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Abstract

Quantile regression has become increasingly important in statistical modeling, finding applications across
various fields as a complementary approach to linear regression. Issues such as quantile crossings and
the linearity assumption are among the drawbacks of the classical linear quantile regression introduced
by Koenker and Bassett Jr (1978). Kraus and Czado (2017) addressed these problems by introducing the
so called D-vine quantile regression. On the other hand, Cannon (2011) introduced a quantile regression
neural network employing the pinball loss as the risk function. This approach leverages the advantages
of neural networks, such as non-linearity and scalability to handle large datasets, for quantile regression.
We improve the quantile regression neural networks by accumulating quasi quantile regression neural
networks in order to guarantee the absence of quantile crossings while maintaining the advantages of the
neural networks. The resulting cQRNN model eliminates quantile crossings, whereas the original model
exhibited quantile crossings in up to 15 percent of the test set estimations in our simulation study. Further,
the importance of the uncertainty of neural networks is addressed by introducing the idea of Tagasovska,
Ozdemir, and Brando (2023). We enhance the algorithm by fitting a D-vine quantile regression to both
the last hidden layer and the response variable of a QRNN model. The resulting D-vine copula is utilized
to generate data, effectively "bootstrapping" the underlying model. This is achieved by retraining the
last hidden layer with copies of the original QRNN, utilizing the generated data. Lastly, the models are
compared in a simulation study as well as a real world application where we investigate the conditional
Value at Risk, using the five Fama and French factors as the predictors (Fama and French 2014). We
conclude that the cumulative quantile regression neural network (cQRNN) is a superior model compared
to the original quantile regression neural network (QRNN) because it eliminates the occurrence of quantile
crossings while maintaining high accuracy.

Zusammenfassung
Die Quantilregression hat in der statistischen Modellierung zunehmend an Bedeutung gewonnen und
findet in verschiedenen Bereichen Anwendung als ergänzender Ansatz zur linearen Regression. Prob-
leme wie quantile crossing und die Annahme der Linearität gehören zu den Nachteilen der klassischen
linearen Quantilregression, die von Koenker and Bassett Jr (1978) entwickelt wurde. Kraus and Czado
(2017) haben diese Probleme durch die Entwicklung der sogenannten D-vine quantile regression gelöst.
Weiter hat Cannon (2011) ein neuronales Netz, namens quantile regression neural network (QRNN),
entwickelt, welches den pinball loss als Risikofunktion verwendet. Dieser Ansatz nutzt die Vorteile von
neuronalen Netzen wie Nichtlinearität und Skalierbarkeit zur Bewältigung großer Datensätze für die Quan-
tilregression. Wir verbessern diese QRNN Modelle, indem wir sogenannte quasi quantile regression neu-
ral networks verketten, um das Fehlen von quantile crossing zu garantieren, während wir die Vorteile
der neuronalen Netze erhalten. Das resultierende cQRNN-Modell eliminiert das Aufkommen von quantile
crossings, während das ursprüngliche Modell in unserer Simulationsstudie das Phänomen von quantile
crossings in bis zu 15 Prozent der Schätzungen im Testset zeigte. Darüber hinaus wird die Bedeutung der
Unsicherheit von neuronalen Netzen durch die Einführung des Konzepts von Tagasovska, Ozdemir, and
Brando (2023) angesprochen. Wir verbessern den Algorithmus, indem wir eine D-vine quantile regression
sowohl auf den letzten hidden layer als auch auf die responsvariable eines QRNN-Modells anpassen. Der
resultierende D-Vine Copula wird verwendet, um Daten zu generieren, wodurch das zugrunde liegende
Modell effektiv "gebootstrapt" wird. Dies wird erreicht, indem der letzte hidden layer von Kopien des
originalen QRNN unter Verwendung der generierten Daten erneut trainiert wird. Schließlich werden die
Modelle in einer Simulationstudie sowie in einer realen Anwendung verglichen, bei der wir den bedingten
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condittional value at risk, unter Verwendung der fünf Fama- und French-Faktoren (Fama and French 2014)
als Variablen, schätzen. Wir kommen zu dem Schluss, dass dass das cumulative quantile regression neu-
ral network (cQRNN) ein überlegenes Modell im Vergleich zum ursprünglichen quantile regression neural
network (QRNN) darstellt, da es das Aufkommen von quantile crossings eliminiert und gleichzeitig eine
hohe Genauigkeit beibehält.
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1 Introduction

This master’s thesis aims to integrate and compare models derived from both vine copula theory and
neural network theory. The two fundamental models for predicting the conditional quantile of a response
variable, given a set of predictive variables, examined in this thesis are the D-vine quantile regression
model introduced by Kraus and Czado (2017), which is based on vine copula theory, and the quantile
regression neural network (QRNN), initially studied by Cannon (2011). Zhang, Quan, and Srinivasan
(2019) continued the theory around QRNN’s by introducing the early stopping method (Prechelt 2012) and
various regularization methods like the dropout method (Hinton et al. 2012) and the L

2 regularization of
the underlying neural network (Ng 2004) to further improving the accuracy of the estimations of the quan-
tile regression neural networks. On the other hand, Sahin and Czado (2022) developed a refined D-vine
quantile regression algorithm named sparse D-vine quantile regression which shows an enhanced per-
formance for higher dimensional regression settings (i.e. the set of predictive variables incorporates more
than 10 variables).

In practical regression settings, we often encounter high dimensional data with many covariates which
can result in lengthy computing times. As a result, we apply the forward selection algorithm of the D-vine
quantile regression to the set of predictive variables of the QRNN model in order to reduce the number of
covariates for the resulting quantile regression neural network model. This model will be called reduced
quantile regression model or redQRNN.

A commonly known issue with quantile regression neural networks is the existing of quantile crossing
of the estimated conditional quantiles (Bernard and Czado 2015). We try to address this issue by introduc-
ing various concepts, starting by modifying the loss function of the QRNN by adding an error term related
to quantile crossing. Moreover, we introduce a new model named cumulative quantile regression model
(or short cQRNN) which accumulates so-called quasi quantile regression neural network models in order
to give a prediction of the conditional quantile at predefined levels. By definition, it will guarantee the ab-
sence of quantile crossing of the estimated conditional quantiles.

Furthermore, we study the uncertainties for quantile regression neural networks by applying the concept
first introduced by Tagasovska, Ozdemir, and Brando (2023). While the original algorithm fits an R-vine
copula to the last hidden layer of the trained neural network, our approach involves fitting a D-vine quantile
regression. This modification reduces the number of neurons in the last hidden layer and consequently
lowers the computing time of the algorithm.

All the quantile regression models are then compared in a simulation study as well as a real-data ex-
ample, in which we predict the conditional Value at Risk using the five Fama and French factors Fama and
French (2014).
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2 Mathematical background and definitions

2.1 Supervised learning setup

For the supervised learning setup, we follow the notation of Wolf (2023). First, we define the training
data set as D = {(yi, xi) œ R ◊ Rd|i = 1, . . . , n} where we assume that the pairs (yi, xi) are treated as
independent values of (Y, X) ≥ P0 and P0 is some probability measure over R ◊ Rd. The training data
set acts as the input in our learning algorithm.

As the output, we obtain a function � : Rd æ R (target function) that tries predicting y œ R given
arbitrary x œ Rd. The learning algorithm can be characterized as the map

A :

€

nœN

1
R ◊ Rd

2
n

æ RRd

.

The set of functions which can be outputted by the learning algorithm will be denoted by F and is referred
to as the function class of the learning algorithm.

The objective of the learning algorithm is to identify a suitable function � that minimizes a pre-specified
loss function L : R◊R æ R. The loss function measures the distance between the predicted value h(x)

and the observed y. By minimizing the average loss, called risk, we obtain a suitable choice for �:

�
ú

= min
�œF

R(�) = min
�œF

⁄

R◊Rd

L (y, �(x)) dP0(y, x).

The most common loss which is used in regression settings is the quadratic loss L(y, �(x)) = Îy≠�(x)Î
that leads to the L

2-risk
R(�) = EP0

Ë
ÎY ≠ �(X)Î2

È
,

which is also known as the mean-squared error.
Since the probability measure P0 is unknown, we cannot calculate the risk directly. Therefore, the task

is to minimize the risk by only using the training data set Dtrain. As a result, we define the empirical risk
by

R̂(�) =
1

|D|
ÿ

(y,x)œD

L (y, �(x)) .

Note that R̂(�)
|D|æŒ≠≠≠≠≠æ R(�) for � œ F , by the law of large numbers. Choosing the squared error loss

leads to the minimization problem

�̂ = min
�œF

1

n

nÿ

i=1
(yi ≠ �(xi))

2
.

The above optimization problem can only be solved approximately and is called training (Gühring, Raslan,
and Kutyniok 2020). For our purposes, we study the function class F , which consists of feed forward
neural networks characterized by a parameter vector ◊ œ � µ RM , where M is the number of
parameters of the neural network, i.e. M = |◊|. This leads to the minimization problem

◊̂ = min
◊œ�

R̂(�◊) = min
◊œ�

1

n

nÿ

i=1
(yi ≠ �(xi; ◊))

2
, (2.1)

which we approximately try to solve using (yi, xi) œ D, i = 1, . . . , n and a pre-defined learning algorithm.
In practice, the available training data D is divided into two disjoint sets: the training set and the test
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set. The training set is used to optimize (2.1) and output a model �
◊̂
, while the test set is used to evaluate

the performance of �
◊̂
. Sometimes, the data is further split into three disjoint sets: the training set, the test

set, and a validation set, which is used for fine-tuning the hyperparameters of the learning algorithm. We
will denote these sets as Dtrain, Dtest, and Dval.

2.2 Statistical framework

The general definitions and notation used in the statistical framework of our thesis are based on Czado
(2019) and Tepegjozova (2019). Throughout this thesis, random variables will be represented by capital
letters, while their observed values will be indicated by lowercase letters. For example, we write X = x for
a random variable X œ (�, F , P ), where (�, F , P ) is a probability space. Furthermore, we assume that
the random variables X are absolute continuous which will ensure that the corresponding density function
f exists. Additionally, we will use F for the distribution function.

We continue by mentioning the terminology of the multivariate distributions case. Bold letters will indi-
cate, that we are in a multivariate distribution setting.

Definition 2.2.1. For a random vector X = (X1, . . . , Xd)
T

, we define:

• The joint distribution and density of X as F (x) and f(x) for x = (x1, . . . , xd)
T

.

• The marginal distribution and density function of Xj as Fj(xj) and fj(xj), for j = 1, . . . , d.

• Conditional distribution and density function of Xj given XD where D = {1, . . . , d}\j: Fj|D(xj |xD)

and fj|D(xj |xD) for j ”= i.

Next, to characterize the interdependence among the random variables, it is necessary to standardize
them. Hence, each random variable Xj , where j = 1, . . . , d, is standardized using the probability integral
transform or PIT, which is defined as follows:

Definition 2.2.2. (Probability Integral Transform) If X ≥ F is a continuous random variable and x is an

observed value of X, then the transformation

u := F (x)

is called the probability integral transform (PIT) at x.

Note that if X ≥ F it follows that U := F (X) is uniformly distributed.

Definition 2.2.3. (Quantile function) Let FX : R æ [0, 1] be the distribution function of a random variable

X. Then

F
≠1
X

: (0, 1) æ R, y ‘æ inf{x œ R : FX(x) Ø y}

is the quantile function.

In the following sections, we will often work in the setting of quantile regression for which the target
function is the so-called conditional quantile function.

Definition 2.2.4. (Conditional quantile function) The conditional quantile function at level – œ (0, 1),

for a continuous response variable Y given the outcome of some predictor variables X1, ..., Xd for some

number of predictors d Ø 1 is given by

q–(x1, ..., xd) := F
≠1
Y |X1,...,Xd

(–|X1 = x1, ..., Xd = xd). (2.2)
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We often use q–(x) or even shorter q– as an abbreviation. In general, regression techniques try to
explain the behavior of the dependent variable Y as a deterministic function of predictor realizations
x1, . . . , xd, of the independent variables X1, . . . , Xd, along with some additional random noise ‘. This
is represented by the equation Y = h(x1, . . . , xd, ‘), where h is our target function that captures the re-
lationship between Y and x1, . . . , xd, incorporating the random noise ‘. As we have seen in the previous
section, we introduce a loss function such that the function that minimizes the expected loss function is the
target function. For our purposes we strive for the target function which is the conditional quantile function.
The corresponding loss is defined as follows.

Definition 2.2.5. (Pinball loss) Let – œ (0, 1), (y, x) œ R ◊ Rd
and h : Rd æ R be an arbitrary model

that tries to predict q–(x) given an arbitrary x œ Rd
. The pinball loss is defined as

fl– : R ◊ R æ R, fl–(y, h(x)) :=

I
–(y ≠ h(x)) if (y ≠ h(x)) Ø 0

(– ≠ 1)(y ≠ h(x)) if (y ≠ h(x)) < 0
. (2.3)

We observe, however, that the pinball loss fl– is not differentiable at the origin. Therefore, we introduce
a hybrid L

1/L2 norm to provide a smooth transition between absolute and squared errors around the origin
(Cannon 2011). The resulting norm is called Huber norm

H‘(x) :=

I
x

2
2‘

if 0 Æ |x| Æ ‘

|x| ≠ ‘

2 if |x| > ‘
, (2.4)

and can be used to approximate the pinball loss and make it differentiable.

Definition 2.2.6. (Huber pinball loss) Let – œ (0, 1), ‘ > 0, H‘ be the Huber norm, (y, x) œ R ◊ Rd
and

h : Rd æ R be an arbitrary model that tries to predict y œ R given an arbitrary x œ Rd
. The Huber pinball

loss is defined as

fl
(H)
–,‘ : R ◊ R æ R, fl

(H)
–,‘ (y, h(x)) :=

I
–H‘(y ≠ h(x)) if (y ≠ h(x)) Ø 0

(– ≠ 1)H‘(y ≠ h(x)) if (y ≠ h(x)) < 0
. (2.5)

2.2.1 Time series definitions

In this section we briefly introduce time series analysis definitions and the ARMA-GARCH model which we
will use in later chapters. We follow the book of Shumway and Stoffer (2017) for the definitions.

The stochastic process (i.e a sequence of random variables) (Xt)tœN is called a time series, where the
index t often represents time.

Definition 2.2.7. (Autocovariance Function) The autocovariance function is defined as the second mo-

ment product:

Cov(Xs, Xt) = E[(Xs ≠ E[Xs])(Xt ≠ E(Xt)], (2.6)

for all s and t.

We will denote Cov(Xt, Xt≠k) as the lag k autocovariance of (Xt)tœN.

Definition 2.2.8. (White noise process) A time series (Wt)tœN is called a white noise if it is a sequence

of independent and identically distributed random variables with zero mean and finite constant variance

‡
2
:

(i) E[Wt] = 0 for all t.

(ii) V ar(Wt) = ‡
2

for all t.
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(iii) Cov(Wt, Wt+k) = 0 for all t, k.

Furthermore, we introduce the notion of regularity of a time series using the concept called (weak)
stationarity.

Definition 2.2.9. (Weak stationarity) A weakly stationary time series, (Xt)tœN, is a finite variance process

such that

(i) E[Xt] = µ for all t.

(ii) The covariance function, Cov(Xs, Xt), defined in (2.6) depends on s and t only through their differ-

ence |s ≠ t|.

Henceforth, we will use the term stationarity to mean weak stationarity.

Definition 2.2.10. (Autocorrelation function) The autocorrelation function (ACF) of a stationary time

series (Xt)tœN is defined as

fl(h) =
Cov(Xt+h, Xt)

Var(Xt+h)Var(Xt)
(2.7)

It follows that ≠1 < fl(h) < 1 for all h by the Cauchy-Schwarz inequality (Shumway and Stoffer 2017).
In the following, the ACF fl(h) of a stationary time series (Xt)tœN is called the lag h autocorrelation of
(Xt)tœN. As we have seen in the first section, we have no access to the true underlying distribution of the
time series (Xt)tœN which leads us working with sample data (xt)t=1,...,n. The data is used to estimate the
autocorrelation function (2.7).

Definition 2.2.11. (Sample autocorrelation function) The sample autocorrelation function is defined as

fl̂(h) =

q
n≠h

t=1 (xt+h ≠ x)(xt ≠ x)
q

n

t=1(xt ≠ x)2 , (2.8)

for h = 0, . . . , n ≠ 1 where x =
1
n

q
n

t=1 xt is the sample mean.

Next, we briefly introduce the ARMA-GARCH model. For more details regarding the components of the
model we refer to Shumway and Stoffer (2017). Given a time series (Xt)t=1,...,T , a generalized autore-
gressive conditional heteroscedasticity (GARCH) model class splits the formula into two components:

Xt = µt + Wt, t = 1, . . . , T (2.9)

where the conditional mean µt is modeled by an ARMA(p, q) model, given by

µt = „0 +

pÿ

l=1
„lXt≠l +

qÿ

k=1
◊kWt≠k

¸ ˚˙ ˝
ARMA(p,q)

, (2.10)

with Wt = Xt ≠ µt is called the innovation at time t. It satisfies

Wt = ‡t‘t, ‡
2
t = –0 +

mÿ

i=1
–iW

2
t≠i +

sÿ

j=1
—j‡

2
t≠j

¸ ˚˙ ˝
GARCH(m,s)

, (2.11)

where ‘t is an i.i.d. distributed white noise process with mean 0 and variance 1 and is called the inno-
vation distribution. The variance ‡

2
t is modeled by an GARCH(m, s) process. The parameters of the

ARMA(p, q) model are called

• „0: mean value
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• „l, l = 1, . . . , p: autoregressive (ar) ARMA coefficients

• ◊k, k = 1, . . . , q: moving average (ma) ARMA coefficients

and the coefficients of the GARCH(m, s) model are called

• –0: constant coefficient of the variance equation

• –i, i = 1, . . . , m: value of autoregressive coefficients

• —j , j = 1, . . . , s: value of variance coefficients

The overall model is called ARMA(p, q)-GARCH(m, s).

After fitting an ARMA(p, q)-GARCH(m, s) model with a pre-defined innovation distribution, we want to
access the goodness-of fit of the model. For this we calculate the standardized residuals

r̂t :=
Xt ≠ µ̂t

‡̂t

, t = 1, . . . , T (2.12)

The standardized residuals r̂t, t = 1, . . . , T , are expected to be independently and identically distributed
and follow the selected innovation distribution. In order to check the distribution choice, we utilize Q-Q
plots which are scatter plots of the empirical sample quantiles versus the theoretical quantiles. A good fit
is achieved if the points follow the 45 degree line.

Moreover we check if the first H autocorrelations of the standardized residuals are zero using the Ljung-
Box test:

H0 : fl(1) = · · · = fl(H) = 0 vs. H1 : ÷h œ {1, . . . , H} : fl(h) ”= 0.

The Ljung-Box-Pierce Q-statistic is calculated as

Q(H) = T (T + 2)

Hÿ

h=1

fl̂(h)

T ≠ h
(2.13)

is ‰
2
H

distributed under the null hypothesis H0. Therefore, the null hypothesis would be rejected at level
– œ (0, 1) if the value Q(H) exceeds the (1 ≠ –)-quantile of ‰

2
H

.

2.2.2 Financial time series and value at risk

In this section, we will briefly explain the empirical properties of asset prices. Given an asset price process
(St)t=1,...,T we compute the log-return of the asset

Xt = ln

3
St

St≠1

4
, (2.14)

for t = 1, . . . , T . Some well-studied stylized statistical properties of asset returns are stated in Cont
(2001):

• Autocorrelations: Autocorrelations are often insignificant

• Heavy tails: Asset return distributions often have heavier tails than a Gaussian distribution.

• Volatility clustering: High volatility events tend to cluster in time.

• Leverage effect: Typically, negative asset returns tend to increase volatility more than positive asset
returns.



8

• Gain/loss asymmetry: Large downward shifts in stock prices are more frequent than upward shifts.

Definition 2.2.12. (Value at Risk) The value at risk at level – on a financial position X : � æ R is defined

as

VaR–(X) := inf{m œ R : P (m + X < 0) Æ –}. (2.15)

The value at risk at level – is the smallest amount of capital m, which, if added to the financial position X

and invested in the risk-free asset keeps the probability of a loss below the level – (Makariou, Barrieu, and
Tzougas 2021). Using Definition 2.2.3 we can follow for continuous distributions

VaR–(X) := inf{m œ R : P (m + X < 0) Æ –}
= inf{m œ R : P (X < ≠m) Æ –}
= inf{m œ R : P (X Ø ≠m) Ø 1 ≠ –}
= inf{m œ R : P (≠X Æ m) Ø 1 ≠ –}
= F

≠1
≠X

(1 ≠ –).
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3 Neural network theory

3.1 Stochastic gradient decent

One of the most frequently applied learning algorithm, which is used to solve the optimization problem
(2.1), is the so-called gradient descent (Netrapalli 2019). The algorithm can be used if one is able to
calculate the gradient Ò◊R̂(h◊) at any given point ◊ œ �. Note that

Ò◊R̂(h◊) = Ò◊

C
1

n

nÿ

i=1
L(yi, h(xi; ◊))

D

=
1

n

nÿ

i=1
Ò◊ [L(yi, h(xi; ◊))] (3.1)

for any ◊ œ � and (yi, xi) œ D = {(yi, xi) œ R◊Rd|i = 1, . . . , n}, by the linearity of the gradient operator.
Starting by initializing starting parameters ◊0, in each iteration t the parameters are updated according to

◊t+1 = ◊t ≠ –tÒ◊R̂(h◊t
) for t = 1, . . . , T ,

where –t œ R are the step sizes also called learning rates and T is the pre-defined number of iterations.
The idea of gradient descent is to find the minima of the risk function by going in the negative direction of
the risk function’s gradient.

≠2 ≠1 1 2

1

2

3

4

x

f(x) = x
2

Figure 3.1 Visualization of the idea of gradient descent for finding the global minimum of the convex function f(x) =

x
2.

Some well known issues of the gradient descent method are convergence of the algorithm, non-global
minima and saddle points. In addition, the algorithm faces the problem of computational costs if we
have a high dimensional � or a very large training set D. One way to reduce the number of evaluations
we have to perform is to use the gradients Ò◊R̂it

(h◊) = Ò◊ [L(yit
, h(xit

; ◊))], with it sampled from
U ≥ unif{1, . . . , n} for every iteration t. We observe that Ò◊R̂it

(h◊) is an unbiased estimator of Ò◊R̂(h◊)

since

E
Ë
Ò◊R̂it

(h◊)

È
= Ò◊E

Ë
R̂it

(h◊)

È
= Ò◊

S

U
nÿ

j=1
P (it = j)L(yj , h(xj ; ◊))

T

V =

Ò◊

S

U 1

n

nÿ

j=1
L(yj , h(xj ; ◊))

T

V (1.2)
= Ò◊R̂(h◊), (3.2)
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for any ◊ œ � and all (yi, xi) œ D, i = 1, . . . , n. For each iteration t, we define the update rule

◊t+1 = ◊t ≠ –tÒ◊R̂it
(h◊t

) for t = 1, . . . , T, (3.3)

which is called stochastic gradient descent (SGD). This learning algorithm is commonly used for solving
optimization problems for large-scale problems. A proof of the convergence of the algorithm is shown
in Turinici (2021). Since we only use one randomly chosen sample in the SGD, the estimation of the
parameters can be noisy. In order to get more stable estimates, the concept of mini-batch stochastic
gradient descent is the most commonly used algorithm. The algorithm is used as followed:

(i) Pre-define the learning rate –t > 0 for all iterations t = 1, . . . , T .

(ii) Choose a batch size 1 < Bt < |D| = n, where |D| is the cardinality of the training set, for all
iterations t = 1, . . . , T . Initialize the parameter vector ◊0 œ �, t = 0.

(i) For each iteration t, uniformly sample Bt integers from the set {1, . . . , |D|} without replace-
ment, and store the integers in the set Bt.

(ii) Next, the parameters are updated in the following way:

◊t+1 = ◊t ≠ –tÒ◊R̂Bt
(h◊t

), (3.4)

where

Ò◊R̂Bt
(h◊t

) = Ò◊

S

U 1

|Bt|
ÿ

iœBt

L(yi, h(xi; ◊t))

T

V .

We again see, that Ò◊R̂Bt
(h◊) is an unbiased estimator of Ò◊R̂(h◊), by following the same reasoning

as for (3.2). As a result, mini-batch stochastic gradient descent capitalizes on the benefits of both the
gradient descent algorithm and SGD (Robbins and Monro 1951) meaning that the algorithm can handle
large-scale problems like SGD but reduces the noise in the estimation process. Note that gradient descent
and stochastic gradient descent are two special cases of the mini-batch SGD. Setting Bt = |D| (using the
entire data set for updating the parameter vector) and Bt = 1 (using a uniformly sampled data point for
updating the parameter vector) for all iterations t = 1, . . . , T , respectively, recovers the gradient descent
and stochastic gradient descent.
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3.2 Feed forward neural network

We continue defining the mathematical framework of a feed forward neural network (or multilayer percep-
tron) following the notation of Gühring, Raslan, and Kutyniok (2020).

Definition 3.2.1. (Feed forward neural network) Let d, s, H œ N. A feed forward neural network �

with input dimension d, output dimension s and H hidden layers is a sequence of matrix-vector tuples

� =

11
W

[1]
, b

[1]
2

,

1
W

[2]
, b

[2]
2

, . . . ,

1
W

[H+1]
, b

[H+1]
22

,

where k0 = d, kH+1 = s and k1, . . . , kH œ N, and where each W
[h]

is a kh ◊ kh≠1 matrix, and b
[h] œ Rkh .

If � is a neural network as above, K µ Rd
, and if a : R æ R is arbitrary, then we define the associated

realization of � with activation function a over K as the map �̃ : K æ Rs
such that

�̃(x) = h
[H+1]

,

where h
[H+1]

results from the following scheme:

h
[0]

:= x,

h
[h]

:= a

1
W

[h]
h

[h≠1]
+ b

[h]
2

, for h = 1, . . . , H,

h
[H+1]

:= W
[H+1]

h
[H]

+ b
[H]

,

where x œ K µ Rd
and a acts componentwise, that is, a(v) = (a(v1), . . . , a(vm)) for every v =

(v1, . . . , vm) œ Rm
and h

[h]
is the value vector of the neurons in h-th layer for h = 1, . . . , H . For h Æ H

we call Mh(�) := ÎW
[h]Î0+Îb

[h]Î0 the number of weights in the h-th layer where Î·Î0 is the total number

of non-zero elements of a matrix, and we define M(�) :=
q

H+1
h=1 Mh(�), which we call the number of

weights of �. Let ◊ œ RM(�)
be the vector of the weights of �.

Since we only have a one dimensional output y œ R in the common regression setting, s is set to 1 if it
is not stated otherwise.

Figure 3.2 Visualization of a feed forward neural net with input dimension d = 3, two hidden layers H = 2 and output
dimension s = 1.

The realization of the neural network � described in Figure 3.2 for an input vector x œ R3 is calculated
as

�̃(x) = h
[3]

= W
[3]

1
a

1
W

[2]
a(W

[1]
x + b

[1]
) + b

[2]
2

b
[3]

2
,

where W
[1] œ R4◊3, W

[2] œ R2◊4 , W
[3] œ R1◊2, b

[1] œ R4, b
[2] œ R2, b

[3] œ R and a : R æ R is an
arbitrary activation function.
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Definition 3.2.2. (Set of neural networks) Let d, k1, . . . , kH , s œ N for some H œ N, a : R æ R an
activation function and L : R ◊ R æ R a loss function, then we define

K a,L

(d,k1,...,kH ,s) := {� : neural network with input dimension d, H hidden layers, kh neurons in layer h

and output dimension s; � is equiped with the activation function a and the loss function L}. (3.5)

In the following we fix the input dimension d œ N and output dimension s œ N. If it is not stated otherwise,
we set a to be the sigmoid function and L to be the L

2 loss and shorten the notation to K(d,k1,...,kH ,s).

This definition gives us the set of neural networks with input dimension d, output dimension s, H hidden
layers equipped with the activation function a and loss function L. These networks are further character-
ized with the weight matrices between the layers, seen in Definition 3.2.1. To account for the weights and
biases we introduced the parameter vector ◊ œ RM(�), which stores all matrices- as well as bias entries
in one column vector, where M(�) is the number of weights and biases of the network �. This leads to
the following notation:

Notation 3.2.1. Let d, k1, . . . , kH , s œ N for some H œ N, a : R æ R an activation function and L :

R ◊ R æ R a loss function. Let

�
◊,a,L

(d,k1,...,kH ,s) œ K a,L

(d,k1,...,kH ,s) (3.6)

donate the neural network with input dimension d, output dimension s, H hidden layers, where kh is the

number of neurons in the h-th layer. The neural network is equipped with the activation function a, loss

function L and parameter vector ◊ œ RM(�)
. If it is not stated otherwise, we set a to be the sigmoid

function and L to be the L
2

loss. We often drop the parameter vector ◊ and the vector (d, k1, . . . , kH , s)

and work with the shortened notation � œ K(d,k1,...,kH ,s).

Note that �
◊,a,L

(d,k1,...,kH ,s) and the abbreviation � only describe the neural net. The realization of �
◊,a,L

(d,k1,...,kH ,s)
and � are described by the maps

�̃
◊,a,L

(d,k1,...,kH) : Rd æ Rs
, �̃

◊,a,L

(d,k1,...,kH ,s)(x) = h
[H+1] (3.7)

and

�̃ : Rd æ Rs
, �̃(x) = h

[H+1]
, (3.8)

where h
[H+1] results from the calculation scheme in Definition 3.2.1.

In Definition 3.2.1 the choice of the activation function is arbitrary. However, in practice, certain commonly
used activation functions serve specific purposes. The primary objective of these activation functions is
to introduce non-linearity into neural network models. It is essential because linear transformations alone
would result in a limited capacity to represent complex relationships. Note that if we choose the identity
function to be the identity function, the neural networks will collapse to a concatenation of multivariate
regression models. The most used activation functions and their properties are listed in the Table 3.1.
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Name Mathematical Expression Properties

ReLU (Rectified
Linear Unit)

a(z) = max (0, z)

• Not differentiable at the origin

• Not bounded

• d

dz
a(z) = z>0

Sigmoidal a(z) =
e

z

1+ez

• Differentiable

• Monotonically increasing

• Bounded: range (0, 1)

• d

dz
a(z) =

e
z

(1+ez)2

Leaky ReLU a(z) = z z>0 + 0.01z zÆ0
• Not differentiable at the origin

• Not bounded

• d

dz
a(z) = z>0 + 0.01 zÆ0

Hyperbolic tangent a(z) = tanh(z) =
e

z≠e
≠z

ez+e≠z

• Differentiable

• Monotonically increasing

• Bounded: range (0, 1)

• d

dz
a(z) =

1
cosh z2

Table 3.1 Frequently used activation functions a : R æ R and their properties.
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≠4 4

0.5

1

z

sigmoid(z)

≠4 4≠0.5

4

z

ReLU(z)

≠4 4≠0.5

4

z

Leaky ReLU(z) ≠4 4

≠1

1

z

tanh(z)

Figure 3.3 Graphs of the activation functions in Table 3.1

3.3 Back propagation

In the following chapter, the process of training a feed forward neural network is described.

(i) Firstly, the architecture of the neural network which is appropriate for the training data set D =

{(yi, xi) œ R ◊ Rd|i = 1, . . . , n} has to be defined. This means we choose the appropriate input
dimension d, starting weights ◊0, the number of hidden layers H and the number of neurons in each
layer i.e. k1, . . . , kH .

(ii) After defining the neural network �
◊0 œ K(d,k1,...,kH ,s), we insert the samples (yi, xi) œ D for i =

1, . . . , n, in the model meaning we plug xi into the model and calculate the output �̃
◊0(xi) (forward

pass).

(iii) Then we calculate the associated loss R̂i(�̃
◊0(xi)) := L(yi, �̃

◊0(xi)) for every i = 1, . . . , n in order
to calculate the empirical risk R̂(�̃

◊0(xi)) =
q

n

i=1 R̂i(�̃
◊0(xi)) =

q
n

i=1 L(yi, �̃
◊0(xi)).

(iv) After calculating the empirical risk of �̃
◊0(xi), the weights ◊0 get adjusted using the learning algo-

rithm stochastic gradient descent described in Section 3.1. We do this by computing the succes-
sive derivatives of the error with respect to the weights in each layer of the network, starting from the
output layer and moving backward through the network (backward pass).

The procedure is called back propagation and is a direct application of the chain rule. The method is
illustrated in the following example.

Example 1.1 Define a feed forward neural �
◊,a,L

2,3,1 œ K ,a,L

(2,3,1) with the sigmoid activation function a(x) =

1/(1 + exp(≠x)), training set D = {(yi, xi) œ R ◊ Rd|i = 1, . . . , n} and the L
2 loss as the loss func-
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tion. We again abbreviate the notation by setting �
◊0 := �

◊,a,L

2,3,1 , similar as in Notation 3.2.2. The weight
matrices are then given by

W
[1]

=

Q

ccca

Ê
[1]
11 Ê

[1]
12

Ê
[1]
21 Ê

[1]
22

Ê
[1]
31 Ê

[1]
31

R

dddb , b
[1]

=

Q

ccca

b
[1]
1

b
[1]
2

b
[1]
3

R

dddb ;

W
[2]

=

1
Ê

[2]
11 Ê

[2]
12 Ê

[2]
13

2
, b

[2]
= b

[2]

and the weight vector takes the form of

◊ =

1
Ê

[1]
11 , Ê

[1]
12 , Ê

[1]
21 , Ê

[1]
22 , Ê

[1]
31 , Ê

[1]
32 , b

[1]
1 , b

[1]
2 , b

[1]
3 , Ê

[2]
11 , Ê

[2]
12 , Ê

[2]
13 , b

[2]
2T

Fixing ◊, the forward pass can be illustrated by

h
[0]

:= xi œ R2
a(W[1]h[0]+b[1])

≠≠≠≠≠≠≠≠≠≠≠æ h
[1] œ R3 W[2]h[1]+b[2]

≠≠≠≠≠≠≠≠≠≠≠æ �̃
◊0(xi) œ R

(yi≠�̃◊0 (xi))
2

≠≠≠≠≠≠≠≠≠≠≠æ R̂i(�̃
◊0(xi)).

Ê
[1]
11

Ê
[1]
21

Ê
[1]
31

Ê
[1]
12

Ê
[1]
22

Ê
[1]
32

b
[1]
1

b
[1]
2

b
[1]
3

Ê
[2]
11

Ê
[2]
12

Ê
[2]
11

b
[2]

Figure 3.4 Visualization of the example feed forward neural network.

In order to train the network, we need to calculate the partial derivatives of R̂i(�̃
◊0(xi) for i = 1, . . . , n

with respect to the parameters ◊. To further simplifying the notation, denote R̂i(�̃
◊0(xi) := �̃(xi) and

h
[H]
◊

:= h
[H] for H œ {0, 1} and h

[H]
il

is the value of the l-th neuron in th H-th layer of the i-th sample.
Differentiation yields

ˆR̂i(�̃(xi))

ˆÊ
[2]
1l

=
ˆR̂i(�̃(xi))

ˆ�̃(xi)

ˆ�̃(xi)

ˆÊ
[2]
1l

=

ˆ

1
(yi ≠ �̃(xi))

2
2

ˆ�̃(xi)

ˆ(W
[2]

h
[1]

+ b
[2]

)

ˆÊ
[2]
1l

= ≠2(yi ≠ �̃(xi))
ˆ(Ê

[2]
11 h

[1]
i1 + Ê

[2]
12 h

[1]
i2 + Ê

[2]
13 h

[1]
i3 + b

[2]
)

ˆÊ
[2]
1l

= ≠2(yi ≠ �̃(xi))h
[1]
il

= ”1ih
[1]
il

, (3.9)

where l œ {1, 2, 3} and ”1i := ≠2(yi ≠ �̃(xi)) for i = 1, . . . , n. The derivative of the empirical risk function
with respect to the weights in the first layer is derived as
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ˆR̂i(�̃(xi))

ˆÊ
[1]
lj

=
ˆR̂i(�̃(xi))

ˆ�̃(xi)

ˆ�̃(xi)

ˆh
[1]
il

ˆh
[1]
il

ˆ

1
W[1]h[0]

i
+ b[1]

2

l

ˆ

1
W

[1]
h

[0]
i

+ b
[1]

2

l

ˆÊ
[1]
lj

= ≠2(yi ≠ �̃(xi))
ˆ(Ê

[2]
11 h

[1]
i1 + Ê

[2]
12 h

[1]
i2 + Ê

[2]
13 h

[1]
i3 + b

[2]
)

ˆh
[1]
il

◊

ˆ a

11
W

[1]
h

[0]
i

+ b
[1]

2

l

2

ˆ

1
W[1]h[0]

i
+ b[1]

2

l

ˆ

1
Êl1h

[0]
i1 + Êl2h

[0]
i2 + b

[1]
l

2

ˆÊ
[1]
lj

= ≠2(yi ≠ �̃(xi))Ê
[2]
1l

a
Õ
1
w

[1]
l

h
[0]
i

+ b
[1]
l

2
h

[0]
ij

= “lih
[0]
ij

(3.10)

where ˆa(x)
ˆx

= exp(≠x)/(1 + exp(x))
2, “li := ≠2(yi ≠ �̃(xi))Ê

[2]
1l

a
Õ
1
w

[1]
l

h
[0]
i

+ b
[1]
l

2
and w

[1]
l

is the l-th

row of W
[1], j œ {1, 2}, l œ {1, 2, 3}. The introduced variables ”1i and “li are called errors and satisfy the

equations

“li = a
Õ
1
w

[1]
l

h
[0]
i

+ b
[1]
l

2
Ê

[2]
1l

”1i, where ”1i := ≠2(yi ≠ �̃(xi)), (3.11)

for l œ {1, 2, 3} and i = 1, . . . , n. Similar calculations yield the expressions

ˆR̂i(�̃(xi))

ˆb[2] = ≠2(yi ≠ �̃(xi))

and

ˆR̂i(�̃(xi))

ˆb
[1]
l

= ≠2(yi ≠ �̃(xi))Ê
[2]
1l

a
Õ
1
w

[1]
l

h
[0]
i

+ b
[1]
l

2

for l œ {1, 2, 3}.

A two-pass algorithm can be used to implement the updates in stochastic gradient descent using these
equations (Hastie, Tibshirani, and Friedman 2016). Using gradient descent, the two pass algorithm pro-
ceeds as follows:

(i) Let ◊t be the parameter vector obtained from the t-th iteration (or the starting parameters if we initiate
the algorithm). First, compute the output of the forward pass of the neural network, namely �̃

◊t(xi)

for i = 1, . . . , n.

(ii) We continue with calculating ˆR̂i(�̃◊t (xi))
ˆÊ

[2]
1l

for all i = 1, . . . , n and l = 1, 2, 3 using (3.9). In this

step the errors ”1i get calculated which are used to back propagate the error which yields “li for
i = 1, . . . , n and l = 1, 2, 3 by using Equation (3.11).

(iii) The calculated errors “li are then utilized to get the values ˆR̂i(�̃◊t (xi))
ˆÊ

[1]
lj

for i = 1, . . . , n, j = 1, 2 and

l = 1, 2, 3, using (3.10).
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(iv) Using the idea of gradient descent (discussed in Section 3.1), the weights in the t-th iteration are
adjusted in the following way:

Ê
[1],t+1
lj

= Ê
[1],t
lj

≠ –t

nÿ

i=1

ˆR̂i(�̃
◊t(xi))

ˆÊ
[1]
lj

,

Ê
[2],t+1
1l

= Ê
[2],t
1l

≠ –t

nÿ

i=1

ˆR̂i(�̃
◊t(xi))

ˆÊ
[2]
1l

,

b
[2],t+1

= b
[2],t ≠ –t

nÿ

i=1

ˆR̂i(�̃
◊t(xi))

ˆb[2] ,

b
[1],t+1
l

= b
[1],t
l

≠ –t

nÿ

i=1

ˆR̂i(�̃
◊t(xi))

ˆb
[1]
l

for j œ {1, 2} and l œ {1, 2, 3} and –t œ R a pre-defined learning rate. Overall, we obtain the
updated parameter vector ◊t+1.
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3.4 Regularization of neural networks

Training neural networks might result in overfitting the training data, meaning that we fit the model to the
noise rather than the signal. A common approach is to add a penalty term to the loss function. In this
thesis we use the L

2 error term, resulting in the empirical risk function

R̂reg(�) =
1

n

nÿ

i=1
(yi ≠ �̃(xi))

2
+

⁄

dk1 . . . kH

Q

a
dÿ

j=1

k1ÿ

j1=1
(Ê

[1]
j1j

)
2

+

k1ÿ

j1=1

k2ÿ

j2=1
(Ê

[2]
j2j1)

2
+ · · · +

kH≠2ÿ

jH≠1=1

kHÿ

jH=1
(Ê

[L≠1]
jL≠1jL≠2

)
2

R

b ,

where ⁄ œ R is a pre-defined hyperparameter, � œ K(d,k1,...,kH ,1) and (yi, xi) œ D = {(yi, xi) œ R◊Rd|i =

1, . . . , n}. The penalty term encourages the sum of squares of the weights of the neural network to be
small, which may prevent overfitting (Ng 2004).

In addition, we will apply the dropout method to neural networks in order to prevent overfitting. Dropout is
a technique used in training neural networks, first introduced by Hinton et al. (2012). Essentially, during the
training process, for each layer of the network, there’s a pre-defined rate p that neurons will be removed
for the respective iteration of the training process. The weights of the remaining neurons are then adjusted
using backpropagation. The main motivation behind the algorithm is to prevent overfitting, by forcing neu-
rons to be robust and rely on population behavior, rather than on the activity of other specific neurons
(Baldi and Sadowski 2014). We demonstrate the dropout method through its application in Example 1.1.

Example 1.1 (continued) The dropout method is applied to the forward pass of the training iteration t

in the following manner:

(i) First, set the drop rate p

(ii) For each training iteration t, sample Yl ≥ Ber(p) for l = 1, . . . , 3, where Yl are i.i.d. for every
l = 1, . . . , 3

(iii) Next, calculate the dropout forward pass output for every sample (yi, xi) œ D = {(yi, xi) œ R ◊
R2|i = 1, . . . , n}:

�̃
◊t(xi) = a

3 3ÿ

k=1
Ê

[2],t
1k

a

3 3ÿ

l=1
Yl

2ÿ

j=1
Ê

[1],t
lj

(xi)j

¸ ˚˙ ˝
value of the l-th neuron

+b
[1],t
l

4
+ b

[2],t
4

(iv) Use back propagation to adjust the weights and biases of � and start the next training iteration
t + 1 by repeating the above procedure.

Depending on the drop rate, the training neural network can be sparse. Once the neural network has been
trained, the Bernoulli variables Yl, {1, 2, 3} are eliminated, enabling the model to be utilized with new data
which gives the realization:

�̃
◊
(x

new
) = a

3 3ÿ

k=1
Ê

[2]
1k

a

3 3ÿ

l=1

2ÿ

j=1
Ê

[1]
lj

x
new
j + b

[1]
l

4
+ b

[2]
4

,

with x
new œ R2.



19

Figure 3.5 Dropout neural network model. (a) shows a standard neural network. (b) illustrates the same network
with dropout applied during a training iteration. Dotted lines indicate nodes that have been dropped.(Srivastava et
al. 2014)

3.5 Early stopping method

As we have seen in the first chapter, training a neural net is often done by utilizing the disjoint sets Dtrain =

{(yi, xi) œ R ◊ Rd|i = 1, . . . , ntrain}, Dval = {(yi, xi) œ R ◊ Rd|i = 1, . . . , nval} and Dtest = {(yi, xi) œ
R ◊ Rd|i = 1, . . . , ntest}. The former two sets are used for the training algorithm (for instance mini-batch
SGD) while the test set validates the model after the training is finished. The training, validation and test
errors of a neural network �

◊t at the iteration t are denoted as

R̂
train

(�
◊t) :=

1

ntrain

ntrainÿ

i=1
(yi ≠ �̃

◊t(xi))
2
, (yi, xi) œ Dtrain, i = 1, . . . , ntrain , (3.12)

R̂
val

(�
◊t) :=

1

nval

nvalÿ

i=1
(yi ≠ �̃

◊t(xi))
2
, (yi, xi) œ Dval, i = 1, . . . , nval and (3.13)

R̂
test

(�
◊t) :=

1

ntest

ntestÿ

i=1
(yi ≠ �̃

◊t(xi))
2
, (yi, xi) œ Dtest, i = 1, . . . , ntest , (3.14)

respectively. In the beginning of the chapter, we have already mentioned the problem of overfitting the
neural net to the training data Dtrain. Overfitting a neural network � might result in an increasing value
of the error term R̂

val
(�

◊t) for Dval, even though the error R̂
train

(�
◊t) of the training set Dtrain is still

decreasing, where 1 Æ t Æ T , T œ N is the maximum number of iterations of the training algorithm. The
training error as well as the validation error can be visualized graphically, where we plot the errors against
the number of iteration.
We observe, that the validation error has a turning point at a certain iteration. This simple visualization
would suggest an easy early stopping rule:

(i) Train the neural network with the training set and evaluate the validation error after one iteration.

(ii) Stop training when the error term of the validation set is higher than the last one, meaning we have
the scenario R̂

val
(�

◊t) < R̂
val

(�
◊t+1), where 1 Æ t Æ t + 1 Æ T , T œ N.

(iii) Use the parameter vector ◊t for the final model: �
◊t .

(iv) Lastly, evaluate the value by calculating the error on the test set, namely R̂
test

(�
◊t).

In reality, however, the validation set error is not as smooth as in Figure 3.6. In practice, validation error
curves often exhibit multiple local minima. To address this problem, Demuth et al. (2014) introduced
several stopping criteria for training neural networks. We will use the following stopping criteria for
training neural networks. Before training, define a stopping threshold – > 0 and the number of maximum
iterations T œ N. For each iteration 1 Æ t Æ T , follow the below procedure
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Figure 3.6 Number of iterations t vs. training error R̂
train

(�
◊t) and validation error R̂

val
(�

◊t) (Prechelt 2012).

(i) First, compute the validation error R̂
val

(�
◊t) using the validation set and the model �

◊t which was
computed in the t-th iteration, utilizing the training set.

(ii) Update the parameter vector ◊
opt
t

:= min◊
tÕ ,tÕœ{1,...,t} R̂

val
(�

◊
Õ
t)

(iii) Next, we calculate the generalization loss at iteration t as the relative increase of the validation
error over the minimum validation error so far

GL(t) = 100 ·
A

R̂
val

(�
◊t)

R̂val(�◊
opt
t )

≠ 1

B

(3.15)

(iv) Stop the training algorithm after the first iteration t
ú when GL(t

ú
) > – and use the vector ◊

opt
tú as the

parameter vector for the final model.
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4 D-vine copula theory

4.1 Notation and Definitions

We start by defining the copula approach to multivariate data, following the definition and notation of Czado
(2019).

Definition 4.1.1. (Copula and copula density)

• A d-dimensional copula C is a multivariate distribution function on the d-dimensional hypercube

[0, 1]
d

with uniformly distributed marginals.

• The corresponding copula density for an absolutely continuous copula we denote by c can be ob-

tained by partial differentiation, i.e., c(u1, ..., ud) :=
ˆ

d

ˆu1...ˆud

C(u1, ..., ud) for all u œ [0, 1]
d
.

Theorem 4.1.1. (Sklar’s Theorem)
Let X be a d-dimensional random vector with joint distribution F and marginal distributions Fi, i =

1, . . . , d, then the joint distribution can be expressed as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (4.1)

with associated density

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) . . . fd(xd) (4.2)

for some d-dimensional copula C with copula density c. For absolutely continuous distributions, the copula

C is unique.

If we are primarily interested in the dependence structure of the random vector X œ Rd, we can examine
it on the u-scale (or copula scale) by applying the probability integral transform (PIT) to its marginals:
Uj := Fj(Xj), for j = 1, . . . , d.

Lemma 4.1.1. (Conditional densities and distribution functions of bivariate distributions in terms
of their copula) The conditional density and distribution function can be rewritten as

fX1|X2(x1|x2) = cU1U2(F1(x1), F2(x2))f2(x2)

FX1|X2(x1|x2) =
ˆ

ˆu2
CU1U2(F1(x1), u2)|u2=F2(x2)

=:
ˆ

ˆF2(x2)
CU1U2(F1(x1), F2(x2))

Proof. The proof can be found on page 20 in the book of Czado (2019).
Note that we can apply Lemma (4.1.1) to the bivariate copula distribution CU1U2 which yields

CU1|U2(u1|u2) =
ˆ

ˆu2
CU1U2 ’u1 œ [0, 1] (4.3)

We continue by introducing notation following Kraus and Czado (2017). For a set D µ {1, . . . , d} and
i, j œ {1, . . . , d}\D we write
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• Let CX1X2;XD
(·, ·; xD) denote the copula associated with the conditional distribution (Xi, Xj)

T given
XD = xD. We use the abbreviation Cij|D(·, ·|xD).

• Let FXi|XD(·|xD
) denote the conditional distribution of the random variable Xi given XD = xD. We

use the abbreviation Fi|xD
.

• Let CUi|UD
(·|uD) denote the conditional distribution of the PIT random variable Ui given UD = uD.

We use Ci|D(·|uD) as an abbreviation.

We continue by defining the so called D-vine copula following Czado (2010).

Definition 4.1.2. (D-vine density and copula)
Let X be a d-dimensional continuously distributed random vector. The joint density f of X can be

composed as

f(x1, . . . , xd) =

dŸ

k=1
fk(xk)

dŸ

i=1

dŸ

j=i+1
cij;i+1,...,j≠1

!
Fi|i+1,...,j≠1(xi|xi+1, . . . , xj≠1),

Fj|i+1,...,j≠1(xj |xi+1, . . . , xj≠1); xi+1, . . . , xj≠1
"

(4.4)

This pair-copula construction (PCC) is called a D-vine density with order X1 ≠ X2 ≠ · · · ≠ Xd. The

copula associated with the density is called a D-vine copula.

Bedford and Cooke (2002) introduced a graphical representation of the D-vine copula, where each edge
of the graph corresponds to a pair-copula, see Figure 4.1. In the theory of vine copulas, the following
assumption is often made.

Definition 4.1.3. (Simplifying assumption) Let D µ {1, . . . , d}. The D-vine copula is called simplified,

if

cij;D
1
Fi|D(xi|xD), Fj|D(xj |xD); xD

2
= cij,D

1
Fi|D(xi|xD), Fj|D(xj |xD)

2
(4.5)

for all i, j œ {1, . . . , d}\D.

As an example we give the density of a 4-dimensional simplified D-vine density

f1,2,3,4(x1, x2, x3, x4) =

C 4Ÿ

i=1
fi(xi)

D

· c12(x1, x2) · c23(x2, x3) · c34(x3, x4)

· c13;2
1
F1|2(x1|x2), F3|2(x3|x2)

2
· c24;3

1
F2|3(x2|x3), F4|3(x4|x3)

2

· c14;23
1
F1|23(x1|x2, x3), F4|23(x4|x2, x3)

2
.

Note that in the setting of a D-vine, the first order X1 ≠ · · · ≠ Xd fully determines the structure of the
graphical representation. This is called the proximity.

1 2 3 4

12 23 34

12 23 34

13; 2 23; 3

13; 2 24; 3

14; 23

Figure 4.1 Graphical representation of a 4-dimensional D-vine copula. The squares above the edges represent the
pair copulas.
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Definition 4.1.4. (h-functions) For the bivariate copula Cij(ui, uj ; ◊ij) with parameter ◊ij , we define the

h-functions

hi|j(ui|uj ; ◊ij) =
ˆ

ˆuj

Cij(ui, uj ; ◊ij) (4.6)

hj|i(uj |ui; ◊ij) =
ˆ

ˆui

Cij(ui, uj ; ◊ij) (4.7)

For the parametric pair copula Cea,eb;De
(w1, w2, ◊ea,eb;De

) in a simplified D-vine corresponding to the edge

ea, eb; De, we introduce the notation

hea|eb;De
(w1|w2; ◊ea,eb;De

) :=
ˆ

ˆw2
Cea,eb;De

(w1, w2; ◊ea,eb;De
) (4.8)

heb|ea;De
(w2|w1; ◊ea,eb;De

) :=
ˆ

ˆw1
Cea,eb;De

(w1, w2; ◊ea,eb;De
) (4.9)

We are able to describe the conditional distribution Fi|D(xi|xD) with the bivariate copulas of the lower
trees of the D-vine using the recursion formula first stated in Joe (1997):

Fi|D(xi|xD) = hi|l;D≠l
(Fi|D≠l

(xi|xD≠l
)|Fl|D≠l

(xl|xD≠l
)), (4.10)

where l œ D and D≠l := D\{l}.

In order to quantify the dependency between two random variables, we introduce the dependence measure
Kendall’s tau.

Definition 4.1.5. (Kendall’s Tau) The Kendall’s · between the continuous random variables X1 and X2 is

defined as

·(X1, X2) = P ((X11 ≠ X21)(X12 ≠ X22 > 0)) ≠ P ((X11 ≠ X21)(X12 ≠ X22 < 0)),

where (X11, X12) and (X21, X22) are independent and identically distributed copies of (X1, X2).

Example 4.1.1. In the following example, the structure and formulas of a D-Vine copula with order
V ≠ U1 ≠ U2 will be studied. The bivariate copulas CV U1 , CU1U2 and CV U2|U1 are given by a Clayton
copula with parameter ”V 1, ”12 and ”V 2;1, respectively. The Clayton copula is defined as

CU1U2(u1, u2) = (u
≠”

1 + u
≠”

2 ≠ 1)
≠ 1

” ,

for 0 Æ ” Æ Œ. For this copula the h-function is described by

hU1|U2(u1, u2) = FU1|U2(u1|u2)

=
ˆ

ˆu2
CU1U2(u1, u2)

= u
≠”≠1
2

51
u

≠”

1 + u
≠”

2 ≠ 1

2≠1≠ 1
”

6

with its corresponding inverse

h
≠1
U1|U2

(–|u2) =

1
–

≠ ”

1+” u
≠”

2 ≠ u
≠”

2 + 1

2≠ 1
”

.

We are interested in the conditional distribution of V given (U1, U2) which can recursively be written as

CV |U1,U2(v|u1, u2) = hV |U2;U1

1
CV |U1(v|u1)|CU2|U1(u2|u1)

2

= hV |U2;U1

1
hV |U1(v|u1)|hU2|U1(u2|u1)

2
, (4.11)
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where we used (4.10). Inversion yields

C
≠1
V |U1,U2

(–|u1, u2) = h
≠1
V |U1

(h
≠1
V |U2;U1

(–|hU2|U1(u2|u1))|u1),

for – œ [0, 1]. Plugging in the formulas of our example D-vine copula leads to

C
≠1
V |U1,U2

(–|u1, u2) = h
≠1
V |U1

(h
≠1
V |U2;U1

(–|hU2|U1(u2|u1))|u1)

= h
≠1
V |U1

(h
≠1
V |U2;U1

(–|u≠”V 2;1≠1
2 (u

≠”V 2;1≠1
1 + u

≠”V 2;1≠1
2 ≠ 1)

≠1≠ 1
”V 2;1 )|u1)

= h
≠1
V |U1

S

U
A

(u
”V 2;1(”12+1)
1 (u

≠”12
2 + u

≠”12
1 ≠ 1)

1+ ”V 2;1
”12 )(–

≠
”V 2;1

”V 2;1+1 ≠ 1) + 1

B≠ 1
”V 2;1

----u1

T

V

=

S

WU

A

(u
”V 2;1(”12+1)
1 (u

≠”12
2 + u

≠”12
1 ≠ 1)

1+ ”V 2;1
”12 )(–

≠
”V 2;1

”V 2;1+1 ≠ 1) + 1

B ”V 1
”V 2;1(”V 1+1)

u
≠”V 1
1 ≠ u

≠”V 1
1 + 1

T

XV

≠ 1
”V 1

,

for – œ [0, 1].

The dependency between two random variables can be measured by Kendall’s · . For the bivariate copula
families which we use in this thesis, there is a one to one correspondence between Kendall’s tau and
the family parameter. Following the example of a Clayton copula CV U1 with family parameter ”V U1 , the
relationship is given

· =
”V U1

”V U1 + 2
, (4.12)

where · œ (0, 1).

Algorithm 4.1.1. Simulating from a multivariate copula (using the inverse Rosenblatt transform )

• Start: Sample i.i.d. wj ≥ U [0, 1], j = 1, ..., d

• Then:

u1 := w1

u2 := C
≠1
2|1 (w2|u1),

...

ud := C
≠1
d|d≠1,...,1(wd|ud≠1, ..., u1)

For more details regarding the inverse Rosenblatt transform look into Rosenblatt (1952) and Rüschen-
dorf (1981).

4.2 D-Vine quantile regression

The following model and algorithm was introduced and studied in Kraus and Czado (2017). As we have
seen in Equation (5.1), the conditional quantile function F

≠1
Y |X1,...,Xd

can be expressed by the inverse
marginal function F

≠1
Y

and the conditional copula quantile function C
≠1
V |U1,...,Ud

(–|u1, . . . , ud) conditioned
on the PIT values of x. Estimating the marginals FY and FXj

for j = 1, . . . , d, as well as the copula
CV,U1,...,Ud

and plugging the estimates into (5.1) gives us an estimation of the conditional –-quantile:

q̂–(x1, . . . , xd) := F̂
≠1
Y

1
Ĉ

≠1
V |U1,...,Ud

(–|û1, . . . , ûd)

2
, (4.13)
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where ûj := F̂j(xj) is the estimated PIT of xj , j = 1, . . . , d. The marginals are estimated non-parametrically
via the kernel smoothing estimator, which is defined as

F̂Xj
(x) :=

1

n

nÿ

i=1
K

3
(x ≠ xij)

h

4
, x œ R, (4.14)

where (xij)i=1,...,n is an i.i.d. sample of (Xj)jœ{1,...,d}, h > 0 a bandwidth parameter and K(x) :=s
x

≠Œ k(t)dt with k(·) being a symmetric probability density function (Parzen 1962). This estimator is imple-
mented in the R package kde1d (Nagler and Vatter 2022). The estimated marginal distribution functions
F̂Y and F̂Xj

are utilized to transform the i.i.d. samples (yi, xi) ≥ (Y, X1, . . . , Xd), i = 1, . . . , n, to pseudo
copula data

(v̂i, ûi) = (v̂i, ûi1, . . . , ûid) :=

1
F̂Y (yi), F̂X1(xi1), . . . , F̂Xd

(xid)

2

for i = 1, . . . , n. The data ((v̂i, ûi))i=1,...,n
is an approximately i.i.d. sample from the random vector

(V, U1, . . . , Ud).
In the next step, the pseudo copula data is used to fit a D-vine copula V ≠Ul1 ≠· · ·≠Uld

to the training data
set. We aim to select an order l = (l1, . . . , ld)

T that maximizes the explanatory power of the model. While
one approach could be to evaluate all d! potential sequences, this is not a practical solution. As a result,
Kraus and Czado (2017) proposed a method that progressively chooses the most impactful covariates. At
each stage, we include the covariate that improve the model’s fit the most, with respect to the conditional
log-likelihood measure (cll)

cll
1
l, F̂ , ◊̂; v̂, Û

2
:=

nÿ

i=1
ln cV |Ul1 ,...Ul

d

1
v̂i|ûil1 . . . ûild

; l, F̂ , ◊̂

2
, (4.15)

where F̂ are the estimated parametric pair-copula families with the corresponding copula parameters ◊̂

and v̂ := (v̂1, . . . , v̂n)
T , Û = (û1, . . . , ûn)

T . The density of the conditional copula cV |Ul1 ,...Ul
d

can be
expressed as the multiplication of all pair-copulas in the D-vine that include V , as described in Killiches,
Kraus, and Czado (2016)

cV |Ul1 ,...,Ul
d

1
v̂i|ûil1 . . . ûild

; l, F̂ , ◊̂

2
= cV Ul1

(v̂i, ûil1 ; F̂V Ul1
, ◊̂V Ul1

)◊
dŸ

j=2
cV Ulj

;Ul1 ,...,Ulj≠1

1
ĈV |Ul1 ,...,Ulj≠1

(v̂i|ûil1 , . . . , ûilj≠1), ĈUlj
|Ul1 ,...,Ulj≠1

(ûilj
|ûil1 , . . . , ûilj≠1);

F̂V Ulj
;Ul1 ...,Ulj≠a

, ◊̂V Ulj
;Ul1 ...,Ulj≠a

2
,

where F̂I and ◊̂I denote the estimated family and parameters(s) of the pair copula CI .

4.2.1 Forward selection algorithm

The algorithm which sequentially constructs a D-vine while maximizing the model’s conditional log-likelihood
in each step was introduced in Kraus and Czado (2017) and operates as follows. At the start of the k-th
step, the optimal D-vine already includes k ≠ 1 predictors (see Figure 4.2 for a visual representation). For
each remaining variable Uj that hasn’t been selected, we fit the necessary pair-copulas to expand the
current model to a D-vine with order V ≠ Ul1 ≠ · · · ≠ Ulk≠1 ≠ Uj (represented by the gray circles) and
calculate the resulting model’s conditional log-likelihood.

The model is then updated by incorporating the variable with the highest conditional log-likelihood, com-
pleting the k-th step. This method allows for the sequential ordering of covariates based on their predictive
power. If at the k-th step, none of the remaining covariates can improve the model’s conditional log-
likelihood, the algorithm halts. It then returns the model that includes only the k ≠ 1 covariates selected up
to that point.
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Figure 4.2 Extending the current D-vine (black) by incorporating Uj in the k-th step of the algorithm. The gray pair-
copulas are the ones that need to be estimated. Visualization adapted from Kraus and Czado (2017).

The resulting estimated D-vine copula ĈV |Uj1,...,Uj
k

for some k œ {1, . . . , d} is then used to calculate

Ĉ
≠1
V |Uj1 ,...,Uj

k

(–|ûj1 . . . ûjk
) via nested inverse h-functions. Finally, Equation (4.13) is applied to obtain an

estimate for the conditional –-quantile function.
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4.3 Approximation of D-vines using neural networks

In the last section, it was demonstrated that the conditional copula quantile function C
≠1
V |U1,U2

(–|u1, u2)

and the conditional copula distribution CV |U1,U2(v|u1, u2) are a concatenation of non-linear bivariate func-
tions. Instead of directly approximating the functions, we aim to approximate C

≠1
V |U1,U2

(–|u1, u2) and
CV |U1,U2(v|u1, u2) using the hierarchical structure. This method aims to increase the approximation rate
and to decrease the weights required to achieve a universal approximation error ‘ > 0, similar to the
approach used in Gühring, Raslan, and Kutyniok (2020), and more theoretically in Mhaskar and Poggio
(2016).
We introduce the concept of neural networks with one hidden layer (so-called shallow neural networks)
as universal approximators.

Theorem 4.3.1. For every f œ C(K) (set of continuous functions on the domain K), K µ Rd
, K is

compact and every ‘ > 0 as well as every non-constant, bounded and monotonically increasing continuous

activation function ‡ : R æ R, there exists some N œ N and some shallow neural network �‘ with the

number of weights M1(�) = N such that

max
xœK

--f(x) ≠ �‘(x)
-- Æ ‘ .

This was first proven in Funahashi (1989). Note that the sigmoid function is a non-constant, bounded
and monotonically increasing continuous function. The universal approximation theorem can be extended
to deep neural networks (neural networks with number of layers L > 2) with ReLU activation functions,
which shown in Hanin (2019).

We continue by constructing the approximation of C
≠1
V |U1,U2

(–|u1, u2) and CV |U1,U2(v|u1, u2) of a D-Vine
with structure V ≠ U1 ≠ U2 by concatenating shallow neural nets with activation function ‡. The concate-
nating structure of CV |U1,U2(v|u1, u2) can be decomposed to the graph

hV |U2;U1(hV |U1(v|u1)|hU2|U1(u2|u1))

hV |U1(v|u1)

v u1

hU2|U1(u2|u1)

u2

using Equation (4.11). And similarly we draw the corresponding graph for C
≠1
V |U1,U2

(–|u1, u2)

h
≠1
V |U1

(h
≠1
V |U2;U1

(–|h≠1
U2|U1

(u2|u1))|u1)

h
≠1
V |U2;U1

(–|h≠1
U2|U1

(u2|u1))

h
≠1
U2|U1

(u2|u1)

u1 u2

–

u1

In case of approximating CV |U1,U2(v|u1, u2), the idea is to construct two shallow neural networks in order
to estimate hV |U1(v|u1) and hU2|U1(u2|u1), respectively. The output of these neural networks is then fed
into another neural network to estimate hV |U2;U1 , which gives us an approximation of CV |U1,U2(v|u1, u2).
The issue with training such a model is that we only have given (v, u1, u2)

T and no validation data (true
data) for the target value CV |U1,U2(v|u1, u2). The question arises if we can approximate CV |U1,U2(v|u1, u2)
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and C
≠1
V |U1,U2

(–|u1, u2) by only using training data (v, u1, u2)
T . A possible solution is to adopt a similar

approach to Sun, Cuesta-Infante, and Veeramachaneni (2018), where the copula configuration is deter-
mined by a reinforcement learning algorithm and the log-likelihood functions are used as the loss function.
However, this approach does not guarantee the Markovian property. The paper proposes using an LSTM
method to address this issue. An LSTM, or Long Short-Term Memory, introduced by Hochreiter and
Schmidhuber (1997), is a type of neural network architecture specifically designed to handle sequence
prediction problems with long term dependencies.
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5 Quantile regression neural network (QRNN)

We are interested in the conditional quantile function F
≠1
Y |X1,...,Xd

which can be expressed as

q–(x1, . . . , xd) = F
≠1
Y |X1,...,Xd

(–|x1, . . . , xd) = F
≠1
Y

1
C

≠1
V |U1,...,Ud

(–|u1, . . . , ud)

2
, (5.1)

where Xj ≥ Fj , Y ≥ FY and V := FY (Y ), U = Fj(Xj) are the PIT transformations for j œ {1, . . . , d}
and – œ (0, 1). This representation was shown in Kraus and Czado (2017). We again use q–(x) or even
shorter q– as an abbreviation. In this section, we want to estimate the vector

q– = (q–1 , . . . , q–K
)
T œ RK

,

where – œ (0, 1)
K , using neural networks. We initially construct a neural network to estimate a single

quantile q–, – œ (0, 1). Later, we extend the neural network to estimate the vector q–(x1, . . . , xd) for
– œ (0, 1)

K . The idea of a quantile regression neural network is to equip a neural network with the pinball
loss function to get estimates for q–(x1, . . . , xd) for a fixed – œ (0, 1).

Definition 5.0.1. (QRNN) Let d, k1, . . . , kH œ N for some H œ N, a : R æ R an activation function,

– œ (0, 1) and fl– : R ◊ R æ R be the pinball loss function. Let

�
◊,a,fl–

(d,k1,...,kH ,1) œ K a,fl–

(d,k1,...,kH ,1) (5.2)

denote the quantile regression neural network with input dimension d, output dimension 1, H hidden layers,

where kh is the number of neurons in the h-th layer. The neural network is equipped with the activation

function a, loss function fl– and parameter vector ◊ œ RM(�)
, where M(�) is the number of weights of the

quantile regression neural network. If it is not stated otherwise, we set a to be the sigmoid function. We

often drop the parameter vector ◊ and the vector (d, k1, . . . , kH , 1) and work with the shortened notation

�
fl– œ K a,fl–

(d,k1,...,kH ,1) .

We again denote the realization of the quantile regression neural network �
◊,a,fl–

(d,k1,...,kH ,1) and its abbrevi-
ation �

fl– by

�̃
◊,a,fl–

(d,k1,...,kH ,1) : Rd æ R, �̃
◊,a,fl–

(d,k1,...,kH ,1)(x) = h
[H+1] (5.3)

or shorter

�̃
fl– : Rd æ R, �̃

fl–(x) = h
[H+1]

, (5.4)

where h
[H+1] results from the calculation scheme in Definition 3.2.1. Following the idea of stochastic

gradient descent, we try to find the parameter vector ◊ which minimizes the empirical risk function

R̂(�
◊,fl–) =

1

n

nÿ

i=1
fl–(yi, �̃

◊,fl–(xi)), (5.5)

for �
◊,fl– œ K a,fl–

(d,k1,...,kH ,1), – œ (0, 1) and (yi, xi) œ D = {(yi, xi) œ R ◊ Rd|i = 1, . . . , n}, i = 1, . . . , n.
The resulting model is a nonlinear version of quantile regression, including interactions between predictors
without prior specification of the form of the relationships, and is called quantile regression neural network
or QRNN (Cannon 2011). We slightly deviate from Cannon (2011), who defined the QRNN to have only
one hidden layer and only used the sigmoid function as the activation function a.

We now want to extend the model and simultaneously estimate the quantiles at levels – = (–1, . . . , –K).
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≠≠æxi1

≠≠æ

xi3

xi2

≠≠æ

xi

h
[1]
i

= a(W
[1]

xi + b
[1]

)

�̃
◊,a,fl–

(3,7,1) (xi) = W
[2]

h
[1]
i

+ b
[2]

≠≠≠≠æfl–(yi, �̃
◊,a,fl–

(3,7,1) (xi))

Figure 5.1 Visualization of the forward pass of a quantile regression neural network �
◊,a,fl–

(3,7,1) œ K a,fl–

(3,7,1) with an
arbitrary activation function a for estimating q–(xi) for a fixed – œ R. We have xi = (xi1, xi2, xi3)

T œ R3, W
[1] œ

R7◊3, b
[1] œ R7, W

[2] œ R1◊7 , b
[2] œ R1 and yi œ R for i = 1, . . . , n and – œ (0, 1).

Definition 5.0.2. (K-QRNN) Let d, k1, . . . , kH œ N for some H œ N, a : R æ R an activation function,

– = (–1, . . . , –K)
T œ (0, 1)

K
, K œ N. Let

fl– : R ◊ RK æ R, fl–(y, h(x)) :=
1

K

Kÿ

k=1
fl–k

(y, (h(x))k), (5.6)

with h : Rd æ RK
and fl–k

the pinball loss for –k, k = 1, . . . , K. Let

�
◊,a,fl–

(d,k1,...,kH ,K) œ K a,fl–

(d,k1,...,kH ,K) (5.7)

denote the quantile regression neural network with input dimension d, output dimension K, H hidden

layers, where kh is the number of neurons in the h-th layer. The neural network is equipped with the

activation function a, loss function fl– and parameter vector ◊ œ RM(�)
, where M(�) is the number

of weights of the quantile regression neural network. If it is not stated otherwise, we set a to be the

sigmoid function. We often drop the parameter vector ◊ and the vector (d, k1, . . . , kH , K) and work with

the shortened notation �
fl– œ K a,fl–

(d,k1,...,kH ,K) .

As in the one-dimensional QRNN, the realization of the network �
◊,a,fl–

(d,k1,...,kH ,K) and its abbreviation �
fl–

is notated as �̃
◊,a,fl–

(d,k1,...,kH ,K)(x) and �̃
fl–(x) for x œ Rd, respectively. Note that the realization of the

K-QRNN network is of the from

�̃
fl–(x) = (�̃

fl–1 (x), . . . , �̃
fl–K (x))

T œ RK
,

for x œ Rd and – = (–1, . . . , –K)
T œ (0, 1)

K The empirical risk function, which we use in K-QRNN is
given by

R̂
QRNN

(�
fl–) =

1

nK

Kÿ

k=1

nÿ

i=1
fl–k

(yi, �
fl–

k (xi)),

where �
fl– œ K a,fl–

(d,k1,...,kH ,K), – = (–1, . . . , –K)
T œ (0, 1)

K and (yi, xi) œ D, i = 1, . . . , n. The resulting
model is a composite version of the QRNN model introduced and studied in Xu et al. (2017).

The dimension of the input variables d as well as the number of neurons (k1, . . . , kH), H œ N, determine
the complexity of the QRNN model. Setting the number of neurons too high might result in overfitting the
training data. In order to prevent overfitting, L

2 regularization is applied to the QRNN model. In case of
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≠≠æxi1

≠≠æ

xi3

xi2

≠≠æ

xi

h
[1]
i

= a(W
[1]

xi + b
[1]

)

�̃
◊,a,fl–

(3,7,3) (xi) = W
[2]

h
[1]
i

+ b
[2]

≠≠æfl–2(yi, �̃
◊,a,fl–2

(3,7,1) (xi))

≠≠æfl–1(yi, �̃
◊,a,fl–1

(3,7,1) (xi))

≠≠æfl–3(yi, �̃
◊,a,fl–3

(3,7,1) (xi))

Figure 5.2 Visualization of the forward pass of a quantile regression neural network �
◊,a,fl–

(3,7,3) œ K a,fl–

(3,7,3) with an
arbitrary activation function a. We have xi œ R3, W

[1] œ R7◊3, b
[1] œ R7, W

[2] œ R3◊7 , b
[2] œ R3 and yi œ R for

i = 1, . . . , n and – = (–1, –2, –3)
T œ (0, 1)

3.

using the sigmoid function, regularization leads to the reduction of the non-linearity of the model, since the
function acts linear around the origin. The modified empirical risk function is defined as

R̂
QRNN
reg (�

fl–) =
1

nK

Kÿ

k=1

nÿ

i=1
fl–k

(yi, �̃
fl–

k (xi))+

⁄

dk1 . . . kHK

Q

a
dÿ

j=1

k1ÿ

j1=1
(Ê

[1]
j1j

)
2

+ · · · +

kH≠2ÿ

jH≠1=1

kHÿ

jH=1
(Ê

[H]
jHjH≠1

)
2

+

kHÿ

jH=1

Kÿ

jH+1=1
(Ê

[H+1]
jH+1jH

)
2

R

b , (5.8)

where ⁄ > 0 controls the relative contribution of the penalty term. Training a QRNN model is executed
by calculating the gradient of the empirical risk function R̂

QRNN
(�–) and back propagate it to adjust the

weights in the training process, using the idea of gradient descent. As we have already observed, however,
that the pinball loss fl– is not differentiable at the origin.

We therefore use the Huber pinball loss fl
(H)
–,‘ (x) (Definition 2.5) as the loss function which results in

the empirical risk function

R̂
QRNN
reg (�

fl
(H)
–,‘ ) =

1

nK

Kÿ

k=1

nÿ

i=1
fl–k

(yi, �̃
fl

(H)
–

k
,‘(xi))+

⁄

dk1 . . . kHK

Q

a
dÿ

j=1

k1ÿ

j1=1
(Ê

[1]
j1j

)
2

+ · · · +

kH≠2ÿ

jH≠1=1

kHÿ

jH=1
(Ê

[H]
jHjH≠1

)
2

+

kHÿ

jH=1

Kÿ

jH+1=1
(Ê

[H+1]
jH+1jH

)
2

R

b , (5.9)

where we chose ‘ > 0 before training the model. In practice, we implement the quantile neural network
using the python package tensorflow. We define the neural network architecture and the empirical
risk function in Equation (5.9) which will be back propagated using the automatic differentiation feature
implemented in tensorflow. In order to better account for overfitting the training data, we implement
the dropout technique, which was discussed in Section 3.4 as well as the early stopping technique studied
in Section 3.5.
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5.0.1 Modified quantile regression neural network

A common problem of quantile regression is the occurrence of a so-called quantile crossing, which
describes the violation of the non-decreasing property of the quantile function. In other words, for –1 > –2
there exists a x such that

q̂–1(x) < q̂–2(x). (5.10)

In terms of the quantile regression neural network setting, we have some (y, x) œ D such that the output
vector of the neural network, �̃

fl–(x) = (�̃
fl–1 (x), . . . , �̃

fl–K (x))
T œ RK violates the non-decreasing

property. In other words, there exists a k œ {1, . . . , K ≠ 1} such that

�̃
fl–

k (x) > �̃
fl–

k+1 (x), (5.11)

for – = (–1, . . . , –K)
T œ (0, 1)

K with –k < –k+1 for k œ {1, . . . , K ≠ 1}.

We aim to address this issue by presenting two approaches to eliminate the problem of quantile cross-
ing in terms of QRNN. The first approach is to add a penalty term to the empirical risk function of the
QRNN, R̂

QRNNreg . The idea is to penalize outputs of a quantile neural network �
fl– œ K a,fl–

(d,k1,...,kH ,K) which
violate �̃

fl–1 (x) < · · · < �̃
fl–K (x), x œ D. Therefore, the penalty term is of the form

“

K + 1

K≠1ÿ

k=1
(�̃

fl–
k (x) > �̃

fl–
k+1 (x)), (5.12)

where “ > 0 controls the contribution of the penalty term and x œ D. Overall, we obtain the regularized
empirical risk function

R̂
QRNN
reg (�

fl–) =
1

nK

Kÿ

k=1

nÿ

i=1
fl–k

(yi, �̃
fl–

k (xi))+

⁄

dk1 . . . kHK

Q

a
dÿ

j=1

k1ÿ

j1=1
(Ê

[1]
j1j

)
2

+ · · · +

kHÿ

jH=1

Kÿ

jH+1=1
(Ê

[H+1]
jH+1jH

)
2

R

b +
“

K ≠ 1

K≠1ÿ

k=1
(�̃

fl–
k (x) > �̃

fl–
k+1 (x)),

(5.13)

where ⁄ > 0 and “ > 0 for a quantile regression neural network �
fl– œ K a,fl–

(d,k1,...,kH ,K). Note that while this
method reduces the likelihood of quantile crossing within the model, it does not guarantee its complete
absence.

5.1 Cumulative quantile regression neural network (cQRNN)

In the following, we develop a new model which eliminates quantile crossing in the setting of quantile
regression neural networks. Given an ordered vector – = (–1, . . . , –K)

T œ (0, 1)
K , such that –k < –k+1

for k œ {1, . . . , K ≠ 1}, define a quantile neural network �
◊1,fl–1 œ K a,fl–1

(d,k1,1). For a sample x œ D the
QRNN �

fl–1 estimates q–1(x), i.e. q̂–1(x) = �̃
fl–1 (x). We continue by defining quasi quantile neural

networks of the form �
◊k,fl–

k
q œ K a,fl–

k

(d,k1,1), where the output �̃
◊k,fl–

k

qc (x) results from the following scheme:

h
[0]

:= x,

h
[1]

:= a

1
W

[1]
h

[0]
+ b

[1]
2

,

�̃
◊k,fl–

k
q (x) = h

[2]
:= exp(W

[2]
h

[1]
+ b

[1]
),
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for an activation function a and k œ {2, . . . , K}. Note that we apply the exponential function to the last
layer of the neural net, ensuring that the output �̃

◊k,fl–
k

q (x) is strictly positive. An estimation for q–k
(x) is

then derived by cumulatively adding quasi quantile neural networks to the estimates as the quantile level
–k increases, resulting in

q̂–k
(x) :=

Y
]

[
�̃

◊1,fl–1 (x), k = 1,

q̂–k≠1(x) + �̃
◊k,fl–

k
q (x), k > 1,

(5.14)

for x œ D. By construction, the estimates satisfy q̂–1(x) < · · · < q̂–K
(x) for all x œ D, – = (–1, . . . , –K)

T

with –k < –k+1 for k œ {1, . . . , K ≠ 1}. We call the resulting model cumulative quantile regression
neural network or cQRNN.

�̃
fl–1 (x) �̃

fl–2
q (x) �̃

fl–3
q (x) . . . . . . �̃

fl–K
q (x)

q̂–1(x) +

q̂–2(x) +

q̂–3(x) +. . . . . .

q̂–K
(x)

Figure 5.3 Neural network architecture of the cumulative quantile regression neural network (cQRNN).

The cQRNN model possesses the parameter vectors ◊1, . . . , ◊K which get estimated sequentially, using
mini-batch stochastic gradient descent. Following the structure of the cQRNN, the empirical risk functions
of the submodels are defined as

R̂
QRNN

(�
◊1,fl–1 ) =

1

n

nÿ

i=1
fl–1(yi, �̃

◊1,fl–1 (xi)), for k = 1, (5.15)

R̂
QRNN
q (�

◊k,fl–
k

q ) =
1

n

nÿ

i=1
fl–k

(yi, q̂–k≠1(xi) + �̃
◊k,fl–

k
q (xi)), for k > 1, (5.16)

where xi œ Dtrain. The empirical risk function of the full cQRNN model is the sum of the empirical risk
function of the submodels, namely

R̂
cQRNN

:= R̂
QRNN

(�
◊1,fl–1 ) +

Kÿ

k=2
R̂

QRNN
q (�

◊k,fl–
k

q ). (5.17)

As discussed in Section 3.1, we use mini-batch stochastic gradient descent to numerical solve the opti-
mization problem

min
◊1,...,◊K

R̂
cQRNN

= min
◊1,...,◊K

A

R̂
QRNN

(�
◊1,fl–1 ) +

Kÿ

k=2
R̂

QRNN
q (�

◊k,fl–
k

q )

B

. (5.18)
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Note that we can regularize the cQRNN model by applying the dropout method as well as by adding a L
2

regularization term to the empirical risk functions of the sub models. In addition, the submodels can be
extended to hold more than one hidden layer. We will use the tensorflow library in python to implement
the cQRNN model.

≠æxi1
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i

= a(W
[1]

xi + b
[1]

)

�̃
◊k,fl–

k
q (xi) = sigmoid(W

[2]
h

[1]
i

+ b
[2])

≠≠æfl–k
(yi, q̂–k≠1(xi) + �̃

◊k,fl–
k

q (xi))

q̂–k≠1(xi)

+

Figure 5.4 Visualization of the forward pass of a quasi quantile regression neural network �
◊k,fl–k

q œ K a,fl–k

(3,7,1),
k œ {2, . . . , K} with an arbitrary activation function a. We have xi œ R3, W

[1] œ R7◊3, b
[1] œ R7, W

[2] œ R1◊7 ,
b

[2] œ R1 and yi œ R for i = 1, . . . , n and – = (–1, . . . , –K)
T œ (0, 1)

K with –k < –k+1.

5.2 Reduced quantile regression neural network (redQRNN)

In practical regression situations, we often encounter many covariates. The process of training a deep
neural network with numerous input variables can result in lengthy computation times and imprecise point
estimates. As a result, we aim to reduce the number of input variables. In this section, we employ the
forward selection algorithm of the D-vine quantile regression model to pre-select covariates by fitting a
D-vine copula to the training data. The selected covariates are then utilized as the input for training and
testing a quantile neural network. Following this procedure, the resulting model is called reduced quantile
regression neural network (or short redQRNN)

We start by describing the algorithm. Let ((yi, xi))i=1,...,n
be an i.i.d. sample of the random vector

(Y, X1, . . . , Xd). First, the marginals FY and FXj
for j = 1, . . . , d get estimated using the kernel smooth-

ing estimator (4.14). The resulting estimates F̂Y and F̂Xj
are then used to derive the pseudo copula data

((v̂i, ûi))i=1,...,n
. Next, we fit a D-vine Copula V ≠ Ul1 ≠ · · · ≠ Ulk

, where k œ {1, . . . , d}, to the pseudo
copula data using the forward selection algorithm described in Section 4.2.1. Note that k = 1 results in
the D-vine copula V ≠ Ul1 .

The conditional log-likelihood maximizing ordering l = (l1, . . . , lk) is used to select the k covariates of
the samples (xil1 , . . . , xilk

) =: x
red
i

, for i = 1, . . . , n. Finally, a quantile regression neural network model
�

◊,a,fl–,red
(k,k1,...,kH ,1) œ K a,fl–

(k,k1,...,kH ,1) is fitted using the samples
!
(yi, x

red
i

)
"

i=1,...,n
. This is done using the al-

gorithm studied in Section 3.1. Similar as in Section 5 we can extend the model and estimate K dif-
ferent quantiles at levels – = (–1, . . . , –K) resulting in the network �

◊,a,fl–,red
(k,k1,...,kH ,1) œ K a,fl–

(k,k1,...,kH ,K). In
order to prevent overfitting, we again use the L

2 regularization, the dropout method and the early stop-
ping technique. Note that the algorithm can easily be modified and used for a cQRNN approach. This
is done by using the extracted ordering from the forward algorithm of the D-vine quantile regression in
order to reduce the input variables of the quasi quantile neural networks (see Section 5.1). The re-
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Algorithm 1 Pseudo Code for the redQRNN

1: Input: Target vector y = (yi)i=1,...,n and covariate matrix X = (xij)i=1,...,n, j=1,...,d

2: Use the vinereg function to fit a D-vine to the data (y, X), resulting in the D-vine with order V ≠
U1 ≠· · ·≠Ulk

, where l = (l1, . . . , lk) is the conditional log-likelihood maximizing ordering of the pseudo
copula data (v̂, Û).

3: order Ω (l1, . . . , lk) extract the ordering of the fitted D-vine V ≠ U1 ≠ · · · ≠ Ulk

4: X
red Ω X[, order]

5: Use X
red and y to fit a quantile regression neural network �

◊,a,fl–,red
(k,k1,...,kH ,1) œ K a,fl–

(k,k1,...,kH ,1).

6: Output: �
◊,a,fl–,red

(k,k1,...,kH ,1)

sulting model will be called red-cQRNN. Additionally, we will utilize the modified forward algorithm of
the sparse D-vine quantile regression introduced by Sahin and Czado (2022) to achieve faster compu-
tation times. This algorithm is implemented in the R package sparsevinereg, which is accessible at
github.com/oezgesahin/sparsevinereg. The models utilizing the sparse D-vine quantile regression algo-
rithm for dimensionality reduction will be referred to as sredQRNN and sred-cQRNN.

5.3 Uncertainties for quantile regression neural networks using D-vine
copulas

As discussed in previous chapters, neural networks yield only point estimates when making predictions.
To use neural networks as predictive models, it is crucial to consider uncertainties, leading to the gener-
ation of confidence estimates. In this chapter, we present a modified version of the vine copula neural
network (VCNN) introduced by Tagasovska, Ozdemir, and Brando (2023), which is designed to handle
the predictive uncertainties of neural networks. These uncertainties stem from two probabilistic sources:

• epidimistic - The training data is incomplete, meaning that some input areas are not represented in
the training data, or the model does not have the ability to accurately represent the actual function.
This can be captured by confidence intervals.

• aleatoric - It arises from the intrinsic noise in the data and is therefore an irreducible factor. This can
be captured by prediction intervals.

The vine copula neural network is designed to handle both types of uncertainties. It is important to note
that the VCNN can be implemented retrospectively on any previously trained neural network, eliminating
the need for a complete retraining of the main model.

5.3.1 Simulation-based confidence intervals for QRNN

To predict confidence intervals based on simulations, we utilize the generative nature of vine copulas
(Dissmann et al. 2013) to “bootstrap” the final hidden layer of the fully trained neural network. The main
idea was introduced by Tagasovska, Ozdemir, and Brando (2023). We modify the procedure by fitting
a sparse D-vine regression (Sahin and Czado 2022) to the values of the last hidden layer instead of a
R-vine. This will result in a dimensionality reduction of the last layer as well as a faster computation
time. The sparse D-vine regression was developed by Sahin and Czado (2022). The simulations and the
estimation of the simultaneous confidence intervals is described in the quantile neural network setting. Let
� œ K a,fl–

(d,k1,...,kH ,1) be the trained quantile regression neural network predicting q–, – œ (0, 1). We use the
training set Dtrain = {(yi, xi) œ R ◊ Rd|i = 1, . . . , n} and the test set Dtest = {(y

ú
i
, x

ú
i
) œ R ◊ Rd|i =

1, . . . , ntest}.

(i) First, we obtain the values from the neurons of the last hidden layer before applying the activation
function. This is done by using the calculating scheme described in the definition of neural networks

https://github.com/oezgesahin/sparsevinereg
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for every sample xi œ Dtrain, i = 1, . . . , n. We calculate the forward pass of the trained neural
network � for all samples: (yi, xi)

h
[0]
i

= xi,

h
[h]
i

= a

1
W

[h]
h

[h≠1]
i

+ b
[h]

2
, for h = 1, . . . , H ≠ 1,

h̃
[H]
i

= W
[H]

h
[H≠1]
i

+ b
[H]

,

h
[H]
i

= a

1
h̃

[H]
i

2
,

�̃(xi) = h
[H+1]
i

= W
[H+1]

h
[H]

+ b
[H]

,

and extract the vectors h̃
[H]
i

œ RkH for i = 1, . . . , n, where kH is the number of neurons of the last
hidden layer of the trained neural network �. We further work with the vector

1
yi, h̃

[H]
i

2
œ RkH+1

, (5.19)

where (yi, xi) œ Dtrain for i = 1, . . . , n.

(ii) In order to generate samples from the last hidden layer, we perform a sparse D-vine regression
on the data

Ó1
yi, h̃

[H]
i

2Ô
n

i=1
, resulting in a D-vine copula C of the structure V ≠ Ul1 ≠ · · · ≠ Ulj

,
where l = (l1, . . . , lj), 1 Æ j Æ kH is the cll maximizing order discussed in Section 1.8. For
implementing the sparse D-vine regression algorithm, we use the R package sparsevinereg,
available at github.com/oezgesahin/sparsevinereg, and import it to the python environment with the
rpy2 package.

(iii) For repetition s œ {1, . . . , S}, we "bootstrap" the neural network by copying the neural network � and
retrain the last hidden layer of the copies �

1
, . . . , �

S with generated D-vine copula data. Depending
on the fitted D-vine copula C, some neurons of the last hidden layer are set to zero, which results in
a dimensionality reduction of the last hidden layer of the copies �

s, s = 1, . . . , S. For s = 1, . . . , S:

a) Sample K random observations from the D-vine copula C
Dtrain,[H], which we use to retrain the

last hidden layer of the copies �
s:

D
s,[H]
train

:=

Ó1
y

s

k, h̃
[H],s
k

2Ô
K

k=1
.

Overall, this gives us K ·S realizations from C
Dtrain,[H], where |Ds,[H]

train
| = K for each repetition

s œ {1, . . . , S}.

b) Retrain the last hidden layer and the output layer of the copied neural network �
s utilizing the

generated training set D
s,[H]
train

, i.e. calculate the forward pass of the last hidden layer

h
[H],s
k

= a

1
h̃

[H],s
k

2
,

h
[H+1],s
k

= W
[H+1],s

h
[H],s
k

+ b
[H],s

, (5.20)

with k = 1, . . . , K and use back propagation and an optimization algorithm to retrain the last
hidden layer of the neural network copy �

s with the respective generated training set D
s,[H]
train

,
s = 1, . . . , S. Observe that the retraining of the last hidden layer of the neural network �

s is
equivalent to training a neural network with input dimension lj (dimension of the fitted D-vine
copula C

Dtrain,[H]) and the calculation Scheme 5.20 using training data D
s,[H]
train

.

https://github.com/oezgesahin/sparsevinereg
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Figure 5.5 Visualization of a copy �
s, s œ {1, . . . , S}. The weights in the blue frame are not changed while the

parameters in the last hidden layer (red frame) get retrained with the generated training set D
s,[H]
train

. Note that the
neurons of the last hidden layer might vary due to the dimensionality reduction of the fitted D-vine copula C

Dtrain,[H].

Overall, we get the neural networks �
s œ K a,L

(d,k1,...,lj ,1) for s = 1, . . . , S. Note that the neural network
copies �

s, s = 1, . . . , S have the same input and output dimension as the neural network �. How-
ever, the number of neurons in their last hidden layer H may vary due to the dimensionality reduction
of the fitted D-vine copula C

Dtrain,[H]. The values of the neurons in the last hidden layer of the �
s is

always different then �. Note that the values of the neurons in the last layer also vary between the
copies �

s due to the sampling of the training data D
s,[H]
train

, where s = 1, . . . , S.

(iv) Next, we compute the vector

Hi :=

1
�̃(x

ú
i ) ≠ �̃

1
(x

ú
i ), . . . , �̃(x

ú
i ) ≠ �̃

S
(x

ú
i )

2
,

where �̃(x
ú
i
) is the forward pass of the main model � and �̃

s
(x

ú
i
) is the forward pass of the copied

and retrained neural networks �
s, s = 1, . . . , S, for all (y

ú
i
, x

ú
i
) œ Dtest. We continue by calculating

the sample standard deviation of the vectors Hi for i = 1, . . . , ntest resulting in the vector

V := (‡̂(H1), . . . , ‡̂(Hntest
)) ,

where

‡̂ : Rn æ (0, Œ), ‡̂(x) =

ı̂ıÙ 1

n ≠ 1

nÿ

i=1
(xi ≠ 1

n

nÿ

i=1
xi)

2 (5.21)

is the sample standard deviation. Moreover, we calculate the empirical 1 ≠ – quantile of the vector
V , which we denote by q̂

emp

1≠–
.

(v) Finally, the upper and lower bound of the 100(1 ≠ –)% simultaneous prediction interval (PI) can be
estimated as

‚PI1≠– =

S

WWWU

Q

ccca

�̃(x
ú
1)

...

�̃(x
ú
ntest

)

R

dddb ≠ q̂
emp

1≠–

Q

ccca

‡̂(H1)

...

‡̂(Hntest
)

R

dddb ,

Q

ccca

�̃(x
ú
1)

...

�̃(x
ú
ntest

)

R

dddb + q̂
emp

1≠–

Q

ccca

‡̂(H1)

...

‡̂(Hntest
)

R

dddb

T

XXXV , (5.22)

for (y
ú
i
, x

ú
i
) œ Dtest, 1 Æ i Æ ntest and – œ (0, 1). Note that the prediction interval is only valid for

i.i.d. input data (y
ú
i
, x

ú
i
), 1 Æ i Æ ntest. By estimating the simultaneous PI we will account for the

epidimistic uncertainty of the QRNN model � (Tagasovska, Ozdemir, and Brando 2023).

By using this procedure, we will account for the epidimistic uncertainty of our model.
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6 Simulation study

6.1 Setup of underlying true models

In this section, the accuracy of approximating quantiles via D-vine quantile regression and quantile regres-
sion neural networks will be compared. We will proceed as follows:

(i) First, we generate n training- and ntest := n/2 test samples from a random vector (Y, X1, . . . , Xd)
T

and set the quantile level – = (0.05, 0.5, 0.95)
T , which we want to predict.

(ii) Then we fit the models

• D-vine quantile regression (See Section 4.2)

• QRNN: Quantile regression neural network �
(ReLU, sigmoid),fl–

(d,200,200,3) with input dimension d, output
dimension |–| = 3 and two hidden layers. Each of these layers contains 200 neurons. The
activation function applied to the first layer is the ReLU function, while for the second layer, we
utilize the sigmoid function. (See Section 5 )

• cQRNN: Cumulative quantile regression model with three quasi quantile regression neural
network where each network consists of one hidden layer with 200 neurons and the sigmoid
activation function. (See Section 5.1)

• redQRNN: Quantile regression neural network �
(ReLU, sigmoid),fl–,red
(k,200,200,3) with reduced input dimen-

sion 1 Æ k Æ d, output dimension |–| = 3 and two hidden layers. Each of the hidden layers
contains 200 neurons. The ReLU function is applied to the first hidden layer while the sigmoid
function is applied to the second hidden layer. (See Section 5.2) We only fit this model for the
high dimensional simulation scenarios D6 and G20.

• sparsevinereg: Sparse D-vine quantile regression introduced and studied in Sahin and Czado
(2022). This model is fitted for the high dimensional simulation scenarios D6 and G20.

• sredQRNN: Quantile regression neural network �
(ReLU, sigmoid),fl–,red
(k,200,200,3) with reduced input dimen-

sion 1 Æ k Æ d, output dimension |–| = 3 and two hidden layers. The reduced input dimension
is computed with the forward selection algorithm of the sparse D-vine quantile regression.
The algorithm is described in Sahin and Czado (2022). Each of the hidden layers of the model
contains 200 neurons. The ReLU function is applied to the first hidden layer while the sigmoid
function is applied to the second hidden layer. We only fit this model for the high dimensional
simulation scenarios D6 and G20.

• red-cQRNN: Cumulative quantile regression neural network with reduced input dimension 1 Æ
k Æ d, where each quasi quantile regression neural network consists of one hidden layer with
200 neurons and the sigmoid activation function. (See Section 5.1 and Section 5.2) We only fit
this model for the high dimensional simulation scenarios D6 and G20.

The training sets in the form of Dtrain = {(yi, xi) œ R ◊ Rd|i = 1, . . . , n} are used to train the listed
models. In order to prevent overfitting, we utilize the early stopping technique, which is detailed in
Section 3.5. Additionally, we implement the dropout method with a dropout rate of p = 0.1 and L

2

regularization with a learning rate of ⁄ = 0.001 (Section 3.4).

We consider the following distributions for (Y, X1, . . . , Xd)
T :
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• D3: (Y, X1, X2)
T follows a three-dimensional D-vine copula with order V ≠ U1 ≠ U2 and marginal

distributions given in the set M. The bivariate copulas of the D-vine on the u-scale CV U1 , CU1U2
and CV U2;U1 are from the Clayton family with copula parameter ”V 1, ”12 and ”V 2;1, respectively. The
copula parameters as well as the margin set M are given in Table 6.1.

Kendall’s · Copula parameter Marginal

·V 1 = 0.70

·12 = 0.57

·V 2;1 = 0.37

”V 1 = 4.68

”12 = 2.68

”V 2;1 = 1.2

Y X1 X2

M N (0, 1) t4(0, 1) N (1, 4)

Table 6.1 Clayton copula parameters and marginal distribution set of simulation scenario D3.

• D6: (V, U1, U2, U3, U4, U5) follows a D-vine copula with order V ≠ U1 ≠ · · · ≠ U5 and the parameters
given in Table 6.2.

Tree Edge Conditioned Conditioning Family Kendall’s ·

1 1 V U1 ; Clayton 0.70

1 2 U1U2 ; Gumbel 0.82

1 3 U2U3 ; Gauss 0.54

1 4 U3U4 ; Joe 0.21

1 5 U4U5 ; Indep. 0.00

2 1 V U2 ; U1 Gumbel(90) 0.73

2 2 U1U3 ; U2 Clayton 0.59

2 3 U2U4 ; U3 Joe 0.31

2 4 U1U3 ; U2 Gauss 0.13

3 1 V U3 ; U1U2 Frank 0.6

3 2 U1U4 ; U2U3 Clayton 0.45

3 3 U2U5 ; U3U4 Gumbel 0.15

4 1 V U4 ; U1U2U3 Gauss 0.50

4 2 U1U5 ; U2U3U4 Frank 0.10

5 1 V U5 ; U1U2U3U4U5 Indep. 0.00
Table 6.2 Copula families and their parameters of the six dimensional D-vine copula of simulation scenario D6.

• NH4: Nonlinear and heteroscedastic (variance is of residuals of a regression model and is not
constant)(Tepegjozova et al. 2022): Y = U1U2 exp(1.8U3U4) + 0.5(U1 + U2 + U3 + U4)‘, where Ui,
j = 1, . . . , 4 are obtained from the PIT from N4(0, �), �i,j = 0.5

({i”=j}), and ‘ ≥ N(0, 0.5).

• LH4: Linear and heteroscedastic (Tepegjozova et al. 2022): Y = 5(X1 + X2 + X3 + X4) + 0.5(U1 +

U2 +U3 +U4)‘, where (X1, X2, X3, X4)
T ≥ N4(0, �), �i,j = 0.5

({i”=j}), and Ui are the PIT random
variables from Xi, i = 1, . . . , 4, ‘ ≥ N(0, 0.5).
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• G20: high dimensional sparse D-vine copula: (V, U1, . . . , U19)
T follows a 20-dimensional D-vine

copula truncated at the third level. The pair copula family is drawn uniformly from the set

F = {Gaussian, Clayton, Gumbel, Joe, Frank}.

The family parameter of the bivariate copulas is obtained by using the one-to-one relationship be-
tween Kendall’s · and the family parameter, where Kendall’s · is uniformly drawn from different sets
(see Table 6.3).The last four pair copulas of each tree are set to be the independent copula.

Tree Edge Conditioned Conditioning Family Kendall’s ·

1 1 V U1 ; F
(1)
1 ≥ F ·

(1)
1 ≥ U(0.6, 0.9)

1 2 U1U2 ; F
(1)
2 ≥ F ·

(1)
2 ≥ U(0.6, 0.9)

...
...

...
...

...

1 15 U14U15 ; F
(1)
15 ≥ F ·

(1)
15 ≥ U(0.6, 0.9)

1 16 U15U16 ; Indep. 0

...
...

...
...

...

1 19 U18U19 ; Indep. 0

2 1 V U2 ; U1 F
(2)
1 ≥ F ·

(2)
1 ≥ U(0.4, 0.6)

2 2 U1U3 ; U2 F
(2)
2 ≥ F ·

(2)
2 ≥ U(0.4, 0.6)

...
...

...
...

...
...

1 14 U13U15 ; U14 F
(2)
14 ≥ F ·

(2)
14 ≥ U(0.4, 0.6)

1 15 U14U16 ; U15 Indep. 0

...
...

...
...

...
...

2 18 U17U19 ; U18 Indep. 0

3 1 V U3 ; U1U2 F
(3)
1 ≥ F ·

(3)
1 ≥ U(0.2, 0.5)

3 2 U1U4 ; U2U3 F
(3)
2 ≥ F ·

(3)
2 ≥ U(0.2, 0.5)

...
...

...
...

...
...

3 13 U12U15 ; U13U14 F
(3)
13 ≥ F ·

(3)
13 ≥ U(0.2, 0.5)

3 14 U13U16 ; U14U15 Indep. 0
...

...
...

...
...

...

3 17 U16U19 ; U17U18 Indep. 0

Table 6.3 Copula families and their parameters of the 20-dimensional D-vine copula of simulation scenario G20.

6.2 Evaluation measures

In the next step, the trained models m œ {D-vinereg, QRNN,cQRNN, redQRNN} are applied to the sam-
ples of the test set (yi, xi) œ Dtest = {(yi, xi) œ R ◊ Rd|i = 1, . . . , ntest} in order to predict the true
quantiles q–(xi) for (yi, xi) œ Dtest.
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Following Tepegjozova et al. (2022), the out of sample performance of the model m is measured by
calculating the sample mean pinball loss function, namely

[MPLm,– :=
1

ntest

ntestÿ

i=1
fl–(yi, q̂–,m(xi)),

with fl–(x) := –x xØ0 + (– ≠ 1)x x<0 and (yi, xi) œ Dtest. This process is replicated r = 1, . . . , R = 100

times, which leads to the out of sample mean integrated pinball loss

[MIPLm,– :=
1

R

Rÿ

r=1

C
1

ntest

ntestÿ

i=1
fl–(yr,i ≠ q̂

(r)
–,m(xr,i))

D

, (6.1)

where (yr,i, xr,i) œ D
r
test and D

r
test = {(yi,r, xi,r) œ R ◊ Rd|i = 1, . . . , ntest} is the r-th simulated test set

and q̂
(r)
–,m is the – level conditional quantile using the model m which is fitted by using the r-th simulated

training set D
r

train
= {(yi,r, xi,r) œ R ◊ Rd|i = 1, . . . , n}.

In addition, we consider the interval score for the (1 ≠ –) ◊ 100% prediction interval, which is defined
as

‚ISm,– =
1

R

Rÿ

r=1

5
1

ntest

ntestÿ

i=1

3
(q̂

(r)
–/2,m

(xr,i) ≠ q̂
(r)
1≠–/2,m

(xr,i))+

2

–

1
(q̂

(r)
1≠–/2,m

(xr,i) ≠ yr,i) {yr,i Æ q̂
(r)
1≠–/2,m

(xr,i)}
2

+

2

–

1
(yr,i ≠ q̂

(r)
–/2,m

(xr,i)) {yr,i > q̂
(r)
–/2,m

(xr,i)}
2 46

, (6.2)

where (yr,i, xr,i) œ D
r
test and D

r
test = {(yi,r, xi,r) œ R ◊ Rd|i = 1, . . . , ntest} is the r-th simulated test set

and q̂
(r)
–,m is the – level conditional quantile using the model m which is fitted by using the r-th simulated

training set D
r

train
= {(yi,r, xi,r) œ R ◊ Rd|i = 1, . . . , n}. A smaller interval score implies a better model

fit (Grønneberg and Raftery 2007). The interval score will be used for validating the prediction intervals
introduced in Section 5.3. Note that we take prediction intervals for quantiles into account, which means
we must compute the true quantiles in order to calculate the interval score. We estimate the interval score
for the high-dimensional scenarios D6 and G20.

In addition, we will take into account the average computation time, which gives the duration of com-
puter time required to execute the algorithm for fitting the model to the data. The variable will be called T̂.

For the higher dimensional scenarios D6 and G20, we count the average relative quantile crossings
(in %) described in Section 5.0.1 per model for the quantiles of level – œ {0.01, 0.05}:

\ARQCm :=

A
1

R · ntest

Rÿ

r=1

ntestÿ

i=1
{q̂

(r)
0.05,m

(xr,i) < q̂
(r)
0.01,m

(xr,i)}
B

· 100%, (6.3)

where (yr,i, xr,i) œ D
r
test and D

r
test = {(yi,r, xi,r) œ R ◊ Rd|i = 1, . . . , ntest} is the r-th simulated test set

and q̂
(r)
–,m is the – level conditional quantile using the model m which is fitted by using the r-th simulated

training set D
r

train
= {(yi,r, xi,r) œ R ◊ Rd|i = 1, . . . , n}.

6.3 Results

In our simulation study, we consider the quantiles of level – œ {0.05, 0.5, 0.95}. We also compare the per-
formance of the models with large vs. small sized training data by choosing ntrain œ {400, 1000}. In order
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to prevent over fitting, we implement the L
2 regularization with ⁄ = 0.01 (Section 3.4) and the dropout

method with drop rate 0.1 (Section 3.4) as well as the early stopping method (Section 3.5) for the different
quantile regression neural networks QRNN, cQRNN and redQRNN. The implementation is done in python
(Van Rossum and Drake 2009), where we use the tensorflow package to build the various quantile
regression neural networks. The D-vine quantile regression model is implemented using the vinereg
package from R (R Core Team 2021). The methods of this package can be called in python (Van Rossum
and Drake 2009) through the use of the rpy2 python package.

6.3.1 Low-dimensional simulation scenario results

First, we look at the low-dimensional scenario results.

Scenario Model ‚T [MIPL0.05 [MIPL0.5 [MIPL0.95 ‚T [MIPL0.05 [MIPL0.5 [MIPL0.95

ntrain = 400 ntrain = 1000

D3

D-vinereg 0.49 0.04 0.15 0.05 1.14 0.04 0.15 0.05

QRNN 23.55 0.05 0.15 0.05 17.27 0.03 0.15 0.06

cQRNN 6.17 0.04 0.15 0.05 7.58 0.03 0.15 0.05

NH4

D-vinereg 3.04 0.35 0.47 0.19 7.07 0.35 0.45 0.17

QRNN 9.21 0.41 0.44 0.33 15.69 0.43 0.42 0.30

cQRNN 9.85 0.38 0.45 0.33 14.11 0.43 0.43 0.29

LH4

D-vinereg 3.20 0.22 0.51 0.20 7.40 0.24 0.46 0.26

QRNN 14.71 0.24 0.54 0.21 14.80 0.22 0.49 0.20

cQRNN 14.51 0.32 0.39 0.34 14.14 0.36 0.40 0.39

Table 6.4 Out of sample predictions of [MIPLm,–, for – œ {0.05, 0.5, 0.95} of the different models m œ
{D-vinereg, QRNN, cQRNN} for the low dimensional scenarios D3, NH4 and LH4. Lowest values per evaluation
measure and scenario are highlighted bold.

For the three-dimensional D-vine scenario D3, the performance of the models D-vine regression, QRNN
and cQRNN are similar (see Table 6.4). We observe a small performance increase for the QRNN and
cQRNN models when we have higher dimensional training data ntrain = 1000. The QRNN and cQRNN
models seem to be a more adequate model for estimating the 0.05 quantile if we are in the large sample
training setting (see Figure 6.1a). In terms of the average computation time T̂ , the D-vine regression
model clearly outperforms the quantile regression neural network models. Note that in our case, the
average computation time T̂ of the QRNN model is lower for small dimensional train data ntrain = 400.
This phenomena can arise since the stochastic gradient descent algorithm is not deterministic (Section
3.1).
In the nonlinear and heteroscedastic scenario NH4, the D-vine quantile regression clearly outperforms the
quantile neural network models in terms of accuracy and time complexity for both training sizes ntrain œ
{400, 1000} (see Figure 6.1b). For the setting linear and heteroscedastic LH4 however, we see that the
QRNN performs better than the D-vine quantile regression and the cQRNN for higher dimensional training
data ntrain = 1000 (see Figure 6.1c). In summary, for scenarios with low dimensions, the D-vine quantile
regression model appears to outperform the quantile regression neural network approaches cQRNN,
QRNN in terms of accuracy and time efficiency. Furthermore, in a non-linear setting such as NH4 and D4,
the D-vine quantile regression model is more effective at estimating conditional quantiles.
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(a) Scenario D3

(b) Scenario NH4
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(c) Scenario LH4

Figure 6.1 Boxplots of [MPLm,–, – œ {0.05, 0.5, 0.95} for scenario D3, NH4 and LH4 with large sample training data
size ntrain = 1000 and m œ {D-vinereg, QRNN, cQRNN }.

6.3.2 High-dimensional simulation scenario results

We continue by presenting the results for the high dimensional simulation scenarios D6 and G20. As
for the low dimensional settings, we look at the out of sample mean integrated pinball loss [MIPLm,– for
– œ {0.05, 0.5, 0.95} as well as the time complexity T̂ and the average relative quantile crossings \ARQCm

per model m œ {D-vinereg, QRNN, cQRNN, redQRNN, sparsevinereg, sredQRNN}. Note, that we also
tested the reduced cQRNN model, as introduced in Section 5.2. However, the results did not show any
significant improvement over the standard cQRNN approach. Consequently, we have chosen to present
only the results for the cQRNN, alongside with the models

m œ {D-vinereg, QRNN, cQRNN, sparsevinereg, sredQRNN}

.
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Scenario Model ‚T [MIPL0.01 [MIPL0.05 [MIPL0.5 [MIPL0.95 \ARQC

ntrain = 400

D6

D-vinereg 4.6 0.002 0.007 0.022 0.007 0

QRNN 20.30 0.002 0.008 0.023 0.006 10.91

cQRNN 27.82 0.002 0.007 0.023 0.006 0

redQRNN 21.48 0.002 0.007 0.020 0.006 10.72

sparsevinereg 7.87 0.002 0.008 0.025 0.007 0

sredQRNN 21.70 0.002 0.008 0.022 0.006 10.04

G20

D-vinereg 100.46 0.009 0.022 0.069 0.021 0

QRNN 12.40 0.005 0.020 0.073 0.019 11.18

cQRNN 21.75 0.007 0.018 0.065 0.020 0

redQRNN 16.70 0.005 0.019 0.071 0.018 11.65

sparsevinereg 25.34 0.007 0.021 0.065 0.019 0

sredQRNN 19.68 0.005 0.019 0.072 0.018 14.79

ntrain = 1000

D6

D-vinereg 10.06 0.002 0.007 0.022 0.007 0

QRNN 17.29 0.002 0.007 0.021 0.006 8.75

cQRNN 29.98 0.001 0.006 0.019 0.005 0

redQRNN 18.15 0.002 0.007 0.019 0.005 9.13

sparsevinereg 21.88 0.002 0.007 0.023 0.007 0

sredQRNN 18.48 0.002 0.007 0.020 0.005 11.91

G20

D-vinereg 271.31 0.007 0.021 0.067 0.020 0

QRNN 11.75 0.005 0.019 0.072 0.019 8.52

cQRNN 21.09 0.007 0.017 0.064 0.019 0

redQRNN 13.11 0.005 0.019 0.070 0.018 9.87

sparsevinereg 64.84 0.006 0.019 0.064 0.019 0

sredQRNN 17.44 0.004 0.019 0.068 0.018 12.73

Table 6.5 Out of sample predictions of [MIPLm,–, for – œ {0.01, 0.05, 0.5, 0.95} of the different models m œ
{D-vinereg, QRNN, cQRNN, redQRNN, sparsevinereg, sredQRNN} for the high dimensional scenarios D6 and
G20. Lowest values per evaluation measure and scenario are highlighted bold.

For the simulation scenario D6 with training setting ntrain = 400, the reduced QRNN and the cQRNN
are outperforming the other models for all levels – œ {0.01, 0.05, 0.5, 0.95} while the number of average
relative quantile crossings of the redQRNN model is at 0.107 (or 10.7%) while the cQRNN model re-
sults inhabit zero quantile crossings (per definition; see Section 5.1). The computing time is similar to
the low dimensional simulation scenarios for the quantile regression neural networks. While the D-vine
quantile regression exhibits a marginal increase in the computing time, it continues to surpass the quantile
regression neural network approaches in terms of computing time. For higher dimensional training data
ntrain = 1000, the cQRNN outperforms the other models for all levels – œ {0.01, 0.05, 0.5, 0.95}. See
Figure 6.2a for the boxplot of the [MPLm,– for – œ {0.01, 0.05, 0.5, 0.95} of scenario D6 and training size
ntrain = 1000.



47

Following with the high dimensional sparse D-vine copula scenario G20 we observe that the cQRNN
outperforms the other models for the levels – œ {0.05, 0.5} and for both training dimensions ntrain œ
{400, 1000}. We also see a huge increase in the computing time for the D-vine quantile regression model,
while the computing time for the quantile regression neural networks are similar than for the lower dimen-
sional simulation scenarios. Note that the sparsevinereg model has a significantly lower computing time
than the standard D-vinereg model, but is still slower compared to the quantile regression neural network
approaches. In addition, we notice a small performance increase of the reduced QRNN compared to the
standard QRNN for all alpha levels as well as training data sizes. It is noteworthy that the models QRNN,
redQRNN, and sredQRNN exhibit a decreased average relative quantile crossing rate when the sample
size is larger (ntrain = 1000) as compared to the scenario with a smaller sample size (ntrain = 400).
The average relative quantile crossing rate for these models hovers around 10% which is still high. There-
fore, for high-dimensional scenarios (for instance, when the number of dependent variables exceeds 10),
a cumulative quantile regression neural network (cQRNN) approach is recommended. This method is
particularly effective in handling high dimensional data while guaranteeing the absence of quantile cross-
ings of the model estimates. See Figure 6.2b for the boxplot of the [MPLm,– for – œ {0.01, 0.05, 0.5, 0.95}
of scenario G20 and training size ntrain = 1000.
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(a) Scenario D6

(b) Scenario G20

Figure 6.2 Boxplots of [MPL–, – œ {0.01, 0.05, 0.5, 0.95} for scenarios D6 and G20 with high dimensional training
data ntrain = 1000.
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Moreover, we fit the 95% prediction interval introduced in Section 5.3 to the models QRNN and redQRNN
for the simulation scenarios D6 and G20. The accuracy of the prediction intervals is measured with the
interval score ‚IS0.05 where we need to calculate the true quantiles in order to calculate the interval score.
This is done by using the inverse Rosenblatt transform briefly discussed in Algorithm 4.1.1. For more
details regarding the inverse Rosenblatt transform look into Rosenblatt (1952) and Rüschendorf (1981).
We retrain the last hidden layer of the models for S = 30 times with K = 400 randomly sampled observa-
tions from the fitted D-vine copula C

Dtrain,[H] (See Section 5.3 for the notation). This process is repeated
R = 20 times.

G20 q0.01 q0.05 q0.5

QRNN 3.931 2.830 2.339

redQRNN 3.133 2.491 1.827
Table 6.6 ‚IS0.05 for scenario G20

D6 q0.01 q0.05 q0.5

QRNN 7.623 9.325 1.329

redQRNN 7.744 9.487 1.221
Table 6.7 ‚IS0.05 for scenario D6

We observe a smaller interval score for the quantiles at level – œ {0.01, 0.05, 0.5} for the reduced QRNN
model in the G20 scenario. In the setting of scenario D6, however, the QRNN is outperforming the reduced
QRNN at the levels – œ {0.01, 0.05}. For the higher dimensional scenario G20 we prefer the reduced
QRNN model over the QRNN model. For future projects, it would be interesting to implement the prediction
intervals introduced in Section 5.3 for the cQRNN model studied in Section 5.1. This could be achieved
by fitting a prediction interval with retraining (see Section 5.3 for the procedure) to each quasi-quantile
regression neural network within the cQRNN. The resulting prediction intervals can then be added up to
obtain a simultaneous prediction interval, similar to the simultaneous prediction interval (5.22).
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7 Real Data Example: Fama and French

The Fama and French five-factor model extends the classical capital asset pricing model (CAPM) and is
designed to capture the relation between the average return Y

(i) of an asset i and the factors

• Mkt-RF Market risk premium, which is calculated as the expected return on the market minus the
risk-free rate.

• SMB The small minus big factor is based on the market capitalization of a company. The idea is that
in the long run, small-capitalization companies tend to have higher returns than large-capitalization
companies. The SMB factor is determined by computing the difference between the average returns
of a portfolio composed of small-cap stocks and that of a portfolio consisting out of large-cap stocks.

• HML The high minus low factor quantifies the difference of returns between high book-to-market and
low book-to-market stocks. In order to compute the HML factor, the difference in returns between a
portfolio of high book-to-market firms and a portfolio of low book-to-market firms is calculated. The
underlying assumption is that high book-to-market stocks are expected to yield higher returns with
respect to low book-to-market firms.

• CMA The Conservative minus aggressive factor (CMA) is calculated as the difference in returns be-
tween a portfolio of conservatively investing firms and a portfolio of aggressively investing firms. The
underlying assumption is that, all else being equal, companies that invest conservatively have higher
expected returns than those that invest aggressively. Companies which invest more aggressive are
those who frequently extend their asset bases through acquiring other businesses, launching new
products, or entering new markets.

• RMW Robust minus weak factor measures the excess return of companies with high operating
provability over those with low operating provability. The underlying assumption of this factor is
the empirical observation that companies with higher profits tend to have higher returns.

The original idea of extending the CAPM model in order to capture the expected returns of stocks was
introduced by the work of Fama and French (1993) and is called the Fama and French 3-factor model, or
short FF 3-factor model. This model inc operates SMB and HML factors in addition to the market risk
premium in order to capture the average return of an asset. It was then extended by Fama and French
(2014), who added the CMA and RMW factors to the 3-factor model. Note that the factors are measured for
a whole market, for example the US stock market. Given an asset i, we want to explain the expected return
by the exposures to the FF factors. The Fama and French 5-factor model of an asset i is the regression
model

Y
(i)

t
≠ Rft

= –i + —
(1)
i

(RMt
≠ Rft

) + —
(2)
i

SMBt + —
(3)
i

HMLt + —
(4)
i

CMAt + —
(5)
i

RWMt + ‘i, (7.1)

where Y
(i)

t
is the return of an asset i for the period t, Rft

is the risk-free return, RMt
is the return on

the market portfolio and ‘it is a zero-mean residual (Fama and French 2014). If the exposures to the five
factors —

(1)
it

, —
(2)
it

, —
(3)
it

, —
(4)
it

and —
(5)
it

capture all variation in the expected returns, the intercept –i in (7.1)
is zero for all securities and portfolios i (Fama and French 2014).
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7.1 Explanatory analysis

In our study, we will consider the daily log-returns of 8 U.S. assets from the U.S. stock market. The risk-
free rate will be approximated by the yield on a 3-month U.S. Treasury bill and the historical stock prices
are collected from yahoo-finance, using the ytfinance package in Python. The daily Fama and French
factors for the U.S. stock market can be downloaded from Kenneth French’s data library. 1 For the obser-
vation period, we choose January 1, 2007 to December 1, 2023. The time series of the Fama and French
factors are clearly non-stationary, which can be seen in Figure 7.2. The factor spikes observed in 2009
can again be attributed to the financial crisis that occurred in 2008. Additionally, noticeable fluctuations
and increased volatility of the factors were evident in the years 2020 and 2023. These could potentially
be a result of the 2020 Corona crisis and the Russian invasion of the Ukraine in 2022. The time series
associated with the five Fama and French factors will be called Y

(f)
t

with t = 1, . . . , T and f = 1, . . . , 5

where we have the following abbreviations

{1 = Mkt-RF, 2 = HML, 3 = SMB, 4 = CMA, 5 = RMW}

.

Figure 7.1 Time series Y
(f)

t
of the five Fama and French factors f œ {Mkt-RF, HML, SMB, CMA, RMW} for the

period January 1, 2007 to December 1, 2023.

Looking at the empirical histograms of the factors, we observe a symmetric distribution of all five factors
around zero. The presence of outliers in the corresponding time series of the factors leads us to propose
that the factors follow a Student’s t-distribution, which is characterized by heavier tails compared to the
normal distribution.

1. https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Figure 7.2 Histograms of the five Fama and French factors for the period January 1, 2007 to December 1, 2023.

We consider the daily log return in the observation period January 1, 2007 to December 1, 2023 of the
following 8 stocks, resulting in working with a multivariate financial time series.

• AAPL Apple Inc. is a manufactor of smartphones, tablets and computers.

• MSFT Microsoft Corporation is a software company which offers and supplies software services
and devices.

• BIIB Biogen Inc. is a healthcare company that develops medecine for neurological diseases.

• COO Cooper Companies Inc is a leading global medical device company.

• KO The Coca-Cola Company manufacts and sells nonalcoholic drinks worldwide.

• INTC Intel Corporation produces and sells computer products and technologies

• UNH UnitedHealth Group Incorporated is a healthcare company.

• DIS The Walt Disney Company is an entertainment company which produces movies.

Note that the chosen stocks are listed in the S&P 500 index. The assets we have chosen are from the
technology, healthcare, entertainment and food sectors. The spikes observed in the time series of daily
log returns (Figure 7.3) in the years 2008/2009, 2020, and 2022 can be attributed to specific global events.
These include the financial crisis of 2008, the Corona crisis in 2020, and the Russian invasion of Ukraine
in 2022, respectively. Each of these events had significant impacts on global markets, which is reflected
in the daily log returns for those periods. The time series of the log-returns of the chosen assets will be
called Y

(a)
t

with t = 1, . . . , T and a = 1, . . . , 8 where we have the following abbreviations:

{1=AAPL, 2 = MSFT, 3 = BIIB, 4 = COO, 5 = KO, 6 = INTC, 7 = UNH, 8 = DIS}

.
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Figure 7.3 Daily log-returns of the AAPL, MSFT, BIIB, COO, KO, INTC, UNH and DIS for the period of January 1,
2007 to December 1, 2023.

7.2 Removing serial dependence for each Fama French and stock time
series

As we have already discussed in Section 2.2.2 multivariate financial time series often exhibit interdepen-
dence due to their operation within the same market or sector. It is also observed that joint losses tend to
occur more frequently than joint gains, indicating the need for models that can handle asymmetric depen-
dence structures. While a Gaussian copula is unable to model this behavior, a D-vine copula is capable
of doing so. In order to remove serial dependence, we first apply an ARMA-GARCH model (see Section
2.2.1) to the marginal time series of the assets log-returns Y

(a)
t

, a = 1, . . . , 8 and the five Fama and
Frech factors X

(f)
t

, f = 1, . . . , 5 for t = 1, . . . , T . We choose the innovation function to be the standard-
ized Student-t distribution with degree of freedom ‹. Then we calculate the standardized residuals r̂

(a),
a = 1, . . . , 8 and r̂

(f), f = 1, . . . , 5 of the log returns and the five Fama and French factors with Equation
(2.12). The innovation distribution function is then used to transform the standardized residuals to ap-
proximate i.i.d. copula data.

Start by fitting a ARMA(1, 1)-GARCH(1, 1) model with Student’s t innovation to each time series Y
(a)

t
and

X
(f)
t

resulting in conditional mean estimates µ̂
(a)
t

and µ̂
(f),FF
t

and conditional variance estimates ‡̂
2,(a)
t

and ‡̂
2,(f),FF
t

for t = 1, . . . , T , a = 1, . . . , 8 and f = 1, . . . , 5, respectively. The ARMA(1, 1)-GARCH(1, 1)

model is a good starting point for financial time series (Tsay 2010).
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„0 „1 ◊1 –0 –1 —1 ‹̂

AAPL 0.00 -0.30 0.30 0.00 0.09 0.90 5.03

MSFT 0.00 0.76 -0.80 0.00 0.09 0.89 4.68

BIIB 0.00 0.31 -0.38 0.00 0.16 0.60 3.26

INTC 0.00 -0.13 0.11 0.00 0.06 0.94 4.44

COO 0.00 0.50 -0.51 0.00 0.06 0.92 3.98

UNH 0.00 -0.25 0.23 0.00 0.06 0.93 4.44

DIS 0.00 0.79 -0.81 0.00 0.08 0.92 4.54

KO 0.00 0.92 -0.94 0.00 0.09 0.88 4.68

Mkt-Rf 0.02 0.84 -0.88 0.02 0.14 0.86 5.72

SMB 0.00 0.55 -0.56 0.01 0.07 0.92 10.00

HML -0.01 0.65 -0.65 0.00 0.10 0.90 8.05

RMW 0.01 -0.46 0.47 0.00 0.05 0.94 10.00

CMA -0.01 -0.10 0.14 0.00 0.05 0.94 9.35
Table 7.1 Estimates of the ARMA(1,1)-GARCH(1,1) coefficients for the eight log-return time series and the five Fama
and French factors.

Next we calculate the standardized residuals

r
(a)
t

:=
Y

(a)
t

≠ µ̂
(a)
t

‡̂
(a)
t

and r
(f),FF
t

:=
X

(f)
t

≠ µ̂
(f),FF
t

‡̂
(f),FF
t

, (7.2)

for all time series Y
(a)

t
, X

(f)
t

, a = 1, . . . , 8, f = 1, . . . , 5.

After calculating the standardized residuals, we check if the ARMA(1, 1)-GARCH(1, 1) with Student-t in-
novations fits the log-returns and Fama and French time series by looking at the QQ-plots and conducting
the Ljung-Box test as outlined in Section 2.2.1. We observe that the innovation function fits the diagonal
line of the QQ-plots for most of the assets (see Figure 7.4). For the COO asset we might try to fit another
innovation function. The QQ-plots of the standardized residual of the Fama and French factors time series
(see Figure 7.5) appear to be a good.
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Figure 7.4 QQ-plots of the standardized residuals r
(a)
t

for Y
(a)

t
, a = 1, . . . , 8 after fitting an ARMA(1, 1)-GARCH(1, 1)

model with Student t innovations to each of the log-return time series.
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Figure 7.5 QQ-plots of the standardized residuals r
(f),FF
t

for X
(f)
t

, a = 1, . . . , 8 after fitting an
ARMA(1, 1)-GARCH(1, 1) model with Student t innovations to each of the Fama and French time series.

Next, we apply the Ljung-Box test described in Section 2.2.1 to each standardized residual of each
univariate time series. The red colors of the visualization of the test (see Figure 7.6) represent a p-value
< 0.05 which means that there are significant autocorrelation effects of the corresponding lag of the
standardized residuals. Our observation indicates that significant autocorrelation effects are present only
for lags greater than 7.
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Figure 7.6 Heatmap of the p-values of the Ljung-Box test statistic (2.13) for different lags.

We then transform the standardized residuals to pseudo copula data by computing

u
(a)
t

= F

1
r

(a)
t

; ‹̂
(a)

2
and u

(f),FF
t

= F

1
r

(f),FF
t

; ‹̂
(f),FF

2
, (7.3)

where F (·, ‹̂) is the cumulative distribution function of an univariate Student’s t distribution with mean 0,
scale 1 and degrees of freedom given by ‹̂

(a) and ‹̂
(f),FF, a = 1, . . . , 8, f = 1, . . . , 5 and t = 1, . . . , T .
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Figure 7.7 Marginal normalized contours for assets AAPL, MSFT, BIIB, INTC, COO, UNH, DIS, KO and the five
Fama and French factors.

In our study, we pick the pseudo copula data u
(1)
t

(AAPL) and utilize the Fama and French pseudo copula
data u

(f),FF
t

, f = 1, . . . , 5 in order to predict the value at risk VaR– at level – œ {0.01, 0.05, 0.1} described
in Section 2.2.2.
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8 Supervised learning setup for Apple Inc. stock

In the following, we will train the following models in order to predict the VaR–, – œ {0.01, 0.05, 0.1} for the
Apple Inc. stock (AAPL) Y

(1)
t

:

• QRNN: Quantile regression neural network �
(ReLU, sigmoid),fl–

(5,200,200,3) with input dimension 5 (the five Fama
and French factors) and two hidden layers. Each of the layers contains 200 neurons, and we apply
the ReLU function to the first hidden layer, while for the second layer, we utilize the sigmoid function.
(See Section 5)

• cQRNN: Cumulative quantile regression model, where each quasi quantile neural network con-
sists of one hidden layer with 200 neurons equipped with the sigmoid activation function. Overall,
we accumulate three neural networks, each with one hidden layer with 200 neurons and the sigmoid
function as the activation function. (See Section 5.1)

• D-vinereg: D-vine quantile regression. (See Section 4.2)

As seen in previous sections, we split the data in a training set Dtrain and a test set Dtest in order to fit
and validate the models. Since we are in a timeseries scenario, the training and test set is given as

Dtrain = {(Y
(1)

t
, Xt≠1) œ R ◊ R5|t = 1, . . . , Ttrain} (8.1)

and

Dtest = {(Y
(1)

t
, Xt≠1) œ R ◊ R5|t = Ttrain + 1, . . . , Ttest}, (8.2)

where Y
(1)

t
is the log-return of the Apple Inc. stock and Xt := (X

(1)
t

, . . . , X
(5)
t

) where X
(f)
t

, f = 1, . . . , 5

are the five Fama and French factor time series. Note that the index shift in the predicting variables Xt≠1
is attributed to the unavailability of the Fama and French factors for the current day. For the training and
testing period, we choose the following time spans:

• Financial crisis: The models are fitted to the training data dated prior to the 2008 financial crisis.
Specifically, our training dataset spans from January 4, 2007, to March 14, 2008, while the testing
phase covers the period from March 17, 2008, to January 5, 2009. In total, we have 300 observations
in the training set ntrain = 300 and 200 observations in the test set ntest = 200.

• Corona crisis: We study the performance of the models using pre-coronavirus crisis data up to
2020. Our training dataset spans from July 18, 2016, to July 11, 2019, while the testing phase covers
the period from July 12, 2019, to November 27, 2020. The training set consists of ntrain = 750

observations, while our testing size is ntest = 350.

• Post financial crisis: The models are trained using both pre-crisis and crisis data. The training
period spans from January 4, 2007, to May 22, 2009, while the testing phase extends from May 26,
2009, to March 9, 2010. We have a training size of ntrain = 400 and testing size of ntest = 200.

• Post corona crisis: Following a similar approach to the pre-crisis period, our models are trained
using data containing both the pre-crisis and crisis periods. The training period spans from January
9, 2019, to January 10, 2022, while the testing phase extends from January 11, 2022, to January
9, 2023. Our training data set consists of ntrain = 650 observations, while the test set utilizes
ntest = 250 observations.
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In our thesis we make a simplifying assumption, namely, we fit the ARMA-GARCH to the set D :=

Dtrain fi Dtest which results in pseudo copula data u
(1)
t

and u
(f),FF
t

for t = 1, . . . , Ttest and f = 1, . . . , 5. In
real-life examples, one has to fit the ARMA-GARCH model solely to the training data set and predict the
conditional mean and volatility in order to transform the log returns of the test set to pseudo copula data.
In practice, this is done via back-testing with a rolling window. For a further description and application,
look at Sommer, Bax, and Czado (2023). In our work, however, fitting the models QRNN, cQRNN and
D-vinereg is very time consuming for larger training and test sets. We will proceed as follows, where the
first two steps are visualized in Figure 7.8, setting a = 1:

1. Fit an ARMA(1, 1)-GARCH(1, 1) to the set D = Dtrain fiDtest and calculate the pseudo copula data
u

(1)
t

and u
(f),FF
t

for t = 1, . . . , Ttrain, . . . , Ttest.

2. For levels – œ {0.01, 0.05, 0.1}, we fit the models QRNN, cQRNN and D-vinereg to the transformed
training data

D
u

train :=

Ó
(u

(1)
t

, u
FF
t≠1) œ R ◊ R5|t = 1, . . . , Ttrain

Ô
,

where u
FF
t =

1
u

(1),FF
, . . . , u

(5),FF
t

2
for t = 1, . . . , Ttrain.

3. Next, we predict the conditional quantiles at levels – œ {0.01, 0.05, 0.1} at the u-scale by applying
the models to copula data of the Fama and French factors of the test set

D
u

test :=

Ó
(u

(1)
t

, u
FF
t≠1) œ R ◊ R5|t = Ttrain + 1, . . . , Ttest

Ô
,

where u
FF
t =

1
u

(1),FF
t

, . . . , u
(5),FF
t

2
for t = Ttrain + 1, . . . , Ttest. We write the estimate of the condi-

tional quantile at level –{0.01, 0.05, 0.1} as q̂
u
–,t, where u symbolizes the u-scale.

4. Further, we transform the quantiles back to the original scale in order to receive an estimate of the
VaR– at level – œ {0.01, 0.05, 0.1} for each model QRNN, cQRNN and D-vinereg:

‰VaR–,t = F
≠1

(q̂
u

–,t, ‹̂
(1)

) · ‡̂
(1)
t

+ µ̂
(1)
t

, (8.3)

for t = Ttrain + 1, . . . , Ttest.

5. Lastly, we calculate the average number of exceedances in the testing period

„AE– :=
1

|Dtest|

Ttestÿ

t=Ttrain+1

Ó
‰VaR–,t < Y

(1)
t

Ô
, (8.4)

for all levels – œ {0.01, 0.05, 0.1}, where | · | is the cardinality function and Y
(1)

t
is the log-return time

series of the Apple Inc. stock.

This process is then repeated for the scenario where the remaining stock prices are utilized as predictive
variables. Additionally, we consider a scenario where we combine the remaining stock prices with the five
Fama and French factors in order to predict the conditional value at risk at levels – œ {0.01, 0.05, 0.1}.

8.1 Results for Fama and French setting

We begin by presenting the model performances for the scenario where we use the five Fama and French
factors as the predictive variables. The training and test set is given by:

D
u

train :=

Ó
(u

(1)
t

, u
FF
t≠1) œ R ◊ R5|t = 1, . . . , Ttrain

Ô
, (8.5)

D
u

test :=

Ó
(u

(1)
t

, u
FF
t≠1) œ R ◊ R5|t = Ttrain + 1, . . . , Ttest

Ô
, (8.6)
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where u
FF
t =

1
u

(1),FF
t

, . . . , u
(5),FF
t

2
for t = 1, . . . , Ttrain, . . . , Ttest. As indicated in Table 8.1, the estimated

conditional Value at Risk ‰VaR– for the financial- and corona crisis is surpassed more frequently than
expected for all levels – œ {0.01, 0.05, 0.1}. This can be attributed to the absence of crisis periods in
the training data. We observe that the D-vinereg and cQRNN models are a more conservative and
better prediction of the conditional Value at Risk for both crises scenarios, since the average number of
exceedances is closest to the levels – œ {0.01, 0.05, 0.1}.

Financial crisis Corona crisis
„AE0.01 „AE0.05 „AE0.1 „AE0.01 „AE0.05 „AE0.1

D-vinereg 0.0049 0.0788 0.1478 0.0287 0.0688 0.1261

cQRNN 0.0148 0.0739 0.1626 0.0315 0.0630 0.1203

QRNN 0.0148 0.0887 0.1921 0.0401 0.0688 0.1347

Post financial crisis Post corona crisis
„AE0.01 „AE0.05 „AE0.1 „AE0.01 „AE0.05 „AE0.1

D-vinereg 0.0050 0.0201 0.0704 0.0080 0.0600 0.1800

cQRNN 0.0050 0.0302 0.0704 0.0080 0.0400 0.1080

QRNN 0.0000 0.0402 0.0804 0.0080 0.0520 0.1720

Table 8.1 „AE– results for Financial crisis, Corona crisis, Post financial crisis, and Post corona crisis

In the post-crisis scenarios, the conditional value at risk estimations demonstrate greater accuracy,
often resulting in risk overestimation since the models were trained with training data consisting of crisis
observations. In this context, risk overestimation means that the average occurrences of conditional value
at risk exceedances „AE– are below the specified levels – œ {0.01, 0.05, 0.1}. Notably, in the post-financial
crisis scenario, the QRNN model’s estimation of the ‰VaR0.01,t does not get exceeded by the log-return
time series Y

(1)
t

during the testing period t = Ttrain + 1, . . . , Ttest. Additionally, across all models in
the post-financial crisis scenario, the average occurrences of conditional value at risk exceedances are
below the specified levels – œ {0.01, 0.05, 0.1}. Similar trends are observed in the post-corona crisis
scenario. However, all models QRNN and cQRNN and D-vinereg appear to overestimate the risk at levels
– = 0.01. For the levels – œ {0.05, 0.1} the models give a more accurate estimation of ‰VaR–,t for the
related levels. For the crisis scenarios, the models D-vinereg and cQRNN outperform the QRNN model in
terms estimating the conditional ‰VaR–,t for all – œ {0.01, 0.05, 0.1}. A visualization of the model estimates
of ‰VaR–,t for – œ {0.01, 0.05, 0.1} can be seen in Figure 8.3 (post financial crisis), Figure 8.4 (post corona
crisis), Figure 8.1 (financial crisis) and Figure 8.2 (corona crisis). Surprisingly, the QRNN model results
exhibit no quantile crossings for all scenarios and levels – œ {0.01, 0.05, 0.1}.
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Figure 8.1 vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the financial crisis scenario.



65

Figure 8.2 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the corona crisis scenario.
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Figure 8.3 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the post financial crisis scenario.
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Figure 8.4 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the post corona crisis scenario.
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8.2 Stock prices as predictive variables

Next, we utilize the transformed copula data time series related to the seven stocks as the predicting
variables in order to estimate the conditional value at risk. Following this approach, the training and test
data set are given as :

D
u

train :=

Ó
(u

(1)
t

, ut≠1) œ R ◊ R5|t = 1, . . . , Ttrain

Ô
, (8.7)

D
u

test :=

Ó
(u

(1)
t

, ut≠1) œ R ◊ R5|t = Ttrain, . . . , Ttest

Ô
, (8.8)

where ut≠1 :=

1
u

(2)
t≠1, . . . , u

(8)
t≠1

2
for t = 1, . . . , Ttest. Note that we again take the shifted time series of the

transformed log returns u
1
t , a = 2, . . . , 8 since the returns are only known retrospectively.

Financial crisis Corona crisis
„AE0.01 „AE0.05 „AE0.1 „AE0.01 „AE0.05 „AE0.1

D-vinereg 0.0099 0.0591 0.1576 0.0201 0.0688 0.1089

cQRNN 0.0197 0.0640 0.1527 0.0229 0.0573 0.0888

QRNN 0.0148 0.1232 0.2365 0.0201 0.0659 0.1003

Post financial crisis Post corona crisis
„AE0.01 „AE0.05 „AE0.1 „AE0.01 „AE0.05 „AE0.1

D-vinereg 0.0101 0.0251 0.0653 0.0160 0.0760 0.1840

cQRNN 0.0000 0.0352 0.0704 0.0040 0.0560 0.1800

QRNN 0.0050 0.0402 0.0804 0.0080 0.0600 0.1800
Table 8.2 „AE– results for Financial crisis, Corona crisis, Post financial crisis, and Post corona crisis, where post
stock prices of the remaining seven stocks are used as predictive variables.

We observe a performance improvement of all models during the financial- and corona crisis scenar-
ios compared to the Fama and French five-factor model. However, in the post crisis scenarios, models
that use stock prices as predictive variables perform worse on average with respect to the average number
of exceedances „AE– compared to models that use the Fama and French factors. Similar to the results
in the Fama and French setting, the cQRNN model’s estimation of ‰VaR0.01,t is not exceeded by the log-
return time series Y

(1)
t

during the testing period t = Ttrain+1, . . . , Ttest in the post-financial crisis scenario.
Based on our results for „AE– with – œ {0.01, 0.05, 0.1} and using stocks as the predicting variables, we
recommend using the D-vinereg model for crisis scenarios and the QRNN approach for post-crisis sce-
narios. A visualization of the model estimates of ‰VaR–,t for – œ {0.01, 0.05, 0.1} can be seen in Figure 8.5
(financial crisis), Figure 8.6 (corona crisis), Figure 8.7 (post financial crisis) and Figure 8.8 (post corona
crisis). We add that the QRNN model results show zero quantile crossings for all scenarios and levels
– œ {0.01, 0.05, 0.1}.
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Figure 8.5 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the financial crisis scenario with historical stock prices as predictors.
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Figure 8.6 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the corona crisis scenario with historical stock prices as predictors.
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Figure 8.7 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the post financial crisis scenario with historical stock prices as predictors.
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Figure 8.8 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the post corona crisis scenario with historical stock prices as predictors.
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8.3 Stock prices and Fama and French factors as predictive variables

Furthermore, to improve our estimates of the conditional value at risk estimates across all scenarios and
levels, we incorporate the transformed copula data time series related to the stocks into the predicting
variables, resulting in the following training and test set:

D
u

train :=

Ó
(u

(1)
t

, ut≠1) œ R ◊ R5|t = 1, . . . , Ttrain

Ô
, (8.9)

D
u

test :=

Ó
(u

(1)
t

, ut≠1) œ R ◊ R5|t = Ttrain, . . . , Ttest

Ô
, (8.10)

where ut≠1 :=

1
u

(2)
t≠1, . . . , u

(8)
t≠1, u

(1),FF
t≠1 , . . . , u

(5),FF
t≠1

2
for t = 1, . . . , Ttest. Note that we also take the shifted

time series of the transformed log returns u
a
t , a = 2, . . . , 8 since the returns are only known retrospectively.

Financial crisis scenario Corona crisis scenario
„AE0.01 „AE0.05 „AE0.1 „AE0.01 „AE0.05 „AE0.1

D-vinereg 0.0246 0.0690 0.1478 0.0287 0.0716 0.1232

cQRNN 0.0296 0.0443 0.1478 0.0287 0.0774 0.1547

QRNN 0.0197 0.1379 0.1773 0.0287 0.0659 0.1289

Post financial crisis scenario Post corona crisis
„AE0.01 „AE0.05 „AE0.1 „AE0.01 „AE0.05 „AE0.1

D-vinereg 0.0050 0.0352 0.0754 0.0080 0.0720 0.1920

cQRNN 0.0000 0.0553 0.0754 0.0040 0.0680 0.1480

QRNN 0.0050 0.0402 0.0804 0.0160 0.0760 0.1960

Table 8.3 „AE– results for Financial crisis scenario, Corona crisis scenario, Post financial crisis scenario, and Post
corona crisis

Overall, including the transformed stock prices of the assets as predicting variables does not enhance
the models performance with regard to the average number of exceedances „AE– for all levels – œ
{0.01, 0.05, 0.1} (see Table 8.3). Again the results are visualized and can be seen in Figure 8.9 (finan-
cial crisis), Figure 8.10 (corona crisis), Figure 8.11 (post financial crisis) and Figure 8.12 (post corona
crisis). We note that the QRNN model results show zero quantile crossings for all scenarios and levels
– œ {0.01, 0.05, 0.1}.

8.3.1 Real data example results

In summary, using the five Fama and French factors as predictive variables for the models D-vinereg,
QRNN, and cQRNN is more effective for post-crisis scenarios (see Table 8.1). For crisis scenarios, utilizing
stock prices as predictive variables is a better approach for estimating the conditional Value at Risk (see
Table 8.2). This is because stock prices are highly correlated during turbulent times, as Tabash et al. (2024)
notes, with stocks often driven by broad events like financial or corona crises. It is important to consider
which stock prices are used as predictive variables, as some sectors may not be equally impacted by crisis
events. Combining the five Fama and French factors with past stock prices does not improve the model
performance with respect to the average number of exceedances (see Table 8.3).
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Figure 8.9 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the financial crisis scenario with including historical stock prices as predictors.
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Figure 8.10 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the corona crisis scenario with including historical stock prices as predictors.
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Figure 8.11 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the post financial crisis scenario with including historical stock prices as predictors.
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Figure 8.12 D-vinereg, cQRNN and QRNN model estimates of the conditional Value at Risk at levels – œ
{0.01, 0.05, 0.1} for the post corona crisis scenario with including historical stock prices as predictors.
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9 Conclusion and outlook

We studied and introduced new approaches to estimate the conditional quantile of a response variable
given a set of predictive variables. The cQRNN shows good performance in both the simulation and real
world example while it excludes the existence of quantile crossing.

Moreover, we modified the approach of Tagasovska, Ozdemir, and Brando (2023) regarding the uncer-
tainty analysis of neural networks in a regression setting. Note that this approach is faster due to the
nature of the forward algorithm of the sparse D-vine quantile regression. The fitting of the prediction
interval, however, is only possible for classical feed forward neural network architectures as we have intro-
duced them in Definition (3.2.1). The developed algorithm can be applied to models such as the QRNN
(see Section 5) and redQRNN (see Section 5.2) to obtain prediction intervals for the estimated quantiles.
For the cQRNN model, which is an accumulation of quasi-quantile neural networks (see Section 5.1),
the algorithm for obtaining prediction intervals is not applicable due to the different structure of the network
compared to standard quantile regression neural networks. Further work could be done to adapt the ap-
proach proposed by Tagasovska, Ozdemir, and Brando (2023) such that the algorithm can be applied for
cumulative neural networks, and thereby extending its applicability to the cQRNN model. This could be
achieved by fitting a prediction interval with retraining (see Section 5.3 for the procedure) to each quasi-
quantile regression neural network within the cQRNN. The resulting prediction intervals can then be
added up to obtain a simultaneous prediction interval, similar to the simultaneous prediction interval (5.22).

In the simulation study (Section 6), it became evident that in scenarios featuring a large number of in-
put variables, the neural network models QRNN, redQRNN, and cQRNN significantly outperform both
D-vine quantile regression and sparse D-vine quantile regression in terms of computational time. Re-
markably, despite the shorter computational times, these neural network models exhibit comparable or
even better accuracy compared to the quantile regression models based on D-vine copulas. We observed
that the QRNN and redQRNN approaches exhibit quantile crossings in approximately 10%-15% of the es-
timated conditional quantiles in the test set. Therefore, we prefer the cQRNN model which eliminates the
phenomenon of quantile crossings per definition. The short computing time of the quantile neural network
approaches gives rise to the idea of utilizing a version of the QRNN or cQRNN model as a benchmark
model for the forward algorithm of the D-vine quantile regression and therefore truncate the resulting
D-vine after a certain accuracy threshold is reached. This is only an idea and needs further investigation
and theory.

Another intriguing idea of combining vine copula theory with neural network theory involves utilizing the
fitted copula as a synthetic data generator.The basic idea of using vine copulas as a generator of synthetic
data for classification was already studied in the master’s thesis of Griesbauer (2022), as well as in the
paper by Tagasovska, Ackerer, and Vatter (2019), where the generating property of copulas was used in
the context of autoencoders. In our setting, the fitted D-vine copula could be used to generate synthetic
data in a real world problem in order to improve the accuracy of the various quantile regression neural
network models QRNN, cQRNN and redQRNN.

Following the example we presented in Section 4.3, one can further investigate the approximation of D-
vine copulas using neural networks. Approaches proposed by Sun, Cuesta-Infante, and Veeramachaneni
(2018) and Zeng and Wang (2022) have shown promising initial results. However, the resulting structures
of both approaches do not necessarily guarantee a vine structure with the properties studied in Section
4.2.
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Glossary

K a,L

(d,k1,...,kH ,s)
Set of neural networks with input dimension d, output dimension s and H hidden layers where kh is
the number of neurons in the h-th hidden layer, h = 1, . . . , H . The neural networks are equiped with
an activation function a : R æ R for each hidden layer and a loss function L : R ◊ R æ R. . 12, 80

K(d,k1,...,kH ,s)

Abbreviation of K a,L

(d,k1,...,kH ,s). If it is not stated otherwise we use the sigmoid function as the activa-
tion function and the L

2 loss as the loss function. . 12, 80

�
◊,a,L

(d,k1,...,kH ,s)
Neural network with paramtervector ◊, input dimension d, output dimension s and H hidden layers
where kh is the number of neurons in the h-th hidden layer, h = 1, . . . , H . The neural network is
equiped with an activation function a : R æ R for each hidden layer and a loss function L : R◊R æ
R . 12, 80

�

Abbreviation of �
◊,a,L

(d,k1,...,kH ,s). If it is not stated otherwise we use the sigmoid function as the activa-
tion function and the L

2-loss as the loss function and omit the parameters a, L. To furhter shorten
the notation we often omit the parameter vector ◊, and the vector (d, k1, . . . , kH , s). We indicate the
dimensions of the neural net by � œ K a,L

(d,k1,...,kH ,s). 12, 80

�
◊,a,fl–

(d,k1,...,kH ,K)
Quantile regression neural network with parameter vector ◊, estimating quantiles at the levels spec-
ified by – œ (0, 1)

K , K œ N. The network has input dimension d, output dimension |–| = K, where
|·| is the cardinality function. The neural network is equiped with an activation function a : R æ R and
posesses H hidden layers where kh is the number of neurons in the h-th hidden layer, h = 1, . . . , H .
The loss function is the pinball loss fl– . 80

�
fl–

Abbreviation of �
◊,a,fl–

(d,k1,...,kH ,K).To simplify the notation, we exclude the parameter vector ◊ and vector
(d, k1, . . . , kH , K). We also assume that the activation function is the sigmoid function, unless stated
otherwise, resulting in the shortened notation �–. The dimensions of the quantile regression neural
network are indicated with the set, �

– œ K a,fl–

(d,k1,...,kH ,K) . 80

�
◊,a,fl–,red

(k,k1,...,kL,K)
Quantile regression neural network with reduced input dimension 1 Æ k Æ d. The reduction is
done by the forward selection algorithm which constructs a D-vine using the conditional log liklihood
maximising covariate sequence and possibly obmits covariates. We use the short notation �

fl–,red.
80
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A Appendix

(a) Scenario D3

(b) Scenario NH4
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(c) Scenario LH4

Figure A.1 Boxplots of [MPLm,–, – œ {0.05, 0.5, 0.95} for scenario D3, NH4 and LH4 with small sample training data
size ntrain = 400 and m œ {D-vinereg, QRNN, cQRNN }.
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(a) Scenario D6

(b) Scenario G20

Figure A.2 Boxplots of [MPL–, – œ {0.01, 0.05, 0.5, 0.95} for scenarios D6 and G20 with small dimensional training
data ntrain = 400.
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