
Quantum Informed Optimization
Algorithms

Aron Kerschbaumer





Quantum Informed Optimization
Algorithms

Aron Kerschbaumer

Master’s Thesis in Theoretical and Mathematical Physics
Department of Informatics

Technische Universität München

Author: Aron Kerschbaumer
Supervisor: Prof. Dr. Christian Mendl
Advisor: Jernej Rudi Finžgar
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Summary

Quantum optimization is a promising field for practical quantum computing. Still,
limitations in current quantum devices, such as the limited number of qubits and noise,
restrict the applicability of these algorithms. This has led to considerable efforts in
developing quantum optimization algorithms, which are feasible for noisy intermediate-
scale quantum (NISQ) devices. One promising candidate for solving combinatorial op-
timization problems is the Quantum Approximate Optimization Algorithm (QAOA).
Recently, several limitations of this algorithm have been identified. This work fo-
cuses on addressing these limitations, developing NISQ-feasible algorithm modifica-
tions to improve its performance, and developing novel approaches, such as using low-
energy quantum states to inform classical algorithms. Drawing on the principles of
the Recursive-QAOA, new iterative quantum-classical optimization techniques were
developed. These methods were specifically developed for the Max-2-SAT problem, re-
sulting in a new hybrid quantum-classical algorithm called Quantum Informed Branch
and Bound Algorithm. However, many components of the algorithm are applicable to a
wide range of combinatorial optimization problems and may serve as a blueprint for the
development of related problem-tailored algorithms. Furthermore, another algorithm
that utilizes QAOA to calculate correlations between variables and inform a classical
cluster algorithm was developed. This so-called QAOA Informed Cluster Algorithm is
used to calculate the ground state of Ising-like spin glasses. The techniques developed
in this thesis can be extended beyond QAOA - other quantum protocols which prepare
low-energy states could be used in a similar manner to inform classical subroutines.
However, the utilization of low-depth QAOA for the proposed algorithms enables ef-
ficient classical simulations. As a result, numerical simulations in this thesis could be
performed on problem instances exhibiting hundreds of variables, showcasing compa-
rable performance between the developed hybrid algorithms and traditional classical
solvers. The findings presented in this thesis are believed to be useful in a broader
context of developing new heuristic quantum optimization algorithms for near-term
devices.
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Chapter 1

Theory

1.1 Combinatorial Optimization Problems

In general terms, optimization is concerned with finding a solution to a problem con-
sidered ”optimal” according to a certain metric. Combinatorial optimization is re-
stricted to finding optimal solutions in a finite solution space with discrete decision
variables. Combinatorial optimization plays an important role in various domains,
ranging from science to numerous real-world applications. Solving combinatorial opti-
mization problems efficiently has profound implications for cost-reduction in processes,
decision-making, and optimization of resources.

This thesis will deal solely with combinatorial problems defined on an n-bit binary
string z = z1z2...zn with a cost function

C : {0, 1}n −→ R. (1.1)

Many combinatorial optimization problems can be efficiently encoded in this form. De-
pending on the optimization problem, the goal is to find a bitstring that maximizes
or minimizes this cost function. For maximization, the problem can be defined as
finding the bitstring z∗ that satisfies z∗ = argmaxz C(z). An important metric to eval-
uate the quality of a solution z in this context is the approximation ratio, defined as
η = C(z)/C(z∗). Despite the typically simple formulation of combinatorial optimiza-
tion problems, dealing with large problem sizes usually poses severe challenges. One
key characteristic of these problems is the exponentially large solution space, which
contributes to the inherent difficulty of these problems. Despite decades of research, ef-
ficient classical optimization algorithms often remain elusive. Quantum computing has
gained significant attention as a promising approach to solving these complex optimiza-
tion problems, which are deemed to be hard to solve for classical algorithms. However,
there is still uncertainty if any meaningful quantum advantage can be established over
their classical counterparts. It is, therefore, a vibrant field of research. In the following,
a few well-known combinatorial optimization problems, which will reappear throughout
this thesis in various contexts, will be introduced.
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1.1.1 Ising-like Spin Glasses

Spin glasses are a critical domain in statistical and condensed matter physics which
concerns disordered magnetic systems. Ising-like spin glasses, which have important
connections to combinatorial optimization problems, are of particular interest for this
thesis. In general, an Ising spin glass consists of a system with n spins σi ∈ {−1,+1}
and coupling constants Jij ∈ R, for i, j ∈ [n]. A system is defined via its Hamiltonian,
which has the following form for a configuration σ = (σ1, σ2, ..., σn):

H(σ) =
n∑

m=1

∑
i1,i2,...,im

Ji1,i2,...,imσ1σ2...σm. (1.2)

Of special interest in this work are Ising Hamiltonians with interactions of maximal
order 2 which have the following form:

H(σ) =
∑
i

hiσi +
∑
ij

Jijσiσj. (1.3)

By relating the binary variables of optimization problems to spins and the constraints
to interactions of the Hamiltonian, a correspondence can be established with a wide
range of combinatorial optimization problems, including Max-2-SAT, Max-Cut, and
the Maximum Independent Set problem.

Moreover, these types of Ising Hamiltonians can be linked to an interaction graph
illustrated in Fig. 1.1. A graph (more precisely, an undirected graph) is defined as an
ordered pair G = (V,E), where V represents a set of vertices (also referred to as nodes)
and E ⊆ {{i, j}|i, j ∈ V } is the set of edges. In the following, some terminology will be
introduced that will be used throughout this thesis: The degree of a vertex i is defined
as the number of edges that are connected to it. A bounded degree graph subsequently
is a graph for which the degree of any vertex in the graph can be bounded by some
fixed constant natural number. In a regular graph, each vertex has the same degree k,
where k ∈ [|V | − 1]. A complete graph is a regular graph with k = |V | − 1. A path is a
sequence of distinct edges ek, where two consecutive edges share a joint vertex i. The
distance dist(i, j) between two nodes i, j of a graph corresponds to the minimal number
of edges needed to connect the two nodes via a path. A loop is a path that connects
a node in the graph with itself. A graph without loops is called a tree. A further very
important concept in this thesis is random graphs. A random graph is characterized
by the fact that its properties (like the number of vertices and edges) follow a certain
probability distribution.
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Figure 1.1: Example of a graph. Nodes with their corresponding indices are represented as
dark circles. Edges are represented lines connecting these nodes.

1.1.2 The SAT Problem and its Descendents

The satisfiability problem (SAT) is one of the most studied combinatorial optimization
problems and was the first problem proven to be NP-complete [19]. Given a propo-
sitional logic formula over n variables, the SAT problem examines whether or not an
assignment to the boolean variables exists, which satisfies the formula ϕ. The variables
xi in the formula can take the value 0 (false) or 1 (true). A literal li is either the vari-
able xi (positive polarity) or the corresponding negation x̄i (negative polarity). Writing
the formula in conjunctive normal form, one can define the K-SAT problem, which is
a SAT problem with K variables per clause. The Max-K-SAT problem asks for the
maximal number of satisfiable clauses in an K-SAT formula. A K-clause is of the form

ci =
K∨
j=1

lij , (1.4)

where the index j represents the position inside the clause. If m is the number of
clauses in a SAT formula, the clause to variable ratio α is defined as:

α = m/n (1.5)

and the approximation ratio η of an assignment is defined as the ratio of satisfied
clauses to the maximum number of satisfiable clauses. Eventually, a SAT formula can
be written in the following form:

ϕ =
m∧
i=1

ci. (1.6)
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For many algorithms, it is useful or even necessary to encode SAT or Max-SAT problems
in terms of a cost Hamiltonian. Finding an assignment to a formula which corresponds
to the maximal number of satisfied clauses then corresponds to finding a ground state
of the Hamiltonian:

H(ϕ) =
m∑
i=1

1

2Ki

Ki∏
j=1

(1− lij). (1.7)

This expression can be evaluated for a certain assignment of variables when inserting
the value of the variable xij into lij and 1− xij if the literal has negative polarity. An
assignment with no violated clauses corresponds to a ground state of the Hamiltonian in
Eq. (1.8) with zero energy. Therefore, the SAT problem in the Hamiltonian formulation
is reduced to the question of the existence of a ground state with zero or higher energy.

Another variation of the satisfiability problem is the so-called weighted Max-SAT prob-
lem. A real number, which is called weight, is assigned to each of the clauses. Then,
an objective function, which is simply the sum of the weights of all satisfied clauses, is
defined. The goal is to find an assignment that maximizes this objective function. The
Hamiltonian can easily be rewritten as

H(ϕ) =
m∑
i=1

wi
1

2Ki

Ki∏
j=1

(1− lij), (1.8)

where the wi is the weight of the corresponding clause.

Formally one can assign the weight of certain clauses to∞. The problem then refers to
partial weighted Max-SAT. The clauses with weight ∞ resemble hard constraints. A
valid solution must satisfy all hard constraints and should be optimized according to the
soft constraints (clauses with finite weight). This problem class is very interesting for
real-world problems since, in reality, one is often only interested in particular solutions
and many assignments might not make sense in a real-world setting.

Another important problem class, that will reappear in many of the numerical stud-
ies in this thesis, is the Random-Max-K-SAT problem. In this case, each variable
that appears in the SAT formula is drawn with uniform probability and negated with
probability 1/2.

A quick note on the computational complexity of the different satisfiability problems
in regard to Sec. 1.2.1. The 2-SAT problem is solvable in linear time [5], whereas
k-SAT for k ≥ 3 is NP-complete [31]. The other mentioned problems (also Max-2-
SAT) are all NP-Hard (non-decision version). The decision version of MAX-Sat is also
NP-Complete [31, 35].
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1.1.3 Max-Cut and Maximum Independent Set Problem

We will not tackle the Max-Cut or Maximum Independent Set with our developed algo-
rithms. However they will appear in certain references throughout the paper, therefore
we want quickly mention them. Both of them can be natively defined on a graph like
in 1.1. For a given graph the Max-Cut problem is concerned with finding a partition
of the nodes into two sets such that the number of edges between the nodes of these
two sets is maximal.
An independent set is a set of nodes such that no two nodes of this set are adjacent.
The Maximum Independent Set problem aims to find the largest possible independent
set in a given graph.
Both problems can be formulated as finding the ground state of a Hamiltonian of the
form denoted in (1.10). Whereas the Max-Cut Hamiltonian exhibits no one-point cor-
relations and therefore has a Z2-symmetry.

1.2 Computational Complexity and Algorithmic Hardness

The following chapter contains many parts from [29] in a summarized form, especially
Sec. 1.2.3 relies solely on this paper. Put simply, an important goal of combinatorial
optimization is to develop algorithms that are able to solve certain problems in a time
and resource-efficient way. Depending on the type of the problem and the requirements
for the solution, the question of how to measure the hardness of optimization problems
emerges. In the following, different approaches in this context are being discussed.
First, we will informally introduce a few important classical and quantum complex-
ity classes which will appear throughout the thesis. Subsequently, modern approaches
focused on problems with random input (classes of optimization problems where the
instances for a particular problem class are drawn according to some probability dis-
tribution, e.g. random Max-SAT) are discussed. A new approach to classifying these
problems depending on the topological structure of the solution space was developed
by David Gamarnik and was dubbed ”Overlap Gap Property” (OGP). It has recently
been shown that OGP is not only a useful property to examine the algorithmic hard-
ness of classical optimization algorithms, but was also used to identify shortcomings of
quantum optimization algorithms [24]. The importance of this framework in connection
to quantum algorithms will be presented in Sec. 1.4.

1.2.1 Classical Complexity Theory

The resource we are focusing on in designing combinatorial optimization algorithms is
the running time [20]. One can define the different complexity classes in terms of a
Turing machine, but for this thesis the complexity is defined more informally as the
number of basic operations (defined via fundamental logical gates) acting on a n-bit
binary string (input). The scaling behaviour of the running time will then be stated
dependent on the number of input variables. Furthermore, when talking about decision
problems, we will refer to computational problems which are defined on a n-bit binary
string and can be posed as a yes or no question (0 or 1). This said a few complexity
classes which will be used throughout the thesis are introduced in the following:
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• Polynomial time: The set of decision problems, which can be solved in polynomial
running time.

• Exponential time: The set of decision problems, which can be solved in exponen-
tial running time.

• NP (nondeterministic polynomial time): The set of decision problems, in which
the correctness of a solution to the problem can be verified in polynomial time.

• NP-hard (non-deterministic polynomial-time hardness): Put simply, the set of
computational problems which are at least as hard as NP problems in NP, in
terms of their running time. This means that a problem in NP can be reduced to
a problem in NP-hard in polynomial time.

• Bounded error probabilistic problems: The set of decision problems, in which a
solution can be found in polynomial time with probability p > 2/3. Through
repeated execution of the algorithm, the probability can be increased to be close
to one.

From this point on, algorithms that have a polynomial running time will also be referred
to as fast algorithms and algorithms that have an exponential running time will be
referred to as slow algorithms. It is widely accepted that no fast algorithms exist for a
wide range of NP problems. Therefore, considerable efforts are being made to develop
polynomial time heuristic algorithms (algorithms that have no guarantee of finding the
optimal solution) for these difficult problems.

1.2.2 Quantum Complexity Theory

In essence, to achieve universal quantum computing capabilities, we should be able to
perform arbitrary unitary operations on our qubits. Fortunately, any unitary operation
U can be broken down into a sequence of gates from a small, fundamental set of gates
known as the universal set of gates. Analogous to classical complexity theory, one
measures how many basic operations with respect to some fundamental set of gates
(consists normally of one- and two-qubit unitary gates) are applied [63]. This will be
the quantity of interest for our quantum algorithms to establish a reasonable comparison
in terms of running time between classical algorithms and quantum algorithms. We
are not really concerned with the different quantum complexity classes since we solely
rely on heuristic quantum algorithms in this thesis but for reasons of completeness a
few important ones are mentioned here:

• Bounded error quantum polynomial time (BQP): The set of decision problems, in
which the solution can be found in polynomial time on a quantum computer with
probability p > 2/3. This can be seen as the counterpart to the classical BPP
problems.

• BQP-hard: The set of problems to which any BQP problem can be reduced in
polynomial time.
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• BQP-complete: The set of problems that are BQP-hard, but are also in BQP.

It is widely believed that there are no fast quantum algorithms that can solve NP-
complete problems. Nevertheless, there are quantum algorithms for which - on certain
problems - a better scaling behavior in terms of computational complexity was proven
when compared to the best-known classical algorithms [61, 34]. However, this thesis
solely deals with heuristic quantum algorithms.

1.2.3 Algorithmic Hardness - An Alternative Approach

Topological Phenomena in the Solution Space

The classical P-NP complexity classes only convey the worst-case performance of find-
ing the optimal solution to a certain problem. For an NP-hard problem, we know that
(under reasonable assumptions) we will not find a classical polynomial algorithm that
finds the optimal solution for all instances. However, it is worth considering whether
there exist other frameworks better suited to tackle specific questions regarding al-
gorithmic complexity. For example, there are optimization problems for which fast
algorithms may be able to achieve a certain approximation ratio but seem unable to
improve on these ratios. When do random optimization problems which depend on
certain parameters become hard to solve on average?

An important strategy for addressing the described problems is based on the idea of
investigating the solution space geometry of optimization problems. This approach,
initially inspired by research in statistical physics, is nowadays widely used in various
areas beyond statistical physics. The basic idea is that the computational complexity of
a problem should be reflected in the intricate geometry of the solution space. One of the
earliest problems which were investigated by this approach was K-SAT. It connects the
algorithmic hardness with the closeness to the satisfiability phase transition threshold.
[43, 51]. In the following, we quickly summarize the discussion about the algorithmic
hardness of the random K-SAT problem in [29]. Despite the fact that we will not
deal with this problem specifically (but with random Max-2-SAT), it will provide a
good intuition of how the solution space geometry of many optimization problems in
difficult regimes may look like. This knowledge greatly inspired us in the design of our
two non-local hybrid quantum-classical algorithms, especially the Quantum Informed
Cluster Algorithm, introduced in Sec. 2.3.

It is believed that for all K, there exists a critical clause to variable ratio αSAT. In the
thermodynamic limit (number of variables n→∞) there is a phase transition, such that
random formulas with clause-to-variable-ratios below this critical value are satisfiable,
while there exists no satisfying assignment beyond this value with high probability [27].
Algorithms seem to stall at a critical value αALG < αSAT [18]. Work on replica symmetry
methods has helped determine the values of αSAT for different K [55, 46]. For example
for Max-2-SAT αSAT = 1 [8]. Approaches that focus on the solution space geometry of
the problem seem to be helpful descriptions for algorithmic hardness. This includes the
so-called weak clustering property which appears at αClust. Especially for large K this
value is in the vicinity of αALG. Hence it was suggested that this property is intertwined
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with the algorithmic hardness of Random-K-SAT [2, 49]. The weak clustering property
manifests itself in the following way: One assumes that all but exponentially few (in
terms of the total number of variables n) satisfying assignments can be partitioned into
subsets, so-called clusters. In these clusters, satisfying assignments exist at a distance
of at most O(1) to each other. The subsets are separated by a distance of O(n). In this
context we always understand distance in terms of Hamming distance. If all satisfying
assignments can be assigned to different clusters one speaks of the strong clustering
property. This property occurs for large K. Another topological barrier that was later
introduced is the so-called condensation phase [44], for which transition is believed to
happen at αALG < αCOND < αSAT for large K. In the condensation phase, the number
of solution clusters that cover the majority of the satisfying assignments reduces from
an exponential number to just a constant number of clusters. Despite this reduction,
the largest cluster still encompasses a non-negligible fraction of all possible assignments
for clause-to-variable ratios before αCOND. In Fig. 1.2 the different phase transitions and
their manifestation in the solution space, depending on the clause-to-variable ratio, can
be seen. Frozen variables are another interesting feature of the solution space which
emerges for α before reaching αCOND in non-vanishing fractions in each cluster, for
large K. It has also been theorized that the appearance of frozen variables may be the
reason for algorithmic hardness [47]. However, this framework also has shortcomings
in describing the algorithmic hardness, for example in the case when K is large.

Figure 1.2: Visualization of the solution space geometry of the SAT problem dependent on
the clause to variable ratio α. Blue circles illustrate satisfying solution clusters. Grey areas
are satisfying assignment, not contained in the clusters. Taken from [29].

The Overlap Gap Property

Recently, a new approach for evaluating the algorithmic hardness of optimization prob-
lems named the ”Overlap Gap Property” (OGP) has been developed. [30, 2, 49]. In
the following, we will stick close to the notation and findings of [29]. OGP shares pro-
found similarities with the clustering property, as both are based on the geometry of
the solution space. Let us define an optimization problem over n variables, with σ an
element in the discrete solution space Σn. A single instance is drawn from some random
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structure Ξn (for example a random graph) and is denoted as ξ. Then one can define
the optimization problem as minσ L(σ,Ξn). Subsequently, a metric ρ(σ, τ) is defined
which measures the distance (in our case Hamming distance) between two solutions σ
and τ . Using this notation the OGP is defined as follows: The optimization problem
minσ L(σ,Ξn) exhibits the Overlap Gap Property with the values µ > 0, 0 ≤ ν1 < ν2,
if for two arbitrary solutions σ, τ which satisfy L(σ, ξ) ≤ c∗ + µ and L(τ, ξ) ≤ c∗ + µ
either ρn(σ, τ) ≤ ν1 or ρn(σ, τ) ≥ ν2, where c

∗ := minω L(ω, ξn) is the optimum. Intu-
itively, OGP tells us that two solutions which are close to optimality are either close
to each other or far apart from each other, with no nearly optimal solutions between
them. For problems with random structures (e.g. random graphs), one says that the
problem exhibits OGP if the drawn instance exhibits OGP with high probability. It
should be emphasized that OGP is always formulated for certain problem-dependent
parameters µ, ν1, ν2. It is evident that OGP presents challenges when attempting to
solve optimization problems. However, this is not only due to the existence of local
minima but also due to the specific geometric separation in the solution space (again
dependent on the parameters). The manifestation of the OGP in the landscape of the
objective function can be seen in 1.3.

Figure 1.3: The landscape of the objective function L(σ, ξ), which needs to be minimized in
the optimization problem, is depicted. Two near optimal solutions are either close (maximal
distance ν1) or far part from each other (minimal distance ν2). Taken from [29].
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Implications of topological barriers on Algorithms

Algorithms have been specially developed in order to overcome the challenges posed
due to the emergence of the discussed topological phenomena in the solutions space.
One famous example is the survey propagation algorithm [10]. It is an algorithm con-
structed to solve the random satisfiability problem, with attention to the emergence of
clusters. The algorithm iteratively consists of two parts. First, it passes messages which
can be thought of as surveys of clusters, while the second part uses the knowledge of
these surveys to simplify the problem. The algorithm demonstrates outstanding per-
formance in the clustering phase. Another recently introduced algorithm, which deals
with complex energy functions of combinatorial optimization problems (explicitly, the
emergence of frozen variables) is a quantum-inspired nonequilibrium Monte Carlo al-
gorithm [50]. This algorithm learns important geometrical features of the cost function
on a per-instance basis. This information is used to create spatially-inhomogeneous
thermal fluctuations, that are intended to unfreeze variables at different length scales.
The algorithm is applied to random K-SAT and Quadratic Assignment Problems and
outperforms state-of-the-art solvers for these problems.

Both of the aforementioned algorithms contain many interesting concepts that have the
potential to enhance other algorithms, preventing them from suffering critical slowing
down when dealing with complex energy landscapes. Especially the second algorithm
shares significant similarities with quantum algorithms. Such algorithms could be uti-
lized to inspire the creation of non-local subroutines for incorporation into quantum
algorithms. By doing so, some of the limitations faced by local quantum algorithms
could be overcome.

OGP is very helpful on the one hand many optimization problems exhibit this property,
like the Maximum Independent Set (MIS) problem, the Number Partitioning problem,
or finding the ground state of p-spin models. On the other hand, a large variety of local
algorithms (classical and quantum) can be ruled out due to the concrete predictions
of OGP. Again speaking very naively OGP can rule out many local algorithms be-
cause they have difficulties bridging the gap between clusters of near-optimal solutions.
The implication of OGP on the local quantum algorithm QAOA will be discussed in
Sec. 1.4.3.
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1.3 Classical Algorithms

In this section, several classical algorithms are presented which will continue to reappear
during the course of this work. The Branch and Bound solver and the well-known
simulated annealing method in particular will be very important. This is because
our newly developed quantum algorithms are inspired by these classical solvers and
incorporate similar methods and subroutines. Nevertheless, a few other algorithms
are explained. Either because they also seem to be well-suited to be incorporated
into a similar framework as our quantum-classical algorithms, or they may be used as
benchmarks or for purposes of illustration.

1.3.1 Max-SAT/Branch and Bound Solver

For many Max-SAT algorithms, there are extensions that are applicable to weighted
Max-SAT and sometimes also partial weighted Max-SAT. However, we will solely fo-
cus on the Max-SAT problems and make on rare occasions remarks if our developed
techniques could be straightforwardly extended. Max-SAT solvers can be broadly clas-
sified into two categories. The first category comprises complete/exact solvers that
offer optimal solutions. The second category encompasses approximation and heuristic
algorithms. Approximation algorithms yield near-optimal solutions and offer guaran-
tees about the solution’s optimality, while heuristic algorithms are typically faster but
do not provide such guarantees. Heuristic solvers are mostly based on local search algo-
rithms. Two prominent representatives are WalkSAT and GSAT. For Max-2-SAT (the
problem class we are mostly interested in) the algorithm with the best approximation
ratio guarantee was introduced by Goemans and Williamson [32] with an approxima-
tion ratio of 0.878 times the optimal value. For Max-SAT, it has been shown that under
the very believable assumption that P ̸= NP the best achievable approximation ratio
is 7/8 [42]. Complete Max-SAT solvers again can be roughly divided into branch and
bound (BnB) solvers [1], SAT-based algorithms [28] and integer linear programming
(ILP) algorithms [13]. From here on we will solely focus on the branch and bound
solver, since this concept will be essential for our quantum-classical algorithm. We
based our notation on the notation in Sec. 1.1.2 and made some slight changes. The
used notation is very commonly employed across the BnB solvers community. We de-
fine our formula with n variables and m clauses as ϕ = {c1, c2, ..., cm}. Each clause
is defined as set c = {l1, l2, ..., lK}. Furthermore, we define an Assignment A as a set
of literals. Each literal can only be contained once in the assignment. In the event
that variable xj is assigned a true (false) value then the variable xi (x̂i) is added to
the assignment. When values are assigned to certain variables, the SAT formula ϕ has
to be updated accordingly. Say x̂i (xi) is added to A, then all clauses in ϕ where x̂i
(xi) appears are removed and for all clauses in which the negation appears, only xi
(x̂i) is removed from the clause. If a clause becomes empty, it is kept in the formula.
The empty clauses are unsatisfied and our goal is to end up with an assignment which
produces the smallest possible number of empty clauses in our SAT formula. We denote
a formula ϕ that is updated according to some partial (or full) assignment as ϕA.
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Starting from an empty assignment A the branch and bound solver explores the whole
solution space through a combination of assignment extensions and backtracking proce-
dures. Unfavourable parts of the solution space are dismissed by a bounding function.
The workflow of a branch and bound solver can be visualized in a search tree, where the
nodes represent variables of the assignment and the edges their corresponding value.
Prior to having a look at the pseudocode of a typical BnB solver, it is necessary to
establish a few definitions:

• Inference rules: They are applied at each node and help extend the current partial
assignment by fixing the values of certain variables. Therefore, fewer parts of the
search tree have to be explored. Additionally, the chosen rules guarantee that
the optimal assignment of the current problem and the optimal assignment of the
simplified problem provide the same number of unsatisfied clauses.

• Branching: The branching step always happens subsequently to the application
of the inference rules. Typically, some heuristic is applied to choose the next
variable and the corresponding value to fix. Branching is crucial for reducing the
search space and achieving lower runtime by making informed decisions about the
variable assignments.

• Lower bound: The lower bound consists of the current number of empty clauses in
a partial assignment ϕA plus a lower bounded estimation of the minimal number of
clauses that have to become empty if the current partial assignment is completed.

• Upper bound: The number of unsatisfied clauses produced by the best assignment
found so far.

Inference rules, branching heuristic and the lower bound computation are applied re-
peatedly and have a big influence on the runtime of the algorithm.

In Alg. 1 the pseudocode of a typical branch and bound solver can be seen.
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Algorithm 1 Branch and Bound Solver

Input: formula ϕ with n,m, termination condition
Output optimal assignment Abest, UB

1: A← {}
2: ϕA ← ϕ ▷ initialize empty solution
3: UB ← m
4: continue = true
5: while search tree not fully explored do
6: ϕA, A← Inference(ϕA, A)
7: ϕA, A← Branch(ϕA, A)
8: LB ← LowerBound(ϕA)
9: if LB ≥ UB then ▷ Check if new solution is better

10: backtrack()
11: else if |A| == n then
12: UB ← LB
13: Abest ← A
14: backtrack()
15: else
16: continue
17: end if
18: end while

1.3.2 Metropolis Hastings and Simulated Annealing

The Metropolis-Hastings algorithm is a so-called Markov chain Monte Carlo (MCMC)
method [15]. These algorithms are designed to sample from a probability distribution
of interest p(x), where x is the state of the system. The Metropolis-Hastings algorithm
is defined by its transition probability Wxy from a state x to a state y which governs
the movement of the algorithm. In general, in order to design an MCMC algorithm,
that converges to a unique stationary distribution that coincides with the probability
distribution of interest it is sufficient that the algorithm exhibits two conditions:

• Ergodicity: Every state y can be reached by any state x in a finite number of
steps.

• Detailed balance: For every pair of states x and y the following relation holds:

Wxyp(x) = Wyxp(y). (1.9)

The Metropolis-Hastings algorithm fulfills both conditions and therefore is a suitable
algorithm to sample from a given probability distribution p(x). The probability distri-
bution p(x) in this chapter will always be considered to be the canonical probability
distribution. The following section will only discuss the simulation of Ising-like spin
systems defined via a problem Hamiltonian H as in Eq. 1.2. Nevertheless, a state of
spins will be denoted as x or y instead of σ. A pseudocode of the algorithm is shown
in Alg. 2.
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Algorithm 2 Metropolis Hastings Algorithm

Input: Hamiltonian H(.) with number of spins n, inv. temperature β
Output some quantity based on sampled states

1: Initialize random spin configuration x
2: i← Uniform(1, n) ▷ Choose a site with uniform probability (natural number)
3: x′ ← Flip(x, i) ▷ Flip spin at site i
4: ∆H = H(x′)−H(x)
5: if ∆H < 0 then Accept state
6: x← x′ ▷ Accept state if energetically favourable
7: else if Uniform(0, 1) < e−β∆E then
8: x← x′ ▷ Accept state with prob. e−β∆E

9: end if
10: Measure and go back to line 2 unless sampling should stop

Theoretically, if the Metropolis-Hastings algorithm is used to sample from very low
temperatures, one would get the ground state energy. However, in most scenarios,
this proves to be infeasible since the convergence time of the algorithm explodes. The
algorithm shows very little movement while simulating a low-temperature state. A
heuristic algorithm that is often better suited for this purpose is the so-called simulated
annealing [39, 62]. Here, similarly to the Metropolis-Hastings algorithm, an initial spin
configuration is created. Randomly chosen spins are then flipped according to the same
acceptance criteria used in the Metropolis-Hastings algorithm. However, simulated
annealing starts with a certain temperature and gradually reduces this temperature
after each update step. Consequently, as time progresses, the likelihood of accepting
states with higher energy decreases, leading to the expectation that the final state
at a low temperature will exhibit a lower energy level. Different annealing schedules
for the decreasing temperature can be chosen. In this thesis, only linear annealing is
taken into consideration. The simulations are set to start at an inverse temperature of
βi = 0 and end up with a final temperature of βf. Between these two values, the inverse
temperatures are evenly spaced over time. The number of iterations determines the
distance between two neighboring inverse temperatures. A pseudocode of this algorithm
is depicted in Alg. 3.



1.3 Classical Algorithms 15

Algorithm 3 Simulated Annealing (linear schedule)

Input: Hamiltonian H(.) with number of spins n, βf , number of iterations m
Output final state x, final energy E

1: β = 0
2: ∆β = βf/(m− 1)
3: Initialize random spin configuration x
4: E = H(x)
5: for step = 1 to m do
6: i← Uniform(1, n) ▷ Choose a site with uniform probability (natural number)
7: x′ ← Flip(x, i) ▷ Flip spin at site i
8: ∆H = H(x′)−H(x)
9: if ∆H < 0 then Accept state

10: x← x′ ▷ Accept state if energetically favourable
11: if H(x) < E then
12: E = H(x) ▷ Update best energy
13: end if
14: else if Uniform(0, 1) < e−β∆E then
15: x← x′ ▷ Accept state with prob. e−β∆E

16: end if
17: β = β +∆β ▷ Reduce temperature
18: end for

The performance of the algorithm is significantly influenced by the chosen annealing
schedule. If the temperature is reduced rapidly, there is an increased likelihood of the
algorithm becoming trapped in a local minimum.

1.3.3 Parallel Tempering

Parallel tempering is an alternative method that can be used for computing the ground
state or states close to the ground state. It proves to be very efficient for optimizing
problems with rugged energy landscapes, outperforming simulated annealing in such
scenarios [21, 59, 62].

The algorithm simulatesm spin systems (replicas) in parallel with temperatures ranging
from the lowest temperature Tmin to a maximum temperature Tmax. In one update
cycle, on each replica N Metropolis-Hastings update steps are performed, followed by
a certain number of replica exchanges between neighboring replicas xi and xi+1 with
probability p = e−(βi+1−βi)(H(xi+1)−H(xi).
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1.4 Quantum Approximate Optimization Algorithm

Many optimization problems seem to be intractable for fast classical algorithms. It is
hoped that quantum optimization can mitigate some of these shortcomings and provide
an advantage over its classical counterpart. However, hardware limitations in terms of
the number of qubits, coherence time, and connectivity pose severe challenges to the
execution of useful quantum algorithms. Therefore, a significant effort has been put
into developing quantum algorithms that can be executed on noisy intermediate-scale
quantum (NISQ) devices. One such approach is to combine quantum computing with
classical computing. These algorithms are called hybrid quantum-classical algorithms.
They often use parametrized quantum circuits where the parameters are variationally
updated. One prominent candidate is the Quantum Approximate Optimization Algo-
rithm (QAOA) [25] which will be of utmost importance for this thesis.

1.4.1 Overview

QAOA is designed to solve combinatorial optimization problems on n-bit binary strings
z = z1...zn and aims to find bitstrings that minimize (analogous for maximization) a
classical cost function C : {0, 1}n −→ R. By transforming the classical bits to Pauli-
Z operators, the cost function can be encoded via a quantum operator of the form
HC = C(Z1, Z2, ..., Zn) which is diagonal in the computational basis. In this thesis,
we will focus on Ising-like Hamiltonians (with degree of interaction lower or equal
two) defined on an interaction graph. Finding an optimal solution to the optimization
problem is then equivalent to finding the ground state of the corresponding problem
Hamiltonian. However, much of the presented content can be generalized to higher-
order interaction Hamiltonians. These generalizations can however come with some
additional challenges. Throughout the thesis, we will comment on these extensions.
The considered Hamiltonians are therefore:

HC =
∑
i∈V

Zi +
∑

(i,j)∈E

ZiZj. (1.10)

Furthermore, one defines a mixer Hamiltonian which usually has the simple form HM =∑n
i=1Xi. The QAOA circuit is then defined as an alternating application of the time

evolution generated by these two operators. The initial state should be easy to prepare
and is often chosen to be |+⟩⊗n. The quantum state of QAOA with depth p is then
defined as an alternating time evolution of these two operators, where the evolution
times of the corresponding operators appear as parameters:

|ψ(γ,β)⟩ =
p∏

i=1

e−iβiHM e−iγiHC |+⟩⊗n . (1.11)

The 2p parameters (γ,β) are then determined by a classical optimization routine so that
⟨ψ(γ,β)|HC |ψ(γ,β)⟩ is minimized. The minimum of this expectation value converges
monotonically to minz C(z) for p→∞. However, increasing the depth of QAOA comes
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with some serious challenges. On the one hand, finding the optimal parameters in a
high dimensional parameter space is a computationally difficult task on its own [7].
Several contributions have been made in order to develop heuristic methods to find
good parameter configurations [65, 60]. On the other hand, increasing the circuit depth
evidently comes with higher requirements on the quantum hardware, which might be
incompatible with NISQ devices.

1.4.2 Locality

QAOA is a local algorithm, meaning that the unitary gates of the algorithm connect
only variables that are also connected on the interaction graph [38, 24]. The local
structure of the algorithm has important consequences and turns out to be a limiting
factor for the performance of various types of problems. In the following, a few impor-
tant locality properties of QAOA are established, which mainly follow [24]. They are
important ingredients for proving limitations of QAOA. Moreover, they also have to be
kept in mind when designing new algorithms based on QAOA, see Sec.2.

We take into account the QAOA with initial state, mixer and the Ising-like cost Hamil-
tonian defined in Sec. 1.10, associated with an interaction graph with the usual metric
dist(i, j) to measure the distance between two vertices of the graph. To get an under-
standing of the locality of QAOA, it is instructive to have a look at the expectation
value of an operator O which acts on a subset of the vertices of an interaction graph
with respect to the QAOA evolved state |ψ(γ,β)⟩ = U(γ,β) |+⟩⊗n. Then the operator
U †(γ,β)OU(γ,β) is only supported on vertices that have a limited distance in regard
to the vertices on which the operator O acts non-trivially. These vertices are called the
associated p-neighborhood of the operator O. This neighborhood includes all vertices
i ∈ V of the graph for which minj∈supp(O) dist(i, j) ≤ p. Therefore, when calculating
the expectation of an operator O, only the p-neighborhood of O plays a role. The
expectation is unaffected by changes in the cost function outside of this neighborhood.

Another interesting property of QAOA, which is now relatively easy to see, is that two
operators O1 and O2, which act on subsets of vertices on the interaction graph that are
far apart from each other, are uncorrelated. More precisely, if the p-neighborhood of
O1 and the p-neighborhood of O2 are disjoint, it follows that:

⟨ψ(γ,β)|O1O2 |ψ(γ,β)⟩ = ⟨ψ(γ,β)|O1 |ψ(γ,β)⟩ ⟨ψ(γ,β)|O2 |ψ(γ,β)⟩ . (1.12)
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1.4.3 Limitations

Recently, a lot of research has been conducted, that highlights the limitations of QAOA
and also, more generally, deals with limitations of local quantum algorithms [38, 22, 24,
11, 12, 16]. The locality properties of QAOA are a critical element in demonstrating
its limitations, particularly when it comes to addressing problems with topological
barriers in the solution space. In this context, the Overlap Gap Property has emerged
to be a useful approach to assessing the algorithmic complexity and limitations of local
quantum algorithms. To gain insight into the limitations of QAOA, we briefly examine
two distinct scenarios developed by Farhi et al. [22, 24]. The first limitation concerns
the Max-Cut problem with n variables on random d-regular bipartite graphs [22]. The
approximation ratio of QAOA for random d-regular graphs consists only of a linear
combination of the expectation values of the different edges. This is easy to see from the
Hamiltonian in Sec. 1.1.3 and the linearity of the expectation value. These expectation
values only depend on their corresponding p-neighborhoods around the edge and it can
be shown that if p doesn’t scale at least like log(n), nearly all of these neighborhoods
are trees. This, in combination with some graph theory, can be used to show that
QAOA with (d− 1)2p < nA, for an arbitrary A < 1, can only achieve an approximation
ratio of 1/2 on bipartite random d-regular graphs for large d. Another performance
constraint of QAOA pertains to its application in solving the MIS problem on random
d-regular graphs with n vertices and dn/2 edges, while d is a constant and n is going
to be large. The emergence of the Overlapping Gap Property on these graphs prevents
QAOA from achieving better results than finding 0.854 times the maximal independent
set if the depth p grows less than a d-dependent constant time log(n) for large d (due
to its locality) [24].



Chapter 2

Quantum Informed Algorithms

2.1 Recursive-QAOA

In light of the limitations of QAOA caused by its local structure [38, 11], Bravyi et
al. introduced the so-called Recursive-QAOA (RQAOA). The algorithm is vital for
this work since it served as a source of inspiration for the development of the Quan-
tum Informed Branch and Bound (QI-BnB) Solver Sec. 2.2. This is why, we start this
section with a detailed explanation of the algorithm, including its key properties and
relevant findings from the literature. This includes its performance as compared to
QAOA, its simulation complexity, and a thorough discussion of the recursive problem
update, performed by the algorithm. After discussing possible modifications, an exten-
sive numerical study is conducted on the Max-2-SAT problem with instances of almost
200 variables. The algorithm’s efficacy is explored on a new problem class and the
goal is to gain a more comprehensive understanding of the algorithm’s strengths and
weaknesses. This helps facilitate its modification and improvement. This then allows
us to build similar hybrid quantum-classical algorithms that pursue a related strategy
of recursively reducing the problem size and enforcing constraints on the solution.
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Figure 2.1: Schematic of the RQAOA. Starting with an input problem in form of a Hamilto-
nian H0. Recursive problem reduction and variable elimination, visualized via closed circuit.
When the problem size n reaches the threshold nc the remaining problem is solved by brute
force.

2.1.1 Algorithm

The algorithm performs iterative update steps, in which it optimizes the variational
parameters of a QAOA circuit according to the current problem Hamiltonian. This
information is used to enforce a constraint on the prospective solution and reduces
the problem via the elimination of one variable. Recursive application of this update
step reduces the problem size until a specified threshold of remaining variables nc is
attained. The remaining problem can be solved by a classical solver (in the algorithm
below by brute-force). A schematic of this procedure is illustrated in Fig. 2.1.

In the following, we will refer to operators of the form
∏K

i=1 Zi as K-point correlations.
RQAOA was first applied to the Z2-symmetric Max-Cut problem [11], whose Hamilto-
nian solely incorporates two-point correlations. The Max-2-SAT problem, which we are
concerned with, also incorporates one-point correlations. These one-point correlations
do not appear in the Max-Cut. This makes Max-2-SAT an interesting candidate for a
performance investigation of RQAOA. After optimizing the QAOA state in each update
step, the expectation values of all one-point correlations and all two-point correlations
of the Max-2-SAT problem are calculated. A constraint is imposed on the correlation
with the highest absolute expectation value. Depending on the sign of this expectation
value, the constraint demands that this correlation is either perfectly correlated (+1)
or anti-correlated (-1). As a consequence of enforcing the correlation constraint, one
problem variable is eliminated. In the following, we will call this highest absolute ex-
pectation value of all one- and two-point correlations in an update step rounding value
and the corresponding variables the rounding variables. The elimination step is akin
to rounding fractional correlations in linear programming relaxation problems.

A generalization to Ising-like Hamiltonians with an arbitrary degree of interaction ex-
ists [11]. However, Hamiltonians with K-point correlations, with K ≥ 3, come with
an additional obstacle, since the degree of interaction can increase via the elimination
step. Assuming a Hamiltonian of the form Eq. (2.1) a pseudocode of RQAOA is shown
in Alg. 4 and the manifestation of the update step in the interaction graph is shown
in 2.2.
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Algorithm 4 RQAOA

Input: Hamiltonian Hn =
∑
hiZi +

∑
Jm,nZmZn with n variables,

brute force threshold nc, QAOA depth p
Output solution S, energy E

1: FrozenCorrel← {} ▷ Container for enforced constraints for solution reconstruction
2: V,E ← CreateGraph(H) ▷ Creating interaction graph
3: for k = 1 to n− nc do ▷ Starting recursive problem reduction
4: Prepare QAOA state with optimal parameters:

β∗,γ∗ = argminβ,γ(⟨ψ(β,γ)|H |ψ(β,γ)⟩) ▷ (β,γ) ∈ [0, 2π)2p

5: Store correlations in M ∈ Rn×n, initialize Mij = 0:
∀i ∈ V :Mii = ⟨ψ(β∗,γ∗)|Zi |ψ(β∗,γ∗)⟩,
∀(i, j) ∈ E :Mij = ⟨ψ(β∗,γ∗)|ZiZj |ψ(β∗,γ∗)⟩.

6: (i∗, j∗) = argmax(i∈V and i=j) or (i,j)∈E |Mij |
7: FrozenCorrel.append((i∗, j∗), sign(Mi∗j∗))
8: if i∗ == j∗ then
9: H ← Repl. Zi∗ in H with sign(Mi∗i∗) · 1 ▷ One-point correlation rounding

10: else
11: H ← Repl. Zi∗ in H with sign(Mi∗j∗) · Zj∗ ▷ Two-point correlation rounding
12: end if
13: V,E ← CreateGraph(H)
14: end for
15: Snc ← BruteFore(Hnc) ▷ Calculate optimal solution by brute force
16: S ← Reconstruct(Snc , F rozenCorrel) ▷ Reconstruct complete solution
17: E ← CalcEnergy(H,S) ▷ Calculate energy of final solution

Relation to QAOA

Numerical simulations show that RQAOA exhibits a significant improvement in per-
formance on the Max-Cut problem when compared to QAOA, and even demonstrates
comparable performance to widely used classical algorithms such as the Goemans and
Williamson algorithm. Analytical results of the superiority of RQAOA compared to
QAOA exist for very special problem classes like the so-called ring of disagrees [11].
Although the improvement is impressive, it is important to note that the computational
complexity is also higher. While the classical update steps of enforcing constraints are
negligible computational-wise, the process of finding the optimal variational parame-
ters of the circuit must be repeated for each elimination step. However, RQAOA and
QAOA have the same circuit size for the same depth p. Therefore no additional quan-
tum hardware requirements are necessary, while for QAOA (and many other variational
quantum algorithms) increased performance is normally realized via deeper quantum
circuits. It is known that the performance of QAOA monotonically increases with the
depth of the circuit p and a plethora of research has been conducted on how these
improvements materialize in numerical simulations [4, 53, 3]. It is reasonable to also
expect an increasing performance of RQAOA for higher depths of QAOA since the
quality of the low-energy states provided to inform the elimination steps is improved.
Since to the best knowledge of the author no experiments with higher depth RQAOA
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have been published, we perform such in Sec. 2.1.2.

Classical Simulation Complexity

Considering problems with general Ising-like Hamiltonians with n variables of the form

Hc =
∑

hiZi +
∑

Jm,nZmZn. (2.1)

it was shown in [11, 54] that the expectation values of Zi and ZmZn according to the
depth p = 1 QAOA state |ψ(β1, γ1)⟩ = e−iβ1HM e−iγ1HC |+⟩⊗n can be calculated in O(n)
time via the simple analytic expressions in Eq. 2.2, 2.3 (where all coupling constants
which don’t appear in the Hamiltonian appear in the formula as Jij = 0). Since the
cost Hamiltonian exhibits O(n2) terms, the computational complexity of simulating the
calculation of the correlation matrix M in Alg. 4 is O(n3). Therefore, assuming O(n)
update steps this yields an overall complexity of O(n4) for the full RQAOA simulation.

⟨Zi⟩ = hi sin(2β) sin(2γhi)
∏
k ̸=i

cos(2γJik) (2.2)

⟨ZiZj⟩ =
1

2
sin(4β) sin(2γJij)(

cos(2γhi)
∏
k ̸=i,j

cos(2γJik) + cos(2γhj) ·
∏
k ̸=i,j

cos(2γJjk)

)

−1

2
sin(2β)2 ·

[
cos(2γ(hi + hj))

∏
k ̸=i,j

cos(2γ(Jik + Jjk))

− cos(2γ(hi − hj)) ·
∏
k ̸=i,j

cos(2γ(Jik − Jjk))

]
(2.3)

It is important to realize the difference in the measurement processes between RQAOA
and standard QAOA, as discussed in Ref. [11]. The process of finding the optimal
parameters according to the expectation value of the cost Hamiltonian only requires
measurements with a few qubits involved (equal to the degree of the highest interaction
of the Hamiltonian) for both algorithms. However, after the optimal parameters are
found, QAOA samples classical bitstrings from the quantum state for which measure-
ments with all qubits involved are required. This makes QAOA exponentially difficult
to simulate for all depths p [26]. This last sampling step is replaced by a classical
update step in RQAOA. Hence, using depth p = 1 QAOA as state preparation for
RQAOA, allows us to simulate the algorithm efficiently.

Naturally, the question arises why this should be a quantum algorithm of interest,
when it can be efficiently simulated classically. The reason for this is that the situation
changes for higher-depth QAOA circuits with p ≥ 2. For these, no way to compute the
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expectation values of one- and two-point correlations classically in polynomial time is
known. The same is true for p = 1 when calculating the expectation value of operators
with a degree of interaction of 3 or higher. Therefore, these cases may lead to an
algorithm that provides quantum advantage.

Elimination Step and Non-Locality

RQAOA has mainly been applied on the Max-Cut problem [11, 12, 6] for which the
corresponding Hamiltonian exhibits a Z2-symmetry and is missing on one-point cor-
relations Zi. Therefore, rounding one-point or two-point correlations in the update
step has significantly different implications for the topology of the updated problem
graph. While rounding one-point correlations can be seen as a local procedure, round-
ing two-point correlations is non-local. There are different definitions of local algo-
rithms [38, 16]. We will refer to local quantum algorithms if the applied unitary gates
only connect vertices that are connected on the interaction graph, as is the case in
QAOA. We will define the locality in the context of our classical elimination step in
regard to their implication on the quantum part of the algorithm. The classical elim-
ination step will be called non-local if it can lead to the connection of vertices in the
interaction graph which were previously not connected. If this is not the case, the
update step will be called local. With this definition and a look at Fig. 2.2 it becomes
evident that the one-point correlation rounding is local and the two-point correlation
rounding is non-local. Since RQAOA was developed with the intention of counteracting
the locality of QAOA, it becomes a striking question if the good performance of RQAOA
extends to problems with Hamiltonians of the form of Eq. (1.10) like Max-2-SAT which
incorporates one-point correlations.

As discussed in Sec. 1.4.2, measuring the expectation value of an operator with a p-level
QAOA state only includes vertices in the p-neighborhood of the operator’s support.
Additionally, it can be seen in Fig. 2.2 that correlation rounding only affects vertices
and edges of the graph in the 1-neighborhood of the support of the considered operator
(independent of the depth p). Based on these observations and a revisiting of the locality
properties of the QAOA state discussed in Section 1.4.2, we arrive at the following
conclusion: Optimizing the QAOA state |ψ(γ,β)⟩ and performing an RQAOA update
step leaves the expectation values of all operators which lie in the complement of the
(p + 1) neighborhood of the vertices which where involved in the correlation rounding
unaffected with respect to the optimized QAOA state. After each update step, RQAOA
again optimizes the parameters (γ,β). Therefore, expectation values of operators which
lie outside the (p+1) neighborhood of the vertices that were involved in the correlation
rounding of the previous update step will also change. However, if these changes in the
parameters after the update step are small, the change in the expectation value will also
be small. This follows from the fact that the expectation values ⟨ψ(γ,β)|Zi |ψ(γ,β)⟩
and ⟨ψ(γ,β)|ZiZj |ψ(γ,β)⟩ as a function of γ,β from R2p −→ R are continuous. For
level p = 1 this can be explicitly seen in Eq. (2.2) and Eq. (2.3) where the expectation
values are a composition of analytical functions and therefore analytical. In fact, our
simulations of the evolution of the parameters during the course of RQAOA in Sec. 2.1.2
suggest that the change in parameters per update step is relatively small.
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Figure 2.2: Manifestation of the RQAOA elimination step in the interaction graph. a) One-
point correlation rounding on the rounding variable 8. b) Two-point correlation rounding on
the rounding variables 4 and 8. Variable 8 is chosen to be removed.

Update rule modification - RQAOA-G

The discussion in Sec. 2.1.1 about the locality properties of QAOA and the change
in parameters after each update step raises a question. Can similar performance be
achieved with RQAOA when in each update step more variables are eliminated and
therefore the QAOA circuit needs to be optimized less often? Based on this discussion
we propose RQAOA with a modified update rule in which a group of variables is
eliminated in each update step - we coin this algorithm RQAOA-G.

The modified update rule of RQAOA-G is a simple modification of the one in RQAOA.
After optimizing the QAOA parameters, the expectation values of all correlation oper-
ators defined on the graph are stored in the matrix M (like in RQAOA). The one cor-
relation with the maximum absolute expectation is picked and a constraint is enforced
according to the RQAOA elimination step. Now, instead of retraining the variational
parameters, the p+1 neighborhood of the graph, associated with the rounding variables
is going to be disregarded during the rest of this update step. The correlation on the
remaining graph with the largest absolute expectation value, stored in M , is rounded
again. This procedure of rounding and disregarding the corresponding p + 1 neigh-
borhood is repeated until a lower grouping threshold ng of remaining variables on the
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graph is reached. The full graph according to the updated Hamiltonian is established
again and the next update step starts with optimizing the QAOA parameters. The full
RQAOA-G algorithm is described in Alg. 5.

The specific way of choosing on which correlations a constraint should be enforced is
reasoned in a way that all the correlations which are chosen to be rounded in one update
step don’t influence the expectation values of each other if the parameters of the QAOA
circuit are not retrained. This leads to a significant reduction of complexity. Imagining
a d-bounded graph with n variables, RQAOA needs to optimize the QAOA parameters
exactly n times (for nc = 0). Since RQAOA-G eliminates O(n) variables per update
step, the QAOA circuit only has to be optimized in order of O(1) times. Numerical
simulations to compare RQAOA and RQAOA-G are performed in Sec. 2.1.2.

Algorithm 5 RQAOA-G

Input: problem Hamiltonian H =
∑
hiZi +

∑
Jm,nZmZn, grouping threshold ng,

brute force threshold nc, QAOA depth p
Output solution S, energy E

1: p′ ← p+ 1
2: FrozenCorrel← {}
3: for k = 1 to n− nc do
4: Prepare QAOA state with optimal parameters:

β∗,γ∗ = argminβ,γ(⟨ψ(β,γ)|H |ψ(β,γ)⟩) ▷ (β,γ) ∈ [0, 2π)2p

5: V,E ← CreateGraph(H)
6: Store correlations in M ∈ Rn×n, initialize Mij = 0:

∀i ∈ V :Mii = ⟨ψ(β∗,γ∗)|Zi |ψ(β∗,γ∗)⟩,
∀(i, j) ∈ E :Mij = ⟨ψ(β∗,γ∗)|ZiZj |ψ(β∗,γ∗)⟩

7: EliminateList← {}
8: while |V | > ng do ▷ Starting modified update step
9: (i∗, j∗) = argmax(i∈V and i=j) or (i,j)∈E |Mij |

10: FrozenCorrel.append((i∗, j∗), sign(Mi∗j∗))
11: EliminateList.append((i∗, j∗), sign(Mi∗j∗))
12: V,E ← Remove p’ Neighborhood(V,E, (i∗, j∗)) ▷ Disregarding neighborhood
13: end while
14: for (i∗, j∗), sign in EliminateList do
15: if i∗ == j∗ then
16: H ← Repl. Zi∗ in H with sign · 1 ▷ One-point correlation rounding
17: else
18: H ← Repl. Zi∗ in H with sign · Zj∗ ▷ Two-point correlation rounding
19: end if
20: end for
21: end for
22: Snc ← Brutefore(H) ▷ Calculate optimal solution by brute force
23: S ← Reconstruct(Snc , F rozenCorrel) ▷ Reconstruct complete solution
24: E ← CalcEnergy(H,S) ▷ Calculate energy of final solution
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Finally, since we don’t expect NP to be a subset of BQP, therefore RQAOA is doomed
to fail on certain instances of the Max-2-SAT problem. This naturally raises the ques-
tion of when and why RQAOA fails. In situations where RQAOA does not produce
an optimal bitstring, it must have made a wrong decision, whereby a false correla-
tion was enforced during the update step. Therefore, it is crucial to understand the
causes of these incorrect decisions and pinpoint the stage of the algorithm where they
occur. This is essential in gaining deeper insights into the flaws of RQAOA and devel-
oping improved algorithms, as attempted in [56]. In order to achieve this, we analyze
the RQAOA performance on Max-2-SAT problems where it failed to provide optimal
solutions, conducting an analysis of the incorrect correlations roundings enforced by
RQAOA in Section 2.1.2.

2.1.2 Results

Our interest extends beyond comparing the performance of RQAOA with that of
QAOA; we also aim to evaluate the effectiveness of RQAOA in solving Max-2-SAT
problems and assess its ability to find optimal solutions. To do this, we obviously need
to know the optimal solution of the problem. To achieve this, we utilized RC2, a de-
terministic Max-SAT solver that took part in the MaxSAT Evaluations competition in
2018 and 2019 and ranked first in two categories [41]. However, since it is a determin-
istic solver, the running time could still explode for larger instances, therefore the size
of the Max-2-SAT problems is limited mostly to 60 variables. All Max-2-SAT problems
are analyzed in the unsatisfiable clause to variable ratio regime past α = 1, as explained
in 1.2.3. This ensures that we are in the regime of difficult Max-2-SAT instances, which
are after all the problems of interest. If not stated otherwise, the brute force threshold
nc of RQAOA was chosen to be 6. If not stated otherwise, Despite evaluating the
performance of depth p = 1 RQAOA, the algorithm is analyzed on instances where it
failed to produce an optimal solution. Our final objective is to assess the performance
of QAOA and RQAOA for deeper circuits. However, due to the exponential scaling in
simulating the algorithms classically, only small instances can be simulated. To infer
the potential on actual quantum devices, QAOA is executed for higher depths on a
trapped ion quantum computer.

Comparison to QAOA

First, in Fig. 2.3 the performance of RQAOA and QAOA is assessed on the random
Max-2-SAT problem. We generated 100 instances of the problem with 60 variables
for different clause-to-variable ratios α between 1 and 6. This was done with the in-
tent of analyzing the algorithms over a large domain of the hard instances and seeing
how robust they are relative to the density of graphs (high clause-to-variable ratios
correspond to denser graphs). It can be seen that throughout all clause-to-variable ra-
tios, RQAOA significantly outperforms QAOA and the approximation ratio of RQAOA
is always close to 1. The approximation ratio of QAOA slightly improves for higher
clause-to-variable ratios. As a reference: The approximation expectation value of an
arbitrary Max-2-SAT problem is 0.75, therefore every reasonable algorithm should pro-
duce approximation ratios above this value.
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Figure 2.3: Performance of classically simulated level p = 1 QAOA and RQAOA evaluated on
random Max-2-SAT instances with n = 60 variables on different clause-to-variable ratios α.
The bars indicate the average approximation ratio for 100 randomly generated Max-2-SAT
instances. The complete Max-SAT solver RC2 was used to calculate the optimal solutions
and consequently the approximation ratio.

In Figure 2.4, we investigate whether the advantage of RQAOA over QAOA remains
valid for larger system sizes of random Max-2-SAT. More specifically, 100 small prob-
lems were generated between 40 and 160 variables for each clause-to-variable ratio. The
results show that the superiority of RQAOA is consistently maintained for all system
sizes and clause-to-variable ratios examined. Since Max-2-SAT problems of this size
are usually not feasible for a deterministic solver, the ”optimal solutions” are obtained
via parallel tempering, details can be found in App. 2.3.4.
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Figure 2.4: Analysis of the scaling behavior of classically simulated level p = 1 QAOA and
RQAOA in terms of the problem size, evaluated on random Max-2-SAT instances with three
different clause-to-variable ratios α. The bars show the average approximation ratio for 100
randomly generated Max-2-SAT instances for each different problem size and corresponding
α. The allegedly optimal solutions were obtained with parallel tempering. The bars indicate
how close the solutions of (R)QAOA are to the solutions of parallel tempering. Details about
the parallel tempering implementation can be found in App. 2.3.4.
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Update rule investigation

In this subsection results regarding the updates of RQAOA and their influence on
the algorithm are analyzed. First, results of the investigation of instances in which
RQAOA failed to achieve an optimal solution and the connection to the correlation
rounding are presented. This is followed by results concerning the evolution of the
optimal parameters over the course of the complete RQAOA procedure and how they
change after each update step.

In Fig. 2.5 we evaluate if there exists a connection between incorrect elimination steps
of level p = 1 RQAOA, which prevent us from finding the optimal solution, and the
corresponding rounding values. Put simply, the question is: are correlation roundings
with lower rounding values more likely to be wrong? To investigate this question,
we generated random Max-2-SAT problems and for each instance, all optimal solutions
were recorded via the RC2 solver. Afterward, we solved the problems with RQAOA and
picked 100 instances for which it failed to find an optimal solution. For each of these
instances, RQAOA subsequently rounds correlations and incrementally extends the
partial assignment. Since RQAOA failed to produce an optimal assignment, there had
to be an elimination step, that enforced a correlation on variables, that is incompatible
with any of the potential optimal solutions. We label this, let us say, k-th elimination
step, as wrong decision. We call the set of rounding values up to this k-th step the wrong
decision list. The plot shows the wrong decisions of RQAOA and their corresponding
position in the wrong decision list. A lower percentile corresponds to lower rounding
values. It can be seen that wrong decisions are more likely to occur with low rounding
values in the wrong decision list. However, this effect becomes less pronounced for
increasing clause-to-variable ratios. This will be valuable information for modifying
RQAOA and designing similar algorithms.
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Figure 2.5: For three different clause-to-variable ratios α, 100 random Max-2-SAT instances
with n = 60 variables and three different clause-to-variable ratios α were generated, on which
level p = 1 RQAOA (nc = 5) failed to produce the optimal solution. All optimal solutions for
a certain instance were determined with the RC2 solver. The x-axis corresponds to the set
of rounding values up to the elimination step where the wrong decision (see 2.1.2) happened,
while lower rounding values are in the lower percentiles. The bars indicate at which percentile
RQAOA made the wrong decision. Low percentiles correspond to lower absolute expectation
values.
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In Fig. 2.6 the evolution of the optimal variational parameters γ and β during the
execution of the level p = 1 RQAOA is plotted against the elimination steps. This is
done for 4 different Max-2-SAT instances with n = 60 variables and increasing clause-
to-variable ratios α. In the top row, it can be seen that both parameters remain in a
relatively small range of values. This small absolute change of the parameter values
relative to the last elimination step can be seen in the bottom row. A clear trend
can be observed that for higher α’s the change of parameters becomes even less. The
sharp drop in the parameter values for α = 1 is a consequence of the circumstance
that the problem Hamiltonian becomes trivial H = 0. Therefore, the assignment of the
remaining variables doesn’t matter and the optimal parameters can be chosen to be 0.
Overall, it can be seen that the change in the variational parameters is relatively small
(compared to the range of possible parameters: [0, π)). These results clearly support
the discussion in Sec. 2.1.2. It can be seen that using the optimized QAOA state to
enforce more than one correlation constraint on the variables per elimination step, could
lead to an algorithm with similar performance and significantly less computational cost.
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Figure 2.6: Evolution of the optimal variational parameters γ and β for depth p = 1 RQAOA
with respect to the elimination steps of RQAOA with nc = 10 on four different Max-2-SAT
instances with 60 variables and four different clause-to-variable ratios α. The bottom row
displays the change in the absolute value of the parameters relative to the previous update
step. In the top row, the values of the parameters are plotted with respect to the elimination
steps.

In Fig. 2.7 the performance of RQAOA and RQAOA-G with depth p = 1 is compared
on the Max-2-SAT problem with n = 60 variables. It is no surprise that standard
RQAOA achieves better results since the parameters are optimized for each update
step separately. Nonetheless, the difference is marginal. For the approximation ratio
(left bar plot) the difference of the mean values is within each other’s error bars. Also,
the difference in the number of optimal found solutions (right plot) is small. The per-
formance difference seems to be consistent for the different clause-to-variable ratios α.
This shows that comparable performance of RQAOA can be achieved with significantly
fewer resources (O(1) QAOA optimizations instead of O(n)).
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Figure 2.7: Performance of classically simulated level p = 1 RQAOA and RQAOA-G on ran-
domly generated Max-2-SAT instances with n = 60 variables, at different clause-to-variable
ratios α. The average approximation ratio on 100 Max-2-SAT instances per clause-to-variable
ratio is represented in the left bar plot and the number of times the solvers were able to find
an optimal solution is shown on the right. The RC2 solver was used to determine the optimal
solutions.

Higher Depths

We could only perform classical RQAOA simulations with depths p > 1 for small
system sizes, due to the exponentially scaling computational cost. It turned out that
for 100 random Max-2-SAT problems RQAOA with depth p > 1 was able to find the
optimal solution in all instances. Therefore, 100 instances were created on which the
fast p = 1 RQAOA simulation failed to find an optimal solution. The performance of
RQAOA for different depths was then evaluated on these 100 instances which can be
seen in Fig. 2.8. As expected the performance of RQAOA increased with higher depths
p. Almost all instances could be optimally solved for p = 2 and all instances for p > 2.

In Fig. 2.9 we evaluated the increase in performance of QAOA depending on the depth
p classically and on a real quantum device, IONQ which is based on trapped ions. The
examined problem is once more Max-2-SAT with 11 variables and a clause to variable
ratio α = 2. As expected, the approximation ratio of classically simulated QAOA
improves significantly with depth p. However, the performance of QAOA executed on
the quantum device with optimal parameters deteriorates as the circuit depth increases,
eventually approaching the approximation ratio of QAOA executed with randomly
generated parameters on a classical device. Despite the improvement of classically
simulated QAOA and the resulting potential for RQAOA to produce better correlation
expectation values, the simulation sheds light on the shortcomings of currently available
quantum devices.
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Figure 2.8: Performance of classically simulated RQAOA with nc = 1 on 100 random Max-
2-SAT instances with n = 12 variables and a clause to variable ratio α = 16.7 on which depth
p = 1 RQAOA failed to find an optimal solution. The percentage of optimally found solutions
is plotted against the depth p. The simulations for p > 2 were carried out with the open-source
software framework PennyLane for quantum computing. The optimization of the variational
parameters was performed via the gradient descent method with 1000 optimization steps and
20 random initial starting points for each optimization procedure to increase the likelihood
of finding the global minimum.
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Figure 2.9: The achieved approximation ratios of QAOA on one randomly generated Max-2-
SAT instance with 11 variables and a clause-to-variable ratio of 2 plotted against the circuit
depth p. Trapped ions-based quantum computer IONQ, which offers all-to-all connectivity,
was utilized as an 11-qubit quantum computer through Amazon Braket’s web service. To
measure the results, 10 distinct independent runs of QAOA were performed, with 200 shots
taken in the measurement processes. IONQ utilized the optimal variational parameters from
the classical simulation of QAOA. The ”Random param” curve represents the classical sim-
ulation of QAOA with parameters generated uniformly at random. The curve was generated
by averaging the results of 100 randomly generated parameter sets for each depth p.
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2.1.3 Discussion

After reviewing the existing literature on RQAOA, including its working principles, its
relationship to QAOA, and the simulation complexity of the algorithm, we conducted a
thorough analysis of the update step in RQAOA. The algorithm was initially designed
to mitigate the performance limitations of QAOA posed by its locality via the introduc-
tion of non-local update steps. Existing studies of RQAOA have primarily investigated
problems with Z2-symmetry which incorporate no one-local correlation terms [11, 12].
Therefore, we evaluated RQAOA on the Max-2-SAT problem to observe the impact
of the local update steps. Our numerical simulations have shown that RQAOA also
significantly outperforms QAOA on the Max-2-SAT problem. We conducted further
experiments to analyze situations when RQAOA fails to find optimal solutions and to
see how the optimal variational parameters of QAOA change over the course of the
algorithm. These results, in combination with the locality properties of QAOA, moti-
vated us to propose a modified version of RQAOA that eliminates several variables in
each update step. The modified update step ensures that the enforced constraints do
not interfere with each other, resulting in performance comparable to that of RQAOA.
Finally, the performance of RQAOA is found to improve with the depth of QAOA.
However, this behavior could only be shown in problems with small system sizes. Sim-
ulations on the IONQ device showed the obstacles the algorithm faces with higher depth
QAOA on real quantum hardware where noise prevents the algorithm from improving
on the approximation ratio of the problem.

2.1.4 Outlook

There are many interesting follow-up questions that could be pursued. Ultimately we
are interested in whether quantum algorithms provide any meaningful advantage over
their classical counterparts. Consequently, a particularly promising topic of interest
could be a comparative analysis between RQAOA and similar classical methods in
order to evaluate the role of the quantum part in measuring the correlations via QAOA.
An inherently similar approach in mind would be to calculate classical analogs to the
correlation expectation values of RQAOA and use them to recursively solve the problem.
The renowned Goemans-Williamson [32] algorithm could be of particular interest in this
context. It could also be interesting to compare RQAOA to simple greedy algorithms
which also subsequently extend the assignment of the problem and see if a good local
update strategy could be able to outperform RQAOA.

Another interesting investigation includes a more thorough analysis of RQAOA for
higher depths p. For meaningful experiments, a certain system size is necessary. On
the one hand, simulations on real quantum devices would be very interesting. Not
only to see how the performance of RQAOA changes with lower-energy states but
also to assess the influence of noise on the updates. On the other hand, efficient
classical simulations with reasonable system sizes may also provide interesting insights.
One strategy to calculate p = 2 expectation values could be to start from a classical
bitstring. When calculating the expectation values of QAOA, it becomes apparent that
the evolution of the cost Hamiltonian on the initial state does not contribute to these
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values. This is because a classical bitstring acts as an eigenvector of this operator,
and the corresponding eigenvalue cancels out within the expectation value. Therefore
we think that it should be possible to derive an analytical formula for this scenario to
compute the expectation values for p = 2.

Based on the exploration of RQAOA-G, one could extend this avenue in many direc-
tions. A more thorough analysis of rounding a group of correlations in each update step,
including a scaling analysis, could be carried out. Many different rounding strategies in
this context could be explored. Adding stochasticity to the update step would be one
such possibility, to name just one example. This would allow for the expectation values
of the correlations to inform a probability distribution, instead of making deterministic
updates.
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2.2 QAOA Informed Branch and Bound Solver

Drawing inspiration from RQAOA [11] and other literature [48] on developing novel
quantum optimization algorithms for NISQ devices and combining them with classi-
cal optimization techniques, we propose a new hybrid quantum-classical Max-2-SAT
algorithm, coined Quantum Informed Branch and Bound (QI-BnB) solver. The algo-
rithm uses information from a low-energy QAOA state and optimization techniques
of a classical branch and bound solver to iteratively solve the Max-2-SAT problem.
After a discussion about the utilization of the classical optimization techniques and its
benefits, the full algorithm is presented. Rigorous numerical simulations for the ran-
dom Max-2-SAT problem with relatively large problem sizes of up to 160 variables are
performed to assess its performance and characteristics. This will be concluded by a
discussion, including strategies to enhance the algorithm’s performance, and potential
extensions of the algorithm to other combinatorial optimization problems.

Figure 2.10: Schematic of the QI-BnB algorithm. Starting with input problem in form
of Max-2-SAT formula and empty assignment. Recursive problem reduction and variable
eliminations, visualized via closed circuit, is executed until lower bound on quality of current
partial assignment (LB) is worse or equal to quality of best assignment found so far (UB)
and backtracking to a previous, less complete, assignment is performed. Otherwise, if number
of remaining variables n reaches threshold nc, the remaining problem is solved by brute force.
Compared to RQAOA the problem is formulated in its native formulation as CNF-formula ϕ.

2.2.1 Algorithm

While RQAOA directly simplifies the corresponding Hamiltonian of a problem, we
focus on the update step on the Max-2-SAT problem in its native formulation as a
propositional logic formula. This allows us to augment the quantum information with
well-studied classical Max-SAT techniques. A schematic of this algorithm can be seen
in Fig. 2.10. Utilizing the low-energy QAOA state to measure expectation values and
performing update steps in a similar way as in RQAOA, the process of incrementally
extending the Max-SAT assignment can be interpreted as traversing through a search
tree, analogous to a classical BnB solver. Compared to the classical case the nodes
correspond to classical variables but also to correlations (Zi or ZiZj). The edges are
associated with their corresponding assigned values. This inspires us to borrow BnB
techniques like inference rules, lower bound computations, and backtracking to aug-
ment our hybrid algorithm. In general, depending on the complexity of the update
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rules, one can distribute the workload between the quantum and classical parts of the
algorithm with this scheme. However, the utilized classical techniques require only a
little computational cost, which makes it easier to assess the role of the quantum part
in the algorithm.

The basic idea of this solver is to optimize QAOA, calculate expectation values of
correlations, and - together with classical inference rules - extend the assignment of the
problem. Since the update rule is heuristic in nature, obviously unfavorable assignments
can occur. Due to this reason, backtracking is implemented to go back to parental parts
of the search tree, looking for more favorable solutions. Exploring the whole search tree
like in BnB would obviously come at an exponential computational cost. Since we are
designing a heuristic algorithm, the idea is to only explore a small part of the search
tree which exhibits optimal or near-optimal solutions. To avoid the computational cost
of searching in unfavorable regions of the search tree and in order to detect prospective
bad solutions early, lower-bound computations are incorporated.

Update Step

As already mentioned, in RQAOA the update steps focus on the problem Hamiltonian.
Since QI-BnB performs problem-specific update steps, the enforcing of constraints hap-
pens in the native formulation of the problem as propositional logical formula ϕ. The
notation of the algorithm in terms of variables, literals, clauses, and the propositional
logic formula remains consistent with the one described for classical BnB solvers in
Sec. 1.3.1. However, the assignment set differs in that it consists of tuples of the form
((i, j), s), with s ∈ {−1,+1}. The first entry (i, j) corresponds to the variable indices
on which the correlation constraint is enforced, while i = j corresponds to a one-point
correlation constraint and i ̸= j to a two-point correlation constraint. The value of s in-
dicates which constraint is enforced on the corresponding variables (perfect correlation
or anti-correlation). The notation is analogous to the one used in RQAOA in Alg. 4.
Analogous to the classical BnB solver notation, ϕA is the updated formula according
to the partial assignment. Adding a tuple ((i, j), s to the assignment A, the formula
gets updated in the following way:

• i = j: For s = 1 (-1) all variables xi in the formula are set to true (false) and the
formula is updated analogously to Sec. 1.3.1, meaning all clauses containing xi
(x̄i) are removed and in all clauses containing the negation, only x̄i (xi) is removed
from the clause.

• i ̸= j: If s = 1 all variables xj, respectively x̄j in the formula are replaced by xi,
respectively x̄i. If s = −1 the update is identical, while the variables with index
j are replaced by the variable with index i with opposite polarity.

This notation becomes necessary since the update step in the QI-BnB solver can also
enforce constraints on two-point correlations. The update step consists of two parts.
First, a set of inference rules is applied. As a reminder to Sec. 1.3.1 these inference
rules exhibit very low computational cost and extend the assignment in a way, in which
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the optimal solution of the simplified formula violates the same number of clauses as
the optimal solution of the formula before applying the inference rules.

The inference rules incorporated in the QI-BnB solver were proposed in [45] and partly
in [1]:

• The pure literal rule [9]: If a literal exclusively occurs with either positive (nega-
tive) polarity, then the value of the corresponding variable is set to true (false).

• The almost common clause rule [9]: If a MaxSAT instance includes two clauses,
x̄i ∨ lj and x̄i ∨ lj, then both clauses can be replaced with just lj. If neither xi
nor x̄i appears in the formula anymore, the variable can be set arbitrarily either
to true or false.

• The complementary unit clause rule [52]: If a clause solely contains the variable xi
and another clause only contains x̄i then these two clauses are removed. Again, if
neither xi nor x̄i appears in the formula anymore, the variable can be set arbitrarily
either to true or false.

• The dominating unit clause rule [52]: If the total count of clauses, regardless of
their length, that contains a variable xi (x̄i) is not greater than the count of unit
clauses that contain x̄i (xi), then the variable xi is set to true (false).

Enforcing a constraint via an inference rule is equivalent to enforcing a constraint on a
one-point correlation, both just fix the value of a single variable. Consistent with the
introduced notation, when a variable xi is set to true (false) via an inference rule, a tuple
of the form ((i, i), 1) (((i, i),−1)) gets appended to the assignment A. After applying the
inference rules, the procedure is analogous to RQAOA. First, the variational parameters
are optimized with respect to the current problem Hamiltonian. The expectation values
of all correlations are measured according to this state. Dependent on the sign of the
expectation value with the highest absolute value, the assignment is extended and the
formula is updated according to the explanation above. In the following, we will refer
to this second part of the update step as the quantum update. The complete update
step can be seen in Alg. 6.
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Algorithm 6 Update

Input: partial assignment A, formula ϕA
Output extended partial assignments A, Simplified ϕA

1: ϕ′ ← {} ▷ Initialize empty formula for comparison.
2: while ϕA ̸= ϕ′A do
3: ϕ′ ← ϕ
4: A, ϕA ← PureLiteral(A, ϕA)
5: A, ϕA ← AlmostCommonClause(A, ϕA)
6: A, ϕA ← ComplementaryUnitClause(A, ϕA)
7: A, ϕA ← DominatingUnitClause(A, ϕA)
8: end while
9: Prepare QAOA state with optimal parameters:

β∗,γ∗ = argminβ,γ(⟨ψ(β,γ)|Hϕ |ψ(β,γ)⟩) ▷ (β,γ) ∈ [0, 2π)2p

10: V,E ← CreateGraph(Hϕ)
11: Store correlations in M ∈ Rn×n, initialize Mij = 0:

∀i ∈ V :Mii = ⟨ψ(β∗,γ∗)|Zi |ψ(β∗,γ∗)⟩,
∀(i, j) ∈ E :Mij = ⟨ψ(β∗,γ∗)|ZiZj |ψ(β∗,γ∗)⟩

12: (i∗, j∗) = argmax(i∈V and i=j) or (i,j)∈E |Mij |
13: A.append(((i∗, j∗), sign(Mi∗j∗)))

An important observation is that the update rules for MAX-2-SAT discussed in this
context maintain the underlying problem structure. This ensures that all clauses in the
formula contain only 2 variables or less throughout the algorithm. As a result, the form
of the Hamiltonian remains consistent with Equation (1.10) after each update step.
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Backtracking

Since decisions are made based on a heuristic quantum algorithm it is very possible to
end up with a non-optimal or unfavorable solution. Backtracking to a previous node
of the search tree and exploring other parts of the tree (via changing the decision of a
previous correlation rounding) can help improve this solution. Since only a small part
of the search tree is explored, the backtracking strategy can have a significant influence
on the quality of the final solution. In the following, three very simple backtracking
strategies are explained, which are later analyzed via numerical simulations:

• Strategy a): Following the iterative update steps, an initial solution is obtained.
Subsequently, the backtracking process is executed, retracing the path of the initial
solution and revisiting every node where a fixed value was determined through
a quantum update. The enforced correlation constraint on all of these nodes is
reversed. After changing the enforced constraint, a new path in the search tree
emerges and this assignment is going to be extended via the update rules until
a new solution is obtained. The algorithm does not backtrack to nodes whose
values were assigned by inference rules, as reversing the decision at these nodes
would not lead to improved solutions in the newly emerging search path, given the
nature of the inference rules. A visualization of this backtracking strategy can be
seen in Fig. 2.2.1. This backtracking strategy is implemented in the pseudocode
of the QI-BnB algorithm in Alg. 8.

• Strategy b): This backtracking procedure is identical to strategy a) with the only
difference that fewer nodes of the initial exploration path in the search tree are
revisited. The algorithm only backtracks to a node at depth k in the search tree
whose value was determined by a quantum update if the rounding value of the
corresponding correlation is lower than all the rounding values of the nodes at
a depth lower than k in the initial exploration path. This backtracking strategy
is motivated by the findings in Sec. 2.1.2 which suggested that RQAOA is more
likely to make mistakes at low rounding values.

• Strategy c): Again, backtracking and corresponding changing of enforced correla-
tion constraints only happen at nodes of the initial exploration path whose values
were fixed by a quantum update. The nodes which are re-visited in this strategy
are chosen by a uniform probability.

Once a backtracking strategy is complete and the best solution has been obtained, an
additional post-processing step is applied to the solution bitstring. This step involves
individually flipping each bit in the final solution and evaluating the number of violated
clauses for the resulting bitstrings. If one of the flipped bitstrings exhibits fewer clause
violations, the final bitstring is replaced by this one. It is evident that the above-
mentioned strategy a) is limited by a maximum of n (number of variables) backtracking
steps. Notably, strategies b) and c) perform no more backtracking steps than strategy
a). Strategy a) represents the standard technique used in our QI-BnB solver and is
also integrated into the algorithmic description in Alg. 8 as well as in the visualization
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of the algorithm in Fig. 2.16.
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Figure 2.11: Trivial example of solving a Max-2-SAT problem with 4 variables by means of
QI-BnB with backtracking strategy a) described in Sec. 2.2.1. The nodes represent variables
or two-point correlations and the edges represent their corresponding value in the associated
path of the search tree. Decisions that are made by the quantum update are depicted as blue
vertices with the corresponding operator with the highest absolute expectation value. The
grey vertices represent the variables whose values are chosen by inference rules. The initial
solution found by QI-BnB, without backtracking, by repeatedly applying the update step, is
represented by the path with the red arrows. The green arrows depict the backtracking steps,
which are performed after the initial solution has been found. Backtracking leads back to all
blue nodes encountered during the exploration of the first path in the search tree. Jumping
back to these nodes and changing the previous decision leads to the emergence of a new path
(white node) which subsequently will be explored until a new solution is found.

LowerBound

As explained in Sec. 1.3.1 the lower bound is, as the name implies, a lower bound for
the minimal number of unsatisfied clauses if a current partial assignment of a Max-SAT
problem would be extended to a complete assignment. For the QI-BnB solver the same
lower bound algorithm as in [17] is used. It can be seen in Alg. 7. In this algorithm,
the pure literal rule is used. The pure literal rule is applied to clauses that contain a
single variable, then the variable gets assigned the proper value so that the clause is
satisfied.
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Algorithm 7 Lower bound [17]

Input: formula ϕ.
Output lower bound LB

1: LB ← CountEmptyClauses(ϕ)
2: Applying the one-literal rule on ϕ until a new empty clause is derived
3: If no new empty clause can be derived: return LB
4: Remove all clauses of ϕ which were used to derive the new empty clause
5: LB = LB + 1
6: Back to line 2

QI-BnB - The Complete Algorithm

Algorithm 8 QI-BnB

Input: empty solution A, formula ϕA, nc.
Output complete solution A

1: while |A| > nc do ▷ Explore initial path in search tree
2: A, ϕA ← Update(A, ϕA)
3: end while
4: A, ϕA ← BruteForce(A, ϕA) ▷ Calculate initial solution by brute force
5: UB ← CountEmptyClauses(ϕA) ▷ Init. upper bound by # unsatisfied clauses of ϕA
6: AUB ← A
7: for k = length(A) to 1 do ▷ Revisit nodes of search tree in reverse order
8: (i, j), sign(Mij) = A[k]
9: A′ ← A[1 : k − 1]

10: A′.append(((i, j),−sign(Mij)) ▷ Changing decison in initial path
11: while |A′| > nc do ▷ Explore new path
12: A′, ϕ′A ← update(A′, ϕ′A)
13: LB ← LowerBound(ϕA′)
14: if LB ≥ UB then ▷ Check if new path should already be truncated
15: break out of while loop
16: end if
17: end while
18: A′ ← BruteForce(A, ϕA′)
19: UB′ ← CountEmptyClauses(ϕ′A)
20: if UB′ < UB then ▷ Check if new solution is better
21: AUB ← A′

22: UB ← UB′

23: end if
24: end for
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2.2.2 Results

In the following, we apply the QI-BnB algorithm to the random Max-2-SAT problem
in order to evaluate its performance and characteristic properties. The simulations en-
compass a performance investigation across various clause-to-variable ratios and system
sizes. Additionally, we evaluate the impact of inference rules and different backtracking
strategies on the algorithm’s performance and its computational cost. Unless otherwise
specified, in all QI-BnB simulations, a brute force threshold of nc = 6 is employed, and
correlation expectation values are calculated using depth p = 1 QAOA states.

Solver Comparison

In Fig. 2.12 the performance of QI-BnB with backtracking strategy a) (see Sec. 2.2.1)
and without backtracking (QI-BnB*) are compared to the ones of standard RQAOA
and simulated annealing. The comparison is conducted on 100 randomly generated
Max-2-SAT problems with 60 variables and a clause-to-variable ratio α ranging from 1
to 6. The bars indicate for how many instances the solvers were able to find the opti-
mal solution. It can be clearly seen that QI-BnB* outperforms RQAOA on all clause
to variables ratios, despite needing fewer optimization procedures for the variational
parameters of QAOA. Additionally, using backtracking, the performance increases sig-
nificantly and even outperforms simulated annealing for all alpha. Details of the
setup of simulated annealing can be found in App. 2.3.4. Obviously, the performance
of QI-BnB is lower bounded by the performance of QI-BnB*, but the computational
complexity is also higher.
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Figure 2.12: Performance of different solvers evaluated on random Max-2-SAT instances with
n = 60 variables on different clause-to-variable ratios α. The bars show in how many percent
of the instances the optimal solutions are found for each solver. 100 random Max-2-SAT
instances are generated. The complete Max-SAT solver RC2 is used to calculate the optimal
solutions. QI-BnB uses backtracking strategy a) as defined in Sec. 2.2.1 QI-BnB* uses no
backtracking. Details about the simulated annealing (SA) setup can be found in App. 2.3.4.

In Fig. 2.13 it is analyzed if the superiority of QI-BnB over RQAOA and simulated
annealing is also maintained for larger system sizes on random Max-2-SAT. For differ-
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ent clause-to-variable ratios, 100 instances were generated for each system size. It was
then evaluated how many of the instances could be optimally solved by the respective
algorithm. The size of the systems varies between 40 variables and 160 variables. Since
systems of this size can be unfeasible for the RC2 solver, parallel tempering was used
to find the alleged optimal solution. A solution of a solver is counted as optimal if it
exhibits at least the same number of satisfied clauses as the solution obtained by par-
allel tempering. Details about the implementation of simulated annealing and parallel
tempering can be found in App. 2.3.4. As anticipated, the plots show that the number
of optimal found solutions decreases for larger system sizes. The relative performance
of the solvers, in terms of their ranking from best to worst in these instances, remains
consistent for each clause-to-variable ratio. QI-BnB* outperforms RQAOA significantly
for lower α’s but approaches the performance of RQAOA from above for higher clause-
to-variable ratios. QI-BnB outperforms simulated annealing for all system sizes and
clause-to-variable ratios. It should however be noted that the number of iterations of
simulated annealing can be increased arbitrarily and therefore it eventually outperforms
QI-BnB if enough update steps are performed.
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Figure 2.13: Scaling analysis for the performance of RQAOA, QI-BnB (with backtracking
strategy a) Sec. 2.2.1), QI-BnB* (without backtracking) and simulated annealing on the
random Max-2-SAT problem for different clause to variable ratios α. The system sizes range
from 40 variables to 160 variables. The alleged optimal solutions were obtained via parallel
tempering, conducted with sufficient resources. The plots show for how many instances the
respective solvers could find a solution of equal or better quality than parallel tempering.
Details about the implementation of simulated annealing and parallel tempering can be found
in App. 2.3.4.

Update step

In Fig. 2.14 we assess the role of the quantum update and the inference rules in the
update step of QI-BnB* (QI-BnB without backtracking). To this end, 100 random
Max-2-SAT instances with n = 60 variables and different clause-to-variable ratios α
are generated. In these instances QI-BnB* with the standard update step as defined in
Sec. 2.2.1 (coined ”informed” in the figure) is compared to QI-BnB* where the quantum
update of this update is replaced. It is replaced by choosing one of the existing one- or
two-point correlations with uniform probability and enforcing with uniform probability
a perfect correlation or anti-correlation on these variables (coined ”uninformed” in the
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figure). The bars indicate the average approximate ratio of the two algorithms on the
random Max-2-SAT instances. As expected, the information provided by the QAOA
circuit proves to be very valuable and QI-BnB* outperforms its uninformed version
significantly for all clause-to-variable ratios. Therefore, we see that the quantum part
of the algorithm is still the work-horse of QI-BnB and the good performance is not
mainly based on the augmentation of the classical subroutines. It should be noted that
without the inference rules an approximation ratio of 0.75 would be expected. The
approximation with random decisions augmented with inference rules can be seen to
fall roughly between 0.80 and 0.85.
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Figure 2.14: The approximation ratios of QI-BnB* (QI-BnB without backtracking) and the
same algorithm substituting the quantum update with the enforcement of a random cor-
relation constraint are compared. For various clause-to-variable ratios, this evaluation is
conducted on 100 random Max-2-SAT instances, each consisting of 60 variables.

Backtracking

After an initial solution is found in the QI-BnB algorithm, backtracking is applied.
Every node in the initial exploration whose value has been assigned by a quantum
update is revisited and its previously assigned value is changed. These new emerging
paths can potentially lead to an improved solution. The Hamming distances between
these improved solutions and the initial solution of the algorithm are shown in Fig. 2.15
for 100 randomly generated Max-2-SAT problems with different clause-to-variable ratios
α. In each of the three plots, the bars represent the frequency of the improved solutions
having a specific Hamming distance among the 100 random Max-2-SAT instances. It
can be seen that these Hamming distances are all between 2 and 30, with most of
them found between 2 and 20. The plot demonstrates that the solutions do not only
exhibit trivial improvement, indicating that the enhancements are not solely achieved
by changing a single value of a node in the initial exploration path. If that were the
case, the Hamming distances between the improved solutions and the initial solutions
would be equal to one.
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Figure 2.15: Measured Hamming distances between solutions found by the QI-BnB solver
during the initial tree exploration and the best overall solutions after backtracking and execut-
ing the whole algorithm. The distances were measured on 100 random Max-2-SAT instances
with 60 variables generated for 3 different clause-to-variable ratios alpha.

In Fig. 2.16 the QI-BnB algorithm with the standard backtracking strategy a) and the
two other strategies described in Sec. 2.2.1 are compared. The solvers are compared on
the random-Max-2-SAT problem with n = 60 variables over different clause-to-variable
ratios. 100 instances were generated for each ratio.
The left plot presents bars that indicate the number of instances in which the QI-BnB
algorithm, employing different backtracking strategies, was able to find an optimal solu-
tion. Consistently across all clause-to-variable ratios, strategy a) outperforms strategy
b), and strategy b) outperforms strategy c). While these results were expected to some
degree, it may surprise that the performance difference between strategy b) and c) is
not more pronounced, considering the findings in Sec.2.2 regarding the occurrence of
wrong decisions of RQAOA. However, the QI-BnB solver incorporates inference rules
that are not part of RQAOA, which helps in avoiding the occurrence of wrong decisions
made by RQAOA.
The right plot displays the number of times the variational parameters of QAOA need
to be optimized for the different backtracking strategies. In the absence of inference
rules and lower bound computation during the update step, the number of necessary

parameter optimizations for strategy a) would be n·(n−1)
2

= 1770 times for these Max-
2-SAT instances. We see that significantly fewer optimization procedures are needed
for all different backtracking strategies, particularly for lower clause-to-variable ratios.
But also for a clause-to-variable ratio of α = 6, the number of parameter optimizations
can be reduced by approximately one order of magnitude. The reason strategy c) re-
quires slightly fewer optimizations than strategy b) is likely because quantum update
decisions are reversed randomly in this strategy, rather than those with low rounding
values, resulting in the lower bound computation truncating these regions of the search
tree more effectively.
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Figure 2.16: Backtracking performance (left): For six different clause-to-variable ratios α
of the random Max-2-SAT problem, the performance of QI-BnB with the three different
backtracking strategies described in Sec. 2.2.1, is evaluated. For each ratio, 100 instances
with 60 variables were generated. Backtracking parameter optimization (right): The average
number of optimizations performed on the variational parameters of the QAOA circuit for a
Max-2-SAT instance is compared among the three different backtracking strategies, with the
comparison being dependent on the clause-to-variable ratio α.

2.2.3 Discussion

Building upon the recursive approach of RQAOA for solving combinatorial optimization
problems, we present a novel hybrid quantum-classical solver for Max-2-SAT. Instead
of applying generic simplifications on the problem Hamiltonian, we propose problem
specific classical update steps to recursively simplify the Max-2-SAT formula and ex-
tend the assignment. This allows us to leverage classical subroutines from the extensive
literature of Max-SAT solvers. Incorporating techniques from branch and bound solvers
allows us to address challenges faced by RQAOA and other quantum algorithms, while
adding almost no classical computational cost and keeping the quantum hardware re-
quirements unchanged. The incorporated techniques include inference rules, different
backracking strategies and lower bound computations.

Our numerical investigations have shown the promising performance of our Quantum
Informed Branch and Bound solver when applied to the Max-2-SAT problem in various
clause-to-variable regimes. The efficient classical simulation of level p = 1 QAOA ex-
pectation values of one- and two-point correlations enabled us to examine comparably
large system sizes with a quantum algorithm. The implementation of problem-specific
classical optimization techniques evidently improves the performance of previous iter-
ative quantum algorithms like RQAOA. The results also show that the utilization of
backtracking strategies allows QI-BnB to compete with classical heuristic optimiza-
tion algorithms like simulated annealing. Moreover, the combination of inference rules
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and lower bound computations show to significantly reduce the necessary calls of the
QAOA algorithm. The results of QI-BnB motivate to extend its approach of combining
QAOA with classical problem-specific subroutines to other combinatorial optimization
problems and different quantum protocols for low-energy state preparation, beyond
QAOA. Our work demonstrates not only the potential of the performance of these
hybrid quantum-classical algorithms but also shows their flexibility in designing new
algorithms.

2.2.4 Outlook

First of all, the potential research directions discussed in the RQAOA-outlook in
Sec. 2.1.4 are equally interesting in regard to our QI-BnB algorithm. This includes
evaluating the value of the quantum part in this algorithm. This could be done by re-
placing the quantum update of the algorithm with a classical counterpart to calculate
the expectation values of the correlations. Furthermore, simulations with higher QAOA
depths could be explored. Moreover, instead of employing the low-energy QAOA state
to perform a deterministic update step, it could be utilized to inform a probability
distribution. This enables a probabilistic selection of the correlation and its associated
enforced constraint. This approach becomes particularly interesting when combined
with the backtracking procedure. In QI-BnB, during the quantum update, it is possi-
ble to encounter situations where there is no significant distinction between the largest
absolute expectation value of a correlation and others (even a tie among multiple cor-
relations is no exception). In such scenarios, it can be beneficial to explore various
correlations to enforce a constraint on. These options could be explored by means of
backtracking.

The kind of modular design of the QI-BnB algorithm in terms of a quantum and a
classical part in the update step, offers significant advantages, particularly in terms of
its flexibility. It allows for the utilization of subroutines to mitigate performance limi-
tations inherent to local quantum algorithms such as QAOA. In our QI-BnB algorithm,
we have demonstrated how classical optimization techniques can be tailored according
to a specific optimization problem, using the Max-2-SAT problem as an example. Akin
to that, it could be valuable to design the algorithm to explore the geometric features
of the cost function. Subsequently, utilizing this information assists the solver in alle-
viating these topological barriers within the solution space. These barriers are often
crucial in limiting the performance of both classical and quantum algorithms. Success-
ful classical random K-SAT solvers have been developed using similar methods [10, 50].
In RQAOA and QI-BnB, in each update step, the variational parameters of QAOA are
optimized to minimize the energy of the cost Hamiltonian in regard to the QAOA state.
However, it could be advantageous to optimize these parameters using a modified cost
Hamiltonian. Several possibilities exist in this direction. For example, one can lo-
calize the Hamiltonian by adding a sum of one-point projectors to it, hence, favoring
assignments within specific regions of the solution space (e.g. searching in clusters
of near-optimal solutions, see Sec 1.2.3). Similarly, terms could be added to penalize
solutions within certain regions of the solution space. By combining this approach
with backtracking, it becomes possible to enforce hard constraints effectively, increas-
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ing penalization when violations occur during the course of the algorithm. Another
interesting approach, as demonstrated in [14], involves modifying the cost Hamiltonian
to produce solutions that are optimized for subsequent post-processing. One can see
the potential for various modifications and extensions of the developed algorithm.

In a more general direction the idea of QI-BnB to utilize problem-specific classical
procedures to incrementally extend the assignment and simplify the problem could
be extended to other combinatorial optimization problems such as the Max-Cut or the
Maximum Independent Set problem. Furthermore, QAOA is already a hybrid quantum-
classical algorithm, therefore the incorporation of quantum-informed classical update
rules seems like a natural extension. However, different quantum protocols other than
QAOA could be utilized to produce low-energy quantum states. Even non-gate-based
devices, like quantum annealers, could be used for this purpose.
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2.3 Quantum Informed Cluster Algorithm

As discussed earlier, a wide range of optimization problems can be formulated as
ground-state problems for Ising-like spin glasses. Heuristic optimization algorithms like
simulated annealing are widely used techniques to address such problems. However,
simulated annealing encounters severe challenges when dealing with complex energy
landscapes, as it can easily get stuck in local minima. In this section, we propose
a novel quantum-informed non-local cluster algorithm to alleviate this issue. A low-
energy quantum state is prepared to measure favorable correlations in the space of
low-energy solutions. By utilizing this approach, non-local clusters are built probabilis-
tically. These clusters aid in navigating the prospective solution through the intricate
energy landscape and enable escape from local minima. A comprehensive numeri-
cal investigation is conducted on problems with tunable hardness defined on 2- and
3-high-dimensional lattices with over 200 variables. Key properties of the algorithm
are explored and its performance is compared to well-established classical optimization
algorithms such as simulated annealing and parallel tempering. Finally, different strate-
gies and possible modifications of the algorithm are discussed, including the possibility
of utilizing this strategy to construct an MCMC algorithm.

2.3.1 Algorithm

Cluster algorithms have a rich history in the simulation of spin-glass systems. Early
examples of Monte Carlo algorithms of this kind include the Swendsen-Wang algorithm
(applicable to both Ising and Potts models)[23] and the generalized Wolff algorithm[64].
These algorithms have demonstrated particular efficacy in simulating spin glasses close
to criticality, mitigating the issue of critical slowing down. The random cluster model [33]
serves as a valuable conceptual framework when working with cluster models. However,
for our cluster algorithm, we adopt a more informal approach.

Our Quantum Informed Cluster Algorithm (QICA) is a heuristic non-local cluster al-
gorithm designed to find the ground state of Ising-like spin glasses. To the best of our
knowledge, this is the first cluster algorithm that utilizes quantum computing. Various
quantum protocols could be used to prepare a low-energy state to inform the QICA.
However, in the following, we will only use depth p = 1 QAOA to prepare the quan-
tum state since this allows us (like in the case of the QI-BnB algorithm) to perform
simulations with more than two hundred variables.

The algorithm initiates by optimizing the variational parameters of the QAOA state
according to the given problem Hamiltonian. Subsequently, the correlation between
connected variables on the interaction graph is computed. This involves measuring
the expectation values of two-point correlations in the form of ZiZj according to the
QAOA state. Each expectation value determines a corresponding link probability
plij(x) = max(0, xixj⟨ZiZj⟩) on every edge (referred to interchangeably as ”edge” or
”link” hereafter). These link probabilities contain information pertaining to the low-
energy structure of the solution space (since they are calculated via the low-energy
QAOA state).
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Following the assignment of link probabilities to each edge of the graph, the algorithm
follows a similar procedure to simulated annealing. Initially, a starting temperature is
chosen and a random configuration is prepared. Subsequently, consecutive update steps
are performed while gradually decreasing the temperature toward zero. In each update
step, a random seed is chosen, and a cluster is built according to the link probabilities.
We refer to a link as being activated, if it connects variables to the cluster. The entire
cluster is then flipped. Notably, unlike simulated annealing, where individual spins are
flipped, this algorithm flips clusters that are deemed to be energetically favorable for
QAOA. The algorithm can be seen in Alg. 9.

Algorithm 9 QICA (linear schedule)

Input: Classical and corresp. quantum Hamiltonian H(.) & Ĥ with number of spins n,
final inverse temperature βf , number of iterations m, QAOA depth p
Output final state x, final energy E

1: V,E ← CreateGraph(Ĥ)
2: Prepare QAOA state with optimal parameters:

β∗,γ∗ = argminβ,γ(⟨ψ(β,γ)| ˆ̂H |ψ(β,γ)⟩) ▷ (β,γ) ∈ [0, 2π)2p

3: Create link probabilities and store in pl: ▷ container incorp. |E| link prob. functions
∀(i, j) ∈ E : plij : (xi, xj) 7→ max(0, xixj ⟨ψ(β∗,γ∗)|ZiZj |ψ(β∗,γ∗)⟩).

▷ note: probability function is symmetric: ∀i, j : plij = plji
4: β = 0 ▷ Starting annealing procedure
5: ∆β = βf/(m− 1)
6: Initialize random spin configuration x
7: E = H(x)
8: for step = 1 to m do
9: i← Uniform(1, n) ▷ Choose seed with uniform probability (natural number)

10: C ← CreateCluster(i, pl) ▷ Function creates cluster according to link probabilities
11: x′ ← Flip(x,C) ▷ Flip spin at site i
12: ∆E = H(x′)−H(x)
13: if ∆E < 0 then Accept state
14: x← x′ ▷ Accept state if energetically favourable
15: if H(x) < E then
16: E = H(x) ▷ Update best energy
17: end if
18: else if Uniform(0, 1) < e−β∆E then
19: x← x′ ▷ Accept state with prob. e−β∆E

20: end if
21: β = β +∆β ▷ Reduce temperature
22: end for

In each update step, the cluster building proceeds as follows: firstly, a random seed is
selected. From this seed, the cluster construction begins. Each link that connects a
spin outside the cluster with a spin inside the cluster is probed. If the orientation of
the two spins relative to each other is favored in regard to the low-energy information
produced by QAOA, then there exists a certain probability that the link between these
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two variables is going to be activated and therefore the outlying spin becomes part
of the cluster. The cluster grows in this manner until all outlying spins which are
connected to the cluster via a link, fail to connect to the cluster. Such a cluster can be
seen in Fig. 2.17. The pseudocode of the CreateCluster function is shown in Alg. 2.17.

Figure 2.17: Illustrative example of a cluster, constructed on a lattice. The activated links
(green lines) connect spins to form a cluster. The cluster began to grow starting from spin 4
(seed).

Algorithm 10 CreateCluster

Input: Seed index k, probabilities pl.
Output C

1: V,E ← CreateGraph(Ĥ)
2: C = {k}
3: while continue == True do
4: ∀e ∈ E: ∃i ∈ e ∩ C ∧ ∃j ∈ e ∩ V \C =⇒ activate e with prob. plij(xixj)
5: Add all vertices to C that are attached to activated links e
6: if no vertices are added then continue = False
7: end if
8: end while

We also introduce a variation of QICA, called QICA-p algorithm. It aims to enhance
the effectiveness of cluster flips in our approach. The algorithm is identical to the one
presented in Alg. 9 but with one difference: the link probabilities are periodically mul-
tiplied by a factor of (3 · update count ·mod24)/10. By adjusting the link probabilities,
the algorithm can flip both smaller and larger clusters. The idea is that sometimes
larger cluster flips could be needed to escape local minima and applying smaller cluster
moves could help to locally thermalize these flips.



2.3 Quantum Informed Cluster Algorithm 51

2.3.2 Results

In the following, we investigate the performance of the QICA algorithm on a regular 2D
and 3D lattice. As the algorithm design closely resembles that of simulated annealing,
with the inclusion of quantum-informed cluster building, it is crucial to achieve better
performance than simulated annealing itself. Otherwise, the formation of clusters would
merely introduce unnecessary additional computational costs. In order to evaluate the
benefit of the information about low-energy states provided by QAOA, QICA is also
compared to a classical counterpart in which clusters are built randomly. Furthermore,
the performance dependence of the algorithm in regard to the quality of the QAOA
state is analyzed. Finally, QICA is compared to the commonly used parallel tempering
algorithm.

All instances are generated using the tile planting technique implemented in the Chook
library [57]. Besides knowing the ground state energy of the problem, this allows us
to create problems with tunable hardness, thereby creating instances within a wide
range of difficulty, up to highly challenging ones with very rugged energy landscapes.
The hardness of these instances on the 2D lattice is investigated in [58]. 3 probability
parameters can be chosen that influence the hardness of the problem. Perera et al.
showed that setting p3 = 0 the hardness of the problem increases with higher values
of the parameter p2. Therefore, we create problems with varying hardness parameters
HP = p2 on the 2D lattice. On the 3D lattice, there are two free probability parameters
to choose. Setting the parameter p42 = 0, it was shown in [36] that the hardness of the
instance increases with increasing p22. Therefore, we generate problems with varying
parameters p22 = HP on the 3D lattice. Another important quantity that appears
throughout this chapter is the approximation error which we define as α = 1− E/E0,
where E0 is the ground state energy of the problem and E the energy achieved by the
algorithm. The chosen parameters for simulated annealing and parallel tempering can
be found in App. 2.3.4. Annealing algorithms need to be restarted for evaluation at
different times due to fixed start and final temperatures determined by the annealing
schedule. Varying the number of flips alters the slope at which temperatures decrease
until reaching the final value of 1/T = β = 6.

To better understand the value of the information QAOA yields for building the clusters,
we additionally implement a classical uninformed version of our cluster algorithm in
which all link probabilities plij are set to a constant. For the 2D and 3D clusters, the
classical counterparts are tested using ten different constant probabilities ranging from
0.1 to 1.0 in increments of 0.1. It turns out that for the 2D lattice, the optimal value
for the link probabilities is p = 0.3 and for the 3D lattice it is p = 0.2. This algorithm is
coined ”Uninformed” in the following simulations. The annealing schedule of QICA(-
p) and the classical uninformed cluster algorithm is chosen to be identical to the one
of simulated annealing so that they can be better compared. The time for all these
different algorithms is measured in terms of the number of clusters, respectively single
spin flips. Even though building a cluster comes at a computational cost for the cluster
algorithms, this aspect is not taken into account during simulations. The reason for
this is the challenge of comparing it to non-cluster algorithms. The same is true for
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the replica exchange step in parallel tempering. Finally, it is important to mention
that we use an unfavorable metric for QICA in comparison to parallel tempering. The
performance of the algorithms is evaluated by measuring the number of optimally solved
instances, or the average approximation error depending on the running time. However,
the performance of algorithms that employ an annealing schedule like QICA(-p) is
usually evaluated differently. Typically, these algorithms are run multiple times, and
the best solution is selected instead of relying on a single prolonged run [62].

Comparison to Classical Counterparts

In Fig. 2.18 we compare QICA(-p) to classical algorithms. For six different hardness
parameters, a problem was generated on a 14×14 2D lattice. The number of flips (time)
increases from top to bottom. The classical uninformed cluster algorithm outperforms
simulated annealing. QICA and QICA-p both significantly outperform simulated an-
nealing and their classical counterpart. The periodic change in link probabilities further
improves the performance of QICA. This difference in performance for the different
solvers holds for all different hardness parameters and for all times as well as for both
metrics, the approximation error and the number of optimally found solutions. As
expected, with increasing hardness parameters the number of optimal found solutions
decreases for each solver. However, QAOA-p even finds all solutions for the hardest
instances for the maximum number of cluster flips executed. It is also remarkable that
for a very low number of flips, QICA-p solves almost all easier instances optimally and
about half of the harder instances. Simulated annealing and the uninformed cluster
algorithm on the other hand, solve almost no instances during that time.

The performance of the solvers on the 6 × 6 × 6 3D lattice in Fig. 2.19 resembles the
results of the 2D lattice. QICA and QICA-p still outperform the classical algorithms.
However, the difference is not as pronounced as for the 2D lattice. Especially for
hardness parameters from 0.6 upwards, even QICA-p only finds less than half of the
optimal solutions. It seems that building clusters becomes generally more difficult on
this higher-dimensional lattice since the classical uninformed cluster algorithm provides
no advantage over simulated annealing anymore.
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Figure 2.18: Performance comparison of cluster algorithms and simulated annealing (SA) on
6 different problems with 6 different hardness parameters (HP ) with n = 196 variables on a
2D lattice. One hundred runs were performed for each solver on each instance. Horizontal
plots show the performance of the algorithms in metrics of the approximation error (left) and
the number of optimal found solutions (right) for a given time. One time unit corresponds
to 60 · n flip of the cluster, respectively a single spin. Details and chosen parameters for the
generated instances and the algorithms can be found in the text.

Comparison to Parallel Tempering

The simulations in Fig. 2.20 show how fast QAOA-p and parallel tempering reach the
ground state for 3 problem instances with different hardness parameters defined on
the 14 × 14 2D lattice. For 100 different runs of the two algorithms on each problem
instance, the percentage of optimal solutions found and the average approximation
error is visualized at different times. The behavior of the algorithm in regard to their
approximation error and how often they found the optimal solutions are qualitatively
the same. It can be seen that QICA-p outperforms parallel tempering for all instances,
independent of the hardness parameter. QICA-p reaches the ground state between 2
and 3 orders of magnitude fast than PT.

In Fig. 2.21 the same experiment is carried out as in Fig. 2.20 but on the 6× 6× 6 3D
lattice. Again QICA-p outperforms parallel tempering. Although the difference is less
pronounced and shows about 1 and up to 2 orders of magnitude.
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Figure 2.19: Performance comparison of cluster algorithms and simulated annealing (SA) on
6 different problems with 6 different hardness parameters (HP ) with n = 216 variables on a
3D lattice. One hundred runs were performed for each solver on each instance. Horizontal
plots show the performance of the algorithms in metrics of the approximation error (left) and
the number of optimal found solutions (right) for a given time. One time unit corresponds
to 60 · n flip of the cluster, respectively a single spin. Details and chosen parameters for the
generated instances and the algorithms can be found in the text.

Quantum State Quality and Performance

In Fig. 2.22 the average cluster sizes of QICA and for comparison also of the classical
uninformed cluster algorithm are visualized. These cluster sizes were measured in the
simulations of Fig. 2.18 and 2.19. The mean cluster sizes (number of sites involved in
a cluster flip) throughout the course of the algorithms when applied on an instance are
calculated. These values are then averaged over the number of independent runs on the
corresponding instance. One should keep in mind that the constant link probabilities for
the classical uninformed cluster algorithm were optimized. Therefore, it is interesting
to see that the average cluster sizes of the uninformed algorithm are so similar to the
ones of QICA. Furthermore, it can be seen that, for both lattices, there is a decrease in
the cluster sizes with increasing hardness of the instances. While there is a rather slight
decrease in cluster sizes for the 2D lattice, this correspondence becomes very evident
for the 3D lattice.
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Figure 2.20: Convergence behavior on 2D lattice. The simulation was performed on 3 of the
6 problems with n = 196 from Fig. 2.18. One time unit on the x-axis corresponds to n cluster
flips of QICA-p, respectively one flip in one replica of the parallel tempering algorithm (PT).
The top row shows on how many of the 100 independent runs the two algorithms achieved to
find the ground state within different times. The bottom row shows the average approximation
error over the 100 independent runs for each problem.

In Fig. 2.23 the performance of QICA dependent on different variational parameters of
the p = 1 QAOA state with varying quality is evaluated. The approximation error of
QICA on a problem instance with HP = 0.4 on the 2D lattice is plotted against the
different expectation values of the problem Hamiltonian according to their respective
variational parameters. A very clear improvement in the performance of QICA can be
seen as the quality of the QAOA states improves.
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Figure 2.21: Convergence behavior on 3D lattice. The simulation was performed on 3 of the
6 problems with n = 216 from Fig. 2.19. One time unit on the x-axis corresponds to n cluster
flips of QICA-p, respectively one flip in one replica of the parallel tempering algorithm (PT).
The top row shows for how many of the 100 independent runs the two algorithms achieved to
find the ground state within different times. The bottom row shows the average approximation
error over the 100 independent runs for each problem.

2.3.3 Discussion

We have proposed a novel hybrid quantum-classical cluster algorithm. It is important to
highlight that this approach differs inherently from the recursive optimization utilized
in RQAOA and QI-BnB. QICA only executes the quantum protocol at the initial stage
of the algorithm to produce a low-energy state. This state is subsequently utilized in
the cluster algorithm, where it calculates link probabilities. These probabilities are
then employed in the annealing procedure to repeatedly form energetically favorable
clusters. These clusters are flipped to eventually reach a low-energy state. Utilizing
quantum computing only in the initial phase of the algorithm to provide information
to the classical solver to enhance its performance, is intriguing in and of itself. It
represents a relatively unexplored approach in the literature and has the potential to
beneficially leverage quantum capabilities in solving problems that are challenging to
tackle classically.

Extensive numerical simulations have demonstrated the remarkably strong performance
of QICA across problems in 2 and 3 dimensions in various hardness regimes. As re-
quired, QICA significantly outperforms simulated annealing as well as its classical coun-
terpart, the uninformed cluster algorithm. By periodically varying the link probabili-
ties, the performance of QICA is further improved. QICA-p even outperforms parallel
tempering on the 2D and 3D lattice, despite the fact that PT is usually very strong on
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Figure 2.22: The average cluster sizes of QICA and the classical uninformed cluster algorithm
on the 2D and 3D lattice. The cluster sizes were measured during the simulations performed
in Fig. 2.18 and 2.19. Additionally, the mean value and standard deviation of the cluster
sizes for the run of the algorithm on a single instance were calculated. These values were
also averaged over the one hundred independent runs of the algorithm on the corresponding
instances.

problems with rugged energy landscapes, like the ones investigated. This was achieved
even though the used metric was particularly unfavorable for a heuristic algorithm like
QICA-p. However, it should be mentioned that we did not account for the additional
computational cost associated with building the cluster in QICA (we also neglected
the replica exchange cost in PT). The performance difference to the aforementioned
well-established classical solvers is less pronounced on the 3D lattice than it is on the
2D lattice. It turns out that the cluster sizes decrease with the increasing hardness of
the problems. Furthermore, initial explorations have been carried out on the so-called
Wishart lattice [37] (also incorporated in the Chook library), which exhibits all-to-all
connectivity and can therefore be interpreted as an infinity-dimensional lattice. In this
case, QICA and QICA-p were unable to improve on simulated annealing in a significant
way. However, these results are not documented in this thesis, since the exploration
is incomplete and further experiments with different setups of QICA still have to be
conducted. To conclude, experiments demonstrated that our initial intuition regarding
QICA has been validated since we have shown that QAOA states with lower energy
indeed aid the algorithm in effectively traversing the energy landscape and achieving
better performance.
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Figure 2.23: Performance of QICA dependent on the quality of the QAOA state. A problem
with HP = 0.4 was generated on a 20x20 2D lattice. The parameter space [0, π) × [0, π)
of depth p = 1 QAOA was divided in a 400 × 400 grid. After calculating all energy expec-
tation values of the problem Hamiltonian according to the QAOA states evolved with these
parameters, the parameters were sorted according to their energy values. Dividing this set of
parameters into 10 equally spaced sections of parameters in regard to the energies of QICA,
11 random parameters were picked out of each section. With these 110 QAOA states the
correlations of the problem variables were calculated to inform QICA. The achieved approx-
imation error of QICA in dependence on the QAOA energy expectation values of the used
parameters is plotted. A linear regression was calculated via the mean values of the approxi-
mation errors.

2.3.4 Outlook

The novel approach of incorporating quantum information into a cluster algorithm
opens up a plethora of subsequent research directions. One crucial question that arises is
whether it is feasible to design the algorithm as a Markov Chain Monte Carlo (MCMC)
algorithm. However, it will probably be challenging to devise a MCMC cluster algo-
rithm that shows a certain level of activity also for low temperatures. To achieve this,
one could explore adjusting the probabilities of cluster construction and cluster-flipping
acceptance, ensuring that the algorithm satisfies detailed balance (while ergodicity can
be relatively straightforwardly fulfilled). However, a major hurdle is to construct clus-
ters that are not always rejected at low temperatures, as this would lead to unnecessary
computational costs. Building a rejection-free MCMC cluster algorithm like Swendsen-
Wang (acceptance probability 1/2 to be concise) might be challenging when leveraging
the information from QAOA states. QAOA is a heuristic algorithm and is not inher-
ently linked to the system’s internal energy. To overcome this obstacle, one intriguing
approach could involve simulating multiple replicas. This technique has demonstrated
great utility in similar contexts [40, 66].

These aforementioned possible limitations aside, sticking with a heuristic optimization
algorithm offers several advantages, as it grants greater flexibility in designing and
tailoring the algorithm to specific problems. The proposed algorithm design should



2.3 Quantum Informed Cluster Algorithm 59

serve primarily as a prototype, leaving room for exploring various different formulations
of the algorithm and optimizing the parameters. This includes examining different
link probability functions, optimizing the parameters of the algorithm, or establishing
dependencies on the underlying lattice’s structure. For instance, it may prove beneficial
to scale the link probabilities based on the corresponding vertex’s degree. Another
possibility is to adjust the acceptance probability according to the cluster size, making
it easier to flip larger clusters. This adjustment could also aid in mitigating percolation
issues. Another interesting approach could be to simulate several replicas akin to
parallel tempering and allow exchanges between them. However, instead of simulating
each replica at a different temperature, each replica could be simulated with different
link probability functions. One way to do this could be by starting each replica with
a different bitstring. Choosing bitstrings separated by a large distance (possibly even
using pre-optimized bitstrings) might help the algorithm to incorporate information
about large parts of the solution space and share this information among the replicas
via the exchange step.

Furthermore, a wide variety of quantum protocols could be utilized to calculate the low-
energy quantum state. This includes not only gate-based approaches like QAOA, but
also quantum annealers or neutral atom devices. It is particularly intriguing to inves-
tigate the algorithm’s effectiveness on higher dimensional lattices and explore whether
the suspicion that the performance of QICA deteriorates with increasing lattice dimen-
sion holds true. Hopefully, the proposed techniques can help to alleviate this issue and
potentially yield an algorithm that outperforms parallel tempering even on the Wishart
lattice.

Finally, the QICA raises the broader question if it may be useful to use quantum
computing to provide information that is difficult to generate classically, to inform
and improve classical heuristic solvers, instead of using the hybrid quantum-classical
approach to directly solve the problem of interest.
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Appendix

Parallel tempering and simulated annealing setup

For a Max-2-SAT problem with n variables simulated annealing has performed 600 · n
update steps. The annealing schedule consists of evenly spaced temperatures in β = 1

T
,

with a starting temperature 1
T
= β = 0 and a final temperature of 1

T
= β = 6.

The same annealing has been chosen for the Ising-like problems generated via the
Chook library. Only the number of update steps diverges. These are specified in each
simulated problem.

In the parallel tempering simulations 24 replicas with a random configuration have been
initialized. The temperatures of the replicas are evenly spaced between the replica with
the lowest temperature T = 0.1 and the highest with T = 2.4. 2000 simulation cycles
have been carried out, while one simulation cycle consists of n update steps per replica
followed by one replica exchange. In all simulations in which parallel tempering has
acted as a benchmark, for each solver only in less than 0.2% of the instances it has
been outperformed.

The chosen parameters for the problems generated via the Chook library are identical,
but 16 replicas have been used instead of 24 and the number of cycles varies for the
different problems but are specified for each in the respective section.
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More Error Analysis

Similar to the discussion in 2.1.2 the plots in 2.24 show where depth p = 1 RQAOAmade
the wrong decision (same definition as in 2.1.2) for 100 randomly generated Max-2-SAT
problems with n = 60 variables and nc = 5. However, in this figure, the bars show
which of the 55 elimination steps (chronologically ordered) was flawed. It can be seen
that generally, the wrong decisions happen over the whole course of the algorithm, at
earlier but also at later elimination steps. While for the clause-to-variable ratio α = 2
there are two weight concentrations, one at around elimination step 10 and another
one after 40, for higher clause-to-variable ratios the occurrences of wrong decisions are
shifting towards earlier elimination steps.
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Figure 2.24: Wrong decisions dependent on the number of update step in RQAOA. For three
different clause-to-variable ratios α, 100 random Max-2-SAT instances with n = 60 variables
and three different clause-to-variable ratios α were generated on which level p = 1 RQAOA
(nc = 5) failed to produce the optimal solution. All optimal solutions for a certain instance
were determined with the RC2 solver. A wrong decision is defined as in 2.1.2. The bars
indicate at which of the 55 (n − nc) elimination steps RQAOA performed enforced a wrong
correlation constraint on the solution.
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