
1 INTRODUCTION

Managing large-scale construction projects has be-
come progressively complex, with surging demand
in the construction sector and an ever-increasing
number of guidelines, regulations, and building
codes. Developing potential design options compli-
ant with all boundary conditions has so far been the
task of engineers and architects, who do a majority
of the work of manually developing the design while
achieving regulation compliance. Engineers develop
a potential design solution in today's design work-
flows and run various simulations and checks to val-
idate their draft against given criteria. If deficiencies
are detected, the design is modified and fed into the
entire checking pipeline again. Yet, the automation
of these tasks promises a significant reduction in
cost and overhead.
The question of what approach should be chosen to
achieve this algorithmic design is crucial. On the one
hand, usable and recognizable structures that satisfy
all requirements must be created. On the other hand,
having an algorithm that explores all viable alterna-
tives within the realm of possibility during the plan-
ning process helps to single out designs that best suit
the project's particular needs. However, its operation
may be overwhelming for an end user. Graph rewrit-
ing systems (GRS) as a method of capturing and ap-
plying changes to a model have recently been ex-
plored (Vilgertshofer, 2022; Vilgertshofer, 2017)
and provide the consistency mentioned above.
While partial automation of the work necessary to
produce the designs can help tremendously (Preidel,
2020; Abualdenien et al., 2021), a complete algo-
rithm that not only aids the engineer/architect during
planning but actively develops the designs by itself
has yet to be achieved. Here, it is crucial to find a

suitable balance between full-scale automation that
may take on a larger set of tasks on the one hand and
providing appropriate interfaces for the user to mod-
ify the design process on the other. “Black-Box” ap-
proaches that leave no option to influence the result
or tune the behavior is generally undesirable due to
decreased possibilities exposed to the user. There-
fore, this paper focuses on applying a graph rewrit-
ing system to encapsulate and apply engineering
knowledge by representing it with the help of rewrit-
ing rules. In more detail, we explore if and how de-
sign procedures facilitating modular design of high-
rise precast structures can be represented and exe-
cuted upon with the help of graph rewriting rules.
Additionally, the paper explores the conjunction of
the rewriting system with a process model, which
controls the application sequence of rules to achieve
a desired construction layout.

2 RELATED WORK

2.1 Precast structures

Precast structures use concrete modules cast in ad-
vance off-site and installed on-site without the need
for any in-situ concreting. Modules reduce costs and
overhead, especially during construction, and allow
for the modules' adaptability. This is because of the
more precise fabrication of modules in conditions
independent of weather. Much research on precast
structures is being conducted today (Chen et al.,
2024; Auer et al., 2023). The main disadvantage is
knowing the precise dimensions and characteristics
of the modules in advance, which is why a method is
necessary to consistently determine these properties.

Utilizing process modeling and graph rewriting as a formal approach for

algorithmic design of modular precast structures

B. Harder & S. Esser & A. Borrmann
Chair of Computational Modeling and Simulation, Technical University of Munich, Munich, Germany

ABSTRACT: This paper proposes a formal approach for the use of graph rewriting systems to achieve algo-

rithmic design for modular precast structures. Design tasks have historically been the responsibility of engi-

neers and architects, and providing computer-based tools to assist during the design process can help reduce

costs and overhead. One possible method of expressing evolving design development is graph rewriting. In

order to leverage graph rewriting rules so that they incrementally modify a model, process modeling is em-

ployed to control the application of said rewriting rules. Managing which rewriting rules are applied in a cer-

tain sequence during the design process is crucial for the validity of the resulting model. Furthermore, pre-

and post-processing of the individual modules ensured that geometrical as well as topological conditions were

satisfied. An implementation exploring the viability of this approach was developed using Rhino and Grass-

hopper, as well as an internally developed rule engine and algorithm structure. The implementation demon-

strated the consistency and scalability that can be achieved by employing graph rewriting systems for algo-

rithmic design of modular precast structures.

2.2 Graphs

Many researchers have already explored the use of
graph systems to represent design information in the
Architecture, Engineering, and Construction (AEC)
sector (Kolbeck et al., 2022). Generally, graphs are
constructs consisting of vertices and edges that con-
nect said vertices (Diestel, 1996), with any intercon-
nected subset of the edges and vertices being called
a subgraph. The interconnective nature of graphs al-
lows them to represent complex, interconnected in-
formation.
Depending on the system chosen for storing and in-
teracting with such graphs, vertices and edges can be
labeled, providing context information for the spe-
cific item. The vertices and edges can also carry ad-
ditional properties that specify the object or relation-
ship. A graph adhering to these concepts can also be
called a Labeled Property Graph (LPG). To describe
objects within the design of a built asset, it is crucial
to be able to append further information to the verti-
ces.
Graphs are powerful structures that can represent the
relationships between entities and methods for mod-
eling the topology of geometric objects and finding
patterns and subgraphs (Diestel, 1996). In conjunc-
tion with the semantics of LPGs, these capabilities
provide the groundwork for modeling and represent-
ing the building model for our approach.

2.3 Graph rewriting

Algorithmic or automated design relies on being
able to make certain changes to the design at certain
stages of the design process. Graph rewriting pro-
vides such a method, originating from formal gram-
mar. Essentially, graph rewriting relies on the defini-
tion of rewriting rules (sometimes called
transformation rules) that can delete, modify, and
add vertices and edges to a graph. These rules are, at
their core, defined by their left-hand-side (LHS) and
their right-hand-side (RHS) (Rozenberg, 1997), as
seen in Fig. 1. The LHS is a graph pattern that is
searched for in the main graph. Should a matching
subgraph be found, it is replaced with the RHS of
the rewriting rule. Once this has happened, the re-
writing process is complete.

Figure 1. An example of a graph rewriting rule. The LHS is

matched in the main graph and is then replaced by the RHS.

Critical here is the LHS with its graph pattern. It al-
lows us to precisely define the necessary context in
which the change is supposed to happen. This pat-
tern matching allows us to ensure that changes only
happen in specific parts of the model and conse-
quently encapsulate engineering and design
knowledge (Vilgertshofer, 2022). Just as an engineer
knows that a column needs a foundation (or some-
thing structurally similar) to stand on, a rewriting
rule can be defined that expresses this fact.
The usability of graph rewriting techniques in engi-
neering domains has already been greatly re-
searched, not only in the AEC domain (Campbell,
2009; Sangelkar & McAdams, 2017; Wang et al.,
2020). A relevant selection will be explained in fur-
ther detail in the next subsection.

2.4 Graphs and their applications to describe
geometric shapes of built structures

Various research has been conducted in the scope of
graph rewriting rules that modify geometric repre-
sentations. Tessmann & Rossi (2019) introduced a
method using modular units and topological inter-
locking to create structures. Their approach, imple-
mented through a Grasshopper plugin called WASP,
aggregates parts by aligning them to constrain all
degrees of freedom, enabling load-bearing capabili-
ties. This combinatorial design process sequentially
combines basic parts into discrete assemblies, trans-
forming objects so their interface planes face each
other. The method employs explicit sequence de-
scriptions, stochastic procedures, or gradient field-
driven aggregations to arrange parts. This approach
yields reversible joint modular assemblies, challeng-
ing conventional parametric design by offering a
more sequential workflow where instructions are
continuously executed until achieving the desired
form.
Vilgertshofer & Borrmann (2017) utilize graph re-
writing rules to automate infrastructure project plan-
ning across multiple levels of detail (LoD). Different
LoDs are employed in various planning stages and
domains. To streamline changes across LoDs, they
use the GrGen.NET framework to consistently apply
modifications. Challenges include the complex and
error-prone manual definition of dependencies be-
tween models within conventional parametric envi-
ronments (Vilgertshofer & Borrmann, 2017). Addi-
tionally, graph systems enable the independent
representation of engineering knowledge regardless
of CAD systems.
Kolbeck et al. (2023) investigate the application of
graph systems for modular bridge structures, focus-
ing on adaptable precast modules to enhance scale
effects and mass customization for optimized pro-
duction and planning. Unlike the approach discussed
here, they utilize graph transformation directly, by-
passing the need for rewriting rules. Changes in pa-

rameters are translated into graph transformations
via a steering sketch, resembling conventional para-
metric modeling within a graph system framework.
The authors suggest the feasibility of adapting graph
grammar for their approach in future work.
Esser et al. (2022) advocate for graph-based systems
and graph rewriting to perform version control of
Building Information Models (BIM) models based
on their underlying object structures. They propose
the interaction with BIM data represented in the IFC
data model as a graph, allowing model changes to be
reflected through graph alterations. By converting
the file-based model representations into graphs be-
fore and after modifications, differences between
both versions are analyzed to generate incremental
patches. Like graph rewriting rules, these patches fa-
cilitate an asynchronous cooperative workflow ra-
ther than jointly collaborating in a central model ac-
cessible to all project stakeholders. This approach is
particularly beneficial for large-scale projects in-
volving multiple contractors in the planning process
and showcases the strengths of representing building
models with a graph.
Abualdenien & Borrmann (2021) utilize a Paramet-
ric Building Graph (PBG) to identify patterns in
BIM models for potential application across pro-
jects. Objects, relationships, and contextual infor-
mation within a BIM authoring tool are captured to
create rewriting/transformation rules. This enables
the transformation of different projects into graph
representations, facilitating pattern matching and
deployment of architectural and engineering detail
knowledge between projects. They highlight the sig-
nificant cost and performance impact of successfully
transferring detailing changes from one model to an-
other.

2.5 Research Gap

The use of graph systems in the AEC domain has
clearly identifiable advantages, as the previously
mentioned scientific publications have detailed. The
plethora of use cases enabled by the graph represen-
tations, graph rewriting, and transformations articu-
late the flexibility, interoperability, and scalability of
using such systems.
Tessmann & Rossi (2019) explicitly used interface-
based rewriting rules to algorithmically create their
aggregations. Their methods of managing which and
when rewriting rules are applied partially relied on
explicit sequence definitions, meaning that the order
in which the rules are to be applied is explicitly
specified. Capturing and representing design proce-
dures in this manner has thus already been demon-
strated. Yet, their method does not allow for detailed
control of intermediary and final results, i.e., the
specification of fundamental parameters such as the

number of levels or plot outline. This paper explores
this method further by wrapping the sequence defini-
tions within a process model that regulates the flow
of the rewriting algorithm and provides the ability to
directly modify assembled components. This way,
the fulfillment of necessary conditions can be en-
sured with greater reliability.

3 METHOD

Fig. 2 illustrates the overall approach. Structures can

be created by the sequential application of transfor-

mation rules based on a predefined set of compo-

nents, rule definitions, and a process model. Our ap-

proach aims to result in an algorithm that can

reliably and consistently produce models of built

structures based on user-defined parameters. This is

achieved by defining a component library with geo-

metric parameters and their respective connecting

interfaces. Based on this library, a catalog of rewrit-

ing rules is created that specifies how the individual

components assemble. The component library and

the rule catalog are wrapped inside an algorithm fol-

lowing a process model where the start state is set;

rule sequences are defined and executed upon. Final-

ly, the graph is interpreted to be read as a fully real-

ized 3D model.

3.1 Component libraries

Fundamentally, components are used as the core
building blocks of the design. Since this approach is
embedded within the context of modular precast
structures, such basic components are suitable for
defining the structure's modules. The used compo-
nents can be seen in Fig. 3:

Figure 3. The component library consisting of a foundation,

column, beam, and deck. Each component also carries geomet-

ric parameters as well as connecting surfaces (interfaces).

Figure 2. General overview of the approach.

The components include the necessary geometric in-

formation as well as geometric parameters that in-

fluence the dimensions of a component, such as

length, width, and thickness. Furthermore, connec-

tion interfaces are defined for each of the compo-

nents that indicate surfaces to which other compo-

nents can connect, akin to what Tessmann & Rossi

(2019) have done. A foundation, for example, may

have its top surface defined as an interface where

other components connect (such as a column) and so

forth. For this approach, a small library of four parts

was chosen to simplify the process and implementa-

tion as a whole. The selection of components still al-

lows us to create basic structures, as can be seen in

Fig. 4:

Figure 4. A basic modular structure made using the component

library above (Fig. 3)

3.2 Graph representation

This approach uses an LPG to represent the various

components and their connections with each other.

Considering a structure like the one in Fig. 5, we can

describe it through the means of a graph by creating

a node for each component (e.g., for a column) and

establishing relationships between the

nodes/components that interface with each other for

example, the column that stands on a foundation. A

visualization of the graph representing the structure

in Fig. 5 can be seen in Fig. 6.

Figure 5. A simple structure consisting of two foundations, two

columns, and a beam.

Figure 6. The previous structure represented by a graph. The

beam (B) is connected to two columns (C), which are each

connected to a foundation (F). All relationships carry the label

‘supports’.

Semantically, the relationships between the nodes
(or the components they represent) are labeled with
‘supports’, indicating their structural dependency.
Modular components within a model are suitable for
being represented by nodes since their properties,
such as their geometry and connectivity, can be ac-
curately depicted by nodes inside an LPG. As men-
tioned earlier, this approach also uses a component
library for the modules, defining the amount and na-
ture of each component's interfaces. As previously
discussed, the possible connections of a component
were broken down into a certain number of specific
interfaces. This allows us to model the graph’s struc-
ture more granularly by also representing these inter-
faces with their own nodes. While a component’s
connection at its core is defined by the two compo-
nents it connects, we can modify that definition by
postulating that the interfaces are connected to each
other and that each interface can only be connected
to one, and exactly, one other interface. The inter-
faces are a core part of the component and thus, the
node. This definition of a connection between two
components ensures that the type of connection is
always known (since it is tied to a specific inter-
face). Since this changes the schema of our graph, an
updated visualization can be seen in Fig. 7.
Here, the additional nodes represent the interfaces of
the components. Columns and foundations do not
have a direct connection to each other but are indi-
rectly linked via their interfaces, the same as the
beam. This way of increasing the granularity of the
model and its graph representation allows us to
make a more accurate description. Finding out
which interfaces of a component are open or closed
is easily done. It also offers us the groundwork to
consistently and reliably apply changes to the graph
by employing graph rewriting techniques.

Figure 7. Two foundations (F1, F2) each connected with a col-

umn (C1, C2) via their respective interfaces (F1_IF, F2_IF,

C1_IF, C2_IF). The connection from the columns to the beam

(B, B_IF1/2) is analogous.

3.3 Graph rewriting as a method of
incrementally applying changes to the graph

This approach makes use of graph rewriting as the
primary technique to change the graph and, conse-
quently, the model. To address the previously men-
tioned fact that rewriting rules can encapsulate engi-
neering knowledge, let us look at the simple
example in Fig. 8.
When wanting to add a column to the model, the
graph also changes accordingly. This can be ex-
pressed as a rewriting rule that precisely defines that
a column interface with its respective column node
should be added to an open interface of a founda-
tion. This rule is visualized in Fig. 9. This way, it
can be ensured that a column may only connect to a
foundation when this rule is applied. Further defin-
ing rules to include all possible connections the
components can make, leads to a rule catalog that
can express any possible design decision at any part
of the project.

Figure 8. A graph representation of the model only containing

a foundation (and its interface), as well as a graph representa-

tion of a model also containing a column.

This flexibility, consistency, and granularity of re-
writing systems make them a strong candidate for
the basis of automated design and form the founda-
tion for this approach. With enough correctly de-
fined transformation rules that describe the engineer-
ing knowledge to an adequate degree, the
groundwork for incrementally applying changes to a
model is laid out. Yet, while useful as a unit of
change, the rules themselves still need a framework
that controls what rule is applied at which point dur-
ing the process.

Figure 9. A rewriting rule that specifies a column (C) being

added to a foundation (F) via their interfaces (C_IF, F_IF)

3.4 Process modeling

An explicit definition of the sequences in which the
rewriting rules are applied is necessary to provide a
method for users to interact with and understand the
algorithm and ensure that the context for specific

rules exists at a given point during the design pro-
cess. A subdivision of the design process into small-
er, more manageable parts can be achieved using a
process model: Given a certain start state of the de-
sign (or start symbol to speak in graph terms), we
can aggregate rule applications into packages that
encapsulate certain steps during the design, as seen
in Fig. 10:

Figure 10. The process model begins with a defined start state

and proceeds to process the various design phases. Design

phases may loop, such as when more columns are placed upon

the deck after it has been added to the model.

For example, given a start state of four foundations
in the model, placing a column on each can be ag-
gregated into one. This, in turn, provides us with the
rule application sequence that takes place during this
design phase. The placement of beams on these col-
umns, as well as the deck on top of those, can also
be aggregated into these design phases. Since the
placement of the beams using rewriting rules neces-
sitates columns with open interfaces, it is advisable
to locate this design phase after the columns have
been placed.
Furthermore, encapsulating these steps gives us the
ability to directly specify the components’ parame-
ters that we have defined in the library, all at once.
For example, if the height of the first floor is sup-
posed to be 3 meters, the height parameters of all
columns placed during their respective design phase
can be set to 3 meters. This allows for greater con-
trol over the intermediary as well as the final results
of the model, specifically to satisfy various geomet-
rical conditions. The process model also gives us a
structure in which the start state can be easily de-
fined and set according to the user's wishes, e.g., a
certain number of foundations.

3.5 Geometrical and topological conditions

Graphs, at their core, are purely topological con-
structs. This, in turn, means that rewriting rules only
specify the topological context in which they can be
applied. A rewriting rule may specify that a beam
needs two columns, each with open interfaces to be
placed. If successful, the resulting graph contains
just that: A beam connected to two columns via its
interfaces. Yet, one crucial condition has so far been

ignored: The beam needs to have the correct length
to be supported by the columns. A rewriting rule
cannot explicitly articulate this since it only con-
cerns topological conditions. The geometrical condi-
tions need to be taken care of differently.
During each design phase, the parameters of the
components can be set to a specific value. By calcu-
lating the correct value in advance (pre-processing),
the geometric condition can also be satisfied, with
the beam having the correct length.

3.6 Graph interpretation and conversion

Once the various design phases have been processed
and the final graph is finished, it needs to be inter-
preted and converted to a model. The model should
contain the entire geometry of the placed compo-
nents as well as the information concerning the con-
nections between them. The latter is easily retrieved
by investigating the relationships between the nodes
inside the graph. If two interfaces share a relation-
ship they are connected. As for geometry, there are a
multitude of ways to store it and retrieve it from the
graph. Geometric representations carry a significant
amount of complexity, and they could be represent-
ed by an entire subgraph attached to the node of a
specific component. Alternatively, the node can
store a reference to the geometric information that
describes the component. This can, for example, be
stored and manipulated inside its own geometric sys-
tem, such as a CAD program. This way, the modifi-
cation of the components’ geometry is offloaded to a
different system so that the graph system only needs
to consider the fulfillment of geometric conditions
instead of the actual manipulation.

4 PROTOTYPICAL IMPLEMENTATION

To assert the viability of this approach, an imple-
mentation was developed using Rhino 7, Grasshop-
per, and the programming environment Microsoft
.NET. Grasshopper and Rhino provide the necessary
methods of visualizing, storing, and manipulating
the model's geometries. Rhino offers an external
compute library that can interface directly with
.NET so that geometrical modifications can be made
directly inside the program. At the same time,
Grasshopper provides a visual computing language
with which it is simple to create parametric geome-
tries and store them inside Grasshopper files. Grass-
hopper also defines the connecting surfaces of the
components which are later used as interfaces.
The program itself was developed using C# and
.NET, with self-implemented classes representing
the graph, nodes, and the process model. Inside the
program, the rule catalog is defined, followed by the
definition of the start state and the various design
phases. Here, the various design phases are defined,

each with a specific rule sequence as well as pa-
rameter setting. In the beam installation phase, for
example, the rule of adding a beam to two columns
is set to be executed a certain number of times, fol-
lowed by setting the length parameter accordingly.
This is done for all phases, after which the rewriting
process begins. Each phase is executed successively,
with the rewriting algorithm being invoked accord-
ing to the rule sequence defined within. At the same
time, the geometric parameters are changed within
the grasshopper module. The graph can be converted
to a model at the end of each phase, to check for
consistency and errors.

Figure 12. Overview of the algorithm. The rules and the start

state are defined with the site parameters (plot size, etc.) and

the grasshopper files (component definition). After parameters

and rule sequences have been defined, the algorithm processes

every design phase until there are none left. At this point, it in-

terprets the graph and converts it to a 3D model.

5 RESULTS AND LIMITATIONS

The implementation successfully produces simple
yet recognizable and usable structures. The process
model, which provides control over geometric pa-
rameters and the applied rules, contributes the nec-
essary framework so that the approach remains
transparent and governable. A few resulting models
of the algorithm can be seen in Fig. 13 below.

Figure 13. Various example resulting models of the algorithm.

With different plot dimensions, number of levels, and fields.

The red lines between the components indicate an established

connection.

As for the limitations, the achieved geometric struc-
tures are of a low degree of detail. Issues may arise
when especially the connections between the com-
ponents become more detailed. The geometric con-
ditions that need to be fulfilled for a proper joint, in-
cluding bolts and more, may become increasingly
difficult to manage with the approach of pre-
processing the component's geometry. In general,
the pre-processing step, while useful at first glance,
does not fully describe the conditional geometric re-
lationship between the components. To briefly de-
scribe an alternative approach, one could define the
parameter implicitly as opposed to imperatively: In-
stead of calculating the length of a beam in advance
and then setting it accordingly, one could define the
length of a beam to always be the same distance as
the distance of the two columns it is supported by.
This kind of condition could be expressed by predi-
cates and directives, a concept belonging to the sort-
al grammars (Stouffs, 2019), that can describe non-
topological conditions that have to be met on either
side of the rewriting rule.

6 CONCLUSION AND FINAL THOUGHTS

Graph rewriting techniques have proven that they
are a powerful method of expressing and applying
changes to a model. Yet, exploring methods on how
to best implement them for automation purposes in
construction has shown that while they are useful as
a unit of change/modification, a framework in which
they are applied in a controlled and consistent man-
ner is necessary to achieve desirable outcomes, in
this case, usable structures. At the same time,
though, this framework also provides an interface
for the user to directly influence the algorithm and
maintain transparency and control over the final re-
sult, thus preventing a ‘black box’ with no transpar-
ency for the end-user.
For precast and prebuilt structures the approach
seems especially promising since modular architec-
ture is well suited to be represented by graphs, while
their construction phases are easily represented by
rewriting rules. Further development of this kind of
approach may have significant implications for the
prebuilt construction sector.

7 ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial
support of the Deutsche Forschungsgemeinschaft
(DFG) in the frame of the programs SPP 2187
“Adaptive modularized constructions made in a
flux” (Project Number 423969184) and Transregio
277 “Additive Manufacturing in Construction—The
Challenge of Large Scale” (Project Number
414265976).

8 REFERENCES

 Abualdenien, J., & Borrmann, A. (2021). PBG: A parametric
building graph capturing and transferring detailing patterns
of building models. Proc. of the CIB W78 Conference.

 Auer, D., Bos, F., Olabi, M., & Fischer, O. (2023). Fiber Re-
inforcement of 3D Printed Concrete by Material Extrusion
Toolpaths Aligned to Principal Stress Trajectories. Open
Conference Proceedings, 3.
https://doi.org/10.52825/OCP.V3I.759

 Campbell, M. (2009). A Graph Grammar Methodology for
Generative Systems. http://hdl.handle.net/2152/6258

 Chen, K., You, B., Zhang, Y., & Chen, Z. (2024). Automatic
lift path planning of prefabricated building components us-
ing semantic BIM, improved A* and GA. Engineering,
Construction and Architectural Management.
https://doi.org/10.1108/ECAM-11-2023-1119

 Diestel, R. (2017). Graph Theory (Vol. 173). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-662-53622-3

 Esser, S., Vilgertshofer, S., & Borrmann, A. (2023). Version
control for asynchronous BIM collaboration: Model merg-
ing through graph analysis and transformation. Automation
in Construction, 155, 105063.
https://doi.org/10.1016/J.AUTCON.2023.105063

 Kolbeck, L., Vilgertshofer, S., Abualdenien, J., & Borrmann,
A. (2022). Graph Rewriting Techniques in Engineering De-
sign. Frontiers in Built Environment, 7, 1–19.
https://doi.org/10.3389/FBUIL.2021.815153

 Kolbeck, L., Vilgertshofer, S., & Borrmann, A. (2023, June).
Graph-based mass customisation of modular precast bridge
systems. Proc. of the 30th Int. Conference on Intelligent
Computing in Engineering (EG-ICE).

 Preidel, C. (2020). Automatisierte Konformitätsprüfung
digitaler Bauwerksmodelle hinsichtlich geltender Normen
und Richtlinien mit Hilfe einer visuellen
Programmiersprache. (Doctoral dissertation). Technische
Universität München.

 Rozenberg, G. (1997). Handbook of Graph Grammars and
Computing by Graph Transformation. Handbook of Graph
Grammars and Computing by Graph Transformation.
https://doi.org/10.1142/3303

 Sangelkar, S., & McAdams, D. (2017) Automated graph
grammar generation for engineering design with frequent
pattern mining. International Design Engineering Tech-
nical Conferences and Computers and Information in Engi-
neering Conference. Vol. 58127. American Society of Me-
chanical Engineers.

 Stouffs, R. (2019). Shape Rule Types and Spatial Search. In
J.-H. Lee (Ed.), Computer-Aided Architectural Design.
“Hello, Culture” (pp. 474–488). Springer Singapore.

 Tessmann, O., & Rossi, A. (2019). Geometry as interface:
Parametric and combinatorial topological interlocking as-
semblies. Journal of Applied Mechanics, Transactions
ASME, 86(11). https://doi.org/10.1115/1.4044606/960599

 Vilgertshofer, S. (2022). Kopplung von Graphersetzung und
parametrischer Modellierung zur Unterstützung des
modellbasierten Entwerfens und der Erstellung
mehrskaliger Modelle. (Doctoral dissertation) Technische
Universität München.

 Vilgertshofer, S., & Borrmann, A. (2017). Using graph rewrit-
ing methods for the semi-automatic generation of paramet-
ric infrastructure models. Advanced Engineering Informat-
ics, 33, 502–515.
https://doi.org/10.1016/J.AEI.2017.07.003

 Wang, X. Y., Liu, Y. F., & Zhang, K. (2020). A graph gram-
mar approach to the design and validation of floor plans.
The Computer Journal, 63(1), 137-150.

