
Computation-Aware Learning for Stable Control
with Gaussian Process

Wenhan Cao1,2 Alexandre Capone3,4 Rishabh Yadav1 Sandra Hirche4 Wei Pan1
1University of Manchester 2Tsinghua University 3Carnegie Mellon University 4Technical University of Munich

Abstract—In Gaussian Process (GP) dynamical model learning
for robot control, particularly for systems constrained by compu-
tational resources like small quadrotors equipped with low-end
processors, analyzing stability and designing a stable controller
present significant challenges. This paper distinguishes between
two types of uncertainty within the posteriors of GP dynamical
models: the well-documented mathematical uncertainty stem-
ming from limited data and computational uncertainty arising
from constrained computational capabilities, which has been
largely overlooked in prior research. Our work demonstrates that
computational uncertainty, quantified through a probabilistic
approximation of the inverse covariance matrix in GP dynamical
models, is essential for stable control under computational con-
straints. We show that incorporating computational uncertainty
can prevent overestimating the region of attraction, a safe subset
of the state space with asymptotic stability, thus improving system
safety. Building on these insights, we propose an innovative
controller design methodology that integrates computational un-
certainty within a second-order cone programming framework.
Simulations of canonical stable control tasks and experiments of
quadrotor tracking exhibit the effectiveness of our method under
computational constraints.

I. INTRODUCTION

Dynamical model learning using Gaussian processes (GP)
is popular in the field of robotic control [1–3]. The ability
to update the model online is particularly desirable as it
enables robotic systems to adapt to unpredictable and changing
environments [4–7]. Using dynamically updated models makes
it feasible to design controllers with stability guarantees [8–
12]. This adaptability is crucial in aerial robotics, where
the capacity to quickly adjust to new conditions is key to
maintaining both stability and optimal performance. Exist-
ing approaches assume ample computational resources when
learning dynamical models online [13–20]. However, low-end
computational hardware, such as those of tiny robots [21],
often faces limitations, and even high-end systems can suffer
performance degradation due to insufficient resource allocation
or high temperatures [22]. Consequently, computational errors
are inevitable, whether due to the early termination of the
learning process or the processing of only a partial batch of
data.

Computational errors in dynamical model learning can
deteriorate control performance. An illustrative example can be
found in our experiment (see Section VI), where we consider a
quadrotor tracking control task. This task utilizes the conjugate
gradient (CG) method, an iterative approach, to compute the

Website: https://sites.google.com/view/computation-gp
Correspondence to wei.pan@manchester.ac.uk

Fig. 1: Quadrotor tracking control under computational con-
straints. The green line denotes the proposed computation-
aware learning control method in this paper, showing improved
tracking accuracy due to adaptive, conservative stability con-
straints compared to the agnostic one (blue line).

GP posterior dynamical model. We then synthesize a con-
troller with constraints constructed by the control Lyapunov
function (CLF) [19, 20, 23]. The results demonstrate that
early termination of the CG algorithm can lead to increased
tracking error (see Fig. 7). Intuitively, under a fixed operation
time budget, low-end computational hardware allows fewer
iterations, resulting in larger model errors, and consequently,
greater tracking errors than its high-end counterpart.

Given the inevitability of computational errors during dy-
namical model learning, understanding their impact on system
stability and incorporating them into controller design is
crucial. To address this, this paper proposes a computation-
aware learning framework for stable control, which includes
computation-aware dynamical model learning, computation-
aware stability analysis, and computation-aware controller
design, as described in Fig. 2. The contributions of this paper
can be summarized as follows:

• We demonstrate that the posterior of a GP dynamical
model for a control-affine system comprises two kinds of
uncertainty: mathematical uncertainty and computational
uncertainty, arising due to limited data and constrained
computation, respectively. This is achieved by exploiting
the iterative approximation of the inverse of the covari-
ance matrix in a probabilistic manner.

• We quantify the impact of computation on the stability
of learning-based systems by examining the derivative

https://sites.google.com/view/computation-gp
wei.pan@manchester.ac.uk

Computation-Aware
Dynamical Model Learning

Computation-Aware
Stability Analysis

Computation-Aware
Controller Design

Solution
Successful

If
Unstable

If Stable

Solution
Failed

Upgrade
Computational

Hardware

Deploy

s. t. 	 &̇𝑉! + �̇�"#$% + �̇�!
&'"(< 0

min 𝑢)
CLF-SOCPROA Estimation

&̇𝑉! + �̇�"#$% + �̇�!
&'"(< 0

True ROA

ROA with
 𝜎!"#$

(Section II) (Section III) (Section IV)

𝜎! = σ"#$% + 𝜎!
&'"(

Uncertainty Decomposition

ROA with
𝜎!"#$ +𝜎%

&'!(

Fig. 2: Workflow of computation-aware learning for stable control. This figure illustrates the three main stages of developing
a control system with computational constraints. Initially, in Section II (computation-aware dynamical model learning), the
model’s uncertainty is broken down into mathematical and computational parts. Following that, in Section III (computation-
aware stability analysis), the system’s stability is analyzed by estimating its Region of Attraction (ROA) under various
uncertainties. In Section IV (computation-aware controller design), a controller is designed to ensure system stability with
minimal control effort, using the control lyapunov function-second order cone programming (CLF-SOCP) method. The flowchart
concludes with a decision-making process that evaluates whether the system’s computational capacity needs upgrading before
deployment.

of the Lyapunov function along the trajectories of the
dynamical system. Based on this stability condition, the
region of attraction (ROA) of the real system is estimated
by discretizing the state space with Lipschitz conditions.

• We formulate a second-order cone programming (SOCP)
approach to synthesize a minimum-norm stabilizing con-
troller, taking into account both the mathematical and
computational uncertainties of the learned dynamical
model by leveraging the control Lyapunov function. Ad-
ditionally, we demonstrate that an explicit control formula
can be constructed, extending Sontag’s universal formula
to include both forms of uncertainty.

The remainder of this paper is organized as follows: Sec-
tion II introduces computation-aware GP dynamical model
learning. Section III presents the computation-aware stability
analysis. Section IV describes the computation-aware con-
troller design. The conclusions and discussions are provided
in Section VII.

II. COMPUTATION-AWARE MODEL LEARNING

In this section, we address the following question:

Q1: How can the computational error in dynamical model
learning be quantified?

The key idea is to regard the computation of the inverse of the
covariance matrix in traditional GP dynamical model learning
as a probabilistic inference problem. Consider a continuous-
time control affine system

ẋ = f(x) + g(x)u, (1)

with system state x ∈ X ⊆ Rn and control input u ∈ U ⊆ Rm.
In (1), the symbols f : Rn → Rn and g : Rn → Rn×m denote

unknown functions that represent the drift dynamics and
the input matrix, respectively. We assume that the unknown
functions f and g have bounded reproducing kernel Hilbert
space (RKHS) norm [24], which is a typical assumption when
using GP in robotics [13, 18]:

Assumption 1 (Bounded RKHS norm). We assume that
f ∈ Hf and g ∈ Hg , where Hf and Hg represent the RKHSs
induced by continuously differentiable and bounded kernels
kf (x, x′) and kg(x, x′), i.e., f and g have a bounded RKHS
norm with respect to continuously differentiable bounded
kernels kf (x, x′) and kg(x, x′). Furthermore, we know cor-
responding upper bounds Bf and Bg , i.e., ∥f∥Hf

≤ Bf and
∥g∥Hg

≤ Bg .

Initially, we assume that we have access to measurements
ẋ = f(x) + g(x)u, which is a common assumption for
GP dynamical model learning [13, 25, 26]. In practice, the
derivative of the state ẋ could be difficult to acquire and
often substituted with a discrete-time approximation [13]. One
notable challenge is to design the GP prior f(x) + g(x)u ∼
GP(µ(x, u), k(x, u, x′, u′)) to differentiate the effect of the
drift dynamics f and the input matrix g for the control-affine
system (1). Following the structure of a control affine system,
as suggested in [20, 25], we choose the GP prior mean to
be the nominal model, denoted as µ(x, u) = f̂(x) + ĝ(x)u.
Here, f̂(x) and ĝ(x) represent the nominal parts of the drift
dynamics and the control matrix, respectively, which can be
modeled with relative ease. Furthermore, we select the GP
kernel k(x, u, x′, u′) as the composite GP kernel, defined as

k (x, u, x′, u′) ≜ kf (x, x′) +

m∑
j=1

ujk
gj (x, x′)u′

j . (2)

Here, kf , kgj : Rn×n → R are kernels that capture the
behavior of the individual entries of f and g, respectively;
uj is the jth dimension of the control input u, and gj is the
jth column of the input matrix g.

Remark 1. Typically, GP learning addresses single-
dimensional output. For a vector-valued GP dynamical model,
the common approach is to define a separate GP prior for
each dimension [20]. Following the conventions of previous
works [13, 26], we assume n = 1 and m = 1 to simplify
the notation. In this case, the GP model f + gu is a scalar
function, and the kernel function becomes k(x, u, x′, u′) =
kf (x, x′) + ukg(x, x′)u′.

Remark 2. In robotic control scenarios such as quadrotor
tracking, learning a GP dynamical model online is crucial,
especially when dealing with varying dynamics. For example,
when quadrotors carry payloads like a bottle of water, the fluid
dynamics induced by the swaying water cannot be precisely
modeled and are considered disturbances, necessitating on-
line learning. As demonstrated in our final experiment, the
inputs to the GP for this water-carrying task include the
quadrotor’s global position, velocity and attitude, all of which
are obtained through a motion capture system. The output
of the GP, which serves as the label for online dynamical
learning, is the disturbance force caused by fluid dynamics.
This disturbance is deduced from the quadrotor’s nominal
model using acceleration, thrust, and the gravity force.

For N collected measurements Y =[
f(x1) + g(x1)u1, . . . , f(xN) + g(xN)uN

]⊤
at state

control pairs [X, U] =
[
(x1, u1), . . . , (xN , uN))

]
, the

posterior mean µ∗ and covariance functions k∗ are given by

µ∗(x, u)

=µ(x, u) + k(x, u,X,U)K−1(Y − µ(X,U)), (3a)
k∗(x, u, x

′, u′)

=k(x, u, x′, u′)− k(x, u,X,U)K−1k(X,U, x′, u′). (3b)

Here, the covariance matrix K, also known as kernel
Gram matrix, is computed as K ≜ Kf + U⊤

diagKgUdiag,
with [Kf](p,q) ≜ kf (xp, xq), [Kg](p,q) ≜ kg(xp, xq)

and Udiag ≜ diag {u1, u2, ..., uN}; k(x, u,X,U) is com-
puted as k(x, u,X,U) ≜ kf (x,X) + ukg(x,X)Udiag, with
[kf (x,X)](p) = kf (x, xp), [kg(x,X)](p) = kg(x, xp); and
µ(X,U) is defined by [µ(X,U)](p) = f(xp) + g(xp)up.

In (3), computing the inverse of K poses a significant
computational burden, scaling cubically with the number of
measurements. When the computation is performed exactly,
i.e., we have sufficient computational resources to compute
K−1 exactly, the modeling error is solely quantified by the
quantity k∗(x, u, x

′, u′) in (3), which corresponds to the math-
ematical uncertainty of the learned model [27–29].

However, in real-world applications, computing v∗ =
K−1(Y − µ(X,U)) exactly is often prohibitive due to con-
strained computational resources, especially in online learning
scenarios [1]. Therefore, the effect of constrained computation

must be considered. Analogous to how limited data induces
modeling error captured by mathematical uncertainty in GP
learning, constrained computation introduces an approxima-
tion error that must be accounted for as computational uncer-
tainty [28, 29]. From this perspective, the GP should return
a combined uncertainty that includes both mathematical and
computational aspects [28, 29].

As shown in [29], v∗ can be treated as a random variable
with prior distribution v∗ ∼ N (0,K) = N (v0,Σ0) to include
computational uncertainty. In this case, using the canonical CG
method [30] to compute K−1 can be regarded as performing
Bayesian inference on v∗, with each iteration conditioning
the current belief distribution v∗ ∼ N (vi−1,Σi−1) on the
linear projection of the residual s⊤i ri−1 = s⊤i (y − µ(X,U)−
Kvi−1) = s⊤i K(v∗−vi−1). The resulting belief update at the
ith iteration now becomes [29]:

vi = vi−1 +Σi−1Ksi(s
⊤
i KΣi−1Ksi)

−1s⊤i K(v∗ − vi−1)

= Ci(y − µ(X,U)),

Σi = Σi−1 − Σi−1Ksi(s
⊤
i KΣi−1Ksi)

−1s⊤i KΣi−1

= K−1 − Ci.

For the belief v∗ ∼ N (vi,Σi), we have

p(f + gu) =

∫
p(f + gu|v∗)p(v∗) dv∗ = N (µi, ki),

with

µi(x, u)

=µ(x, u) + k(x, u,X,U)vi, (4a)
ki(x, u, x

′, u′)

= k(x, u, x′, u′)− k(x, u,X,U)Cik(X,U, x′, u′)︸ ︷︷ ︸
Combined Uncertainty

= k(x, u, x′, u′)− k(x, u,X,U)K−1k(X,U, x′, u′)︸ ︷︷ ︸
Mathematical Uncertainty

+ k(x, u,X,U)Σik(X,U, x′, u′)︸ ︷︷ ︸
Computational Uncertainty

≜kmath(x, u, x′, u′) + kcomp
i (x, u, x′, u′). (4b)

In (4), Ci is defined as Ci = Si(S
⊤
i K̂Si)

−1S⊤
i , which is a

rank-i matrix. Here, Si is given by Si ≜
[
s1 s2 · · · si

]
∈

RN×i, where each si represents the direction of the CG update
in the ith iteration. It satisfies the relation si =

r⊤i−1Ksi−1

s⊤i−1Ksi−1
si−1,

where ri−1 is the residual at the (i − 1)th iteration. As we
perform more computations, the uncertainty about v∗ contracts
as Ci → K−1 = Σ0 as i → N . After N iterations, CN =
K−1, the computational uncertainty reduces to zero, and the
combined uncertainty reduces to the mathematical uncertainty.

The decomposition of combined uncertainty in GPs into
mathematical and computational uncertainties is already well-
established in prior research [28, 29]. These studies primarily
emphasize the benefits of leveraging computational uncertainty
to enhance generalization for supervised learning tasks with
medical datasets [28, 29]. Different from those works, this

paper focuses on robotic control. We provide a novel insight
that computational uncertainty can be utilized to quantify
computational errors when learning dynamical models. More
importantly, in the subsequent sections, we illustrate how this
computational uncertainty can further be leveraged to better
estimate the region of attraction and design a stable controller
in computation-constrained robotic systems.

Remark 3. Besides CG, other methods like Cholesky decom-
position [31, 32] can also be employed for GP dynamical
model learning, and the computational uncertainty can simi-
larly be quantified [28, 29].

Leveraging the convergence result of general GP models
from Corollary 1 in [29] and combining it with Assumption 1,
the combined uncertainty can be utilized to establish the
convergence of the posterior mean of the learned dynamical
GP model:

Lemma 1 (Pointwise Convergence of the Posterior Mean).
∀ [x, u] ∈ X × U , we have f(x) + g(x)u ∈ Hk and

|f(x) + g(x)u− µi(x, u)| ≤ Bf,g ·
√

ki(x, u, x, u). (5)

Here, Bf,g is the upper bound of the RKHS norm satisfying
∥f + gu∥Hk

≤ Bf,g .

The detailed proof of Lemma 1 can be found in Appendix A.
Lemma 1 shows that, in the sense of point-wise convergence,
the combined uncertainty ki is the correct object characterizing
the belief about the latent function f + gu under constrained
computation.

Remark 4. There is an intrinsic conflict between uncertainty
quantification and computational efficiency, as quantifying
computational uncertainty requires additional costs. Typically,
computation-aware GP model learning exhibits a quadratic
time complexity of O(N2i) for i iterations, which incurs
a greater cost compared to linear-time GP approximations
such as inducing point methods [33, 34]. However, in the
subsequent sections, we will demonstrate that these additional
costs are justifiable, as they are indispensable for providing
stability guarantees in computation-constrained systems.

III. COMPUTATION-AWARE STABILITY ANALYSIS

In Section II, we establish the error bound in Lemma 1
to link constrained computation with regression performance
through computational uncertainty. However, this bound does
not directly address the actual objective of control systems,
which is achieving stable control. This and the following
sections will bridge this gap. In this section, we will first
address the question:

Q2: How to verify the stability of the system using the
computation-aware GP model?

The core idea is to examine the Lyapunov function deriva-
tive along the trajectories of the system incorporating the
computation-aware GP model. First, we make a common
assumption about the equilibrium point of the system [35]:

Assumption 2 (Equilibrium Point). The origin is an equilib-
rium point of (1) with f(0) = g(0) = 0.

Stability is crucial for robot control. The controller of a
robotic system, denoted as π : X → U , must stabilize around
a reference point or follow a reference trajectory. Specifically,
asymptotic stability implies that if the system starts ‘close
enough’ to the equilibrium point, it remains ‘close enough’
indefinitely and eventually converges to it:

Definition 1 (Asymptotic Stability). System (1) is considered
asymptotically stable if, for every ϵ > 0, there exists a
δ > 0 such that ∥x(0)∥ ≤ δ implies ∥x(t)∥ < ϵ and
limt→∞ ∥x(t)∥ = 0 for every t ≥ 0.

A common way to verify stability is to use a well-defined
Lyapunov function, which can be established through natural
energy functions [36] or experimentation [11]:

Assumption 3 (Well-defined Lyapunov Function). A Lya-
punov function V (x) is fixed and two-times continuously
differentiable.

In this paper, we assume that such a function is known in
advance. For asymptotic stability, for every x ∈ Rn \ 0, the
derivative of the Lyapunov function is required to be less than
0 for the closed-loop system:

V̇ (x) =
∂V

∂x
(f(x) + g(x)π(x)) < 0. (6)

However, V̇ (x) < 0 is too stringent to achieve for all x ̸= 0.
In such cases, the stability of the system is typically assessed
by the size of the region where V̇ (x) < 0. This region is
proven to be an invariant set, which is specifically referred to
as the region of attraction (ROA) [35]:

Definition 2 (Region of Attraction). A set R is defined as
a ROA of the system if, for all x(0) ∈ R, it holds that
limt→∞ x(t) = 0.

The concept of ROA is not only theoretically significant
but also practically useful for robotic systems. It provides an
essential verification of the controller’s safety before its real-
world deployment. For example, in drone navigation, the ROA
would specify the conditions under which the drone can be
expected to stabilize to a desired flight path or hover point.
Finding the exact ROA analytically might be difficult or even
impossible [35]. Nevertheless, we can instead use a level set
of Lyapunov functions to conservatively estimate it, as shown
in the following lemma:

Lemma 2 (Level Set Estimates of ROA [35]). Consider a level
set of the Lyapunov function V(c) = {x ∈ X |V (x) ≤ c} with
c > 0. If for every x ∈ V(c) \ {0}, condition (6) is satisfied,
then V(c) is an invariant set and V(c) ⊆ R.

Lemma 2 shows under which condition the level set of
a Lyapunov function V(c) can be verified as a subset of
ROA. Consequently, the largest subset is the one most closely
approximating the ROA and is often used as the ROA estimate.
The goal of this section is to use the computation-aware GP

model to find the largest c that satisfies the condition V̇ (x) < 0
for every x ∈ V(c) \ {0}.

Using Lemma 1, for a given controller u = π(x), we have

|f(x) + g(x)π(x)− µi(x, π(x))|
≤Bf,g ·

(
σmath(x, π(x)) + σcomp

i (x, π(x))
)
,

where Bf,g is the upper bound of the RKHS norm satisfying
∥f + gu∥Hk

≤ Bf,g; σmath(x, u) ≜
√
kmath(x, u, x, u) and

σcomp
i (x, u) ≜

√
kcomp
i (x, u, x, u) are the standard deviation of

the GP posterior at (x, u). Thus, the derivative of the Lyapunov
function V̇ (x) can be bounded by:

V̇ (x) =
∂V (x)

∂x
(f(x) + g(x)π(x))

=
∂V (x)

∂x
(µi(x, π(x)) + f(x) + g(x)π(x)− µi(x, π(x)))

≤∂V (x)

∂x
µi(x, π(x))

+

∣∣∣∣∂V (x)

∂x

∣∣∣∣ |f(x) + g(x)π(x)− µi(x, π(x))|

≤ ∂V (x)

∂x
µi(x, π(x))︸ ︷︷ ︸

≜ ˙̄Vi(x)

+

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ·Bf,g · σmath(x, π(x))︸ ︷︷ ︸
≜V̇ math(x)

+

∣∣∣∣∂V (x)

∂x

∣∣∣∣ ·Bf,g · σcomp
i (x, π(x))︸ ︷︷ ︸

V̇ comp
i (x)

.

From the derivation above, we find that V̇ (x) can be upper
bounded by the sum of ˙̄Vi(x), V̇

comp
i (x), and V̇ math(x). Here,

˙̄Vi(x) can be considered the mean part of the Lyapunov
derivative, while V̇ math(x) relates to mathematical uncertainty,
and V̇ comp

i (x) pertains to computational uncertainty. This de-
composition of V̇ (x) allows us to estimate the ROA using the
computation-aware GP model:

Theorem 1 (ROA Estimation using Computation-Aware GP
Model). If, for all x ∈ V(c) \ {0}, the following inequality is
satisfied:

˙̂
V (x) ≜ ˙̄Vi(x) + V̇ comp

i (x) + V̇ math(x) < 0, (7)

then it follows that V(c) ⊆ R.

Proof: Note that (7) represents a sufficient condition for
(6). Therefore, this theorem can be directly derived from
Lemma 2.

This theorem offers a sufficient condition for estimating
the ROA using a computation-aware GP model. The de-
composition of V̇ (x) indicates that both mathematical and
computational uncertainties are indispensable in estimating the
ROA. With a fixed amount of collected data, the mathematical
uncertainty part, V̇ math(x), remains constant, while the com-
putational uncertainty part, V̇ comp

i (x), typically decreases as
more computations are performed [28, 29].

Remark 5. Previous ROA estimation methods that use GP
dynamic model learning, such as those described in [13], do

not account for computational uncertainty. This oversight can
lead to estimated ROAs that lack stability guarantees, meaning
the estimated level sets of the Lyapunov function cannot assure
they are subsets of the ROA under constrained computation.
For instance, it has been observed that the ROAs estimated
using the method in [13] exceed the actual ROAs in scenarios
with computational constraints, as demonstrated in Fig. 5.

In practice, it is often impossible to evaluate V̇ (x) every-
where in a continuous domain. Nonetheless, the continuity
of V̇ allows for evaluating it only at a finite number of
points without losing guarantees, as shown in the subsequent
corollary:

Corollary 1 (ROA Estimation Through Discretization). As-
sume that the given policy π is bounded in X satisfying
∥π∥∞ ≤ Bπ . If, for every x ∈ {Xτ ∩ {V(c) \ 0}}, the
following inequality is satisfied:

˙̄Vi(x) + V̇ math(x) + V̇ comp
i (x) < −Lτ, (8)

where L is the Lipschitz constant of V̇ (x) defined by

L =
(
B2

f∥kf∥∞ +B2
gBπ∥kg∥∞

)
·
∥∥∥∥∂2E(x)

∂x2

∥∥∥∥
∞

+
√
2

∥∥∥∥∂E(x)

∂x

∥∥∥∥
∞

·

(
Bf

√
∥kf∥∞

∥∥∥∥∂kf∂x

∥∥∥∥
∞

)

+
√
2

∥∥∥∥∂E(x)

∂x

∥∥∥∥
∞

·

(
Bgπg

√
∥kg∥∞

∥∥∥∥∂kg∂x

∥∥∥∥
∞

)
.

It then follows that V(c) ⊆ R. Here, Xτ ∈ X is a discretiza-
tion of X satisfying |x− [x]τ | ≤ τ

2 for all x ∈ X ; [x]τ defines
the nearest point in Xτ to x ∈ X .

The detailed proof of Corollary 1 can be found in Ap-
pendix B. The Lipschitz continuity of V̇ (x) allows for the
extension of results from Xτ to the broader set X . Addition-
ally, the trade-off between accuracy and computational effort
can be managed by adjusting the discretization factor τ . A
smaller value of τ leads to a less conservative estimate of the
ROA.

This corollary provides a way for estimating the ROA
by means of binary search. For high-dimensional systems,
this approach may become computationally demanding due
to the exponential increase in the number of points to be
checked with each added dimension. Nevertheless, the primary
purpose of quantifying the ROA is to evaluate the stability of
a given controller before deployment. Therefore, it is typically
performed offline, and the required time could be manageable
for offline computation.

IV. COMPUTATION-AWARE CONTROLLER DESIGN

Section III introduces the method to verify the stability of a
given controller. If a given controller does not meet the desired
ROA, it needs to be redesigned using the computation-aware
GP model. This section answers the following question:

Q3 How can a stable controller be synthesized for a
computation-constrained system?

The core idea involves formulating an optimization problem
that minimizes the control input norm, subject to the inequality
constraints V̇ < 0, by employing a computation-aware GP
model. We begin with the definition of the control Lyapunov
function (CLF):

Definition 3 (Control Lyapunov Function). The function V (x)
is a control Lyapunov function for the system (1) if, for each
x ∈ Rn \ 0, it holds that

inf
u∈Rm

∂V (x)

∂x
f(x) +

∂V (x)

∂x
g(x)u︸ ︷︷ ︸

≜V̇ (x,u)

< 0.

The existence of such a CLF indicates that the system is
globally stabilizable if V is radially unbounded, i.e., V (x) →
∞ as |x| → ∞ [37]. The objective then becomes to find a local
Lipschitz continuous feedback control law u = π(x), ensuring
that the condition V̇ (x, π(x)) < 0 is met for all x ∈ Rn \ 0.
For unconstrained inputs u ∈ Rm, such a feedback control law
can be readily derived in a closed form [23]. However, robotic
systems typically face actuator limitations that manifest as
control constraints u ∈ U . Here, the set U ⊆ Rm represents
the compact set of all admissible control inputs. In this case,
there is no exact closed-form to construct a stable control
policy and it may be unfeasible to find a control input ensuring
V̇ (x, u) < 0 for every x ∈ Rn\0, even if V is a valid CLF for
the system. In such cases, it is possible to identify a level set
of the Lyapunov function V(c) = {x ∈ X |V (x) ≤ c}, where

inf
u∈U

∂V (x)

∂x
f(x) +

∂V (x)

∂x
g(x)u < 0,

is valid for all x ∈ V(c)\{0}. To facilitate the convexification
of the optimization problem, and also impose a stronger notion
of stabilizability for exponential convergence [20, 38, 39], we
can instead consider:

inf
u∈U

∂V (x)

∂x
f(x) +

∂V (x)

∂x
g(x)u+ λ · V (x) ≤ 0, (9)

with λ > 0. A straightforward method to synthesize such a
control law is by enforcing (9) as a constraint in a min-norm
optimization problem:

CLF-QP:

π∗(x) = argmin
u∈U

∥u∥2, (10a)

s.t.
∂V (x)

∂x
f(x) +

∂V (x)

∂x
g(x)u+ λ · V (x) ≤ 0.

(10b)

In this paper, we assume that the input constraints are
linear, which renders problem (10) a quadratic program (QP).
This optimization problem formulates a feedback control law,
π∗(x), that selects the min-norm input to ensure exponential

convergence of the system state to the origin. However, this
QP is not always feasible as the actual model inevitably con-
tains uncertainties. Therefore, a principled solution involves
reformulating the min-norm stabilizing controller, as defined in
(10), to accommodate model uncertainty. Following (7) from
Theorem 1, a sufficient condition for (10b) is given by:

∂V (x)

∂x
· µi(x, u) +Bf,g ·

∣∣∣∣∂V (x)

∂x

∣∣∣∣ · σcomp
i (x, u)

+Bf,g ·
∣∣∣∣∂V (x)

∂x

∣∣∣∣ · σmath(x, u) + λV (x) ≤ 0.

(11)

Therefore, we can replace the constraint in (10b) with its
sufficient condition (11):

Computation-Aware GP-CLF-SOCP:

π∗(x) = argmin
u∈U

∥u∥2

s.t. (11).
(12)

The optimization problem (12) is classified as a second-
order cone program (SOCP). This arises from the inherent
characteristics of the composite kernels. Specifically, µi is a
linear function of u, while

(
σcomp
i

)2
and

(
σmath

)2
are both

positive definite quadratic functions of u, as elucidated in [20].

Theorem 2. If there exists a constant c > 0 such that the
solution to the optimization problem (12) exists for all x ∈
V(c) \ 0, then V(c) is a subset of ROA.

Proof: The proof of ROA is straightforward: for all x at
the boundary of V(c), we can always find a control input u
such that V̇ (x, u) < 0 ensured by (11).

Theorem 2 ensures the stability of the controller synthesized
through solving (12). We want to emphasize that the con-
straints in the optimization problem often neglect computation
uncertainty [20], i.e., σcomp

i (x, u) ≡ 0 is implicitly assumed.
Under this assumption, (11) no longer serves as a sufficient
condition for (10b).

Remark 6. In practice, the constraint (11) can be relaxed
by introducing a slack variable, ensuring the feasibility of the
problem in cases where it is not locally satisfied. Additionally,
instead of minimizing the norm of the control signals, we
often minimize their weighted norm to normalize the impact
of the magnitude of each control quantity. Consequently, the
optimization problem in (11) can be reformulated as

π∗(x) = argmin
u∈U, d∈R

∥u∥2W + p d2

s.t.
∂V (x)

∂x
· µi(x, u) +Bf,g ·

∣∣∣∣∂V (x)

∂x

∣∣∣∣ · σcomp
i (x, u)

+Bf,g ·
∣∣∣∣∂V (x)

∂x

∣∣∣∣ · σmath(x, u) + λV (x) ≤ d.

Here, ∥u∥2W ≜ u⊤Wu.

In a specific scenario where only the drift dynamics f(x)
is unknown, and the control matrix g(x) is known, we need

to learn only f(x). In this context, the posterior mean for
learning f(x) is denoted as µi(x), while the uncertainties are
expressed as σcomp

i (x) and σmath(x), respectively. Under mild
assumptions, it is possible to directly construct an explicit
form of a stable controller for unconstrained inputs without
the necessity of solving an optimization problem:

πexplicit(x) = −
a(x) +

√
a2(x) + ∥b(x)∥4
∥b(x)∥2

b(x). (13)

Here, a(x) is a scalar function defined as

a(x) ≜
∂V (x)

∂x
µi(x) +Bf ·

∣∣∣∣∂V (x)

∂x

∣∣∣∣ · (σcomp
i (x) + σmath(x)

)
,

(14)
and b(x) is a vector function defined by

b(x) ≜ g⊤(x)
∂V (x)

∂x⊤ . (15)

The stability of this explicit control policy is summarized in
the subsequent Proposition:

Proposition 1 (Explict Form of Stable Control Policies).
Assuming that the input matrix g(x) ̸= 0 and ∂V (x)

∂x ̸= 0
for all x. Then, the explicit control policy in (13) stabilizes
the closed-loop system.

Proof: Defining a(x) and b(x) as in (14) and (15), we
have

∂V (x)

∂x
µi(x) +Bf ·

∣∣∣∣∂V (x)

∂x

∣∣∣∣ · (σcomp
i (x) + σmath(x)

)
+
∂V (x)

∂x
g(x)πexplicit(x)

=a(x) + b⊤(x)

(
−
a(x) +

√
a2(x) + ∥b(x)∥4
∥b(x)∥2

b(x)

)
=−

√
a2(x) + ∥b(x)∥4 < 0.

The control policy described in (13) can be viewed as
an extension of Sontag’s universal formula [40]. The key
difference lies in our theorem’s additional consideration of
the model’s mathematical and computational uncertainties. If
the model learning is sufficiently accurate, for example, using
sufficient data and ample computation, our approach reduces
to Sontag’s universal formula.

Remark 7. We have rigorously proven that by using a
computation-aware GP model, we can synthesize a stable
controller in computation-constrained systems. However, there
are certain trade-offs involved. Intuitively, when computational
uncertainty is present, the complexity of model learning in-
creases, as noted in remark 4. However, this increase in
complexity is usually not critical and can often be disregarded
[29]. Meanwhile, compared to approaches that do not account
for computational uncertainty, the constraints in solving the
min-norm optimization problem are tighter, often leading to
larger control signals.

V. SIMULATIONS

In this section, we consider two simulations of the canon-
ical control tasks to show the effectiveness of computation-
aware learning, computation-aware stability analysis, and
computation-aware controller design.

A. Nonlinear 1D System

Consider a canonical 1D system [13] described by

ẋ = f(x) + u, (16)

where x ∈ R is the system state, and the system dynamics
f(x) is sampled from a GP with zero mean and a com-
posite kernel, i.e., f ∼ GP(0, k). To achieve a reasonably
good performance, the kernel k is chosen as a product of
a linear kernel and a Matérn kernel, defined as k (x, x′) ≜
klinear (x, x

′) ∗ kMatérn (x, x
′) [13].

As demonstrated in Fig. 3, we decompose the uncertainty of
the learned GP model into two types: mathematical uncertainty
and computational uncertainty. The mathematical uncertainty
of the GP dynamical model remains constant since the number
of acquired data points is fixed. In contrast, the computational
uncertainty decreases as the number of iterations increases.
Notably, when the number of iterations equals the number of
data points, we achieve ideal computation, and the compu-
tational uncertainty is reduced to zero. Furthermore, the true
model is encompassed within the error bar of the combined
uncertainty but exceeds that of the mathematical uncertainty
alone. This indicates that the combined uncertainty provides a
tight worst-case bound on the relative error between the poste-
rior mean of the GP dynamical model and the true system. It
also suggests that relying solely on mathematical uncertainty
is inadequate for effective model error quantification.

Building on this computation-aware GP model, we quantify
the ROA using Theorem 1, adhering to the fixed feedback
control policy π(x) = −2.5x, as established in [13]. As shown
in Fig. 3, we observe that the ROA estimate increases as the
computational uncertainty decreases, but never exceeds the
true ROA, which is within the interval [−0.921, 0.921]. This
observation implies that our ROA estimates are conservative
approximations of the actual ROA. Additionally, we note
that the ROA does not change linearly or uniformly with
the number of iterations. For example, in this simple one-
dimensional system, the ROA determined with 12 iterations is
the interval [−0.915, 0.915], and for 25 iterations, it becomes
[−0.918, 0.918]. This suggests that a computation with 12
iterations is sufficient to accurately estimate the ROA.

Finally, we implement our proposed explicit control policy
(13) to construct a stable controller using the GP model
acquired by 4, 12, and 25 CG iterations. For comparison,
we use a similar control policy form but assume that the
computational uncertainty is zero. To better evaluate their
stability, we directly depict the true ROA using the real system
model instead of estimating it with the GP model. Fig. 3
clearly shows that the computation-aware controller achieves
stability throughout the interval of [−1, 1]. On the contrary, the
controller without computational awareness leads to a much

Fig. 3: Comprehensive evaluation of model learning and stable control in a nonlinear 1D System (16). During the GP model
training, we systematically gather 25 data points per online update and vary the CG iterations for model learning (i = 4,
i = 12, i = 25). The combined uncertainty of the learned dynamics, Lyapunov function V (x) and its derivative V̇ (x) in (6)
respectively, decompose into the mathematical uncertainty (■) and computational uncertainty (■). (a) Computation-aware
model learning. The computational uncertainty diminishes with increasing i, while mathematical uncertainty remains constant.
(b) Computation-aware ROA estimation. The estimated ROA grows with each iteration, converging towards the true ROA using
a given control policy π(x) = −2.5x. (c) Computation-aware controller design. Our method (12) always ensures a negative
V̇ (x), signifying stable control, which is impressive even when the model is learned with only 4 iterations. (d) Computation-
agnostic controller design. This design (setting σcomp

i ≡ 0 in (12)), which omits computational uncertainty, yields a much
smaller ROA compared to the counterparts in (c), potentially leading to unsafety in regions where V̇ (x) is positive.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Angle

3

2

1

0

1

2

3
A

ng
ul

ar
 V

el
oc

ity

Data points
Prior ROA
True ROA

ROA i = 100
ROA i = 25
ROA i = 20

ROA i = 15
ROA i = 10
ROA i = 5

Fig. 4: Computation-aware ROA estimation for inverted pen-
dulum system given the linear quadratic controller. The ROA
estimate using the prior model exceeds the true ROA. In
contrast, the ROA estimates using computation-aware GP
models do not exceed the true ROA and increase with the
number of CG iterations.

smaller ROA. For example, in the case of 4 CG iterations,
the system is stable only within the interval of [−0.2, 0.2].
This implies that computational uncertainty is indispensable
for designing a stable controller.

B. Inverted Pendulum

We further investigate the ROA estimation using the canon-
ical inverted pendulum system [13]:[

θ̇(t)

θ̈(t)

]
=

[
θ̇(t)

mgl sin(θ(t))−µθ̇(t)
ml2

]
+

[
0
1

ml2

]
u(t). (17)

Here, θ represents the angle, m = 0.15kg is the mass, l =
0.5m is the length, and µ = 0.05 is the friction coefficient,
which are consistent with [13].

We assume that our knowledge is limited to a linear
approximation of the dynamics (17) at the upright equilibrium
point. In this approximation, we neglect friction and consider
the mass to be 0.05kg lighter. This linearized model serves
as the nominal model and, thus, as the prior model for GP
model learning. For estimating the ROA, we employ a linear
quadratic regulator (LQR) based on the nominal model as the
baseline controller, which uses the same weighted matrices as
in [13]. In addition, the level set of its quadratic Lyapunov
function is leveraged to estimate the ROA.

In this study, we collect 100 data points and present the ROA
estimates for various numbers of CG iterations. As shown in
Fig. 4, the ROA estimate using the prior model is excessively
large, exceeding the true value. In contrast, the ROA estimates
using computation-aware GP models are more conservative.
These estimates do not exceed the true ROA and increase with
the number of CG iterations. Furthermore, to demonstrate the
critical role of computational uncertainty in ROA estimates for

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Angle

3

2

1

0

1

2

3

A
ng

ul
ar

 V
el

oc
ity

Data points
Prior ROA
True ROA

ROA i = 5 (Computation-agnostic)
ROA i = 5 (Computation-aware)

Fig. 5: Comparison of computation-aware (Our method) and
computation-agnostic [13] ROA estimation for inverted pendu-
lum system under computation constraints. Neglecting compu-
tational uncertainty can lead to overly optimistic estimates of
a system’s stability, potentially misclassifying unstable regions
(■) as stable.

computation-constrained systems, we compare our approach
with a computation-agnostic method [13], which overlooks
computational uncertainty in estimating ROA. From Fig. 5,
we observe that for 5 CG iterations, the ROA estimate of the
computation-agnostic method can exceed the true value. This
suggests that neglecting computational uncertainty can lead to
overly optimistic estimates of a system’s stability, potentially
misclassifying unstable regions as stable.

VI. EXPERIMENT ON QUADROTOR TRACKING

In this section, we present an experiment on a quadrotor
tracking task with a payload to evaluate the effectiveness of
our proposed framework. The experimental setup is composed
of a motion capture system with 6 cameras, a WiFi router
for communication and a customized quadrotor with a flight
controller Pixhawk 2.4.8 and an onboard Linux computer
(Jetson Orin NX 16GB RAM). We retrofitted the quadrotor
with 4 reflective infrared markers to acquire accurate position
and attitude using the motion capture system, see Fig. 6.
Additionally, the accurate velocity and acceleration of the
quadrotor can be obtained from the positional differences.

Considering the system dynamics of a quadrotor model [41]:

ṗ = v, mv̇ = mgv +Rfu + fd, (18a)

Ṙ = RS(ω), Jω̇ = Jω × ω + τu + τd, (18b)

Here, (18a) and (18b) describe the position and attitude
dynamics of the quadrotor, respectively. The variables p ≜
[px, py, pz]

⊤ ∈ R3, v ∈ R3, R ∈ SO(3) and ω ∈ R3

represent the global position, velocity, attitude rotation matrix,
and body angular velocity, respectively. The symbols m and J

Fig. 6: Customized quadrotor equipped with a Pixhawk 2.4.8
flight controller and a Jetson Orin NX onboard computer,
carrying a bottle of water.

denote the mass and inertia matrix, while S denotes the skew-
symmetric mapping. gv ≜ [0, 0, −g]

⊤ is the gravity vector;
fu = [0, 0, T]

⊤ and τu = [τx, τy, τz]
⊤ are the total thrust

and body torques.
In our experiment, we consider the task where a quadrotor

carries a bottle of water and attempts to follow a single
continuous trajectory, as shown in Fig. 1. Here, fd and τd
represent the unknown disturbance forces and disturbance
torques, respectively. These disturbances are originated from
the complex slosh dynamics [42] and the asymmetric centroid
caused by the swaying water in the bottle, which are difficult
to model accurately. To address the disturbance forces fd,
we use GP to learn them online. Following [41], we employ
a different, highly robust controller to manage the attitude
dynamics, thus the disturbance torque τd is not our concern.
The frequency of the position control loop (18a) is set to 10 Hz
to accommodate online GP learning and controller synthesis,
whereas the frequency of the attitude control loop (18b) is 250
Hz, which is the default setting in the Pixhawk flight controller.

To fully predict the disturbance forces fd, we use position
p, velocity v and rotation R as inputs to the GP model. Ad-
ditionally, we employ the relationship fd = mv̇−mgv −Rfu
to calculate fd, which serves as the measurement for the GP
model. For every set of 20 data points, we perform online
learning for both the computation-aware and computation-
agnostic GP models using i = 5, i = 10, and i = 15 CG
iterations, respectively. For trajectory tracking, we define a
sliding variable s, which is a manifold on which the tracking
error p̃ ≜ p− pd converges to zero exponentially:

s ≜ ˙̃p+ Λp̃ = ṗ− ṗd + Λp̃,

where Λ is a positive definite diagonal matrix and pd is the
desired trajectory. Following [41], we use the sliding variable
to construct the Lyapunov function V (s) = 1

2m∥s∥2. Taking
the time derivative on V (s), we have

V̇ (s) = ms⊤ṡ

= ms⊤
(
p̈− p̈d + Λ ˙̃p

)
= s⊤

(
mgv +Rfu + fd −mp̈d + Λm ˙̃p

)
.

As shown in Section III, V̇ (s) can be bounded by the sum

0.2

0.0

0.2

0.4

0.6

0.8

1.0

X
 E

rr
or

 (m
)

0.2

0.0

0.2

0.4

0.6

0.8

Y
 E

rr
or

 (m
)

0 5 10 15 20
Time (s)

0.6

0.4

0.2

0.0

0.2

Z
Er

ro
r (

m
)

i=5 (Aware)
i=10 (Aware)
i=15 (Aware)

i=5 (Agnostic)
i=10 (Agnostic)
i=15 (Agnostic)

Fig. 7: Comparsion of the tracking error for computation-
aware and computation-agnostic controllers.

of three terms ˙̄Vi, V̇
comp
i and V̇ math, which are defined as

˙̄Vi(s) = s⊤
(
mgv +Rfu + f̂d −mp̈d + Λm ˙̃p

)
,

V̇ math(s) = |s|⊤ ·Bf · σmath,

V̇ comp
i (s) = |s|⊤ ·Bf · σcomp

i ,

where f̂d, σmath, and σcomp
i denote the posterior mean and the

mathematical and computational uncertainties of the learned
GP model of fd, respectively. Additionally, Bf is defined as
the upper bound of the RKHS norm according to Lemma 1. To
avoid solving the SOCP problem, we utilize Proposition 1 to
construct an explicit control policy. For comparison purposes,
we also synthesize another explicit form by setting σcomp

i to
zero, referring to the resulting controller as a computation-
agnostic controller.

In Fig. 7, we plot the tracking error for both

TABLE I: Root Mean Square Error of Position Tracking

Computation-Aware Computation-Agnostic

i = 5 i = 10 i = 15 i = 5 i = 10 i = 15

p̃x (m) 0.0915 0.0911 0.0977 0.467 0.161 0.0949

p̃y (m) 0.0664 0.0655 0.0752 0.509 0.154 0.0685

p̃z (m) 0.142 0.122 0.0387 0.387 0.197 0.0765

TABLE II: Average Computation Time for Each Control Loop

Computation-Aware Computation-Agnostic

i = 5 i = 10 i = 15 i = 5 i = 10 i = 15

GP (s) 0.0155 0.0327 0.0452 0.0152 0.0311 0.0434

the computation-aware and computation-agnostic controllers
across different CG iterations. As shown in Fig. 7, as the
number of CG iterations decreases, the tracking error for
the computation-agnostic controller increases significantly, in-
dicating that constrained computation can indeed negatively
impact tracking performance. However, the degradation is
slight for our proposed computation-aware controller, and even
5 CG iterations achieve better performance in the X , Y , and Z
directions than the 10 CG iteration case for the computation-
agnostic controller.

Interestingly, for the computation-aware controller, the po-
sition error in the X and Y directions with 5 and 10 CG itera-
tions can even be better than with 15 CG iterations. This may
be due to two reasons: First, slosh dynamics primarily cause
effects akin to changes in the quadrotor’s gravity, thus greatly
affecting the Z direction; Second, as we have mentioned, our
attitude dynamics employ a highly robust controller that is
distinct from the position dynamics, potentially compensating
for inaccuracies in the position dynamics control loop. How-
ever, it is important to note that for the computation-agnostic
scenario, due to the lack of consideration for computational
uncertainty, the X and Y errors still increase greatly as the
number of CG iterations decreases.

The average computation time for each control loop for GP
dynamical model learning is presented in TABLE II. As shown
in TABLE II, the computation time for dynamical GP learning
increases with the number of CG iterations. For a fixed i, the
computation-aware GP exhibits a marginal increase in compu-
tation time as it additionally needs to quantify computational
uncertainty, compared to the computation-agnostic counter-
part. However, given its improvement in tracking performance
(with a reduction in tracking error on the X , Y , and Z axes
by approximately 0.37m, 0.44m, and 0.24m respectively for
i = 5), the trade-off is worthwhile.

VII. CONCLUSIONS AND DISCUSSIONS

Conclusion: In this paper, we propose a computation-aware
framework for GP dynamical model learning to ensure stable
control in robotic systems subjected to computational con-
straints. We thoroughly investigate the impacts of constrained
computations on model learning errors by utilizing Gaussian

processes. We find that computational errors in model learn-
ing are inevitable and can lead to deterioration in control
performance. Subsequently, we quantify the consequences of
these computational errors on system stability by evaluating
the region of attraction. Finally, we present a novel, robust
controller design methodology that incorporates these compu-
tational considerations using second-order cone programming.
The effectiveness of the framework is demonstrated through
several canonical control tasks, elucidating its potential to
enhance control performance under computational constraints.

Discussion: It’s crucial to emphasize that our method
extends beyond stable control in robotics. Issues such as safety
and passivity in robotic systems, which are characterized by
energy-like functions, can also be addressed in a similar man-
ner. A more detailed explanation can be found in Appendix
C. Besides, the primary idea behind integrating computational
uncertainty into GP is the probabilistic approximation of the
inverse of the Gram matrix [28, 29]. Although this idea
is deeply rooted in the architecture of GPs, the innovative
concept of computational uncertainty may offer potential for
extension to other probabilistic models, including Bayesian
neural networks [43] and deep Gaussian processes [44].

ACKNOWLEDGEMENTS

This work was supported by the Consolidator Grant “Safe
data-driven control for human-centric systems” (CO-MAN) of
the European Research Council (ERC) under grant agreement
IDs 864686. We would also like to express our gratitude to
Ribhav Ojha and Samuel Belkadi, undergraduate students at
the University of Manchester, for their invaluable assistance
in building and assembling the experimental hardware.

REFERENCES

[1] D. Nguyen-Tuong and J. Peters, “Local gaussian process
regression for real-time model-based robot control,” in
2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2008, pp. 380–385.

[2] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaus-
sian processes for data-efficient learning in robotics and
control,” IEEE transactions on pattern analysis and
machine intelligence, vol. 37, no. 2, pp. 408–423, 2013.

[3] D. Jang, J. Yoo, C. Y. Son, D. Kim, and H. J.
Kim, “Multi-robot active sensing and environmental
model learning with distributed gaussian process,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 5905–
5912, 2020.

[4] A. Haddadi and K. Hashtrudi-Zaad, “Online contact
impedance identification for robotic systems,” in 2008
IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2008, pp. 974–980.

[5] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Real-
time local gp model learning,” From Motor Learning to
Interaction Learning in Robots, pp. 193–207, 2010.

[6] G. Fang, X. Wang, K. Wang, K.-H. Lee, J. D. Ho, H.-
C. Fu, D. K. C. Fu, and K.-W. Kwok, “Vision-based
online learning kinematic control for soft robots using

local gaussian process regression,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 1194–1201, 2019.

[7] B. Wilcox and M. C. Yip, “Solar-gp: Sparse online
locally adaptive regression using gaussian processes
for bayesian robot model learning and control,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2832–
2839, 2020.

[8] J. T. Wen, “A unified perspective on robot control:
The energy lyapunov function approach,” in 29th IEEE
Conference on Decision and Control. IEEE, 1990, pp.
1968–1973.

[9] V. Santibanez and R. Kelly, “Strict lyapunov functions
for control of robot manipulators,” Automatica, vol. 33,
no. 4, pp. 675–682, 1997.

[10] S. M. Khansari-Zadeh and A. Billard, “Learning con-
trol lyapunov function to ensure stability of dynamical
system-based robot reaching motions,” Robotics and Au-
tonomous Systems, vol. 62, no. 6, pp. 752–765, 2014.

[11] P. Giesl and S. Hafstein, “Review on computational
methods for lyapunov functions,” Discrete and Continu-
ous Dynamical Systems-B, vol. 20, no. 8, pp. 2291–2331,
2015.

[12] Q. Nguyen and K. Sreenath, “Optimal robust control for
bipedal robots through control lyapunov function based
quadratic programs.” in Robotics: Science and Systems,
vol. 11. Rome, Italy, 2015.

[13] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and
A. Krause, “Safe learning of regions of attraction for
uncertain, nonlinear systems with gaussian processes,”
in 2016 IEEE 55th Conference on Decision and Control
(CDC). IEEE, 2016, pp. 4661–4666.

[14] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kay-
nama, J. Gillula, and C. J. Tomlin, “A general safety
framework for learning-based control in uncertain robotic
systems,” IEEE Transactions on Automatic Control,
vol. 64, no. 7, pp. 2737–2752, 2018.

[15] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe
learning of quadrotor dynamics using barrier certificates,”
in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 2460–2465.

[16] J. Umlauft, L. Pöhler, and S. Hirche, “An uncertainty-
based control lyapunov approach for control-affine sys-
tems modeled by gaussian process,” IEEE Control Sys-
tems Letters, vol. 2, no. 3, pp. 483–488, 2018.

[17] A. Lederer, J. Umlauft, and S. Hirche, “Uniform error
bounds for gaussian process regression with application
to safe control,” Advances in Neural Information Pro-
cessing Systems, vol. 32, 2019.

[18] T. Beckers, D. Kulić, and S. Hirche, “Stable gaussian pro-
cess based tracking control of euler–lagrange systems,”
Automatica, vol. 103, pp. 390–397, 2019.

[19] M. Khan, T. Ibuki, and A. Chatterjee, “Safety uncertainty
in control barrier functions using gaussian processes,”
in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 6003–6009.

[20] F. Castaneda, J. J. Choi, B. Zhang, C. J. Tomlin, and

K. Sreenath, “Gaussian process-based min-norm stabi-
lizing controller for control-affine systems with uncertain
input effects and dynamics,” in 2021 American Control
Conference (ACC). IEEE, 2021, pp. 3683–3690.

[21] S. M. Neuman, B. Plancher, B. P. Duisterhof, S. Krish-
nan, C. Banbury, M. Mazumder, S. Prakash, J. Jabbour,
A. Faust, G. C. de Croon et al., “Tiny robot learn-
ing: challenges and directions for machine learning in
resource-constrained robots,” in 2022 IEEE 4th Interna-
tional Conference on Artificial Intelligence Circuits and
Systems (AICAS). IEEE, 2022, pp. 296–299.

[22] X. Zhou, J. Yang, M. Chrobak, and Y. Zhang,
“Performance-aware thermal management via task
scheduling,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 7, no. 1, pp. 1–31, 2010.

[23] E. D. Sontag, “A ‘universal’construction of artstein’s
theorem on nonlinear stabilization,” Systems & control
letters, vol. 13, no. 2, pp. 117–123, 1989.

[24] A. Berlinet and C. Thomas-Agnan, Reproducing kernel
Hilbert spaces in probability and statistics. Springer
Science & Business Media, 2011.

[25] J. Umlauft and S. Hirche, “Feedback linearization based
on gaussian processes with event-triggered online learn-
ing,” IEEE Transactions on Automatic Control, vol. 65,
no. 10, pp. 4154–4169, 2019.

[26] A. Lederer, A. Capone, J. Umlauft, and S. Hirche,
“How training data impacts performance in learning-
based control,” IEEE Control Systems Letters, vol. 5,
no. 3, pp. 905–910, 2020.

[27] C. K. Williams and C. E. Rasmussen, Gaussian processes
for machine learning. MIT press Cambridge, MA, 2006,
vol. 2.

[28] P. Hennig, M. A. Osborne, and H. P. Kersting, Prob-
abilistic Numerics: Computation as Machine Learning.
Cambridge University Press, 2022.

[29] J. Wenger, G. Pleiss, M. Pförtner, P. Hennig, and J. P.
Cunningham, “Posterior and computational uncertainty
in gaussian processes,” Advances in Neural Information
Processing Systems, vol. 35, pp. 10 876–10 890, 2022.

[30] M. R. Hestenes, E. Stiefel et al., “Methods of conjugate
gradients for solving linear systems,” Journal of research
of the National Bureau of Standards, vol. 49, no. 6, pp.
409–436, 1952.

[31] N. J. Higham, “Analysis of the cholesky decomposition
of a semi-definite matrix,” 1990.

[32] A. Krishnamoorthy and D. Menon, “Matrix inversion
using cholesky decomposition,” in 2013 signal process-
ing: Algorithms, architectures, arrangements, and appli-
cations (SPA). IEEE, 2013, pp. 70–72.

[33] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian
processes for big data,” arXiv preprint arXiv:1309.6835,
2013.

[34] M. Titsias, “Variational learning of inducing variables in
sparse gaussian processes,” in Artificial intelligence and
statistics. PMLR, 2009, pp. 567–574.

[35] H. Khalil, Nonlinear Systems, ser. Pearson Education.

Prentice Hall, 2002. [Online]. Available: https://books.
google.co.uk/books?id=t d1QgAACAAJ

[36] H. K. Khalil, Nonlinear systems; 3rd ed. Upper
Saddle River, NJ: Prentice-Hall, 2002, the book can
be consulted by contacting: PH-AID: Wallet, Lionel.
[Online]. Available: https://cds.cern.ch/record/1173048

[37] Z. Artstein, “Stabilization with relaxed controls,” Non-
linear Analysis: Theory, Methods & Applications, vol. 7,
no. 11, pp. 1163–1173, 1983.

[38] R. A. Freeman and J. A. Primbs, “Control lyapunov
functions: New ideas from an old source,” in Proceedings
of 35th IEEE conference on decision and control, vol. 4.
IEEE, 1996, pp. 3926–3931.

[39] R. K. Cosner, P. Culbertson, A. J. Taylor, and A. D.
Ames, “Robust safety under stochastic uncertainty with
discrete-time control barrier functions,” Robotics: Sci-
ence and Systems, 2023.

[40] Y. Lin and E. D. Sontag, “A universal formula for
stabilization with bounded controls,” Systems & control
letters, vol. 16, no. 6, pp. 393–397, 1991.

[41] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli,
A. Anandkumar, Y. Yue, and S.-J. Chung, “Neural lander:
Stable drone landing control using learned dynamics,” in
2019 international conference on robotics and automa-
tion (icra). IEEE, 2019, pp. 9784–9790.

[42] R. A. Ibrahim, Liquid sloshing dynamics: theory and
applications. Cambridge University Press, 2005.

[43] J. M. Hernández-Lobato and R. Adams, “Probabilistic
backpropagation for scalable learning of bayesian neu-
ral networks,” in International conference on machine
learning. PMLR, 2015, pp. 1861–1869.

[44] A. Damianou and N. D. Lawrence, “Deep gaussian pro-
cesses,” in Artificial intelligence and statistics. PMLR,
2013, pp. 207–215.

[45] I. Steinwart and A. Christmann, Support vector machines.
Springer Science & Business Media, 2008.

[46] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier
function based quadratic programs with application to
bipedal robotic walking,” in 2015 American Control
Conference (ACC). IEEE, 2015, pp. 4542–4548.

[47] M. Rauscher, M. Kimmel, and S. Hirche, “Constrained
robot control using control barrier functions,” in 2016
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2016, pp. 279–285.

[48] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista,
K. Sreenath, and P. Tabuada, “Control barrier functions:
Theory and applications,” in 2019 18th European control
conference (ECC). IEEE, 2019, pp. 3420–3431.

[49] C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear
control using robust neural lyapunov-barrier functions,”
in Conference on Robot Learning. PMLR, 2022, pp.
1724–1735.

[50] W. Xiao, T.-H. Wang, R. Hasani, M. Chahine, A. Amini,
X. Li, and D. Rus, “Barriernet: Differentiable control
barrier functions for learning of safe robot control,” IEEE
Transactions on Robotics, 2023.

[51] J. Zhao and D. J. Hill, “Passivity and stability of switched
systems: A multiple storage function method,” systems &
control letters, vol. 57, no. 2, pp. 158–164, 2008.

[52] T. Hatanaka, N. Chopra, and M. W. Spong, “Passivity-
based control of robots: Historical perspective and con-
temporary issues,” in 2015 54th IEEE Conference on
Decision and Control (CDC). IEEE, 2015, pp. 2450–
2452.

[53] B. Capelli, C. Secchi, and L. Sabattini, “Passivity and
control barrier functions: Optimizing the use of energy,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
1356–1363, 2022.

[54] D. Henrion and M. Korda, “Convex computation of the
region of attraction of polynomial control systems,” IEEE
Transactions on Automatic Control, vol. 59, no. 2, pp.
297–312, 2013.

[55] U. Topcu, A. K. Packard, P. Seiler, and G. J. Balas, “Ro-
bust region-of-attraction estimation,” IEEE Transactions
on Automatic Control, vol. 55, no. 1, pp. 137–142, 2009.

[56] C. Dawson, S. Gao, and C. Fan, “Safe control with
learned certificates: A survey of neural lyapunov, barrier,
and contraction methods for robotics and control,” IEEE
Transactions on Robotics, 2023.

[57] R. Ortega, A. Loria, P. J. Nicklasson, H. Sira-Ramirez,
R. Ortega, A. Lorı́a, P. J. Nicklasson, and H. Sira-
Ramı́rez, Euler-Lagrange systems. Springer, 1998.

[58] O. Romeo, L. Antonio, N. P. Johan, and S.-R. Hebertt,
“Passivity-based control of euler-lagrange systems: Me-
chanical electrical and electro-mechanical applications,”
Editorial Springer-Verlag. Great Britain, 1998.

APPENDIX

A. Proof of Lemma 1

Proof: First, we will prove that the latent function
f + gu ∈ Hk, where Hk is the RKHS associated with
GP kernel k. Under Assumption 1, we have f(x) =∑∞

p=1 αpk
f (x, xp), g(x) =

∑∞
q=1 βqk

g (x, xq), for some
real coefficients {αp}, {βq} and points {xp}, {xq}. Thus, the
function f(x) + g(x)u can be expressed as

f(x) + g(x)u =

∞∑
p=1

αpk
f (x, xp) + u

∞∑
q=1

βqk
g(x, xq).

Because the GP kernel function corresponds to a composite
kernel k(x, u, x′, u′) = kf (x, x′) + ukg(x, x′)u′, we have

kf (x, x′) = k(x, u, x′, 0),

ukg(x, x′) = k(x, u, x′, 1)− k(x, u, x′, 0).

To show that f + gu ∈ Hk, we need to express f + gu as a
linear combination of k. Setting u′ = 1 in the definition of k,

https://books.google.co.uk/books?id=t_d1QgAACAAJ
https://books.google.co.uk/books?id=t_d1QgAACAAJ
https://cds.cern.ch/record/1173048

we get

f(x) + g(x)u

=

∞∑
p=1

αpk(x, u, xp, 0) +

∞∑
q=1

βqk(x, u, xq, 1)

−
∞∑
q=1

βqk(x, u, xq, 0),

implying that f(x)+g(x)u ∈ Hk. Thus, there exists Bf,g > 0,
such that ∥f + gu∥Hk

≤ Bf,g. Then (5) can be proved by
leveraging Corollary 1 in [29].

B. Proof of Corollary 1

Proof: By Assumption 1, the function f and g are
both Lipschitz continuous with Lipschitz constants Lf and
Lg satisfying L2

f = 2B2
f∥kf∥∞

∥∥∥∂kf

∂x

∥∥∥
∞

and L2
g =

2B2
g∥kg∥∞

∥∥∂kg

∂x

∥∥
∞ , and bounded by ∥f∥∞ ≤ B2

f∥kf∥∞
and ∥g∥∞ ≤ B2

g∥kg∥∞ [13, 45]. For x, x′ ∈ X , the derivative
of the Lyapunov function V̇ (x) satisfies∣∣∣V̇ (x)− V̇ (x′)

∣∣∣
=

∣∣∣∣∂V (x)

∂x
(f(x) + g(x)π(x))− ∂V (x′)

∂x′ (f(x′) + g(x′)π(x′))

∣∣∣∣
≤ |f(x) + g(x)π(x)| ·

∣∣∣∣∂V (x)

∂x
− ∂V (x′)

∂x′

∣∣∣∣
+

∣∣∣∣∂V (x′)

∂x′

∣∣∣∣ · |f(x) + g(x)π(x)− f(x′)− g(x′)π(x′)|

≤
(
B2

f∥kf∥∞ +B2
gBπ∥kg∥∞

)
·
∥∥∥∥∂2V (x)

∂x2

∥∥∥∥
∞

· |x− x′|

+
√
2

∥∥∥∥∂V (x)

∂x

∥∥∥∥
∞

·

(
Bf

√
∥kf∥∞

∥∥∥∥∂kf∂x

∥∥∥∥
∞

)
· |x− x′|

+
√
2

∥∥∥∥∂V (x)

∂x

∥∥∥∥
∞

·

(
Bgπg

√
∥kg∥∞

∥∥∥∥∂kg∂x

∥∥∥∥
∞

)
· |x− x′|

≜L · |x− x′|,

where L is the Lipschitz constant of V̇ . Then, (8) is the
sufficient condition of (7), and this corollary can be proved
by using Theorem 1.

C. Energy Shaping Control

In this section, we demonstrate that the computation-aware
learning framework is not limited to stable control tasks.
Indeed, it can be extended to analyze and achieve safety and
passivity based on energy-like functions, which we refer to as
energy-shaping control.

Energy shaping control is extensively used in controller
design. Its core idea is to synthesize a controller based on an
energy-like function, reshaping the system’s natural energy to
achieve desired control performance. For example, in regula-
tion and tracking tasks, Lyapunov functions are widely used to
design stable controllers [8–12]. In reach-avoid tasks, barrier
functions or potential functions are commonly employed to

ensure the safety of controllers [46–50]. Additionally, in the
control of Euler-Lagrange models, storage functions are used
to achieve passivity [51–53].

The performance of a given controller, denoted as π(x),
can be effectively evaluated by determining the invariant set
within which key properties like stability, safety, and passivity
are maintained.

Definition 4 (Invariant Set). A set S is said to be an invariant
set if for all x(0) ∈ S, we have x(t) ∈ S, ∀t > 0.

For stability analysis, ROA is the invariant set that repre-
sents the area where a given control law π(x) guarantees the
asymptotic stability of an equilibrium point [54, 55]. Besides,
for safety analysis, the safe set [48, 56] is the invariant set
that defines the states in which the system’s operation remains
within safe boundaries. This ensures that safety constraints are
not violated, which is significant for safety-critical systems.
The invariant set is typically related to a well-defined energy
function:

Definition 5 (Energy Function and Power Function). For a
given policy π(x), an energy function E(x) ∈ C2 and a power
function P (x) ∈ C1 are well-defined for set S if the following
holds: for all x ∈ S = {x ∈ X |E(x) ∈ E}, if the following
condition is satisfied:

Ė(x) =
∂E(x)

∂x
(f(x) + g(x)π(x)) ≤ P (x). (19)

Then, S is an invariant set.

In Definition 5, we call (19) as the energy variation con-
dition because it requires the time variation of the energy
function Ė(x) to be slower than a power function P (x).

In control theory, the terms “energy function” and “power
function” are not formally defined, but the concept of us-
ing energy-like functions for analyzing control systems is
widespread. For stability analysis, the energy function E(x) is
often chosen as the Lyapunov function, and the power function
P (x) is set by P (x) = −γ(E(x)), where γ is a class K
function. The invariant set S is defined as the ROA of the
system, given by S = {x ∈ X | 0 ≤ E(x) ≤ c}, with c > 0.
For safety analysis, the negation of the barrier function is used
as the energy function, and the power function is defined as
P (x) = α(E(x)), where α is an extended class K∞ function.
The invariant set S is considered as the safe set, denoted by
S = {x ∈ X |E(x) ≤ 0}.

Specifically, for mechanical systems represented by the
input-output gravity-compensated Euler-Lagrange model [57]:{

M(χ)χ̈+ C(χ, χ̇)χ̇+Dχ̇+ ∂P (χ)
∂χ = u,

y = χ̇,

where χ represents the system’s position, and x =
[
χ, χ̇

]
is

the system state, u and y are the control input and output
respectively. For passivity analysis [53, 58], the energy func-
tion is often selected as the storage function of the system,
satisfying E(x) = P (χ) + 1

2 χ̇
TM(χ)χ̇, and the power func-

tion is defined as P (x) = π(x)y for a given policy π(x). The

power dissipated by the system, Pd(x) = π(x)y − Ė(x), also
considered as a passivity margin, should satisfy Pd(x) ≥ 0 for
a passive system. In this case, the invariant set S is defined
as S = {x ∈ X |E(x) ≥ 0}.

Using the concept of energy functions and invariant sets, the
stability analysis and controller design techniques presented in
this paper can be easily extended to various energy shaping
controls, including those for safety or passivity properties.

	Introduction
	Computation-Aware Model Learning
	Computation-Aware Stability Analysis
	Computation-Aware Controller Design
	Simulations
	Nonlinear 1D System
	Inverted Pendulum

	Experiment on Quadrotor Tracking
	Conclusions and Discussions
	Appendix
	Proof of Lemma 1
	Proof of Corollary 1
	Energy Shaping Control

