrinking routines as it is done in the next chapter.
Furthermore, at depth p = 1 neither random nor fixed angles initialization in com-
bination with any classical optimizer achieve better results than a grid search but
worse. Thus, at p = 1 a grid search is totally sufficient to find good low energy
states.

38



3.3 Parameter optimization

Optimizers

10

20

30

40
p = 1

Optimizers

10

20

30

40

E
n
er

g
ie

s

p = 2

S
G

D
lr

=
0.

00
1

S
G

D
lr

=
0.

00
05

S
G

D
lr

=
0.

00
01

R
M

S
p
ro

p
lr

=
0.

05
R

M
S
p
ro

p
lr

=
0.

01
R

M
S
p
ro

p
lr

=
0.

00
5

R
M

S
p
ro

p
lr

=
0.

00
1

A
d
am

lr
=

0.
05

A
d
am

lr
=

0.
01

A
d
am

lr
=

0.
00

5

A
d
am

lr
=

0.
00

1

Optimizers

10

20

30

40
p = 3

W/O opt.:

W opt.:

Random

Random

Transition states

Transition states

Fixed angles

Fixed angles

Interpolation

Interpolation

Figure 3.4: Results of the analysis on different initialization methods and classical
optimizers for finding low energy QAOA states are shown. For each combination of
initialization, optimizer and corresponding learning rate (lr) the full QAOA routine
was applied to 20 different random 3-regular MaxCut problems with n = 50 vari-
ables. The bars represent the negative mean value of the obtained energies and error
bars the standard deviation. Light colored bars show the energy without optimiza-
tion routine and full colored after optimization.
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At depth p = 2 each of the three optimizers has at least one learning rate that
resembles good results for every initialization, except for SGD. The latter does not
find a low energy state in case of transition states initializations. Across all op-
timizers, interpolation and fixed angles initialization demonstrate the best results,
but interpolation has mostly a slightly lower energy. Random and transition states
initializations exhibit worse but still good results. For some optimizers, the former
achieves lower energies but mostly the latter does.
In case of circuit depth p = 3 the results are similar to p = 2. Interpolation

and fixed angles generally reach the lowest energies across all optimizers. Transition
states achieve the next best results before random initialization.
Since these tensor network simulations are still computational expensive, it makes

sense to also look at the loss curves achieved during the different optimization
routines. This allows discovering a combination of initialization and optimizer that
quickly reaches the low energy states in just a few optimization steps, i.e. a com-
bination to save resources. The loss curves of the most promising combinations of
initialization and learning rate are shown for every optimizer in Fig. 3.5. Here, the
mean of the energies and corresponding standard deviation are used.
From the Figure follows that in general the Adam optimizer takes the most steps to

find a low energy state. The interpolation method finds good parameters the fastest
for both, the RMSProp and the SGD optimizer. However, also fixed angles initialization
in combination with SGD and a learning rate of lr = 0.0001 leads quickly to low energy
states. At this point it makes sense to recall that fixed angles initialization for p = 3
only requires one run of optimization, whereas interpolation first needs to optimize
p = 1 and p = 2 to have good starting parameters for p = 3. Taken these insights
together, I use the combination of fixed angles initialization and SGD optimizer with
a learning rate of lr = 0.0001 for the remainder of the thesis whenever simulating
QAOA of 3-regular MaxCut instances with n = 50 nodes. This allows reaching
good results with the fastest computational runtime when introducing a threshold
during the optimization at which the process stops. In detail, I choose the threshold
of five consecutive energies in the optimization process not changing by more than
0.25% with respect to the energy of the prior step.
The same analysis for problems of sizes n ∈ {100, 150, 200} is given in Appendix B.

Interestingly, for different system sizes, different optimizers exhibit different perform-
ances when benchmarking them against each other. Therefore, it makes sense to use
varying optimizers and learning rates, depending on the system size. The analyses
in this thesis give an overview of which combinations to choose when working with
the same simulations and problem classes.
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Figure 3.5: Loss curves during QAOA parameter optimization of the most promising
combinations of initialization, optimizer and learning rate (lr) are shown. The losses
correspond to the energy results of Fig. 3.4. Thus, mean and standard deviation of
the losses during optimization of 20 different 3-regular MaxCut graphs with n = 50
variables are illustrated.

3.3.2 MIS parameter optimization

Such an analysis is also required for the MIS problem because the energy landscape
has different features. Without finding a suitable parameter initialization and op-
timizer, it is not guaranteed that QAOA finds low energy states. Therefore, I carry
out similar experiments as in the previous Sec. 3.3.1. I apply p ∈ {1, 2, 3} QAOA
with different combinations of parameter initialization, optimizer and learning rate
to 20 distinct random 3-regular MIS graphs and compare the obtained energies. In
comparison to the MaxCut case, here no fixed angles initialization is used because
there is no prior work providing suitable angles. For the sake of clarity of the main
part of the thesis, all results for graphs with n ∈ {50, 100, 150, 200} are shown in
Appendix C.
Evaluating the analysis reveals that the combination of transition states as well

as interpolation initialization with the RMSProp optimizer with a learning rate of
lr = 0.005 lead to the best results for all cases of p and n. Since using the interpolation
initialization requires less computational resources, I will use this combination for the
remainder of the work to evaluate QAOA on 3-regular MIS problems. When doing
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so, I use the same threshold to stop the classical optimization as in the MaxCut
case. Optimization stops when five energies in a row during optimization do not
change by more than 0.25% with respect to the energy of the prior step.

3.3.3 SetCover parameter optimization

For the SetCover problem, I mostly use p = 1 QAOA in this thesis. For p = 1
a thorough grid search with small enough steps already leads to low energy states.
For the small experiments of p = 2 QAOA, interpolation initialization together with
the RMSProp optimizer with a learning rate of lr = 0.001 is used throughout the
thesis, given that this combination provides good results for both, the MIS and
MaxCut problems. However, during experiments I realized that it requires more
than 50 optimization steps to find a low energy state. Therefore, for the SetCover
experiments, I choose 100 optimization steps. Overall, I conduct no further analysis
which initialization and classical optimizers are preferably used in the SetCover
problem because of the small extent of SetCover experiments within this work.
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Chapter 4

Application of recursive quantum
optimization (RQO) algorithms to
different problem classes

This chapter explains different experiments and results on using RQO algorithms
on MaxCut, MIS and SetCover problems. To be more precise, first, variations
of RQAOA as introduced in Sec. 2.3.2 are applied to MaxCut problems. Then I
explain experiments and results of using QIRO algorithms from Sec. 2.3.3 on MIS
instances. Lastly, the shrinking algorithm from Part 2.3.4 is employed to a real world
use case from industry.

4.1 Variations of RQAOA for the MaxCut problem

This part of the thesis is strongly based on our publication [23] in which we applied
the variation of RQAOA as explained in Sec. 2.3.2 to MaxCut instances of different
problem graph densities. By doing so, we are able to analyse the role of quantum
correlations in recursive shrinking algorithms. Before explaining the experiments and
findings thereof, I introduce two concepts of calculating classical correlations between
variables in MaxCut problems. This is necessary to understand the conducted
experiments.

4.1.1 Linear programming (LP) and semidefinite programming (SDP)
correlations for MaxCut problems

Instead of using correlations obtained from a quantum routine in shrinking al-
gorithms as in the RQAOA, it is also possible to utilize correlations that were cal-
culated by classical subroutines as it is done in Ref. [13]. Two options for this are
linear programming (LP) and semidefinite programming (SDP) correlations. These
are based on the classical standard routines to solve the MaxCut problem as ex-
plained in Sec. 2.1.2. These correlations can then be used with the same update rules
as the RQAOA to find solution approximations to MaxCut instances.
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LP correlations

Following the approach in Ref. [13], correlations from an optimal solution ỹ ∈ [0, 1]|E|

to the linear program Eqs. (2.4a)–(2.4c) are computed using the transformation

bLPe := 1− 2ỹe ∈ [−1, 1]. (4.1)

The rationale behind these correlations is that they are substantial when the edge
weight is large or when cutting an edge does not conflict with other desired cuts.
The term conflict refers to a situation where cutting one edge precludes the cutting
of other edges that should also be cut, thereby assigning a lower correlation to such
an interfering edge to discourage its cutting [23].

SDP correlations

The SDP correlation for each edge {i, j} ∈ E is obtained from the GW vectors {vi}
as introduced in Sec. 2.1.2 by evaluating the dot product

bSDP
ij = vi · vj ∈ [−1, 1], (4.2)

which measures the degree of alignment of the vectors [23]. A high absolute correl-
ation indicates that the vectors are nearly parallel or anti-parallel, corresponding to
dot products close to +1 or −1. The relaxed formulation in Eq. (2.5) parallels the
integer case, where an edge is cut if xixj = −1 and not cut if xixj = +1. The relaxed
dot product correlations span from −1 to +1, and can be efficiently computed [23].

4.1.2 Experiments on Erdős-Rényi graphs

In the first experiment run, we applied the RQAOA-like shrinking algorithm with
recalculation intervals from Chapter 2.3.2 to MaxCut instances with different prob-
lem graph densities and recalculation intervals. We use both, classical and quantum
correlations for the shrinking procedure in order to get an indication of the role of
quantum correlations in this family of algorithms. First, the experimental framework
is given before the results are stated and discussed.

Experimental framework

Instead of shrinking based on correlations obtained only from QAOA, we also ap-
plied the algorithm based on SDP and LP correlations in order to analyse the role
of quantum correlations in shrinking routines. Thus, the algorithm used in the ex-
periments can be illustrated as in Fig. 4.1 that is taken from Ref. [23]. For a given
MaxCut problem, correlations are calculated by either QAOA, LP or SDP be-
fore the problem is shrunk based on correlations by using update rules. There are
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4.1 Variations of RQAOA for the MaxCut problem

r shrinking steps before new correlations of the simplified problem are calculated
again. This is recursively repeated until the remaining problem is trivial to solve.
Finally the solution to the original problem is reconstructed by using information of
the individual shrinking steps [23].

c) Solution
reconstruction
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repeat r 
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Figure 4.1: A summary of the shrinking routine used in the experiments is shown.
For a given MaxCut problem, correlations are calculated by either QAOA, LP or
SDP before the problem is shrunk based on correlations by using update rules. There
are r shrinking steps before new correlations of the simplified problem are calculated
again. This is recursively repeated until the remaining problem is trivial to solve.
Finally the solution to the original problem is reconstructed by using information of
the individual shrinking steps. The illustration is taken from Ref. [23].

We conducted a first experiment run on 80 random Erdős-Rényi graphs with a
hundred nodes and different densities. An Erdős-Rényi graph for a given number
of nodes and density d is an undirected and unweighted graph with random edges.
Each pair of nodes is connected by an edge with probability d. Each of the problem
graphs we solved by applying the shrinking algorithm with recalculation intervals of
r ∈ {1, 10, 50,∞} for any of the three means of calculating correlations. In case of
quantum correlations, we used p = 1 QAOA. Furthermore, as a benchmark we also
solved the problem graphs using the bare algorithms of the correlation calculations,
i.e., linear programming, GW and QAOA, as explained in more detail in Ref. [23].
To benchmark the different performances against each other we use the median of

the approximation error, whereas the latter is defined by

RA :=
SA
SG

. (4.3)

Here, SA stands for the cut size obtained by the investigated algorithm. SG repres-
ents the cut size retrieved from Gurobi [82], a state-of-the-art commercial solver. For
each instance, we run Gurobi on a single core (Dual AMD Rome 7742) and termin-
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Figure 4.2: We report the median approximation ratio RA for the bare LP, GW,
and QAOA (p = 1) algorithms, alongside their shrinking variants with recalculation
intervals r = 1 and r =∞. These algorithms were tested on 80 randomly generated
Erdős-Rényi graphs, each with 100 nodes, across densities of 0.1, 0.4, and 0.8. The
error bars indicate the first and third quartiles. The Figure is taken from Ref. [23].

ate the optimization when the value of the optimization objective has not changed
in an hour [23]. It should be noted that using this method does not ensure that
the Gurobi optimizer reaches optimal solutions, particularly for dense Erdős-Rényi
graphs. Nonetheless, we consider the Gurobi benchmark robust enough to meet the
objectives of this study [23].

Results

The comparison of the bare algorithm with the shrinking algorithm can be found in
Fig. 4.2, taken from our publication [23]. Here only densities of d ∈ {0.1, 0.4, 0.8}
and recalculation intervals r ∈ {1,∞} are shown.
Analyzing the LP algorithm, we observe that the shrinking technique without re-

calculations consistently outperforms the bare algorithm across all graph densities,
despite using the same correlation values. Moreover, increasing the frequency of
recalculations (thereby decreasing r) significantly enhances performance. This pat-
tern is similarly observed in the SDP and QAOA algorithms. However, unlike SDP
and QAOA, which maintain a nearly constant approximation ratio across densit-
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ies, LP shows notably superior performance on lower-density graphs compared to
high-density ones [23].
The bare GW algorithm and the SDP-based shrinking algorithm exhibit robust

performance across all densities. Particularly, the shrinking algorithm with a recal-
culation interval of r = 1 achieves median approximation ratios above 99% for all
densities, outperforming the others. Notably, the bare GW algorithm marginally
surpasses the shrinking algorithm when no recalculations are performed.
In the case of QAOA, the shrinking method with a recalculation interval of r = 1

(equivalent to RQAOA) substantially improves performance over the bare QAOA
algorithm. For varying densities, the median approximation ratio leaps from around
90% in the bare QAOA to nearly 99% with the r = 1 shrinking technique. This
significant enhancement aligns with previously reported results [7, 11]. Remarkably,
QAOA shows the most substantial relative improvement among the three methods of
correlation computation compared to its bare version. Although the bare QAOA and
the non-recalculating shrinking method yield similar results, the error bars indicate
that the quality of the shrinking method without recalculations fluctuates more than
the standard QAOA algorithm.
To analyse the effects of recalculation intervals and problem densities, we show the

median approximation ratio of the different correlation calculations for all densities
and recalculation intervals as explained above in Fig. 4.3, taken from our publica-
tion [23].
Let us first examine the general impact of the recalculation interval before ana-

lyzing how problem density affects performance. Across all three methods for com-
puting correlations, a clear pattern emerges: More frequent recalculations yield bet-
ter solutions. Notably, for LP correlations at low densities, the r = 10 shrinking
algorithm slightly outperforms the r = 1 variant. Although the performance dif-
ferences between r = 10 and r = 1 are minor for LP and SDP, QAOA shows a
significant performance boost with r = 1. For all methods (SDP, LP, and QAOA),
recalculation intervals of 50 and∞ result in significantly poorer approximation ratios
compared to smaller intervals, underlining the necessity of frequent recalculations.
Now, focusing on problem density, LP correlations exhibit the most pronounced

dependence. Specifically, the approximation ratio for low-density instances is sub-
stantially higher than for any other type of correlation, which aligns with the gener-
ally strong performance of the bare LP algorithm on sparse graphs, as demonstrated
in other studies such as Ref. [28].
Additionally, Fig. 4.3 reveals a systematic increase in the median approximation

ratio for densities above d = 0.3. This trend likely reflects the diminishing quality of
reference solutions obtained via Gurobi for denser instances, rather than an actual
improvement in the shrinking algorithm’s performance. While Gurobi can certify
optimal solutions for sparser graphs, it struggles with denser ones. Consequently,
we attribute the rising approximation ratios to our choice of benchmark. Neverthe-
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Figure 4.3: We compare the median approximation ratios of the shrinking algorithm
using correlations derived from LP, SDP, and QAOA (p = 1). Each density between
0.05 and 0.85 was tested on eighty 100-node Erdős-Rényi graphs with varying recal-
culation intervals r = 1, 10, 50, ∞. The shaded regions illustrate the interquartile
range, capturing results between the first and third quartiles. The Figure is taken
from Ref. [23].

less, this setup still permits meaningful comparisons between different correlation
methods.
Thus, we observe that the performance of the LP shrinking algorithm worsens

rapidly as density increases from d = 0.05. In contrast, SDP and QAOA correlations
provide more stable performance across the entire density range. Furthermore, SDP
correlations consistently outperform QAOA (p = 1) for most densities, while QAOA
surpasses LP correlations for densities greater than d = 0.2.

Discussion

In these experiments, we analyzed algorithms that solve combinatorial optimization
problems through a recursive shrinking technique. We compared various methods for
computing correlations, both quantum and classical, thereby establishing classical
benchmarks that quantum-informed shrinking algorithms must surpass to demon-
strate practical utility.
Our proposed shrinking procedure serves as a standalone heuristic that signific-
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antly enhances the performance of the underlying algorithm. Through extensive
numerical simulations, we applied this procedure to the MaxCut problem.

Our results reveal that the shrinking algorithm not only boosts the performance
of the quantum QAOA algorithm, as previously shown in [7, 11], but also markedly
improves the performance of classical algorithms such as the Goemans-Williamson
algorithm and the linear programming relaxation of MaxCut.
By applying the shrinking algorithm to Erdős-Rényi graphs of various densities,

we observed that LP correlations perform exceptionally well at low densities but
degrade rapidly as density increases. This indicates a simple decision rule: Use
LP correlations for low-density problems and switch to other methods for higher
densities. This sensitivity is due to the LP’s edge-based decision variables, which
proliferate with increasing graph density, unlike the node-assignment variables used
in other relaxations [23].
In contrast, SDP and QAOA correlations maintain consistent performance, with

approximation ratios improving slightly as density increases. This trend may res-
ult from either enhanced solution quality of the shrinking algorithm or declining
performance of the Gurobi reference solutions.
For all correlation methods, increasing the frequency of recalculations generally

improves results, albeit at the cost of greater computational resources. Notably,
the LP and SDP-informed shrinking algorithms show only slight performance gains
when recalculations are performed at every step (r = 1) compared to every ten steps
(r = 10) [23].

4.1.3 Experiments on 3-regular graphs with higher depth QAOA

To explore the performance of shrinking algorithms using quantum correlations of
better quality, we conducted another experiment run on solving MaxCut instances
with the same routine as before but with higher depth p QAOA correlations. To
achieve this we used sparser and smaller problem graphs. The experimental setup
and results are explained in the following. Lastly, the results are discussed.

Experimental framework

To investigate the performance of the shrinking algorithm with higher depth p ∈
{1, 2, 3} QAOA correlations, we apply the same algorithm as in the previous case
with recalculation intervals r ∈ {1, 5, 10, 25,∞} to 25 different 3-regular MaxCut
graphs with 50 variables. The shrinking algorithm is employed five times for every
instance. We again use the approximation ratio with respect to solutions obtained
by Gurobi. In the case of 3-regular graphs, Gurobi manages to solve the instances
to optimality.
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Figure 4.4: This Figure illustrates the median approximation ratios for the bare LP,
GW, and QAOA algorithms (with depths p ∈ {1, 2, 3}) and their shrinking variants
using recalculation intervals r = 1 and r = ∞. These algorithms were applied to
25 randomly generated 3-regular MaxCut problem instances, each containing 50
nodes. The bars represent the median results from five runs per instance, while the
error bars denote the first and third quartiles of the individual approximation ratios.
The approximation ratios are calculated relative to the optimal MaxCut solutions.
The illustration is an extension to Fig. 5 in Ref. [23].

Results

Fig. 4.4 presents the outcomes of our experiments. For comparative purposes, we also
include results derived from LP and SDP correlations. The Figure is an extension
to Fig. 5 in Ref. [23].
In the Figure, the bar heights represent the median approximation ratio across all

problem instances and algorithm runs. The upper and lower error bars correspond
to the third and first quartiles of the obtained approximation ratios, respectively.
Due to the randomness in tie-breaking during the shrinking process, we executed
the shrinking algorithm multiple times for each instance, resulting in potentially
different final solutions. This variability is especially pronounced in QAOA, where
at low depths p, the correlations are influenced only by the local neighborhood of an
edge. For 3-regular graphs, the limited number of distinct local neighborhoods leads
to numerous ties in the correlations [65, 83].
Critically, the results in Fig. 4.4 validate the expectation that deeper QAOA cir-

50



4.2 Higher-depth variations of QIRO for the MIS problem

cuits yield better correlations. This is reflected in the improved performance of the
bare algorithms as the depth p increases. Furthermore, this performance enhance-
ment extends to the shrinking algorithm, regardless of the recalculation frequency.
Consistently, the shrinking algorithm’s performance improves when correlations are
recalculated after each shrinking step. Remarkably, we achieved optimal solutions
for all tested graphs at p = 2 when recalculations were performed after every shrink-
ing step. However, it is anticipated that larger instances would necessitate higher
depths. Additionally, even without recalculations (r = ∞), the shrinking algorithm
generally outperforms the bare algorithm at higher depths. It can be nicely seen
that decreasing recalculation interval r leads to an improvement in the performance
for all depths.
Given the low density of 3-regular graphs, these instances fall within the density

range where the LP shrinking algorithm and its classical counterpart exhibit su-
perior performance, as just discussed above. Consequently, all LP variants reach
optimal solutions. Moreover, the problem sizes are sufficiently small that all SDP
algorithms achieve excellent approximation ratios, with median ratios at 100%. The
SDP shrinking variant with r = ∞ solves more instances perfectly than the bare
algorithm, but only the shrinking versions with r = 1 and r = 5 achieve optimal
results for all MaxCut instances.

Discussion

Our simulations of higher-depth QAOA have confirmed that better quantum correl-
ations significantly improve the performance of the shrinking algorithm. This result
suggests that advancements in quantum hardware will lead to substantial perform-
ance improvements in shrinking algorithms. Consequently, this provides valuable
insights into the potential of quantum algorithms to offer practical solutions for
combinatorial optimization problems [23].

4.2 Higher-depth variations of QIRO for the MIS problem

In this section, I showcase results of experiments on applying the QIRO variations
of Part 2.3.3 to MIS problems of various sizes. First I explain the details of the
experiments before showing the results and discussing them.

4.2.1 Experimental framework

For benchmarking the performance of the different QIRO algorithms MAXQ, MINQ,
MMQ and 2-MMQ from Sec. 2.3.3, I apply them to MIS problems of various sizes.
To be more precise, each of the algorithms is used to solve 40 different instances of 3-
regular graphs of sizes n ∈ {60, 80, 100, 120, 140, 160}. I carry this out for every of the
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QAOA depths p ∈ {1, 2, 3} within the QIRO routines. For the QAOA optimization
routines the RMSProp optimizer with a learning rate of lr = 0.005 in combination with
the interpolation parameter initialization is used as described before in Chapter 3.3.2.
For p = 1, I simulate QAOA via the analytic expressions. For depths p ∈ {2, 3},
tensor network simulations are used as explained in Sec. 3.1.

4.2.2 Results

The results of the experiments are shown in Fig. 4.5. For each of the four algorithms
MAXQ, MINQ, MMQ and 2-MMQ I use the mean of the approximation ratio

RA :=
SA
SG

(4.4)

as performance measure. Here, SA stands for the MIS size obtained by the invest-
igated algorithm. SG represents the MIS size retrieved from Gurobi [82]. For the
present problems, Gurobi is able to find the optimal solutions.
The mean is calculated with respect to the results of all 40 problem instances

for each problem size. The shaded areas in the Figure indicate the maximum and
minimum achieved approximation ratio of the individual problems. Furthermore,
Fig. 4.5 shows the results of the classical MAX and MIN algorithms.
A first interesting insight is that MINQ and MAXQ based on p = 1 QAOA match

the respective classical greedy variant perfectly as suggested by Ref. [16]. This in-
dicates that the experiments are conducted correctly. MINQ achieves a lot better
results than MAXQ for p = 1 over every problem size.
Across all algorithms the performance improves strongly with increasing circuit

depth p. For both, MMQ and QIRO the p = 1 version performs worse than the
classical MIN algorithm as already shown numerically in Ref. [12]. However, as can
be seen from the results, already using p = 2 QAOA for obtaining correlations is
sufficient to surpass MIN.
When comparing the approximation ratios of the different algorithms with each

other, MAXQ performs generally worse than the others with same depth p. For
depth p = 1, MINQ clearly achieves the best results with a mean approximation
ratio of about 0.96. Here, MMQ and 2-MMQ perform worse with roughly 0.93 to
0.94. In case of QAOA circuits with depth p = 2, the mean approximation ratios of
MINQ, MMQ and 2-MMQ lay on the same level and depending on the problem size
one of them performs slightly better than the others. The same behaviour can be
seen for p = 3 QAOA circuits. Here, MAXQ achieves worse results than the other
algorithms but MINQ, MMQ and 2-MMQ demonstrate approximation ratios on the
same level.
When analysing the results along the different problem sizes, all algorithms exhibit

a rather stable performance except for p = 1 MAXQ, MMQ and 2-MMQ that perform
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Figure 4.5: The mean approximation ratio achieved by the algorithms MAXQ, MINQ,
MMQ and 2-MMQ for MIS are shown for different problem sizes and QAOA circuit
depths p ∈ {1, 2, 3}. The approximation ratio corresponds to the proportion of the
found MIS size and the optimal solution. The mean is taken over 40 different 3-
regular problems for each of the sizes n ∈ {60, 80, 100, 120, 140, 160}. The shaded
areas indicate the maximum and minimum achieved approximation ratio over all
individual problem instances. The classical MIN and MAX algorithms are pictured
as benchmarks.

worse for bigger problems. All other combinations of algorithm and QAOA depth p
show no significant decreasing mean approximation ratio for increasing system sizes.
It is also interesting to analyse how many MIS instances are solved to optimality

by the respective algorithm. The percentage of the perfectly solved instances in the
same experiments is shown in Fig. 4.6.
The results of solved instances mimic in general the performance with respect

to the mean approximation ratio. Thus, also here the performance of all routines
increases strongly with higher depth p. MAXQ generally performs worse than the
other three algorithms which are for the same p mostly on the same level. However,
with increasing problem size the routines solve percentually less instances perfectly.

4.2.3 Discussion

By conducting the explained experiments, I provide further insights into the per-
formance of QIRO routines on larger MIS problems, especially with respect to higher
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Figure 4.6: The percentage of solved MIS instances is shown for the different al-
gorithms MAXQ, MINQ, MMQ and 2-MMQ. The experiments are conducted on 40
different problem instances for each of the sizes n ∈ {60, 80, 100, 120, 140, 160}. The
algorithms with QAOA circuit depths p ∈ {1, 2, 3} are used.

depth QAOA correlations, i.e., quantum correlations of better quality. Benchmark-
ing the different routines MAXQ, MINQ, MMQ and 2-MMQ allows selecting an
algorithm for further experiments with knowing its performance compared to the
others.
The result of improved performance of all QIRO routines with increasing p is

expected but has only been verified before for system sizes of up to 18 variables [16].
Thus, the present experiments further verify these expectations for larger problem
instances.
The worse results of the MAXQ algorithm compared to the other routines

strengthens the judgment to not choose this algorithm when solving MIS prob-
lems. In addition to its bad performance, it also requires longer computational run
times than for example the MINQ algorithm because it removes only one node per
shrinking step.
The fact that MINQ, MMQ and 2-MMQ perform similar for depths p ∈ {2, 3}

provides us with the information that in case of 3-regular MIS problems, two-point
correlations do not contain helpful information for the present shrinking algorithm.
Furthermore, it is interesting to see that the additional information available to
MMQ in comparison to MINQ does not lead to a better performance.
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Moreover, the experiments show that the increase in QAOA circuit depth, thus
increase in correlation quality, not only improves the mean approximation ratio of
MIS solutions but also improves the number of perfectly solved instances. When
examining the relative increase of solved instances with increasing p, MMQ and
2-MMQ exhibit the strongest increase. However, this is not due to more solved
instances but rather because of the worse p = 1 results in comparison to the MINQ
results.

4.3 Industry use case: Application of a QIRO algorithm
to a sensor positioning problem

This section explains experiments of applying the MINQ algorithm from Part 2.3.4
for the SetCover problem to the industry use case of solving a sensor positioning
problem. This problem can be mimicked by the SetCover problem as shown pre-
viously in Sec. 2.1.4. First, I explain the experimental setup before introducing the
results thereof and discussing them.

4.3.1 Experimental framework

The instances of the experiment are chosen in such a way that the resulting Set-
Cover problems mimic the sensor positioning issue in two dimensions. The instances
are created as follows. First, a two dimensional grid is chosen with a random size
of maximal 12 × 12 grid points. The grid represents a two dimensional room that
needs to be surveyed by sensors. On every grid point an area to cover is positioned
with a probability of 60%. These areas correspond to the elements of the set U
that needs to be covered. Next to each grid point sensors with a covering range of
1, 2, 3 or 4 are appointed randomly with probabilities of 70%, 10%, 10% and 10%,
respectively. A sensor with a range of 2 corresponds to covering all areas that lie
within the 2-neighbourhood, i.e., the area on the grid point itself and the nearest
vertical and horizontal areas thereof. Accordingly, the other ranges of sensors cover
neighbouring areas. A 1-neighbourhood consequently consists only of the possible
area on the grid point. These sensors correspond to the subsets Vi of the problem,
that are allowed to be used to cover the set U . Such a SetCover problem is only
used in the experiments when all elements of U can be covered by the subsets Vi.

On the one hand, creating SetCover instances in this way imitates the sensor
positioning problem in such a way that not every area in a room needs to be surveyed
by a sensor. On the other hand, appointing sensors with different ranges on not every
possible grid point mimics that sensors cannot be placed everywhere and that there
can be obstacles in the room that lead to different ranges the sensor can cover.
For the experiments, 10000 instances of valid SetCover problems are created.
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different problem classes

The size of sets U range from 2 to 59, leading to up to 400 variables and thus qubits.
To each of these instances the MINQ routine for SetCover problems with p = 1
is applied as introduced in Sec. 2.3.4. As a benchmark also the greedy MAX solver
for SetCover instances from Chapter 2.1.4 is applied to all problems. For avoiding
confusion to the reader, it is again noted that MINQ for the SetCover problem
is just a name of the described algorithm in alignment with the MINQ routine for
MIS problem. Since the name has no further underlying meaning, the question why
a MIN type of algorithm is compared with MAX routine is obsolete. Furthermore,
all generated problem instances with a set size |U | smaller or equal than 15 are also
solved by MINQ using p = 2 QAOA.

4.3.2 Results

Figure 4.7 shows the results of the experiments. On the x-axis the size of the sets
U that need to be covered is plotted. The left y-axis illustrates the mean of the
number of possible subsets Vi for each problem instance of corresponding size |U |.
This information is important to know because the number of possible subsets has a
crucial influence on the difficulty of the problem and the number of required qubits.
One can see that the number of possible subsets roughly increases linearly with the
size of the set U .
The right y-axis indicates the mean approximation ratio of the result of the corres-

ponding algorithm. The approximation ratio is here again calculated with respect to
the optimal solution to the problem that is obtained using Gurobi [82]. For example,
an approximation ratio of 2 corresponds to a solution to the SetCover problem
with twice as many chosen subsets Vi to cover U as necessary in the optimal case.
The individual data points of both y-axes show the mean of all instances with corres-
ponding set size |U |. The shaded areas indicate the standard deviation to the mean
value.
Interestingly, the greedy MAX solver already solves almost all problem instances

perfectly. In contrast, the p = 1 MINQ only is able to solve problems with very
small sizes to optimality. For set sizes of bigger than five, the mean approximation
ratio quickly increases up to roughly 1.6 for sizes of |U | = 50. However, MINQ with
correlations obtained from p = 2 QAOA performs already a lot better such that the
mean approximation ratio stays below 1.1 for the solved instances.

4.3.3 Discussion

On one hand these results show that RQO algorithms such as QIRO allow simulations
of quantum algorithms on large problems of up to 400 variables already now. Thus,
applying this family of algorithm on near-term quantum devices seems feasible. On
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Figure 4.7: On the x-axis 10000 instances of the SetCover problem are divided
by the size of the set U . The left y-axis illustrates the corresponding mean of the
numer of possible subsets Vi that can be chosen to cover U . The right y-axis shows
the mean approximation ratio of the problem solutions obtained by the MAX and
MINQ algorithms. For the latter the p = 1 version is applied to all instances and the
p = 2 variation only to instances with set size |U | ≤ 15. The approximation ratio is
the ratio of the obtained solution and the optimal solution.

the other hand the experiments indicate that not only simple toy problems but also
difficult ones such as the SetCover can be investigated by quantum routines.
However, given that a simple classical greedy algorithm is able to solve most prob-

lem instances perfectly, the performance of p = 1 MINQ rather disappoints. One
reason for the bad results is the unnatural encoding of the SetCover problem
using many ancilla qubits. One of the underlying ideas behind recursive quantum
algorithms is the natural encoding of the problem in terms of qubits and graphs that
is not given for the present problem.
As already shown in the other experiments of the thesis, quantum correlations

with higher quality improve the performance of the quantum routine. This result
resembles another indication that better quantum correlations, e.g., higher depth
QAOA correlations, help improving shrinking routines. The very strong perform-
ance increase of MINQ at already p = 2 QAOA correlations is an evidence for the
importance of further developments of quantum hardware. The more tolerant against
faults and the longer the coherence times of hardware become, the better quantum
information can be obtained, leading to strong performance increases of algorithms.
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Chapter 5

Summary, conclusion and outlook

In this chapter a summary of the thesis and a conclusion thereof is written. In
addition, based on the results of this thesis I give an outlook to further research
questions on RQO algorithms that can be explored in the future.

5.1 Summary

The purpose of this thesis consists of investigating the role of quantum correlations in
recursive optimization algorithms and exploring the performance of QIRO routines
with high quality quantum correlations on large problem instances. Furthermore, a
RQO algorithm for a real word industry use case is derived and applied.
To achieve these goals, the problem classes MaxCut, MIS and SetCover are

introduced in the beginning as suitable examples. For each of the problems the
corresponding QUBO formulations are given and at least one classical solver serving
as benchmark is explained. Then I establish the basics of tensor networks and how
to use them for simulating quantum circuits. In the final part of the background
section the quantum optimization algorithms relevant for the thesis are introduced,
namely QAOA, RQAOA variations for MaxCut, QIRO adaptations for MIS and
SetCover problems.
Before being able to apply these algorithms to the problems, it requires an ana-

lysis on which parameter initialization methods and which classical optimizers are
suitable for achieving good QAOA results since QAOA serves as a subroutine to
all recursive algorithms of interest. Therefore, I conduct QAOA simulations using
tensor networks with different parameter initialization methods and classical optim-
izers on the problem classes with various sizes. From the results it is possible to
choose a combination of parameter initialization method and optimizer for the in-
dividual problems and instance sizes that lead to good QAOA performance. This
can also serve as a practical guide for future implementations of large scale QAOA
simulations based on tensor networks.
In the next step of the thesis, the quantum optimization and classical benchmark

routines are applied to the corresponding problems to gain insights into their per-
formance. Concretely, I use quantum and classical variations of RQAOA to solve
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MaxCut instances of various densities. On one hand the focus lies on comparing
the algorithm’s performance based on quantum correlations with the one using clas-
sical correlations. On the other hand the performance increase with higher depth
QAOA correlations is investigated.
In addition, QIRO variations with QAOA depths p ∈ {1, 2, 3} are applied to MIS

instances of different sizes of up to 160 variables. These experiments allow further
insight into the performance of QIRO algorithms on larger graphs with increasing
quantum correlation quality.
Lastly, SetCover instances imitating a sensor positioning problem from industry

with up to 400 variables, i.e., 400 qubits, are created and solved by a QIRO algorithm
with p = 1 QAOA correlations. In addition, the algorithm with p = 2 is applied to
the smaller instances.

5.2 Conclusion

The results achieved in this thesis showcase the role of quantum correlations in re-
cursive shrinking algorithms for solving COPs, the performance of QIRO algorithms
on MIS problems and on the use case of sensor positioning.
When exploring the role of quantum correlations in comparison to classical ones,

we found that the shrinking routines as such already improve the performance of the
underlying classical as well as quantum routines. Furthermore, we showed that using
classical LP correlations when solving COPs of low graph density with shrinking
algorithms leads to the best result in comparison with correlations calculated by
SDP or QAOA. The latter two variants exhibit constant performance over varying
problem densities. In addition, we found that the shrinking algorithm works better
the less shrinking steps we do between calculating new correlations,independent of
the way of obtaining correlations. However, the performance gains can be very small.
Given the computational effort of calculating correlations more frequently, it may
still be good enough to calculate less often, depending on the desired performance.
Although our results show that SDP correlations lead to better approximation ratios
than p = 1 QAOA correlations, we demonstrate that higher depth QAOA lead to
a strongly improved performance of the shrinking algorithm. This result indicates
the potential of quantum algorithms in solving COPs when hardware improves with
time.
Following on from this fact, the results of applying QIRO routines to MIS prob-

lems display the performance gain when the quality of the quantum correlations
increases, i.e., when higher depth QAOA correlations are used. While p = 1 QAOA
leads to QIRO variants of worse or same performance as classical greedy algorithms,
the routines using higher depth QAOA outperform the classical greedy benchmarks.
I also showed that using QIRO algorithms based on two- and one-point correlations
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instead of only one-point correlations does not lead to a better performance in our
experiments. For p = 1 the algorithms with access to more information even demon-
strates worse approximation ratios. However, this may be due to the particular
choice of the update rules employed here. Improving upon these may be a promising
avenue for future research.
Lastly, our experiments on SetCover problems indicate that quantum shrinking

algorithms can already now be applied to more difficult use cases from industry and
not only simple or even toy problems. However, the fact, that a classical greedy al-
gorithm solves the instances of our experiments already to almost optimality, demon-
strates their simple nature. Nevertheless, QIRO with p = 1 correlations performs
disappointingly bad. I conclude that the reasons are the non-native encoding of the
problem including ancilla variables in terms of qubits and the difficult energy land-
scape that complicates QAOA optimization. Thus, the results suggest that having
a native mapping to a quantum device is essential. As before, the results indicate
that higher depths lead to better results also in case of the SetCover problem.
Therefore, I infer that it is crucial to improve the quality of quantum correlations
for the successful application of RQO algorithms to real world industry problems.

5.3 Outlook

This thesis conducted research on the performance of RQO algorithms for MaxCut,
MIS and SetCover problems with a focus on large sparse graphs. A natural next
step would be to apply similar experiments to denser problem graphs to investigate
the robustness of the algorithms with respect to the degree of problem connectivity.
Another possible extension is to also look into other combinatorial optimization

problems and weighted versions thereof. This would require developing different
update rules but would allow further insights into the applicability of such algorithms
on various problem classes instead of only the standard ones. For the sake of useful
applications, looking for further problems that are of importance to industry would
be advantageous.
A further step forward would be to extend the investigated quantum algorithms by

new developing update rules, that are based on information going beyond one- and
two-point correlations. This would be especially interesting when further increasing
the depth of QAOA circuits used to obtained these correlations.
Furthermore it would be interesting to use other means of calculating quantum

correlations going beyond QAOA. For example, much research has been conducted
on analog quantum devices for quantum optimization [84, 85]. Using such devices to
obtain correlations for shrinking algorithms seems like a promising path to follow in
quantum optimization research [12]. Comparing the performance of RQO algorithms
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using gate-based and analog quantum devices for obtaining correlations would allow
further insights into the potential of quantum optimization routines [23].
Throughout this work all experiments involving quantum algorithms were done by

classical simulations of actual quantum hardware. Thus, it would be of utter interest
to develop and run similar explorations on real quantum devices. This would on one
hand allow testing the simulations of the thesis against results on currently available
devices. On the other hand, such experiments probe the influence of real world
drawbacks such as quantum noise and hardware faults on RQO routines.
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Appendix A

Ising formulation of the SetCover prob-
lem

The Ising formulation of the SetCover problem can be derived from Eq. (2.10) by
using the mapping xi = 1

2(1 + zi):
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Appendix B

QAOA parameter analysis for MaxCut
problems of sizes n ∈ {100, 150, 200}
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Appendix B QAOA parameter analysis for MaxCut problems of sizes
n ∈ {100, 150, 200}
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Figure B.1: Results of the analysis on different initialization methods and classical
optimizers for finding low energy QAOA states are shown. For each combination of
initialization, optimizer and corresponding learning rate (lr) the full QAOA routine
was applied to 20 different random 3-regular MaxCut problems with n = 100
variables. The bars represent the negative mean value of the obtained energies
and error bars the standard deviation. Light colored bars show the energy without
optimization routine and full colored after optimization.
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n = 100 variables are pictured.

67
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n ∈ {100, 150, 200}
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Figure B.3: Results of the analysis on different initialization methods and classical
optimizers for finding low energy QAOA states are shown. For each combination of
initialization, optimizer and corresponding learning rate (lr) the full QAOA routine
was applied to 20 different random 3-regular MaxCut problems with n = 150
variables. The bars represent the negative mean value of the obtained energies
and error bars the standard deviation. Light colored bars show the energy without
optimization routine and full colored after optimization.
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n = 150 variables are pictured.
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Figure B.5: Results of the analysis on different initialization methods and classical
optimizers for finding low energy QAOA states are shown. For each combination of
initialization, optimizer and corresponding learning rate (lr) the full QAOA routine
was applied to 20 different random 3-regular MaxCut problems with n = 200
variables. The bars represent the negative mean value of the obtained energies
and error bars the standard deviation. Light colored bars show the energy without
optimization routine and full colored after optimization.
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QAOA parameter analysis for MIS prob-
lems of sizes n ∈ {100, 150, 200}

73



Appendix C QAOA parameter analysis for MIS problems of sizes
n ∈ {100, 150, 200}

Optimizers

2

4

6

8

10

12

14 p = 1

Optimizers

2

4

6

8

10

12

14

E
n
er

g
ie

s

p = 2

S
G

D
lr

=
0.

00
1

S
G

D
lr

=
0.

00
05

S
G

D
lr

=
0.

00
01

R
M

S
p
ro

p
lr

=
0.

05
R

M
S
p
ro

p
lr

=
0.

01
R

M
S
p
ro

p
lr

=
0.

00
5

R
M

S
p
ro

p
lr

=
0.

00
1

A
d
am

lr
=

0.
05

A
d
am

lr
=

0.
01

A
d
am

lr
=

0.
00

5

A
d
am

lr
=

0.
00

1

Optimizers

2

4

6

8

10

12

14 p = 3

W/O optimization:

W optimization:

Random

Random

Transition states

Transition states

Interpolation

Interpolation

Figure C.1: Results of the analysis on different initialization methods and classical
optimizers for finding low energy QAOA states are shown. For each combination of
initialization, optimizer and corresponding learning rate (lr) the full QAOA routine
was applied to 20 different random 3-regular MIS problems with n = 50 variables.
The bars represent the negative mean value of the obtained energies and error bars
the standard deviation. Light colored bars show the energy without optimization
routine and full colored after optimization.
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Figure C.2: Results of the analysis on different initialization methods and classical
optimizers for finding low energy QAOA states are shown. For each combination of
initialization, optimizer and corresponding learning rate (lr) the full QAOA routine
was applied to 20 different random 3-regular MIS problems with n = 100 variables.
The bars represent the negative mean value of the obtained energies and error bars
the standard deviation. Light colored bars show the energy without optimization
routine and full colored after optimization.
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Figure C.3: Results of the analysis on different initialization methods and classical
optimizers for finding low energy QAOA states are shown. For each combination of
initialization, optimizer and corresponding learning rate (lr) the full QAOA routine
was applied to 20 different random 3-regular MIS problems with n = 150 variables.
The bars represent the negative mean value of the obtained energies and error bars
the standard deviation. Light colored bars show the energy without optimization
routine and full colored after optimization.
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Figure C.4: Results of the analysis on different initialization methods and classical
optimizers for finding low energy QAOA states are shown. For each combination of
initialization, optimizer and corresponding learning rate (lr) the full QAOA routine
was applied to 20 different random 3-regular MIS problems with n = 200 variables.
The bars represent the negative mean value of the obtained energies and error bars
the standard deviation. Light colored bars show the energy without optimization
routine and full colored after optimization.

77





Bibliography

[1] Gang Yu. Industrial applications of combinatorial optimization. Vol. 16.
Springer Science & Business Media, 2013.

[2] Prabhakar Raghavan and Clark D. Tompson. »Randomized rounding: a tech-
nique for provably good algorithms and algorithmic proofs«. In: Combinatorica
7.4 (Dec. 1987), pp. 365–374. issn: 0209-9683. doi: 10.1007/BF02579324. url:
https://doi.org/10.1007/BF02579324.

[3] Michel X Goemans and David P Williamson. »Improved approximation al-
gorithms for maximum cut and satisfiability problems using semidefinite pro-
gramming«. In: Journal of the ACM (JACM) 42.6 (1995), pp. 1115–1145.

[4] Edward Farhi, Jeffrey Goldstone and Sam Gutmann. A Quantum Approximate
Optimization Algorithm. 2014. arXiv: 1411.4028 [quant-ph].

[5] Lennart Bittel and Martin Kliesch. »Training Variational Quantum Algorithms
Is NP-Hard«. In: Phys. Rev. Lett. 127 (12 Sept. 2021), p. 120502. doi: 10.
1103/PhysRevLett. 127. 120502. url: https ://link. aps. org/doi/10 .
1103/PhysRevLett.127.120502.

[6] Daniel Stilck França and Raul García-Patrón. »Limitations of optimization
algorithms on noisy quantum devices«. en. In: Nature Physics (Oct. 2021).
issn: 1745-2473, 1745-2481. doi: 10.1038/s41567-021-01356-3. url: https:
//www.nature.com/articles/s41567-021-01356-3 (visited on 22/10/2021).

[7] Sergey Bravyi et al. »Obstacles to Variational Quantum Optimization from
Symmetry Protection«. In: Phys. Rev. Lett. 125 (26 Dec. 2020), p. 260505. doi:
10.1103/PhysRevLett.125.260505. url: https://link.aps.org/doi/10.
1103/PhysRevLett.125.260505.

[8] Edward Farhi, David Gamarnik and Sam Gutmann. »The Quantum Ap-
proximate Optimization Algorithm Needs to See the Whole Graph: Worst
Case Examples«. In: (2020). Publisher: arXiv Version Number: 1. doi: 10.
48550/ARXIV.2005.08747. url: https://arxiv.org/abs/2005.08747 (vis-
ited on 04/04/2023).

79

https://doi.org/10.1007/BF02579324
https://doi.org/10.1007/BF02579324
http://arxiv.org/abs/1411.4028
https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.1103/PhysRevLett.127.120502
https://link.aps.org/doi/10.1103/PhysRevLett.127.120502
https://link.aps.org/doi/10.1103/PhysRevLett.127.120502
https://doi.org/10.1038/s41567-021-01356-3
https://www.nature.com/articles/s41567-021-01356-3
https://www.nature.com/articles/s41567-021-01356-3
https://doi.org/10.1103/PhysRevLett.125.260505
https://link.aps.org/doi/10.1103/PhysRevLett.125.260505
https://link.aps.org/doi/10.1103/PhysRevLett.125.260505
https://doi.org/10.48550/ARXIV.2005.08747
https://doi.org/10.48550/ARXIV.2005.08747
https://arxiv.org/abs/2005.08747


[9] Edward Farhi, David Gamarnik and Sam Gutmann. »The Quantum Approxim-
ate Optimization Algorithm Needs to See the Whole Graph: A Typical Case«.
In: (2020). Publisher: arXiv Version Number: 1. doi: 10.48550/ARXIV.2004.
09002. url: https://arxiv.org/abs/2004.09002 (visited on 04/04/2023).

[10] Chi-Ning Chou et al. Limitations of Local Quantum Algorithms on Random
Max-k-XOR and Beyond. 2022. arXiv: 2108.06049 [quant-ph].

[11] Sergey Bravyi et al. »Hybrid quantum-classical algorithms for approximate
graph coloring«. In: Quantum 6 (Mar. 2022), p. 678. issn: 2521-327X. doi:
10.22331/q-2022-03-30-678. url: https://doi.org/10.22331/q-2022-
03-30-678.

[12] Jernej Rudi Fin žgar et al. »Quantum-Informed Recursive Optimization
Algorithms«. In: PRX Quantum 5 (2 May 2024), p. 020327. doi: 10 .
1103/PRXQuantum . 5 . 020327. url: https : //link . aps . org/doi/10 .
1103/PRXQuantum.5.020327.

[13] Friedrich Wagner, Jonas Nüßlein and Frauke Liers. Enhancing Quantum Al-
gorithms for Quadratic Unconstrained Binary Optimization via Integer Pro-
gramming. arXiv:2302.05493 [quant-ph]. May 2023. url: http : //arxiv .
org/abs/2302.05493 (visited on 12/02/2024).

[14] Eunok Bae and Soojoon Lee. »Recursive QAOA outperforms the original
QAOA for the MAX-CUT problem on complete graphs«. In: Quantum Inform-
ation Processing 23.3 (Feb. 2024). issn: 1573-1332. doi: 10.1007/s11128-024-
04286-0. url: http://dx.doi.org/10.1007/s11128-024-04286-0.

[15] Sergey Bravyi et al. Classical algorithms for Forrelation. 2021. arXiv: 2102.
06963 [quant-ph].

[16] Lucas T. Brady and Stuart Hadfield. Iterative Quantum Algorithms for Max-
imum Independent Set: A Tale of Low-Depth Quantum Algorithms. 2023.
arXiv: 2309.13110 [quant-ph].

[17] Edd Gent. Quantum Computing’s Hard, Cold Reality Check. 2024. url:
https://spectrum.ieee.org/quantum- computing- skeptics (visited on
03/07/2024).

[18] Gian Giacomo Guerreschi. »Solving Quadratic Unconstrained Binary Op-
timization with divide-and-conquer and quantum algorithms«. In: ArXiv
abs/2101.07813 (2021). url: https://api.semanticscholar.org/CorpusID:
231648106.

[19] Gary Kochenberger et al. »The unconstrained binary quadratic programming
problem: A survey«. In: Journal of Combinatorial Optimization 28 (July 2014).
doi: 10.1007/s10878-014-9734-0.

80

https://doi.org/10.48550/ARXIV.2004.09002
https://doi.org/10.48550/ARXIV.2004.09002
https://arxiv.org/abs/2004.09002
http://arxiv.org/abs/2108.06049
https://doi.org/10.22331/q-2022-03-30-678
https://doi.org/10.22331/q-2022-03-30-678
https://doi.org/10.22331/q-2022-03-30-678
https://doi.org/10.1103/PRXQuantum.5.020327
https://doi.org/10.1103/PRXQuantum.5.020327
https://link.aps.org/doi/10.1103/PRXQuantum.5.020327
https://link.aps.org/doi/10.1103/PRXQuantum.5.020327
http://arxiv.org/abs/2302.05493
http://arxiv.org/abs/2302.05493
https://doi.org/10.1007/s11128-024-04286-0
https://doi.org/10.1007/s11128-024-04286-0
http://dx.doi.org/10.1007/s11128-024-04286-0
http://arxiv.org/abs/2102.06963
http://arxiv.org/abs/2102.06963
http://arxiv.org/abs/2309.13110
https://spectrum.ieee.org/quantum-computing-skeptics
https://api.semanticscholar.org/CorpusID:231648106
https://api.semanticscholar.org/CorpusID:231648106
https://doi.org/10.1007/s10878-014-9734-0


[20] Fred Glover, Gary Kochenberger and Yu Du. A Tutorial on Formulating and
Using QUBO Models. 2019. arXiv: 1811.11538 [cs.DS].

[21] Rodney J. Baxter. »Exactly solved models in statistical mechanics«. In: 1982.
url: https://api.semanticscholar.org/CorpusID:117867044.

[22] Iain Dunning, Swati Gupta and John Silberholz. »What Works Best When? A
Systematic Evaluation of Heuristics for Max-Cut and QUBO«. In: INFORMS
Journal on Computing 30.3 (2018), pp. 608–624. doi: 10.1287/ijoc.2017.
0798. url: https://doi.org/10.1287/ijoc.2017.0798.

[23] Victor Fischer et al. The role of quantum and classical correlations in shrinking
algorithms for optimization. 2024. arXiv: 2404.17242 [quant-ph].

[24] F. Barahona, M. Jünger and G. Reinelt. »Experiments in quadratic 0–1 pro-
gramming«. In: Mathematical Programming 44.1–3 (May 1989), pp. 127–137.
issn: 1436-4646. doi: 10.1007/bf01587084. url: http://dx.doi.org/10.
1007/BF01587084.

[25] Caterina De Simone. »The cut polytope and the Boolean quadric polytope«.
In: Discrete Mathematics 79.1 (1990), pp. 71–75. issn: 0012-365X. doi: https:
//doi . org/10 . 1016/0012 - 365X(90 ) 90056 - N. url: https : //www .
sciencedirect.com/science/article/pii/0012365X9090056N.

[26] Peter L. Ivănescu. »Some Network Flow Problems Solved with Pseudo-
Boolean Programming«. In: Operations Research 13.3 (1965), pp. 388–399.
issn: 0030364X, 15265463. url: http://www.jstor.org/stable/167803 (vis-
ited on 28/02/2024).

[27] Michael Jünger and Sven Mallach. »Exact Facetial Odd-Cycle Separation for
Maximum Cut and Binary Quadratic Optimization«. In: INFORMS Journal
on Computing (Feb. 2021). doi: 10.1287/ijoc.2020.1008.

[28] Jonas Charfreitag et al. »McSparse: Exact Solutions of Sparse Maximum Cut
and Sparse Unconstrained Binary Quadratic Optimization Problems«. In: 2022
Proceedings of the Symposium on Algorithm Engineering and Experiments
(ALENEX), pp. 54–66. doi: 10.1137/1.9781611977042.5. eprint: https:
//epubs.siam.org/doi/pdf/10.1137/1.9781611977042.5. url: https:
//epubs.siam.org/doi/abs/10.1137/1.9781611977042.5.

[29] Richard M. Karp. »Reducibility among Combinatorial Problems«. In: Com-
plexity of Computer Computations: Proceedings of a symposium on the Com-
plexity of Computer Computations, held March 20–22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York, and
sponsored by the Office of Naval Research, Mathematics Program, IBM World
Trade Corporation, and the IBM Research Mathematical Sciences Department.

81

http://arxiv.org/abs/1811.11538
https://api.semanticscholar.org/CorpusID:117867044
https://doi.org/10.1287/ijoc.2017.0798
https://doi.org/10.1287/ijoc.2017.0798
https://doi.org/10.1287/ijoc.2017.0798
http://arxiv.org/abs/2404.17242
https://doi.org/10.1007/bf01587084
http://dx.doi.org/10.1007/BF01587084
http://dx.doi.org/10.1007/BF01587084
https://doi.org/https://doi.org/10.1016/0012-365X(90)90056-N
https://doi.org/https://doi.org/10.1016/0012-365X(90)90056-N
https://www.sciencedirect.com/science/article/pii/0012365X9090056N
https://www.sciencedirect.com/science/article/pii/0012365X9090056N
http://www.jstor.org/stable/167803
https://doi.org/10.1287/ijoc.2020.1008
https://doi.org/10.1137/1.9781611977042.5
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977042.5
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977042.5
https://epubs.siam.org/doi/abs/10.1137/1.9781611977042.5
https://epubs.siam.org/doi/abs/10.1137/1.9781611977042.5


Ed. by Raymond E. Miller, James W. Thatcher and Jean D. Bohlinger. Bo-
ston, MA: Springer US, 1972, pp. 85–103. isbn: 978-1-4684-2001-2. doi: 10.
1007/978-1-4684-2001-2_9. url: https://doi.org/10.1007/978-1-4684-
2001-2_9.

[30] Francisco Barahona et al. »An application of combinatorial optimization to
statistical physics and circuit layout design«. In: Operations Research 36.3
(1988), pp. 493–513.

[31] Francisco Barahona, Michael Jünger and Gerhard Reinelt. »Experiments in
quadratic 0–1 programming«. In: Mathematical Programming 44.1-3 (1989),
pp. 127–137.

[32] Michael Jünger and Sven Mallach. »Odd-cycle separation for maximum cut
and binary quadratic optimization«. In: 27th Annual European Symposium on
Algorithms (ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
2019.

[33] Daniel Rehfeldt, Thorsten Koch and Yuji Shinano. »Faster exact solution of
sparse MaxCut and QUBO problems«. In: Mathematical Programming Com-
putation (2023), pp. 1–26.

[34] Martin S Andersen, Joachim Dahl, Lieven Vandenberghe et al. »CVXOPT:
A Python package for convex optimization«. In: Available at cvxopt. org 54
(2013).

[35] Makoto Yamashita, Katsuki Fujisawa and Masakazu Kojima. »Implementation
and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0)«. In:
Optimization Methods and Software 18.4 (2003), pp. 491–505.

[36] Miguel F Anjos and Jean B Lasserre. Handbook on semidefinite, conic and
polynomial optimization. Vol. 166. Springer Science & Business Media, 2011.

[37] Jonathan Wurtz et al. Industry applications of neutral-atom quantum comput-
ing solving independent set problems. 2024. arXiv: 2205.08500 [quant-ph].

[38] Brent N. Clark, Charles J. Colbourn and David S. Johnson. »Unit disk graphs«.
English (US). In: Discrete Mathematics 86.1-3 (Dec. 1990). Funding Inform-
ation: of Toronto for hospitalityd uring the time this paper was written. The
researcho f the seconda uthor is supportedb y NSERC Canadau nder grant
A0579., pp. 165–177. issn: 0012-365X. doi: 10.1016/0012-365X(90)90358-O.

[39] Erik Jan van Leeuwen. »Approximation Algorithms for Unit Disk Graphs«.
In: Graph-Theoretic Concepts in Computer Science. Ed. by Dieter Kratsch.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 351–361. isbn: 978-
3-540-31468-4.

82

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/2205.08500
https://doi.org/10.1016/0012-365X(90)90358-O


[40] Martin J. A. Schuetz, J. Kyle Brubaker and Helmut G. Katzgraber. »Combin-
atorial optimization with physics-inspired graph neural networks«. In: Nature
Machine Intelligence 4.4 (Apr. 2022), pp. 367–377. issn: 2522-5839. doi: 10.
1038/s42256-022-00468-6. url: http://dx.doi.org/10.1038/s42256-
022-00468-6.

[41] Maria Chiara Angelini and Federico Ricci-Tersenghi. »Modern graph neural
networks do worse than classical greedy algorithms in solving combinatorial
optimization problems like maximum independent set«. In: Nature Machine
Intelligence 5.1 (Dec. 2022), pp. 29–31. issn: 2522-5839. doi: 10.1038/s42256-
022-00589-y. url: http://dx.doi.org/10.1038/s42256-022-00589-y.

[42] Martin J. A. Schuetz, John Kyle Brubaker and Helmut G. Katzgraber. »Reply
to: Modern graph neural networks do worse than classical greedy algorithms in
solving combinatorial optimization problems like maximum independent set«.
In: Nat. Mac. Intell. 5.1 (2023), pp. 32–34. doi: 10.1038/S42256-022-00590-
5. url: https://doi.org/10.1038/s42256-022-00590-5.

[43] Magnús Halldórsson and Jaikumar Radhakrishnan. »Greed is good: approxim-
ating independent sets in sparse and bounded-degree graphs«. In: Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing. STOC
’94. Montreal, Quebec, Canada: Association for Computing Machinery, 1994,
pp. 439–448. isbn: 0897916638. doi: 10.1145/195058.195221. url: https:
//doi.org/10.1145/195058.195221.

[44] Andrew Lucas. »Ising formulations of many NP problems«. In: Frontiers in
Physics 2 (2014). issn: 2296-424X. doi: 10.3389/fphy.2014.00005. url:
http://dx.doi.org/10.3389/fphy.2014.00005.

[45] Jacob C Bridgeman and Christopher T Chubb. »Hand-waving and interpretive
dance: an introductory course on tensor networks«. In: Journal of Physics A:
Mathematical and Theoretical 50.22 (May 2017), p. 223001. issn: 1751-8121.
doi: 10.1088/1751-8121/aa6dc3. url: http://dx.doi.org/10.1088/1751-
8121/aa6dc3.

[46] Román Orús. »Tensor networks for complex quantum systems«. In: Nature
Reviews Physics 1.9 (Aug. 2019), pp. 538–550. issn: 2522-5820. doi: 10 .
1038/s42254- 019- 0086- 7. url: http://dx.doi.org/10.1038/s42254-
019-0086-7.

[47] Ulrich Schollwöck. »The density-matrix renormalization group in the age of
matrix product states«. In: Annals of Physics 326.1 (Jan. 2011), pp. 96–192.
issn: 0003-4916. doi: 10.1016/j.aop.2010.09.012. url: http://dx.doi.
org/10.1016/j.aop.2010.09.012.

83

https://doi.org/10.1038/s42256-022-00468-6
https://doi.org/10.1038/s42256-022-00468-6
http://dx.doi.org/10.1038/s42256-022-00468-6
http://dx.doi.org/10.1038/s42256-022-00468-6
https://doi.org/10.1038/s42256-022-00589-y
https://doi.org/10.1038/s42256-022-00589-y
http://dx.doi.org/10.1038/s42256-022-00589-y
https://doi.org/10.1038/S42256-022-00590-5
https://doi.org/10.1038/S42256-022-00590-5
https://doi.org/10.1038/s42256-022-00590-5
https://doi.org/10.1145/195058.195221
https://doi.org/10.1145/195058.195221
https://doi.org/10.1145/195058.195221
https://doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1088/1751-8121/aa6dc3
http://dx.doi.org/10.1088/1751-8121/aa6dc3
http://dx.doi.org/10.1088/1751-8121/aa6dc3
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1038/s42254-019-0086-7
http://dx.doi.org/10.1038/s42254-019-0086-7
http://dx.doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012


[48] F. Verstraete and J. I. Cirac. Renormalization algorithms for Quantum-Many
Body Systems in two and higher dimensions. 2004. arXiv: cond-mat/0407066
[cond-mat.str-el].

[49] Y.-Y. Shi, L.-M. Duan and G. Vidal. »Classical simulation of quantum many-
body systems with a tree tensor network«. In: Physical Review A 74.2 (Aug.
2006). issn: 1094-1622. doi: 10.1103/physreva.74.022320. url: http://dx.
doi.org/10.1103/PhysRevA.74.022320.

[50] G. Vidal. »Entanglement Renormalization«. In: Physical Review Letters 99.22
(Nov. 2007). issn: 1079-7114. doi: 10.1103/physrevlett.99.220405. url:
http://dx.doi.org/10.1103/PhysRevLett.99.220405.

[51] Igor L. Markov and Yaoyun Shi. »Simulating Quantum Computation by Con-
tracting Tensor Networks«. In: SIAM Journal on Computing 38.3 (Jan. 2008),
pp. 963–981. issn: 1095-7111. doi: 10.1137/050644756. url: http://dx.doi.
org/10.1137/050644756.

[52] Guifré Vidal. »Efficient Classical Simulation of Slightly Entangled Quantum
Computations«. In: Physical Review Letters 91.14 (Oct. 2003). issn: 1079-
7114. doi: 10.1103/physrevlett.91.147902. url: http://dx.doi.org/10.
1103/PhysRevLett.91.147902.

[53] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010.

[54] Jaeho Choi and Joongheon Kim. »A Tutorial on Quantum Approximate Op-
timization Algorithm (QAOA): Fundamentals and Applications«. In: 2019 In-
ternational Conference on Information and Communication Technology Con-
vergence (ICTC) (2019), pp. 138–142. url: https://api.semanticscholar.
org/CorpusID:209497481.

[55] Leo Zhou et al. »Quantum Approximate Optimization Algorithm: Perform-
ance, Mechanism, and Implementation on Near-Term Devices«. In: Phys. Rev.
X 10 (2 June 2020), p. 021067. doi: 10.1103/PhysRevX.10.021067. url:
https://link.aps.org/doi/10.1103/PhysRevX.10.021067.

[56] Michael Streif et al. »Beating classical heuristics for the binary paint shop
problem with the quantum approximate optimization algorithm«. In: Phys.
Rev. A 104 (1 July 2021), p. 012403. doi: 10.1103/PhysRevA.104.012403.
url: https://link.aps.org/doi/10.1103/PhysRevA.104.012403.

[57] Ajinkya Borle, Vincent E. Elfving and Samuel J. Lomonaco. »Quantum ap-
proximate optimization for hard problems in linear algebra«. In: SciPost Phys.
Core 4 (2021), p. 031. doi: 10 . 21468/SciPostPhysCore . 4 . 4 . 031. url:
https://scipost.org/10.21468/SciPostPhysCore.4.4.031.

84

http://arxiv.org/abs/cond-mat/0407066
http://arxiv.org/abs/cond-mat/0407066
https://doi.org/10.1103/physreva.74.022320
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/physrevlett.99.220405
http://dx.doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1137/050644756
http://dx.doi.org/10.1137/050644756
http://dx.doi.org/10.1137/050644756
https://doi.org/10.1103/physrevlett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
https://api.semanticscholar.org/CorpusID:209497481
https://api.semanticscholar.org/CorpusID:209497481
https://doi.org/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevA.104.012403
https://link.aps.org/doi/10.1103/PhysRevA.104.012403
https://doi.org/10.21468/SciPostPhysCore.4.4.031
https://scipost.org/10.21468/SciPostPhysCore.4.4.031


[58] Abhishek Awasthi et al. »Quantum Computing Techniques for Multi-knapsack
Problems«. In: Intelligent Computing. Springer Nature Switzerland, 2023,
pp. 264–284. isbn: 9783031379635. doi: 10.1007/978-3-031-37963-5_19.
url: http://dx.doi.org/10.1007/978-3-031-37963-5_19.

[59] Mark Hodson et al. Portfolio rebalancing experiments using the Quantum Al-
ternating Operator Ansatz. 2019. arXiv: 1911.05296 [quant-ph].

[60] Jack S. Baker and Santosh Kumar Radha. Wasserstein Solution Quality and
the Quantum Approximate Optimization Algorithm: A Portfolio Optimization
Case Study. 2022. arXiv: 2202.06782 [quant-ph].

[61] Junde Li et al. »Hierarchical Improvement of Quantum Approximate Optimiz-
ation Algorithm for Object Detection: (Invited Paper)«. In: 2020 21st Interna-
tional Symposium on Quality Electronic Design (ISQED). 2020, pp. 335–340.
doi: 10.1109/ISQED48828.2020.9136973.

[62] Pradeep Niroula et al. »Constrained quantum optimization for extractive sum-
marization on a trapped-ion quantum computer«. In: Scientific Reports 12.1
(Oct. 2022). issn: 2045-2322. doi: 10.1038/s41598-022-20853-w. url: http:
//dx.doi.org/10.1038/s41598-022-20853-w.

[63] Hasan Mustafa et al. Variational Quantum Algorithms for Chemical Simulation
and Drug Discovery. 2022. arXiv: 2211.07854 [quant-ph].

[64] Jaeho Choi, Seunghyeok Oh and Joongheon Kim. Quantum Approximation for
Wireless Scheduling. 2020. arXiv: 2004.11229 [cs.OH].

[65] Asier Ozaeta, Wim Van Dam and Peter L McMahon. »Expectation values from
the single-layer quantum approximate optimization algorithm on Ising prob-
lems«. In: Quantum Science and Technology 7.4 (Oct. 2022), p. 045036. issn:
2058-9565. doi: 10.1088/2058- 9565/ac9013. url: https://iopscience.
iop.org/article/10.1088/2058-9565/ac9013 (visited on 12/02/2024).

[66] Daniel Stilck França and Raul García-Patrón. »Limitations of optimization
algorithms on noisy quantum devices«. In: Nature Physics 17.11 (Oct. 2021),
pp. 1221–1227. issn: 1745-2481. doi: 10.1038/s41567-021-01356-3. url:
http://dx.doi.org/10.1038/s41567-021-01356-3.

[67] Danylo Lykov et al. Tensor Network Quantum Simulator With Step-Dependent
Parallelization. 2022. arXiv: 2012.02430 [quant-ph].

[68] Danylo Lykov and Yuri Alexeev. Importance of Diagonal Gates in Tensor Net-
work Simulations. 2021. arXiv: 2106.15740 [quant-ph].

[69] Cameron Ibrahim et al. »Constructing Optimal Contraction Trees for
Tensor Network Quantum Circuit Simulation«. In: 2022 IEEE High Per-
formance Extreme Computing Conference (HPEC). 2022, pp. 1–8. doi:
10.1109/HPEC55821.2022.9926353.

85

https://doi.org/10.1007/978-3-031-37963-5_19
http://dx.doi.org/10.1007/978-3-031-37963-5_19
http://arxiv.org/abs/1911.05296
http://arxiv.org/abs/2202.06782
https://doi.org/10.1109/ISQED48828.2020.9136973
https://doi.org/10.1038/s41598-022-20853-w
http://dx.doi.org/10.1038/s41598-022-20853-w
http://dx.doi.org/10.1038/s41598-022-20853-w
http://arxiv.org/abs/2211.07854
http://arxiv.org/abs/2004.11229
https://doi.org/10.1088/2058-9565/ac9013
https://iopscience.iop.org/article/10.1088/2058-9565/ac9013
https://iopscience.iop.org/article/10.1088/2058-9565/ac9013
https://doi.org/10.1038/s41567-021-01356-3
http://dx.doi.org/10.1038/s41567-021-01356-3
http://arxiv.org/abs/2012.02430
http://arxiv.org/abs/2106.15740
https://doi.org/10.1109/HPEC55821.2022.9926353


[70] Sergio Boixo et al. Simulation of low-depth quantum circuits as complex undir-
ected graphical models. 2018. arXiv: 1712.05384 [quant-ph].

[71] R. Dechter. »Bucket Elimination: A Unifying Framework for Probabilistic
Inference«. In: Learning in Graphical Models. Ed. by Michael I. Jordan.
Dordrecht: Springer Netherlands, 1998, pp. 75–104. isbn: 978-94-011-5014-9.
doi: 10.1007/978-94-011-5014-9_4. url: https://doi.org/10.1007/978-
94-011-5014-9_4.

[72] Roman Schutski, Danil Lykov and Ivan Oseledets. »Adaptive algorithm for
quantum circuit simulation«. In: Phys. Rev. A 101 (4 Apr. 2020), p. 042335.
doi: 10.1103/PhysRevA.101.042335. url: https://link.aps.org/doi/10.
1103/PhysRevA.101.042335.

[73] Wikipedia contributors. Tree decomposition — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 9-July-2024]. 2024. url: https://en.wikipedia.
org/w/index.php?title=Tree_decomposition&oldid=1217459734.

[74] Hisao Tamaki. Positive-instance driven dynamic programming for treewidth.
2018. arXiv: 1704.05286 [cs.DS]. url: https://arxiv.org/abs/1704.
05286.

[75] Vibhav Gogate and Rina Dechter. A Complete Anytime Algorithm for
Treewidth. 2012. arXiv: 1207 . 4109 [cs.DS]. url: https : / / arxiv .
org/abs/1207.4109.

[76] David Wierichs, Christian Gogolin and Michael Kastoryano. »Avoiding local
minima in variational quantum eigensolvers with the natural gradient optim-
izer«. In: Physical Review Research 2.4 (Nov. 2020). issn: 2643-1564. doi:
10 . 1103/physrevresearch . 2 . 043246. url: http : //dx . doi . org/10 .
1103/PhysRevResearch.2.043246.

[77] Stefan H. Sack and Maksym Serbyn. »Quantum annealing initialization of the
quantum approximate optimization algorithm«. In: Quantum 5 (July 2021),
p. 491. issn: 2521-327X. doi: 10.22331/q- 2021- 07- 01- 491. url: http:
//dx.doi.org/10.22331/q-2021-07-01-491.

[78] Stefan H. Sack et al. »Recursive greedy initialization of the quantum approx-
imate optimization algorithm with guaranteed improvement«. In: Phys. Rev.
A 107 (6 June 2023), p. 062404. doi: 10.1103/PhysRevA.107.062404. url:
https://link.aps.org/doi/10.1103/PhysRevA.107.062404.

[79] Jonathan Wurtz and Danylo Lykov. The fixed angle conjecture for QAOA on
regular MaxCut graphs. 2021. arXiv: 2107.00677.

86

http://arxiv.org/abs/1712.05384
https://doi.org/10.1007/978-94-011-5014-9_4
https://doi.org/10.1007/978-94-011-5014-9_4
https://doi.org/10.1007/978-94-011-5014-9_4
https://doi.org/10.1103/PhysRevA.101.042335
https://link.aps.org/doi/10.1103/PhysRevA.101.042335
https://link.aps.org/doi/10.1103/PhysRevA.101.042335
https://en.wikipedia.org/w/index.php?title=Tree_decomposition&oldid=1217459734
https://en.wikipedia.org/w/index.php?title=Tree_decomposition&oldid=1217459734
http://arxiv.org/abs/1704.05286
https://arxiv.org/abs/1704.05286
https://arxiv.org/abs/1704.05286
http://arxiv.org/abs/1207.4109
https://arxiv.org/abs/1207.4109
https://arxiv.org/abs/1207.4109
https://doi.org/10.1103/physrevresearch.2.043246
http://dx.doi.org/10.1103/PhysRevResearch.2.043246
http://dx.doi.org/10.1103/PhysRevResearch.2.043246
https://doi.org/10.22331/q-2021-07-01-491
http://dx.doi.org/10.22331/q-2021-07-01-491
http://dx.doi.org/10.22331/q-2021-07-01-491
https://doi.org/10.1103/PhysRevA.107.062404
https://link.aps.org/doi/10.1103/PhysRevA.107.062404
http://arxiv.org/abs/2107.00677


[80] Jonathan Wurtz and Peter Love. »MaxCut quantum approximate optimization
algorithm performance guarantees for pgt; 1«. In: Phys. Rev. A 103 (4 Apr.
2021), p. 042612. doi: 10.1103/PhysRevA.103.042612. url: https://link.
aps.org/doi/10.1103/PhysRevA.103.042612.

[81] Sebastian Ruder. An overview of gradient descent optimization algorithms.
2017. arXiv: 1609.04747.

[82] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2023. url:
https://www.gurobi.com.

[83] Joao Basso et al. »The Quantum Approximate Optimization Algorithm at
High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-
Kirkpatrick Model«. en. In: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi: 10.4230/LIPICS.TQC.2022.7. url: https://drops.dagstuhl.
de/entities/document/10.4230/LIPIcs.TQC.2022.7.

[84] Tadashi Kadowaki and Hidetoshi Nishimori. »Quantum annealing in the trans-
verse Ising model«. en. In: Physical Review E 58.5 (Nov. 1998), pp. 5355–5363.
issn: 1063-651X, 1095-3787. doi: 10.1103/PhysRevE.58.5355. url: https:
//link.aps.org/doi/10.1103/PhysRevE.58.5355 (visited on 23/06/2023).

[85] Edward Farhi et al. »A Quantum Adiabatic Evolution Algorithm Applied to
Random Instances of an NP-Complete Problem«. en. In: Science 292.5516
(Apr. 2001), pp. 472–475. issn: 0036-8075, 1095-9203. doi: 10.1126/science.
1057726. url: https://www.science.org/doi/10.1126/science.1057726
(visited on 25/05/2023).

87

https://doi.org/10.1103/PhysRevA.103.042612
https://link.aps.org/doi/10.1103/PhysRevA.103.042612
https://link.aps.org/doi/10.1103/PhysRevA.103.042612
http://arxiv.org/abs/1609.04747
https://www.gurobi.com
https://doi.org/10.4230/LIPICS.TQC.2022.7
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.7
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.7
https://doi.org/10.1103/PhysRevE.58.5355
https://link.aps.org/doi/10.1103/PhysRevE.58.5355
https://link.aps.org/doi/10.1103/PhysRevE.58.5355
https://doi.org/10.1126/science.1057726
https://doi.org/10.1126/science.1057726
https://www.science.org/doi/10.1126/science.1057726

	Abstract
	Dedication and declaration
	Abbreviations
	Introduction
	Motivation
	Goal of the thesis
	Outline

	Background
	Problem classes
	Quadratic unconstrained binary optimization (QUBO)
	MaxCut problem
	Maximum independent set problem (MIS)
	Set cover problem

	Tensor networks
	Basic concepts of tensor networks
	Tensor operations
	Types of tensor networks
	Tensor networks for simulating quantum circuits

	Quantum optimization algorithms (QOAs)
	Quantum approximate optimization algorithm (QAOA)
	Recursive quantum approximate optimization algorithm (RQAOA)
	Quantum-informed recursive optimization algorithm (QIRO) for MIS problems
	Quantum-informed recursive optimization algorithm (QIRO) for SetCover problems


	Analysis of tensor network simulations of QAOA
	Simulation of higher depths QAOAs using tensor networks
	Encoding of QAOA as tensor network
	Quantum circuit simulation by tensor network contraction

	Different methods of QAOA parameter initialization
	Transition states initialization
	Interpolation initialization
	Fixed angles initialization for MaxCut problems on k-regular graphs

	Parameter optimization
	MaxCut parameter optimization
	MIS parameter optimization
	SetCover parameter optimization


	Application of recursive quantum optimization (RQO) algorithms to different problem classes
	Variations of RQAOA for the MaxCut problem
	Linear programming (LP) and semidefinite programming (SDP) correlations for MaxCut problems
	Experiments on Erdős-Rényi graphs
	Experiments on 3-regular graphs with higher depth QAOA

	Higher-depth variations of QIRO for the MIS problem
	Experimental framework
	Results
	Discussion

	Industry use case: Application of a QIRO algorithm to a sensor positioning problem
	Experimental framework
	Results
	Discussion


	Summary, conclusion and outlook
	Summary
	Conclusion
	Outlook

	Ising formulation of the SetCover problem
	QAOA parameter analysis for MaxCut problems of sizes n {100, 150, 200}
	QAOA parameter analysis for MIS problems of sizes n {100, 150, 200}
	Bibliography

