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1. Introduction 

The ongoing development of Building Information Modeling (BIM) techniques has attracted 

increasing attention in architecture and engineering because of its many benefits for design and 

project management, streamlining paper-based processes to cut down on manual data entry, 

reducing both effort and the risk of errors (Borrmann et al. 2018). Even with these 

developments, many technical drawings of existing buildings remain preserved in paper 

archives, and digitizing those drawings is lengthy and costly. The conversion of 2D 

architectural building layouts into 3D representations has been a focal point in computer vision 

and pattern recognition (Vidanapathirana et al., 2021), (Liu, Wu, and Furukawa 2018), (Park and Kim, 

2021).  

However, existing research (LV et al. 2021), (WU et al. 2020), (LIU et al. 2020) has primarily 

concentrated on residential-scale floor plans, neglecting the intricacies of mixed-use building 

layouts found in transit hubs, educational buildings, shopping malls, museums, and hospitals. 

 

Figure 1: Example of mixed-use building layout in the analysis 

Unlike residential buildings, mixed-use buildings combine multiple functionalities into one 

structure, catering to large crowds of occupants. This unique characteristic presents a less-

explored domain. Unlike residential buildings, mixed-use buildings serve diverse functions, 

leading to intricate floor plan layouts. Residential structures are typically designed for a single 

purpose, resulting in straightforward floor plans optimized for living areas, kitchens, and 

bathrooms. However, mixed-use buildings designed for multiple functions exhibit greater 

complexity. The increased floor area, incorporation of vertical transportation spaces like 

elevators and staircases, and non-standard wall forms and door/window sizes make accurate 
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wall, door, and window detection in 2D plans challenging and hinder the precision of 

vectorization and 3D reconstruction.  

This paper proposes a novel data-driven approach for vectorization and 3D reconstruction of 

mixed-use building layouts. The information from the drawings is extracted from two neural 

networks: the first detects the pixels depicting walls following a semantic segmentation 

approach, and the second detects the openings in the image using object detection. The 

information is post-processed and combined to obtain a 3D model. 

2. Related Work  

Various methods exist for converting 2D floor plan images into 3D models, highlighting diverse 

approaches. Graph Neural Networks (GNNs) and graph-based representations have effectively 

handled intricate floor plans with unconventional objects (Simonsen et al. 2021). However, they 

require the layout to have vector representations provided through SVG, PDF, CAD formats, 

etc. The 3DPlanNet method utilizes ensemble methods, combining data-based models and rule-

based heuristics, significantly reducing the required dataset size while achieving high accuracy 

in generating wall objects from 2D residential drawings that follow the Manhattan-convention 

of perpendicularity of the walls (Park and Kim 2021). Other research defines the premise of the 

network on the Manhattan assumption to achieve high accuracy on wall vectorization and 

reconstruction from layouts (Liu et al. 2017), (Kim, Park, and Yu 2018), (Kalervo et al. 2019). 

In raster-to-vector, they introduce a methodology that transforms a floorplan image using two 

intermediary representation layers. A neural architecture initially transforms a floorplan image 

into a junction layer, where information is encoded as a collection of perpendicular junctions 

(i.e., points with fixed connection typologies). Integer programming combines junctions into a 

collection of essential elements (lines or boxes) while guaranteeing a topologically and 

geometrically coherent result for designs that follow the Manhattan assumption. Kalervo et al. 

employ in CubiCasa5k the neural network architecture from Raster-to-Vector, enhancing the 

results by applying the multi-task uncertainty loss function. The gap in the existing research is 

that the considered drawings are predominantly residential floor plans with straightforward 

perpendicular layouts. Non-rectilinear and complex commercial building designs have not been 

adequately addressed. 

3. Methodology 

The overall workflow of the proposed method, as shown in Figure 2, involves three steps: the 

segmentation step, the object detection step, and the mesh generation step. It generates a 3D 

model as an output corresponding to the 2D-floor plan image as the input in an end-to-end 

manner. The 3D model comprises geometric data that represents the walls and openings (doors 

and windows) of the mixed-use building. 

Mixed-use floor plans often feature curving walls and a more comprehensive range of layouts 

than traditional residential floor plans. This makes it more challenging to locate the wall using 

a heuristic method. Consequently, the decision was made to employ the deep learning 

methodology to extract the walls from the image. The efficacy of the semantic segmentation 

approach lies in its ability to accurately identify walls while effectively excluding other 

elements within the image, including windows, doors, furniture, text, and miscellaneous items. 

To consider the different floor design sizes, we partition them into many patches of standard 

size before inference. The segmentation model is initialized with an input size of 192 x 192 
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pixels. Subsequently, the floor plan image is scaled to the nearest integer multiple of 192 in 

width and height dimensions.  

 
Figure 2: Proposed workflow from floor plan to 3D model 

Figure 3 demonstrates the precise division of the image into several smaller patches of 192 × 

192 pixels, which precisely matches the input geometry of the AI model. We opt to enlarge the 

image to prevent the potential of reducing any dimension to 0 pixels. Subsequently, the 

segmentation model conducts inference on these small picture patches to eliminate any visual 

elements other than the walls, generating a wall mask image for each patch. 

 

The process involves merging the wall mask images into a unified image, following the same 

sequence as the original input image. The wall mask picture produced will be utilized 

to generate the results of the combined wall mask, resulting in the reversion of their positions 

to their original positions before inference. Finally, the wall mask image obtained is 

subsequently resized to match the dimensions of the initial floor plan image.  

 
Figure 3: Prediction on fixed-dimension patches and recombination to a single image 

The segmentation model we use is a U-Net model. The model's encoder has been modified to 

a feature extractor backbone to improve accuracy. In our case, we use the EfficientNetB3 as the 

backbone of the U-Net model.  

The data analyzed in our research covers various structures, including large buildings like 

malls, hospitals, and airports. These structures are linked to certain symbols that communicate 
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unique meanings pertinent to their respective functions. Capturing every element in these floor 

layouts is difficult due to their intricate and diverse nature and inefficient using semantic 

segmentation. Consequently, we use object detection to identify other elements apart from 

walls, identifying and analyzing openings comprising windows and doors. 

 

 
 
Figure 4: The three opening elements to train the object detection model (on the left) and an example 

of opening detection (on the right)   

We process the semantic segmentation results depicting the walls and the openings detected 

through the object detection module to create the final 3D mesh. The wall mask is necessary to 

extract information like its location and thickness. The wall mask comprises an array generated 

by the neural network that contains continuous values within the range of 0.0 to 1.0, binarized 

with 0.5 thresholds to the nearest integer. The binary mask is subsequently utilized as the 

foundation for generating the wall mesh. 

We apply contouring on the binary wall mask to determine the position of the walls. This 

process allows us to retrieve the outlines of the walls. The contours refer to the delineation of 

the walls, accompanied by positional data represented by vertices. It is necessary to connect 

these vertices to derive the geometry of the wall. The convexity of the walls is not a requirement. 

Hence, a simplistic Delaunay's triangulation (Ito 2015) approach would be erroneous. For our 

specific situation, we employ a triangulation method known as ear-clipping (Mei, Tipper, Xu 

2013). Triangulation connects the vertices to create triangles, also known as faces, that 

constitute the 2D geometric structure of the wall. The methodology enables the acquisition of 

wall geometry while ensuring that the area is neither underestimated nor overestimated. 

 

Figure 5: Comparison of different triangulation methods  

Figure 4 demonstrates that the ear-clipping technique can accurately capture the contour of the 

wall, even when the geometry is concave. Subsequently, the wall mesh is extruded along an 

additional dimension, specifically the z-axis, with a predefined height of three meters. The 

extrusion method involves replicating a 2D wall mesh at a specific height. Subsequently, the 

two meshes are interconnected by numerous meshes parallel to the z-axis. 

The door meshes can be generated using the bounding box information obtained from the object 

detection model. A predetermined default door mesh is available, with two basic rectangles 
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parallel to the z-axis; we define two meters in height by default. The mesh is created, positioned, 

and aligned based on the data obtained from the identified bounding box. Given the existing 

wall geometry and vertices obtained in the preceding phase, the computation of the door's 

position and angle can be readily performed by employing the relationships depicted in Figure 

6. The orientation (angle) of the door can be effectively computed by establishing the 

coordinates of the red and green dots that constitute the wall gap's midpoint and the detected 

opening's center point. Each computed red dot is assigned a door mesh. Subsequently, the mesh 

undergoes rotation by the calculated angle along the z-axis concerning the x coordinates of the 

wall gap's midpoint. 

 

 

Figure 6: The red crosses indicate the collision points between the bounding box (green box) and the 

adjacent walls (solid black lines); the red dot is computed as the midpoint of these two crosses. The 

green dot is the midpoint of the whole bounding box. 

We create a geometrical 3D model using the OBJ format. When dealing with geometrical 

representations, examining two main attributes, the vertex, and the face, is essential. A line 

break serves the purpose of separating each attribute. In the context of a 3D model, each 

attribute typically has three values. A vertex is represented as "v" and has three coordinates. In 

contrast, a face is represented as "f" with three indices representing the vertex (in the 

counterclockwise direction), forming a triangle. A facial structure may also possess four vertex 

indices constituting a quadrilateral. Nevertheless, our mesh is comprised solely of triangles 

obtained through triangulation. The output file is subsequently augmented with the vertex and 

face data of the wall and door meshes.  

 

 

Figure 7: Render of the 3D model from the wavefront file  

4. Experiment and Results 

Our dataset comprises 100 mixed-use layouts of large-scale buildings such as hospitals, offices, 

airports, and malls retrieved from the internet. The style of the drawings is heterogeneous for 
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most of the retrieved layouts. Each layout has been labeled for two tasks: the wall mask for 

semantic segmentation and bounding boxes for opening detection. The distinction is dictated 

by the domain knowledge of the detected elements: openings maintain a similar representation 

following a determined ratio, while walls can be highly irregular and different. We use data-

driven approaches to carry out those tasks. 

To create the dataset for the segmentation task, we generate a wall mask image for every floor 

plan image used for the training dataset. The process involves removing any irrelevant or 

additional structural information on the floor plan, leaving only the walls. 

 

Figure 8: Example of wall mask for the semantic segmentation task 

Furthermore, aside from obtaining a training dataset for the item detection task, we have 

employed the Synthetic Floor Plan Images (SFPI) dataset (Mishra et al 2021), which is readily 

available to the public. Nevertheless, the model trained using this dataset requires improved 

recall accuracy when tested on our specific floor plan images. This difficulty arises partly due 

to the restricted variety of shapes or patterns in the items in the synthetic data, which causes the 

model to overfit the synthetically generated objects.  

The architectural elements in our data vary significantly from one to another. Therefore, it is 

necessary to create a new dataset for object detection. The annotation was done on three object 

classes (windows, single- and double-hinged doors). There are 7764 annotation instances on 

the floor plan images. Due to the low training data, we apply some image augmentation, such 

as random flipping, noise, and blur, to increase the number of instances. 

A loss function analysis determines the best loss function to train the semantic segmentation 

model. Different loss functions are adequate for the segmentation tasks; however, each has 

different advantages, affecting the model's accuracy and training efficiency (Jadon 2020). We 

experimentally determine the best fitting for mixed-used buildings. The metrics used for the 

analysis consist of Intersection over union (IoU), sensitivity, and specificity. Intersection over 

Union (IoU) quantifies the degree of overlap between the anticipated and ground truth regions 

by dividing it by their combined area. Sensitivity, also called recall, measures the ratio of 

accurately detected actual positive events by the model. Specificity measures the accuracy of 

the model in correctly identifying negative instances.  

As shown in Table 1, the log-cosh loss function works the best on the training data for our 

segmentation model. The log-cosh loss function is a function for regression problems designed 

to solve the limitations of mean squared and absolute errors. The loss is obtained by applying 

the natural logarithm to the hyperbolic cosine function to the difference between the actual and 

predicted values.  
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Loss Function IoU Sensitivity  Specificity 

BCE Loss 0.5790 0.7824 0.9786 

Focal Loss 0.5162 0.8832 0.9820 

Dice Loss  0.5835 0.6351 0.9887 

Tversky Loss 0.6383 0.7652 0.9916 

Log-Cosh Loss 0.6700 0.9275 0.9972 

Combo Loss 0.5969 0.6913 0.9952 

Table 1: The accuracy of the segmentation model in 3 different metrics (IoU, sensitivity, and 

specificity) for different loss functions after training on floor plan image data. 

The object detection model (YOLOv5) is fine-tuned using 90% of our annotated floor plan 

image dataset. The remaining 10% of the data is used as test data to evaluate the model 

performance on unseen images. Figure 9 shows the confusion matrix of the training results, 

where the horizontal axis refers to the annotation labels and the vertical axis refers to the 

prediction made by the model. We can observe that the model predicts the single-hinged doors 

correctly 54% of the time (true positive). However, it misses the prediction 42% of the time 

(false negative). Despite the minimal training data, the model performs sufficiently well enough 

for the mesh generation step.  

 

Figure 9: The confusion matrix of the training result of the object detection model for different classes. 

The number within the box denotes the prediction probability. 

To assess the performance and accuracy of the approach, we overlay the original floor plan 

image onto the generated 3D model as the base. One way to achieve this is by adding a material 

(MTL) file to the top of the generated wavefront  OBJ file. 
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Figure 10: Example of mixed-use building layout in the analysis 

We compare the results using the baseline method, cubicasa5k. Since CubiCasa5k’s network 

uses a post-processing approach that assumes the Manhattan convention of wall 

perpendicularity does not hold in our dataset, we compare the raw segmentation results. The 

results from the CubiCasa5k network show that it can detect room boundaries when the wall 

follows a straight line, and the perpendicularity holds. In contrast, our method reliably 

recognizes the same cases while delineating the curved walls. 

 

Figure 11: The mixed-use building in the test set and the prediction of the proposed model (in the 

middle) compared to the prediction from CubiCasa5k (in the right)  

We provide qualitative results of 3D reconstruction from the test set of the dataset. The method 

can reconstruct the mixed-use building's overall geometry, capturing the complexities of curved 

heterogeneous walls.  
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Figure 12: The 3D models are imported into Blender for post-processing. The walls and doors are 

applied with black and brown materials, respectively.  

5. Conclusion 

This research presents a novel approach to converting and reconstructing mixed-use building 

layouts into vectors and 3D models, outperforming previous methods on mixed-use building 

layouts. Two neural networks are used on images. The first network identifies the pixels that 

represent walls using a semantic segmentation method, while the second network identifies the 

openings in the image using object detection. The semantic segmentation mask is contoured 

and transformed into a mesh, then merged with the openings to generate a three-dimensional 

model. The proposed method is compared with a baseline showing the advances of the 

architecture in dealing with complicated layouts comprising increased floor area, incorporation 

of vertical transportation spaces like elevators and staircases, and non-standard wall forms and 

door/window sizes. 

Some limitations of the current method are the limited capacity to precisely detect openings, 

explained by the difference in opening sizes in the training set and the low resolution of the 

images. The current methodology deals with the mask of the segmentation, recreating a contour 

that follows the prediction of the network. The consequence of this is that the walls are not 

smoothly represented but they are slightly irregular from the pixel-level prediction of the deep 

learning model, a next step is to have an additional post-processing step to smooth the prediction 

and vectorize it. Currently, the approach relies only on geometrical information without 

considering domain knowledge; this post-processing approach has been discarded because the 

mixed-use building use case makes it hard to generalize these kinds of buildings.  
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