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ABSTRACT 
 
Material Passports (MP) enable a combined assessment of life cycle assessments and circularity 
assessment of buildings. Semantically rich 3D models, such as Building Information Models 
(BIM), facilitate deriving consistent and automated creation of MPs. Nevertheless, a time-
consuming effort is still needed to manually match material and element information to automate 
the BIM-based MP. To improve this step, we propose a method of semi-automatically matching 
BIM materials to the relevant material datasets using Semantic Textual Similarity and fine-tuning 
pre-trained Large Language Models (LLM). The method matches the semantically most similar 
environmental material datasets to every BIM material to enrich further information. We are fine-
tuning the LLM by proposing different strategies, such as adding domain knowledge, testing 
different loss functions, applying different labeling, adding negative pairs or filtering, and using 
manually matched pairs of datasets from 23 real-world case studies. Combining different strategies 
for fine-tuning a pre-trained LLM significantly increases the accuracy of the proposed method of 
matching BIM elements and materials to environmental material datasets. 
 
INTRODUCTION 
 
In 2020, buildings and the construction industry were responsible for 36% of the Greenhouse gas 
(GHG) emissions as well as for ca. 37.5 % of the waste generation within the European Union 
(European Commission 2020). To tackle the insufficient documentation for realizing the reuse and 
recycling of buildings, the concept of material passports (MP) is introduced in different scales, 
such as material, product, or building (Çetin et al. 2023). Building Information Models (BIM) 
contain geometric and semantic information about buildings and can facilitate MPs (Honic et al. 
2019). Besides precise quantity take-offs, further semantic information about the elements' layers, 

mailto:kasimir.forth@tum.de
mailto:patrick.berggold@tum.de
mailto:andre.borrmann@tum.de


Proceedings Paper Formatting Instructions – 2 –  Rev. 01/2024 

materials, and detachability can be included. However, manual steps are still required to enrich 
materials from circularity databases to those used in BIM (Honic et al. 2019), as architectural 
nomenclature differs from the more precise databases. These manual enrichments are expensive 
in costs and labor. We define this automated enrichment step as the primary technology gap to be 
addressed by this publication.  

To close this gap, we propose a novel method to automatically enrich open BIM models 
with material information from Life Cycle Assessment (LCA) and circularity databases using 
Natural Language Processing (NLP) and its subtask Semantic Textual Similarity (STS). Usually, 
the naming of BIM materials is more generic, e.g., “pre-cast concrete”, while datasets for MPs are 
more specific, e.g., “reinforced concrete” with specific compressive strengths. A previous 
publication showed a similar approach using a well-structured database and a pre-trained Large 
Language Model (LLM) for LCA (Forth et al. 2023). In this publication, though, we propose a 
domain-specific fine-tuning of pre-trained LLM using different strategies for this task. These 
include domain-specific abbreviations, loss functions, and additional information from the BIM 
model. Our method is based on open BIM data formats like Industry Foundation Classes (IFC). 
 
BACKGROUND AND RELATED WORKS 
 
BIM for Material Passports. Recently, different researchers have proposed BIM-based methods 
for material passports (MP). The findings suggest that LCA-based BIM plugins have significant 
potential for improving circularity in early design stages but emphasize the importance of data 
accuracy, effective management, clear guidance for modeling, and increased knowledge in 
implementing LCA and circular economy concepts. Honic et al. introduced a BIM-based MP 
approach to optimize the recyclability of buildings. However, they identified the manual material 
matching by a specialist as a significant obstacle (Honic et al. 2019). Atta et al. developed a 
framework for digital MPs using BIM, considering the deconstructability of elements (Atta et al. 
2021). However, their approach is based on the BIM authoring tool Autodesk Revit and is limited 
to its closed BIM workflows. Gebetsroither et al. compared current BIM-based approaches for 
building Material passports mainly in the German-speaking market (Gebetsroither et al. 2024). 
They came to the conclusion that the approach by Madaster and from EPEA is currently 
practicable, and the BIM integration not only saves time but also supports the documentation and 
archiving of the building. The discussed approaches lack open BIM data exchange and a fully 
automated process of matching material datasets from external databases to those of the BIM 
model. The detachability, deconstructability, or connection types of elements for circularity 
assessments are out of the scope of this publication and part of future research. 
 
Fine-tuning Large Language Models. As most large language models (LLM) were trained on 
generic text, they do not always fit well into domain-specific tasks. Accordingly, domain 
adaptation needs to be applied for domain-specific use cases. Usually, domain adaptation is fine-
tuning a pre-trained language model (PLM) on a domain-specific, new dataset. This fine-tuning 
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process adjusts the original model's weights, aligning them with the specific attributes of the 
domain data and the targeted task. Reimers and Gurevych present Sentence-BERT (SBERT), “a 
modification of the pre-trained BERT network that uses Siamese and triplet network structures to 
derive semantically meaningful sentence embeddings that can be compared using cosine-
similarity" (Reimers and Gurevych 2019). Their approach focuses on semantic textual similarity 
(STS) and outperforms other sentence embedding methods. For improving the performance of 
fine-tuning BERT in a multitask domain, such as sentiment analysis, paraphrase detection, and 
STS, Jadwin and Huang employed an in-domain pre-training and Multiple Negative Ranking Loss 
Learning (MNRL) (Jadwin and Huang 2023). They concluded that MNRL fine-tuning has the 
highest impact on performance optimization. Sachidananda introduced adaptive tokenization 
(AT), a method for efficiently adapting PLMs to new domains by expanding the tokenization 
vocabulary with domain-specific token sequences (Sachidananda et al. 15.09.2021). AT achieves 
significant performance improvements without requiring further language model pre-training, 
offering a promising approach for domain adaptation in natural language processing tasks. 
Generally, these methods show different approaches for domain adaptation and fine-tuning of pre-
trained language models, which will be further discussed later. 
 
METHOD 

 
Figure 1. The general workflow of semantic enrichment of IFC models for Material 

passports. 
 
General Workflow. As shown in Figure 1, the general workflow consists of four main steps. The 
first step includes the BIM modeling in the authoring tool (1.a) and the IFC export (1.b). The 
detailed requirements for the IFC export are described in the implementation section 4.2. The next 
step 2.a contains a quantity take-off of all relevant elements and materials using the base quantities 
of each element and layer. Step 3.a describes the main part of the proposed method, called semantic 
model enrichment. The quantity take-off derived in the previous step is used to automatically 
match the corresponding datasets from the material database (3.b). For this process of semantically 
enriching the IFC model, the highest semantic similarity of the material datasets with each material 
of each IFC element is used. We fine-tune a monolingual LLM domain specifically for this task 
based on the German language (3.c). In the final step 4.a, we can upload the semantically enriched 
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and enriched IFC model to a Material Passport platform for further analysis, such as life cycle 
assessments (LCA) or circularity assessments. 
 
Strategies for fine-tuning domain-specific LLM and improving matching performance. We 
propose five different strategies for the domain-specific LLM fine-tuning to improve the STS and 
matching performance: Strategy 1 - Adding domain-specific abbreviations, Strategy 2 - Applying 
different loss functions for fine-tuning, Strategy 3 - Adding different/ multiple labels for further 
context information (Element name, classification, IfcType, etc.), Strategy 4 - Adding negative/ 
contradicting word pairs, and Strategy 5 - Filtering word pairs according to IfcType. 

As shown in previous studies with similar model enrichment tasks but for different analysis 
types (Forth et al. 2023), domain-specific abbreviations were a big challenge for the matching 
approach. Therefore, our first fine-tuning strategy is to train LLM with these AEC- and BIM-
specific abbreviations.  

For the second strategy, the following suitable loss functions are proposed for our 
application of fine-tuning using manually matched word pairs. In brackets, the typical labels for 
positive or negative word pairs are shown according to (Reimers 2023): 

a) Cosine Similarity Loss: manual positive matches (0.8), negative matches (0.3) 
b) Contrastive Loss: positive (1), negative (0) 
c) MNRL – Multiple Negatives Ranking Loss: no labels needed 

Another strategy for improving the fine-tuning performance is to add further knowledge of 
the BIM models using different labels for each type of information in the training process. For 
every material pair, we also know the IFC element name, the IfcType, and usually the 
classification. With the Softmax loss function, we can use different labels for fine-tuning, 
including this additional information. Therefore, we propose the following labels: Abbreviations 
(0), IFC material – positive material dataset (1), IFC element name – positive material dataset (2), 
classification – material dataset (3), IFC Type – material dataset (4), IFC material – contradicting 
material dataset (5). 

As shown for the last label, the fourth strategy for improving the fine-tuning and matching 
performance is to include negative pairs. The MNRL has only positive word pairs with anchor ai, 
and pi being positive. But it assumes all other positives pj are the negative pairs, so ai and pj for 
i!=j are negative pairs. We can manually create negative pairs for all other loss functions according 
to the same logic but also check that pi!=pj. The negative labels have already been introduced in 
paragraphs of the previous strategies. This strategy can be realized the Cosine Similarity Loss (4a) 
as well as Contrastive Loss (4b).  

The fifth strategy includes a filtering step of the material database. As the used material 
database is unstructured, we add a filter structure using different IfcTypes, such as IfcWall, IfcSlab, 
IfcCovering, IfcColumn, IfcDoor, IfcWindow, and IfcRoof. To enrich only applicable material 
datasets per IfcType, we check for all positive word pairs for their related IfcType and save the 
material dataset. Instead of comparing all 387 material datasets for each IfcMaterial, we can limit 
the material datasets to 82 for IfcSlab, 79 for IfcWall, 51 for IfcCovering, 21 for IfcColumn, etc. 
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This strategy does not improve the fine-tuning process but improves the matching performance 
afterward. 
 
Combination of different strategies. We briefly describe how different strategies can be 
combined with each other to improve the fine-tuning process and match performance further. 
Adding abbreviations (strategy 1) and the filtering process (strategy 5) can be combined with all 
different strategies. Multiple labels (strategy 3) can only be realized with the Softmax Loss 
function, as the other functions don't allow multiple labels. Nevertheless, negative pairs can be 
realized with the Cosine Similarity Loss and Contrastive Loss functions. MNRL already 
incorporates the negative pairs, as described in the previous subsection. Different Loss functions 
could be combined in case more model context was fine-tuned with multiple labels and Softmax, 
and this LLM is used afterward as the base model for another fine-tuning process with Cosine 
Similarity, Contrastive, or MNR Loss function or in the opposite order. 
 
Matching materials by highest Semantic Textual Similarity (STS). Figure 2 shows the general 
matching workflow of matching the semantically most similar material of the material database to 
each IFC element layer's IFC material. To this end, first (1), all IFC elements are iterated (1.a) and, 
next, filtered according to their IfcType if the filtering strategy (S5) is applied. If not, we go to the 
following step (1.c) of iterating for each element and its material layers. These materials are then 
compared with the whole or the filtered material database, so the material datasets are iterated 
(1.d). Each IfcMaterial (2.a) and each material dataset from the database (2.b) are encoded in the 
next step using different fine-tuned LLM. Next, the cosine similarity with each material from the 
database is calculated for STS (3.a). The material from the database with the highest cosine 
similarity is selected as the matched material for each IFC material (3.b). 
 

 
Figure 2. Automated material matching process of IFC materials to MP datasets. 

 
CASE STUDIES AND IMPEMENTATION 
 
Case studies and datasets. For the domain-specific abbreviations, we used 571 general AEC 
abbreviations and their descriptions (Bundesamt für Bauwesen und Raumordnung 2021) and 155 
BIM-specific abbreviations (Helmus et al. 2021), such as construction types or material 
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abbreviations. Both abbreviation datasets are in the German language. We employed 23 IFC 
models as case studies, where the IFC materials had already manually enriched PSets for the 
Madaster Platform (Frank 2021). Besides the availability of the provided case studies by LIST 
Eco, the Madaster platform is one of the few Building Material Passport providers using open 
BIM data format and the only commercial platform that embeds and manages a portfolio of MPs 
of several buildings (Gebetsroither et al. 2024). The case study projects are a mix of logistic, 
residential, and office buildings from different designers and clients. This assures a high 
diversity in the data and real-world adaptability. The matched materials from the material 
database mainly include 387 EPEA datasets (Frank 2021), but some were customized and added 
to the overall database. We extracted the matches of IFC materials and MP dataset following 
Madaster-specific PropertySet called "MaterialOrProductName". Based on these case studies, we 
derived 245 unique material matches and split them into 75% training, 184 positive word pairs 
for training, and 25% test samples (61 test pairs). 
 
Prototypical Implementation. To implement the proposed method of fine-tuning domain-
specific LLM, we used the cased version of the German BERT model ('bert-base-german-cased') 
as a base model for training (Chan et al. 2020). All IFC models and the EPEA database are 
provided in German language. For the prototypical implementation of the training pipeline, we 
used SentenceTransformers packages based on the SBERT method by Reimers and Gurevych 
(Reimers and Gurevych 2019). These packages incorporate all mentioned loss functions from 
Subsection 3.2. The different labeling for the additional domain knowledge from the IFC models 
was pre-processed accordingly after parsing all quantity take-offs. 
 
RESULTS 
 
Results of the overall matching approach using different fine-tuned LLM strategies. Figure 
3 depicts the achieved matching accuracy, so the ratio of correct and total matches/ predictions, 
when applying the different strategies. Instead of only showing the correct matches of the most 
similar solution, we add a continuous solution space of the maximum ten most similar matches. 
This is because the initial results would not have a significant difference, and a deeper analysis 
would not be possible. The results show that the base model ('bert-base-german-cased') has only 
44,26% correct matches, taking the most similar match into account, but increases up to 60,66% 
of correct matches considering the top 10 maximum similar matches. Different individual 
matching accuracies exist for domain-specific information considering AEC-overall and BIM-
specific abbreviations. Each abbreviation source slightly increases the matching accuracy. 
However, by combining both abbreviations, the matching accuracy significantly increases to 
67,21% for the top 10 matches. Adding multiple labels (strategy 3) increases the matching 
accuracy for the top four matches, but it even underperforms the base model for the following 
matches. The highest increase in the matching performance is using the filter strategy. The 
filtering is applied to the base model and reaches up to 75,41% correct matches. The loss 
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function with the highest matching accuracy is Multiple Negative Ranking Loss (MNRL), which 
already considers negative pairs, followed by Contrastive Loss. Cosine Similarity Loss even 
underperforms compared to the base model. Nevertheless, adding negative pairs significantly 
increases the matching performance. Overall, the loss function with the highest matching 
accuracy is Contrastive Loss, including negative pairs, although it's computationally more 
expensive than MNRL by a factor of ca. 100. 
 

 
Figure 3. c. 

 

 
Figure 4. Matching accuracy for combined strategies compared to the base model. 

 
Results of the overall matching approach using different combinations of the strategies. We 
defined a combination set of different strategies as follows: 

• C1: Training AEC-, BIM-Abbreviations (S1c), Material Datasets with MNRL (S2c) 
and filtering (S5) 

• C2: Training AEC-, BIM-Abbreviations (S1c), Material datasets with MNRL (S2c), 
multiple labels with SoftmaxL (S3) as base model, and filtering (S5) 

• C3: Material Datasets with ContrastiveLoss including negative pairs (S4b), AEC- and 
BIM abbreviations using MNRL (S1c) as base model, and filtering (S5) 

Figure 4 shows the results of the matching accuracies of combining different strategies 
compared to the base model. Generally, the results indicate that combining the individual 
strategies increases the matching accuracy even more. Nevertheless, adding more context with 
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multiple labels (S3) did not improve the overall performance (see Section 5.1). Adding this 
strategy to the combination of C1 lowers the accuracy. The best-performing combination of 
strategies is C3, reaching up to 80,33% matching accuracy for the top ten matches. The 
following section analyzes the results of the best-performing individual strategies and the best-
performing combination. 
 
Analysis of correct and wrong matches. As shown on the left side of Fig. 5, the base model has 
approximately 44% correct matches but ca. 66% wrong matches. The reason for false matches 
was classified according to the main material group of the IfcMaterials. Most of the wrong 
matches (31%) are related to reinforced concrete. Accurate matching is challenging, as most of 
the IfcMaterials are named "Stahlbeton" (Engl. "Reinforced Concrete"), but the Material 
Datasets are more diverse, including specific compression strength classes and reinforcement 
ratios. The reason for wrong matches with aluminum, steel, and others (mainly asphalt and Larch 
wood) is primarily that in the IfcMaterial, more than one material is included, while in the 
ground truth, only one Material Dataset is matched. For the insulation materials, there are in the 
ground truth matching instead of "XPS" other Material Datasets matched, such as "EPS", making 
direct matching impossible. This can be avoided by including multiple similar materials. 
 

 
Figure 5. Matching analysis of correct and reasons for wrong matches comparing the base 

model and strategies S1c, S4b, S5, and C3. 
 

Compared to the base model, the strategies S1c and S4b decrease the error of wrongly 
matching reinforced concrete by 11% (error cluster 1) and the error cluster 2-5 to 10-12%. 
Furthermore, only adding the filter reduces the error cluster of reinforced concrete by 18% and 
the other error clusters by 13%. Combining these three strategies solves the errors with steel and 
aluminum, and only the insulation error remains at 3% due to wrong classification. Furthermore, 
error cluster 5 still includes the error with the specific wood material. The error cluster 1 about 
reinforced concrete remains and can't be further solved. This is mainly because, for the wrong 
matches, different reinforcement ratios are added, which can not be predicted by the IfcMaterial 
alone. There are 23 different material datasets for reinforced concrete with varying ratios of 
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reinforcement, priorities, or user-specific datasets. This issue could be handled by adding this 
information before automatically matching to increase matching accuracy. 
 
Limitations. The most significant limitation of this publication is the limited number of 
matching samples in the dataset. From 23 real-world BIM models, only 245 unique matching 
samples were extracted, so the fine-tuning process took place with 186 samples. Also, the test 
datasets were limited to 61 matches. However, besides the limited number of samples, their 
quality also limits the accuracy of the matching. As previously analyzed, having multiple 
IfcMaterials matched to only one input limits the overall performance. Another limitation is that 
in this study, we only took one LLM network architecture into account. As we have German 
material expressions, we used the German version of BERT ('bert-base-german-cased') as the 
base model (Chan et al. 2020). Finally, there is no 100% matching accuracy possible. This means 
this approach is a support tool than fully automating the process. For this reason, we included the 
Material Dataset with the highest similarity and extended it to the top 10 most similar samples. 
 
CONCLUSION AND OUTLOOK 
 
In this paper, we introduce a method of (semi-)automatically matching BIM materials to the 
relevant material datasets using Semantic Textual Similarity (STS) and different strategies of 
domain-specific fine-tuning pre-trained Large Language Models (LLM). The method matches 
the semantically most similar material datasets to every BIM material for further analysis. We 
used the German BERT LLM and sentence embeddings using Siamese BERT-Networks for fine-
tuning. The five strategies and their combination increase the matching accuracy from 44,26% to 
80,33% by extending the solution space to ten material datasets with the highest semantic 
similarity. Therefore, the low matching accuracy of the most similar match leads to using this 
method as a support tool instead of a fully automated approach. Although we had 23 real-world 
case studies, the 245 material samples with different data quality are still limited. 

In our future research, we will use more case studies and material samples for training 
and testing with cross-validation for more robust solutions. Furthermore, a more structured 
database, rather than only differentiating by IfcTypes, could increase the accuracy of the 
matching in the filtering step. As we identified too many similar material datasets for reinforced 
concrete, we suggest an interim step of adding more information about reinforcement ratio and 
priority. Additionally, these fine-tuning strategies shall be transferred to multilingual training for 
enriching building energy models for building performance simulations (Forth 2023). Last, more 
information is missing, such as the connection type of different elements to derive the 
detachability index to enable fully automated circularity assessments in early design stages. 
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