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Preface

This thesis is a publication-based dissertation. It represents a concise summary of the cumulative sci-
entific outcome from articles which have already been published in international peer-reviewed journals.
The introduction outlines the motivation and broader context of the work regarding previous scientific
contributions on the simulation of electrochemical systems with an emphasis on the kinetic Monte Carlo
method. The methods section provides a summary of the developed concepts, methodologies and mod-
els to simulate electrochemical systems via the kinetic Monte Carlo method. The article summaries and
the corresponding cross-article discussion demonstrate the contribution of the cumulative scientific re-
sults to progress in the associated research field. Concluding, the perspectives section discusses how
the presented methods and models could be extended.
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Abstract

Simulations based on the kinetic Monte Carlo (kMC) method are a popular tool to rationalize the dynamic
behavior of a broad range of non-deterministic systems and processes. In recent years, kMC simula-
tions have proven to be very suitable for gaining a deeper mechanistic understanding of many important
electrochemical systems such as batteries, fuel cells or catalysts. However, one major limitation remains,
namely their comparatively high computational costs - even though in the last three decades considerable
research attention has been devoted to increasing the runtime efficiency of kMC models. In the context
of electrochemical systems, large computational costs mainly arise from a combination of the following
three issues: (1) inclusion of particle-particle interactions for high particle densities, (2) large time-scale
disparaties between two or more implemented physical processess, and (3) systematic input paramteri-
zation for systems with many degrees of freedom. While the first issue is nowadays well managable by
corresponding algorithms and access to high-performance computing clusters the latter two still remain
problematic and are often the reasons to discard the kMC method for certain systems.

In this thesis, we present two distinct methodologies to improve the runtime efficiency of the original kMC
algorithm for electrochemical systems. Firstly, we introduce a novel local temporal acceleration scheme
to bridge the time scale disparaty between fast charge and mass transport phenomena and slow reaction
dynamics. Secondly, we present an innovative and robust data-driven optimization pipeline to automate
the parametrization of kMC models. To showcase the working principles and the effectivity of our method-
oligies we apply each to an electrochemical test system of growing practical relevance: The local temporal
acceleration scheme is demonstrated via a simplified kMC model of the photocurrent generation in hybrid
organic/aqueous electrolyte devices whereas the data-diven feedback loop for automated parametrization
is showcased via a kMC model for the space charge layer formation in solid-state electrolytes.

The core ideas of the local temporal acceleration scheme are (1) to combine the superbasin concept
with a local, particle-based criterion for the quasi-equilibrium detection, and (2) a partitioning of transitions
and particles in the system into process chains. Scaling of entire quasi-equilibrated process chains con-
siderably reduces the computational effort without disturbing the relative dynamics of transitions within
a process chain. As a core feature, our algorithm captures local inhomogeneities such that local physi-
cal quantities can be reproduced accurately. Additionally, we show that previous accelerated superbasin
algorithms fail in presence of spatially varying time scale disparities. Our algorithm achieves an acceler-
ation of several orders of magnitude (≈ 106) providing a serious alternative to replace existing multiscale
models by stand-alone kMC simulations.

To enable a systematic and data-efficient input parametrization we equip the original kMC algorithm
with a feedback loop consisting of Gaussian Processes (GPs) and Bayesian optimization (BO). We utilize
the results from fast-converging kMC simulations to construct a database for training a cheap-to-evaluate
surrogate model based on Gaussian processes. Combining the surrogate model with a target-specific
acquisition function enables us to apply Bayesian optimization for the guided prediction of suitable input
parameters. Thus, the amount of trial simulation runs can be considerably reduced facilitating an efficient
utilization of arbitrary kMC models. Our data-driven approach requires only 1 to 2 iterations to reconstruct
the input parameters from different baseline simulations within the training data set. Moreover, we show
that the methodology is even capable of accurately extrapolating into regions outside the training data
set which are computationally expensive for direct kMC simulation. Further, we demonstrate the high ac-
curacy of the underlying surrogate model via a full parameter space investigation eventually making the
original kMC simulation for certain use cases obsolete.
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Zusammenfassung

Simulationen basierend auf der kinetischen Monte Carlo Methode sind ein beliebtes Werkzeug, um das
dynamische Verhalten einer Vielzahl von stochastischen Systemen und Prozessen zu erklären. In den
letzten Jahren haben kMC Simulationen entscheidend dazu beigetragen, ein tieferes Verständnis für
viele wichtige elektrochemische Systeme zu erlangen wie beispielsweise Batterien, Brennstoffzellen oder
Katalysatoren. Eine große Einschränkung von kMC Simulationen sind allerdings ihr verhätnismäßig hoher
Rechenaufwand, und das obwohl in den letzten drei Dekaden viel Forschungsarbeit aufgewandt wurde,
um ihre Laufzeit effizienter zu gestalten. Im Kontext von elektrochemischen Systemen kann der hohe
Rechenaufwand auf eine Kombination der folgenden drei Ursachen zurückgeführt werden: (1) Einbindung
von Teilchen-Teilchen Wechselwirkungen für hohe Teilchendichten, (2) große Zeitskalendifferenzen zwis-
chen zwei oder mehr implementierten physikalischen Prozessen, und (3) systematische Parametrisierung
von Eingangsgrößen für Systeme mit vielen Freiheitsgraden. Während der erste Punkt heutzutage durch
entsprechende Algorithmen und Hochleistungsrechenzentren gut kontrollierbar ist, sind die letzten bei-
den Punkte nach wie vor problematisch und führen mitunter dazu, dass die kMC Methode für bestimmte
Systeme nicht mehr verwendet wird.

In dieser Arbeit werden zwei neuartige Methoden vorgestellt, um die Laufzeit von kMC Simulationen
für elektrochemische Systeme effizienter zu gestalten. Zunächst wird ein neuartiger lokaler Beschleuni-
gungsalgorithmus eingeführt mit dem Ziel, die Zeitskalendifferenz zwischen schnellen Ladungs-/Massen-
transport und langsamer Reaktionsdynamik zu reduzieren. In einem zweiten Schritt wird eine innova-
tive und robuste datengestützte Optimierungsstrategie präsentiert, um die Parametrisierung von kMC
Modellen zu automatisieren. Die Funktionsweise und Wirksamkeit der eingeführten Algorithmen wird
unter Beweis gestellt, indem sie jeweils auf ein elektrochemisches Testsystem mit wachsender praktis-
cher Relevanz angewendet werden. Der lokale Beschleunigungsalgorithmus wird durch ein vereinfachtes
kMC Modell für die Photostrom-Generation in hybriden organischen Bauelementen demonstriert, die eine
Grenzfläche zwischen einem organischen Halbleiter und einem flüssigen Elektrolyten aufweisen. Die
datengestützte Rückkopplungsschleife zur automatisierten Parametrisierung wird hingegen durch ein kMC
Modell für die Raumladungszonen-Formation in Festkörperelektrolyten demonstriert.

Der lokale Beschleunigungsalgorithmus beruht auf den folgenden zwei zentralen Ideen: (1) Verwen-
dung eines lokalen, teilchen-basierten Kriteriums zur Erkennung, ob sich das System in einem energetis-
chen Minimum verbunden mit einem Quasi-Gleichgewichtszustand befindet, und (2) Aufteilung von Tran-
sitionen und Teilchen im System in entsprechende Prozessketten. Die Skalierung ganzer Prozessketten,
die sich in einem Quasi-Gleichgewichtszustand befinden, führt zu einer enormen Laufzeitverkürzung,
ohne dabei die relative Dynamik der Transitionen innerhalb einer Prozesskette zu verfälschen. Ein zen-
trales Merkmal des entwickelten Algorithmus ist die Erhaltung lokaler Inhomogenitäten, sodass lokale
physikalische Eigenschaften auch in der beschleunigten Simulation korrekt abgebildet werden. Darüber-
hinaus wird gezeigt, dass bisherige Beschleunigungsalgorithmen fehlerhafte Ergebnisse liefern, wenn
Zeitskalendifferenzen räumlich verteilt sind. Der neuartige Algorithmus hingegen erreicht bei unverän-
derter Genauigkeit eine Beschleunigung im Bereich mehrerer Größenordnungen (≈ 106) und ist somit
eine ernsthafte Alternative, um bestehende Multiskalen-Modelle durch einzelne kMC Modelle zu erset-
zen.

Zur systematischen und daten-effizienten Parametrisierung von Eingangsgrößen wird der ursprüngliche
kMC Algorithmus durch eine Rückkopplungsschleife bestehend aus Gauß-Prozessen und Bayes’scher
Optimierung erweitert. Mit den Ergebnissen schnell-konvergierender kMC Simulationen wird eine Daten-
bank erzeugt, um ein Surrogatmodell basierend auf Gauß-Prozessen zu trainieren, das mit wenig Rechen-
aufwand ausgewertet werden kann. Die Kombination des Surrogatmodells mit einer an die Ausgangs-
größen angepassten Akquisitionsfunktion ermöglicht dann den Einsatz von Bayes’scher Optimierung zur
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zielgerichteten Vorhersage von geeigneten Eingangsparametern. Somit kann die Anzahl an Testsimula-
tionsdurchläufen deutlich reduziert werden, was einem effizienteren Einsatz beliebiger kMC Modelle gle-
ichkommt. Der datengestützte Ansatz benötigt maximal zwei Iterationen, um die Eingangsgrößen von un-
terschiedlichen Refererenzsimulationen innerhalb des Trainingsdatensatzes zu rekonstruieren. Darüber-
hinaus besitzt der datengestützte Algorithmus die Fähigkeit mit hoher Genauigkeit in Gebiete außerhalb
des Trainingsdatensatzes zu extrapolieren, was inbesondere dann nützlich ist, wenn die direkte Simula-
tion mittels kMC in solchen Gebieten äußerst rechenaufwendig ist. Weiterhin wird die hohe Genauigkeit
des zugrundeliegenden Surrogatmodells durch eine vollständige Abtastung des Parameterraums demon-
striert, was die ursprüngliche kMC Simulation für bestimmte Anwendungsfälle gänzlich obsolet macht.
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1 Introduction

1.1 Broader Context

The following overview is reprinted in parts with permission from (1) ref. 1, J. Phys. Chem. A 2023, 127
(28), 5967-5978. Copyright 2023 American Chemical Society (ACS), and (2) ref. 2, J. Chem. Theory
Comput. 2022, 18, 2749-2763. Copyright 2022 American Chemical Society (ACS).

The term Monte Carlo method denotes a variety of different computer-aided algorithms which apply ran-
dom numbers to obtain a numerical solution for real world problems. A particularly relevant subclass are
kinetic Monte Carlo (kMC) simulations. They have been used extensively to model the dynamic behavior
of a broad range of non-deterministic physical and electrochemical processes and systems such as crystal
growth [3, 4, 5], vacancy diffusion [6, 7, 8], charge transport in disordered materials [9, 10, 11], cataly-
sis [12, 13, 14, 15, 16] and organic solar cells [17, 18, 19, 20]. An increasingly important but yet demanding
field for kMC simulations are electrochemical systems. For instance, Alkire and coworkers investigated
the early stages of kinetically limited electrodeposition [21]. Another study dealt with the CO adlayer elec-
trooxidation on nanoparticle catalysts [22]. In the context of renewable energy cycles, electrochemical
kMC simulations helped to gain a detailed mechanistic understanding of battery [23, 24, 25, 26] and fuel
cell operation [27, 28, 29]. The popularity of kMC is due to several favorable intrinsic properties [30]:

1 As a mesoscopic approach, kMC often provides a good tradeoff in spatio-temporal resolution.

2 Individual particle-based processes can be included to investigate their time-/frequency-dependent
behavior.

3 Arbitrarily complex morphologies/geometries can be incorporated without facing potential conver-
gency issues.

4 kMC simulations are no mean-field approximations but inherently discrete, and therefore enable to
take into account local structural effects and the influence of particle-particle interactions.

In the context of electrochemical systems, kMC models map material properties, in particular structural
and energetic information, onto a discrete set of states [11, 31]. Discrete transitions propagate the system,
e.g. by the motion of particles or electrochemical reactions, resulting in a stochastic time-evolution of the
system within its phase space. The kinetic information results from the details of the transition rates which
capture the underlying physics and define the probability of performing the respective transition.

However, one major limitation of kMC models are their comparatively high computational costs. Due
to the stochastic nature of the kMC algorithm a sufficient number of independent simulation runs is re-
quired to make reliable statements about the average time-evolution of output quantities. For stationary
quantities this issue is at least partially alleviated as it is sufficient to perform block-averaging over steady-
state configurations of a single simulation run [18]. Another potential computational bottleneck arises from
the inclusion of particle-particle interactions as their algorithmic complexity inherently scales as O(N2)
where N is the number of particles. In literature, there are numerous different approaches for the effi-
cient treatment of particle-particle interactions ranging from the classical Ewald Summation [32, 33] with
O(N

3
2 ) to more advanced strategies such as the fast multipole method [34, 35] with O(N). Additional

improvements in runtime efficiency can be achieved by applying precalculations [18] and local caching
schemes [36]. Further, large computational costs occur in kMC models which feature large time-scale
disparaties between two or more implemented processes [37]. The kMC algorithm naturally favors the
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execution of fast processes due to their higher relative probabilities. Consequently, a system with fast pro-
cesses on time scale tf and slow processes on time scale ts ≫ tf requires approximately ts/tf kMC steps
to sample the slow process only once. The insufficient sampling of slow processes is in particular prob-
lematic if they represent the critical transition to obtain certain system properties. A concrete example of
time scale disparities in electrochemical systems can be found in the intermediate diffusion within surface
catalytic processes [22]. Mass transport of ionic or molecular species between active surface sites can
be much faster than the catalytic surface reactions. To keep the computational effort low, many studies
either neglect mass transport and with this potential mass transport limitations [28] or limit their studies to
systems without distinct time scale disparities [24, 29]. Finally, in electrochemical systems with several un-
known input parameters most of the simulation time is often required for systematic input parametrization.
Systems with many degrees of freedom would highly profit from a data-efficient parametrization scheme.
Otherwise, kMC models remain restricted to a basic mechanistic analysis of the system dynamics. Ex-
act reproduction of experimental results, device optimization and material screening require streamlined
guidance in input parameter search to become feasible.

In this thesis, we present two distinct methodologies to improve the runtime efficiency of the original
kMC algorithm for electrochemical systems. Firstly, we introduce a novel local temporal acceleration
scheme to bridge the time scale disparaty between fast charge and mass transport phenomena and slow
reaction dynamics. Secondly, we present an innovative and robust data-driven optimization pipeline to
automate the parametrization of kMC models. To showcase the working principles and the effectivity
of our methodoligies we apply each to an electrochemical test system of growing relevance: The local
temporal acceleration scheme is demonstrated via a simplified kMC model of the photocurrent genera-
tion in hybrid organic/aqueous electrolyte devices whereas the data-diven feedback loop for automated
parametrization is showcased via a kMC model for the space charge layer formation in solid-state elec-
trolytes. In the following two sections, we provide a brief literature review on temporal acceleration as well
as automated parametrization of kinetic Monte Carlo models. We conclude with a brief introduction to the
electrochemical test systems considered in this thesis.

1.2 Temporal Acceleration of Kinetic Monte Carlo Models

The following literature review is reprinted with permission from ref. 2, J. Chem. Theory Comput. 2022,
18, 2749-2763. Copyright 2022 American Chemical Society (ACS).

There are two approaches to bridge time scale disparities in electrochemical systems: multiscale models
and temporal acceleration schemes. Multiscale models typically couple continuum models using partial
differential equations to derive system properties such as mass or charge distribution which are fed into
kMC e.g. in form of background potentials [38]. Applications of multiscale methods cover e.g. hetero-
geneous catalytic reactors [39, 40], fuel cells [41, 42, 43], and lithium-ion batteries [44, 45]. Continuum
models are mean-field approximations [46] and consequently assume isotropic mass transport. For active
interfaces with complex shapes, this assumption fundamentally breaks down as mass transport may be-
come heterogeneous due the interaction with charged species and the local interface geometry [22, 24].

Different procedures have been developed to overcome large time scale disparities to accelerate kMC
simulations [37]. A popular choice in the community is the τ -leaping method which accelerates kMC sim-
ulations by the execution of multiple fast events in a single kMC step [47] and is frequently applied when
time scale disparities arise from strongly differing particle concentrations [48]. However, τ -leaping is only
viable if the system state does not change too much during the leap [49]. Another acceleration procedure
is the probability weighted kMC method [50] which, by normalization of transition probabilities, increases
the sampling of rare events. While ensemble averages are typically well reproduced, statistical errors may
be amplified leading to physically inconsistent behavior. Snyder et al. proposed the net-event kMC tech-
nique [51] which lumps fast, reversible processes into a single net-event. An appealing property of this
approach is that a substantial speed-up is accompanied with correct ensemble averaged quantities, while
fluctuations in corresponding transients are considerably reduced. Nevertheless, problems may arise in
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the presence of large time scale disparities, especially if the fluctuations of net-rates become significantly
larger than the transition rates of slow processes. In such cases, heuristic criteria must decide whether
the instantaneous net-rate is statistically significant.

A major milestone has been achieved by the introduction of the accelerated superbasin-kMC method
(AS-kMC) [52]. The rationale of AS-kMC is to detect superbasins in which the system is being trapped,
and to subsequently raise the activation barrier of quasi-equilibrated processes to facilitate the escape
from superbasins. AS-kMC has been shown to perform well for several simple toy systems [52] and to
small silicon nanocrystal networks [53]. The applicability is limited to small systems as the superbasin
detection requires large databases and efficient search algorithms. For large superbasins, the dynamical
sampling procedure becomes unfeasible and, in the worst case, may not generate any speed-up at all.
Recently, we extended the AS-kMC concept for the temporal acceleration of particle transport simulations
through disordered semiconductors [54] by the detection of potential superbasins during system initializa-
tion resulting in a substantial speed-up.

Inspired by the AS-kMC, Dybeck et al. [55] developed a generalized temporal acceleration scheme,
further referred to as the Dybeck scheme, for kMC simulations of surface catalytic processes. Their algo-
rithm partitions the reaction network into quasi-equilibrated and non-equilibrated reaction channels, and
detects and scales the rate constants of quasi-equilibrated reaction channels on the fly. The Dybeck
scheme has been applied successfully to several surface catalytic kMC studies [14, 15, 16, 56, 57, 58],
while its potential limitations are not fully explored. Exemplary, its accuracy in the presence of local inho-
mogeneities and strong fluctuations is not ensured. Existing applications of the Dybeck scheme further
assume evenly distributed time scale disparities over the active nanoparticle surface, which may not be
guaranteed in presence of mass and charge transport. Finally, it is questionable whether charge/mass
transport towards the active interface can be handled accurately by treating it as a quasi-equilibrated
reaction channel as suggested by Dybeck et al. [55].

1.3 Automated Parametrization of Kinetic Monte Carlo Models

The following literature review is reprinted with permission from ref. 1, J. Phys. Chem. A 2023, 127 (28),
5967-5978. Copyright 2023 American Chemical Society (ACS)

So far, different methodologies have been proposed to parametrize kMC models. The most common
choice in the research community is still the straightforward parameter sweep [59, 60] supported by a
literature review for existing parameters [61]. Other methods automate parametrization via the utilization
of a random walk [25, 62] or a genetic algorithm such as particle swarm optimization [63]. More advanced
approaches are based on replacing the kMC simulation by a corresponding surrogate model. For instance,
Sestito et al. applied multi-objective Bayesian optimization (BO) in the context of a dimensionality reduc-
tion scheme for kMC diffusion models to calibrate the parameters of a simplified one-dimensional kMC
diffusion model. [64] Another surrogate-assisted kinetic Monte Carlo method utilizes Gaussian processes
(GPs) to predict the stationary shape in kinetically controlled copper electrodeposition. [65] However, the
combination of BO and GPs in terms of a strong, data-driven surrogate model is yet relatively unexplored.
It has been proven to be powerful in the field of compositional engineering [66, 67], for high throughput
laboratories [68], for the optimization of quantum cascade detectors [69] and in kMC models for structural
prediction [70].
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1.4 Electrochemical Test Systems

1.4.1 Hybrid Organic/Aqueous Electrolyte Interface

Minor parts of the following overview are reprinted with permission from ref. 2, J. Chem. Theory Comput.
2022, 18, 2749-2763. Copyright 2022 American Chemical Society (ACS).

As an application of the local temporal acceleration scheme for electrochemical systems, we consider the
interface between a photoactive polymer and an aqueous electrolyte - the inherent feature of so-called
hybrid organic/aqueous electrolyte devices. The hybrid device structure paved the path for a manifold of
novel applications ranging from organic photoelectrodes for water-splitting [71, 72, 73, 74, 75, 76, 77] to
electrolyte-gated field effect transistors (EGTs) [78, 79, 80, 81] as well as organic electrochemical tran-
sistors (OECTs) and most importantly bioelectronics [82, 83, 84, 85, 86, 87, 88]. The latter applications
rely on organic materials as exogeneous light-sensitive actuators for optical modulation/stimulation of cell
electrophysiological activity [89]. However, the actual mechanism(s) causing photostimulation of cell ac-
tivity in vitro/vivo are still under debate, with photocapacitive charging [90, 87, 91, 76], photothermal pro-
cesses [92] and photoelectrochemical reactions (i.e. photofaradaic processes) [90, 88, 76] as the three
prevailing alternative mechanisms.

To gain a full theoretical understanding of the photoelectrochemical processes at the organic/aqueous
electrolyte interface it is vital that experiments are accompanied by numerical simulations. Quantum me-
chanical simulations have been utilized to investigate the electronic structure of the P3HT/water interface
revealing that the outermost layer of the polymer is affected by water-induced polarization which leads
to polaron formation [93] and a marked energetic downshift of HOMO and LUMO levels [94]. Molecu-
lar dynamics simulations could confirm a molecular reorientation in the surface structure of regio-regular
P3HT thin films exposed to aqueous electrolytes, with respect to their surface structure in air [95]. One-
dimensional drift-diffusion models have been formulated to rationalize the photovoltage build-up on dif-
ferent time-scales [96, 97]. Electrochemical impedance spectroscopy has been applied to model photo-
capacitive and photofaradaic processes at the hybrid interface on a circuit level [90, 76]. Beyond these
studies, considerable research attention has been devoted to the reversible and irreversible interactions
of P3HT with molecular oxygen, resulting in the unambiguous identification of a reversible charge transfer
complex between P3HT and triplet oxygen in air as well as in water [98, 99, 100, 101, 102]. However, a
clear mechanistic picture regarding the complex dynamic interplay of processes and particles leading to
the generation of a measurable photocurrent remains still elusive, e.g. the contribution of different exciton
dissociation mechanisms is highly controversial.

A modeling approach that has been largely overlooked so far is the kinetic Monte Carlo method. As out-
lined above, there are stand-alone kMC models for mass-transport in batteries [24, 103, 104, 1], charge
transport in disordered organic devices [105, 106, 107, 10, 11] as well as reaction networks [55, 13, 14, 15].
The latter three systems lay the theoretical groundwork for a kMC model of the organic/aqueous electrolyte
interface. The challenge in kMC modeling is to couple the slow reaction dynamics (≈ s to µs) at the vicin-
ity of the hybrid interface with the fast electronic processes (≈ ns to ps). As the time scale disparity is
involving the crucial reduction reactions at the hybrid interface, the transport of electrons to the interface
is expected to play a crucial role in the system dynamics and consequently must be treated accurately.
In the scope of this thesis, we simulate a simplified version of the organic/aqueous electrolyte interface
to illustrate the capabilities of the algorithm as well as its sensitivity to different sets of input parameters.
Additionally, the set-up is suitable for a comparison to the Dybeck scheme [55].
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1.4.2 Space-Charge Layer Formation in Solid-State Electrolytes

The following overview is in parts reprinted with permission from (1) ref. 1, J. Phys. Chem. A 2023, 127
(28), 5967-5978. Copyright 2023 American Chemical Society (ACS), and (2) ref. 103, J. Phys. Chem. C
2022, 126, 10900-10909. Copyright 2022 American Chemical Society (ACS).

To demonstrate the capabilities of the data-driven optimization pipeline for automated parametrization
we consider a physically more intuitive process from the field of electrochemistry: the space-charge layer
(SCL) formation in solid-state electrolytes (SSEs) under blocking conditions as it occurs in all-solid-state
batteries (ASSB). In recent years, ASSBs have gained increasing attention as a promising substitute for
traditional Li-ion batteries due to their potentially longer lifespan, higher energy density, and enhanced
safety [108, 109].

The transport of ions in SSEs can be described by a thermally activated hopping mechanism between
unoccupied lattice vacancies [110, 111]. Unless a hopping transition is executed, each ion is spatially
assigned to a vacancy. Such a configuration can be interpreted as a kind of localized state. Accordingly,
the overall transport dynamics can be described by hops from one localized state to another. In this sense,
ionic motion in SSEs fulfills the criteria of a so-called infrequent-event system. A very well-established the-
oretical approach to model such systems is the kinetic Monte Carlo (kMC) method. In the direct context
of solid-state electrolytes, kMC also has been applied. For instance, Wolverton and coworkers calculated
the room-temperature ion conductivities of cation- and anion-substituted LiBH4-based SSEs [112]. Very
recently, Dean et al. showed that grain boundary space-charge regions in SSEs can exhibit over- as well
as underscreening [113].

During the thesis, we developed a simple yet predictive kMC model to simulate the mass-transport phe-
nomenon occurring in SSEs under blocking and non-blocking conditions [103, 104]. The model was able
to reproduce the quantitative trends in SCL thicknesses (accumulation and depletion layer) as previously
determined by electrochemical impedance spectroscopy [114] and spectroscopic ellipsometry [115]. The
SCL formation in SSEs showcases a perfect example for a system with several open input parameters,
which extremely profits from a guided and data-efficient parametrization scheme. In the original study
for blocking conditions, we conducted a total of 153 simulations to investigate the influence of different
input quantities. This brute-force parameter space exploration served as a starting point for constructing
a database to train the surrogate model of the data-driven optimization pipeline. We later on added al-
most exclusivley the results of fast-converging simulations and additionally implemented a smart sparse
sampling strategy for low-impact input parameters.
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2 Methods

2.1 The Kinetic Monte Carlo Method

The following concepts are adapted and in parts reprinted with permission from ref. 1, J. Phys. Chem. A
2023, 127, 28, 5967–5978. Copyright 2023 American Chemical Society (ACS).

2.1.1 Generic Algorithm

The kinetic Monte Carlo method is a numerical algorithm to sequentially propagate a system through
different states within its configuration space. Fundamental contributions to the modern kMC algorithm
have been made by Bortz et al. in 1975 [116] and Gillespie in the late 1970s [117, 31]. In general, the
kMC method is based on coarse-graining the system dynamics into a set of long-term states {i} which are
interconnected by discrete transitions. Given an arbitrary initial state i the system may transition into a set
of potential final states {j}. Each transition i → j is linked to a transition rate, kij , which is proportional
to the relative execution probability, pij , of the underlying physical process:

pij =
kij
ktot

=
kij∑
j kij

(2.1)

where ktot is the cumulative transition rate. The transition rates are a subset of the input parameters re-
quired by the kMC model. Usually, they are taken from experimental measurements or underlying physical
models. The stochastic time-evolution of the system is computed in the so-called Monte Carlo step. In
each simulation step, two uniform random numbers r1, r2 ∈ (0, 1) are drawn to determine which transi-
tion, µ, is executed and how much simulated time, τ , elapsed before the execution of the transition. In the
n-fold or direct method as outlined in ref. 31, we may use r1 to pick µ from the set {pij} via

µ−1∑

j=1

pij < r1 ≤
µ∑

j=1

pij (2.2)

and r2 to calculate a corresponding time-step

τ = − log (r2)

ktot
. (2.3)

Based on (2.2) and (2.3) the system state i → j and the simulated time ti → tj = ti + τ are updated.
To perform the next Monte Carlo step the transition rates must be recomputed in the new system state.
The stochastic time-evolution of the investigated system results from repeated execution of the outlined
procedure often denoted as the so-called Monte Carlo loop. The simulation is terminated when a user-
defined condition is fulfilled, e.g. a stationary state is reached or the simulated time exceeds a certain
predefined threshold, t ≥ tstop.

2.1.2 Algorithm Procedure

From a user’s point of view the theoretical framework of the kinetic Monte Carlo algorithm boils down to
the repeated execution of the Monte Carlo loop which results in a trajectory in the configuration space
of the considered physical system. The complete algorithm procedure of a generic, particle-based kMC
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Monte Carlo Loop
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3 Update Potential Energy Surface
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5 Execute Monte Carlo Step
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Figure 2.1 Flowchart of a generic, particle-based kinetic Monte Carlo algorithm. The repeated execution of the
Monte Carlo loop generates a phase-space trajectory for the system under investigation. The kinetic Monte Carlo
algorithm is obtained by adding parametrization and initialization as well as post-processing steps. Adapted with
permission from ref. [1]. Copyright 2023 American Chemical Society (ACS).

algorithm is obtained by adding parametrization and initialization steps before and post-processing steps
after the Monte Carlo loop, see Figure 2.1 for a flowchart. The individual steps can be summarized briefly
as follows:

1 Parametrize System: Selection of appropriate input parameters to generate given output quantities.

2 Initialize System: Generation of a discrete grid with geometrical and physical information (e.g. po-
sitions and static energies); population of the grid with particles.

3 Update Potential Energy Surface: Recalculation of Coulomb interactions of each charged particle
with all other charged particles according to current system configuration.

4 Calculate Rate Constants: Computation of the local transition rates based on the updated potential
energy surface.

5 Execution of Monte Carlo Step: Generation of two uniform random numbers to select a transition
via (2.2) and a corresponding time-step via (2.3).

6 Do Output Calculations: Calculation of output quantities from the raw tracking data of the kMC
simulation.
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2.2 Local Temporal Acceleration of Kinetic Monte Carlo Models

The following concepts are adapted and in parts reprinted with permission from ref. 2, J. Chem. Theory
Comput. 2022, 18, 5, 2749–2763. Copyright 2022 American Chemical Society (ACS).

2.2.1 Extended Algorithm Procedure

To couple transport and reaction dynamics in kMC models of electrochemical systems we developed a
local temporal acceleration scheme which substantially extends the original Monte Carlo loop, see Fig-
ure 2.2. In the following, we focus on the additional computational steps required by the acceleration
scheme: (1) partitioning of processes and particles into process chains, (2) detection of local quasi-e-
quilibrium, and (3) dynamic scaling of quasi-equilibrated process chains. For means of visualization, we
apply the acceleration scheme to a hybrid organic-aqueous electrolyte device (OLI) made of an energeti-
cally disordered organic semiconductor coupled to an aqueous electrolyte solution, see Section 2.5 for a
detailed description of the underlying kMC model.

2.2.2 Partitioning into Process Chains

The acceleration scheme starts with the partitioning of the processes and the particles into process chains.
Process chains consist of concrete transitions, which ideally are of similar time scales, and of a set of par-
ticles for the quasi-equilibrium detection. In case of the OLI, we can partition the system into three process
chains: (1) charge transport, generation and recombination in the semiconductor, (2) mass transport of
the cations C+ and the product C in the electrolyte and the oxidation at the counter electrode, and (3) the
reduction reaction at the interface. The interplay of these process chains determines the local densities
of the individual species in the system and especially at the interface. As process chain (1), i.e. the fast
processes of the charge carriers, is substantially faster than process chain (3), i.e. the slow reduction
reaction at the interface, local quasi-equilibria of the particle densities in the environment of the interface
will arise and consequently the local reaction activity will remain essentially constant. Thus, we say that
process chain (1) is quasi-equilibrated and consequently further sampling of the fast processes in pro-
cess chain (1) produces no additional information with respect to the system dynamics. Accordingly, it
is possible to downscale the rates of quasi-equilibrated process chains by appropriate scaling factors to
decrease the time scale disparity and enable a more frequent sampling of slow reduction reactions. Fig-
ure 2.3a illustrates the scaling procedure for the investigated system. Each of the three process chains
(m) is represented by a corresponding rate rm. The fast process chains (1) and (2) comprise three dif-
ferent transitions including fast transport rates which are substantially larger than reduction rate r3. The
algorithm reduces r1 and r2 to rs = Nf r3 such that on average Nf transitions of process chains (1) and
(2) are executed before a transition of the slow process chain (3) is sampled. In this way, the time scale
disparity is decreased while the relative dynamics within fast process chains remains unaffected upon
scaling.

2.2.3 Detection of Local Quasi-Equilibrium

The local quasi-equilibrium of each process chain m is assessed for a subset of particles Pm ∈ P . Pm

does not necessarily contain the particles which belong to the transition rates in the respective process
chain m. It may even be a good choice to define Pm as particles belonging to subsequent process chains
with slower transition rates. To assess the quasi-equilibrium of process chain m, we observe the local
environment of the particles in Pm. For an arbitrary particle i ∈ P , we define a quasi-potential (QP)

Ṽi = Ṽ (ri) =

N∑

j=1

‡wij

rij
Θ(rQP

cut − rij) (2.4)
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Extended Monte Carlo Loop

START kMC

1 Parametrize System

2 Initialize System 2 Group Particles

3 Update Potential Energy Surface 3 Update Quasi-Potentials

4 Calculate Rate Constants

5 Execute Monte Carlo Step
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Figure 2.2 Extended flowchart of a generic kinetic Monte Carlo algorithm including steps for a local temporal
acceleration scheme. In the initialization step, processes and particles are partitioned into process chains (step 2).
The original Monte Carlo loop is extendend by several computational steps including in particular quasi-equilibrium
assessment (step 6) and the dynamic scaling of quasi-equilibrated process chains (steps 7, 8 and 9). The detection
of local quasi-equilibrium relies on the definition of quasi-potentials which are updated in each kMC step (step 3).
Green blocks mark the additional steps required by the local temporal acceleration scheme. Adapted with permission
from ref. [2]. Copyright 2022 American Chemical Society (ACS).
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Figure 2.3 Schematic representation of the concepts utilized in the local temporal acceleratio scheme. (a)
Scaling procedure for a system containing three process chains (i) with rates ri. Process chains (1) and (2) contain
each three transitions as indicated by the different colors, while only one process is in process chain (3). The
acceleration scheme decreases the transition rates r1 and r2 of the fast process chains to rs = Nf r3, while each
individual transition rate in process chains (1) and (2) is equally scaled. Hereby, the slow process chain is more
frequently executed and the relative dynamics within each process chain is preserved. (b) Schematic representation
of an arbitrary superbasin S = QA ∪ QB : QA represents the quasi-equilibrated and sufficiently executed phase
space, QB the quasi-equilibrated but not sufficiently executed phase space, and N the non-equilibrated phase
space. Adapted with permission from ref. 2. Copyright 2022 American Chemical Society (ACS).

where wij are user-specified weights, rij = |rj − ri| is the distance between particle i and particle j, Θ
is the Heaviside step function and rQP

cut is a cutoff radius. Note that rQP
cut taken for the QP calculation differs

from rC
cut for Coulomb interactions. The double-dagger ‡ indicates that the self-interaction term (i = j) is

omitted. Via wij , fluctuations arising from different particles can be weighted differently. In practice, wij

contains quantities like the charge magnitude Zj , the particle mass, or the effective relative permittivity εr.
Tracking Ṽi(n) at each kMC step n yields a sequence of QP values which, in quasi-equilibrium, oscillate

more or less strongly around a given average value. The evolution of this average value is given by

⟨Ṽi⟩(k) =
1

k

k∑

n=1

Ṽi(n) . (2.5)

The average fluctuations in Ṽi(k) in the local environment of the ith particle is captured by

⟨∆Ṽi⟩(k) =
⟨Ṽ mavg

i ⟩(k)− ⟨Ṽi⟩(k)
⟨Ṽi⟩(k)

(2.6)

where

⟨Ṽ mavg
i ⟩(k) = 1

Nob

Nob∑

n=1

Ṽi(k −Nob + n) (2.7)

is the moving average QP andNob denotes a user-defined window size. If the relative fluctuations remains
within a user-defined threshold δ ∣∣⟨∆Ṽi⟩(k)

∣∣ ≤ δ , (2.8)

particle i is considered to be locally quasi-equilibrated. If all particles in Pm fulfill the quasi-equilibration
condition, Eq. (2.8), we define process chain m as quasi-equilibrated. At the beginning of a simulation,
the local environment of all particles is considered to be non-equilibrated. The same is valid for newly
generated/injected particles. After Nob kMC steps, local quasi-equilibrium is assessed via (2.8) and sub-
sequently updated in intervals of Ns kMC steps. In this way, we ensure the sensitivity of quasi-equilibrium
detection with respect to changes in the system dynamics.
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2.2.4 Dynamic Scaling of Quasi-Equilibrated Process Chains

To resolve existing time scale disparities, the transition rates ki of each process i in the quasi-equilibrated
process chains m are artificially decreased using a scaling factor 0 < αm < 1:

k⋆i = αmki (2.9)

where k⋆i denotes the scaled transition rate of process i. The value of each scaling factor αm is calcu-
lated and updated dynamically during the simulation such that on average Nf processes of each quasi-
equilibrated process chain are executed before a process from a slow non-equilibrated process chain
occurs. The dynamic calculation of scaling factors is based on the superbasin concept of the Dybeck
scheme [55]. For this purpose, the m process chains are subdivided into three sets:

1 Quasi-equilibrated and sufficiently executed: QA

2 Quasi-equilibrated but not sufficiently executed: QB

3 Non-equilibrated: N

The union of the explored region, QA, and of the unexplored region, QB, forms the current superbasin S,
see Figure Figure 2.3b. An arbitrary process chain m is considered to be sufficiently executed if it was at
least Ne times executed in the current superbasin S. QA can either be exited by a process from QB or N .
Hence, the effective escape rate res from QA is determined by the sum of all rates rm,S of process chains
belonging to the sets N and QB:

res =
∑

m∈N ,QB

rm,S . (2.10)

In general, the rate of any process chain m within the current superbasin S can be approximated by
temporal averaging:

rm,S =
1

∆tS

∑

n∈S
km(n)∆tn (2.11)

where ∆tS =
∑

n∆tn is the total time spent in S, km(n) is the rate constant of process chain m at kMC
step n given by

km(n) =
∑

i∈m
ki(n). (2.12)

and ∆tn denotes the corresponding time step. Consequently, the ratio

⟨Nm⟩ = rm,S
res

(2.13)

represents the average number of executions in process chain m before QA is left. To ensure that an
average number of Nf executions in process chain m are sampled, we can define the scaling parameter
αm by

αm = Nf
res
rm,S

. (2.14)

If αm > 1, we set αm = 1 to prevent an increase of the transition rate. Eventually, the process chains
in QA allow the system to exit the superbasin via a process of a non-equilibrated process chain. Upon
entering the new superbasin, all scaling factors are reset to 1 and new scaling factors are computed
using equations (2.10) to (2.14). In this context, all previously quasi-equilibrated process chains remain
quasi-equilibrated, but they are no longer considered to be sufficiently executed such that αm is set to 1
in line with the Dybeck scheme [55]. All process chains need to be sufficiently executed again before the
scaling is activated again. This ensures that the processes in the respective process chains are sufficiently
executed and with this limits the perturbation of the system dynamics.
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2.3 Automated Parametrization of Kinetic Monte Carlo Models

The following concepts are adapted and in parts reprinted with permission from ref. 1, J. Phys. Chem. A
2023, 127, 28, 5967–5978. Copyright 2023 American Chemical Society (ACS).

2.3.1 Extended Algorithm Procedure

To automate the parametrization of kMC models we developed a computational pipeline which extends
the original kinetic Monte Carlo algorithm by a data-driven feedback loop, see Figure 2.4. In the fol-
lowing, we outline successively the additional computational steps required by the data-driven feedback
loop: (1) Bayesian optimization, (2) selection of an appropriate acquisition function, and (3) Gaussian pro-
cesses. Each step of the pipeline is firstly described in an abstract fashion and subsequently concretized
by means of an electrochemical showcase - the space-charge layer formation in solid-state electrolytes
under blocking conditions, see Section 2.4 for a detailed description of the underlying kMC model.

2.3.2 Bayesian Optimization

In a majority of cases, the parametrization of kMC models relies on a combination of literature review,
physical intuition and brute force (e.g. parameter sweeps). The main goal of this work is to make the
process of input parametrization prediction-guided via an efficient Bayesian optimization scheme, see
step 8 in Figure 2.4. BO is a global optimization pipeline which has proven to be both data efficient and
robust in non-covex/concave problems. Considering an arbitrary optimization problem with a costly-to-
query target quantity such as time-consuming experimental measurements or computationally expensive
ab initio simulations, Bayesian optimization is among the most suitable algorithms as it requires only
a minimal amount of target querying and may reach a global minimum. The two main components of
BO are a surrogate model and an acquisition function, see steps 7 and 9 in Figure 2.4, respectively.
The surrogate model can be any probabilistic algorithm that provides a prediction and an uncertainty
quantification, for instance Gaussian processes (GPs), deep GPs or Bayesian neural networks. The
acquisition function defines the function that will be directly optimized. It should be as convex/concave as
possible, computationally efficient to evaluate and incorporate both the prediction of the original process
and the uncertainty of the model on this point. A very intuitive example of an acquisition function is given
by the so-called upper confidence bound (UCB):

xopt = argmax
xopt

µ(xopt) + ϵσ(xopt) (2.15)

where µ and σ are the predictions for the mean and standard deviation, respectively, of the predictor
on the corresponding point xopt and ϵ is a trade-off parameter. The parameter ϵ is directly linked to
the exploration and exploitation phase of the optimization process. In the beginning of the process the
model does not have enough information about the whole parameter space. Thus, it is more important to
acquire observations which improve the model than to optimize the original problem. This initial stage is
denoted as exploration and becomes manifest in high values of ϵ. As the model improves progressively the
focus of the optimization process begins to shift on optimal points. This stage is denoted as exploitation
and reflected by decreasing values of ϵ. In general, there are numerous potential acquisition functions
with different convexity properties and prioritizations. In this work, the so-called expected improvement
acquisition function was utilized:

EI(x) = Emax
(
f(x)− f(x+), 0

)
(2.16)

where the superscript + denotes the best point so far and the function f is the trained surrogate model
based on Gaussian processes. A complete derivation of Equation (2.16) can be found in Ref. [118] along
with resources on additional acquisition functions. For completeness we note that other acquisition func-
tions such as probability of improvement and UCB were also implemented but yielded inferior results
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Figure 2.4 Extended flowchart of a generic, particle-based kinetic Monte Carlo algorithm including a feed-
back loop for automated parametrization. The original kinetic Monte Carlo algorithm on the right-hand side is
extended by a feedback loop consisting of Gaussian processes and Bayesian optimization on the left-hand side.
Fast-converging kMC simulations are used to generate a database to train a cheap-to-evaluate surrogate model
based on Gaussian processes. The surrogate model and a system specific acquisition function form the two main
components of Bayesian optimization which is utilized to predict the system parametrization for the next simulation
run. Depending on its accuracy the surrogate model may fully replace the original kMC simulation. The green blocks
mark the additional computational steps required by the data-driven feedback loop. Reprinted with permission from
ref. 1. Copyright 2023 American Chemical Society (ACS).

compared to expected improvement.
The generic acquisition function outlined above has to be modified to match with the requirements of the

investigated physical process. In ref. [1] our goal is to reconstruct the depletion layer thickness as function
of the applied bias potential, that is dn-scl (ϕbias). For this purpose, we define the objective function

µobj = − 1

Nϕbias

∑

ϕbias

∣∣d⋆n-scl (ϕbias)− dn-scl (ϕbias)
∣∣

dn-scl (ϕbias)
, (2.17)
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where the superscript ⋆ denotes the mean of the predicted values and Nϕbias is the number of investigated
potential points. In principle, we are considering a minimization problem, as we wish to minimize the
distance between the predicted values and a baseline. However, in the context of Bayesian Optimization
it is more intuitive to reformulate the task as a maximization problem indicated by the negative sign in
(2.17). The corresponding standard deviation is given by

σobj =
1

Nϕbias

∑

ϕbias

σ (ϕbias)

dn-scl (ϕbias)
(2.18)

where σ(ϕbias) corresponds to the standard deviation of a prediction with respect to a specific value of
ϕbias. The final form of the acquisition function can be constructed by combining (2.17) and (2.18) with
(2.16):

EI =

{
(fobj(x)− f(x+)− ξ)Φ(Z) + σobj(x)(Z) if σobj(x) ≥ 0

0 if σobj(x) = 0
(2.19)

where

f(x) =





fobj(x)− f(x+)− ξ

σobj(x)
if σobj(x) ≥ 0

0 if σobj(x) = 0

(2.20)

with ϕ and Φ denoting the probability and the cumulative distribution functions respectively.

2.3.3 Gaussian Processes

As outlined above Bayesian optimization requires a robust and computationally efficient surrogate model.
In the scope of this work, we selected Gaussian processes (see step 7 in Figure 2.4) - a data-driven
stochastic prediction algorithm that models predictions as Gaussian distributions whose parameters are
determined by the distance to already measured samples. Therefore, the algorithm inherently provides
an uncertainty quantification for its predictions, which can be crucial in applications with small datasets.
Gaussian processes rely on the fundamental assumption that a true process y can be modeled by a model
f on a set of points X using a multivariate Gaussian distribution centered around zero, denoted as the
so-called prior distribution:

f |X ∼ N (0,Kx,x) (2.21)

where Kx,x is the covariance matrix which encodes the correlation between two points and is defined
by a user chosen kernel function. Additionally, the likelihood of the observations given the model can be
represented as a noisy normal distribution around the model predictions:

y|f ∼ N (f , σ2I) (2.22)

Equation (2.21) and Equation (2.22) can be manipulated to create the so-called posterior distribution which
will be used for prediction and is given by

P (θ|D) =
P (D|θ)P (θ)

P (D)
(2.23)

where D corresponds to the acquired observations and θ denotes the model parameters. Solving the
above process analytically yields

µx⋆ = Kx⋆,x[Kx,x + σ2I]
−1

y (2.24a)

σ2x⋆ = Kx⋆,x⋆ −Kx⋆,x[Kx,x + σ2I]
−1

Kx,x⋆ (2.24b)

where the points for prediction and training are denoted with and without the superscript ⋆, respectively.
One crucial aspect is given by the parameter values, θ, of the kernel function K. In principle, the prior
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distribution must be defined in such a way that it is uncorrelated with the observations. However, in practice
better results are achieved if the kernel parameters are chosen to maximize the log marginal likelihood
(LML)

log p (y|X, θ) = −1

2
yT

[
Kx,x + σ2I

]−1
y − 1

2
log

[
Kx,x + σ2I

]
− N

2
log (2π) (2.25)

for a given number of points N . Here, the first term captures the quality of the model fit, the second term
indicates that complex models are less probable and the third term expresses that points become less
probable in larger datasets. In essence, the LML maximization attempts to define the simplest model that
describes the observations. Note, that a complete mathematical analysis of Gaussian processes and their
derivation is beyond the scope of this work. A comprehensive description can be found in ref. 119.

In ref. [1], the kernel was the sum of two multilayer perceptron (MLP) kernels [120] whose parameters
were trained by maximizing the LML. Note that the kernel itself is not a neural network. However, it has
been shown that - under certain conditions - certain covariance functions can cause the GPs to converge
to the limit of a neural network with an infinite number of layers. Our particular implementation of the
kernel mimicks rectified linear activations (ReLU) but the method family is not limited to it. Unfortunately,
the detailed theory of the method is beyond the scope this paper. A complete treatment can be found in
pertinent literature [120], further publications covering the topic are given by refs. [121, 122, 123, 124].
There is no immediate reason to assume that this kernel outperforms other kernel functions such as
the radial basis kernel (RBF). Nevertheless, trial and error showed that in this problem the results were
superior both in accuracy and physicality of results.
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2.4 Kinetic Monte Carlo Model of the Space Charge Layer Formation in
Solid-State Electrolytes

The following concepts are reprinted with permission from ref. 104, Comm. Chem. 2023, 6, 124. This
article is licensed under a Creative Commons Attribution 4.0 International License.¶

2.4.1 Experimental and Simulation Set-Up

In Figure 2.5, the different measurement setups are shown, which were used to perform the two experi-
mental techniques (electrochemical impedance spectroscopy (EIS) in Figure 2.5a and spectroscopic ellip-
sometry (SE) in Figure 2.5b, respectively) and a sketch of the kMC model in Figure 2.5c. The experimental
design was carefully chosen to prevent a tandem of instabilities from interfering with the measurement:
(1) the reduction of the Li(s) when in contact with air, and (2) the reaction of the SSE when in touch with
Li(s) [125]. As the SE measurements are relatively fast (multiple hours) but are done under ambient con-
ditions, the Au-layer on top of the Li(s) electrode provides protection from the atmosphere. On the other
hand, the EIS measurements are relatively slow but can be performed in an argon atmosphere, and the
Au-layer between Li(s) and SSE acts as a passivation layer between two materials [126]. More details on
the preparation and conditions of the measurement can be found in the experimental section of ref. 104.

Next, we outline the extended model setup for an SSE sample contacted by two metallic Li-electrodes,
see Figure 2.5c. Here, we briefly summarize the most important aspects of the original model for block-
ing conditions [103]. The device is mapped to a three-dimensional Cartesian lattice of volume V =
X × Y × Z = 31.5 × 31.5 × 1260 nm3 with a lattice constant of aL = 6.3 nm and periodic boundary
conditions in the xy-plane. The bottom and top layer in z-direction correspond to the Li(s)-electrodes
which either act as a sink or source for Li-ions (in the following denoted as removal and injection elec-
trode, respectively). Note that the model does not distinguish between the Au-layer and the Li(s) electrode
but instead treats them as an ideal contact with εr −→ ∞. The region confined between the contacts mod-
els the SSE sample where each node i represents an unoccupied vacancy site. The sample is populated
with mobile Li-ions according to a particular bulk concentration cLi+,bulk. The value of cLi+,bulk was recently
assessed in the scope of an ionic Mott-Schottky formalism to be in the range of 2-4 × 1018 cm−3 [127]. In
the scope of this work, we utilize the mean value cLi+,bulk = 3 × 1018 cm−3 as a first order approximation.
In general, the concentration of mobile cations, cLi+, and its physical boundaries play a key role in the
asymmetric SCL formation in SSEs. In ref. [103], we established that:

cmin ≤ cLi+ ≤ cmax (2.26)

where cmin and cmax denote the minimum and maximum concentration of Li+ in a fully depleted and fully
occupied lattice, respectively. In the present model, we naturally set cmin = 0, whereas as the inverse
volume of a unit cell imposes the maximum concentration, cmax = a−3

L . A homogeneously distributed
anionic background is implemented to ensure electroneutrality with respect to the sample’s initial condition.
The presence of immobile Li-ions [128] is neglected as corresponding counter anions locally neutralize
them and thus do not alter the underlying energetic landscape for the transport of Li+. Analogously to
liquid electrolytes [129], the strength of electrostatic screening also impacts the thicknesses of the resulting
SCLs. Here, we control the magnitude of this effect via the relative permittivity εr of the bulk SSE.

2.4.2 Modeling of Li-ion Dynamics

Our model features three different types of dynamic transitions (cf. numbers in Figure 2.5c):

1 Li+-injection from the source electrode.

2 Li+-transport guided by a thermally activated hopping mechanism [111, 110].
¶https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
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Figure 2.5 Experimental setups and kinetic Monte Carlo (kMC) model for the space charge layer formation in
solid-state electrolytes. Schematic representation of (a) the spectroscopic ellipsometry (SE) and (b) the electro-
chemical impedance spectroscopy (EIS) setups used in the experiments. (c) Schematic representation of the kMC
model used to simulate the behavior of charge accumulation at the interface between a lithium metal electrode and
an oxide solid-state electrolyte. Gray, red, and blue dots represent unoccupied lattice vacancies, mobile Li+-ions
and their immobile counteranions, respectively. The metallic Li-electrodes are illustrated by black dots and act as
source and sink for mass-transport. The numbers correspond to the three implemented dynamic transitions: (1)
Li+-injection, (2) Li+-transport and (3) Li+-removal. Reprinted with permission from ref. 104.

3 Li+-removal from the sink electrode.

Li-ions can move to unoccupied nearest neighbor’s vacancies via hopping transport which is affected by
the local values of the potential energy surface Ei. These local energy levels comprise three different
energetic contributions: the energy defined by a Eref

i , the contribution from an external electric field EF
i

and the influence of Coulomb interactions of mobile cations and their respective immobile counter anions.
In summary, the total potential energy at vacancy site i is given by:

Ei = Eref
i + EF

i + EC
i . (2.27)

In the present model, we only consider energy differences ∆Eij between two vacancy sites i and j and,
thus, we may setEref

i = 0. EF
i is assumed to drop linearly in z-direction across the contacted SSE sample,

that is:
EF

i = (qϕb −∆W )
zi
Z

(2.28)

where ϕb denotes the applied bias potential, ∆W is the difference in the electrode work functions and
zi is the z-coordinate of the site i. For identical electrodes, we may set ∆W = 0. While the first two
contributions are held constant during the simulation, EC

i must be updated dynamically. The model con-
siders the interaction of mobile cations (cation–cation interactions), Ecc

i , and interaction of mobile cations
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with immobile counteranions (cation–anion interaction) Eac
i . Both contributions are computed accurately

via a three-dimensional Ewald summation adjusted for a contacted infinite slab-device as established by
Casalegno et al. [18, 130]. Due to the fixed positions of anions, the values of Eac

i can be calculated before
the simulation and cached on related vacancy sites. On the other hand, Ecc

i depends on the current spa-
tial distribution of all mobile cations and must be updated accordingly in each kMC step. In the context of
Coulomb interactions, special attention must be paid to non-electroneutral device configurations as they
can lead to convergency issues [33]. Under non-blocking conditions, such arrangements could arise from
strongly asymmetric injection and removal rates. However, please note that the applied electrostatic solver
implicitly handles such cases by extending the original simulation box with a corresponding box of image
charges representing the polarization of an ideal metal contact. To reduce the computational effort arising
from the dynamic calculation of Coulomb interactions, we apply a combination of different strategies [103],
particularly the so-called dipole-update method [36].

The thermally activated hopping of cations between vacancies sites i → j is captured via the Miller-
Abrahams formula [131]:

kij = k0 ·




exp

(
∆Eij

Eth

)
, ∆Eij < 0

1, ∆Eij ≥ 0

, (2.29)

where k0 is attempt-to-hop frequency, ∆Eij = Ej−Ei denotes the difference in potential energy between
vacancy i and j and Eth = kBT is the thermal energy. The attempt-to-hop frequency is estimated from an
Arrhenius equation [132]:

k0 =
kmax
0

a2L
exp

(
−Ea

Eth

)
(2.30)

where kmax
0 = Eth/h and Ea denotes an experimentally obtained activation energy for diffusion [133].

We scale kmax
0 by a2L similarly to a three-dimensional random walk based on the Einstein-Smoluchowski

treatment for Brownian motion [134]. When Li-ions reside on vacancy sites neighboring to contact nodes,
they can be removed from the SSE sample with a constant rate krem. Therefore, the cumulative removal
rate is given by:

Krem = nLi+,contactkrem (2.31)

where nLi+,contact is is the total number if Li-ions residing next to the contact. Vice versa, Li+ can be injected
into an unoccupied vacancy site from the contact with the rate kinj and, accordingly, the cumulative injection
rate is given by:

Kinj =
(
ncontact − nLi+,contact

)
nLi+,contactkinj (2.32)

where ncontact denotes the total number of contact sites. Details regarding the model parametrization
are given in ref. [104]. Note that the presented model is also valid for the SCL formation under blocking
conditions [103]. The limiting case of blocking conditions can be simulated by setting kinj = krem = 0.
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2.5 Kinetic Monte Carlo Model of the Photocurrent Generation at the
Organic/Aqueous Electrolyte Interface

The following concepts are adapted and in parts reprinted with permission from ref. 2, J. Chem. Theory
Comput. 2022, 18, 5, 2749–2763. Copyright 2022 American Chemical Society (ACS).

2.5.1 Experimental and Simulation Set-Up

To characterize the hybrid interface electrochemically it is common to utilize a three-electrode set-up for
chronoamperometric and voltammetric measurements, see Figure 2.6a. In such a set-up, the organic
photoactive layer (most often poly-3-hexylthiophene, P3HT, or a P3HT/fullerene blend) is deposited on a
transparent indium tin oxide (ITO) substrate to form a photosensitized working electrode, and immersed
in an aqueous electrolyte. Several experimental studies demonstrate that photocurrent generation as well
as photovoltage build-up are strongly coupled to the presence of dissolved oxygen in the electrolytic buffer
solution indicating the occurence of faradaic oxygen reactions in the vicinity of the hybrid interface [74,
90, 88, 89, 97, 77]. Cations/Molecules, e.g. H+ or O2, diffuse within the electrolyte and, driven by an
applied electric field, accumulate at the organic-liquid interface (OLI). Optical excitation of the organic
semiconductor leads to the generation of electrons and holes which subsequently migrate through the
semiconductor via a hopping mechanism. After a certain lifetime, charge carriers may recombine non-
radiatively. If electrons reach the interface, they may reduce the cations/molecules at the interface forming
an uncharged molecule or charged anion.

Next, we outline the simulation set-up of the OLI, made of an organic semiconductor stacked between
a metal electrode and a liquid electrolyte, see Figure 2.6b. We model the organic semiconductor and the
interface region of the electrolyte by a simplified two-dimensional lattice of size X × Z = 50 nm × 60 nm
with a site spacing of rL = 1 nm. In x-direction, periodic boundary conditions are assumed; in z-direction,
the organic layer is stacked between an electrode (z = 0 nm) and the aqueous electrolyte (zif = 50 nm).
The upper limit of the interface electrolyte at Z = 60 nm implements a reflecting boundary condition [33]
with respect to the bulk electrolyte. The energy at site i is given by

Ei =

{
EMO

i + Eσ
i + EF

i + EC
i in the organic layer

Eref
i + EF

i + EC
i in the electrolyte

(2.33)

where EMO
i and Eref

i denote the average molecular orbital energy and the energy defined by a reference
electrode, respectively, Eσ

i resembles the energetic disorder, EF
i is the contribution from an external elec-

tric field and EC
i is the potential arising from Coulomb interaction with charges/ions in the environment.

Eσ
i is modeled by a Gaussian distribution with variance σ2, resembling the Gaussian density of states in

disordered organic semiconductors [9, 135]. EF
i is modeled as a linear potential drop along the z-axis:

EF
i = qVb

zi
Z

(2.34)

where Vb denotes the applied bias voltage and zi is z-coordinate of site i. For charges, EC
i is constituted

by the electron-electron interaction Eee
i and the ion-electron interaction E ie

i . For ions, EC
i is composed of

the ion-ion interaction, E ii
i , and the electron-ion interaction Eei

i . All components can be approximated by
a spherical potential with cutoff radius rC

cut by combining the method of image charges in z-direction [136]
with the periodic boundary conditions in x-direction [137] to account for the interaction with the charged
particles in the periodic replicas. A detailed derivation as well as a convergence analysis is presented in the
Supporting Information of ref. [2]. All Coulomb interactions must be calculated and updated dynamically
during runtime.
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Figure 2.6 Experimental setup and kinetic Monte Carlo model for the photocurrent generation at the organic-
aqueous electrolyte interface. (a) A typical three-electrode electrochemical cell is utilized for chronoamperometric
measurements. By optical excitation of the photosensitized working electrode (WE) a photocurrent, Iph, can be
detected with respect to the counter electrode (CE). The bias potential of the working electrode, Vb, is defined
via a reference electrode (RE). (b) Schematic representation of the simplified kMC model used to simulate the
photocurrent generation. Electrons (e–) are optically generated in the organic semiconductor and migrate within
their average lifetime to the hybrid interface. Here, electrons may reduce cations (C+) diffusing within the elecrolyte.
Adapted with permission from ref. 2. Copyright 2022 American Chemical Society (ACS).
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2.5.2 Modeling of Particle Dynamics

The model contains the following five transitions (cf. Figure 2.6b):

1 Electron generation (elg)

2 Electron hopping (elh)

3 Electron decay (eld)

4 Ion reduction (red)

5 Ion diffusion (iod)

In the beginning of the simulation, we assume that there are no free electrons in the organic layer. Electrons
are optically generated (process 1, Figure 2.6b) at random sites with rate

Kexg = (norg − nel) kelg (2.35)

where norg is the number of lattice sites and nel is the current number of electrons in the device. The
transport of charged species (electrons and cations, processes 2 and 5, respectively, Figure 2.6b) between
sites i and j is modeled via the Miller-Abrahams formula [131]

kij = k0




exp

(
∆Eij

Eth

)
if ∆Eij > 0

1 if ∆Eij ≤ 0

(2.36)

where k0 is the maximum transport rate, ∆Eij = Ej − Ei is the difference in potential energy between
sites i and j and Eth = kBT denotes the thermal energy. Particle motion is restricted to nearest-neighbor
sites. Here, we set k0 = 5.32 × 109 s−1 for cations corresponding to the two-dimensional random walk of
a sodium ion [132]. Electron decay (process 3, Figure 2.6) is modeled as the inverse of the lifetime τ , i.e.
keld = τ−1. If an electron reaches the OLI, it may reduce a diffusing ion. The ion reduction (process 4) is
formally given by the reaction equation

C+ + e– kred
C (2.37)

where C denotes the neutral reduction product and kred is a constant reduction rate. In the simulation
model, (2.37) is implemented as the consumption of an electron, no reaction product is generated. Ac-
cordingly, the cation density remains constant during time-evolution. Here, we assume a cation density of
nC+ = 3 × 1012 cm−2 in the electrolyte corresponding to a total number of 15 mobile ions.

2.5.3 Parametrization of Temporal Acceleration Scheme

To parameterize the acceleration scheme, we defined m = 3 process chains: the first chain merges
electron transport, generation and decay; the second chain contains ion diffusion; the third process chain
isolates the rate-limiting reduction reaction. The input parameters for the acceleration scheme are pre-
sented in Table 2.1, a detailed summary of their meaning and impact is given in the original publication [2].
Process chain 1 and 2 contain charge and mass transport and, thus, are inherently much faster than the
interface reaction. To assess quasi-equilibrium of the two fast process chains, we set P(1) = P(2) = {C+}
to track the quasi-potentials of all cations within rcut = 2 nm. We set the weights of the electronic and ionic
QP contributions to

wel =
−q
εr,eff

and wion =
+q

εr,e
, (2.38)

respectively, where q = 1 is the unsigned charge magnitude of an electron/cation, and εr,eff is the effective
relative permittivity between the organic material and the electrolyte with εr,e and εr,o being the relative
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Table 2.1 Input parameters of the temporal acceleration scheme for the organic-liquid interface model.

Nob Ns δ Ne Nf

106 103 0.2 104 105

permittivity of the electrolyte and the organic material, respectively. The latter weight mimics the electro-
static interaction between electrons and ions within different materials. Normally, a reduction event would
consume an electron and a cation. Here, we only consider electron consumption. To mimic ion consump-
tion we assume that the formally reduced cation is non-equilibrated after the reduction event, and reset
its history of quasi-potential tracking.
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3 Publications

3.1 Local Temporal Acceleration Scheme to Couple Transport and
Reaction Dynamics in Kinetic Monte Carlo Models of Electrochemical
Systems

Published By Gößwein M.; Kaiser W.; Gagliardi A. Local Temporal Acceleration Scheme to Couple
Transport and Reaction Dynamics in Kinetic Monte Carlo Models of Electrochemical Systems. J. Chem.
Theory Comput. 2022, 18, 2749-2763.

The following summary is adapted and in parts reprinted with permission from ref. 2, J. Chem. Theory
Comput. 2022, 18, 2749-2763. Copyright 2022 American Chemical Society (ACS).

Summary In this work, we present a novel temporal acceleration scheme to couple fast charge and
mass transport phenomena with slow reaction dynamics in electrochemical systems. Our algorithm sub-
stantially extends the Dybeck scheme [55] by the introduction of a novel partitioning strategy of the system
into process chains - a set of processes of similar time scale being connected to a certain particle subset.
In contrast to the original algorithm, we formulate a local, particle-based criterion to assess the quasi-
equilibrium of entire process chains (see Figure 3.1a) which are defined via subsets of processes and
particles. Local quasi-equilibrium is reached if the fluctuation in the local environment of each individual
particle, captured by quasi-potentials, remains within a pre-defined threshold. Scaling factors of quasi-
equilibrated and sufficiently executed process chains are calculated dynamically based on the Dybeck
scheme. Down-scaling of all transition rates within a process chain preserves the relative dynamics. Si-
multaneously, existing time scale disparities are substantially reduced resulting in a computationally more
efficient kMC method.

We demonstrate the performance and the accuracy of our acceleration algorithm using a simplified
model of an electrochemical system of growing relevance: a hybrid organic-aqueous electrolyte device
which suffers from time scale disparities between fast transport phenomena in an organic semiconductor
and slow interface reduction reactions. Reduction currents and local charge densities are investigated and
accurately reproduced despite the presence of local inhomogeneities, see Figure 3.1b and Figure 3.1c,
respectively. Figure 3.1b showcases that the acceleration scheme only kicks in for k̂red ≤ 4× 10−7. In
the accelerated regime, the reference and accelerated values are perfectly matching independent of en-
ergetic disorder. For larger k̂red, the acceleration scheme does not disturb any of the system dynamics.
Moreover, Figure 3.1c underlines that our algorithm also accurately preserves local properties such as
the distribution of average charge density per LUMO energy interval. In concrete numbers, we achieve
an acceleration up to a factor of 106 and without any loss in accuracy, see Figure 3.1d. With the efficient
detection of local quasi-equilibria, we are able to capture local heterogeneities and to accurately reproduce
physical quantities on a local scale. We further demonstrate that the Dybeck scheme is not suitable to
capture the interaction between fast charge or mass transport phenomena and interface (surface) reac-
tions accurately.

The central innovation of the presented temporal acceleration scheme is its local quasi-equilibrium ap-
proach. Thus, time scale disparities can be handled which are arbitrarily distributed in space, and local
physical properties can be preserved upon scaling. The capability of resolving local heterogeneities is
one of the main advantages of kMC models with respect to multiscale simulations. Hence, our algorithm
provides a viable tool to substitute existing multiparadigm approaches by a stand-alone kMC model.



26

Fast Transport ≫ Slow Reactions

Locally equilibrated? Scaling

e– e– e– e– C+C+C+C+

C

Speed-Up

-5

-10

-15 0 meV

Ref.
Acc.
Dybeck

10−12 10−10 10−8 10−6 10−4 10−2 1

-5

-10

-15 100 meV

Normalized Reduction Rate k̂red

lo
g

10
(j

re
d/

(n
A
/c
m
))

Ref.
Acc.
Dybeck

-4.1 -4 -3.8 -3.6 -3.4
108

109

1010

1011

1012

1013

Energy ELUMO (eV)

C
ha

rg
e

D
en

si
ty

⟨n
⟩( cm

−2
) Ref.

Acc.
Dybeck

10−12 10−10 10−8 10−6 10−4 10−2 1

1

101

102

103

104

105

106

overhead

Normalized Reduction Rate k̂red

S
pe

ed
-U

p
ξ

0 meV
100 meV

(a) (b)

(c) (d)

Figure 3.1 Local temporal acceleration scheme for coupled transport-reaction simulations in kinetic Monte
Carlo models of electrochemical systems. (a) Schematic representation of the fundamental concept of local
quasi-equilibrium detection. (b) Reduction current density, jred, for σ = 0meV (top) and σ = 100meV (bottom)
as a function of the normalized reduction rate k̂red. Filled symbols visualize the current densities obtained from
the reference kMC simulations (Ref.); open symbols and crosses visualize the current densities from our local
acceleration scheme (Acc.) and from the Dybeck scheme [55] (Dybeck), respectively. Dashed lines extrapolate
the trend in jred for low values of k̂red. (c) Distribution of average charge density per LUMO energy interval for
σ = 100meV and k̂red = 4× 10−12. (d) Speed-up in CPU time, ξ, for σ = 0meV and σ = 100meV as a function
of the normalized reduction rate k̂red. Adapted with permission from ref. [2]. Copyright 2022 American Chemical
Society (ACS).

Individual Contributions I substantially contributed to the ideas and concepts of the local temporal
acceleration scheme presented in this study. I developed the utilized kinetic Monte Carlo models and im-
plemented the corresponding simulation software within our in-house kinetic Monte Carlo framework [11].
I analyzed, assessed and rationalized all simulation data and transfered the scientific results into coherent
figures. I authored the majority of the manuscript considering the broad expertise on kinetic Monte Carlo
methods provided by the co-authors.
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3.2 Utilizing Data-Driven Optimization to Automate the Parametrization of
Kinetic Monte Carlo Models

Published By Kouroudis I.‡; Gößwein M.‡; Gagliardi A. Utilizing Data-Driven Optimization to Automate
the Parametrization of Kinetic Monte Carlo Models. J. Phys. Chem. A 2023, 127 (28), 5967-5978.

The following summary is adapted and in parts reprinted with permission from ref. 1, J. Phys. Chem.
A 2023, 127 (28), 5967-5978. Copyright 2023 American Chemical Society (ACS).

Summary In this work, we present an innovative and robust data-driven optimization pipeline to auto-
mate the parametrization of kinetic Monte Carlo (kMC) models. Our method couples the original kMC
algorithm with a feedback loop consisting of a surrogate model based on Gaussian processes (GPs),
a system-specific acquisition function and Bayesian optimization (BO), see Figure 3.2a. The surrogate
model and the acquisition function operate as the two main components of Bayesian optimization which
enables the guided prediction of suitable input parameters for a given output/target quantity. The surro-
gate model is cheap-to-evaluate and trained via a database generated from the outputs of fast-converging
kMC simulations. In contrast to intuition-based parameter searching, we require only 1 to 2 iterations to
reconstruct appropriate sets of input parameters, see Figures 3.2b to 3.2d. Remarkably, the latter state-
ment holds inside as well as outside the bounds of the training data set demonstrating the extrapolation
capabilities of our data-driven approach. Featuring accurate extrapolation is of high relevance when the
direct kMC simulation of such regions is connected to large computational costs. Moreover, a sufficiently
accurate surrogate model with a well-quantifiable error margin may fully replace potentially expensive kMC
simulations which is a viable option in many practical use cases.

The effectiveness of our data-driven optimization pipeline is showcased via a process of growing indus-
trial relevance: the formation of space-charge layers in solid-state electrolytes as it can be observed in
all-solid-state batteries. The investigated process showcases a system with several open input parame-
ters which extremely profits from a guided and data-efficient parametrization scheme. We demonstrate
that the applied predictor is not only highly accurate but to the same degree data-efficient. Further, we con-
sider different scenarios of inverse problem solution inside and outside the training data set (Figures 3.2b
to 3.2c and Figure 3.2d, respectively) and recover suitable sets of input parameters for given values of
depletion layer thickness dn-scl. A full parameter space investigation is performed for all output quantities
to highlight the accuracy of the constructed surrogate model.

The surrogate model is well-suited to replace expensive kMC simulations in many practical cases when
a local resolution of output quantities is not required. The substitution is threefold:

1 The outputs of fast-converging kMC runs, here corresponding to low particle densities, are gener-
ated.

2 These outputs are utilized to train the GP surrogate model which in turn substitutes the whole pa-
rameter space.

3 Depending on the required accuracy and application, additional simulation runs can be performed
in a selective and automated fashion.

Note that the kMC method itself is a stochastic method and exhibits corresponding statistical fluctuations.
Therefore, it is important not to oversample regions in which the dominant uncertainty arises from the
physical and not the data-driven model. In this sense, physical intuition still plays an important role even
though it can be compensated for by additional data points.

The main innovation of our data-driven optimization pipeline for kMC models is its capability to extrap-
olate into regions outside of the training data set with a remarkably low error margin. Thus, an efficient
parametrization of potentially expensive kMC simulations is enabled. Notably, the underlying surrogate

‡Shared first authorship: The authors contributed equally to this work.
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Figure 3.2 Automated parametrization of kinetic Monte Carlo models via data-driven optimization. (a)
Schematic representation of the proposed computational pipeline including the original kinetic Monte Carlo algorithm
on the right-hand side as well as Gaussian processes and Bayesian optimization on the left-hand side. Results of
baseline fitting: (b) inside the full, (c) inside the reduced training data set and (d) outside the reduced training data
set. In each case, we obtain perfect overlap with respect to the calculated error bars after a maximum of 2 iterations.
B|n = 0 corresponds to the baseline simulations whereas P|n = x with x = 1, 2 denotes the first/second iteration of
the prediction-guided simulation runs. Reprinted with permission from ref. [1]. Copyright 2023 American Chemical
Society (ACS).

model based on Gaussian processes relies solely on the outputs of fast-converging kMC simulations.
Hence, our data-driven methodology opens a pathway for the efficient treatment of complex arbitrary sys-
tems via kMC simulations.

Individual Contributions I substantially contributed to the ideas and concepts of the data-driven op-
timization pipeline presented in this study. I implemented the software for the kMC model. I analyzed,
assessed and rationalized the simulation data and transfered the scientific results into coherent figures
considering the broad expertise on Bayesian optimization and Gaussian processes provided by the co-
authors. I authored half of the manuscript, in particular the abstract, introduction and conclusion as well
as parts of the methods and results sections.
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3.3 Modeling of Space-Charge Layers in Solid-State Electrolytes. A
Kinetic Monte Carlo Approach and its Validation

Published By Katzenmeier L.‡; Gößwein M.‡; Gagliardi A.; Bandarenka A.S. Modeling of Space-Charge
Layers in Solid-State Electrolytes: A Kinetic Monte Carlo Approach and Its Validation. J. Phys. Chem. C
2022, 126, 10900-10909.

The following summary is adapted and in parts reprinted with permission from ref. 103, J. Phys. Chem.
C 2022, 126, 10900-10909. Copyright 2022 American Chemical Society (ACS).

Summary In this study, we developed a simple yet predictive kinetic Monte Carlo model to simulate
the mass-transport phenomenon in solid-state electrolytes (SSEs) under blocking conditions including
the electrostatic interactions among ionic species. The validity of our kMC approach is proven by re-
producing the quantitative trends in SCL thicknesses and depletion layer capacitance, see Figure 3.3d
and Figure 3.3e, respectively via a standard input parameter set based on previous investigations. The
kMC model requires only a minimal set of physically coherent input parameters mostly available via direct
experimental measurement: (1) the bulk concentration of mobile Li-ions, cLi+,bulk, (2) the maximum con-
centration of mobile Li-ions in a fully occupied lattice, cmax, (3) the relative permittivity of the bulk SSE, εr,
and (4) the applied bias potential, ϕbias. Further, the kMC simulation enables us to determine inaccessible
physical quantities via experiments such as local concentration and potential profiles as well as their time
evolution into a steady state, see Figures 3.3a to 3.3c. The analysis of local concentration profiles as func-
tion of an applied bias potential demonstrates that the depletion and accumulation layers’ perpendicular
growth regime is directly connected to a fully depleted or fully occupied vacancy lattice, respectively. This
observation agrees with previous experimental findings [114, 115] and other modeling approaches, such
as thermodynamic simulations [138].

The central result of the kMC simulations is the time-dependent ion redistribution within the SSE sam-
ple. Figure 3.3a illustrates a local steady-state concentration profile, cLi+(x, y, z), for the standard input
parameters. The application of a positive bias potential leads to the formation of depletion and accu-
mulation layers at the respective blocking electrodes whereas the bulk SSE remains in an electroneutral
state. The homogeneity of the three-dimensional concentration profiles in the xy-planes enables us to
consider averaged concentration profiles, ⟨cLi+(z)⟩, for the extraction of SCL thicknesses/capacitances.
Figure 3.3b shows ⟨cLi+(z)⟩ for variable ϕbias for the standard input parameters. As expected, the SCL
formation only occurs for nonzero bias potentials, and the SCL grows perpendicularly into the SSE when
the potential is increased. The Li+ accumulation and depletion show an inherent asymmetry - due to the
limits of accumulable and depletable charges: cmin ≤ cLi+ ≤ cmax. The SCL formation essentially occurs
on a time scale of roughly 500 ms for the given device length of 1500 nm, see Figure 3.3c. Assuming a
linear relationship between electric field strength and drift velocity, we can scale up the time scale from
kMC to an experimentally applied length of 150 µm, which results in an SCL formation time of 50 s.

Figures 3.3a to 3.3c are proof for the physical validity of the kMC model which enables a comparison
to experimental results from previous studies [114, 115]. The thickness of the SCLs was, as determined
by in situ spectroscopic ellipsometry (SE), is shown in Figure 3.3d. Here, the typical asymmetric increase
of thickness can be observed. The accumulation layer is roughly 1.5 times larger than the depletion layer.
A plateau formation can be observed for potentials larger than 0.5 V, correlating to a fully depleted or filled
lattice after which the SCL grows perpendicular to the SSE. Quantitatively, the thicknesses range from
50 nm to 330 nm depending on the applied bias. The kMC simulations agree to all observations if the
physical parameters (Li+-ion and vacancy concentration and dielectric constant) are chosen carefully. A
second experimental SCL property is the depletion layer capacitance, see Figure 3.3e, as obtained by
eletrochemical impedance spectroscopy (EIS). The experimental capacitance shows a strong decrease
with increasing potential ranging between 4 µF cm−2 and 12 µF cm−2 which is in good quantitative agree-
ment with the simulated capacitances.

‡Shared first authorship: The authors contributed equally to this work.
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Figure 3.3 Kinetic Monte Carlo modeling of space-charge layers in solid-state electrolytes under blocking
conditions. Simulation results for a standard parameter set: (a) Three-dimensional local concentration profile,
cLi+(x, y, z), (b) time evolution of an averaged concentration profile, ⟨cLi+(z)⟩, for ϕbias = 2.5V and (c) averaged
concentration profiles for variable ϕbias. Comparison to experimental results: (d) SCL thicknesses dn/p-scl as function
of ϕbias. Red dots correspond to the experimental results obtained by SE. (e) Depletion layer capacitance, Cn-scl,
as function of ϕbias. Red dots correspond to the experimental results obtained by EIS. In the latter two plots, black
squares, triangles, and diamonds illustrate the kMC results for different values of cmax. Reprinted with permission
from ref. [103]. Copyright 2022 American Chemical Society (ACS).

Individual Contributions I have developed the kinetic Monte Carlo model taking into account the broad
expertise on solid-state electrolytes provided by the co-authors. I implemented the software for the kMC
model and as well as for data analysis. I analyzed, assessed and rationalized all experimental and simula-
tion data and transfered the scientific results into coherent figures. I have authored half of the manuscript,
in particular all computational aspects as well as parts of the introduction and results and discussion
sections.
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3.4 Mass Transport and Charge Transfer Through an Electrified Interface
Between Metallic Lithium and Solid-State Electrolytes

Published By Katzenmeier L.‡; Gößwein M.‡; Carstensen L.; Sterzinger J.; Ederer M.; Müller-Buschbaum
P.; Gagliardi A.; Bandarenka A.S. Mass Transport and Charge Transfer through an Electrified Interface
between Metallic Lithium and Solid-State Electrolytes. Comm. Chem. 2023, 6, 124.

The following summary is adapted and in parts reprinted with permission from ref. 104, Comm. Chem.
2023, 6, 124. This article is licensed under a Creative Commons Attribution 4.0 International License.¶

Summary In the present work, the application of three methods is aimed at investigating the non-
blocking conditions at the SSE/lithium metal interface in solid-state battery-relevant systems, see Fig-
ure 3.4a. Spectroscopic ellipsometry is used to measure the optical properties of the SSE to detect the
formation of the space charge layers. Impedance spectroscopy helps to measure the ionic resistance of
the SSE and formed depletion layers. Kinetic Monte Carlo simulations are used to model the mass trans-
port processes at the interface and the transport within the SSE sample, providing kinetic information
about the diffusion and migration of ions in the SSE. These methods are used together to comprehen-
sively understand the mass transport kinetics at the SSE/ lithium metal interface under non-blocking and
blocking conditions. Spectroscopic ellipsometry allows for direct measurement of the SCL thicknesses for
different applied bias potentials. With the occurrence of a highly resistive layer in the SSE upon application
of a potential in our sample, a deeper look into its properties is used to shed light on the size and Li-ion con-
centration change. With its occurrence proven by SE, the electrochemical properties are tested through
electrochemical impedance spectroscopy. Finally, the parameterized kMC model is shown to have large
predictive power and can be used in the future to assess the impact of ionic charge accumulation at the
interface of a newly developed anode and solid-state electrolytes. Despite the controversies in existing
literature, the occurrence of SCLs is reliably and reproducibly shown by three different methods, wherein
each method has its own unique capability to characterize the SCL. Importantly, the consistency of the
approaches is shown with single parameters that can be very easily compared. The nature of these highly
charged layers can explain the widely known degradation at the interface between Li(s) anodes and the
SSEs and therefore lay the foundation for a better understanding of how to prevent this instability. Once
the interface can be engineered by tuning the materials or creating an interfacial layeri to prevent such
SCL formation, this can greatly benefit the enabling of all-solid-state batteries with Li(s) anodes.

The consistency of the different approaches, which, except for the feedback loops from the experimen-
tally determined current densities to the injection and removal rates of the kMC electrodes, are completely
independent of one another, can be seen in Figure 3.4b. To understand the correlations between the three
methods, the electrochemical property of a charged layer near the interface can be explained as follows:
a region of lower Li-ion concentration such as the SCL is equivalent to an SSE with lower conductivity,
which leads to an increase of resistance in the impedance. The charge accumulation is proportional to
the SCL thickness, as the model suggests a perpendicular growth into the SSE. The thickness of the
SCLs, all in the range of 100 nm to 600 nm and asymmetrically rising with increasing potentials, are con-
sistent within the three techniques. The overestimation of the SCL thicknesses at positive potentials, can
be explained by the way it is calculated from the impedance data. The geometric capacitance (see Fig.
S1a Supporting Information) is used to calculate the dielectric constant of the (bulk) SSE, which is then
used to calculate the thickness from the SCL capacitance. Herein, we assume that the concentration of
Li-ions does not change the dielectric constant of the SSE, which is clearly not true for larger concentration
changes. Finally, SE also enables us to extract the fraction change of Li-content, ψLi+, with respect to the
bulk concentration in vol %, see Figure 3.4c. Negative and positive concentration changes are another
indicator of the existence of a depletion and accumulation layer. A direct comparison of with the results
from the kMC model is not possible as the kMC model only considers mobile Li+, and the volume fraction

‡Shared first authorship: The authors contributed equally to this work.
¶https://creativecommons.org/licenses/by/4.0/
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Figure 3.4 Kinetic Monte Carlo modeling of the mass/charge transfer at the SSE/lithium metal interface under
non-blocking conditions. (a) Schematic representation of the applied workflow is illustrated. (b) Comparison of
SCL thicknesses calculated from different methods. The thicknesses calculated from EIS, SE, and kMC simulations
for different applied potentials. It demonstrates that the thicknesses calculated from all three methods are in good
agreement with the different applied potentials. This confirms the consistency and reliability of the results obtained
from the different techniques used in this study. (c) Volume fraction change in vol % based on the fit of the SE data
and the kMC simulations, based on a Li-ion density of cm−3, including mobile and immobile ions. Reprinted with
permission from ref. 104.

change is calculated with respect to the total bulk concentration, that is, mobile and immobile Li-ions.
However, we may perform an indirect comparison by adopting a fixed total bulk concentration for the kMC
model. In Figure 3.4c, we obtain a decent match with the experimental profile by assuming a total Li-ion
density of to compute a corresponding profile from the simulation data. The given total bulk concentration
is by a factor of 1500 larger than the bulk concentration of mobile Li+ used in the kMC model, which is in
good agreement with values from pertinent literature [127].

Individual Contributions I have developed the kinetic Monte Carlo model taking into account the broad
expertise on solid-state electrolytes provided by the co-authors. I implemented the software for the kMC
model and as well as for data analysis. I analyzed, assessed and rationalized all experimental and simula-
tion data and transfered the scientific results into coherent figures. I have authored half of the manuscript,
in particular all computational aspects as well as parts of the introduction and results and discussion
sections.
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4 Cross-Article Discussion and Conclusions

Both methodologies presented in this work aim at increasing in the runtime efficiency of kinetic Monte Carlo
models for electrochemical systems. However, the way in which both algorithms achieve that target differs
heavily. The local temporal acceleration scheme modifies the original kinetic Monte Carlo loop by lowering
the sampling rate of quasi-equilibrated process chains and, thus, decreases the simulation time required
for converging into a steady-state of a single simulation run. In contrast the data-driven feedback loop for
automated parametrization does not modify the original kMC algorithm but rather extends it by making the
input parametrization dependent on the simulation output. Accordingly, automated parametrization de-
creases the total amount of trial simulation runs required for exploring the input parameter space. As both
methods affect different parts of the original kMC algorithm shown in Figure 2.1, from a mere technical
point of view it is rather straightforward to merge both algorithms simultaneously into the original one.

Another question arises regarding the generality of both methodologies, i.e. to which (electrochemical)
systems and in which context can they actually be applied. To benefit from the local temporal acceleration
scheme it has to be integrated into a kMC model which suffers from large time-scale disparaties. Other-
wise, the additional computational steps required by the local temporal acceleration scheme will cause a
slight overhead with respect to the original kMC algorithm. An instructive example for a system to which
the local temporal acceleration is not applicable is the space-charge layer formation under (non-)blocking
conditions in SSEs. Here, extensive simulation times are not caused by large time-scale disparaties but
rather by high particle densities and the corresponding regular update of the potential energy surface. A
direct route for avoiding simulations with high particle densities is an accurate surrogate model, which has
been trained via a data set generated from the output of fast-converging kMC runs - one of the funda-
mental concepts that our data-driven feedback loop relies on. In contrast, our algorithm for automated
parametrization is in principle applicable to any kMC model which is restrained by the existence of several
open input parameters. However, we have to distinguish between inverse problem solution inside and
outside the data base. While the former one will always result in suitable input parameters if the training
data set is sufficiently large enough, the success of the latter one very much depends on the qualitative
physical behavior of the system outside of the training data set. The present form of the data-driven al-
gorithm is in particular for extrapolation limited by a lack of knowledge regarding the underlying physical
models. In this context, making our parametrization scheme physics-informed opens a potential pathway
for improvement, see Chapter 5.

One last interesting aspect to discuss is the local quasi-equilibirum approach of the presented tempo-
ral acceleration scheme. In this work, we defined a particle-based criterion to detect whether the local
environment enters a state of quasi-equilibrium. Apparently, this criterion is not transferable to arbitrary
electrochemical kMC models whereas the remaining computational steps of the acceleration scheme are
rather generic. Consider for instance a catalytic system such as the reduction of oxygen on platinum
nanoparticles [139, 140, 141]. Here, the occurence of a certain reaction step does not only depend on
the involved particles but in particular also on the involved reaction site. The geometry-dependent reac-
tivity of certain reaction sites is in fact the more important aspect. Thus, it is sensible to switch from a
local particle-based to a local site-based quasi-equilibrium criterion, see ref. [2] Supporting Information for
a concrete example. In general, the argument can be made that a local quasi-equilibrium approach for
conserving local physical properties upon scaling is a much broader concept, and could also be utilized
in kMC models of non-electrochemical systems. How the criterion is eventually realized for a concrete
system is an implementation detail which has to be reconsidered on a case-by-case basis.

In conclusion, we have presented two novel algorithms to optimize the runtime efficiency of kMC models
for electrochemical systems. We have demonstrated that both methods may substantially increase the
runtime efficiency of the original algorithm making the kinetic Monte Carlo method a serious alternative
again when simulating electrochemical systems.
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5 Perspectives

The following ideas are in parts reprinted with permission from ref. 1, J. Phys. Chem. A 2023, 127, 28,
5967–5978. Copyright 2023 American Chemical Society (ACS).

Firstly, we want to provide some routes for additionally improving the proposed data-driven pipeline for
automated paramterization. In general, we advise to fully exploit the physical intuition present for the
investigated system. For instance, in the present case study it is apparent that dn-scl(ϕbias) grows non-
linearly for ϕbias ≤ 0.5 V and linearly otherwise, see ref. [1]. Hence, a further increase in data efficiency
can be achieved if the potential range is restricted to ϕbias > 0.5 V. Further, a lot of qualitative physical
insight exists for the given application. In particular, the monotonicity of the space-charge layer formation
with respect to the input parameters is well-established, see ref. [103]. This knowledge can be directly
included in the form of gradient classification as outlined in ref. [142, 143]. Additionally, we may incorpo-
rate a quantification for the kMC-inherent statistical fluctuations via a noise kernel. In this way, not only a
realistic estimation of the prediction with respect to the kMC model can be added but also with respect to
innately error-prone real-world measurements. By combining the uncertainty of the data-driven and the
physics-based model a multi-fidelity model can be implemented in which a data-driven model trained on
kMC simulations will provide predictions. The uncertainty of this model will then determine whether an
additional simulation or a real world experiment is necessary.

The presented methodologies open a pathway to simulate electrochemical systems for which the kMC
method had been discarded so far due to excessive simulation times. An instructive example is a kMC
model for the origin of photocurrent generation at the organic/aqueous electrolyte interface - a system
which features both large time-scale disparaties and several open input parameters. To showcase the
working principle and the effectivity of the local temporal acceleration scheme we considered only a sim-
plified version of the hybrid interface to put the emphasis on the accurate treatment of large time-scale
disparaties. However, the simplified test-system already demonstrates that photocurrent generation is cou-
pled to reduction reactions at the hybrid interface confirming a central experimental finding [88, 89, 90].
With the methodological part established, the next step is to build a physically accurate model for the
photocurrent generation at the organic/aqueous electrolyte interface. In this context, the following aspects
should be covered with support of experiments and ab initio calculations:

1 Enhanced process activation in the organic material including a detailed resolution of exciton and
charge related process chains. An investigation of the contribution of different exciton dissociation
mechanisms to photocurrent generation is crucial for understading the exact working mechanism of
hybrid organic devices.

2 Design of a sophisticated reaction network at organic/aqueous electrolyte interface including pene-
tration of the electrolyte into the polymer matrix. The current canonical experimental finding is that
oxygen is reduced to hydrogen peroxide [77, 144].

3 Investigation of different models for the transition of particles from the interface to the bulk elecrolyte
which defines a boundary condition with respect to particle concentrations. The simplest solution is
to treat the bulk as a reservoir for ionic/molecular species with a given constant bulk concentration.

From a methological point of view, it is sensible to integrate the local temporal acceleration scheme first.
Subsequently, a database can be generated to enable automized parametrization. Applying both algo-
rithms to a complex real-word system successfully will further establish their usefulness in the research
community making them part of the standard approach to simulate electrochemical systems via the kMC
method.
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ABSTRACT: Kinetic Monte Carlo (kMC) simulations are a well-established tool for
investigating the operation of electrochemical systems. Standard kMC algorithms become
unfeasible in the presence of processes on vastly different time scales. In electrochemical
systems, such time scale disparities often arise between fast transport processes and slow
electrochemical reactions. A promising approach to overcome time scale disparities in kMC
models is given by temporal acceleration schemes. In this work, we present a local temporal
acceleration scheme to bridge the time scale disparity between fast transport and slow reaction
dynamics. We combine the superbasin concept with a local, particle-based criterion for the
quasi-equilibrium detection and a partitioning of transitions and particles in the system into
process chains. Scaling of entire quasi-equilibrated process chains considerably reduces the
computational effort without disturbing the relative dynamics of transitions within a process
chain. The methodology is outlined for a hybrid organic−aqueous electrolyte device which
links fast electronic processes in an organic semiconductor with slow reduction reactions at its
interface to the electrolyte. Our approach captures local inhomogeneities such that local physical quantities can be reproduced
accurately. Additionally, we show that previous accelerated superbasin algorithms are limited by the presence of spatially varying
time scale disparities. Our algorithm achieves an acceleration of several orders of magnitude providing a serious alternative to replace
existing multiscale models by stand-alone kMC simulations.

■ INTRODUCTION

Kinetic Monte Carlo (kMC) simulations are a subclass of
Monte Carlo procedures which describe the time-evolution of
a wide range of stochastic physical and electrochemical
processes such as crystal growth,1,2 vacancy diffusion,3

chemical reaction networks,4−6 and charge transport in
disordered semiconductors.7−9 A particularly important but
yet demanding field for kMC simulations are electrochemical
systems. For instance, Alkire and co-workers investigated the
early stages of kinetically limited electrodeposition.10 Another
study dealt with the CO adlayer electrooxidation on nano-
particle catalysts.11 In the context of renewable energy cycles,
electrochemical kMC simulations helped to gain a detailed
mechanistic understanding of battery12−14 and fuel cell
operation.15−17

kMC models map material properties, in particular structural
and energetic information, onto a discrete set of states.8,18

Discrete transitions propagate the system, e.g., by the motion
of particles or electrochemical reactions, resulting in a
stochastic time evolution of the system within its phase
space. The kinetic information results from the details of the
transition rates which capture the underlying physics and
define the probability of performing the respective transition.
Consequently, the system is propagated along transitions of
large transition rates which results in a substantial computa-

tional bottleneck: a system that is controlled by fast processes
of time scale tf and slow processes of time scale ts ≫ tf requires
statistically ts/tf kMC steps to execute the slow process once.
Accordingly, such time scale disparities prevent the sufficient
sampling of slow processes which, however, often represent the
crucial step of the desired system properties. A concrete
example of time scale disparities in electrochemical systems
can be found in the intermediate diffusion within surface
catalytic processes.11 Mass transport of ionic or molecular
species between active surface sites can be much faster than the
catalytic surface reactions. To keep the computational effort
low, many studies either neglect mass transport and with this
potential mass transport limitations16 or limit their studies to
systems without distinct time scale disparities.13,17

There are two approaches to bridge time scale disparities in
electrochemical systems: multiscale models and temporal
acceleration schemes. Multiscale models typically couple
continuum models using partial differential equations to derive
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system properties such as mass or charge distribution which
are fed into kMC, e.g., in the form of background potentials.19

Applications of multiscale methods cover, e.g., heterogeneous
catalytic reactors,20,21 fuel cells,22−24 and lithium-ion bat-
teries.25,26 Continuum models are mean-field approximations27

and consequently assume isotropic mass transport. For active
interfaces with complex shapes, this assumption fundamentally
breaks down as mass transport may become heterogeneous
due the interaction with charged species and the local interface
geometry.11,13

Different procedures have been developed to overcome large
time scale disparities to accelerate kMC simulations.28 A
popular choice in the community is the τ-leaping method
which accelerates kMC simulations by the execution of
multiple fast events in a single kMC step29 and is frequently
applied when time scale disparities arise from strongly differing
particle concentrations.30 However, τ-leaping is only viable if
the system state does not change too much during the leap.31

Another acceleration procedure is the probability weighted
kMC method32 which, by normalization of transition
probabilities, increases the sampling of rare events. While
ensemble averages are typically well reproduced, statistical
errors may be amplified leading to physically inconsistent
behavior. Snyder et al. proposed the net-event kMC
technique33 which lumps fast, reversible processes into a
single net-event. An appealing property of this approach is that
a substantial speed-up is accompanied by correct ensemble
averaged quantities, while fluctuations in corresponding
transients are considerably reduced. Nevertheless, problems
may arise in the presence of large time scale disparities,
especially if the fluctuations of net-rates become significantly
larger than the transition rates of slow processes. In such cases,
heuristic criteria must decide whether the instantaneous net-
rate is statistically significant.
A major milestone has been achieved by the introduction of

the accelerated superbasin-kMC method (AS-kMC).34 The
rationale of AS-kMC is to detect superbasins in which the
system is being trapped and to subsequently raise the

activation barrier of quasi-equilibrated processes to facilitate
the escape from superbasins. AS-kMC has been shown to
perform well for several simple toy systems34 and to small
silicon nanocrystal networks.35 The applicability is limited to
small systems as the superbasin detection requires large
databases and efficient search algorithms. For large super-
basins, the dynamical sampling procedure becomes unfeasible
and, in the worst case, may not generate any speed-up at all.
Recently, we extended the AS-kMC concept for the temporal
acceleration of particle transport simulations through disor-
dered semiconductors36 by the detection of potential super-
basins during system initialization resulting in a substantial
speed-up.
Inspired by the AS-kMC, Dybeck et al.37 developed a

generalized temporal acceleration scheme, further referred to
as the Dybeck scheme, for kMC simulations of surface catalytic
processes. Their algorithm partitions the reaction network into
quasi-equilibrated and nonequilibrated reaction channels and
detects and scales the rate constants of quasi-equilibrated
reaction channels on the fly. The Dybeck scheme has been
applied successfully to several surface catalytic kMC stud-
ies,5,6,38−41 while its potential limitations are not fully explored.
Exemplary, its accuracy in the presence of local inhomogene-
ities and strong fluctuations is not ensured. Existing
applications of the Dybeck scheme further assume evenly
distributed time scale disparities over the active nanoparticle
surface, which may not be guaranteed in the presence of mass
and charge transport. Finally, it is questionable whether
charge/mass transport toward the active interface can be
handled accurately by treating it as a quasi-equilibrated
reaction channel as suggested by Dybeck et al.37

In this work, we present a novel temporal acceleration
scheme to couple fast charge and mass transport phenomena
with slow reaction dynamics in electrochemical systems. Our
algorithm substantially extends the Dybeck scheme by the
introduction of a novel partitioning strategy of the system into
process chainsa set of processes of similar time scale being
connected to a certain particle subsetand the development

Figure 1. (a) Setup of a hybrid organic−aqueous electrolyte device consisting of an organic semiconductor on top of a working electrode (WE) put
into a liquid electrolyte with the counter electrode (CE) completing the electronic circuit. Adapted with permission from Mosconi et al. ACS Energy
Lett. 2016, 1 (2), 454−463. Copyright 2016 American Chemical Society.47 (b) Schematic representation of the simplified organic−liquid interface
and its transition rates studied by kMC simulations.
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of a local, particle-based criterion to assess a local quasi-
equilibrium. We trace the local environment of individual
particles by use of quasi-potentials to efficiently detect locally
quasi-equilibrated process chains, which represent the counter-
part to reaction channels in the Dybeck scheme. By scaling
quasi-equilibrated process chains, we accurately capture the
system dynamics and substantially reduce the computational
demand. We demonstrate the capability of the local
acceleration scheme using an electrochemical system of
growing relevance: a hybrid organic−aqueous electrolyte
device which couples fast electronic processes in an organic
semiconductor with slow interface reduction reactions. With
the efficient detection of local quasi-equilibria, we are able to
capture local heterogeneities and to accurately reproduce
physical quantities on a local scale. We further demonstrate
that the Dybeck scheme is not suitable to capture the
interaction between fast charge or mass transport phenomena
and interface (surface) reactions accurately. We strongly
believe that our local acceleration scheme can overcome
limitations of existing acceleration schemes to make kMC a
suitable tool for coupled transport−reaction simulations in
electrochemical systems independent of the time scale
disparities of competing processes.

■ METHOD
As an application of the acceleration scheme for electro-
chemical systems, we consider a hybrid organic−aqueous
electrolyte device made of an energetically disordered organic
semiconductor coupled to an aqueous electrolyte solution; see
Figure 1a for a standard device architecture. In recent years,
such hybrid devices have gained a lot of interest in the context
of photoelectrochemical water splitting42,43 and bioelectronic
applications,44,45 such as neuronal stimulation under pulsed
light illumination restoring the light sensitivity in blind
retinas.46

First, we outline the working mechanism of hybrid organic−
aqueous interfaces and the implementation in kMC. Then, the
acceleration scheme is outlined stepwise using the hybrid
device for visualization. A flowchart representing the
integration of the temporal acceleration scheme within generic
kMC algorithms is visualized in Figure S1, Supporting
Information.
Hybrid Organic−Aqueous Interface. The working

mechanism of hybrid organic−aqueous devices relies on
electrochemical reactions at the organic−liquid interface
(OLI), in terms of oxygen and hydrogen reduction reactions.
Cations, e.g., H+, diffuse within the electrolyte and, driven by
an applied electric field, accumulate at the OLI. Optical
excitation of the organic semiconductor (elg) leads to the
generation of electrons and holes which subsequently migrate
through the semiconductor via a hopping mechanism (elh).
After a certain lifetime, charge carriers may recombine
nonradiatively (eld). If electrons reach the OLI, they may
reduce the cations at the OLI, forming an uncharged
molecule/atom (red). The challenge in modeling such hybrid
devices is to couple the slow reaction dynamics (≈ seconds to
microseconds) at the OLI with the fast electronic processes (≈
nanoseconds to picoseconds). As the time scale disparity
involves the crucial reduction reactions at the OLI, the
transport of electrons to the interface is expected to play a
crucial role in the system dynamics and consequently must be
accurately treated. Here, we simulate a simplified version of the
OLI (see Figure 1b) with kMC to illustrate the capabilities of

the algorithm as well as its sensitivity to different sets of input
parameters. Additionally, the setup is suitable for a comparison
to the Dybeck scheme.37 We first outline the model setup of
the OLI, made of an organic semiconductor stacked between a
metal electrode and a liquid electrolyte; see Figure 1b. We
model the organic semiconductor by a simplified two-
dimensional lattice of size X × Z = 50 nm × 50 nm with a
site spacing of rL = 1 nm. In the x-direction, periodic boundary
conditions are assumed; in the z-direction, the organic layer is
stacked between an electrode (z = 0) and an aqueous
electrolyte (z = Z). For simplicity, we neglect the motion of
cations in the electrolyte and assume a fixed density of cations
at the OLI, which now act as ionic reaction centers. Each site i
represents a localized state for the electronic charge carriers
with potential energy

= + + +σ
i i i i i

MO F C
(1)

where i
MO denotes the average molecular orbital energy, σ

i

resembles the energetic disorder, i
F is the contribution from

an external electric field, and i
C is the potential arising from

the Coulomb interaction with charges in the environment. σ
i

is modeled by a Gaussian distribution with variance σ2,
resembling the Gaussian density of states in disordered organic
semiconductors.7,48 i

F is modeled as a linear potential drop
along the z-axis:

= qV
z
Zi

iF
b (2)

where Vb denotes the applied bias voltage and zi is the z-
coordinate of site i. i

C is constituted by the electron−electron
interaction i

ee and the ion−electron interaction i
ie. Both

components can be approximated by a spherical potential with
cutoff radius rcut

C by combining the method of image charges in
the z-direction49 with the periodic boundary conditions in the
x-direction50 to account for the interaction with the charged
particles in the periodic replicas (see Section S4, Supporting
Information, for a detailed derivation and convergence
analysis). Since the cations are assumed to be fixed, i

ie can
be calculated at the beginning of the simulation. In contrast,

i
ee depends on the current position of the electrons and

consequently must be updated in each simulation step.
In the beginning of the simulation, we assume that there are

no free electrons in the organic layer. Electrons are optically
generated (process 1, Figure 1b) at random sites with rate

= −K n n k( )exg org el elg (3)

where norg is the number of lattice sites and nel is the current
number of electrons in the device. Electron hopping (process
2, Figure 1b) between sites i and j is modeled via the Miller−
Abrahams formula51

= − Δ Δ >
l
m
ooooo

n
ooooo

i
k
jjjjj

y
{
zzzzzk k k T

exp if 0

1 else

ij

ij
ij

0,elh B

(4)

where k0,elh is the attempt-to-hop frequency, Δ = −ij j i

denotes the potential energy difference between sites i and j, kB
is the Boltzmann constant, and T is the temperature. We
restrict electron hopping to the nearest-neighbor sites. Electron
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decay (process 3, Figure 1b) is modeled as the inverse of the
lifetime τ, i.e., keld = τ−1. If an electron reaches the OLI, it may
reduce an ionic reaction center C+, i.e., C+ + e− → C, with
constant reduction rate kred (process 4, Figure 1b). For
simplicity, we assume that after a reduction event the product
C is instantly removed from the interface and replaced by a
new reaction center C+ to keep the density of cations at the
OLI constant.
Partitioning into Process Chains. Our acceleration

scheme starts with the partitioning of the processes and the
particles into process chains. Process chains consist of concrete
transitions, which ideally are of similar time scales, and of a set
of particles for the quasi-equilibrium detection. In the case of
the OLI, we can partition the system into three process chains:
(1) charge transport, generation, and recombination in the
semiconductor, (2) mass transport of the cations C+ and the
product C in the electrolyte and the oxidation at the counter
electrode, and (3) the reduction reaction at the interface.
The interplay of these process chains determines the local

densities of the individual species in the system and especially
at the interface. As process chain (1), i.e., the fast processes of
the charge carriers, is substantially faster than process chain
(3), i.e., the slow reduction reaction at the interface, local quasi-
equilibria of the particle densities in the environment of the
interface will arise and consequently the local reaction activity
will remain essentially constant. Thus, we say that process
chain (1) is quasi-equilibrated, and consequently further
sampling of the fast processes in process chain (1) produces
no additional information with respect to the system dynamics.
Accordingly, it is possible to downscale the rates of quasi-
equilibrated process chains by appropriate scaling factors to
decrease the time scale disparity and enable a more frequent
sampling of slow reduction reactions. Figure 2a illustrates the
scaling procedure for the investigated system. Each of the three
process chains (m) is represented by a corresponding rate rm.
The fast process chains (1) and (2) comprise three different
transitions, including fast transport rates which are substan-
tially larger than reduction rate r3. The algorithm reduces r1
and r2 to rs = Nfr3 such that on average Nf transitions of process

chains (1) and (2) are executed before a transition of the slow
process chain (3) is sampled. In this way, the time scale
disparity is decreased while the relative dynamics within the
fast process chain remains unaffected upon scaling.
In the simplified kMC model (see Figure 1b), we neglect the

mass transport in the electrolyte and the oxidation reaction at
the counter electrode. Thus, we consider two process chains,
i.e., process chain (1) and process chain (3), to systematically
analyze the working principle of the local temporal acceleration
scheme. This means that the net generation and the transport
of electrons are lumped into a fast organic process chain, and
the reduction reaction defines a slow process chain, which
yields m = 2 process chains. The working principle of the
acceleration scheme for the complete system including mass
transport, i.e., with all three process chains, is demonstrated in
Section S6, Supporting Information, and briefly discussed in
the Results and Discussion.

Detection of Local Quasi-equilibrium. The local quasi-
equilibrium of each process chain m is assessed for a subset of
particles ∈m . m does not necessarily contain the particles
which belong to the transition rates in the respective process
chain m. It may even be a good choice to define m as particles
belonging to subsequent process chains with slower transition
rates. To assess the quasi-equilibrium of process chain m, we
observe the local environment of the particles in m. For an
arbitrary particle ∈i , we define a quasi-potential (QP)

∑∼ = ∼ = Θ −
=

‡
V V

w

r
r rr( ) ( )i i

j

N
ij

ij
ij

1
cut
QP

(5)

where wij are user-specified weights, rij = |rj − ri| is the distance
between particle i and particle j, Θ is the Heaviside step
function, and rcut

QP is a cutoff radius. Note that rcut
QP taken for the

QP calculation differs from rcut
C for Coulomb interactions. The

double-dagger ‡ indicates that the self-interaction term (i = j)
is omitted. Via wij, fluctuations arising from different particles
can be weighted differently. In practice, wij contains quantities

Figure 2. (a) Schematic representation of the scaling procedure for a system containing three process chains (i) with rates ri. Process chains (1)
and (2) contain each three transitions as indicated by the different colors, while only one process is in process chain (3). The acceleration scheme
decreases the transition rates r1 and r2 of the fast process chains to rs = Nfr3, while each individual transition rate in process chains (1) and (2) is
equally scaled. Hereby, the slow process chain is more frequently executed, and the relative dynamics within each process chain is preserved. (b)
Schematic representation of an arbitrary superbasin = ∪A B: A represents the quasi-equilibrated and sufficiently executed phase space, B
the quasi-equilibrated but not sufficiently executed phase space, and the nonequilibrated phase space. Adapted with permission from Dybeck et
al. J. Chem. Theory Comput. 2017, 13 (4), 1525−1538. Copyright 2017 American Chemical Society.37
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like the charge magnitude j, the particle mass, or the effective
relative permittivity εr.
Tracking

∼V n( )i at each kMC step n yields a sequence of QP
values which, in quasi-equilibrium, oscillate more or less
strongly around a given average value. The evolution of this
average value is given by

∑⟨∼⟩ = ∼
=

V k
k

V n( )
1

( )i
n

k

i
1 (6)

The average fluctuations in
∼V k( )i in the local environment of

the ith particle are captured by

⟨Δ∼⟩ = ⟨∼ ⟩ − ⟨∼⟩
⟨∼⟩V k

V k V k
V k

( )
( ) ( )

( )i
i i

i

mavg

(7)

where

∑⟨∼ ⟩ = ∼ − +
=

V k
N

V k N n( )
1

( )i
n

N

i
mavg

ob 1
ob

ob

(8)

is the moving average QP and Nob denotes a user-defined
window size. If the relative fluctuations remain within a user-
defined threshold δ

δ|⟨Δ∼⟩ | ≤V k( )i (9)

particle i is considered to be locally quasi-equilibrated. If all
particles in m fulfill the quasi-equilibration condition, eq 9, we
define process chain m as quasi-equilibrated.
At the beginning of a simulation, the local environment of all

particles is considered to be nonequilibrated. The same is valid
for newly generated/injected particles. After Nob kMC steps,
local quasi-equilibrium is assessed via eq 9 and subsequently
updated in intervals of Ns kMC steps. In this way, we ensure
the sensitivity of quasi-equilibrium detection with respect to
changes in the system dynamics.
For the acceleration of the kMC simulation of the OLI, we

define the set of particles associated with the fast process chain
(1) as all cations, i.e., = { }+C(1) . We track the QP for all

cations C+ using =rcut
QP 2 nm. Note that all attempts using

electrons as the particle set (1) did not provide an
acceleration, as electrons tended to decay before a local
quasi-equilibrium around electrons was reached. Since the
ionic reaction centers are assumed to be fixed, we can set the
weights of the ionic QP contribution to wion = 0. In contrast,
the weights of the electronic contributions are set to

ε
ε

ε ε= = +
w

q
with

( )

2
el

r,eff
r,eff

r,e r,o

(10)

where q = −1 is the charge magnitude of an electron and εr,eff is
the effective relative permittivity between the organic material
and the electrolyte with εr,e and εr,o being the relative
permittivities of the electrolyte and the organic material,
respectively. The latter weight mimics the electrostatic
interaction between electrons and ions within different
materials. Details regarding the efficient evaluation of QPs
and of centered moving averages are given in the Sections S3
and S4 of the Supporting Information, respectively.
Dynamic Scaling of Quasi-equilibrated Process

Chains. To resolve existing time scale disparities, the
transition rates ki of each process i in the quasi-equilibrated

process chains m are artificially decreased using a scaling factor
0 < αm < 1:

α* =k ki m i (11)

where *ki denotes the scaled transition rate of process i. The
value of each scaling factor αm is calculated and updated
dynamically during the simulation such that on average Nf
processes of each quasi-equilibrated process chain are executed
before a process from a slow nonequilibrated process chain
occurs.
The dynamic calculation of scaling factors is based on the

superbasin concept of the Dybeck scheme.37 For this purpose,
the m process chains are subdivided into three sets:

1. Quasi-equilibrated and sufficiently executed: A
2. Quasi-equilibrated but not sufficiently executed: B
3. Nonequilibrated:

The union of the explored region, A , and of the unexplored
region, B, forms the current superbasin ; see Figure 2b. An
arbitrary process chain m is considered to be sufficiently
executed if it was at least Ne times executed in the current
superbasin . A can be exited by a process from either B or
. Hence, the effective escape rate res from A is determined

by the sum of all rates rm, of process chains belonging to the
sets and B:

∑=
∈

r r
m

mes
,

,

B (12)

In general, the rate of any process chain m within the current
superbasin can be approximated by temporal averaging:

∑= Δ Δ
∈

r
t

k n t
1

( )m
n

m n,
(13)

where Δ = ∑ Δt tn n is the total time spent in , km(n) is the
rate constant of process chain m at kMC step n given by

∑=
∈

k n k n( ) ( )m
i m

i
(14)

and Δtn denotes the corresponding time step. Consequently,
the ratio

⟨ ⟩ =N
r

rm
m,

es (15)

represents the average number of executions in process chain
m before A is left. To ensure that an average number of Nf

executions in process chain m are sampled, we can define the
scaling parameter αm by

α = N
r

rm
m

f
es

, (16)

If αm > 1, we set αm = 1 to prevent an increase of the transition
rate.
Eventually, the process chains in A allow the system to exit

the superbasin via a process of a nonequilibrated process chain.
Upon entering the new superbasin, all scaling factors are reset
to 1 and new scaling factors are computed using eqs 12 to 16.
In this context, all previously quasi-equilibrated process chains
remain quasi-equilibrated, but they are no longer considered to
be sufficiently executed such that αm is set to 1 in line with the
Dybeck scheme.37 All process chains need to be sufficiently
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executed again before the scaling is activated again. This
ensures that the processes in the respective process chains are
sufficiently executed and with this limits the perturbation of
the system dynamics.
For our OLI simulation model, we have selected the set of

input parameters as summarized in Table 1. The chosen values

provide high accuracy with respect to all investigated quantities
and a tremendous speed-up. In the sensitivity analysis, we will
demonstrate that these values approximate the optimal set of
scaling parameters for the system at hand.

■ RESULTS AND DISCUSSION
We analyze the performance of the acceleration scheme for the
hybrid OLI for a wide range of kred between 1 × 10−1 s−1 and 1
× 1010 s−1 for a set of different energetic disorders σ ∈ {0 meV,
100 meV} in the organic semiconductor. We evaluate the
average time between successive reduction events, ⟨tred⟩,
averaged across 1000 reduction events, and the reduction
current density

= Δj
qN
X tred

red
(17)

where Δt is the total simulated time, X is the dimension of the
simulation grid in x-direction, q is the elementary charge, and
Nred is the number of reduction events in Δt. As a final output
quantity, the local electron density profile is calculated from
the occupation times of all sites in the organic layer.52 All
nonaccelerated reference simulations were run for at least Δt =
50 ms, while accelerated simulations were extended to longer
time scales. A detailed summary of the input parameters for the
system setup and rate equations can be found in Table S1 in
the Supporting Information.
From a conceptual point of view, the Dybeck scheme can

also be applied to the investigated setup. For this purpose, we
partition the processes into reaction channels: (1) electron
generation and decay, which define a reaction channel; (2)
reduction reaction, which gives an irreversible channel; and (3)
electron hopping, which is considered as a quasi-equilibrated
reaction channel as suggested for surface diffusion in the
original publication.37 For the scaling parameters, we select an
equilibration factor Nf = 1 × 105 and a scaling period Ns = 2 ×
106. The quasi-equilibrium of the reaction channels was
assessed based on the execution number ne = 2 × 103 and the
threshold value δ = 0.2.
Note that the scaling parameters in the Dybeck scheme

partially have a different meaning than in our approach. First,
ne was used in the Dybeck scheme to detect quasi-equilibrated
reaction channels and to determine whether a quasi-
equilibrated reaction channel is sufficiently executed. We
have replaced ne by two separate parameters, i.e., Nob to detect
quasi-equilibrium and Ne to sufficiently execute quasi-
equilibrated process chains. Second, the Dybeck scheme uses
the hyperparameter Ns, which defined the number of kMC
steps after which scaling factors of quasi-equilibrated and
sufficiently sampled reaction channels are updated. As

explicitly emphasized by Andersen et al.,38 the choice of Ns

is of negligible importance for the algorithm accuracy and
efficiency. Based on the recent studies and our experience in
the system setup, we choose the strategy to update scaling
factors of quasi-equilibrated and sufficiently sampled process
chains only if an additional process chain in the system
becomes quasi-equilibrated and sufficiently executed. By
avoiding a regular update after Ns steps, we can further reduce
the computational overhead without loss of accuracy. Instead,
we apply the parameter Ns as the update frequency for the
quasi-potential detection. The meanings of δ and Nf are
equivalent to the original Dybeck scheme.

Accuracy of Physical Quantities. To rationalize the
accuracy of our acceleration scheme, we start with the analysis
of jred at the OLI from the accelerated and reference kMC
simulations for different time scale disparities introduced by

kred; see Figure 3. Here, we introduce the normalized reduction
rate

̂ =k
k

kred
red

0,elh (18)

to distinguish if the interface reaction is limited by the electron
transport or by the reduction reaction rate. The qualitative
trend in the current density is similar for both values of σ,
while the absolute value of jred gets reduced for σ = 100 meV.
For k̂red ≥ 0.04, jred saturates as the average time between two
consecutive reduction events, ⟨tred⟩ (see Figure S6, Supporting
Information), is limited by the finite transport of electrons to
the OLI. Once electrons reach the OLI, they immediately react
with the cations. Consequently, jred becomes independent of
the reduction rate. For k̂red ≤ 4 × 10−5, jred decreases with

Table 1. Input Parameters of the Scaling Algorithm for
SIM1 for Different Values of Energetic Disorder σ

σ (meV) Nob Ns δ Ne Nf

0 1 × 106 1 × 103 0.2 1 × 104 1 × 104

100 2 × 106 1 × 103 0.3 1 × 104 1 × 104

Figure 3. Reduction current density, jred, for σ = 0 meV (top) and σ =
100 meV (bottom) as a function of the normalized reduction rate k̂red.
Filled symbols visualize the current densities obtained from the
reference kMC simulations; open symbols and crosses visualize the
current densities from our local acceleration scheme (Acc.) and from
the Dybeck scheme,37 respectively. Dashed lines extrapolate the trend
in jred for low values of k̂red.
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decreasing k̂red following a power law. In this regime, electron
transport to the interface is much faster than the reduction
reaction leading to charge accumulation at the OLI. Now, the
current density is independent of the charge transport rate and
is solely controlled by the reaction rate. Note that, without the
use of an acceleration scheme, we were only able to simulate
down to reduction rates of k̂red ≈ 1 × 10−10 due to the large
computational demand. As jred is solely controlled by the
reduction reaction in this regime, we may extrapolate the
reference current densities for the lower values of k̂red.
A comparison of jred from reference and accelerated

simulations in Figure 3 yields an excellent agreement. As we
will see later, the acceleration scheme only kicks in for k̂red ≤ 4
× 10−7. In the accelerated regime, the reference and
accelerated values are perfectly matching, and importantly
the temporal acceleration scheme is capable of predicting the
correct trend in the average reduction current density
independent of energetic disorder. For larger k̂red, it is
important to note that the acceleration scheme does not
disturb any of the system dynamics.

In contrast, the application of the Dybeck scheme leads to a
severe underestimation of jred by more than 1 order of
magnitude at σ = 0 meV for k̂red ≤ 4 × 10−7. At σ = 100 meV,
fewer deviations are observed with a maximum error of a factor
of 2. Again, at larger k̂red the reduction reaction is sufficiently
fast such that the Dybeck scheme does not reach quasi-
equilibrated and sufficiently executed reaction channels.
To further rationalize the accuracy of our acceleration

scheme on local properties and further to understand the error
observed from the Dybeck scheme, we analyze the charge
carrier density as a function of the z-position for σ = 0 meV
and k̂red = 4 × 10−12 averaged across the x-axis, see Figure 4a.
The prediction of accurate density profiles is of particular
importance, as several other relevant quantities (e.g., potential
profiles, differential capacitance) can be derived from the local
charge density. Due to the low permittivity (ϵr = 4) of the
organic semiconductor, electrons are strongly attracted by the
image charges at the electrode and at the electrolyte. In the
absence of charge extraction, electrons accumulate at the
electrode, which gives rise to a large charge density at z = 1
nm. At small reduction rates, electrons also accumulate at the

Figure 4. (a) Spatially averaged charge density profile, ⟨n(z)⟩, for σ = 0 meV and k̂red = 4 × 10−12. (b) Distribution of average charge density per
LUMO energy interval for σ = 100 meV and k̂red = 4 × 10−12. (c) Average interface charge density, ⟨nif⟩, for σ = 0 meV and σ = 100 meV as a
function of the normalized reduction rate kred. (d) Relative event frequencies for σ = 0 meV and k̂red = 4 × 10−12. Note that the frequency of the
reduction process for the reference simulation is scaled by a factor of 1 × 105 for improved visibility.
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OLI leading to an interface charge density nif (see Figure 4c)
that is orders of magnitude higher than the charge density in
the bulk region of the organic semiconductor. Notably, for the
given set of scaling parameters, the accelerated simulations
perfectly reproduce the charge density profiles from the
reference simulations. Also, it can be observed that the Dybeck
scheme strongly underestimates the charge density at both
interfaces and instead overestimates the electron density in the
bulk of the organic semiconductor.
In the presence of a finite energetic disorder, we can further

consider the charge density distribution over the disordered
molecular orbital energy = + σ

i i i
LUMO MO . Figure 4b

illustrates the charge density as a function of LUMO for σ =

100 meV and k̂red = 4 × 10−12. For a given value of σ, LUMO

are distributed Gaussian-shaped around −3.8 eV. For
electrons, it is energetically favorable to occupy low energy
states. To populate states of high LUMO, electrons need to
jump upward in energy which is strongly reduced (see eq 4),
resulting in low charge densities. The distribution of the
reference densities (see Figure 4b) is physically consistent with
our expectation and further is also preserved for the
accelerated simulation. Moreover, the average charge densities
at each energy interval are equivalent. As briefly mentioned
above, the average interface density ⟨nif⟩ is the crucial
parameter for the correct prediction of reduction time and
current density. Errors in the latter two quantities stem from
errors in ⟨nif⟩. For k̂red ≥ 4 × 10−3, the interface density
strongly decreases which corresponds to the transport limit
outlined above. In contrast, ⟨nif⟩ becomes constant for k̂red ≤ 4
× 10−6 because the consumption of electrons at the OLI via
reduction reactions is much slower than the net generation and
the transport of carriers to the interface. The presence of
energetic disorder considerably reduces ⟨nif⟩ which leads to the
decrease in ⟨jred⟩; see Figure 3. Our local acceleration scheme
accurately conserves the electron interface density and, thus,
generates correct predictions for the reduction time and
current density. The locality of our quasi-equilibrium detection
algorithm successfully captures the local density profiles and
with this allows an accurate reproduction of global properties
such as the reduction current density.
It is noteworthy that the Dybeck scheme results in a

substantially different density distribution. Here, high energetic
states are strongly oversampled up to a factor of approximately
100; see Figure 4b. As a direct consequence, the occupation of
low energetic states (Figure 4c) decreases up to factor of 3.3.
The discrepancies in the charge density profiles can be
rationalized by the relative frequencies of all simulated
processes. Figure 4d shows a comparison of the relative
frequency for the different events to occur at σ = 0 meV and
k̂red = 4 × 10−12. While our local scaling algorithm preserves
the relative frequency of all events related to the fast organic
process chain, the relative frequency for a reduction event is
substantially increased. In contrast, the Dybeck scheme
changes the ratio among electron transport, charge generation,
and decay as well as the reduction. As the reaction channels are
scaled down to comparable rates, electrons react at the surface
or decay before the charge density at the OLI reaches steady
state. This results in a strong decrease in ⟨nif⟩ (cf. Figure 4c)
and, thus, to considerably lower jred. For high disorder, a quasi-
equilibrium assumption can be justified53 as observed from the
more accurate charge density profile and a reduced error in the
reduction current in the Dybeck scheme (see Figure S8,

Supporting Information). This underlines that the assumption
of quasi-equilibrium for mass or charge transport needs to be
justified when using the Dybeck scheme.
Considering the typical applications of the Dybeck scheme,

i.e., surface catalytic reaction networks, it is often reasonable to
assume that surface diffusion of species is a quasi-equilibrated
reaction channel. The assumption is in particular valid when
the time scale disparities are evenly distributed over the
surface. In other words, the adlayer of adsorbed species must
be well mixed to guarantee the successive execution of
nonequilibrated reaction channels. As soon as a time scale
disparity is spatially confined, the transport of species becomes
a limiting factor, and its dynamics must be reproduced
correctly. A simple example is the time scale disparity induced
by an interface reaction such as we have studied in the OLI.
For such applications, our temporal acceleration scheme can be
of high relevance. In this context, we point out that the local
quasi-equilibrium detection, a key feature of the local temporal
acceleration scheme, allows us to handle time scale disparities
which are arbitrarily distributed in space. To demonstrate this
aspect, we provide a systematic kMC study of coupled
diffusion-reaction of ions at spherical nanoparticles immersed
within a liquid electrolyte in Section S7, Supporting
Information.

CPU Speed-Up. We proceed our analysis by evaluating the
acceleration in CPU time, ξ, by comparison of the CPU time
required per reduction event with and without our local
acceleration scheme:

ξ = ⟨ ⟩
⟨ ⟩

t

t
CPU,red
ref

CPU,red
acc

(19)

where ⟨ ⟩tCPU,red
ref and ⟨ ⟩tsim,red

acc denote the CPU time per
reduction event of the reference simulations and of the
accelerated simulations, respectively. For k̂red = 4 × 10−8,
roughly 205 s of CPU time between two consecutive reduction
events is required without any acceleration scheme. For lower
k̂red, the required computational time to get a reliable statistical
evaluation of the physical properties exceeds reasonable time
scales. Thus, we have extrapolated the values of tCPU,red

ref (see
Section S5.3 and Table S2 in the Supporting Information for
details) to estimate the CPU time per reduction event for the
reference simulations for k̂red ≤ 4 × 10−9. Figure 5 illustrates
the speed-up for 0 meV and for 100 meV. For k̂red ≥ 4 × 10−6,

Figure 5. Speed-up in CPU time, ξ, for σ = 0 meV and σ = 100 meV
as a function of the normalized reduction rate k̂red.
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ξ ≈ 0.9 < 1 due to the slight overhead introduced by the quasi-
equilibrium detection. For k̂red ≤ 4 × 10−8, the required CPU
time between two successive reduction events is substantially
reduced, which gives a maximum speed-up of ξ = 4 × 104 for
the lowest k̂red. This underlines that accelerating such
electrochemical kMC simulation is essential for sampling a
statistically significant amount of reduction reactions (1 × 103

up to 1 × 104 events) which are necessary for reliable output
quantities.
Transient Behavior. The use of temporal acceleration

schemes inevitably leads to a loss of information about the
dynamics of the fast, quasi-equilibrated processes. To illustrate
this information loss, we consider

= −
N

N N
red

elg eld (20)

where Nred is the number of reduction events, Nelg is the
number of generation events, and Neld is the number of
electron decay events. The denominator represents the net
number of electrons available for a reduction reaction being
determined by the fast processes, while Nred represents the
slow reduction process. Thus, will eventually converge to 1.
Figure 6 illustrates up to a simulated time of 10 ms for σ =

0 meV and k̂red = 4 × 10−8. The reference profile is very noisy.

This noise arises from the strong oscillations in the
denominator around a certain average value. In contrast, the
statistical fluctuations are strongly reduced within the
accelerated transient resulting from the down-scaling of the
fast process chain of the electronic processes in the organic
semiconductor. Apparently, the algorithm acts as a filter for
higher statistical moments. The inset of Figure 6 demonstrates
the concrete impact of the acceleration scheme on the time
evolution of . During the quasi-equilibrium assessment and
sampling of quasi-equilibrated process chains, a high amount of
kMC steps are executed; see high density of × symbols in inset
of Figure 6. In this regime, naturally the physical quantity
fluctuates as much as the nonaccelerated reference curve. Once
the fast process chains are scaled, fluctuations in are

substantially reduced; this means that the acceleration scheme
acts as a filter for higher moments. In the majority of studies
we are not interested in the higher order moments but rather
in time-averaged values which, as presented above, are
accurately reproduced with our local acceleration scheme.
Note that the observed reduction of higher moments has been
also reported in other acceleration schemes such as the net-
event kMC technique.33 Additionally, we would like to
emphasize that our algorithm does not generate additional
stochastic noise unlike the probability-weighted kMC
method.32

Sensitivity Analysis. Now, we analyze the sensitivity of
the accuracy and the performance of our local acceleration
scheme on the scaling parameters Nob, Ne, and Nf. Note that
we use the accelerated results from the above analysis as a
reference for the sensitivity analysis.
In the beginning of the simulation, the local environment of

all reaction centers, and with this also the fast organic process
chain, is considered to be nonequilibrated. Subsequently, the
QP of each reaction center will be calculated in every kMC
step. Figure 7 illustrates the transient of ΔṼ related to an

arbitrary ionic reaction center for σ = 0 meV at different sizes
of the observation window Nob. After a brief settling period of
approximately 8 × 104 kMC steps, ΔṼ oscillates around an
average of 0. If Nob is chosen large enough, the fluctuations
remain within the user-defined tolerance range of ±δ and the
respective reaction center is considered to be quasi-
equilibrated. Note that the value of Nob strongly depends on
the disorder of the system. For σ = 0 meV, a stable quasi-
equilibrium is already obtained for Nob = 1 × 106 and δ = 0.2
(cf. Figure 7). For σ = 100 meV, the same combination of
parameters would be highly unstable (cf. Figure S9, Supporting
Information). To maintain the same threshold region for high
disorder, the observation window must be increased to 1 × 107

which, however, limits the speed-up and does not enhance the
accuracy. Instead, a good trade-off can be made by increasing
Nob and δ. For the given setup, we found Nob = 2 × 106 and δ =
0.3 to be a suitable combination.
The fast organic process chain is assumed to be quasi-

equilibrated once the environments of all reaction centers are

Figure 6. Time evolution of the ratio for σ = 0 meV and k̂red = 4 ×
10−8. The inset demonstrates the alternate occurrence of sampling
regions (high density of × symbols) and regions with scaled transition
rates (low density of × symbols) in the accelerated curve. Each ×
symbol labels one kMC step.

Figure 7. Assessment of local quasi-equilibrium: fluctuations ΔṼ in
the local environment of an arbitrary ionic reaction center for σ = 0
meV and different sizes of observation windows Nob. If Nob is chosen
large enough, ΔṼ remains within the marked threshold region of 2δ,
and the local environment of the considered reaction center is said to
be quasi-equilibrated.
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quasi-equilibrated. Now, the scaling factor for the fast process
chain is calculated according to eq 16. For this purpose, we
compute the average rate of the fast process chain and the slow
process chain over the next Ne executions of the fast process
chain. For a given Nf, Ne must be chosen sufficiently large
enough to get reliable scaling factors. Figure 8a shows the

average scaling factor ⟨α⟩ for different values of Ne and σ = 0
meV and σ = 100 meV. Taking into account the fluctuations,
we see that α only weakly depends on Ne and on σ. For
decreasing Ne, however, the fluctuations in ⟨α⟩ increase
especially at σ = 100 meV. In the worst case, a scaling factor of
0 is calculated which needs to be detected to avoid simulation

Figure 8. Sensitivity on the execution number, Ne, for a fixed equilibration factor Nf = 1 × 104: (a) average scaling factor, ⟨α⟩, for (top) σ = 0 meV
and (bottom) σ = 100 meV; (b) reduction time, ⟨tred⟩, for (top) σ = 0 meV and (bottom) σ = 100 meV at k̂red = 4 × 10−12; and (c) relative speed-
up ξ ̂ with respect to the results from Figure 5.

Figure 9. Sensitivity on equilibration factor, Nf, for a fixed execution number of Ne = 1 × 104: (a) average reduction time, ⟨tred⟩, for σ = 0 meV and
σ = 100 meV and k̂red = 4 × 10−12 as a function of Nf and (b) corresponding relative speed-up, ξ,̂ with respect to the results from Figure 5. (c)
Spatially averaged charge density profile for σ = 0 meV, k̂red = 4 × 10−12, and Nf = 1 × 101. The error bars from spatial averaging are omitted for
reasons of clarity. (d) Distribution of average charge density per LUMO energy interval for σ = 100 meV, k̂red = 4 × 10−12 and Nf = 1 × 101.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01010
J. Chem. Theory Comput. 2022, 18, 2749−2763

2758



abortion, e.g., by a lower threshold for α. The accuracy of the
accelerated kMC simulations is quite insensitive to changes in
Ne. As a concrete example, Figure 8b illustrates the average
reduction time for k̂red = 4 × 10−12. Good agreement is
obtained with respect to the reference values. However,
choosing lower values of Ne is not favorable with respect to
speed-up in simulation time, as shown in Figure 8c. The
relative speed-up, ξ,̂ saturates toward low Ne independent of
the value of σ; here, the simulation time is determined by the
size of Nob and Nf.
The magnitude of α can be gradually controlled via the

equilibration factor Nf which gives the average number of
executions of the fast process chain before a slow process is
sampled. Figure 9a illustrates the average reduction time for
k̂red = 4 × 10−12 and σ ∈ {0 meV, 100 meV} as a function of
Nf. Without disorder, the results are insensitive to the chosen
value of Nf. For high disorder and small values of Nf, deviations
from the reference value arise. This is linked to an
underestimation of the average electron density at the OLI.
Increasing Nf ≥ 1 × 103 removes the scaling error and restores
the physical quantities. Decreasing Nf below 1 × 104 has no
benefits in terms of speed-up as indicated in Figure 9b. The
reasoning is analogous to above: for low Nf, the speed-up is
essentially determined by the given values of Ne and Nob.
As a last part of this analysis, we investigate the impact of

small Nf on the local electron density, visualized in Figure 9c,d
for σ = 0 meV and σ = 100 meV, respectively, and k̂red = 4 ×
10−12 and Nf = 1 × 101. Without disorder, the charge density
values at both interfaces are accurately reproduced while
substantial deviations are observed within the bulk of the
organic layer. This explains the insensitivity of ⟨tred⟩ on Nf for σ
= 0 meV. Considering the energy dependence of the charge
density distribution (see Figure 9d), low energy intervals (

≤LUMO −3.9 eV) are partially oversampled whereas the high
energy tail ( ≥LUMO −3.7 eV) is strongly undersampled. These
deviations lead to a different local density profile in which on
average less electrons are located at the OLI. Accordingly, the
average reduction time increases for low values of Nf as shown
in Figure 9d.
Inclusion of Mass Transport. We now demonstrate the

applicability of the local temporal acceleration scheme for the
OLI including ionic mass transport in an extended electrolyte
region. We focus on the performance in terms of accuracy of
the global and local quantities as well as on the speed-up. The
full model details of the extended system as well as an extensive
analysis is provided in Section S6, Supporting Information.
The system is partitioned into three process chains: process
chain (1) merges electron transport, generation, and decay;
process chain (2) contains cation diffusion; and process chain
(3) isolates the rate-limiting reduction reaction. Thus, we
extend the simplified OLI system studied above by a third
process chain which includes mass transport in terms of cation
diffusion within the electrolyte. The sets of particles for the
quasi-equilibrium assessment are = = { }+C(1) (2) . The
hyperparameters for the acceleration scheme are chosen
similarly to the simplified OLI model without mass transport
(see Table S3, Supporting Information), with a slightly
increased Nf = 1 × 105 to ensure accurate results on a local
scale.
The trend in the reduction current density, Figure 10a, does

not change upon inclusion of mass transport (cf. Figure S11a,
Supporting Information). We see that the accelerated kMC

simulations accurately reproduce the values of jred. Again, the
temporal acceleration scheme allows us study configurations of
large time scale disparity, which are not in reach within
reasonable CPU times in standard kMC simulations. The local
charge density profile across the z-axis of the simulation box,
Figure 10b, shows the same shape as previously discussed.
Additionally, we see that the cations form a diffuse layer within
in the extended electrolyte region (50 nm < z ≤ 60 nm). Both

Figure 10. (a) Reduction current density, jred, as a function of the
normalized reduction rate, k̂red. Filled symbols visualize the current
densities obtained from the reference kMC simulations with mass
transport; open symbols visualize the current densities using the local
temporal acceleration scheme with mass transport. Dashed lines
extrapolate jred of the reference simulation to low values of k̂red. (b)
Average electron (e−) and cation (C+) density profiles over the z-axis
for k̂red = 4 × 10−12. (c) Speed-up in CPU-time, ξ, as a function of the
normalized reduction rate k̂red.
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the charge and the ionic density profiles are accurately
captured within the accelerated simulations which underlines
that the quasi-equilibrium detection does not substantially alter
the local distribution of cation and electron diffusion at the
OLI. Finally, for k̂red ≤ 4 × 10−6, we obtain an increasing CPU
speed-up ξ (see Figure 10c) with a value of ξ ≈ 2 × 106 for the
lowest value of k̂red. For high normalized reduction rates of k̂red
≥ 4 × 10−4, the acceleration scheme introduces a slight
overhead into the kMC algorithm. Most importantly, the
incorporation of mass transport considerably increases the
computational demand in standard kMC models without
temporal acceleration. Thus, the use of accurate temporal
acceleration schemes becomes of even higher importance.
To summarize, we obtain accurate results on local and global

physical quantities such as the charge and cation density
profiles and the reduction current density, respectively, as well
as a tremendous speed-up. The demonstration of the extended
OLI suggests that the acceleration scheme can successfully be
applied to more complex electrochemical systems including
diffusion and reactions of several chemical species by the use of
multiple process chains.
Hyperparameter Guidelines. Finally, we provide several

heuristic guidelines for the parametrization of the acceleration
scheme. The detection of local quasi-equilibria requires a
suitable combination of observation window size Nob, update
frequency Ns, and threshold value δ.
To identify a proper value of Nob, the user may start with a

short kMC simulation to observe when quasi-equilibrium is
reached or left again in order to estimate the amplitudes in the
QP fluctuations while switching off the scaling, e.g., by setting
Nf → ∞. Nob should be chosen such that ΔṼ remains within
the threshold region of 2δ, cf. Figure 7. In this context, we
suggest starting with δ = 0.2 for systems with weak local
heterogeneities. For strong local heterogeneities, we advise to
initially find a suitable value for Nob in combination with δ =
0.2. If Nob is too large for a decent speed-up, δ can be raised in
steps of 0.05 together with a decrease in Nob.
Hyperparameter Ns determines the number of kMC steps

after which the QPs are updated. In this way, the user gains
control over the memory requirements related to QP tracking.
This can be useful for large particle numbers and/or large
observation window sizes Nob. Here, an adequate first choice is
Ns ≈ Nob/(1 × 103), i.e., 1 × 103 QP values within Nob need to
be calculated. Additionally, appropriate weight factors wij and a
cutoff radius rcut

QP must be chosen for the QP calculation. The
latter two parameters can be selected pragmatically, as in the
majority of kMC simulations, only nearest-neighbor transitions
are considered. Thus, rcut

QP should contain at least the
corresponding sites. For uncharged particles, the inverse
particle mass can be used as weight factors as lightweight
particles move faster and consequently control the local
fluctuations. For charged particles, we recommend a
combination of charge magnitude and (effective) relative
permittivity to reproduce the strength of local Coulomb
interactions accurately.
When proper quasi-equilibrium assessment is assured, values

for the sampling parameter Ne and the equilibration factor Nf
can be selected. In the sensitivity analysis above, we have
demonstrated that Ne essentially only determines the statistical
spread in the calculated scaling factors but not the accuracy of
physical quantities. Thus, we recommend a value that is
considerably lower than the chosen observation window size

(e.g., Ne ≈ Nob/(1 × 103)) such that the speed-up becomes
independent of Ne. The aggressiveness of the scaling algorithm
is controlled by Nf. A conservative first value for Nf can be
estimated using the ratio of highest and lowest possible
transition rates. For instance, in the OLI setup we have kred = 1
× 10−1 s−1 and k0,elh = 3.66 × 1010 s−1 which yields a ratio of
3.66 × 1011. To reduce the disparity by a factor of
approximately 1 × 107 we have to set Nf = 1 × 104. Note
that the final choice of Nf also depends on which physical
quantities are of interest. Obtaining a high accuracy on a local
scale (e.g., spatially resolved charge densities) generally
requires higher equilibration factors than needed for quantities
on a global scale (e.g., average current density on a device
level).
To complete this discussion, we want to emphasize that a

first set of heuristically chosen input parameters does not
replace a diligent sensitivity analysis. Each system has specific
properties, and accordingly, a sensitivity analysis is recom-
mended to obtain maximum speed-up and accuracy for
system-specific output quantities.

■ CONCLUSION

In conclusion, we have presented a novel local temporal
acceleration scheme to couple fast transport and slow interface
reactions in electrochemical systems within kMC simulations.
Our algorithm transfers the modified superbasin concept
introduced by Dybeck et al.37 to local time scale disparities
which require an accurate treatment of the underlying
transport dynamics. In contrast to the original algorithm, we
formulate a local, particle-based criterion to assess the quasi-
equilibrium of entire process chains which are defined via
subsets of processes and particles. Local quasi-equilibrium is
reached if the fluctuation in the local environment of each
individual particles, captured by quasi-potentials, remains
within a predefined threshold. Scaling factors of quasi-
equilibrated and sufficiently executed process chains are
calculated dynamically based on the Dybeck scheme. Down-
scaling of all transition rates within a process chain preserves
the relative dynamics. Simultaneously, existing time scale
disparities are substantially reduced resulting in a computa-
tionally more efficient kMC method.
We have demonstrated the performance and the accuracy of

our acceleration algorithm using a simplified model of a hybrid
organic−liquid interface which suffer from time scale
disparities between fast transport phenomena and slow
interface reactions, being exemplary for electrochemical
systems. Reduction currents and local charge densities are
investigated and accurately reproduced despite the presence of
local inhomogeneities. Moreover, we achieve an acceleration
up to a factor of 1 × 106 and without any loss in accuracy.
Additionally, we have shown that the Dybeck scheme
introduces a significant error when time scale disparities are
nonuniformly distributed in space as for the given system.
The central innovation of the presented temporal accel-

eration scheme is its local quasi-equilibrium approach. Thus,
local physical properties can be preserved upon scaling. The
capability of resolving local heterogeneities is one of the main
advantages of kMC models with respect to multiscale
simulations. Hence, our algorithm provides a viable tool to
substitute existing multiparadigm approaches by a stand-alone
kMC model.
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■ COMPUTATIONAL DETAILS
All simulation code of the hybrid organic−liquid interface
including the presented acceleration scheme and the
generalized temporal acceleration scheme by Dybeck et al.37

has been implemented within C++ in our VORONOI framework.8

The simulations were run on independent cores of an AMD
Ryzen Threadripper 3990X @2.9 GHz with 64 hardware cores.
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■ LIST OF SYMBOLS

αm Scaling factor of mth process chain, see eq 16

Δ ij Potential energy difference between sites i and j, see
eq 4

⟨ΔṼi⟩ Average fluctuation in the local environment of
particle i, see eq 7

Δt Simulation time, see eq 17

δ Threshold for local quasi-equilibrium assessment, see
eq 9

i Potential energy at site i, see eq 1

i
C Coulomb potential at site i, see eq 1

i
F Field contribution to potential energy at site i, see eq

1

LUMO LUMO level

i
MO Average molecular orbital energy at site i, see eq 1

i
ee Electron−electron interaction at site i

i
ie Ion−electron interaction at site i
σ
i Energetic disorder at site i, see eq 1

εeff Effective permittivity between the organic material
and the electrolyte, see eq 10

εr,e Permittivity of electrolyte material, see eq 10

εr,o Permittivity of organic material, see eq 10

jred Reduction current density, see eq 17

k0,elh Attempt-to-hop frequency for electron hopping, see
eq 4

keld Electron decay rate
kelg Electron generation rate, see eq 3

kred Cation reduction rate
k̂red Normalized reduction rate

Set of nonequilibrated process chains
Ne Sampling number
Nf Equilibration factor, see eq 16

Nob Observation window for local quasi-equilibrium
assessment, see eq 8

Nred Number of reduction events, see eq 17

Ns Interval for updating quasi-potentials
A Set of quasi-equilibrated and sufficiently executed

process chains; explored region of current superbasin

B Set of quasi-equilibrated but not sufficiently executed
process chains; unexplored region of current super-
basin

rL Site spacing of simulation grid
rcut

C Cutoff radius for Coulomb interactions

rcut
QP Cutoff radius for quasi-potentials, see eq 5

res Effective escape rate from explored superbasin region,
see eq 12

rm, Rate of mth process chain in current superbasin ,
see eq 12

Current superbasin
σ Energetic disorder
⟨tred⟩ Average time between sucessive reduction events
Vb Bias potential, see eq 2

Ṽi Quasi-potential related to particle i, see eq 5

⟨Ṽi⟩ Average quasi-potential related to particle i, see eq 6

⟨∼ ⟩Vi
mavg Moving average quasi-potential related to particle i,

see eq 8

X Dimension of simulation grid in x-direction
Z Dimension of simulation grid in z-direction
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ABSTRACT: Kinetic Monte Carlo (kMC) simulations are a
popular tool to investigate the dynamic behavior of stochastic
systems. However, one major limitation is their relatively high
computational costs. In the last three decades, significant effort has
been put into developing methodologies to make kMC more
efficient, resulting in an enhanced runtime efficiency. Nevertheless,
kMC models remain computationally expensive. This is in
particular an issue in complex systems with several unknown
input parameters where often most of the simulation time is
required for finding a suitable parametrization. A potential route
for automating the parametrization of kinetic Monte Carlo models
arises from coupling kMC with a data-driven approach. In this
work, we equip kinetic Monte Carlo simulations with a feedback loop consisting of Gaussian Processes (GPs) and Bayesian
optimization (BO) to enable a systematic and data-efficient input parametrization. We utilize the results from fast-converging kMC
simulations to construct a database for training a cheap-to-evaluate surrogate model based on Gaussian processes. Combining the
surrogate model with a system-specific acquisition function enables us to apply Bayesian optimization for the guided prediction of
suitable input parameters. Thus, the amount of trial simulation runs can be considerably reduced facilitating an efficient utilization of
arbitrary kMC models. We showcase the effectiveness of our methodology for a physical process of growing industrial relevance: the
space-charge layer formation in solid-state electrolytes as it occurs in all-solid-state batteries. Our data-driven approach requires only
1−2 iterations to reconstruct the input parameters from different baseline simulations within the training data set. Moreover, we
show that the methodology is even capable of accurately extrapolating into regions outside the training data set which are
computationally expensive for direct kMC simulation. Concluding, we demonstrate the high accuracy of the underlying surrogate
model via a full parameter space investigation eventually making the original kMC simulation obsolete.

■ INTRODUCTION
The term Monte Carlo method denotes a variety of different
computer-aided algorithms which apply random numbers to
obtain a numerical solution for real-world problems. A
particular relevant subclass is kinetic Monte Carlo (kMC)
simulations. They have been used extensively to model the
dynamic behavior of a broad range of nondeterministic
processes and systems such as crystal growth,1,2 vacancy
diffusion,3−5 charge transport in disordered materials,6−9

catalysis,10−12 organic solar cells,13−16 and electrochemical
devices.17−20 The popularity of kMC is due to several favorable
intrinsic properties: (1) As a mesoscopic approach, kMC often
provides a good trade-off in spatio−temporal resolution. (2)
Individual particle-based processes can be included to
investigate their time/frequency-dependent behavior. (3)
Arbitrarily complex morphologies/geometries can be incorpo-
rated without facing potential convergence issues. (4) kMC

simulations are no mean-field approximations but inherently
discrete and therefore enable to take into account local
structural effects and the influence of particle−particle
interactions.

However, one major limitation of kMC models is their
comparatively high computational costs. Due to the stochastic
nature of the kMC algorithm, a sufficient number of
independent simulation runs is required to make reliable
statements about the average time evolution of output
quantities. For stationary quantities, this issue is at least
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partially alleviated as it is sufficient to perform block-averaging
over steady-state configurations of a single simulation run.14

Another potential computational bottleneck arises from the
inclusion of particle−particle interactions as their algorithmic
complexity inherently scales as N( )2 , where N is the number
of particles. In the literature, there are numerous different
approaches for the efficient treatment of particle−particle
interactions ranging from the classical Ewald summation21,22

with N( )3/2 to more advanced strategies such as the fast
multipole method23,24 with N( ). Additional improvements in
runtime efficiency can be achieved by applying precalcula-
tions14 and local caching schemes.25 Finally, large computa-
tional costs occur in kMC models which feature large time-
scale disparities between two or more implemented
processes.26 The kMC algorithm naturally favors the execution
of fast processes due to their higher relative probabilities.
Consequently, a system with fast processes on time scale tf and
slow processes on time scale ts ≫ tf requires approximately ts/tf
kMC steps to sample the slow process only once. The
insufficient sampling of slow processes is in particular
problematic if they represent the critical transition to obtain
certain system properties. The most common approach to
bridge time-scale disparities is so-called temporal acceleration
schemes.27−30 In essence, such algorithms define (heuristic)
criteria to artificially scale down the transition rates of fast
processes to enable a more frequent sampling of the crucial
slow processes.

Despite the aforementioned improvements and optimiza-
tions, kMC simulations remain computationally expensive.
This is especially an issue when kMC models require
systematic input parametrization. In particular, complex
systems with several unknown input parameters would highly
profit from a data-efficient parametrization scheme. Otherwise,
kMC models remain restricted to a basic mechanistic analysis
of the system dynamics. Exact reproduction of experimental
results, device optimization, and material screening require
streamlined guidance in input parameter search to become
feasible.

So far, different methodologies have been proposed to
parametrize kMC models. The most common choice in the

research community is still the straightforward parameter
sweep31,32 supported by a literature review for existing
parameters.33 Other methods automate parametrization via
the utilization of a random walk34,35 or a genetic algorithm
such as particle swarm optimization.36 More advanced
approaches are based on replacing the kMC simulation by a
corresponding surrogate model. For instance, Sestito et al.
applied multiobjective Bayesian optimization (BO) in the
context of a dimensionality reduction scheme for kMC
diffusion models to calibrate the parameters of a simplified
one-dimensional kMC diffusion model.37 Another surrogate-
assisted kinetic Monte Carlo method utilizes Gaussian
processes (GPs) to predict the stationary shape in kinetically
controlled copper electrodeposition.38 However, the combina-
tion of BO and GPs in terms of a strong, data-driven surrogate
model is yet relatively unexplored. It has been proven to be
powerful in the field of compositional engineering,39,40 for high
throughput laboratories,41 for the optimization of quantum
cascade detectors,42 and in kMC models for structural
prediction.43

In this work, we present an innovative data-driven
optimization pipeline to enable an automated parametrization
of kinetic Monte Carlo models. Our methodology couples
kinetic Monte Carlo simulations with a feedback loop
consisting of Gaussian processes and Bayesian optimization,
which enables a prediction-guided and data-efficient selection
of input parameters. We generate a database from the output
of fast-converging kMC simulations to train a cheap-to-
evaluate surrogate model based on Gaussian processes. By
combining the surrogate model with a system-specific
acquisition function, we may apply Bayesian optimization for
the systematic prediction of appropriate input parameters.
Establishing a data-driven feedback loop considerably reduces
the amount of trial simulations required for system para-
metrization and therefore facilitates an efficient utilization of
kMC in particular for complex systems. The effectiveness of
our data-driven kMC method is showcased via a process of
growing industrial relevance: the formation of space-charge
layers in solid-state electrolytes as it can be observed in all-
solid-state batteries. Relying on an efficient parametrization
framework, we require only 1−2 iterations to accurately

Figure 1. (a) Schematic representation of the kMC model for SCL formation in SSEs: Mobile Li ions are migrating toward the blocking electrode
with a lower bias potential as indicated by the arrows. The mass transport is described by a thermally activated hopping mechanism between
unoccupied vacancies. An immobile anionic background ensures the charge neutrality of the setup. The application of a bias potential, ϕbias,
eventually leads to the formation of a depletion and accumulation layer at the respective electrodes and a charge-neutral bulk region. (b) Schematic
representation of a spatially averaged concentration profile to clarify the physical meaning of all input parameters and output quantities. The
thicknesses of the depletion and accumulation are denoted as dn‑scl and dp‑scl, respectively.
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reconstruct the input parameters from different baseline
simulations within the training data set. Further, we
demonstrate that our methodology has remarkable extrap-
olation capabilities for regions outside the training data set.
This feature is particularly relevant when the direct kMC
simulation of such regions is computationally expensive.
Finally, we perform a full parameter space investigation to
emphasize the high accuracy of the underlying surrogate model
which eventually may fully replace the original kMC simulation
in many practical use cases. We are highly convinced that
equipping kMC with a data-driven feedback loop provides a
direct pathway for an efficient utilization of kinetic Monte
Carlo models independent of the considered system.

■ METHODS
To demonstrate the capabilities of our methodology, we
consider a physically intuitive process from the field of
electrochemistry: the space-charge layer (SCL) formation in
solid-state electrolytes (SSEs) under blocking conditions as it
occurs in all-solid-state batteries (ASSB). In recent years,
ASSBs have gained increasing attention as a promising
substitute for traditional Li-ion batteries due to their
potentially longer lifespan, higher energy density, and
enhanced safety.44,45 We have recently developed a simple
yet predictive kMC model to simulate the mass-transport

phenomenon occurring in SSEs under blocking conditions;46

see Figure 1a for a schematic representation of the simulation
setup. The model was able to reproduce the quantitative trends
in SCL thicknesses (accumulation and depletion layer) as
previously determined by electrochemical impedance spectros-
copy47 and spectroscopic ellipsometry.48

First, a compact summary of our kMC model for SCL
formation in SSEs is provided to clarify the physical meaning
of all input parameters and output quantities. Then, we outline
successively the complete computational pipeline of our data-
driven kMC approach: (1) the standalone kMC algorithm, (2)
Bayesian optimization, and (3) Gaussian processes. Each step
of the pipeline is first described in an abstract fashion and
subsequently concretized by means of our electrochemical
showcase. A flowchart of the complete computational pipeline
is illustrated in Figure 2.

Space-Charge Layer Formation in Solid-State Electro-
lytes. In general, the mass transport of Li ions in SSEs can be
captured by a thermally activated hopping mechanism between
unoccupied vacancies in a crystal lattice.49,50 The crystal
structure itself consists of immobile anions, cations, and
vacancies as well as mobile cations. The kMC simulation
only considers the transport of mobile Li+ within a three-
dimensional regular grid of vacancies with lattice constant aL;
see Figure 1a for a schematic representation. Note that the

Figure 2. Schematic representation of the proposed computational pipeline including the original kinetic Monte Carlo algorithm on the right hand
side as well as Gaussian processes and Bayesian optimization on the left hand side. Fast-converging kMC simulations are used to generate a
database to train a cheap-to-evaluate surrogate model based on Gaussian processes. The surrogate model and a system-specific acquisition function
form the two main components of Bayesian optimization, which is utilized to predict the system parametrization for the next simulation run.
Depending on its accuracy the surrogate model may fully replace the original kMC simulation.
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implemented grid does not resemble the actual morphology of
the SSE sample but rather must be regarded as a simple lattice
gas model. In this framework, SCL formation is caused by the
mere redistribution of mobile Li ions driven by an applied bias
potential, ϕbias. Immobile Li ions and their respective
counteranions are neglected due to local electrostatic neutral-
ity. Mobile Li ions are electrostatically compensated by a
corresponding homogeneous anionic background. The local
concentration of mobile cations, cLi

+ (x, y, z), including its
physical boundary values, strongly impacts the thicknesses of
the resulting accumulation and depletion layer. In this context,
the model distinguishes three different cases (cf. Figure 1b):

1. The bulk concentration, cbulk, corresponding to the
equilibrium state encountered in an electroneutral lattice
where all mobile cations are compensated by their
respective immobile anions.

2. The maximum concentration, cmax, which defines the
upper limit of mobile cations in a fully occupied lattice
as encountered in the accumulation layer.

3. The minimum concentration, cmin, which defines the lower
limit of mobile cations in a fully depleted lattice as
encountered in the depletion layer.

Therefore, cLi
+ (x, y, z) may vary between cmin and cmax reaching

the equilibrium value cbulk within the bulk of the SSE. The
upper and lower concentration limits determine the degree of
asymmetry with respect to accumulation and depletion layer
thickness. In the scope of this model, the maximum
concentration is imposed by the reciprocal volume of a unit
cell, cmax = aL

−3, whereas the minimum concentration is
naturally set to cmin = 0. Analogously to the liquid electrolyte
(cf. Debye length), the strength of electrostatic screening also
impacts the thicknesses of the resulting SCLs. Here, we control
the magnitude of this effect by the relative permittivity of the
bulk SSE, εr. Note that our model does not include spatial
variations in permittivity induced by either depletion or
accumulation of Li ions. For a detailed discussion of the model,
see ref 46.

Overall, our kMC model requires 4 physically consistent
input parameters: cbulk, cmax, εr, and ϕbias. For a given input
parametrization, the kMC simulation generates a stationary
three-dimensional concentration profile, cLi

+ (x, y, z), from
which the depletion and accumulation layer thicknesses (dn‑scl
and dp‑scl, respectively) as well as their ratio, = d d/n scl p scl,
may be extracted. Additionally, Poisson’s equation is utilized to
transform cLi

+ (x, y, z) into a corresponding potential profile to
determine the potential within the bulk of the SSE, denoted as
ϕbulk. To ensure comparability between different parametriza-
tions, we rather consider the potential ratio = /bulk bias
than absolute values. A summary of all input parameters and
output quantities is presented in Table 1.

Kinetic Monte Carlo Method. The kinetic Monte Carlo
method is a numerical algorithm to sequentially propagate a

system through different states within its configuration space.
Fundamental contributions to the modern kMC algorithm
have been made by Bortz et al.51 and Gillespie.52,53 In general,
the kMC method is based on coarse-graining the system
dynamics into a set of long-term states {i}, which are
interconnected by discrete transitions. Given an arbitrary
initial state i, the system may transition into a set of potential
final states {j}. Each transition i → j is linked to a transition
rate, kij, which is proportional to the relative execution
probability, pij, of the underlying physical process

= =p
k

k

k

kij
ij ij

j ijtot (1)

where ktot is the cumulative transition rate. The transition rates
are a subset of the input parameters required by the kMC
model. Usually, they are taken from experimental measure-
ments or underlying physical models. The stochastic time
evolution of the system is computed in the so-called Monte
Carlo step. In each simulation step, two uniform random
numbers r1, r2 ∈ (0,1) are drawn to determine which
transition, μ, is executed and how much simulated time, τ, is
elapsed before the execution of the transition. In the n-fold or
direct method as outlined in ref 53, we may use r1 to pick μ
from the set {pij} via

<
= =

p r p
j

ij
j

ij
1

1

1
1 (2)

and r2 to calculate a corresponding time step

=
r

k
log( )2

tot (3)

Based on (2) and (3), the system state i → j and the simulated
time ti → tj = ti + τ are updated. To perform the next Monte
Carlo step, the transition rates must be recomputed in the new
system state. The stochastic time evolution of the investigated
system results from repeated execution of the outlined
procedure often denoted as the so-called Monte Carlo loop.
The simulation is terminated when a user-defined condition is
fulfilled, e.g., a stationary state is reached or the simulated time
exceeds a certain predefined threshold, t ≥ tstop.

To simulate the SCL formation in SSEs, the general kMC
algorithm has to be adjusted accordingly; see the right hand
side of Figure 2 for a detailed flowchart, which results in 6
fundamental steps:

1. System Parametrization: Selection of appropriate input
parameters to generate given output quantities.

2. System Initialization: Generation of a discrete grid with
geometrical and physical information (e.g., positions and
static energies); population of the grid with mobile Li+
according to cbulk.

3. Update of the Potential Energy Surface: Recalculation of
Coulomb interactions of each Li ion with all other
mobile cations according to current system configu-
ration.

4. Calculation of Transition Rates: Computation of the local
hopping rates of each Li ion to all unoccupied nearest-
neighbor vacancies based on the updated potential
energy surface.

5. Execution of the Monte Carlo Step: Generation of two
uniform random numbers to select an Li+-hopping

Table 1. Summary of Input Parameters and Output
Quantities

input parameters output quantities

cbulk bulk concentration dn‑scl depletion layer thickness
cmax maximum concentration dp‑scl accumulation layer thickness
εr bulk permittivity potential ratio
ϕbias bias potential thickness ratio
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transition via (2) and a corresponding time step via (3).
Return to 3 if simulated time t is less than steady-state
time tstop.

6. Output Calculation: Calculation of output quantities (cf.
Table 1) from the raw tracking data of the kMC
simulation.

For the given system, the regular update of the potential energy
surface (step 3) may impose a computational bottleneck. The
crucial factor is the number of mobile Li ions, N, imposed by
the chosen value for cbulk. While the computational effort
connected to the recalculation of Coulomb energies can be
optimized to N( ) (cf. ref 46), the simulation times for cbulk >
1019 cm−3 become practically unfeasible. For cbulk ∈ [1017

cm−3, ···, 1020 cm−3], the corresponding linearly increasing
simulation times tsim ∈ [1 h, ···, 1000 h] can be obtained. Thus,
it would be highly desirable to replace simulations with high
particle densities by an accurate surrogate model, which has
been trained via a data set generated from the output of fast-
converging kMC runs.

In the scope of this work, we constructed a data set from the
output of 279 kMC simulations from which 153 were
conducted in our reference study.46 Table 2 presents a

summary of the input parameters to generate this original data
set. From the additional data points, 106 were gained from
fast-converging simulations with cbulk ≤ 4 × 1018 cm−3 and
another 5 for cbulk = 1 × 1019 cm−3. The remaining 15 data
points were generated for cbulk = 1 × 1020 cm−3 to assess the
extrapolative qualities of the surrogate model.

Bayesian Optimization. In a majority of cases, the
parametrization of kMC models relies on a combination of
literature review, physical intuition, and brute force (e.g.,
parameter sweeps). The main goal of this work is to make the
process of input parametrization prediction-guided via an
efficient Bayesian optimization scheme; see step 8 in Figure
2. BO is a global optimization pipeline, which has proven to be
both data-efficient and robust in non-covex/concave problems.
Considering an arbitrary optimization problem with a costly-
to-query target quantity such as time-consuming experimental
measurements or computationally expensive ab initio simu-
lations, Bayesian optimization is among the most suitable
algorithms as it requires only a minimal amount of target
querying and may reach a global minimum. The two main
components of BO are a surrogate model and an acquisition
function; see steps 7 and 9 in Figure 2. The surrogate model
can be any probabilistic algorithm that provides a prediction
and an uncertainty quantification, for instance, Gaussian
processes (GPs), deep GPs, or Bayesian neural networks.
The acquisition function defines the function that will be
directly optimized. It should be as convex/concave as possible,
computationally efficient to evaluate and incorporate both the
prediction of the original process and the uncertainty of the

model on this point. A very intuitive example of an acquisition
function is given by the so-called upper confidence bound
(UCB)

= +x x xarg max ( ) ( )opt
x

opt opt
opt (4)

where μ and σ are the predictions for the mean and standard
deviation, respectively, of the predictor on the corresponding
point xopt and ϵ is a trade-off parameter. The parameter ϵ is
directly linked to the exploration and exploitation phase of the
optimization process. In the beginning of the process, the
model does not have enough information about the whole
parameter space. Thus, it is more important to acquire
observations which improve the model than to optimize the
original problem. This initial stage is denoted as exploration
and becomes manifest in high values of ϵ. As the model
improves progressively, the focus of the optimization process
begins to shift on optimal points. This stage is denoted as
exploitation and reflected by decreasing values of ϵ. In general,
there are numerous potential acquisition functions with
different convexity properties and prioritizations. In this
work, the so-called expected improvement acquisition function
was utilized

= +EI x f fx x( ) max( ( ) ( ), 0) (5)

where the superscript + denotes the best point so far and the
function f is the trained surrogate model based on Gaussian
processes. A complete derivation of eq (5) can be found in ref
54 along with resources on additional acquisition functions.
For completeness, we note that other acquisition functions
such as probability of improvement and UCB were also
implemented but yielded inferior results compared to expected
improvement.

The generic acquisition function outlined above has to be
modified to match with the requirements of the investigated
electrochemical process. Our goal is to reconstruct the
depletion layer thickness as a function of the applied bias
potential, that is, dn‑scl(ϕbias). For this purpose, we define the
objective function

=
| * |

N

d d

d
1 ( ) ( )

( )obj
n scl bias n scl bias

n scl biasbias bias (6)

where the superscript * denotes the mean of the predicted
values and Nϕdbias

is the number of investigated potential points.
In principle, we are considering a minimization problem, as we
wish to minimize the distance between the predicted values
and a baseline. However, in the context of Bayesian
optimization, it is more intuitive to reformulate the task as a
maximization problem indicated by the negative sign in (6).
The corresponding standard deviation is given by

=
N d

1 ( )

( )obj
bias

n scl biasbias bias (7)

where σ(ϕbias) corresponds to the standard deviation of a
prediction with respect to a specific value of ϕbias. The final
form of the acquisition function can be constructed by
combining (6) and (7) with (5)

Table 2. Summary of the Input Parameters Used to
Generate the Original Data Seta

input parameter values

cbulk (cm−3) 5 × 1017, 3 × 1018, 1019

cmax (cbulk) 1.25, 1.5, 2
εr 100, 677, 1400
ϕbias (V) 0.05, 0.1, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2.5, 3.5, 4.5

aNote that only a subset of the possible parameter permutations was
simulated.
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with ϕ and Φ denoting the probability and the cumulative
distribution functions, respectively. The optimization of the
acquisition function is accomplished by generating 100 000
random points and selecting those which maximizes the
acquisition function. To further ensure accuracy and efficiency,
the values of these random points were constrained through
physical intuition. The trade-off factor was initially set to 1 and
gradually decreased. Note that this procedure is orders of
magnitude faster than a kMC simulation and, thus, even high
numbers of points can be processed in a few seconds on a
single core.

Gaussian Processes. As outlined above, Bayesian
optimization requires a robust and computationally efficient
surrogate model. In the scope of this work, we selected
Gaussian processes�a data-driven stochastic prediction
algorithm that models predictions as Gaussian distributions
whose parameters are determined by the distance to already
measured samples. Therefore, the algorithm inherently
provides an uncertainty quantification for its predictions,
which can be crucial in applications with small data sets.
Gaussian processes rely on the fundamental assumption that a
true process y can be modeled by a model f on a set of points
X using a multivariate Gaussian distribution centered around
zero, denoted as the so-called prior distribution

|f X K(0, )x x, (10)

where Kx,x is the covariance matrix which encodes the
correlation between two points and is defined by a user-
chosen kernel function. Additionally, the likelihood of the
observations given by the model can be represented as a noisy
normal distribution around the model predictions

| Iy f f( , )2 (11)

Equations (10) and (11) can be manipulated to create the so-
called posterior distribution, which will be used for prediction
and is given by

| = |
P

P P
P

D
D

D
( )

( ) ( )
( ) (12)

where D corresponds to the acquired observations and θ
denotes the model parameters. Solving the above process
analytically yields

=* * [ + ]K yx K Ix x,
1

x x,
2 (13a)

=* * * * [ + ] *K K KK Ix x x x x x x, ,
1

,
x x

2
,

2 (13b)

where the points for prediction and training are denoted with
and without the superscript *, respectively. One crucial aspect
is given by the parameter values, θ, of the kernel function K. In

principle, the prior distribution must be defined in such a way
that it is uncorrelated with the observations. However, in
practice, better results are achieved if the kernel parameters are
chosen to maximize the log marginal likelihood (LML)
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for a given number of points N. Here, the first term captures
the quality of the model fit, the second term indicates that
complex models are less probable, and the third term expresses
that points become less probable in larger data sets. In essence,
the LML maximization attempts to define the simplest model
that describes the observations. Note that a complete
mathematical analysis of Gaussian processes and their
derivation is beyond the scope of this work. A comprehensive
description can be found in ref 55.

In this work, the kernel was the sum of two multilayer
perceptron (MLP) kernels56 whose parameters were trained by
maximizing the LML. Note that the kernel itself is not a neural
network. However, it has been shown that�under certain
conditions�certain covariance functions can cause the GPs to
converge to the limit of a neural network with an infinite
number of layers. Our particular implementation of the kernel
mimicks rectified linear activations (ReLU), but the method
family is not limited to it. Unfortunately, the detailed theory of
the method is beyond the scope this paper. A complete
treatment can be found in a pertinent literature;56 further
publications covering the topic are given by refs 57−60. There
is no immediate reason to assume that this kernel outperforms
other kernel functions such as the radial basis kernel (RBF).
Nevertheless, trial and error showed that in this problem the
results were superior both in accuracy and physicality of
results.

■ RESULTS AND DISCUSSION
If not stated otherwise, we evaluate the effectiveness of our
data-driven kMC method exemplarily by optimizing for the
thickness of the depletion layer, dn‑scl, as it is a crucial quantity
for ASSB performance. First, we demonstrate the importance
of data preprocessing for the predictor quality. Then, we
analyze the data efficiency of our approach by discussing the
evolution of the mean and median relative error as a function
of the training sample number. Subsequently, we consider
different scenarios of inverse problem solution, and specifically,
we utilize our method to reconstruct the input parameters
from different baseline simulations inside and outside of the
training data set. By accurately solving the inverse problem
outside of the training data set, we showcase the remarkable
and computationally inexpensive extrapolation capabilities of
our data-driven optimization approach. With the accuracy and
efficiency of the method proven, we proceed by performing a
full parameter space investigation of different output quantities
for a wide range of cbulk and cmax. The results of the parameter
space investigation clearly indicate that expensive kMC
simulations can be replaced readily by a cheap-to-evaluate
surrogate model based on Gaussian processes. Concluding, we
outline potential routes for future improvements.

Data Preprocessing. To emphasize the importance of
data preprocessing, we first analyze the effect of target
normalization on the predictor quality; see Figure 3. It is
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important to note that input normalization is necessarily
required as an un-normalized input result in nonpositive
definite covariance matrices. Apparently, un-normalized target
data induce a strongly underperforming predictor; see Figure
3a. The large range of output values causes the gradients to
take vastly different values, which in turn skews the actual
error. As a direct consequence, the algorithm implicitly
prioritizes certain ranges over others. This effect can be
mitigated by normalizing the target data. A straightforward
solution is a simple min−max normalization to constrain all
target values between 0 and 1. The normalization of target
quantities results in excellent predictor accuracy which
becomes manifest in almost vanishing error characteristics;
see Figure 3b.

Data Efficiency. A high predictor quality is ultimately only
a necessary criterion for the effectiveness of any data-driven
approach. Simultaneously, we require that high predictor
accuracy comes along with sufficiently high data efficiency.
Therefore, it is crucial to increase the impact of every newly
added point to the data set. For instance, in the current system,
the effect of the applied bias potential, ϕbias, is almost trivially
learned by the algorithm. Consequently, we can considerably
reduce the data load by undersampling ϕbias. As a matter of
fact, this strategy leads to a significant increase of the predictor
accuracy over the naive sampling; see Table 3. Apparently,
changes in the other input parameters (cbulk, cmax, and εr) have a

more complex effect on the depletion layer thickness (e.g.,
linear vs nonlinear behavior). Thus, a more efficient algorithm
training can be achieved by putting the focus of data
acquisition on the latter input parameters. As an additional
metric for the model quality, we calculated the so-called model
calibration; see Table 3. The calibration of a model shows how
many predicted points fall within 2σ of the true value. Fewer
than 95% of the test points falling within this credible interval
is a sign of overfitting or overconfident predictions. Vice versa,
more than 95% of the test points falling within the 2σ interval
is a sign of underconfident predictions. The model calibration
strongly supports our previous statement that undersampling
ϕbias leads to an increase in predictor quality and a
simultaneous decrease in data load.

To further rationalize the data efficiency of our method-
ology, we analyze the mean and median relative errors Δdn‑scl,
and Δ̃dn‑scl, respectively, as a function of the training sample
number Ns; see Figure 4. The full error progression in Figure
4a illustrates that Δdn‑scl exhibits strong fluctuations for Ns ≤
50 (up to over 300%), whereas Δ̃dn‑scl steadily decreases in the
same region. From a practical point of view, it is of high
relevance to know for which amount of training samples the
relative error falls below a certain predefined threshold, e.g.,
10%, as illustrated in Figure 4b. In the present study, the
median and mean relative errors remain consistently below
10% for only 50 and 100 training samples, respectively.
Remarkably, the original data set as generated in ref 46 would
have been sufficient to achieve the given level of accuracy.
Further, please note that the presented errors relate to the
entire parameter space, that is, constraining the investigation to
a smaller parameter subset would have decreased the number
of required training samples even more.

Inverse Problem Solution. With the predictor quality and
data efficiency proven, we may proceed our analysis by
considering different scenarios of so-called inverse problem
solution. In general, an inverse problem describes the process
of reconstructing system input from observed output. We may
transfer this universal concept to the present case study by
recovering a set of input parameters (cbulk, cmax, εr) from a given
output quantity (e.g., dn‑scl). In the following, we will
demonstrate the capabilities of our pipeline by reconstructing
suitable input parameters for three different baseline
simulations of dn‑scl. For the first two test cases, the input
parameters of the baseline were chosen to reside inside the
training set. On the other hand, the baseline for the third test
case was generated with input parameters outside the training
set. We show that for all three test cases, the algorithm

Figure 3. Effect of target normalization on the predictor quality: (a) un-normalized and (b) normalized target quantities. All predictions were
generated by a 270-fold validation to guarantee a high predictor quality. Strong deviations from x = y indicate a diminishing predictor quality. The
insets quantify the mean relative error Δdn‑scl, the median relative error Δ̃dn‑scl, and the relative standard deviation δdn‑scl with respect to the full data
set.

Table 3. Comparison of Full and Refined Potential
Exploration in Terms of the Relative Mean and Median
Errors as well as Model Calibration Δdn‑scl, Δ̃dn‑scl, and Δ95
dn‑scl, Respectively, for Different Training Sample Numbers
Ns
a

full exploration (naive sampling)
refined exploration
(undersampling)

Ns

Δdn‑scl
(%)

Δ̃dn‑scl
(%)

Δ95 dn‑scl
(%)

Δdn‑scl
(%)

Δ̃dn‑scl
(%)

Δ95dn‑scl
(%)

10 198.35 53.24 40.86 164.61 49.23 80.93
20 121.10 41.85 55.55 80.58 40.23 87.41
50 76.74 22.74 84.22 27.07 11.84 89.2
70 42.21 16.53 86.73 12.26 5.8 91.37

100 33.5 11.25 91.75 9.35 4.35 94.24
150 19.12 7.21 90.68 5.71 2.81 96.01
200 17.55 4.99 92.11 4.95 2.36 96.04
250 12.83 4.15 93.18 3.84 1.77 96.4

aBoth evaluations were performed multiple times with different
random splits to generate a realistic view of accuracy.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.3c02482
J. Phys. Chem. A 2023, 127, 5967−5978

5973



accurately and efficiently reproduces the baseline for the
complete range of potential values. For all three test cases, the
baseline values were removed from the data set to avoid
biasing the pipeline.
Fitting Inside the Training Set. First, we showcase the

validity of our method by reconstructing the reference
parametrization determined in ref 46 via a heuristic parameter
sweep; see the first row in Table 4 for a parameter comparison

and Figure 5a for the corresponding dn‑scl(ϕbias) profiles. In this
scenario, the model was trained on the full data set of 279
points. Without any human intuition, we require only 2
prediction-guided iterations to obtain perfectly overlapping
dn‑scl(ϕbias) profiles, which are quantified by an average relative
deviation of approximately of 1%.

Next, we demonstrate the strength of our data-driven
pipeline by training the model on a subset of the complete data
set, specifically only 165 of 279 data points and cbulk ≤ 3 × 1018

cm−3. Here, low values of cbulk guarantee that the data set was
generated solely from fast-converging kMC runs. Further, we
apply the sparse potential sampling method as outlined in the
previous section about data efficiency. To test the reduced data
set, we generated an artificial baseline with a parametrization
summarized in the second row of Table 4. After only one
round of optimization, baseline and prediction-guided
dn‑scl(ϕbias) profiles perfectly match; see Figure 5b. These
findings underline that meaningful results can be obtained
from quick and strategic sampling. The simulation results for
baseline fitting inside the full and reduced training data set are
summarized in Tables S1 and S2 in the Supporting
Information, respectively.

Fitting Outside the Training Set. The results from baseline
fitting within the training data set prove the effectiveness and
validity of our methodology. However, the crucial feature of
our data-driven methodology is its capability to accurately
extrapolate into regions outside of the training data set. In the
present case study, we selected a corresponding baseline with a
very large particle density, cbulk = 1020 cm−3; see third row in
Table 4 for the full parametrization. This results in a simulation
setup containing several thousand mobile Li ions (≈8000).

Figure 4. Mean and median relative errors Δdn‑scl and Δ̃dn‑scl, respectively, as a function of the training sample number Ns: (a) full error progression
on a log−log scale and (b) the threshold region for which both errors fall below 10%. The median and mean relative errors require only 50 and 100
training samples, respectively, to remain consistently below the threshold of 10%.

Table 4. Comparison of Parametrizations for the Baseline
and the Prediction-Guided Simulation Runs Denoted as B|n
= 0 and P|n = x with x = 1, 2, Respectivelya

input
parameter

baseline
(B|n = 0)

prediction
(P|n = 2)

rel. deviation
⟨Δdn‑scl ⟩ (%)

cbulk (cm−3) 4.5 × 1018 2.9 × 1018

cmax (cbulk) 1.54 1.62 1.05
εr 677 695
input

parameter
baseline
(B|n = 0)

prediction
(P|n = 1)

rel. deviation Δdn‑scl
(%)

cbulk (cm−3) 2 × 1018 3 × 1018

cmax (cbulk) 2 2.13 0.83
εr 400 593
input

parameter
baseline
(B|n = 0)

prediction
(P|n = 1)

rel. deviation Δdn‑scl
(%)

cbulk (cm−3) 1 × 1020 1.15 × 1020

cmax (cbulk) 1.25 1.6 4.59
εr 50 49
aThe first two rows correspond to baseline fitting inside the full and
reduced training data set (cf. Figure 5a,b, respectively), whereas the
third row corresponds to baseline fitting outside the reduced training
data set (cf. Figure 5c). ⟨Δdn‑scl ⟩ denotes the average relative
deviation of the potential-dependent mean values of Δdn‑scl.

Figure 5. Results of baseline fitting (a) inside the full training data set, (b) inside the reduced training data set, and (c) outside the reduced training
data set. In each case, we obtain perfect overlap with respect to the calculated error bars after a maximum of 2 iterations. B|n = 0 corresponds to the
baseline simulations, whereas P|n = x with x = 1, 2 denotes the first/second iteration of the prediction-guided simulation runs, respectively.
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Simulations with such high particle numbers usually take 5−6
weeks to fully convergence even with an optimized code
framework. Thus, it is crucial to minimize the amount of trial
simulations required for finding a suitable set of input
parameters.

The results of the corresponding baseline and prediction-
guided simulations are shown in Figure 5c. Note that we
applied the same reduced data set as in the previous scenario
to train the model. Remarkably, we obtain good agreement
with respect to the calculated error bars after only one
prediction-guided simulation run. The average relative
deviation between the two dn‑scl(ϕbias) profiles is given by
4.6%. In this context, it is particularly noteworthy that the data
points in the training set closest to the baseline are at least two
orders of magnitude smaller than the baseline. Accordingly, the
computational effort required to sample them was orders of
magnitude lower than for the predicted baseline. This finding
alone can prove to be crucial in future studies as a high level of
understanding for the physical phenomenon can be generated
with minimal effort and strategic sampling. The simulation
results for baseline fitting outside the reduced training data set
are summarized in Table S3 in the Supporting Information.

Full Parameter Space Investigation. The hitherto
analysis demonstrates the high accuracy of the constructed
surrogate model inside and outside of the training data set.
Therefore, we may utilize the surrogate model for a full
parameter space investigation to visualize the influence of
several input parameters on the output quantities presented in
Table 1. Here, we consider the depletion layer thickness dn‑scl,
the thickness ratio , and the potential ratio for a wide
range of cbulk and cmax as well as fixed εr and ϕbias; see Figure 6.

In general, the presented results are physically consistent,
which indicates that the algorithm has gained enough
information about the process to interpolate inside and to
extrapolate outside the training data set. dn‑scl is increasing with
increasing cmax and decreasing with increasing cbulk; see Figure
6a. The former dependency can be rationalized by a growing
number of available vacancy sites, whereas the latter depend-
ency arises from a more effective electric-field screening for
higher Li-ion densities (cf. Debye length for liquid electro-
lytes). In contrast, the thickness and potential ratios (cf. Figure
6b,c, respectively) are essentially independent of cbulk as the
depletion as well as the accumulation layer respond similarly to
changes in cbulk. Further, increases with increasing cmax, while

exhibits a reverse dependency on cmax. This behavior can be
rationalized by considering dp‑scl (see Figure S1, Supporting
Information), which naturally decreases with increasing cmax.
The simultaneous increase and decrease of dn‑scl and dp‑scl,
respectively, with increasing cmax leads to a corresponding
increase in the thickness ratio . Finally, the decrease of as
a function of cmax can be explained by the decreasing potential
drop over the accumulation layer for increasing cmax as the
accumulation layer capacitance becomes the bigger component
in a series connection with the depletion layer capacitance.
Additionally, we have performed similar parameter space
investigations for variable permittivity (see Figures S2 and S3,
Supporting Information), specifically εr = 100 and εr = 1400
for ϕbias = 2.5 V. It can be observed that dn‑scl and dp‑scl increase
with increasing permittivity due to an enhanced screening of
electrostatic interactions.

It is noteworthy that the surrogate model based on GPs has
a built-in uncertainty quantification; see the relative

Figure 6. Full parameter space investigation for a fixed permittivity of εr = 677 and a fixed potential of ϕbias = 2.5 V: (a) depletion layer thickness,
dn‑scl, (b) thickness ratio , and (c) potential ratio . The corresponding relative uncertainty Δdn‑scl, , and are shown in (d), (e), and (f),
respectively. Regions with cbulk > 1019 cm−3 were fully extrapolated by the surrogate model.
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uncertainties in Figure 6d−f for dn‑scl, , and , respectively.
In general, higher relative uncertainties correspond to rather
undersampled regions. However, considering the overall level
of uncertainty (maximum of 25%), the constructed surrogate
model can be considered to be sufficiently accurate even in
unsampled areas�another indicator for the remarkable
extrapolation capabilities of our methodology. On the other
hand, if a higher resolution is required, the uncertainty
quantification enables an informed decision on subsequent
sampling.

In summary, the surrogate model is well-suited to replace
expensive kMC simulations in many practical cases when a
local resolution of output quantities is not required. The
substitution is threefold: (1) The outputs of fast-converging
kMC runs, here, corresponding to low particle densities, are
generated. (2) These outputs are utilized to train the GP
surrogate model, which in turn substitutes the whole parameter
space. (3) Depending on the required accuracy and
application, additional simulation runs can be performed in a
selective and automated fashion. However, please note that the
kMC method itself is a stochastic method and exhibits
corresponding statistical fluctuations. Therefore, it is important
not to oversample regions in which the dominant uncertainty
arises from the physical and not the data-driven model. In this
sense, physical intuition still plays an important role even
though it can be compensated for by additional data points.

Future Improvements. Concluding, we want to provide
some routes for additionally improving the proposed data-
driven pipeline. In general, we advise to fully exploit the
physical intuition present for the investigated system. For
instance, in the present case study, it is apparent that
dn‑scl(ϕbias) grows nonlinearly for ϕbias ≤ 0.5 V and linearly
otherwise; see Figure 5. Hence, a further increase in data
efficiency can be achieved if the potential range is restricted to
ϕbias > 0.5 V. Further, a lot of qualitative physical insight exists
for the given application. In particular, the monotonicity of the
space-charge layer formation with respect to the input
parameters is well-established; see ref 46. This knowledge
can be directly included in the form of gradient classification as
outlined in ref 61. Additionally, we may incorporate a
quantification for the kMC-inherent statistical fluctuations via
a noise kernel. In this way, not only a realistic estimation of the
prediction with respect to the kMC model can be added but
also with respect to innately error-prone real-world measure-
ments. By combining the uncertainty of the data-driven and
the physics-based model, a multifidelity model can be
implemented in which a data-driven model trained on kMC
simulations will provide predictions. The uncertainty of this
model will then determine whether an additional simulation or
a real-world experiment is necessary.

Conclusions. In conclusion, we have presented an
innovative and robust data-driven approach to automate the
parametrization of kinetic Monte Carlo models. Our method
couples the original kMC algorithm with a feedback loop
consisting of a surrogate model based on Gaussian processes, a
system-specific acquisition function, and Bayesian optimiza-
tion. The surrogate model and the acquisition function operate
as the two main components of Bayesian optimization, which
enables the guided prediction of suitable input parameters for a
given output/target quantity. The surrogate model is cheap to
evaluate and trained via a database generated from the outputs
of fast-converging kMC simulations. In contrast to intuition-
based parameter searching, we require only 1 to 2 iterations to

reconstruct appropriate sets of input parameters. Remarkably,
the latter statement holds inside and outside the bounds of the
training data set demonstrating the extrapolation capabilities of
our data-driven approach. Featuring accurate extrapolation is
of high relevance when the direct kMC simulation of such
regions is connected to large computational costs. Moreover, a
sufficiently accurate surrogate model with a well-quantifiable
error margin may fully replace potentially expensive kMC
simulations, which is a viable option in many practical use
cases.

The effectiveness of our data-driven optimization pipeline
has been demonstrated by means of a highly significant
electrochemical process for all-solid-state battery operation�
the space-charge layer formation in solid-state electrolytes. The
investigated process showcases a system with several open
input parameters, which extremely profits from a guided and
data-efficient parametrization scheme. We demonstrate that
the applied predictor is not only highly accurate but to the
same degree also data-efficient. Further, we consider different
scenarios of inverse problem solution inside and outside the
training data set and recover suitable sets of input parameters
for given values of depletion layer thickness dn‑scl. Finally, a full
parameter space investigation is performed for all output
quantities (dn‑scl, dp‑scl, , and ) to highlight the accuracy of
the constructed surrogate model.

The main innovation of our data-driven optimization
pipeline for kMC models is its capability to extrapolate into
regions outside of the training data set with a remarkably low
error margin. Thus, an efficient parametrization of potentially
expensive kMC simulations is enabled. Notably, the underlying
surrogate model based on Gaussian processes relies solely on
the output of fast-converging kMC simulations. Hence, our
data-driven methodology opens a pathway for the efficient
treatment of complex arbitrary systems via kMC simulations.

■ COMPUTATIONAL DETAILS
The simulation code of the space-charge layer formation in
solid-state electrolytes has been implemented in C++ in our in-
house kinetic Monte Carlo framework.6 Each kMC simulation
was run on eight cores of an AMD Ryzen Threadripper 3990X
@2.9 GHz with 64 hardware cores. The source code is not yet
open accessible as it is part of a larger software project which is
going to be published separately at a later time. Bayesian
optimization for parameter searching and the surrogate model
based on Gaussian processes have been implemented in-house
in Python. For the surrogate model, the GPY library62 has been
utilized. The corresponding source code and the complete data
set are accessible via GitHub https://github.com/benkour/
Utilizing-Data-Driven-Optimization-to-Automate-the-
Parametrization-of-Kinetic-Monte-Carlo-Models.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpca.3c02482.

Tabulated values of baseline fitting within the training
data set; tabulated values of baseline fitting outside the
training data set; full parameter space investigation of
dp‑scl for εr ∈ [100, 677, 1400] and ϕbias = 2.5 V; full
parameter space investigation of dn‑scl, , and for εr =
100 and ϕbias = 2.5 V; and full parameter space
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investigation of dn‑scl, , and for εr = 1400 and ϕbias =
2.5 V (PDF)
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ABSTRACT: The space-charge layer (SCL) phenomenon in Li+-
ion-conducting solid-state electrolytes (SSEs) is gaining much
interest in different fields of solid-state ionics. Not only do SCLs
influence charge-transfer resistance in all-solid-state batteries but
also are analogous to their electronic counterpart in semi-
conductors; they could be used for Li+-ionic devices. However,
the rather “elusive” nature of these layers, which occur on the
nanometer scale and with only small changes in concentrations,
makes them hard to fully characterize experimentally. Theoretical
considerations based on either electrochemical or thermodynamic
models are limited due to missing physical, chemical, and
electrochemical parameters. In this work, we use kinetic Monte
Carlo (kMC) simulations with a small set of input parameters to
model the spatial extent of the SCLs. The predictive power of the kMC model is demonstrated by finding a critical range for each
parameter in which the space-charge layer growth is significant and must be considered in electrochemical and ionic devices. The
time evolution of the charge redistribution is investigated, showing that the SCLs form within 500 ms after applying a bias potential.

1. INTRODUCTION
Applications of ion-conducting solids range across energy
storage,1 energy conversion,2 and ionic devices.3 One possible
application of Li+-ion-conducting solid-state electrolytes (SSEs)
is an all-solid-state battery, potentially enabling Li-metal anodes
with the SSE posing as an impenetrable barrier to lithium
dendrites.4 While the ionic conductivity of the SSE is reaching
the realm of their liquid counterparts,5 the interface of the SSE
toward materials with different electrochemical potentials, such
as electrodes, remains a source for high ionic resistances.6

Despite plenty of research into interface reactions,7 formation of
passivation layers,8 and electrochemical stability,9 the mere
charge redistribution to accommodate the electrochemical
potential difference between the two materials still lacks
fundamental understanding. The so-called space-charge layer
(SCL) in SSEs describes the phenomenon of charge
accumulation or depletion at the interface of the SSE. As the
only mobile species in the SSE are the cations, whether it is
oxygen, lithium, or other ion-conducting solid, the formation of
SCL is a mere redistribution of cations.
For Li+-ion-conducting SSE, a variety of theoretical and

experimental approaches have been used to investigate these
evasive layers of altered Li+-ion concentration within the SSE
crystal lattice. As the electrochemical potential difference is the
driving force for SCL occurrence, the effect can be investigated
under blocking conditions by varying the potential drop across
the interface. One study, based on a thermodynamic model with
a numerical solution,10 concludes that for a set of approximate

parameters, the SCL extents tens, if not hundreds, of nanometers
into the SSE at relatively low potentials. Based on electro-
chemical models, other theoretical considerations conclude that
the impact should be negligible and the width of such a layer not
larger than a few nanometers.11

In previous studies, we explored the formation of SCL under
blocking conditions experimentally using electrochemical
impedance spectroscopy (EIS)12 and spectroscopic ellipsom-
etry13 on a model material system, a Li+-ion-conducting glass-
ceramic by Ohara Inc. The SCL width was found to range up to
200 nm into the SSE at a bias potential of 1.5 V with
spectroscopic ellipsometry, which is in reasonable agreement
with the capacitance of such a layer measured with impedance
spectroscopy. The relatively wide layer was found to be in
coexistence with a single Li+-ion layer, which can be understood
as the formation of a compact Helmholtz layer in liquid
electrolytes (LEs).14 The comparison of experimentally
obtained widths and concentration changes to theoretical
models is hindered by the uncertainties of physical parameters
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needed to calculate the impact of applied potential on the
formation of an SCL.
The transport of ions in SSEs can be described by a thermally

activated hopping mechanism between unoccupied lattice
vacancies.15,16 Unless a hopping transition is executed, each
ion is spatially assigned to a vacancy. Such a configuration can be
interpreted as a kind of localized state. Accordingly, the overall
transport dynamics can be described by hops from one localized
state to another. In this sense, ionic motion in SSEs fulfills the
criteria of a so-called infrequent-event system. A very well-
established theoretical approach to model such systems is the
kinetic Monte Carlo (kMC) method. In general, kMC methods
are a special subclass of Monte Carlo algorithms that can
simulate the time evolution of nondeterministic systems. kMC
models have been developed for numerous different applications
such as charge transport in disordered organic semiconduc-
tors,17−20 crystal growth,21,22 chemical reaction networks,23−26

vacancy diffusion,27,28 and electrochemical systems.29−32 In the
direct context of solid-state electrolytes, kMC also has been
applied. For instance, Wolverton and co-workers calculated the
room-temperature ion conductivities of cation- and anion-
substituted LiBH4-based SSEs.33 Very recently, Dean et al.
showed that grain boundary space-charge regions in SSEs can
exhibit over- as well as underscreening.34 However, there is no
kMC model that captures the experimentally observed SCL
growth into the SSE, perpendicular to the electrode, for either
fully depleted or fully occupied vacancy lattice.
In this work, we present a predictive kinetic Monte Carlo

model for the SCL formation in SSEs, which features a
perpendicular growth regime. The model requires only a
minimal set of input parameters to simulate the spatial extent
of the SCLs formed for various parameters and bias potentials.
We use a standard parameter set based on previous
investigations to validate the model and compare the results to
experiments. Furthermore, a sensitivity analysis reveals the
impact of physical parameters andmaterial properties, which can
assess the relevance of SCL for a given, new material system. As
kinetic Monte Carlo simulations inherently allow calculations of
the time evolution of concentration profiles, the dynamics of
SCL formation are investigated.

2. THEORY AND MODEL

As outlined above, SSEs transfer ions through a hopping
mechanism in a crystal lattice, which typically consists of
immobile anions as a backbone and a sublattice of vacancies in
which the ions move. As the SCL phenomenon in blocking
conditions is a mere redistribution of mobile charges, it is
essential to notice the physical boundaries. For clarity, only
mobile cations are considered, even though theory35 suggests
that not all cations are mobile at room temperature. The mobile
and immobile cations are located within the anion lattice, where
anions simply neutralize their respective immobile cations.
However, the mobile cations are the drivers of ionic conductivity
and, therefore, can accumulate or deplete in a certain region.
Anion mobility plays a crucial role in polymer-based SSEs,36

which is neglected in this work. On the one hand, the anion
mobility must be low in full ASSB cells to promote interfacial
stability.37 On the other hand, the movement of anions would
certainly play a role in the lattice constants and crystal structure,
an effect that could be part of future kMC simulations.
The concentration of cations is given by cLi+, and it is

important to differentiate between three scenarios.

(i) An electroneutral lattice, where cLi+ and the anion
concentration compensate. This is the case in the bulk
of the SSE and will be described as cLi+,bulk.

(ii) A fully depleted lattice, where no mobile Li+ ions are left.
This forms a maximally electronegative lattice, and the
Li+-ion concentration is cmin.

(iii) A full lattice, where no free vacancies are left. This forms a
maximally electropositive lattice, and the Li+-ion concen-
tration is cmax.

The cation concentration is therefore limited to cmin ≤ cLi+ ≤
cmax and reaches a nonzero equilibrium of cLi+,bulk in the bulk SSE.
While the polarization state of the SSE does not influence the
concentration limits, the material (crystal lattice) and the
temperature will significantly impact the concentrations.
When the SSE is brought into contact with a material of

different electrochemical potentials (either inherent or by
applying a bias potential), the potential drops within a certain
region, which is not electroneutral. The SCL, therefore, occurs
in the vicinity of the interface. The concept of SCL formation is
like that of electrical double layers (EDLs) at the liquid
electrolyte (LE)/electrode interface.38 In EDLs, the anions and
cations accumulate to form charged layers with relatively small
thicknesses.39 The amount of charge and spatial distribution of
the EDL causes the electrical potential to drop within this short-
range and, therefore, the bulk of the LE to stay electroneutral.
While the Li+ concentration is only limited by the volume in LEs,
and thus LEs allow a significantly higher charge density in SSEs,
the limits of Li+ concentration are given by cmin≤ cLi+ ≤ cmax. The
limits in charge density are responsible for the formation of
thicker layers when the same amount of charge must be held to
screen the electrochemical potential difference.
The kinetic Monte Carlo method is a stochastic algorithm to

simulate the sequential time evolution of a system through
different states within its configuration space. As a fundamental
concept, kMC relies on coarse-graining system dynamics. The
investigated system is reduced to a set of long-term states {i}
connected by discrete transitions. In each state i, the systemmay
evolve to a set of possible states {j}. Every transition is governed
by a transition rate, kij, which captures the actual physical process
inducing the transition i → j. The transition rates are crucial
input parameters for the kMC model. Typically, they are either
based on underlying physical models or taken from experiments.
The relative probability of a certain state-to-state transition is
directly proportional to the magnitude of the corresponding rate

P
k

k

k

kij
ij ij

j ijtot
= = ∑ (1)

where ktot denotes the total rate of all possible transitions. In the
so-called Monte Carlo step, two uniformly distributed random
numbers r1, r2 ∈ (0,1) are drawn to determine (1) which
transition, μ, is executed and (2) how much time, τ, has passed
before the transition is performed. Via the first random number
r1, we select transition μ from the set of all transition
probabilities {Pij} according to the inequation

P r P
j

ij
j

ij
1

1

1
1

∑ ∑< ≤
μ μ

=

−

= (2)

The second random number r2 yields the corresponding time-
step
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r
k

ln( )2

tot
τ = −

(3)

Equations 2 and 3 are related to the so-called n-fold or direct
method outlined in ref 40. Subsequently, the system state is
updated according to the chosen transition, μ, and the simulated
time, t, is advanced by τ. In the new system state, the transition
rates must be recalculated before another Monte Carlo step can
be performed. Repeated execution of this procedure results in
the stochastic time evolution of the system. Usually, the
simulation is completed after a user-defined termination
condition, e.g., the simulated time exceeds a certain threshold,
t ≥ tstop.
The general algorithm must be adapted accordingly to

simulate the SCL formation in SSEs via kMC (see Figure 1A) for
a simplified flowchart. In the current study, the application of the
kMC algorithm boils down to five essential steps:

1. System initialization: The experimental set-up is mapped
onto a set of discrete sites that store geometrical (e.g.,
position) as well as physical properties (e.g., potential
energy). The sites either represent vacancies or contact
nodes. At the beginning of the
simulation, vacancies are randomly occupied by Li+

ions according to input bulk density cLi+,bulk.
2. Update of Coulombic energies: The local hopping rates of

each Li+ ion depend on the mutual Coulombic
interactions with all other cations and a neutralizing
anionic background. Since the configuration of mobile Li+

ions changes in each kMC step, the Coulombic energies
must be updated according to the new configuration prior
to the recalculation of hopping rates.

3. Calculation of rate constants: As outlined above, the SCL
formation in SSEs corresponds to a mere redistribution of
mobile Li+ ions. To capture this process on a local scale,
we compute the hopping rates for each Li+ ion to all
unoccupied nearest-neighbor vacancies. The magnitude
of these rates is determined by the physical and
geometrical properties of the investigated SSE sample as
well as the local potential energy surface.

4. Execution of the Monte Carlo step: Two uniform random
numbers r1, r2∈ (0,1) are drawn. Based on eq 2, r1 is used
to select the ion hopping transition to be executed and,
based on eq 3, r2 is used to compute simulated time τ prior
to the transport event. Afterward, we check whether
simulated time t exceeds the steady-state time tstop, which
can be obtained by trial simulations. If t < tstop, another
simulation step is performed. The repetitive execution of
steps 2−4 is also denoted the Monte Carlo loop.

5. Postprocessing: If the termination condition is fulfilled,
the Monte Carlo loop is exited. As a final step, the raw
output data of the simulation are converted into
meaningful physical quantities. Here, we transform the
local relative vacancy occupation times into a correspond-
ing local Li+-concentration profile, which enables the
calculation of numerous other characteristic quantities
such as the potential profile and the SCL thickness/
capacitance.

3. MODELING AND SIMULATION SETUP
Next, we outline the detailed kMC model set-up of an SSE
sample confined between two gold blocking electrodes, see
Figure 1B. The sample is represented by a three-dimensional
primitive orthorhombic lattice constituted of a total number of

Figure 1. Kinetic Monte Carlo Method. (A) System specialized flowchart of the kMC algorithm for simulating the SCL formation in SSEs. (B)
Representation of the experimental set-up as a grid of discrete sites. Blue and yellow sites correspond to vacancies and contact nodes, respectively. The
dashed red arrows visualize the periodic boundary conditions applied in the xy-plane. From a geometrical point of view, each site i is described by an
index triplet (mi

x, mi
y, mi

z), and the total number of sites in xyz-directions are given by Mx, My, and Mz, respectively.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.2c02481
J. Phys. Chem. C 2022, 126, 10900−10909

10902



Mx × My ×Mz sites. Each site i corresponds to a vacancy and is
geometrically defined by an index tripletm = (mi

x,mi
y,mi

z), which
determines physical position r = m·a via lattice constants a =
(ax,ay,az)

T. Accordingly, the total physical size of the lattice is
given by X × Y × Z = Mxax × Myay × Mzaz. In the xy-plane,
periodic boundary conditions are assumed; in the z-direction,
the sample is stacked between two ideal gold contacts (εr→∞)
at z = 0 and Z, respectively. The local potential energy per
vacancy site, Ei, is the superposition of three contributions

E E E Ei i i i
ref F C= + + (4)

where Ei
ref denotes the energy defined by a reference electrode,

Ei
F is the contribution from an external electric field, and Ei

C is the
potential generated by Coulombic interactions of mobile cations
and their respective immobile anions. In the scope of this study,
we arbitrarily set Ei

ref = 0. Ei
F is modeled as a linear potential drop

along the z-axis

E q W
z
Z

( )i
iF

bϕ= − Δ
(5)

where ϕb denotes the applied bias potential, ΔW is the
difference in electrode work functions, and zi is the z-coordinate
of site i. Assuming two identical blocking electrodes, we may set
ΔW = 0. Ei

C is composed of the cation−cation interaction, Ei
cc,

and the anion−cation interaction Ei
ac. Both components are

treated accurately via a three-dimensional Ewald summation
following the methodology established by Casalegno et al.41,42

Since the anions are immobile, Ei
ac can be computed before the

simulation. In contrast, Ei
cc is a function of the current position of

all mobile cations and, thus, must be calculated and updated
dynamically during the simulation. Note that our model does
not consider immobile cations as they are locally neutralized by
respective immobile anions from the underlying anion lattice.
Accordingly, the local potential energy landscape defined by eq 4
is not altered by the presence of immobile cations and, thus, they
do not modify the transport dynamics of the mobile cations.
The experimental set-up applies sample lengths, Ls, of about

150 μma length scale that cannot be covered by any standard
particle-based kMC simulation. However, the previous exper-
imental findings demonstrate that SCL formation is restricted to
a rather small fraction of the actual sample length (about 0.25%).
For themost part, the sample remains in bulk conditions. Hence,
we can artificially decrease Ls without disturbing the actual SCL
formation. The only requirement is that the depletion and
accumulation layers must not overlap. For instance, assuming
SCL widths in the range of 200−300 nm (as recently
determined by spectroscopic ellipsometry),13 it is sufficient to
consider a sample length of 1 μm. The artificial reduction of the
experimental sample length relies on the fundamental
assumption that SCL formation is independent of the device
length. This hypothesis stands in direct contrast to the results
from the thermodynamic model developed by Braun et al.10

Later, we will prove the validity of our hypothesis via a sensitivity
analysis with respect to Ls. It is true that a shortened sample
length does not perturb the steady-state distribution of Li+ ions.
However, the time evolution of the SCL formation is
undoubtedly a function of Ls as the sample length determines
the electric field strength, ε, and, thus, the drift velocity, vd, of Li

+

ions. In the present study, we assume that ε is sufficiently low to
guarantee a linear relationship between field strength and drift
velocity.
The most critical aspect of the kMC model is the

incorporation of a lower and an upper limit for the concentration

of mobile Li+ ions, in the following denoted cmin and cmax,
respectively. The lower limit is naturally given by cmin = 0. For
the upper limit, we choose a rather pragmatic approach: the
kMC model discretizes the SSE sample into a primitive
orthorhombic lattice of vacancies that can only be occupied by
onemobile Li+ ion at a time. Accordingly, the maximum possible
concentration is dictated by the inverse volume of a unit cell, cmax
= ax × ay × az)

−1. The required lattice parameters of the vacancy
grid are then chosen based on the given input value for cmax. For
instance, imposing cmax = 4.5 × 1018 cm−3 yields lattice constants
of ax = ay = az≈ 6 nm. The choice of cmax also affects the strength
of local Coulombic interactions. Low values of cmax result in large
lattice constants and, thus, amplified electrostatic screening. All
lattice parameters applied in this study are summarized in Table
S1, Supporting Information (SI).
The simulation starts at t = 0 with a random distribution of Li+

ions. The number of mobile cations is imposed by the volume of
the simulation box and the given input bulk concentration cLi+

bulk.
To ensure electroneutrality, we assume a homogeneous anionic
background. The hopping of cations between two vacancy sites i
and j is captured via the Miller−Abrahams formula43

k k

E

k T
E

E

exp , 0

1, 0
ij

ij
ij

ij

0 B= · − Δ Δ <

Δ ≥
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k
jjjjj

y
{
zzzzz

(6)

where k0 is the attempt-to-hop frequency, ΔEij denotes the
difference in potential energy between vacancies i and j, kB is the
Boltzmann constant, and T gives the absolute temperature.
Hopping events are restricted to nearest-neighbor vacancies.
The maximum attempt-to-hop frequency is estimated from the
experimentally determined activation barrier for diffusion, Ea,
according to an Arrhenius equation44

k
k T

h
E

k T
exp0

B a

B
= −i

k
jjjjj

y
{
zzzzz (7)

where h is the Planck constant. All simulations were conducted
for T = 300 K and Ea = 0.42 eV resulting in a maximum hopping
rate of k0 ≈ 0.55 × 106 s−1. For nearest-neighbor hopping, the
root mean diffusion length is given by the chosen lattice
constants. To incorporate the influence of different lattice
constants in the xyz-direction, we scale k0 by either ax

−2 or ay
−2 or

az
−2, respectively, following the classical random walk model for
diffusive motion.45 For reasons of completeness, we note that
the gold contacts are inert, corresponding to the experimental
blocking conditions. In the scope of this study, the contacts
exclusively represent electrostatic boundary conditions.

4. COMPUTATIONAL ASPECTS AND DATA
EVALUATION

In general, the simulation of the SCL formation in SSEs via kMC
is a computationally demanding task. The high computational
effort arises from the high number of mobile Li+ ions (N =
3000−6000 depending on the chosen set of input parameters)
as the dynamic calculation of Coulombic energies via an
optimized Ewald summation still scales as N( )3/2 .46 To make
the kMC simulations feasible in a reasonable amount of
simulation time, we apply four different techniques to reduce
the computational effort:

1. Application of modern C++: Our in-house kMC
framework18 is implemented within modern C++ and
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makes heavy use of novel features from C++17 (e.g.,
parallel algorithms) and C++20 (e.g., ranges and views).

2. Caching of pair potentials: The system discretization is
based on a regular grid that enables the precalculation (or
caching) of all pair potentials possibly required by the
Ewald summation. A detailed discussion can be found in
ref 39.

3. Dipole-update method: By introducing a fictitious dipole
into the update of Coulombic energies, the computational
effort connected to nonmoving Li+ ion can be reduced to

N( ). The methodology was originally introduced in ref
47.

4. Parallelization: The update of Coulombic energies and
the calculation of rate constants (cf. steps 2 and 3 in
Figure 1A) correspond to loops running over the total
number of involved Li+ ions. The computations for each
Li+ ion are independent of each other and, thus, can be
trivially parallelized.

Based on these techniques, we obtain an average simulation
time per fixed input parameter combination of approximately 4
days using eight cores (Intel Xeon E-2288G@3.70 GHz) on the
HPC server cluster of the Chair of Nano and Quantum Sensors
at the Technical University of Munich.
The actual output quantities of the kMC model are time-

dependent, three-dimensional profiles of relative vacancy
occupation times. However, if not stated otherwise, we will
consider the steady-state configuration, which enables us to drop
the time dependency. From the relative occupation times, local
concentration profiles, cLi+(x,y,z), can be computed (cf. ref 39).
Due to the homogeneity of the three-dimensional concentration
profiles in the xy-plane (see Figure 1A), we may calculate
averaged concentration profiles, ⟨cLi+(z)⟩, to simplify visual-
ization and further discussion of the simulation results. The
averaged concentration profiles, in turn, can be used to compute
the average charge density

z q c z c z( ) ( ( ) ( ) )Li Aρ⟨ ⟩ = ⟨ ⟩ − ⟨ ⟩+ − (8)

Figure 2. Simulation results for the standard parameter set. (A) Local concentration profile, cLi+(x,y,z). (B) Averaged concentration profiles, ⟨cLi+(z)⟩,
for variable ϕbias and (C) corresponding potential profiles calculated via eq 9. (D) Time evolution of ⟨cLi+(z)⟩ for ϕbias = 2.5 V and (E) corresponding
potential profiles. For the given sample length, the SCL formation reaches a steady state after approximately 500 ms.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.2c02481
J. Phys. Chem. C 2022, 126, 10900−10909

10904



where q is the elementary charge and ⟨cA−(z)⟩ = cLi+
bulk = const. is

the concentration of the homogeneously distributed anionic
background. Based on the one-dimensional charge density
profiles, the Poisson equation may be solved to obtain
corresponding potential profiles ϕ(z)

z
z

z
( )

( )2

2
0 r

ϕ ρ
ε ε

∂
∂ = − ⟨ ⟩

(9)

where ε0 is the vacuum permittivity and εr is the relative
permittivity of the bulk SSE. To make the simulation results
comparable to the experimental measurements, we have also
determined the thicknesses of the accumulation and depletion
layer, in the following denoted dp‑scl and dn‑scl, respectively. For
this purpose, we have defined simple criteria to extract the
extension of the SCLs from the one-dimensional density
profiles: The depletion layer is represented by the part of the
concentration profile that fulfills the inequation

c z c( ) (1 )Li Li
bulkδ⟨ ⟩ ≤ − ·+ + (10)

where δ = 0.1 is a threshold value chosen according to the
resolution of the SCL thicknesses determined by spectroscopic
ellipsometry. Analogously, the accumulation layer is defined by

c z c( ) (1 )Li Li
bulkδ⟨ ⟩ ≥ + ·+ + (11)

Finally, the SCL thicknesses are used to compute corresponding
area-specific capacitances via the well-known formula of a
parallel-plate capacitor

C
dn/p scl

0 r

n/p scl

ε ε=−
− (12)

where εr denotes the relative permittivity of the bulk SSE.

5. RESULTS AND DISCUSSION
Within the scope of this study, we want to investigate the SCL
formation in SSEs with different physical properties. For this
purpose, we vary the bulk concentration cLi+

bulk ∈ [5 × 1017, 3 ×
1018, 1 × 1019] cm−3, the maximum concentration for
accumulation of Li+ ions, cmax ∈ [1.25, 1.5, 2.0]·cLi+

bulk, and
relative permittivity of the bulk SSE, εr ∈ [100, 677, 1400].
Additionally, the external bias potential ϕbias is swept from 0 to
4.5 V in steps of 0.5 V to cover the full operating regime in a
potential all-solid-state battery application. To elucidate the

characteristic time scale of ion redistribution, we have also
simulated the time evolution of the SCL formation for 5 s for a
set of standard input parameters determined in previous studies:

• Bulk concentration: cLi+
bulk = 3 × 1018 cm−3

• Maximum concentration: cmax = 1.5 cLi+
bulk (corresponds to

the thickness ratio obtained by spectroscopic ellipsom-
etry13)

• Permittivity: εr = 677 (corresponds to the value
determined by impedance spectroscopy12)

• Bias potential: ϕbias = 2.5 V

Since kMC is a stochastic algorithm, any statistically
significant output quantity must be obtained as an average
over a sufficient number of simulation runs. Here, we mostly
consider steady-state quantities for which we may apply the
block averaging technique as described in ref 39. In contrast, the
results for the time-dependent SCL formation were generated by
averaging over 50 independent simulation runs.
To rationalize the kMC simulation results, we first analyze the

time-dependent ion redistribution for the standard input
parameter set, see Figure 2. The local steady-state concentration
profile, cLi+(x,y,z), is illustrated in Figure 2A. The application of a
positive bias potential leads to the formation of depletion and
accumulation layers at the respective blocking electrodes,
whereas the bulk SSE remains in an electroneutral condition.
As outlined above, the homogeneity of the three-dimensional
concentration profiles in the xy-plane allows us to consider
averaged concentration profiles, ⟨cLi+(z)⟩, in the following.
Figure 2B shows the averaged concentration profiles of the
standard parametrization for variable ϕbias. As expected, the SCL
formation only occurs for nonzero bias potentials, and the SCL
grows perpendicularly into the SSE when the potential is
increased. The Li+ accumulation and depletion show an inherent
asymmetrydue to the limits of accumulable and depletable
charges: cmin ≤ cLi+ ≤ cmax. If bulk concentration cLi+,bulk is
unevenly spaced between cmin and cmax, and the number of
charges depleted and accumulated are equal, the SCLs will form
asymmetrically.
The growth of the SCLs, however, does not scale linearbut

rather reaches a plateau for high potentials. The density profile
also shows that bulk stays indeed electroneutral as the Li+

density is equal to the anion density. The bulk is therefore
effectively screened from the influence of the bias potential,
which can also be observed in Figure 2C, where the potential

Figure 3. Comparison to experimental results. (A) SCL thicknesses dn/p‑scl as a function of ϕbias. The thicknesses of depletion and accumulation layer
from kMCwere obtained via eqs 10 and 11, respectively. Red dots correspond to the experimental results obtained by spectroscopic ellipsometry. (B)
Capacitance of the depletion layer, Cn‑scl, as a function of ϕbias. Capacitances from kMC were calculated via eq 12. Red dots correspond to the
experimental results obtained by electrochemical impedance spectroscopy. In both plots, black squares, triangles, and diamonds illustrate the kMC
results for different values of cmax.
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profiles are calculated via eq 9. From the potential profiles, the
asymmetry in the potential drops can be observed, as in this case
a higher potential drop occurs in the accumulation layer
compared to the depletion layer. The bulk potential is, therefore,
shifted upward to the applied potential if the depletion layer is
thinner than the accumulation layer. To conclude this first part
of our analysis, we discuss the time evolution of the averaged
concentration and the potential for the standard parameter set,
see Figure 2D,E, respectively. The redistribution of cations
induces a distortion of the initially linear potential drop over the
sample. The SCL formation essentially occurs on a time scale of
roughly 500 ms for the given device length of 1500 nm.
Afterward, accumulation and depletion of mobile Li+ ions are
negligible as recognizable by the identical potential profiles for
500 ms and 5 s. Assuming a linear relationship between electric
field strength and drift velocity, we can scale up the time scale
from kMC to an experimentally applied length of 150 μm, which
results in an SCL formation time of 50 s.
With the physical validity of the model proven, the results can

be compared to the experimental results from our previous
studies.12,13 Note that the experimental range of bias potentials
is restricted to 0 V ≤ ϕbias ≤ 1 V to ensure that gold acts as a
blocking electrode, see refs 12 and 48 for a detailed discussion.
In contrast, the kMC simulations can be extended to larger
potentials to extrapolate the trend in the experimental data.With
the thickness of the SCLs being the most prominent parameter,
the experimental results obtained by in situ spectroscopic
ellipsometry are shown in Figure 3A with the typical asymmetric
increase of thickness depending on whether the accumulation

layer (positive biases) or the depletion layer (negative biases)
are observed. The accumulation layer is roughly 1.5 times larger
than the depletion layer. A plateau formation can be observed for
potentials larger than 0.5 V, correlating to a fully depleted or
filled lattice after which the SCL grows perpendicular to the SSE.
Quantitatively, the thicknesses range from 50 to 330 nm
depending on the applied bias. The kMC simulations agree to all
observations if the physical parameters (Li+-ion and vacancy
concentration and dielectric constant) are chosen carefully.
While the simulated bias potential range is larger than the
experimentally feasible range, the same strong increase in SCL
thickness can be observed when the bias potential is increased.
The bias potential at which the SCL thickness is observed to be
minimal in the experimental data matches that of 0 V bias
potential in the kMC simulation, indicating that the electro-
chemical potential difference between the Au electrode and SSE
is negligible. The experimentally determined spatial extent of the
SCLs matches that of the kMC simulation for the standard
parameters chosenproving the closeness of the parameters to
the true physical values.
There is a second property of the SCLs that can be validated

experimentally, which is independent of the spatial extent: the
capacitance. Experimentally, only the capacitance of the
depletion layer is accessible, which is explained in previous
work, see ref 12. The derivation of the SCL capacitance from the
kMC simulations can be done by eq 12. Electrochemical
impedance spectroscopy (EIS) was used to obtain the data in
Figure 3B showing a strong decrease with increasing potential.
The experimentally observed capacitances range between 4 and

Figure 4. Sensitivity analysis. (A) Ratio d
d

n scl

p scl

−
−

as a function of cbulk and cmax for εr = 677 andϕbias = 2.5 V. (B) Ratio bulk

bias

ϕ
ϕ

as a function of cbulk and cmax for εr

= 677 and ϕbias = 2.5 V. (C) Averaged concentration profile, ⟨cLi+(z)⟩, of the standard parameter set for different sample lengths Ls. (D) Averaged
concentration profile, ⟨cLi+(z)⟩, of the standard parameter set for different permittivities εr.
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12 μF/cm2, which is in good quantitative agreement with the
simulated capacitances. However, one exception is given by the
capacitance value for 0 V bias potential. Here, we obtain a
depletion layer thickness of 0 nm based on the criterion defined
in eq 10, which would result in an infinitely large capacitance.
This limitation is going to be addressed in future work by
refining the simulation model as well as the criterion for
extracting the SCL thicknesses. Nevertheless, the kMC
simulations are capable of capturing the physical behavior of
the experimentally predicted SCL formation for a wide range of
bias potentials. Next, the sensitivity of the SCL formation on the
input parameters is studied to see how material properties
impact the thickness and asymmetry of SCLs.
As introduced above, three physical parameters are of

fundamental importance to the kMC simulations: the Li+-ion
concentrations (bulk and maximal) and the dielectric constant.
The impact of the limits on the Li+-ion concentration can be split
into two considerations: If the bulk Li+-ion concentration varies,
the accumulation layer should be unaffected as the upper Li+

concentration is not dependent on the number of Li+ ions
present in the bulk. Therefore, only the depletion layer changes
when the bulk Li+-ion concentration is changed. For lower
concentration deviations for a depleted lattice (i.e., lower bulk
Li+-ion concentration), the depletion layer must grow larger to
hold a similar charge (assuming an equal potential drop and
dielectric constant) and vice versa. However, the maximal
concentration for Li+ ion only impacts the accumulation layer
formation by defining the maximal concentration change. The
asymmetry is most easily observed when viewing the ratio of the
accumulation layer to depletion layer thickness for a given

potential. Figure 4A shows the dependence of the ratio d
d

n scl

p scl

−
−

for

bulk densities between 5 × 1017 and 1 × 1019 cm−3 and maximal
densities between 1.25 and 2 times the bulk density. The
depletion and accumulation layer are of the same thickness if the
accumulable concentration is the same as the depletable (i.e.,
nmax = 2·nbulk), which is the same as claiming that the amount of
concentration deviation is equal in both directions. If the
accumulable concentration is much lower than the bulk
concentration (nmax = 1.25·nbulk), the accumulation layer
grows much larger than the depletion layer as it cannot hold
an equal amount of charge per volume. While these conclusions
are to be expected from a concentration point of view and could
have been predicted by merely claiming the charge distribution
to happen within the boundaries and a certain number of
charges moved from depletion to accumulation layer, the
dependence of the ratio on the actual bulk Li+-ion density is
somewhat unexpected. A close look at the actual model input
compared to the nominal value of cmax, see Table S1 (SI),
explains this behavior. As shown in Figure 4A, the distribution of
the ratio becomes more pronounced for higher bulk
concentrations, a fact pointing toward a fundamental difference
to the results from the aforementioned thermodynamicmodel.10

Not only does this impact the thickness of the layers but also the
potential of the bulk SSEwhich is electroneutral and therefore
has a constant potential, as shown in Figure 4B. The constant
bulk potential is not right in the center between the two
electrodes, i.e.,ϕbulk = 0.5ϕbias, but shifted upward if the layers of
not of equal widths.
While the asymmetry is affected by the charge carrier

concentrations, as one would expect from basic electrochemical
considerations, the impact of the sample or device length on the
charge accumulation is not obvious. As shown in Figure 4C, the

bulk SSE stays completely electroneutraland should therefore
not impact the charge accumulation. However, the Debye-like
length, which has been described in the thermodynamic model,
predicts a direct, inverse proportionality of the SCL thicknesses
to the sample length. For a set of three different device lengths
with otherwise equal parameters, the thicknesses of the SCLs are
shown to be constant in Figure 4C.With a variation of the device
length between 1.2 and 2.4 μm, the depletion layer does not
change its position or shape, and the accumulation layer is
simply shifted toward the geometric end of the device where it is
in contact with the electrode. Therefore, the simulated charge
carrier concentrations, and thus potential profiles, are
independent of the device length. The impact of the dielectric
constant, which ranges quite drastically between easily polar-
izable polymer electrolytes49 and rigid SSEs,50 is shown in
Figure 4D. Higher polarizability leads to thicker SCLs, which
agrees with the parallel plate capacitor analog as well as the
Debye screening theory.

6. CONCLUSIONS
Overall, the findings of the kMC simulations are in good
agreement with the thermodynamic simulations in ref 10, which
predict the same perpendicular growth when the bias potential is
increased. Not only do simulations show the same qualitative
SCL growth but only employing two fundamental input
parameters (the bulk and maximal charge carrier concen-
trations) can predict the order of magnitude of the SCL
thicknesses in different materials. Physically coherent, the
device/sample length is shown not to impact the SCL formation
for three different lengths with only the electroneutral bulk
growing. The calculated capacitances of the depletion layers
match the experimental data of a previous study with
considering that only approximations of the input parameters
are availableastonishing accuracy.
Moreover, a comparison of the accumulation layer, where the

maximal ion concentration comes into play, cannot be achieved
with impedance data, as this analysis is limited to the resistive
depletion layer. The comparison of spectroscopic ellipsometry
data of a previous study proves that the ratio of positive and
negative SCLs is accurately represented by the kMC simulations.
Notably, the charge distributions can be directly transformed

into potential profiles, which reveal that the potential drops are
not equal at the two interfaces. The electrochemical stability of
SSEs toward anode and cathode materials is a commonly
discussed problem. When the stability of the anode and cathode
is known, the charge carrier concentrations, therefore, allow to
tune the bulk potential and thus the potential dropspossibly
allowing higher overall voltages or different electrode materials.
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ARTICLE

Mass transport and charge transfer through an
electrified interface between metallic lithium and
solid-state electrolytes
Leon Katzenmeier1,2,6, Manuel Gößwein 3,6, Leif Carstensen1,2, Johannes Sterzinger 2, Michael Ederer2,

Peter Müller-Buschbaum 4,5, Alessio Gagliardi3✉ & Aliaksandr S. Bandarenka 1✉

All-solid-state Li-ion batteries are one of the most promising energy storage devices for

future automotive applications as high energy density metallic Li anodes can be safely used.

However, introducing solid-state electrolytes needs a better understanding of the forming

electrified electrode/electrolyte interface to facilitate the charge and mass transport through

it and design ever-high-performance batteries. This study investigates the interface between

metallic lithium and solid-state electrolytes. Using spectroscopic ellipsometry, we detected

the formation of the space charge depletion layers even in the presence of metallic Li. That is

counterintuitive and has been a subject of intense debate in recent years. Using impedance

measurements, we obtain key parameters characterizing these layers and, with the help of

kinetic Monte Carlo simulations, construct a comprehensive model of the systems to gain

insights into the mass transport and the underlying mechanisms of charge accumulation,

which is crucial for developing high-performance solid-state batteries.
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A ll-solid-state batteries (ASSB) attract increasing attention
as a promising alternative to traditional Li-ion batteries
due to their potentially higher energy density, longer

lifespan, and improved safety1, 2. The solid-state electrolyte (SSE)
used in ASSBs replaces the liquid or polymer electrolyte used in
conventional Li-ion batteries and enables the use of metallic
lithium (Li(s)) anode3,4. The holy grail of the anode materials
promises 3860mAh g−15, but it is inherently challenging to sta-
bilize them due to the formation of dendrites and inhomogeneous
plating/stripping reactions6,7. As such, one of the significant
challenges in developing solid-state batteries is the charge accu-
mulation at the Li(s)/SSE interface8. This charge accumulation
occurs due to the mismatch in electrochemical potential between
the Li(s) and the SSE, forming a space charge layer (SCL) at the
interface9,10. The SCL can cause significant changes in the local
concentration of mobile Li-ions in the SSE, leading to increased
interfacial resistance11,12.

The concept of SCL, describing a depletion or accumulation of
mobile Li-ions, has been the focus of our previous work; until now,
however, only under ion-blocking conditions13. In this case, with
no mass transport across any of the two interfaces, the Li-ions will
deplete on one side and thus accumulate on the far side of the
electrolyte14. Globally, charge neutrality prevails in the SSE15, with
the total amount of additional charge at the two interfaces being
equal. The blocking electrode configuration was previously studied
using electrochemical impedance spectroscopy (EIS) and spectro-
scopic ellipsometry (SE). While SE revealed an asymmetric but
wide (>100 nm) charge depletion and accumulation layers on
either side of the SSE11, no information about the faradaic elec-
trochemical behavior of the SCLs could be obtained13. A recent EIS
study revealed that the conductivity inside the SCLs is at least one
order of magnitude lower than the bulk conductivity, which should
significantly influence battery performance12. A review on the SCL
formation between sulfide SSEs and oxide cathodes revealed a
significant charge accumulation16. To understand the importance
of the SCL formation in solid-state electrochemistry, a quick jump
into semiconductors reveals a very insightful analogy. When two
semiconductors of different chemical potential for electrons are
brought into contact, a non-conductive depletion layer forms.
When the same happens in between two ion conductors (such as a
SSE and an electrode material), the interface resistances grows
dramatically.

To rationalize the experimental results from EIS and SE by
means of a theoretical model, we recently developed a simple yet
predictive kinetic Monte Carlo17,18 (kMC) model to simulate the
mass-transport phenomenon in SSEs, including the electrostatic
interactions among ionic species, under blocking conditions19.
The validity of our kMC approach was proven by reproducing the
quantitative trends in SCL thicknesses and depletion layer capa-
citance. Moreover, the kMC simulation enabled us to determine
inaccessible physical quantities via experiments such as local
concentration and potential profiles as well as their time evolu-
tion into a steady state. The analysis of local concentration pro-
files as a function of an applied bias potential demonstrated that
the depletion and accumulation layers’ perpendicular growth
regime is directly connected to a fully depleted or fully occupied
vacancy lattice, respectively. This observation agrees with pre-
vious experimental findings and other modeling approaches, such
as thermodynamic simulations9. Remarkably, the kMC model
requires only a minimal set of physically coherent input para-
meters mostly available via direct experimental measurement:
(1) the bulk concentration of mobile Li-ions (cLiþ;bulk), (2) the
maximum concentration of mobile Li-ions in a fully occupied
lattice (cmax), (3) the relative permittivity of the bulk SSE (εr) and
(4) the applied bias potential (ϕbias). The consequent next step is
the extension of the original setup for non-blocking conditions to

investigate the mass transport between Li(s) and a corresponding
oxide SSE. For this purpose, we can exploit one of the many
favorable intrinsic properties of kMC: the straightforward
incorporation of individual particle-based processes, such as the
injection and removal of Li+ at the interface between metallic Li
and an SSE20.

In the present work, the application of three methods is aimed
at investigating the non-blocking conditions at the SSE/lithium
metal interface in solid-state battery-relevant systems. Spectro-
scopic ellipsometry is used to measure the optical properties of
the SSE to detect the formation of the space charge layers.
Impedance spectroscopy helps to measure the ionic resistance of
the SSE and formed depletion layers. Kinetic Monte Carlo
simulations are used to model the mass transport processes at the
interface and the transport within the SSE sample, providing
kinetic information about the diffusion and migration of ions in
the SSE. These methods are used together to comprehensively
understand the mass transport kinetics at the SSE/lithium metal
interface under non-blocking and blocking conditions.

Results and discussion
Proving the existence of SCLs in non-blocking conditions.
Proof of the existence of the much debated SCL at the Li(s)/SSE
interface was the first goal of this study. In Fig. 1a, b, one can see
the deviation of ellipsometry spectra when a potential is applied
to the sample, as shown in Fig. 4a. The baseline spectrum (see Fig.
S2 Supporting Information) was recorded under OCV conditions
in our fully symmetric sample close to 0 V and subtracted from
the spectra recorded under steady-state conditions with a fixed
potential (−1 V, −0.5 V, +0.5 V, 1 V). Clearly, the changes in the
delta parameter of the spectrum show a symmetric deviation for
negative vs. positive applied potentials. Although the ellipsometry
parameters (Δ and ψ) do not carry any physical meaning for such
complex systems21, this symmetry in the deviation clearly indi-
cates a change in the sample′s optical properties. With a clear
indication of a SCL occurrence, as also seen in our previous work.
The charge concentration profiles from the kMC simulations,
shown in Fig. 1c indicate the presence of two distinct SCLs with
the depletion layer next to the injection electrode and the accu-
mulation layer next to the removal electrode. In Fig. 1d, the
corresponding potential profiles are shown, and as expected, a
constant concentration profile corresponds to a linear drop of the
potential. At the end points of the simulated SSE, the potentials
match the boundary conditions.

Electrochemical properties of the SCL. The equivalent electric
circuit (EEC) shown in Fig. 1e is a model used to represent the
behavior of the electrochemical system. This circuit is similar to
our previous model but incorporates a faradaic resistance com-
ponent to account for the charge-transfer resistance under non-
blocking conditions. This faradaic resistance term reflects the
resistance encountered in the transfer of charge between the non-
blocking electrodes and the SSE and makes it possible to explore
the electrochemical behavior of the Li(s)-electrodes22.

The EIS spectra shown in Fig. 2a, b suggest that the EEC model
from Fig. 1e provides a good fit for the experimental data. The
Nyquist plots display the impedance spectra of the system, with
the real part of impedance on the x-axis and the imaginary part of
impedance on the y-axis. The fits from the EEC model are
overlaid on the experimental data, demonstrating that the EEC
can accurately capture the dynamic response of the system. The
high-frequency region of the impedance spectra is shown in more
detail in Fig. 2b, highlighting the contributions from the different
components of the EEC. These results suggest that including a
faradaic resistance in the EEC is essential for accurately modeling
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the charge-transfer resistance in non-blocking conditions. The
EIS spectra for the equivalent range of positive bias potentials are
presented in Fig. S3 Supporting Information.

As illustrated in Fig. 2c, the bulk resistance remains almost
constant despite a 10% relative estimated error. Since the bias
potential affects only the interface properties, this observation
further validates the EEC. On the other hand, the dielectric
permittivity in Fig. 2d, which relies heavily on the number of
mobile Li-ions in the SSE, changes when a net positive current is
applied and is determined based on the geometric capacitance.
Repeated experiments indicate no hysteresis, suggesting that the
change in dielectric properties is not due to any irreversible
chemical degradation of the SSE but rather to the varying
concentration of mobile Li-ions within the SSE.

As explained in more detail within our previous work, the ionic
charge accumulation in the form of the SCLs is accompanied by a
dense and thin double-layer (DL), like the Helmholtz layer found
in liquid electrolytes23. The pseudocapacitance value of this DL is
shown in Fig. 2e and varies between 2–5 µF s1− n cm−2 with an
n-value between 0.75 and 0.85.

Overall, the impedance data reveals a similar pattern to the
blocking conditions. The SCL capacitance, which can later be
used to estimate the SCL thickness and compared with other

measurements, is found to be four times lower than observed
under blocking conditions, but the qualitative trend remains the
same. Figure 2i shows the chronoamperometry data of the sample
that has undergone impedance analysis. From an electrochemical
perspective, a straight line would be a reasonable outcome for this
type of measurement, confirming a perfectly ohmic behavior of
the electrodes. However, slight deviations from this behavior can
be observed for very low potentials below −0.5 V, which can be
explained by the electrochemical changes to the electrode. The
faradaic resistance, Rf, shown in Fig. 2f, is in good agreement with
this deviation. The simulated data in Fig. 2i is based on the values
for the injection and removal rates of the kMC model. The space-
charge properties Rscl and Cscl, in Fig. 2g, h show the typical
symmetric behavior in dependence of the applied potential, where
only a thin SCL is formed at 0 V bias potential. Thus, no
significant resistance is present and the capacity is high due to the
thin layer. As outlined above, the injection and removal rates of
the kMC model were parametrized to match the experimental
results. The experimental deviation can be explained through the
non-ohmic nature of the Li(s) electrodes, a commonly observed
behavior in the literature24. The remaining EIS parameters Cgeo

and Ru are shown in Fig. S1 Supporting Information.

Fig. 1 Experimental proof of the SSE phenomenon. Spectroscopic ellipsometer parameter deviations (see text) at various applied potentials. a, b are the
psi and delta parameters, respectively, with similar behavior observed for both negative and positive potentials. c The charge distribution from the kMC
simulations. It shows an asymmetric distribution of charge toward the interfaces. d The corresponding potential distributions from the kMC simulations,
which vary depending on the applied potential. The error bars of the simulations results are smaller than the data points and, thus, omitted. e Equivalent
electric circuit, adapted from early work, with an additional faradaic resistance to account for the mass transport across the SSE/Li(s) interface.
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Influence of mass transport over the Li(s)/SSE interface. The
modeling of mass transport over the interface as an energy-
independent process is undoubtedly a simplified concept.
Nevertheless, the kMC model enables us to draw important
conclusions regarding the main system dynamics. Comparing the
injection/removal rates with the maximum transport rate shows
that mass transport within the SSE is by a factor of 107 faster than
mass transport through the Li(s)/SSE interface. Consequently, the
actual SCL formation is temporally decoupled from the mass

transport over the electrodes. Upon application of bias potential,
an accumulation and a depletion layer form rapidly at the
respective contacts. A completely depleted and full vacancy lattice
at the corresponding Li(s)/SSE interface generates a favorable
occupation situation for Li+-injection and Li+-removal, respec-
tively. From a kinetic point of view, the kMC model indicates that
mass transport through the Li(s)/SSE interface is (1) a symmetric
phenomenon (equal injection/removal rates) and (2) such slow
that its influence on SCL formation is in fact negligible. These

Fig. 2 Impedance analysis and chronoamperometric measurements. a Full range impedance spectra of the Li/SSE/Li sample for five different positive bias
potentials. Lines show a good fit for the data using the EEC shown in Fig. 1e. b The high-frequency region of the impedance spectra showing a good
correlation between the bulk impedance and corresponding EEC fits. c Bulk resistance independent of applied bias potential, confirming our EEC.
d Dielectric constant of the sample, constant for negative potentials but rising with more positive potentials. e Pseudocapacitance of the double layer.
f Faradaic resistance at the Li/SSE interface decreases with increasing potential. g SCL capacitances symmetrically drop toward positive and negative
potentials. h Increasing SCL resistance when a potential is applied indicates a lower ionic conductivity due to missing charge carriers. i Experimental and
simulated current densities from chronoamperometry measurements. The error bars of the simulated current densities were obtained by block averaging
over steady-state configurations. The experimental error bars show the 95% confidence intervals of the fitting algorithm.
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findings agree with the experimental observation that the SCL
formation under blocking and non-blocking conditions yields
similar results. On the other hand, parametrization of the simu-
lation model with strongly asymmetric injection/removal rates
eventually would lead to the formation of either two accumula-
tion or two depletion layers, which experiments cannot observe.

Unifying comparison of experiments and simulations. The
consistency of the different approaches, which, except for the
feedback loops from the experimentally determined current
densities to the injection and removal rates of the kMC electrodes,
are completely independent of one another, can be seen in Fig. 3a.
In order to understand the correlations between the three
methods, the electrochemical property of a charged layer near the
interface can be explained as follows: a region of lower Li-ion
concentration such as the SCL is equivalent to an SSE with lower
conductivity, which leads to an increase of resistance in the
impedance. The charge accumulation is proportional to the SCL
thickness, as the model suggests a perpendicular growth into the
SSE. The thickness of the SCLs, all in the range of 100–600 nm
and asymmetrically rising with increasing potentials, are con-
sistent within the three techniques. The overestimation of the SCL
thicknesses at positive potentials, can be explained by the way it is
calculated from the impedance data. The geometric capacitance
(see Fig. S1a Supporting Information) is used to calculate the
dielectric constant of the (bulk) SSE, which is then used to cal-
culate the thickness from the SCL capacitance. Herein, we assume
that the concentration of Li-ions does not change the dielectric
constant of the SSE, which is clearly not true for larger con-
centration changes, as seen in Fig. 2d. Finally, SE also enables us
to extract the fraction change of Li-content, ψLiþ , with respect to
the bulk concentration in vol%, see Fig. 3b. Negative and positive
concentration changes are another indicator of the existence of a
depletion and accumulation layer. A direct comparison of ψLiþ

with the results from the kMC model is not possible as the kMC
model only considers mobile Li+, and the volume fraction change
is calculated with respect to the total bulk concentration, that is,
mobile and immobile Li-ions. However, we may perform an
indirect comparison by adopting a fixed total bulk concentration
for the kMC model. In Fig. 3b, we obtain a decent match with the
experimental profile by assuming a total Li-ion density of
4:5 ´ 1021 cm�3 to compute a corresponding profile from the
simulation data. The given total bulk concentration is by a factor
of 1500 larger than the bulk concentration of mobile Li+ used in

the kMC model, which is in good agreement with values from
pertinent literature23.

Conclusions
Spectroscopic ellipsometry allows for direct measurement of the
SCL thicknesses for different applied bias potentials. With the
occurrence of a highly resistive layer in the SSE upon application
of a potential in our sample, a deeper look into its properties is
used to shed light on the size and Li-ion concentration change.
With its occurrence proven by SE, the electrochemical properties
are tested through electrochemical impedance spectroscopy.
Finally, the parameterized kMC model is shown to have large
predictive power and can be used in the future to assess the
impact of ionic charge accumulation at the interface of a newly
developed anode and solid-state electrolytes.

Despite the controversies in existing literature, the occurrence
of SCLs is reliably and reproducibly shown by three different
methods, wherein each method has its own unique capability to
characterize the SCL. Importantly, the consistency of the
approaches is shown with single parameters that can be very
easily compared.

The nature of these highly charged layers can explain the
widely known degradation at the interface between Li(s) anodes
and the SSEs and therefore lay the foundation for a better
understanding of how to prevent this instability. Once the
interface can be engineered by tuning the materials or creating an
interfacial layer25 to prevent such SCL formation, this can greatly
benefit the enabling of all-solid-state batteries with Li(s) anodes.

Methods
Experimental and simulation setups. In Fig. 4, the different measurement setups
are shown, which were used to perform the two experimental techniques (SE in
Fig. 4a, EIS in Fig. 4b) and a sketch of the kMC model in Fig. 4c. The experimental
design was carefully chosen to prevent a tandem of instabilities from interfering
with the measurement: (1) the reduction of the Li(s) when in contact with air,
(2) the reaction of the SSE when in touch with Li(s)26. As the SE measurements are
relatively fast (multiple hours) but are done under ambient conditions, the Au-
layer on top of the Li(s) electrode provides protection from the atmosphere. On the
other hand, the EIS measurements are relatively slow but can be performed in an
argon atmosphere, and the Au-layer between Li(s) and SSE acts as a passivation
layer between the two materials27. More details on the preparation and conditions
of the measurement can be found in the experimental section.

Next, we outline the extended model setup for an SSE sample contacted by two
metallic Li-electrodes, see Fig. 4c. Here, we briefly summarize the most important
aspects of the original model19. The device is mapped to a three-dimensional
Cartesian lattice of volume V ¼ X ´Y ´Z ¼ 31:5 ´ 31:5 ´ 1260 nm3 with a lattice
constant of aL ¼ 6:3 nm and periodic boundary conditions in the xy-plane. The
bottom and top layer in z-direction correspond to the Li(s)-electrodes which
either act as a sink or source for Li-Ions (in the following denoted as removal and

Fig. 3 Comparison of experimental and simulation results. a Comparison of SCL thicknesses calculated from different methods. The thicknesses
calculated from EIS, SE, and kMC simulations for different applied potentials. It demonstrates that the thicknesses calculated from all three methods are in
good agreement with the different applied potentials. This confirms the consistency and reliability of the results obtained from the different techniques
used in this study. b Volume fraction change in vol% based on the fit of the SE data and the kMC simulations, based on a Li-ion density of 4:5 ´ 1021cm�3,
including mobile and immobile ions. The error bars of the kMC simulation were calculated based on the resolution accuracy of the thicknesses determined
by SE. The experimental error bars show the 95% confidence intervals of the fitting algorithm.
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injection electrode, respectively). Note that the model does not distinguish
between the Au-layer and the Li(s) electrode but instead treats them as an ideal
contact with εr ! 1. The region confined between the contacts models the SSE
sample where each node i represents an unoccupied vacancy site. The sample is
populated with mobile Li-ions according to a particular bulk concentration
cLiþ ;bulk. The value of cLiþ ;bulk was recently assessed in the scope of an ionic Mott-
Schottky formalism to be in the range of 2� 4 ´ 1018 cm�328. In the scope of this
work, we utilize the mean value cLiþ ;bulk ¼ 3 ´ 1018 cm�3 as a first order
approximation. In general, the concentration of mobile cations, cLiþ , and its
physical boundaries play a key role in the asymmetric SCL formation in SSEs.
Recently19, we established that:

cmin ≤ cLiþ ≤ cmax; ð1Þ

where cmin and cmax denote the minimum and maximum concentration of Li+ in
a fully depleted and fully occupied lattice, respectively. In the present model, we
naturally set cmin ¼ 0; whereas as the inverse volume of a unit cell imposes the
maximum concentration, cmax ¼ a�3

L . A homogeneously distributed anionic
background is implemented to ensure electroneutrality with respect to the sample
′s initial condition. The presence of immobile Li-ions29 is neglected as
corresponding counter anions locally neutralize them and thus do not alter the
underlying energetic landscape for the transport of Li+. Analogously to liquid
electrolytes30, the strength of electrostatic screening also impacts the thicknesses
of the resulting SCLs. Here, we control the magnitude of this effect via the relative
permittivity εr of the bulk SSE.

Modeling of Li-ion dynamics. Our model features three types of dynamic tran-
sitions (cf. numbers in Fig. 4c):

(1) Li+-injection from the source electrode.
(2) Li+-transport guided by a thermally activated hopping mechanism31,32.
(3) Li+-removal from the sink electrode.

Li-ions can move to unoccupied nearest neighbor’s vacancies via hopping
transport which is affected by the local values of the potential energy surface Ei .
These local energy levels comprise three different energetic contributions: the
energy defined by a reference electrode Eref

i , the contribution from an external
electric field EF

i and the influence of Coulomb interactions of mobile cations and
their respective immobile counter anions. In summary, the total potential energy at

vacancy site i is given by:

Ei ¼ Eref
i þ EF

i þ EC
i : ð2Þ

In the present study, we only consider energy differences ΔEij between two

vacancy sites i and j and, thus, we may set Eref
i ¼ 0. EF

i is assumed to drop linearly
in z-direction across the contacted SSE sample, that is:

EF
i ¼ qϕb � ΔW

� � zi
Z

ð3Þ

where ϕb denotes the applied bias potential, ΔW is the difference in electrode work
functions and zi is the z-coordinate of the site i. For identical electrodes, we may set
ΔW ¼ 0. While the first two contributions are held constant during the simulation,
EC
i must be updated dynamically. The model considers the interaction of mobile

cations (cation–cation interactions), Ecc
i , and interaction of mobile cations with

immobile counteranions (cation–anion interaction) Eac
i . Both contributions are

computed accurately via a three-dimensional Ewald summation adjusted for a
contacted infinite slab-device as established by Casalegno et al.33,34. Due to the
fixed positions of anions, the values of Eac

i can be calculated before the simulation
and cached on related vacancy sites. On the other hand, Ecc

i depends on the current
spatial distribution of all mobile cations and must be updated accordingly in each
kMC step. In the context of Coulomb interactions, special attention must be paid to
non-electroneutral device configurations as they can lead to convergency issues35.
Under non-blocking conditions, such arrangements could arise from strongly
asymmetric injection and removal rates. However, please note that the applied
electrostatic solver implicitly handles such cases by extending the original
simulation box with a corresponding box of image charges representing the
polarization of an ideal metal contact. To reduce the computational effort arising
from the dynamic calculation of Coulomb interactions, we apply a combination of
different strategies19, particularly the so-called dipole-update method36.

The thermally activated hopping of cations between vacancies sites i ! j is
captured via the Miller–Abrahams formula37:

kij ¼ k0 �
exp � ΔEij

Eth

� �
; ΔEij < 0

1; ΔEij ≥ 0
;

(
ð4Þ

where k0 is the attempt-to-hop frequency, ΔEij denotes the difference in potential
energy between vacancy i and j and Eth ¼ kBT is the thermal energy. The attempt-
to-hop frequency is estimated from an Arrhenius equation38:

k0 ¼
k0;max

a2L
exp � Ea

Eth

� �
; ð5Þ

Fig. 4 Experimental setups and kinetic Monte Carlo (kMC) model. Schematic representation of (a) the spectroscopic ellipsometry (SE) and (b) the
electrochemical impedance spectroscopy (EIS) setups used in the experiments. c Schematic representation of the kMC model used to simulate the
behavior of charge accumulation at the interface between a lithium metal electrode and an oxide solid-state electrolyte. Gray, red, and blue dots represent
unoccupied lattice vacancies, mobile Li+-ions and their immobile counteranions, respectively. The metallic Li-electrodes are illustrated by black dots and
act as source and sink for mass-transport. The numbers correspond to the three implemented dynamic transitions: (1) Li+-injection, (2) Li+-transport and
(3) Li+-removal.
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where k0;max ¼ Eth=h and Ea denotes an experimentally 5obtained activation
energy for diffusion39. We scale k0;max by a�2

L similarly to a three-dimensional
random walk based on the Einstein-Smoluchowski treatment for Brownian
motion40. When Li-ions reside on vacancy sites neighboring to contact nodes, they
can be removed from the SSE sample with a constant rate krem. Therefore, the
cumulative removal rate is given by:

Krem ¼ nLiþ ;contactkrem ð6Þ
where nLiþ ;contact is the total number if Li-ions residing next to the contact. Vice
versa, Li+ can be injected into an unoccupied vacancy site from the contact with
the rate kinj and, accordingly, the cumulative injection rate is given by:

K inj ¼ ncontact � nLiþ ;contact
� �

kinj ð7Þ

where ncontact denotes the total number of contact sites.

Experimental section, data evaluation and model parametrization
Solid-state electrolyte. LICGCTM (Ohara Inc, Japan) was used for electrochemical
and optical experiments conducted in this study. The SSE had a thickness of
150 µm and was stable in the ambient atmosphere.

Gold/lithium electrodes. All electrode depositions were performed in an argon
glovebox with a highly inert atmosphere (O2 < 0.1 ppm, H2O < 0.1 ppm). Au
electrodes were thermally evaporated symmetrically using a MICO evaporator
(Tectra, Germany) with an evaporation rate of 1 Å s−1 and a final thickness of
25 nm. The Li electrodes were evaporated under the same conditions. The order of
deposition was chosen to match the desired sample structures for EIS and SE
measurements.

Spectroscopic ellipsometry. An EP4 imaging ellipsometer (Accurion, Germany) was
used to perform spectroscopic ellipsometry at different potentials, and in situ
ellipsometry was done at an angle of incidence (AOI) of 65° using a 658 nm solid-
state laser. For spectroscopic measurements, the wavelength from 360 to 1000 nm
in 50 equidistant energy steps was adjusted using a built-in grading mono-
chromator and a laser-stabilized xenon arc lamp. A resting period of 2.5 h after
applying the bias potential and before the spectroscopic scans was used to allow the
system to reach electrochemical equilibrium.

Electrochemical impedance spectroscopy. The AC impedance measurements were
carried out with a VSP300 potentiostat (Biologic, France) in the frequency range
between 3MHz and 3 Hz with a probing signal amplitude of 10 mV. The metal-
contacted samples were assembled into a PAT-Cell (EL-CELL, Germany) with
polished stainless-steel plungers to contact the electrode area. The cells were placed
into a PAT-Stand (EL-CELL, Germany) with a 3 m cable to the potentiostat. The
impedance of the samples was measured in the bias range between −1.0 V and
+1.0 V (vs. EOC, EOC=+0.11 V). After applying the bias potential, a waiting
time of 15 min was used to ensure electrochemical equilibrium. The impedance
data were analyzed using the “EIS Data Analysis 1.3” software41.

Kinetic Monte Carlo simulations. A single run of the kMC model produces one
possible many-body time evolution of the investigated device into its steady state.
By block-averaging over steady-state configurations33, we obtain three-dimensional
concentration and potential profiles denoted as cLiþ x; y; z

� �
and ϕ x; y; z

� �
,

respectively. The potential profiles are directly computed via the underlying elec-
trostatic solver, as outlined above. As our device model does not contain any local
structural or energetic inhomogeneities, all three-dimensional profiles are homo-
geneous within the xy-plane. Thus, we may compute averaged profiles, cLiþ zð Þ� 	
and ϕ zð Þ� 	

, to facilitate visualization and further rationalization. To compare the
simulation outputs with data from EIS and SE, we extracted the thicknesses of the
accumulation and depletion layer, denoted as dp�scl and dn�scl , respectively. The

average values of both layers as a function of ϕbias are determined from cLiþ zð Þ� 	
via

the criteria cLiþ zð Þ� 	
≤ 1� δð Þ � cLiþ ;bulk and cLiþ zð Þ� 	

≥ 1þ δð Þ � cLiþ ;bulk for dn�scl

and dp�scl , respectively, where δ corresponds to the resolution accuracy of the
thicknesses determined by SE. In the present work, we set δ ¼ 0:05. Upper and
lower boundaries for dp�scl and dn�scl are computed via the above criteria by
setting δ ¼ 0:01 and δ ¼ 0:1. Finally, the kMC model also enables us to evaluate
the current density over the injection and removal electrode:

jinj=rem ¼ qN inj=rem

AΔt
ð8Þ

where Δt is the total simulated time, A is the electrode area in the xy-plane, q is the
elementary charge, and N inj=rem is the number of injection/removal events in Δt. In
a steady-state configuration jinj � jrem holds so that the stationary current density
over the device is just denoted as j. The statistical errors of j are also determined via
block-averaging over steady-state configurations, as mentioned above. An overview
of all symbols utilized in the present study is given in Table S1 Supporting
Information.

The parameterization of the kMC model is exclusively based on the
experimentally obtained results. Since the kMC setup is symmetric and allows for
the extraction of the depletion and accumulation layer, we only simulate positive
bias potentials ϕbias from 0 V to 1 V in steps of 0.25 V. The bulk concentration is set
to cLiþ ;bulk ¼ 3 ´ 1018 cm�3 according to the above-mentioned ionic Mott-Schottky
formalism23. The maximum concentration is limited to cmax ¼ 4

3 cLiþ ;bulk ¼
4 ´ 1018 cm�3 based on the ratio of change in Li+ concentration obtained from SE,
see Fig. 4b. The relative permittivity of the bulk SSE εr is varied with increasing
ϕbias in accordance with the results from EIS for the geometric capacitance (cf.
Fig. 2d). Furthermore, all experimental results indicate that the device remains
approximately charge-neutral even for non-blocking conditions. Thus, we may set
kinj ¼ krem as disparate rates for injection and removal of Li+ from the electrodes
induce a device state which deviates from charge-neutrality. We parametrize the
values for kinj and krem to reproduce the current densities obtained from
chronoamperometric measurements. A summary of all potential-dependent input
parameters is given in Table 1.

Data availability
All relevant data are available from the authors upon reasonable request. Any request can
be addressed to A.S.B. for experimental data and A.G. for simulation data.

Code availability
The simulation code of the space-charge layer formation in solid-state electrolytes for
(non-) blocking conditions has been implemented within C++ in our in-house kinetic
Monte Carlo framework42. The source code is not yet openly accessible as it is part of a
larger software project that will be published separately later. Each kMC simulation was
run on eight cores of an AMD RyzenTM ThreadripperTM 3990X @2.9 GHz with 64
hardware cores. Per fixed input parameter combination, the simulation time to obtain a
simulated time of 50 s averaged out at ~7 days.
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