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A B S T R A C T

Forest ecosystems are changing rapidly, and landscape-level processes such as disturbance and dispersal are key
drivers of change. Consequently, forest landscape models are important tools for studying forest trajectories
under changing environmental conditions and their impacts on ecosystem service provisioning. Here, we syn-
thesize 12 years of development and application of the individual-based forest landscape and disturbance model
iLand. Specifically, we describe the fundamental model logic and give an overview of model components
introduced over the years. Additionally, we outline how to initialize, evaluate and parameterize the model for
new applications. iLand is a process-based forest landscape model that simulates forest dynamics at the level of
individual trees. It accounts for continuous processes (tree growth, mortality, and regeneration) as well as
discontinuous disturbances (wind, wildfire, and biotic agents) and forest management. Simulations span multiple
spatial and temporal scales, from individual trees to landscapes of 105 hectares, and from hourly disturbance
dynamics to centuries of forest development. Environmental conditions are represented by daily climate data and
high-resolution soil information. The model was designed for flexibly addressing a wide range of research
questions, features a rich graphical user interface and comprehensive scripting support. The model is open source
and comes with extensive online model documentation. iLand has hitherto been applied in 50 peer-reviewed
simulation studies across three continents. Applications primarily focused on the effects of climate change,
disturbances and forest management on forest dynamics, ecosystem service provisioning and forest biodiversity.
Future model development could address the representation of belowground processes, biotic interactions, and
landscape dynamics beyond forest ecosystems. We conclude that process-based simulation of landscape-scale
forest dynamics at the level of individual trees has proven a valuable approach of forest landscape modeling.

1. Introduction

Forests, covering approximately 30 % of the Earth’s land surface,
play a crucial role in climate regulation (Harris et al., 2021) and harbor a
vast proportion of terrestrial biodiversity (The State of the World’s Forests
2020, 2020). They sustain essential provisioning, regulating, and cul-
tural services and are thus of paramount importance for human well-
being. However, forests are increasingly under pressure. Climate change
is profoundly altering forest composition, structure, and ecological
processes (Calvin et al., 2023). Additionally, forest disturbances are
intensifying, with climate change increasing their frequency and
severity (McDowell et al., 2020; Senf et al., 2018). At the same time,

societal demands on forests are growing: they are expected to provide
sustainable resources for industry and the building sector (Churkina
et al., 2020), contribute to climate change mitigation through carbon
storage (Thom et al., 2017b), offer recreational spaces for an increas-
ingly urban society (Blattert et al., 2017), and maintain biodiversity e.g.,
in protected areas (Stephens, 2023). The landscape scale is pivotal for
managing these growing demands as key factors of forest dynamics like
connectivity, disturbance regimes, and spatial heterogeneity unfold
across landscapes. Consequently, forest management increasingly pri-
oritizes landscape-scale planning, in order to achieve objectives related
to biodiversity, resilience, and multifunctionality. The landscape is thus
the critical scale where large-scale climate and biodiversity policies
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intersect with their on-the-ground implementation.
Understanding and managing complex landscape dynamics requires

specialized tools; these tools need to be spatially explicit and consider
landscape-level processes and their dynamic interactions with environ-
mental drivers (Scheller, 2018). Furthermore, these tools should support
scenario analyses and the evaluation of how management interventions
influence ecosystem dynamics and service provision. Dynamic forest
landscape simulation models (henceforth referred to as landscape
models for brevity) are particularly well suited for this task. Landscape
models make at least three important contributions to the understanding
and management of forest landscapes: (1) Studying landscapes experi-
mentally is difficult, as landscape-scale manipulation is expensive,
time-consuming (Lindenmayer and Likens, 2010), and near impossible
to replicate, as each landscape is shaped by a unique combination of
land-use history, topography, soil, and climate (Phillips, 2007). Simu-
lation models support the analysis of landscape dynamics by enabling
replicated large-scale experiments in silico, e.g., explaining observed
landscape patterns (e.g., Peringer et al., 2017), or investigating the effect
of particular processes on landscape dynamics (e.g., Seidl et al., 2014b).
(2) Landscape models can be used to project the effects of future climate
change on landscape dynamics in scenario analyses. Such applications
improve our understanding of the potential impacts of climate change,
while accounting for interactions with simultaneously changing drivers
(Temperli et al., 2013; Thom et al., 2017a). (3) Finally, landscape
models can provide important information for decision makers by
simulating the outcomes of different management strategies (Holland
et al., 2022). They can be used, for instance, to simulate a range of
management decisions and inform managers about the expected effects
on ecosystem service supply (Albrich et al., 2018). Furthermore, models
can be used to communicate potential landscape futures to stakeholders
by visualizing different simulated future states of a landscape (Spies
et al., 2017).
Because of their utility for landscape research and management,

landscape modeling has been an active subfield of ecological modelling
since the late 1980s, benefiting strongly from an increasing availability
of computing power and spatial data. While a comprehensive review of
the development and current state of forest landscape modeling is
beyond the scope of this work (but see Bugmann and Seidl, 2022; Keane
et al., 2015; Scheller, 2018; Shifley et al., 2017) it is worthwhile to
consider important similarities and differences among landscape
models. The defining feature of forest landscape models is that they are
spatially explicit, i.e. the simulated entities have a unique location in
space (Turner and Gardner, 2015). The explicit consideration of space
and spatial interactions such as dispersal and disturbance distinguish
forest landscape models from other types of models such as stand-level
models, gap models, and dynamic global vegetation models (Bugmann
and Seidl, 2022; Petter et al., 2020; Shifley et al., 2017). However, the
entities being simulated in a landscape models differ widely, ranging
from individual trees to cohorts of trees, stands, discrete vegetation
states, and ecosystem pools. Furthermore, the level of mechanism
incorporated in forest landscape models varies considerably, from
highly process-oriented models simulating ecosystems based on first
principles of ecology (e.g., Keane et al., 2011) to models capturing the
dynamics of interest by means of phenomenological, statistical, or ma-
chine learning approaches (Scheller, 2018). Overall, forest landscape
models are the most diverse group among all model families of
long-term forest dynamics, building on concepts from a wide range of
modeling approaches in order to simulate forest landscape dynamics
(Bugmann and Seidl, 2022).
Here, we re-visit the individual-based forest landscape and distur-

bance model iLand to synthesize the state of the model after 12 years of
ongoing model development, and discuss its progress and outlook. Our
specific objectives were (i) to recap the fundamental ideas behind iLand,
(ii) to describe the basic approach to simulating forest landscape dy-
namics of the current model version (iLand 2.0), (iii) to give an overview
of the applications the model has been used in, and (iv) to discuss

current limitations and possible ways forward for model development.
This overview is intended as a gateway to iLand for prospective users,
synthesizing the developments individual authors have contributed to
the model over the past 12 years, and highlighting the strengths and
limitations of simulating forest landscapes with the current version of
iLand.

2. Fundamental design principles of iLand

2.1. Individual-based modeling

Individual-based models or agent-based models represent the vari-
ation of the system at the level of individuals. In the case of iLand, the
principal simulated entities are individual trees. The model accounts for
dynamic interaction between individual trees (e.g., via competition for
light) and captures the unique history of the response of individuals to
their environment (e.g., via local differences in tree growth, manifested
by locally varying tree diameter and height) (DeAngelis and Mooij,
2005; Grimm and Railsback, 2005). An important advantage of simu-
lating individual trees at the landscapes scale is that forest structure and
composition are emergent properties of the simulation. A second
strength of individual tree resolution is that the legacy of forest distur-
bances can be simulated with high fidelity (e.g., with regard to surviving
individuals), which in turn is crucial for realistically capturing forest
resilience in simulations (Albrich et al., 2020; Seidl et al., 2014b). A
third important advantage is that the wealth of tree-level forest data
being available around the globe (e.g., with regard to tree growth and
mortality) can be used directly for model evaluation (e.g., Seidl et al.,
2017). Simulating millions of trees on the landscape and their interac-
tion also comes with disadvantages, however, one being high compu-
tational demand, limiting the applicability of iLand in its current form
across very large landscapes.

2.2. Process-based modeling

iLand is a process-based forest model. This means that rather than
modeling, e.g., tree growth as an empirical function fit to observational
data, the model simulates the underlying mechanisms such as photo-
synthesis and carbon allocation explicitly. Simulating ecosystem dy-
namics based on first principles of ecology increases the robustness of
simulations in a changing world, as it also allows inferences under novel
driver combinations (Gustafson, 2013). It is important to note, however,
that process-based models often trade off lower precision for higher
realism relative to empirical models (Guisan and Zimmermann, 2000).
Furthermore, as process-based models are not per se fit to data, evalu-
ating their behavior via pattern-oriented modelling is crucial to deter-
mine their utility for a given application (Grimm et al., 2005). Lastly,
what constitutes a process in simulating ecosystems is inherently
determined by the scale of analysis. iLand, for instance, being a
tree-level model, does not explicitly consider processes at the sub-tree
level, instead simulating them in a data-driven manner (e.g., the car-
bon allocation to foliage and root compartments being driven by
empirically-derived allometric ratios). While much more detailed
models of trees exist (Bongers, 2020), iLand aims to capture processes at
an intermediate level of complexity, also referred to as the Medawar
zone (Grimm et al., 2005).

2.3. Multi-scale modeling

iLand explicitly considers a wide range of processes at multiple
spatial and temporal scales. Temporal scales range from minutes (e.g.,
the uprooting and breakage of individual trees in a wind event), days (e.
g., the influence of weather conditions), years (e.g., the growth of in-
dividual trees), to multiples thereof (e.g., the reoccurrence of mast
years). Spatial scales range from square meters (e.g., simulating the
spatial variation in forest floor light conditions and the resulting
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response of tree regeneration) to hundreds of square meters (e.g.,
simulating the spread of disturbances such as wildfire) and hectares (i.e.,
units of homogeneous climate and resource availability, called “resource
units”, RUs, in iLand). The individual spatial and temporal scales are
hierarchically linked, with large-scale processes forming constraints for
processes at finer scales, and the dynamics at fine scales feeding into
processes at higher scales (see Mäkelä, 2003). An example is stand-level
radiation interception, constraining the photosynthetic activity of indi-
vidual trees within a stand, with individual-tree foliage contributing to
stand-level leaf area and hence radiation interception.

2.4. Modeling for application

Each model has its purpose and domain of application, and so does
iLand. Within this domain, however, iLand was designed for high flex-
ibility in applications, acknowledging that no two scientific studies are
alike, and enabling a quick adaptation of the model to new research
questions. This is achieved by a number of design decisions when
developing the model: (1) providing the user with a choice of a wide
range of model outputs across spatio-temporal scales that can be indi-
vidually selected, as well as customized outputs that make the large
amounts of data generated by the model accessible for the user; (2)
detailed control over individual processes (e.g., by enabling or disabling
them) for efficient simulation experiments; (3) a built-in scripting
interface (using the JavaScript scripting language) that can be used to
interact with the simulation (e.g., creating generic, user-defined dis-
turbances) and to design flexible and reproducible scenarios, e.g. with
regard to forest management interventions (Rammer and Seidl, 2015).
(4) iLand can further be linked with other models to extend its appli-
cability beyond explicitly simulated entities and processes. Simulated
forest structure under climate change can, for instance, directly be
linked with species distribution models to project changes in the
occurrence of forest floor plants (Braziunas et al., 2024a).

2.5. Transparent and efficient software design

Performance and applicability guide the development of iLand,
ensuring that model design decisions balance scientific rigor (process
resolution and empirical evidence), computational efficiency (runtime
andmemory requirements), and practical applicability (data availability
for drivers and parameters). The iLand model adopts a monolithic
approach to software architecture, where core components and pro-
cesses are tightly integrated, prioritizing computational efficiency over
modularity. At a higher level, the model design contains elements of
modularity (e.g., with regard to simulated disturbance agents and forest
management regimes), allowing for customization and flexibility in
these domains. Developed in C++, iLand was one of the first forest
models that were developed as being fully open source, adhering to the
GNU GPL license (Free Software Foundation, 2007), and leveraging the
open-source software stack Qt framework and its development tools (Qt,
2024). The model can be executed on various operating systems and
comes in two distinct implementations: one featuring a graphical user
interface for interactive use and comprehensive visualization of simu-
lation outputs in real time, and the other optimized for automated
simulations on high-performance computing infrastructure. Recog-
nizing that comprehensive documentation is essential for effective
model application and further development, iLand offers an extensive
online wiki (https://iland-model.org, currently approximately 175
pages) encompassing both conceptual and technical aspects.

3. iLand model overview

In the following section we give an overview of the main processes
simulated in iLand. The text is intended as a synopsis of what is simu-
lated in iLand, while the how (including the detailed equations gov-
erning model behavior) is covered by more the in-depth model

description available at https://iland-model.org. We structure our
model description into four parts: Simulated entities, physical environ-
ment, continuous processes and discontinuous processes, all of which
are described in detail below.

3.1. Entities

The primary entities simulated in iLand are individual trees, saplings
(here defined as cohorts of trees < 4 m height) as well as above- and
belowground carbon pools (Fig. 1). All trees >4 m in height are simu-
lated as separate individuals in a spatially explicitly manner (with tree
coordinates discretized to a grid with a resolution of 2 m). Trees are
described by 16 state variables, including tree dimensions (i.e., stem
diameter at breast height, tree height), biomass pools (i.e., biomass in
stems, branches, foliage, coarse roots, and fine roots), and other in-
dicators describing the current situation of the tree as a function of its
recent history, such as nonstructural carbohydrate reserves and stress
level. There is no hard limit as to how many individual trees can be
simulated in iLand. For simulating saplings, iLand employs a cohort
approach for the sake of computational efficiency. Sapling cohorts of a
species share a common height and age and are simulated at a level of 2
× 2m grid cells, i.e., a maximum of 2500 distinct cohorts (of varying size
and age) of a single species are tracked for every simulated hectare of
forest. In each 2 × 2 m grid cell, sapling cohorts of up to five species can
co-exist, limiting the maximum total number of simulated sapling co-
horts per hectare to 12,500. Each cohort is defined by a number of state
variables, including cohort height and cohort age. For simulating
ecosystem carbon pools, we distinguish between live and dead carbon.
Live carbon pools are simulated at the level of individual trees and
sapling cohorts as described above, assuming a carbon content of 0.5 per
unit live biomass. Dead carbon pools above and below ground are
simulated at the level of resource units (100× 100m grid). They include
deadwood (standing woody debris in three size classes as well as one
pool for downed woody debris), litter and soil organic matter.

3.2. Environment

Forest ecosystem dynamics is driven by climate and the availability
of energy, water, and nutrients. iLand utilizes daily-resolution climate
data (minimum and maximum temperature, precipitation, radiation,
vapor pressure deficit) as model input to represent climate conditions.
The spatial resolution for climate data is the resource unit, enabling the
simulation of highly variable climatic conditions across forest land-
scapes (e.g., in mountain regions). However, for the sake of computa-
tional efficiency several resource units can be grouped into
homogeneous climate zones within the landscape. iLand also includes a
microclimate module simulating temperatures close to the forest floor
based on local topography as well as canopy structure and composition
(Braziunas et al., 2024b).
Radiation interception is a main driver of individual-tree competi-

tion in the model, and the intercepted radiation directly drives primary
production in the simulation. The approach to simulate competition for
light is inspired by ecological field theory (Wu et al., 1985) and the
field-of-neighborhood approach (Berger and Hildenbrandt, 2000): Each
tree has a spatially discrete area in which it influences its surrounding
via shading, and is in turn influenced by the accumulated shading effect
that its neighboring trees have on its position. However, since a tree’s
influence on its neighborhood changes with daily and seasonal variation
in sun position, direct calculations (e.g., via ray tracing) are computa-
tionally challenging at the landscape scale (i.e., tracking millions of trees
simultaneously). To address this issue iLand decouples the calculation of
a tree’s shading potential from the dynamic simulation. Specifically, we
calculate patterns of influence for individual trees in a 3D space around a
virtual tree (spatial resolution of 2 × 2 × 2 m) prior to the dynamic
simulation. We perform these calculations for a large number of possible
tree sizes and species at a given latitude and proportion of direct
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radiation using a global light index approach (Canham, 1988), and store
the resultant light influence patterns (LIPs) in a library (Fig. 1, box
“Competition for Light”). Once this pre-processing is completed, the LIPs
are assigned to all individual trees on the landscape based on their
height, diameter, and species, and their transmissivity is calculated
based on a tree’s crown shape and foliage biomass. The individual LIPs
are subsequently aggregated by accounting for local differences in tree
height, resulting in a continuous light interference field simulated at 2×
2 m spatial resolution and updated annually in the simulation (Seidl
et al., 2012a).
The water cycle in iLand is simulated daily at the resource unit level.

Key processes include precipitation, interception in the canopy and
subsequent evaporation, snow storage and melt-off, soil water storage,
runoff, and evapotranspiration. Canopy interception of precipitation
depends on leaf area index and leaf type (conifer or broadleaved) (Seidl
et al., 2005). Snow is modeled as a simple pool that accumulates pre-
cipitation on days with mean temperature below 0 ◦C, and loses water
with a thaw rate of 0.7 mm/ ◦C/day (Running and Hunt, 1993). A
module simulating detailed permafrost dynamics as a result of
climate-vegetation feedbacks is also available (Hansen et al., 2023).
iLand uses a one-layer soil model to characterize soil water storage.
Storage capacity is calculated from effective rock-free soil depth and soil
texture as the difference between field capacity and minimum

plant-available soil water potential (Schwalm and Ek, 2004). Evapo-
transpiration is based on the Penman–Monteith equation as imple-
mented in 3-PG (Landsberg andWaring, 1997). It is driven by net energy
input and the dryness of the air (represented by solar radiation and
vapor pressure deficit) and considers the physiological response of trees
in regulating their canopy conductance to water. iLand assumes a
species-dependent maximum conductance for closed canopies (i.e., leaf
area index above three). Actual daily conductance is calculated based on
the species-specific responses to vapor pressure deficit and soil water
potential, simulating a species-specific down-regulation of canopy water
loss under both atmospheric and soil drought.

3.3. Continuous processes

Continuous processes are active within every time step of the simu-
lation. The central continuous processes in iLand pertain to the three
main demographic processes in tree populations, i.e., growth, mortality,
and regeneration (Fig. 2). Primary production is simulated based on a
light use efficiency approach (Landsberg and Waring, 1997). It is
computed monthly at the level of resource units, deriving GPP as the
product of utilizable absorbed photosynthetically active radiation
(uAPAR, MJ) and effective radiation use efficiency (εeff, g MJ− 1). To
derive uAPAR, the absorbed photosynthetically active radiation (APAR)

Fig. 1. Overview of the main entities and environmental drivers simulated in iLand. The figure highlights the hierarchically nested spatial organization of iLand
(landscape, resource unit, 2 × 2 m cell), and the key entities simulated (i.e., individual trees, sapling cohorts for trees < 4 m height, live and dead carbon pools)
within the simulated physical environment (with key components being light, climate and water).
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is calculated via the leaf area of trees at RU-level, considering light
attenuation within the canopy (Beers Law) as well as environmental
limitations to photosynthesis at daily time step (via species-specific
scalar response functions accounting for leaf phenology and the effects
of air temperature, soil water availability and vapor pressure deficit). εeff
is derived by modifying a biome-specific optimum radiation use effi-
ciency for the effects of nutrient availability and ambient CO2 concen-
tration. The thus derived stand-level GPP is decomposed to the level of
individual trees via the contribution of each individual to the product of
uAPAR and εeff. Autotrophic respiration is initially derived as a fixed
fraction of GPP (Waring et al., 1998), but also considers a reduced
carbon use efficiency of tall and/ or old trees. The allocation of the thus
derived net primary production (NPP) to tree compartments is calcu-
lated based on allometric ratios, assuming that foliage and fine roots
take priority over stem compartments, and considering a higher allo-
cation to roots under harsh environmental conditions. Finally, annual
increments in stem diameter and tree height are calculated based on
updated stem biomass and a species- and size-specific height-to-dia-
meter ratio for stem increment that varies with competitive status of the
tree, favoring height growth over diameter growth if an individual ex-
periences strong competition for light (Bossel, 1996).
Individual tree mortality (for mortality from disturbances see below)

is modeled probabilistically, with both maximum tree age and stress
contributing to the probability of individual tree death. Age-related
(intrinsic) mortality probability is calculated from species-specific
maximum age, assuming that only a certain fraction of the population
reaches this maximum age. Note that due to the probabilistic imple-
mentation of mortality, maximum age is no hard limit and can actually
be exceeded by individuals. Stress in iLand is modeled based on a tree’s
carbon balance, assuming that a tree is stressed when it cannot meet the
carbon demands from turnover in root and foliage compartments with
the carbon gains from photosynthesis plus the carbon available from
non-structural carbohydrate reserves. The risk of stress-relatedmortality
increases if a tree is increasingly unable to maintain a positive carbon
balance. Additionally, when a tree has lost all live foliage biomass, it
dies.
Regeneration is simulated based on the complex interactions of

processes from the local scale (2 × 2 m cell) to the landscape scale in
iLand (Seidl et al., 2012b). Trees older than a species-specific maturity

age produce seeds (at distinctly different quantities for mast years and
non-mast years in the case of masting species). Subsequently, seeds of
each species are dispersed using two-part exponential dispersal kernels
(Lischke et al., 2006), and aggregated to an annual seed pool per species
on a 20×20 m grid. Serotiny (i.e., the development of a canopy seed
bank released by fire) and resprouting after tree mortality can also be
simulated in iLand (Hansen et al., 2018). For trees to establish at a given
2 × 2 m cell seeds need to be there (probabilistically determined via the
seed pool generated from individual dispersal kernels), a number of
abiotic filters need to be passed (e.g., frost, available water, growing
degree day thresholds, chilling requirements) and sufficient light needs
to be available (derived from the light inference field on the forest floor).
Upon successful establishment, a cohort of trees grows in height
following a species-specific height growth potential, which is reduced to
account for suboptimal environmental conditions applying the same
environmental response functions as in calculating stand-level GPP. If a
cohort fails to exceed a minimum height growth threshold for a number
of years its mortality probability increases. Multiple species can estab-
lish on a 2× 2 m cell, yet they do not directly interact with each other in
the simulation (e.g., by shading each other). Competition in the sapling
stage is only implicitly simulated, as only one cohort (i.e., the first to
exceed 4 m in height) recruits as individual trees, while all other cohorts
on the cell die.

3.4. Discontinuous processes

Discontinuous processes, i.e., processes that are spatially and
temporally discrete and do not occur regularly and everywhere on the
landscape, are important drivers of forest landscape dynamics. In iLand,
the two major groups of discontinuous processes simulated are natural
disturbances and management interventions (Fig. 3). iLand currently
simulates disturbances by wind, wildfire, and a diverse set of biotic
disturbance agents. The occurrence of strong winds that can break or
uproot trees is triggered by external information on the occurrence and
intensity of storms, accounting for the modifying effects of topography
on local wind speed at the spatial scale of 100 m grid cells. The impacts
of wind are simulated with a dose-response model, accounting for the
vertical wind profile and resulting turning moment (Gardiner et al.,
2000), as well as for local sheltering by neighboring trees and the size of

Fig. 2. Continuous processes simulated in iLand. Rows represent major demographic processes with main sub-processes and their drivers in cells. The tags in each
cell indicate the main entity or spatial resolution and the primary time-step of the respective process.
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upwind gaps. Calculations are initially performed for areas where dis-
continuities in the canopy exist (i.e., forest edges, identified at a hori-
zontal resolution of 10 m), and if trees fall or are broken, new trees are
exposed to wind. Calculations are repeated at the time scale of minutes
throughout the duration of a wind event, iteratively deriving wind im-
pacts as an emerging property of the simulation (Seidl et al., 2014a).
Wildfires require ignitions, which depend on fuel availability, fire

weather, fire suppression, and historical fire probability in iLand (Seidl
et al., 2014b). A location-specific base ignition probability is modified
for the effects of fire weather (represented by the Keetch Byram Drought
Index, Keane et al. (2011)) and fire suppression efforts. Once a fire is
ignited it spreads to neighboring cells (20 m spatial resolution) ac-
counting for the effects of wind, slope, and fuel availability using a
modified cellular automaton approach. Fires stop burning either when
no further spread is predicted, or when the maximum fire size (drawn
from an empirically parameterized maximum fire size distribution) is

reached. Fire severity is simulated based on available fuel (here repre-
sented by the litter and downed woody debris pools), fuel moisture, as
well as tree size and bark thickness, which are used to calculate the
percent of crown volume affected and trees killed by fire. All seedlings
and saplings are assumed to be killed in a fire. Fire effects on carbon
pools are derived from pool-specific consumption factors.
A variety of biotic disturbance agents can affect forest ecosystems. To

account for this diversity, iLand includes a general framework for
simulating biotic disturbance agents, from fungi to insects and large
mammals (BITE, the BIotic disTurbance Engine) (Honkaniemi et al.,
2021). For each agent, biotic disturbance dynamics is simulated by ac-
counting for the potential habitat of the agent, its introduction,
dispersal, and colonization, as well as the population dynamics of the
agent and its impact on vegetation. Each of these processes can be
parameterized based on available data, and agents can flexibly be added
and modified via the JavaScript interface of iLand. In addition to the

Fig. 3. Discontinuous processes simulated in iLand. Each row represents a discontinuous process caused by natural (top four) or human (bottom two) agents, with
sub-processes and their main drivers in cells. The tags in each cell indicate the main entity or spatial resolution and the primary time-step of the process.
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flexible BITE framework iLand also includes a detailed submodule for
the most important biotic disturbance agent in Europe’s forests, the
European spruce bark beetle (Ips typographus L.) (Seidl and Rammer,
2016). Outbreaks are initiated based on a region-specific background
probability, modified by the effect of climate. Beetle development is
simulated using a phenology-based process model (Baier et al., 2007),
accounting for life-stage specific thermal requirements for development,
and determining the number of generations and sister broods the insect
can complete per year. Beetle dispersal is simulated at 10 m resolution,
and is done spatially explicitly for each beetle generation and sister
brood completed per year. It assumes two stages, first passive flight
(simulated with a symmetrical dispersal kernel) and second active flight
where beetles look for suitable host trees (i.e., Norway spruce trees
above a user-defined diameter threshold) within a 30 × 30 m search
window. Host colonization success depends on the defense capacity of
the host tree (a function of its non-structural carbohydrate reserves). If a
tree is successfully colonized it dies at the end of the year. Beetle over-
wintering depends on life stage and winter minimum temperatures, and
beetle fitness decreases with duration of an outbreak, leading to
increasing mortality and the local collapse of populations after some
years.
A wide range of management interventions can be simulated in

iLand. These include the planting of trees, the removal of trees in
tending and thinning operations, and the final harvesting of trees. All
operations can be targeted to happen at a specific time, and to affect only
a specified area of the simulation and/ or cohort of trees (species, size,
social status, etc.). To simulate complex forest management regimes and
account for the dynamic interactions between management decisions
and forest development iLand includes an agent-based model of forest
management (ABE - the Agent Basedmanagement Engine) (Rammer and
Seidl, 2015). In ABE, different management agents can be specified for
parts of the landscape, with agents following different stand treatment
programs and adaptive responses to the effects of global change and
disturbance. Stand treatment programs of agents follow a sequence of
activities executed over the course of stand development, but are
dynamically responding to the emergent changes in the environment (e.
g., decreased harvest because of growth losses due to simulated drought
effects). In addition to silvicultural decision making at the stand level
agents are also able to consider landscape-level aspects such as mini-
mum or maximum harvest levels, neighborhood relationships between
stands, and different management priorities, which feed back to indi-
vidual stand-level decisions. ABE thus simulates both tactical and stra-
tegic management decisions and their interactions (Fig. 3).

4. Using iLand

In the following section we briefly describe typical steps for applying
iLand to a new study system. This is intended to give new and pro-
spective model users an overview and general understanding of the
initial efforts and data needed before the model can be applied. Model
initialization involves specifying the landscape extent and forest cover,
geospatial data on biophysical drivers, and initial vegetation conditions.
The evaluation phase consists of a series of simulation experiments to
test iLands ability to realistically simulate important patterns within the
landscape (e.g., growth, mortality and regeneration). Finally, species
parameterization is required either when focal species are not yet
included in iLand, or when the evaluation has revealed shortcomings of
the current parameterization. See Box 1 for additional resources on

using iLand.

4.1. Model initialization

The first step for model initialization is to define the simulation
extent and the forested or potentially forested (i.e., stockable) area
within the study area. The total extent of a landscape often aligns with
property boundaries, natural barriers such as ridgetops or large water
bodies, or edges between forests and other land cover types. Stockable
area in iLand applications typically ranges from 1000 s to 10,000 s of ha,
although the overall landscape extent can often be larger if there are
extensive areas of non-forest land cover. Note that iLand is not limited to
applications in real-world locations, but can also be applied to simulate
(large numbers of) individual stands (Hansen et al., 2018; Kobayashi
et al., 2023) or hypothetical landscapes designed to address specific
research questions (Braziunas et al., 2021). Landscape size strongly af-
fects computation time and memory requirements of the model. Land-
scapes with a size between 5000 and 50,000 ha run well on recent
consumer hardware, with computation taking minutes to one hour per
century of simulation.
Spatially explicit biophysical drivers include topography, daily

climate data, and soil properties, ideally at the same spatial resolution as
an iLand resource unit (1 ha) or finer (Fig. 1). Daily climate data (his-
torical or future) is often available at regional to global scales (e.g.,
Karger et al., 2017), though resolution and availability of specific future
climate trajectories may vary locally. Downscaling daily climate data to
match iLand’s spatial resolution of 100 × 100 m grid cells (Thom et al.,
2017c), or generating daily timeseries from coarser temporal resolutions
(Thom et al., 2022) may be needed. Soil properties (effective soil depth,
soil texture, plant-available nitrogen, and – if of interest for a given
research objective – carbon pools) tend to be more challenging to obtain
than climate data. Categorical soil type maps, along with ancillary data
(soil profile data from soil samples, forest type, productivity), help es-
timate important properties per stratum. Global soil databases offer
increasing potential, but regional accuracy and variable availability may
be limited. A spinup process can help to derive initial carbon pools that
are consistent with live vegetation dynamics.
Initial vegetation consists of species- and size-specific data on indi-

vidual trees and regeneration cohorts, frequently derived from forest
inventory data or a spinup process. Combining forest inventories with
data such as canopy height from LiDAR and imputation methods (e.g.,
Thom et al., 2022) allows for a detailed representation of current forest
structure and composition in model initialization. A customizable
spinup process provides an alternative means to assimilate field data.
Spinups start from bare ground and run the model for centuries,
potentially incorporating historical disturbance and management. A
specific form to initialize the model and assimilate available empirical
data into simulations are directed spinups, using aggregated target
values from observations (age and size distribution, species composi-
tion) and iterating the treatments simulated in the spinup (e.g., distur-
bance, management) until simulated conditions align with targets
(Thom et al., 2018).

4.2. Model evaluation

Model evaluation typically follows a pattern-oriented approach
(Grimm et al., 2005), testing iLands ability to realistically reproduce
different patterns observed in the simulated ecosystem. Evaluation

Box 1
Additional online resources for model users.

• Homepage and extensive model documentation: https://iland-model.org
• User guide with technical documentation and practical tips for different modeling tasks: https://iland-model.org/iland-book
• Full model source code: https://github.com/edfm-tum/iland-model
• Community channel for interaction and collaboration among iLand users: https://tinyurl.com/iland-model-discord
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exercises vary among landscapes due to varying data availability, but
typically include both tests of stand-level patterns over short time frames
and assessments of landscape-level patterns over long time frames.
Stand-level tests assess iLand’s ability to simulate structural trajec-

tories and variability, such as stem density, basal area, and tree height
(Braziunas et al., 2018), but also basal area increment (Kobayashi et al.,
2023), or site index (Thom et al., 2022). The available reference data for
evaluation dictate the design of the evaluation exercise, with the most
basic evaluations consisting of simulating monospecific stands in the
absence of disturbances under historical climate conditions along a
representative environmental gradient (e.g., Seidl et al., 2012a). Simu-
lated data is then compared with reference data, which can include
statistical goodness-of-fit tests. A powerful means of evaluating specific
processes is by comparing simulations with experimental data, e.g.,
observed and simulated diameter increments from stem density trials
(Seidl et al., 2017). If no local reference data exist on a given process,
theoretical concepts can also be used to test model behavior (e.g.,
self-thinning in the context of individual-tree mortality (Reineke,
1933)).
An important landscape-level test examines the model’s ability to

simulate species succession and the emergence of a realistic late-seral
tree species composition. Typical reference data are species-level
cover type maps (Braziunas et al., 2018), inventory data (Kobayashi
et al., 2023; Thom et al., 2017a), or descriptive accounts of potential
natural vegetation composition based on expert assessments and vege-
tation mapping (Albrich et al., 2018). Simulations frequently start from
bare ground, include external seed inputs, and run for millennia under
static historical climate with or without disturbances. Analyses focus on
how well iLand reproduces expected successional patterns and late-seral
species composition (as an indicator of competitive strength of species in
an area, i.e., the long-term integral over growth, mortality and regen-
eration processes), over the environmental gradients in the landscape
under study. Further landscape-scale evaluations include the compari-
son of individual disturbance modules against available remote sensing
products (Thom et al., 2022), and of simulated management strategies
with data reported for the study area (Albrich et al., 2018).

4.3. Species parameterization

Species parameterization is a critical component of forest simulation
modeling, determining the behavior of individual tree species and their
interactions in the simulation. iLand uses 65 parameters to characterize
a species. Parameters describe stem and crown shape as well as wood
traits, the response to the environment, characteristics of seed produc-
tion and distribution, establishment and growth in the sapling stage, as
well as maximum age and other mortality-related parameters.
Compiling all relevant parameters needed to simulate a new tree

species in iLand is a considerable effort; while some parameters can be
easily measured in the field or extracted from the literature (e.g.,
existing trait databases, Kattge et al., 2020), others are more challenging
to obtain. Parameterizing a new species is thus an iterative and step-wise
process strongly intertwined with model evaluation. The first tier of
parameters, describing tree allometry, growth, and environmental re-
sponses, can usually be determined from the literature (Burns, and
Honkala, 1990; Schütt, 2006). These can then be evaluated by con-
ducting stand-level simulations solely focusing on growth, while dis-
regarding regeneration and mortality processes. The second tier of
parameters describe tree mortality and aging. These include a number of
life history parameters that often are available from the literature (e.g.,
maximum tree age, maximum tree height), but also parameters that are
difficult to determine empirically and require iterative estimation (e.g.,
the increase of mortality probability with increasing carbon starvation
of a tree). For this, a second set of stand-level evaluation exercises can be
conducted, focusing on the reproduction of stand density patterns over
time (self thinning) as well as on simulated maximum tree properties
(maximum tree age, diameter, and height). The third tier of parameters

characterize seed production/dispersal, tree establishment and sapling
growth. These include a number of empirically derived estimates, e.g.
describing the seed dispersal kernel and the height growth potential of
saplings, but also some parameters that are more difficult to obtain from
available data (e.g., fecundity, here the number of seeds produced per
m2 of canopy area of a species, used to scale seed dispersal kernels). If
regeneration data for evaluation are available, specific evaluation tests
can be set up to assess these parameters (Hansen et al., 2018). If not, a
coarse filter approach is to simulate landscape-scale potential natural
vegetation development over long time frames and evaluate whether (i)
stem densities and diameter distributions are realistic, (ii) simulated
basal area and biomass pools are close to observed values, (iii) the
species that dominate immediately after disturbance are the early-seral
species expected for the area, and (iv) the species dominating after
centuries of undisturbed forest development are the ones expected for
the landscape. These expected patterns will only emerge from the
simulation if the parameters related to all three demographic processes –
growth, mortality, and regeneration – have been well specified.
Following the process-based philosophy of iLand, a parameterization

of a species should be valid and applicable over wide geographic and
ecological gradients without requiring local adaptation. To date, a total
of 150 species have been parameterized in iLand (Thom et al., 2024). We
advocate against intensive local tuning of species parameters and sug-
gest to accept trade offs between local precision and broad scale accu-
racy, as parameter tuning might lead to overfitting and reduce the
applicability of the model under no analog environmental conditions.
We suggest that before species parameters are changed, the suggested
changes should be evaluated against a representative subset of previous
applications of the model, ensuring that the changes improve model
behavior over a wide range of conditions. In this way, parameters are
refined and new information is assimilated into the species parameter
set, while ensuring accuracy and general applicability of the model
under current and future environmental conditions. To perform this data
assimilation and continuous improvement of parameters in iLand a tool
to aid the analysis of changes between simulations with different
parameter sets against reference data is available for model users (see
Box 1).

5. iLand applications

Where and to what end has iLand been applied in the past 12 years?
To address this question, we examined all 50 scientific papers using
iLand published since the presentation of the model in 2012 (Fig. 4a, see
Supplementary Material Table S1 for a full list of publications). Distur-
bances, climate change, and forest management emerged as the domi-
nant drivers investigated with the model (Fig. 4b). Research questions
were diverse, but broadly focused on two areas: One group of studies
investigated ecosystem dynamics and forest resilience, focusing on
changes in forest composition, structure and functioning in response to
disturbances, climate change, and forest management. The other group
of studies addressed the impacts of drivers on ecosystem service provi-
sioning, with a specific focus on carbon sequestration, biodiversity and
timber production. Study landscapes were located in Europe (N = 36),
North America (N = 13), and Asia (N = 1) (Fig. 5). European applica-
tions focused on Central Europe. North American applications focused
on the Greater Yellowstone Ecosystem and the Pacific Northwest, but
also included applications in Alaska and Eastern Canada. The sole Asian
study landscape to date lies in northern Japan. Of the landscapes
analyzed, 30 % were protected areas and 38 % were managed forest
landscapes, with the remainder being generic landscapes or stand-level
analyses. The average simulated landscape size in landscape studies was
15,104 ha, with the maximum simulated landscape size to date being
61,000 ha (Hansen et al., 2023).

W. Rammer et al.
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6. Limitations and outlook

Over the past 12 years, the individual-based forest landscape and
disturbance model iLand has matured considerably, and has contributed
to a wide variety of scientific questions. Nonetheless, a number of lim-
itations remain with the current model. We here highlight three areas
that warrant more attention in future model development: belowground
processes, biotic interactions, and landscape dynamics beyond forest
ecosystems.
The belowground realm of forest landscapes is captured only in a

simplistic manner in the current version of iLand. While iLand simulates
aboveground competition for light with considerably higher detail than
most other landscape models, a spatially explicit competition for
belowground resources between individual trees is not considered,
essentially assuming that belowground resource competition is size-
symmetrical (Cahill and Casper, 2000). This limitation is potentially
important when applying the model under more arid conditions, where
competition for water is a stronger driver of ecosystem dynamics than
competition for light (Zavala and Bravo De La Parra, 2005). In theory,
the field of neighborhood approach adopted in iLand to simulate
competition for light could also be applied to simulate belowground
competition. This would require the derivation of process-based
belowground interaction kernels, representing a trees’ ability to
locally compete for water and nutrients (Farrior, 2019). A further lim-
itation of iLands current representation of belowground processes is that
subsurface water routing throughout the landscape is not considered.
Currently, the water balance is simulated for each 100 m grid cell in
isolation, without considering water input from cells located higher up
in the landscape to cells located in lower portions of the landscape.
Depending on landscape topography and bedrock conditions such pro-
cesses could be important determinants of local water availability
(Schoorl et al., 2002), and approaches for simulating subsurface water
routing at the landscape scale exist (Tague and Band, 2004) and could be
included in the model. Furthermore, nutrient dynamics remain poorly
accounted for in iLand. While nitrogen stocks can be simulated in the
current model version via fixed stochiometric ratios, the dynamic in-
teractions between belowground nutrient availability and aboveground
vegetation dynamics are not accounted for in iLand. Furthermore, nu-
trients beyond nitrogen – such as phosphorus – are not considered in the
model, but have received increasing attention in, e.g., the dynamic

Fig. 4. a) Cumulative number of peer reviewed scientific publications using the
model since 2012. b) Relationship of simulated drivers (left) and addressed
research topics (right) in studies applying iLand. Note: studies can have
investigated multiple drivers and topics.

Fig. 5. iLand has been applied across three continents. Pins show the location of study landscapes simulated with iLand, derived from the published peer-reviewed
literature (ecological zones according to FAO, 2012).
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global vegetation modeling community (Nakhavali et al., 2022; Reed
et al., 2015).
An important hallmark of iLand is the dynamic simulation of the

interactions between individual trees at the landscape scale. However,
this simulation currently focuses on competition for resources, and does
not explicitly consider facilitation between trees. Furthermore, in-
teractions between trees are currently determined by traits that remain
constant throughout the lifetime of a tree (e.g., shade tolerance), and
that do not vary between the individuals of the same species. Future
work could consider more dynamic traits, allowing changes with
ontogeny as well as intra-specific variation in traits and their inheritance
between tree generations (Kramer et al., 2010; Purves and Pacala, 2008;
Scheiter et al., 2013). Beyond interactions between trees, other biotic
interactions are important in forest ecosystems. One example is the
simulation of forest floor vegetation, which harbors the large majority of
plant diversity in temperate forest ecosystems (Gilliam, 2007) and is
highly responsive to changes in climate and disturbance regimes (Bra-
ziunas et al., 2024a). Future work could focus on a more dynamic
consideration of forest floor plant communities, consider interactions
between vegetation cover and tree establishment, and simulate its im-
plications for forest landscape dynamics (Thrippleton et al., 2016).
Lastly, interactions of trees with other biota such as mycorrhiza or un-
gulates could be potential avenues for future model development
(Bennett et al., 2017). More broadly, while currently only the forested
part of landscapes is simulated in iLand, interactions with the portions of
the landscape not forested could be of interest, e.g., in the context of
forest loss (Parks et al., 2019), the expansion of forest tree lines (Rot-
barth et al., 2023), or approaches of integrated landscape management
(Schirpke et al., 2023).
A key element that has constrained the inclusion of further processes

in iLand is data availability. However, the advent of new approaches to
automated data collection (Wilmers et al., 2015) and remote sensing
(Senf, 2022) are opening up new avenues, providing unprecedented
information for model development, parameterization, initialization
and evaluation. When we started the development of iLand more than
15 years ago, we anticipated the wide availability of individual-tree
information from remote sensing, and included these data streams in
our considerations of model design. Likewise, the next wave of model
development should anticipate the potential of big data (Hampton et al.,
2013) and artificial intelligence (Perry et al., 2022) to leverage new
avenues for forest landscape modeling. One such avenue is harnessing
artificial intelligence to upscale detailed process information available
from simulations with high resolution models such as iLand to large
spatial extents (Rammer and Seidl, 2019). Such bottom-up approaches
to scaling hold considerable potential to improve our understanding of
large-scale vegetation dynamics, as they are better able to account for
landscape-scale processes such as dispersal and disturbance compared to
current top-down approaches to large-scale vegetation modeling (Fisher
et al., 2018).
We conclude that simulating landscape-scale forest dynamics at the

level of individual trees and with intermediate process resolution has
improved our understanding of the impacts of global change on forest
landscapes worldwide. The current paper takes stock of the state and
contributions of the model iLand, synthesizing its development over the
past 12 years, and serving as a gateway to the growing body of literature
and code for prospective model users (see Box 1 for additional re-
sources). While we here have highlighted the applications and limita-
tions of the model we also note that modeling inherently means
simplification. Consequently, whether a model (and its intrinsic sim-
plifications) are useful always need to be assessed carefully in the
context of the research question at hand. We conclude that long-term
model development is important to harness the power of simulation
models for improved understanding and management of dynamic forest
landscapes.
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