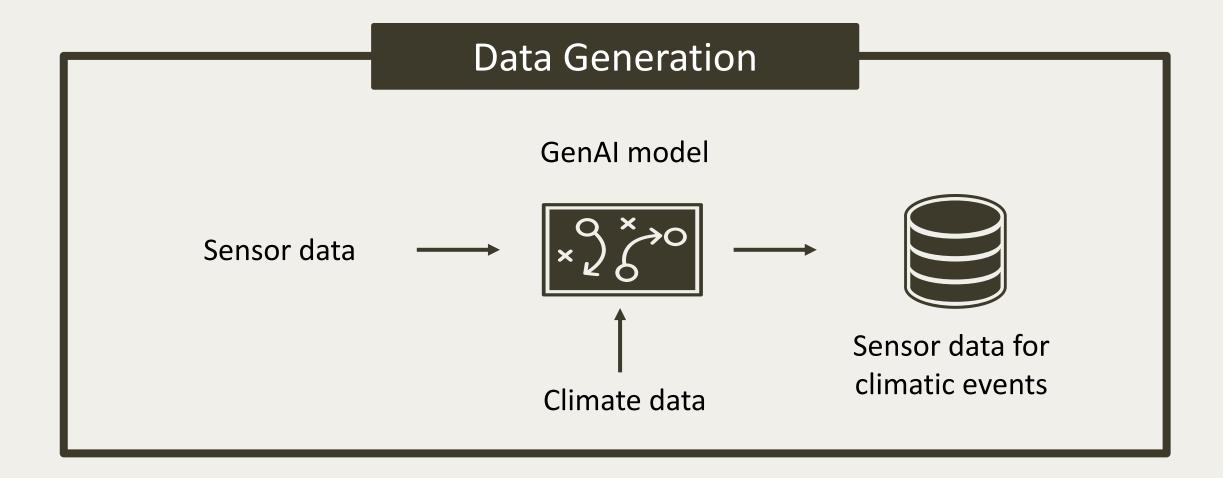
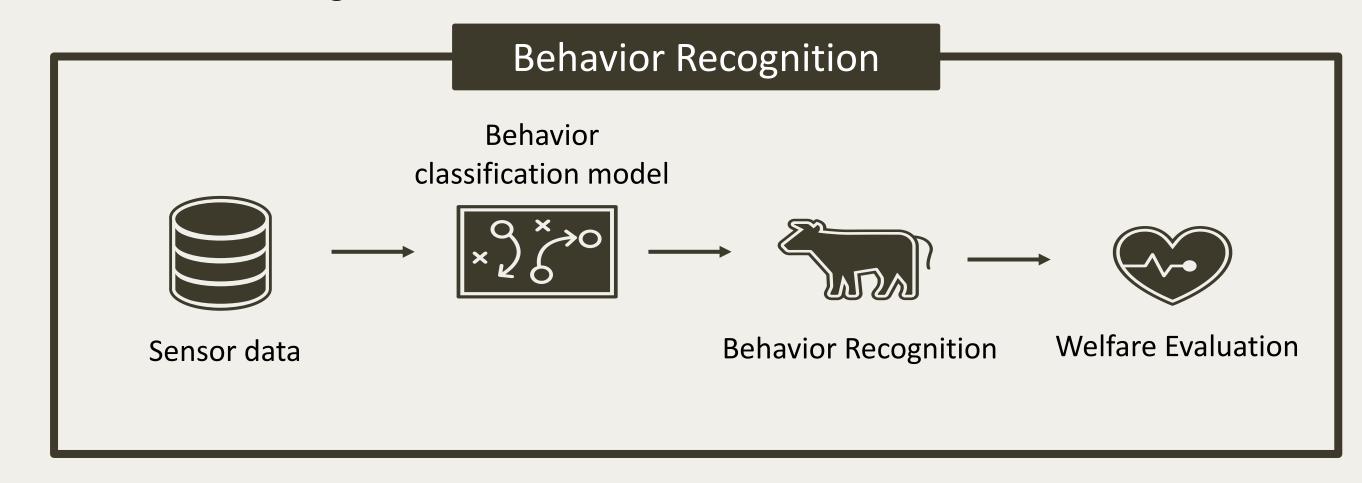
Modeling Climate Change Impacts on Cattle Behavior Using GenAl

A Pathway to Adaptive Livestock Management

Regina Eckhardt¹, Reza Arablouei², Kieren McCosker³, Heinz Bernhardt¹





PROPOSED PROCEDURE

- Goal: Utilize generative AI to predict the impact of climate change on cattle
- Relevance: Proactive assessment of future challenges in livestock farming
- Steps: Climate forecasting, data generation, behavior recognition

- Climate forecasting: Develop future climatic scenarios to analyze cattle behavior
- Data generation: Learn generative AI models and synthesize realistic data for climatic scenarios
- **Behavior recognition:** Derive the cattle behavior for scenarios

FORECASTING

CLIMATE CHANGE OUTLOOK

Scientific basis:

- Analysis based on 6th IPCC assessment reports
- **Emission scenarios:**
 - High, medium and low emission scenarios
- Heat stress focus:
 - Cattle are very susceptible to heat stress
 - Focus on rising temperatures, especially high-emission scenarios

CLIMATE CHANGE IMPACT ON CATTLE BEHAVIOR

- Climate Change impact:
 - Focus on effects of heat stress on cattle behavior and welfare
- Heat stress effect:
 - Disrupted homeostasis, reduced feed intake and milk yield
 - Lowered reproductive efficiency, increased disease vulnerability
- Objective:
- Forecast potential climate change scenarios
- Develop adaptive strategies for enhanced livestock management

DATA GENERATION

CREATE SYNTHETIC SENSOR DATA WITH GENAI

- Extensive review on genAl applications for analyzing accelerometer time-series data
- Key studies:
 - Afandizadeh Zargari et al. (2023): Refining accelerometer data with genAl
 - Munoz-Organero & Ruiz-Blazquez (2017): GenAl model for human movement
- Research focus:
 - Utilizing GenAl and Deep Learning techniques like Autoformer to generate synthetic data

REASONS TO CHOOSE GENAL

- Efficiently process large amounts of data:
 - Accelerometer data is available with multiple measurements per second
 - Generating data for unseen scenarios:
 - Models learn relationships and important characteristics without complex parameter tuning
 - Simultaneously generate realistic data
 - Effective adaptation of the transformer architecture, utilize existing models

BEHAVIOR RECOGNITION

DERIVE CATTLE BEHAVIOR

- Deep Learning models provide precise insights into cattle welfare
- Behavioral changes detected through these models can indicate health issues, enhancing early intervention strategies
- Deep Learning models outperform other models in accuracy despite their computational demands

CONCLUSIONS

- Climate action: Climatic scenarios highlight the urgency for climate interventions
- Regional insights: Guides retrieval of region-specific insights
- Future research: Supports studies on climate change adaptation

MODEL DEVELOPMENT

Steps to be taken to integrate all components effectively:

- 1. Climate scenario development
 - Model climate scenarios using baseline meteorological data
- 2. Data preprocessing
 - Perform quality checks, normalize data and add seasonal features
- 3. Generative model application
 - Adjust and apply generative models developed for similar data
- 4. Cattle behavior model application
 - Select the most accurate model and apply it to generated data
- 5. Cattle welfare derivation
 - Analyze classification results and derive conclusions on cattle welfare

- 1. Chair of Agricultural Systems Engineering, TUM School of Life Sciences, Technical University of Munich, Freising, Germany CSIRO's Data61, Pullenvale QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia QLD, Australia