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Abstract— Reachability analysis is a formal method that
rigorously proves whether a dynamical system can reach
certain states. Inner approximations of the exact reach-
able set contain only states that are definitely reachable
and are therefore used to falsify specifications. While the
majority of state-of-the-art approaches for nonlinear sys-
tems obtain an inner approximation via first computing
an outer approximation of the reachable set, we directly
obtain sound inner approximations by using the Minkowski
difference in a reachability algorithm for nonlinear systems.
Our implementation uses a combination of polytopes and
constrained zonotopes as set representations, resulting in
a low polynomial time complexity in the state dimension.
A comparison with state-of-the-art approaches on several
benchmarks demonstrates the advantages of our approach.

Index Terms— Formal verification, falsification, reacha-
bility analysis, nonlinear systems, set-based computing.

I. INTRODUCTION

FORMAL methods can determine whether an uncertain dy-
namical system meets a given specification. Reachability

analysis computes all states that are reachable under the given
uncertainties, and, thus, can be used for formal verification [1].
However, the exact reachable set cannot be computed except
for special system classes [2]; if a computed outer approxima-
tion cannot verify safety, an inner approximation may falsify
safety, instead. Moreover, inner approximations are essential
to many control tasks, where we want to find all states for
which one can guarantee reaching a goal set through an inner
approximation of the maximal backward reachable set [3].

Most approaches for computing inner approximations for
nonlinear systems are based on outer approximations: Given
an outer approximation for the state and the Jacobian of
the flow, one can use extended interval arithmetic and the
generalized mean value theorem to obtain lower bounds of the
reachable set in axis-aligned directions in polynomial time [4].
This approach has been extended to deal with inputs [1],
competing control inputs and disturbances [5], and neural-
network controlled systems [6]; Another line of approaches
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Fig. 1. Main idea: The Minkowski difference between the reachable
sets for the affine dynamics Raff and due to the error dynamics Rerr
returns a sound inner approximation R̂.

[7]–[11] is based on the proof that a connected set is an inner
approximation if it a) does not intersect the reachable set of
the boundary of the initial set and b) contains some state of
the exact reachable set [7, Thm. 4]. Hence, one can obtain an
inner approximation by contracting an outer approximation,
as illustrated in [10, Fig. 2]. This idea has been applied to
autonomous systems, with inner approximations represented
by polytopes [8], semi-algebraic sets [9], Taylor models [7],
and polynomial zonotopes [10], for which the approach has
been extended to systems with inputs [11, Ch. 4.3.3]. The
reachable set for the boundary is commonly computed by
partitioning the initial set into boxes, yielding an exponential
time complexity in the state dimension [8], [9], or semi-
algebraic sets, yielding polynomial time complexity [7], [10].

One can also obtain inner approximations via optimization-
based techniques. Prominent approaches include Hamilton-
Jacobi reachability [3], which scales exponentially in the state
dimension due to gridding, and dissipativity-based approaches
using sum-of-squares programming [12], [13], which scales
polynomially in the state dimension, but exponentially in the
degree of the polynomial representing the reachable set [14].

Figure 1 summarizes our main contribution: Using an on-
the-fly linearization of the nonlinear autonomous dynamics, we
obtain an affine dynamics and a higher-order error dynamics.
While the Minkowski sum of the corresponding reachable sets
Raff and Rerr is a common method to compute outer approxi-
mations R̂, we are the first to obtain inner approximations R̂—
for both time-point and time-interval reachable sets—via the
Minkowski difference of the aforementioned sets. We choose
a combination of polytopes and constrained zonotopes as set
representations to implement a reachability algorithm with low
polynomial time complexity in the state dimension.
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II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation and Set Operations

We denote vectors by lowercase letters, matrices by up-
percase letters, and sets by calligraphic letters. For a vector
s ∈ Rn, s(i) represents its ith entry; for a matrix M ∈ Rm×n,
M(i,·) refers to the ith row and M(·,j) to the jth column; for a
set S ⊆ Rn, S(i) returns the projection onto the ith dimension.
The horizontal concatenation of two properly-sized matrices
M1,M2 is denoted by [M1 M2]. We write 0n ∈ Rn for an
all-zero vector and In ∈ Rn×n for the identity matrix. For a
set S ⊂ Rn, we denote an outer approximation by Ŝ ⊇ S and
an inner approximation by Ŝ ⊆ S. Real-valued intervals are
denoted by I = [a, b] ⊂ Rn, where ∀i ∈ {1, . . . , n} : a(i) ≤
b(i) holds elementwise.

For a matrix M ∈ Rn×n and a set S ⊂ Rn, the linear map
is defined by MS := {Ms|s ∈ S}. The operation cen(S)
returns the Chebyshev center of a set S, while box(S) returns
the tightest enclosing axis-aligned interval. For two convex sets
S1,S2 ⊂ Rn, the Minkowski sum is defined as S1 ⊕ S2 :=
{s1 + s2|s1 ∈ S1, s2 ∈ S2}, the Cartesian product is defined
as S1 × S2 := {[s⊤1 s⊤2 ]

⊤|s1 ∈ S1, s2 ∈ S2}, the convex hull
is defined as conv(S1,S2) := {λs1 +(1−λ)s2|s1 ∈ S1, s2 ∈
S2, λ ∈ [0, 1]}, and the Minkowski difference is defined as

S1 ⊖ S2 :=
{
s
∣∣ s⊕ S2 ⊆ S1}

=
{
s
∣∣∀s2 ∈ S2 : s+ s2 ∈ S1

}
.

(1)

For three compact, convex, nonempty sets S1,S2,S3 ⊂ Rn, it
holds that [15, Eq. (2)]

S1 ⊖ (S2 ⊕ S3) = (S1 ⊖ S2)⊖ S3 = (S1 ⊖ S3)⊖ S2 (2)

and [16, Lemma 1]

conv(S1 ⊖ S3,S2 ⊖ S3) ⊆ conv(S1,S2)⊖ S3, (3)

which we will exploit in later derivations. We assume a time
complexity of O

(
(p + q)1.5p2

)
for the evaluation of a linear

program with p variables and q constraints [17]. Finally, the
Jacobian of a function f : Rn → Rn is denoted by Df with
∀i, j ∈ {1, ..., n} : (Df(x))(i,j) =

∂f(i)(x)

∂x(j)
.

B. Problem Statement

We consider autonomous nonlinear continuous-time systems

ẋ(t) = f
(
x(t)

)
, (4)

where x ∈ Rn is the state vector and f : Rn → Rn is
sufficiently smooth. Let the solution trajectory at time t > 0
for an initial state x(0) ∈ Rn be denoted by ξ

(
t;x(0)

)
.

Definition 1 (Exact reachable set): The exact reachable set
at a time point t > 0 for an initial set X0 ⊂ Rn is defined as

R(t) :=
{
ξ
(
t;x(0)

) ∣∣x(0) ∈ X0

}
. (5)

The reachable set over a time interval τ = [0, tend], tend > 0 is
the union of time-point solutions: R(τ) =

⋃
t∈τ R(t). □

As the exact reachable set R(t) cannot be computed for
general nonlinear systems [2], our goal is to compute a tight
inner approximation R̂(t) ⊆ R(t) instead.

III. REACHABILITY ANALYSIS

In this section, we first recall the set-based integration of
nonlinear systems (4) in Section III-A. Thereafter in Sec-
tion III-B, we present our main contribution, a set-based
computation of an inner approximation R̂(t) of the exact
reachable set R(t).

A. Set-based Integration

For the integration of the right-hand side of (4) over a
domain X ⊂ Rn, we use a Taylor expansion around the
linearization point x∗ ∈ Rn,

∀x ∈ X : f(x) = f(x)
∣∣
x=x∗ +Df(x)

∣∣
x=x∗(x− x∗) + l(x),

(6)
where l(x) ∈ L(X ) is a vector within the Lagrange remainder
L(X ) defined component-wise by [18, Eq. (2)]

L(i)(X ) :=
{

1
2 (x− x∗)⊤D2f(i)(x̃)

∣∣
x̃=ζ

(x− x∗)
∣∣

x ∈ X , ζ ∈ {x∗ + α(x− x∗) |α ∈ [0, 1]}
}
.

(7)

Combining (6) and (7) yields the differential inclusion [18,
Eq. (2)]

∀x ∈ X : f(x) ∈ w +A(x− x∗)⊕ L(X ), (8)

where w = f(x∗), A = Df(x)|x=x∗ , and L(i)(X ) can be
enclosed by L̂(i) = [−l̂(i), l̂(i)] with [18, Prop. 1]

l̂(i) =
1
2 max

x∈X
|x−x∗|⊤ max

ζ∈X
D2f(i)(x̃)

∣∣
x̃=ζ

max
x∈X
|x−x∗|, (9)

which is computed via interval arithmetic.
The integration of the linear differential inclusion (8) over

a time interval τ0 = [0,∆t] with step size ∆t consists of two
parts, computed separately due to the superposition principle:

1) Assuming x∗ = 0n, the reachable set of the affine
dynamics faff(x(t)) = Ax(t) + w is

Raff(∆t) = Rhom(∆t)⊕Rcon(∆t) (10)

with the well-known homogeneous solution

Rhom(∆t) = eA∆tX0 (11)

and the constant input solution

Rcon(∆t) =

∫ ∆t

0

eA(∆t−θ)dθ w = A−1(eA∆t − In)w.

(12)
If the matrix A is not invertible, we can factor A−1 into
the power series of the exponential matrix eA∆t.

2) The abstraction error

Rerr
(
L(R(τ0))

)
=

∫ ∆t

0

eA(∆t−θ)L
(
R(τ0)

)
dθ

due to the Lagrange remainder L
(
R(τ0)

)
can be en-

closed by [19, Prop. 3.7]

R̂err
(
L(R(τ0))

)
=

η⊕
j=0

Aj∆tj+1

(j + 1)!
L
(
R(τ0)

)
⊕ E(∆t)∆tL

(
R(τ0)

)
,

(13)
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where E(∆t) is the remainder term of the propagation
matrix as in [16, Eq. (19)].

Let us now introduce the formulae for computing time-point
and time-interval outer approximations, on which we base our
derivations in Section III-B. The exact time-point reachable
set R(∆t) at time t = ∆t can be enclosed by [18, Sec. III]

R(∆t) ⊆ R̂(∆t) = Raff(∆t)⊕ R̂err
(
L(R(τ0))

)
. (14)

Analogously, the time-interval reachable set R(τ0) over the
first time interval τ0 can be enclosed by [18, Sec. III]

R(τ0) ⊆ R̂(τ0) = R̂aff(τ0)⊕ R̂err
(
L(R(τ0))

)
, (15)

where R̂aff(τ0) is an outer approximation of the time-interval
affine solution

R̂aff(τ0) = conv
(
X0,Raff(∆t)

)
⊕ C, (16)

with the curvature error C computed as [19, Sec 3.2.2]

C = F(∆t)X0 ⊕ G(∆t)w, (17)

over a time step size ∆t and where the interval matrices
F(∆t) and G(∆t) are computed as in [16, Eq. (18), (26)].
We will show in Section IV-B how to resolve the mutual
dependency between R̂(τ0) and R̂err

(
L(R(τ0))

)
[18, Sec. III].

B. Computation of an Inner Approximation
We now derive our novel set-based computation for inner

approximations of the time-point and time-interval reachable
sets. Let us first show how the Minkowski difference can be
used as an inner approximation.

Lemma 1: Let A ⊂ Rn be non-empty, convex, and com-
pact, B ⊆ Rn be centrally-symmetric around a center c
(e.g., a zonotope), and φ : A → B be a continuous function.
Moreover, let

S :=
{
x ∈ Rn

∣∣∃a ∈ A : x = a+ φ(a)
}
. (18)

Then, we have the containment relation

A⊖ B ⊆ S − 2c. (19)
Proof: We first treat the case where B is symmetric

around the origin (i.e., B = −B, and c = 0). Let x ∈ A⊖ B,
and consider the function fx(a) = x−φ(a) for a ∈ A. Since
−φ(a) ∈ −B = B, it holds that fx(a) ∈ x + B ⊆ A, by
the definition of the Minkowski difference. Consequently, fx
is a continuous function (since φ is continuous) that maps
A to A. By the Brouwer fixed-point theorem (which is the
special case of the Schauder fixed-point theorem on Rn, see
[20, Theorem 11.1.]), there exists a fixed point a∗ ∈ A such
that fx(a∗) = a∗, i.e., x = a∗ + φ(a∗). This implies x ∈ S,
proving that A⊖ B ⊆ S in the case c = 0.

If c ̸= 0 we can define A′ = A − c, B′ = B − c, and
φ′ : A′ → B′ through φ′(a′) = φ(a′ + c) − c for a′ ∈ A′.
Then A′ ⊖ B′ = A⊖ B, and{

x ∈ Rn
∣∣∃a′ ∈ A′ : x = a′ + φ′(a′)

}
=

{
x ∈ Rn

∣∣∃a ∈ A : x = a+ φ(a)
}
− 2c.

Hence, we may use the arguments above on A′, B′, and φ′,
since B′ is now symmetric, which proves (19).

Remark 1: The assumption in Lemma 1 that φ should be
continuous cannot be dropped: If A = B = [−1, 1], it holds
that A⊖B = {0}, yet if φ(a) = sign(a) (with the convention
sign(0) = 1), then S = [−2,−1) ∪ [1, 2].

Crucially, Lemma 1 enables us to use the Minkowski
difference for computing inner approximations.

Proposition 1 (Time-point reachable set): For a compact,
non-empty initial set X0 ⊂ Rn and a centrally-symmetric set
R̂err

(
L(R(τ0))

)
, see (13), an inner approximation of the time-

point reachable set R̂(∆t) ⊆ R(∆t) at time t = ∆t, can be
computed by

R̂(∆t) = Raff(∆t)⊖ R̂err
(
L(R(τ0))

)
+ 2c, (20)

with Raff(∆t) as in (10) and c = cen
(
R̂err

(
L(R(τ0))

))
.

Proof: Each successor state x(∆t) ∈ R(∆t) can be
expressed using an initial state x(0) ∈ X0 and an error vector
z
(
x(0)

)
∈ R̂err

(
L(R(τ0))

)
that may depend on x(0):

R(∆t) =
{
x(∆t)

∣∣∃x(0) ∈ X0 :

x(∆t) = Rcon(∆t) + eA∆tx(0) + z
(
x(0)

)}
.

(21)

By assumption, the right-hand side f in (4) is at least Lipschitz
continuous. Thus, the Picard-Lindelöf theorem entails that
x(∆t) depends continuously on x(0), which in turn entails
that z

(
x(0)

)
must be continuous with respect to x(0) ∈ X0.

Since X0 is non-empty and compact, and R̂err
(
L(R(τ0))

)
is centrally-symmetric since it is a zonotope, we may use
Lemma 1 to obtain (20) from (21).

Next, we show how to compute an inner approximation of
the time-interval reachable set R̂(τ0) ⊆ R(τ0).

Proposition 2 (Time-interval reachable set): For a com-
pact, non-empty initial set X0 ⊂ Rn and a centrally-symmetric
set around c,

E := C ⊕ R̂err
(
L(R(τ0))

)
(22)

computed using (17) and (13), respectively, an inner approxi-
mation of the time-interval reachable set R̂(τ0) ⊆ R(τ0) with
τ0 = [0,∆t] can be computed by

R̂(τ0) = conv
(
(X0⊖C)⊖R̂err

(
L(R(τ0))

)
, R̂(∆t)⊖C

)
+2c.
(23)

Proof: Using (15)-(16), each reachable state in the time
interval τ0 ∈ [0,∆t] can be expressed as:

R(τ0) =
{
x(t)

∣∣∃t ∈ τ0 ∃x(0) ∈ X0 : x(t) = x(0) + . . .

+ t
∆t

(
eA∆tx(0) +Rcon(∆t)− x(0)

)
+ z

(
x(0), t

)}
with a function z

(
x(0), t

)
∈ E that may depend on x(0) ∈ X0

and t ∈ τ0. Analogously to the proof of Proposition 1,
z
(
x(0), t

)
needs to be at least continuous in the variable

[x(0)⊤ t]⊤ ∈ X0 × τ0. Hence, applying Lemma 1 yields

R(τ0)
(19)
⊇ conv

(
X0,Raff(∆t)

)
⊖ E + 2c

(3)
⊇ conv

(
X0 ⊖ E ,Raff(∆t)⊖ E

)
+ 2c

(2), (20), (22)
= conv

(
(X0 ⊖ C)⊖ R̂err

(
L(R(τ0))

)
, R̂(∆t)⊖ C

)
+ 2c,

which yields the claim.
The reachable sets of later time steps R̂(tk+1) and R̂(τk)
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can be obtained by recursively applying the above procedure,
with R̂(tk) replacing X0. In the next section, we show how
to implement a set-based reachability algorithm that computes
the inner approximations derived in Propositions 1 and 2.

IV. POLYNOMIAL-TIME IMPLEMENTATION

The choice of set representations for computing an inner
approximation with the formulae (20) and (23) determines
the time complexity of the resulting reachability algorithm in
the state dimension. Our proposed implementation achieves a
polynomial time complexity, as detailed subsequently.

A. Set Representations and Operations
Let us now introduce support functions, polytopes, and

(constrained) zonotopes, as well as required operations.
Definition 2 (Support function [21, Def. 1]): The support

function ρ : Rn → R of a convex, compact set S ⊂ Rn in
the direction ℓ ∈ Rn is defined as

ρ(S, ℓ) := max
s∈S

ℓ⊤s. □

Definition 3 (Polytope [22, Sec. 1.1]): A polytope is a con-
vex, compact set defined by the linear inequalities using a
matrix H ∈ Rh×n and a vector d ∈ Rh :

P :=
{
s ∈ Rn

∣∣Hs ≤ d
}
.

We abbreviate P = ⟨H, d⟩H . □
The evaluation of the linear map MP of a polytope with an

invertible matrix M ∈ Rn×n (in O(hn2) operations) and the
translation P + v by a vector v ∈ Rn (in O(hn) operations)
follow directly from Definition 3. Additionally, we compute
the Minkowski difference with another convex set S ⊂ Rn (in
O
(
hO(ρ(S, ℓ))

)
operations) by [23, Thm. 2.2]

P ⊖ S = ⟨H, d̃⟩H ,

where ∀j ∈ {1, . . . , h} : d̃(j) = d(j) − ρ
(
S, H⊤

(j,·)
)
.

(24)

The Chebyshev center cen(P) can be computed using a single
linear program (in O

(
(h + n)1.5n2

)
operations) and a tight

interval enclosure I = box(P) ⊇ P can be obtained via 2n
support function evaluations (in O

(
(h+n)1.5n3

)
operations).

Definition 4 ((Constrained) zonotope [24, Def. 1&3]):
Using a vector c ∈ Rn, a generator matrix G ∈ Rn×γ , a
constraint matrix K ∈ Rh×γ , and a constraint offset l ∈ Rh ,
a constrained zonotope CZ ⊂ Rn is

CZ :=
{
c+

γ∑
i=1

G(·,i) αi

∣∣∣ γ∑
i=1

K(·,i)αi = l, αi ∈ [−1, 1]
}
.

We abbreviate CZ = ⟨c,G,K, l⟩CZ . Omitting the equality
constraints yields a zonotope Z = ⟨c,G⟩Z . □
We require the following set operations for zonotopes and
constrained zonotopes: the linear map MZ (in O(n2γ) oper-
ations) [19, Eq. (2.1)], the Minkowski sum Z1⊕Z2 (in O(n)
operations) [19, Eq. (2.1)], the support function evaluation
ρ(Z, ℓ) (in O(nγ) operations) [16, Eq. (14)], and an enclosure
of the multiplication MZ with an interval matrix M =[
M,M

]
∈ Rn×n (in O(n2γ) operations) [19, Thm. 3.3]. The

convex hull of two constrained zonotopes conv(CZ1, CZ2)

can be computed (in O(n) operations) according to [25,
Thm. 5]. The exact conversion from a polytope to a con-
strained zonotope [24, Thm. 1], denoted by CZ(P), is shown
in [16, Alg. 1] (in O

(
(h + n)1.5n3

)
operations).

B. Reachability Algorithm
Algorithm 1 computes a sequence of inner approximations

of the time-point and time-interval reachable sets derived
in Propositions 1 and 2. By Definition 1, the union of the
individual inner approximations of the time-interval solutions
(line 18) is an inner approximation of the reachable set over
the entire time horizon τ = [0, tend].

In each time step k ∈ {0, . . . , ω−1}, we first obtain a Taylor
expansion of the nonlinear dynamics (4) to obtain the affine
dynamics (line 5), for which we compute the time-point and
time-interval solutions Raff(∆t) and R̂aff(τ0) (line 8). Note
that we convert the start set R̂(tk) to a zonotope in order
to efficiently compute the curvature error C (line 6). Next,
we compute the Lagrange remainder (lines 10-13), for which
we resolve the mutual dependency between the Lagrange
remainder L and the time-interval reachable set R̂(τ0) as in
[18, Sec. III]: We iteratively enlarge an initial guess L = 0
using a constant factor µ > 1, and evaluate the Lagrange
remainder (9) on the domain

R̂(τ0) = box
(
R̂aff(τ0)⊕ R̂err

(
L̂
))

(25)

until the containment condition (line 13) is fulfilled. Then, we
represent L̂ as a zonotope to efficiently evaluate the linear
maps and Minkowski sums in (13), yielding the abstraction
error set R̂err

(
L̂
)

(line 14). Finally, we apply Proposition 1
to compute an inner approximation R̂(tk+1) of the time-point
reachable set by Proposition 1 and an inner approximation
R̂(τk) of the time-interval reachable set by Proposition 2.

Algorithm 1 only uses set operations introduced in Sec-
tion IV-A, the most time-consuming of which are the 2n linear
programs required for the enclosure of polytopes by axis-
aligned intervals, e.g., for the evaluation of (25) (line 12).
Hence, the overall time complexity is O

(
(h + n)1.5n3

)
, or

O(n4.5) if we assume the number of constraints of the initial
set X0 to be linear in the state dimension n. Please note that
the number of steps linearly influences the time complexity.

V. NUMERICAL EXAMPLES

We demonstrate the performance of Algorithm 1, imple-
mented in the MATLAB toolbox CORA [26], on several
benchmarks and compare it to the scaling approach [10],
implemented also in CORA, and the projection approach [5],
implemented in the C++ toolbox RINO [6]. All computations
are performed on a 2.60GHz i7 processor with 32GB memory.

Table I shows the benchmarks with the system dimension n,
the time horizon tend in s, and a reference for the initial set X0.
To measure the tightness of the results, we use [7, Sec. VI.]

γmin(t) = min
i∈{1,...,n}

diami
(
box

(
R̂(t)

))
diami

(
box

(
Rsim(t)

)) , (26)

where Rsim(t) represents a close approximation of the exact
reachable set, as it is the convex hull of simulated extremal
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Algorithm 1 Inner approximation of the reachable set

Require: Nonlinear system ẋ(t) = f
(
x(t)

)
, polytopic initial

set X0 = ⟨H, d⟩H , time horizon τ = [0, tend], steps ω ∈ N
Ensure: Inner approximation of the reachable set R̂(τ)

1: ∆t← tend/ω, t0 ← 0, R̂(t0)← X0, µ← 1.1

2: for k ← 0 to ω − 1 do
3: tk+1 ← tk +∆t, τk ← [tk, tk+1]

4: x∗(tk)← cen
(
R̂(tk)

)
+ 1

2∆t f
(
x∗(tk)

)
5: w,A← Eq. (6) using x∗(tk)

6: C ← F(∆t) box
(
R̂(tk)

)
⊕ G(∆t)w

7: Rhom(∆t)← Eq. (11), Rcon(∆t)← Eq. (12)
8: Raff(∆t)← Eq. (10), R̂aff(τ0)← Eq. (16)
9: L ← [0n, 0n]

10: repeat
11: L̂ ← µL, R̂err

(
L̂
)
← Eq. (13)

12: R̂(τ0)← Eq. (25), L ← Eq. (9)
13: until L ⊆ L̂
14: R̂err

(
L̂
)
← Eq. (13), c← cen(C) + cen

(
R̂err

(
L̂
))

15: R̂(tk+1)← Raff(∆t)⊖ R̂err
(
L̂
)
+ 2c ▷ see Prop. 1

16: R̂(τk)← conv
(
CZ

(
R̂(tk)⊖ R̂err

(
L̂
)
⊖ C

)
,

CZ
(
R̂(tk+1)⊖ C

))
+ 2c ▷ see Prop. 2

17: end for
18: R̂(τ)←

⋃ω−1
k=0 R̂(τk)

trajectories at time t, and diami(S) = b(i) − a(i) ∈ Rn for an
interval S = [a, b]. For all benchmarks, we used a time step
size of ∆t = 0.01 s for both Algorithm 1 and for the projection
approach [5], where we also tuned the maximum order for the
Taylor models to 4. For the scaling approach [10], we used
the same algorithm parameters as the authors1.

Algorithm 1 is faster than the scaling approach [10] by
orders of magnitude and even faster than the C++ implemen-
tation of the projection approach [5]. This provides empirical
validation for the low polynomial time complexity derived at
the end of Section IV. Please note that we have exploited the
axis alignment of the initial sets X0—which commonly occurs
in reachability analysis—to avoid solving linear programs,
which has sped up our computation time on average by a
factor of 3 to 4. Most computation time is spent on the range
bounding in (9) using interval arithmetic, which explains the
fast evaluation of the Lotka-Volterra and Biological Model
benchmarks whose Hessian tensor is constant.

In all cases, the final reachable set returned by Algorithm 1
is at least 70% as tight as an estimate of the exact reachable
set, see γmin(tend) for Algorithm 1 in Table I. In two out
of five cases, the scaling approach [10] and the projection
approach [5] return a tighter final reachable set since they
use higher-order abstractions that can accurately enclose the
dynamics due to the constant Hessian tensor. However, the
projection approach [5] only computes lower and upper bounds

1Repeatability package at https://codeocean.com/capsule/5233492/tree/v2.
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Fig. 2. Final reachable set of the Higgins Selkov benchmark.
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Fig. 3. Tightness metric γmin(t) over time for the Roessler benchmark.
From t = 3 onwards, all inner approximations are empty.

in axis-aligned directions, not an explicit inner approximation.
This can also be seen in Figure 2, which shows the final
reachable set of the Higgins Selkov benchmark computed by
our approach, the approach in [10], and the bounds computed
by the approach in [5]. Additionally, we plot the polygon
Rsim(tend) constructed from the end points of the sampled
extremal simulations.

Figure 3 plots γmin(t) over time for the Roessler bench-
mark. Our computed inner approximation is always tighter
than the one from the projection approach [5] and only
marginally worse than the one from the scaling approach
[10] early on. Crucially, Algorithm 1 returns non-empty inner
approximations for much longer than the other approaches.

VI. CONCLUSION

We compute a sound inner approximation of the reachable
set for nonlinear autonomous systems using the Minkowski
difference between the reachable set due to the affine dynamics
and the abstraction error due to the Lagrange remainder. A
combination of polytopes and constrained zonotopes yields
low polynomial time complexity. Future work will address
non-autonomous nonlinear systems, where the main challenge
is to design a reachability algorithm that can efficiently eval-
uate both the Minkowski difference and the Minkowski sum.
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TABLE I
COMPARISON OF ALGORITHM 1 WITH THE APPROACHES [5], [10] IN TERMS OF COMPUTATION TIME (IN s) AND TIGHTNESS METRIC γmin(tend) (26).

Benchmark n tend X0
Algorithm 1 Scaling approach [10] Projection approach [5]

Time γmin(tend) Time γmin(tend) Time γmin(tend)

Jet Engine [27, Eq. (19)] 2 4 [28, Ex. 3.3.9] 3.9 0.7769 40 0.6093 16.4 0
Higgins-Selkov [29, Ex. II.1.] 2 3 [29, Ex. II.1.] 2.5 0.8505 57 0.5896 10 0.8127
Rössler [30, Eq. (2)] 3 1.5 [28, Ex. 3.4.3] 1.1 0.7335 32 0.7137 2.3 0.3089
Lotka-Volterra [31, Eq. (1)] 5 1 [28, Ex. 5.2.3] 0.99 0.7711 238 0.8240 7.8 0.7884
Biological model [32] 7 0.2 [28, Ex. 5.2.4] 0.59 0.7540 82 0.8760 2.2 0.9811
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