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1 Introduction

1.1 Background and Motivation

Autonomous Vehicles (AVs) aim to revolutionize the transportation sector by reducing emissions and improving
road safety [1]. The latter has a high impact on human life, as an estimated 1.19 million deaths from road
traffic occurred in 2021 according to the latest road safety report published by World Health Organization
(WHO) [2]. The long-term vision of replacing the human driver with a combination of intelligent software and
hardware in the vehicle is to achieve accident-free traffic with zero fatal accidents. In addition to the emission
and safety aspect of AVs, they promise not only to transform the mobility experience by freeing up previously
dedicated time to driving, but also to make mobility accessible to groups of people previously excluded, such
as the elderly [3], children [4], or people with disabilities [3].

Research and development in Autonomous Driving (AD) has a long history, mainly led by pioneering works
and competitions, such as Prometheus in 1987 [5], the Defense Advanced Research Projects Agency
(DARPA) challenges in the mid 2000s [6, 7], the autonomous drive on the iconic Bertha Benz Memorial Route
by Mercedes in 2013 [8], and the recent Indy Autonomous Challenge (IAC) in 2021 [9]. This has paved the
way for the commercial development of autonomous vehicles, such as the Google self-driving car [10] as a
result of the DARPA challenges, which was later established under Alphabet as the independent self-driving
technology company Waymo [11]. Several other companies such as Cruise [12], Uber [13], Zoox [14], and
most Original Equipment Manufacturers (OEMs) research in the field of AD, as this promises to generate
US$300 to US$400 billion in revenue by 2035, according to a recent report by McKinsey [15] from 2023. The
economic impact on society is even greater [16], with an estimated impact of yearly US$1.2 trillion in total or
US$3,800 per citizen in United States of America (USA) due to productivity gains and reduction of costs from
crashes [17]. Despite the large efforts and funding invested in research and development of AVs, technology
is far from mature, with several accidents of AVs by Uber in 2018 [18], Tesla in 2020 [19], and Waymo in
2024 [20], even when operating in restricted operational design domains. These recent accidents highlight
the need for further development of AD technology, which is especially driven by software used to understand
the environment, plan vehicle motion, and control the vehicle.

In general, the software stack for AVs follows the common modular approach, in which the task is divided
into several sequential modules. These modules include perception, planning, and control [21]. Perception
algorithms process sensor data from cameras, Light Detection and Ranging (LiDAR) sensors, Radio Detection
and Ranging (RaDAR) sensors, ultrasonic sensors, Global Navigation Satellite System (GNSS) devices,
and Inertial Measurement Units (IMUs) to extract relevant knowledge from the vehicle’s environment. This
information is used in the planning algorithm to make decisions about the route followed by the vehicle. Lastly,
the control algorithms execute the planned trajectories.

The perception task is to perceive the environment using the sensor data and extract information on the
AV’s surrounding static and dynamic objects, but also to localize the ego vehicle with respect to the global
and local world [21]. Specifically, object detection is the task of determining the location and velocity of the
surrounding objects.
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1 Introduction

To this end, Deep Learning (DL) models are used to extract features from raw or preprocessed sensor data.
These features are used in later stages of the DL models to estimate the 3D pose (position and orientation)
of objects, their dimensions, and their semantics, i.e. the interpretation of the detected object.

The DL models are implemented in the form of neural networks, that are mainly trained in a supervised
fashion, which means that they require an annotated training dataset. In the context of automotive perception,
these datasets consist of frames of the sensor data, i.e., images or point clouds, and the labels for each
frame, including the properties that should be estimated by the neural network during inference. Sensor
data for the generation of these datasets are recorded using a vehicle equipped with the respective sensors.
Annotation of the data is often a manual process that involves human effort or supervision and hence is
time-consuming and costly. The performance of these networks is closely coupled with the quality and
quantity of the training dataset [22–25], a phenomenon known as data hunger [26]. This means that many
frames need to be annotated to obtain a dataset that can be used for training a safety-critical application,
such as neural networks for automotive perception, which directly affect the vehicle’s ability to understand
the environment.

Furthermore, neural networks perform best when applied to data from the domain in which they were trained.
A domain refers to the specific context or environment in which the data is collected and where the neural
network operates. For example, AVs are required to operate in different geographical areas and at different
times of day and seasons, that is, they encounter a diversity of domains. Training a neural network with data
from one domain and using it with data from a different target domain can lead to a decrease in performance.
This issue may arise, for instance, when data from simulations are utilized during the training phase, yet the
network is deployed in the real world. This gap between the training data and testing data is termed domain
shift and will be analyzed in-depth in this thesis.

To bridge the gap between domains, the field of domain adaptation has emerged. The idea of domain
adaptation methods is to fully or partially reduce the domain shift without using annotations from the target
domain. If these methods are successful, they enable scalable perception systems by following these steps:
First, an annotated source dataset is generated in any domain. Second, this source dataset is adapted using
the domain adaptation method to match the characteristics of the desired target domain. Finally, this adapted
dataset can be used to train the perception system, e.g. the object detection algorithm, for usage in the target
domain.

An exemplary application of domain shift and domain adaptation is the IAC, which serves as a further
motivation for the research conducted in this thesis. The IAC represents the world’s first head-to-head
racing series, employing fully autonomous vehicles in its competitive framework. This competition between
international universities is held from 2021 onward and fosters development and research in the field of AVs.
The vehicles utilized in the IAC are Dallara AV-21, as depicted in Figure 1.1, which are adapted from the
Dallara IL-15. These AV-21 are retrofitted and equipped with the sensors, computing hardware, and actuators
required to enable AD. The task of the participating teams is to develop the entire AD software pipeline and
compete in head-to-head races on different race tracks throughout the world.

At the IAC, the challenge on the part of perception is not only the development of robust algorithms but also
the generation of training data for those algorithms. The perception pipeline of most teams is mainly based
on LiDAR object detectors that make use of 3D point clouds [27]. Consequently, this thesis will concentrate
on the LiDAR sensor. The generation of annotated real-world point clouds is especially challenging due to
several reasons, e.g. because the race cars with the specific sensor setup are not built yet, a race occurs
on a not-yet-visited race track, or the annotation process takes too long given the tight schedule of the
competition. Hence, the usage of synthetic data generated in simulation environments is a viable alternative
to real-world data, but this leads to a sim-to-real domain shift between simulated and real-world data. This
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1 Introduction

raises the question of the source of the sim-to-real domain shift in LiDAR point clouds and how to bridge it
using methods from the field of domain adaptation. Both questions should be answered as part of this thesis.

Figure 1.1: Indy Autonomous Challenge [28].

1.2 Dissertation Outline and Contributions

This thesis starts with a brief introduction of the background of LiDAR perception and DL for AD in Chapter 2
to lay the foundations for the rest of the thesis. Subsequently, this thesis reviews the state of the art in the
field of domain shift and domain adaptation primarily for the sim-to-real application in Chapter 3. Derived
from the state of the art, Chapter 4 formulates the research questions that serve as a guide for the rest of the
thesis. Following this, the state of the art is extended with the following contributions:

• Chapter 5 introduces a method for the generation of a scenario- and distribution-aligned sim-
ulation and real-world dataset which aims to minimize the differences between the simulation
and real-world data. This dataset is open-source, enabling the analysis of the sim-to-real
domain shift.

• Furthermore, Chapter 5 proposes a method to quantify and analyze the sim-to-real domain
shift, and quantification is carried out using 3D LiDAR object detectors.

• An adversarial domain adaptation approach is proposed to enable the adaptation of 3D point
clouds, focused on the sim-to-real application. This approach is customizable to operate with
distribution-aligned datasets at the object-level (Chapter 6) and at the scene-level (Chapter 7),
i.e. adapting point clouds of single objects or entire scenes. Moreover, the generalization
ability of this method is demonstrated by modifying the architecture to work with a non-
distribution-aligned dataset at both object- and scene-level in Chapter 8.

Chapter 9 presents a detailed critical discussion of the methods and results and highlights the possibilities
for future work in the research field presented. Finally, the thesis is summarized in Chapter 10.
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2 Preliminaries in LiDAR Perception and Deep
Learning for Autonomous Driving

In AD, perceiving the environment is crucial. Accurate perception is crucial for downstream modules of the AV
software stack, as perception errors can have a high impact on prediction, planning, and control, and therefore
the safety of the AV and its surroundings [24, 25, 29]. Perception consists of multiple tasks, such as object
detection, semantic segmentation, and road and lane detection [29]. The object detection task incorporates
the accurate detection of all relevant traffic participants, static or dynamic, such as vehicles, cyclists, and
pedestrians. The detection of these traffic participants includes the three-dimensional measurement of
the relative position but also the identification of the class, i.e. the semantics of the object. To this end,
exteroceptive sensors onboard are required to provide the input data for object detection algorithms. The
most commonly used modalities are camera, LiDAR, RaDAR, and ultrasonic sensors [29]. Each modality has
advantages and disadvantages over the other modalities and is suitable for a specific task, but for robustness
and reliability, high redundancy of sensors is needed [29].

LiDAR sensors capture 3D information around the AV by directly measuring the relative distance of each data
point from the LiDAR sensor [30]. LiDAR sensors fulfill the requirements of perception systems by combining
long-range, high spatial resolution, and real-time performance [30]. In the following, the basic working
principle of the LiDAR sensors and the different scanning systems are explained briefly in Section 2.1 before
introducing the different representations of the output of the LiDAR sensor in Section 2.2. The special features
of point cloud processing in neural networks are explained in Section 2.3. Since these neural networks need
large datasets for training and testing, datasets in the domain of AD are introduced in Section 2.4.

2.1 Working Principle of LiDAR Sensors

In this section, the measurement principle of LiDAR sensors is briefly described. An extensive review on
LiDAR sensors, their working principle, and their applications can be found in [31]. LiDAR sensors are
active sensors, as they actively emit light pulses, as depicted in Figure 2.1. These light pulses reflect on
the surfaces of the targets. Depending on the distance from the target, the backscattered signal can be
detected by the receiver of the LiDAR sensor [30]. This measurement principle is similar to the principle of
RaDAR sensors, but instead of electromagnetic waves in the millimeter range, LiDAR sensors use waves
with a higher frequency and a shorter wavelength. The radial distance r from the target to the sensor can be
calculated using the time-of-flight formula of the round trip [30–32]

r =
c0 tof

2
, (2.1)

with the speed of light c0 =3× 108 ms−1 and the measured time of flight tof.

For robotic and automotive applications, the rays of LiDAR sensors are invisible and must adhere to the
eye-safety protection Class 1 of IEC 60825-1:2014 [33]. The near-infrared spectrum with a wave length
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2 Preliminaries in LiDAR Perception and Deep Learning for Autonomous Driving

LiDAR Target

Emitted Pulse

Reflected Pulse

Distance

Figure 2.1: Simplified LiDAR sensor measurement principle.

of 900 to 1050 nm [34] or the short-wave infrared around 1550 nm is chosen [32], since they provide
an effective transmission through the atmosphere. The advantage of short-wave infrared LiDAR sensors
is that the maximum output power allowed is higher, and therefore a higher detection range is possible.
However, electromagnetic absorption by water is stronger at 1550 nm [32], making these LiDAR sensors
more susceptible to adverse weather conditions.

The beams have low divergence, which allows high measurement distances due to reduced power decay
with distance [34]. In general, LiDAR sensors have a high distance measurement accuracy, with an error
of a few millimeters on average [34]. Royo et al. [30] report a centimeter accuracy for pulsed or Amplitude
Modulation Continuous-Wave (AMCW) LiDAR sensors, and a millimeter accuracy for Frequency Modulation
Continuous-Wave (FMCW) LiDAR sensors. This accuracy can be degraded to 0.5 m in the worst case [34].
The range resolution is proportional to the resolution of the time counting; for example, a discretization of
0.1 ns equals a distance of 1.5 cm. This discretization is limited by the jitter and noise of the electronics [30].

To guide the laser beam, different scanning systems exist, classified as mechanical spinning or solid-state
systems [32]. In mechanical spinning LiDAR sensors, a rotating mirror or prism is controlled by a motor
for beam steering. This mirror or prism rotates periodically with a fixed spinning rate, which is usually in the
range of ten to 30 Hz. They usually have a horizontal Field of View (FoV) of 360° and multiple laser beams
stacked to achieve a vertical resolution [32]. This vertical resolution reaches four up to 128 lasers beams [34].
Due to their system design and wide FoV, these mechanical spinning LiDAR sensors are bulky and fragile
due to vibrations of the mechanical components [32]. Solid-state LiDAR sensors can be further categorized
into the Microelectromechanical Systems Microscanning (MEMS), flash, and Optical Phased Array (OPA)
systems. MEMS LiDAR sensors are near-solid-state devices with a mirror on a chip. This mirror rotates
1D or 2D around an axis by the opposing forces from a torsion bar and the electromagnetic force applied
during operation. This allows custom scan patterns and the ability to dynamically adjust the FoV [32]. Flash
LiDAR systems have a working principle similar to that of a camera. A single laser is spread by an optical
diffusor to illuminate the whole scene simultaneously, and a 2D photodiode array receives laser returns.
The advantage of flash LiDAR sensors is that the entire scene is captured at once and therefore no motion
distortion occurs due to capturing at different time steps. However, the power of a single laser is spread
into multiple beams, leading to limited achievable ranges [32]. In OPA LiDAR sensors, the laser beams are
steered using a phase modulator. This phase modulator controls the shape of the optical wavefront and
hence the steering angles [32].
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2 Preliminaries in LiDAR Perception and Deep Learning for Autonomous Driving

2.2 Representation of LiDAR Data

Despite differences in the scanning system, each ray returns the radial distance rwh to the target using the
time-of-flight formula in Equation 2.1. In addition, the sensors can return the intensity Ir of the reflected light
pulses. The horizontal and vertical orientation of each ray can be described by the azimuth angle φw and
the elevation angle θh, respectively (Figure 2.2). The indices 1 ≤ w ≤W and 1 ≤ h ≤ H denote discrete
horizontal and vertical orientations. In mechanical spinning LiDAR sensors, the number of horizontal steps W
depends on the spinning rate, and the number of vertical steps H depends on the number of vertically
stacked lasers.

Figure 2.2: Representation of the generation of a sensor image using a mechanical spinning LiDAR sensor.

The resulting output of the LiDAR sensor is the sensor image (also known as depth image, range image,
range view, or front view), as depicted in Figure 2.3c for a 360° sweep and the same sensor image enlarged
to the central 120° in Figure 2.3d. The sensor image is defined in RW×H×C , whereas the channels C
comprise the radial distance from the target rwh and the reflected intensity Ir. C can further contain additional
information, such as the point-wise velocity vwh or the point-wise time stamp twh at which each laser pulse
hits the target. The point-wise time stamp can be used to compensate for motion distortion, which occurs
if the pose (position or orientation) of the LiDAR sensor changes during the finite time needed to capture
a scan. This time is measured between capturing the first and last point of a point cloud. Motion distortion
is a typical characteristic of point clouds in the automotive domain, as the LiDAR sensor is mounted on a
vehicle, which constantly changes its pose. Using the change in pose measured with GNSS and IMU and the
point-wise time stamps, the relative position of each point within the point cloud can be corrected.

The spherical sensor image can be transformed into a 3D point cloud (Figure 2.3a). Formally, a point
cloud is an unordered set of points Xi = {p j|

N j

j=1}. Each i-th point cloud contains N j points, and each point

p j = {x j , y j , z j} ∈ R3 contains the 3D coordinates. The transformation between the spherical sensor image
and the 3D point cloud using Cartesian coordinates x yz can be described by the mapping in Equation 2.2:





xwh

ywh

zwh



= rwh ·





cosφw · sinθh

sinφw · sinθh

cosθh



 . (2.2)

The definition of the point cloud coordinate system is according to the vehicle axis system of SAE J670 [35].
In this thesis, a consistent definition of the coordinate system is used for all 3D point clouds. Specifically,
the x axis is aligned with the longitudinal axis of the vehicle on which the LiDAR sensor is mounted and is
positive toward the vehicle front, which is usually the direction of driving. The y axis is orthogonally facing
the front of the vehicle and is positive towards the left side of the vehicle. Finally, the z axis is the vertical axis
and is positive upward.
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2 Preliminaries in LiDAR Perception and Deep Learning for Autonomous Driving

In this thesis, 3D point clouds are used in the form of object point clouds or scene point clouds. The latter
is an entire point cloud recorded during a single scan of the automotive LiDAR sensor, as in Figure 2.3a.
An object point cloud is a cropped section of a scene point cloud and only comprises points belonging to a
single object. These object point clouds can be extracted from scene point clouds using the 3D bounding box
of the object and usually only contain a fraction of the points of the corresponding scene point cloud.

This thesis examines object and scene point clouds at both the local and global levels. The global level
describes the entire global structure of a point cloud, i.e. the semantics of a scene point cloud or the object
itself in an object point cloud. In contrast, the local level describes the detailed local structures and inter-point
relationships of neighboring points within an object or scene point cloud, e.g. specific noise patterns on
different surfaces or caused by different sensors.

The 3D point cloud can also be converted into a 2D Bird’s-Eye View (BEV) image by projecting the
z component of each point onto a common plane, i.e. z = 0, and converting the continuous x -y coordinates
to discrete pixel positions on the BEV image (Figure 2.3b).

Another representation of LiDAR data is the transformation of 3D point clouds into a voxel grid. To create a
voxel grid from a 3D point cloud, the point cloud is discretized using rectangular cuboids with a fixed edge
length. The content of each cuboid can be multidimensional, from binary classification if the cuboid contains
any point to multiple features such as the average coordinate of the points, the total number of points within
the cuboid, or the average intensity of the points. The advantage of using the voxel grid representation is that
the LiDAR data are stored in a structured and regular grid, allowing the use of algorithms and DL techniques
developed for the camera modality, as the camera images are also stored in a structured and regular grid.

Projection onto a 2D BEV or voxel grid leads to discretization and therefore loss of information compared to
the 3D point cloud representation, which preserves the rich geometric, shape, and scale information [38].
Therefore, the 3D point cloud representation is the preferred representation of the LiDAR data for many
applications such as AD and robotics, which require intensive scene understanding [38].

2.3 Fundamentals of Deep Learning with Point Clouds

DL techniques not only lead research and industry in many areas, such as computer vision and natural
language processing but also found their way into everyday life in the form of applications like ChatGPT [39].
DL techniques are also used to perform a variety of tasks to understand 3D point clouds, which become
increasingly available and affordable due to the rapid development of 3D acquisition technologies such
as LiDAR sensors and RGB-D cameras [38]. According to Guo et al. [38], in the field of AD and robotics,
research on 3D point cloud understanding includes tasks such as 3D shape classification, 3D object detection
and tracking, 3D point cloud segmentation, 3D point cloud registration [40], 6-degree-of-freedom pose
estimation [41], and 3D reconstruction [42].

3D shape classification methods have the objective of determining the semantic class of a point cloud,
which is usually restricted to object point clouds. 3D object detection and tracking methods aim to localize
objects in scene point clouds and further classify and track the localized objects in multiple sequential point
clouds. 3D point cloud segmentation methods determine the semantic class of each point and can be
categorized into semantic segmentation and instance segmentation. Both methods divide the point cloud
into regions based on the category of objects, but the latter distinguishes further between instances of the
same semantic class. According to Elbaz et al. [40], 3D point cloud registration is described as the process
of determining the transformation between two sets of point clouds that have distinct coordinate systems.
This technique is the key enabler for applications such as Simultaneous Localization And Mapping (SLAM).
6-degree-of-freedom pose estimation algorithms predict the 6D pose, i.e., position and orientation, of
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(a) 3D point cloud. Points with the same color have the same height
in the coordinate system.

(b) 2D bird’s-eye view with 0.1 m resolution.

(c) Sensor image with distance encoding in the range 0 m to 30 m for the full 360° point cloud. The color encodes the distance of each measurement
from 0 m (blue) to 30 m (red). The black pixels indicates that there are no measurements in this range, i.e. the LiDAR sensor receiver detects no
reflected pulse or the intensity is below a defined threshold.

(d) Sensor image as in Figure 2.3c, enlarged to the central 120°.

Figure 2.3: Different LiDAR representations of the same point cloud from the KITTI [36, 37] dataset.

objects in the 3D space, which is a crucial skill for applications such as industrial robotics and warehouse
automation technologies [41]. Finally, the goal of 3D reconstruction is to rebuild the three-dimensional
geometry and structure of objects and scenes [42]. This process is crucial for various applications such as
robot navigation, object recognition, scene understanding, 3D modeling and animation, industrial control,
and medical diagnosis [42], and involves using 2D images or 3D point clouds as input data.

Despite the large variety of tasks in the field of 3D point cloud understanding, all face the same challenges of
extracting meaningful information from the 3D point clouds. The principles of extracting features from 3D
point clouds using neural networks are briefly discussed in Subsection 2.3.1. Using these basics, the specific
task of object detection using LiDAR point cloud data is explained in Subsection 2.3.2.

2.3.1 Principles of Neural Networks for Feature Extraction from Point Clouds

Feature extraction is the process of transforming raw data into a set of meaningful and relevant features
that can be utilized by subsequent layers of the neural network for tasks such as object detection. 3D point
clouds have three main properties causing the application of feature extractors in neural networks to be
challenging [43]. First, point clouds are irregular, meaning that points are not evenly sampled around the
sensor; some regions have dense points, while others have sparse points. Second, the unstructured nature
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of point clouds means that the points are not on a fixed grid, the distance between neighboring points varies,
compared to equidistant pixels in 2D images. Lastly, point clouds are unordered, meaning that the order of
the points in a list does not influence the 3D point cloud, i.e., point clouds are permutation invariant. Figure 2.4
visualizes these three properties.

Dense region

Sparse region
Unstructured

Permutation
invariance

Figure 2.4: Properties of point clouds visualized on an object point cloud extracted from a scene point cloud of the
KITTI [36, 37] dataset.

These properties of point clouds do not allow the use of conventional Convolutional Neural Networks (CNNs)
as used in image processing, since the convolution operation in CNNs requires data in an ordered, regular, and
structured grid [43]. However, to address these challenges, point clouds can be converted to a structured grid
format using a voxelization representation (Section 2.2), or neural networks designed specifically to handle
point clouds without prior conversion can be employed. The former relies on discretization and therefore a
loss of information, especially noticeable in the local structures, meaning the geometric relationships between
adjacent points are not preserved. To avoid this information loss, methods and algorithms belonging to the
second approach will be explained in the following.

A seminal work in this area is PointNet [44], introduced in 2016. In contrast to conventional 3D data processing
techniques that depend on voxel grids or multiple views, PointNet directly handles unprocessed point clouds.
PointNet’s primary characteristic is its capacity to capture spatial hierarchies of features through a symmetric
function, guaranteeing invariance to the point order in the input, thus addressing the issue of handling
unordered point clouds. The architecture is efficient and suitable for tasks such as object classification,
semantic segmentation, or part segmentation. The architecture comprises multiple layers that individually
apply functions to each point, followed by an aggregation process to extract global features from the point
cloud.

However, PointNet focuses mainly on capturing global features and may not effectively aggregate local
features. This limitation can result in less than optimal performance on tasks that require attention to local
structures or specific details [43]. Moreover, the efficiency of PointNet may be influenced by the density of the
point cloud. Variations in point density in various parts of the point cloud can result in inconsistent feature
extraction. To address the remaining two challenges, several follow-up works were proposed to improve
PointNet, e.g., PointNet++ [45] or KPConv [46].
10
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PointNet++ is a continuation of the original PointNet, aiming to tackle the challenge of aggregating local
features. This network introduces a hierarchical model that recursively implements PointNet on subdivided
segments of the input point cloud. By doing so, this method enables the model to comprehend both local
patterns on a small scale and broader contexts on a larger scale, thus enhancing its effectiveness in tasks
demanding fine-grained details.

KPConv introduces a point convolution operation that adapts to the density of the point cloud, enabling the
flexible and efficient processing of point clouds with varying densities and effectively dealing with the issue of
irregularity.

In addition to these methods, many other approaches exist, which according to Bello et al. [43] can be
classified into approaches exploring the local neighborhood correlation among adjacent points [47–55],
approaches that do not explore the local neighborhood correlation among adjacent points [56–60], and graph-
based approaches [61–64]. For a detailed review of these approaches, the reader is referred to [43]. Although
there exist many approaches, most of them are variations of the original PointNet and PointNet++ [65].

2.3.2 LiDAR Object Detection

3D object detection is a critical component for various applications, including AVs and robotics. It can be
achieved using different sensor modalities such as a camera, LiDAR, RaDAR, or any combination of these. In
this section, the focus is on methods and algorithms that use DL to extract relevant information from sensory
input to perceive the environment of the AV.

Generally, the goal of 3D object detection is the prediction of the location, size, orientation, the classes of
relevant and critical objects that potentially influence driving decisions and interact with the AV, such as other
vehicles, pedestrians, and cyclists in the 3D space [66]. The input to these algorithms is the sensor data, that
is, point clouds from LiDAR sensors or images from the camera. The output of these algorithms is usually the
3D bounding boxes of all objects predicted in the sensory input, and each bounding box Bi is represented
as a 3D cuboid that encloses the object Bi = [xc, yc, zc, lb, wb, hb,θ , class] [66]. Here, [xc, yc, zc] are the
center coordinates of the cuboid, [lb, wb, hb] are the dimensions length, width, and height of the object, θ is
the orientation angle around the z axis (also yaw angle or heading), and class is the category of the object,
i.e. semantics. These 3D bounding boxes can be used in downstream tasks that, at a high level, include
prediction, planning, and control of the AV.

In the following, the focus is on 3D object detection using point clouds captured by automotive LiDAR sensors.
The detection of objects from outdoor automotive point clouds poses its own challenges, such as non-uniform
point distribution leading to various point cloud densities depending on the object’s distance. Furthermore,
3D object detectors for the automotive domain have the requirement of real-time processing to be able to
react to the environment in a reasonable time to comply with the safety-critical nature of AD, which requires
computationally efficient methods [66].

Similarly to the representation of point clouds introduced in Section 2.2, LiDAR 3D object detection methods
can also be categorized into point-based, grid- or voxel-based, and range-based approaches, which are
briefly discussed in the following. Despite the differences, all three approaches have in common that they
are trained in a supervised fashion, meaning that annotated point clouds are used as network input and the
network prediction is compared with the annotation during training.

Point-based approaches employ feature extractors based on point-based backbone networks as explained
in Subsection 2.3.1, hence they use permutation-invariant operators as used in PointNet [67]. Based on
downsampled points and their features, prediction heads predict the parameters of 3D bounding boxes.
PointRCNN [68] and Pointformer [69] are prominent representatives of point-based approaches.
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Grid-based and voxel-based approaches utilize a discretized BEV, pillar, or voxel representation of the point
cloud and employ traditional 2D CNNs or 3D sparse neural networks to capture features of the grids [66].
The resulting BEV feature map is processed by 2D backbone networks and detection heads to predict
objects. According to Qian et al. [67], voxel-based methods gain advantages over BEV-based methods due to
reduced scale ambiguity and fewer occlusions. PIXOR [70], PointPillars [71], and VoxelNet [56] are prominent
representatives of grid-based approaches and use BEV, pillar, or voxels, respectively.

Lastly, range-based approaches use the 2D sensor depth image where each pixel contains the depth
information rather than RGB values [66]. These approaches use networks designed for conventional 2D
object detection models as the representation is similar and the most prominent network of this approach is
LaserNet [72].

The prediction of 3D objects can be guided by using anchors, which are predefined 3D cuboids placed in
the 3D space and that use the prior knowledge of expected dimensions for the different object categories,
i.e. objects of the same category typically have the same cuboid aspect ratio. These anchors are placed
throughout the input space and the existence, position, size, and orientation offset of each anchor to best
fit the detected objects are regressed by the network [73]. In contrast to anchor-based object detection,
anchor-free approaches directly predict key points, such as the center or boundaries of detected objects. This
is done by first segmenting the point cloud into foreground and background points, whereas the former are
points potentially belonging to objects. For each foreground point, a prediction for an object is made, which
can be refined in later stages by using the non-maximum suppression post-processing technique. This offers
greater flexibility, as these algorithms are less biased towards the predefined objects’ shapes and sizes.

The most common metric for evaluation of 3D object detection is Average Precision (AP) [67], which is
calculated as the area under the precision-recall curve [38], and is adapted from 2D object detection. To apply
AP on 3D object detection, [36] propose 3D AP and BEV AP, which differ in the matching of the predictions
and the ground truths for recall and precision calculation [66]. In 3D AP, a True Positive (TP) is counted
if a defined threshold of 3D Intersection over Union (IoU) of a predicted and a ground truth 3D cuboids is
reached, whereas in BEV AP, the intersection is calculated between the 2D BEV-projected cuboids. The
thresholds for IoU are usually 0.3, 0.5, and 0.7 for different difficulty levels [67]. For the calculation of AP,
usually 40 equal-spaced recall levels [1/40, 2/40, ..., 40/40] are evaluated.

For the official benchmark of the public large-scale dataset nuScenes, Caesar et al. [74] propose the center
AP, which matches a predicted 3D cuboid with a ground truth 3D cuboid if the 2D center distance of the
cuboids is below a threshold. Furthermore, they calculate additional metrics quantifying the translation error,
the scaling error, the orientation error, the velocity error, and the attribute error (classification) and combine
them with the center AP to obtain the overall nuScenes detection score. Unlike AP and its variations, Deng
et al. [75] and Philion et al. [76] propose to measure the performance of object detection algorithms using
motion planning as a downstream task. Although that removes some of the limitations of the AP, such
as weighting the error of a misdetection the same for close and far objects, the use of downstream tasks
incorporates new challenges, e.g. the need for pretrained motion planners [66].

More details on 3D object detection for different modalities, applications, and metrics can be found in the
surveys [66, 67, 73].

2.4 Datasets for Autonomous Driving

All networks introduced in Subsection 2.3.2 rely on supervised training, that is, they require annotated
datasets for training. These datasets not only play a crucial role in network training but can also be used
to benchmark and compare the performance of different object detection algorithms. In this thesis, the
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focus is on outdoor datasets as they are relevant in the field of AD. As briefly explained in Subsection 2.3.2,
large-scale outdoor point clouds are characterized by the fact that the relevant objects for the AD applications
are spatially separated and the point clouds are sparse. In general, the datasets can be separated into
datasets collected in the real world and synthetic datasets generated in a simulated environment. In the
following, the focus is on datasets for the tasks 3D point cloud object detection and tracking, as compared to
3D point cloud segmentation, which requires point-wise labeling of every point in each point cloud, which
ultimately leads to higher labeling effort and costs.

2.4.1 Real-World Datasets

Real-world datasets are collected by sensors-equipped vehicles that are driving in a certain area to capture a
variety of scenes. These vehicles are equipped with multiple sensors, which usually cover multiple modalities.
This can facilitate the subsequent manual labeling process, in which a 3D bounding box is assigned to
each relevant object for all predefined classes. Real-world datasets have the advantage of high realism by
capturing the unpredictability of real environments, such as unexpected driver or pedestrian behavior, and by
including mixed weather conditions. Moreover, the sensors present in the real-world datasets demonstrate
characteristics comparable to those of the similar sensors used in the AV, guaranteeing precision in replicating
real driving conditions. As data collection and manual annotation are a time-intensive process, the creation
of real-world datasets is costly, and, therefore, only a few publicly available datasets exist. Additionally, these
datasets are limited in size, expressed by the number of labeled frames, and only cover a limited region and
scenario diversity.

Pioneering work in the field of publicly available real-world datasets is the KITTI dataset [36, 37] that covers
urban, rural, and highway areas in the city of Karlsruhe, Germany. It includes around 15,000 annotated point
clouds from a single 360° rotating LiDAR sensor. Following the success of KITTI, several other real-world
datasets have been released. They mainly address the scale of the data, the diversity of the data, provide
more annotated categories, or provide data of more modalities [66]. Among those datasets are the Oxford
RobotCar dataset [77], nuScenes [74], BLVD [78], Waymo Open Dataset [79], ApolloScape [80, 81], and
Argoverse [82]. For example, the Waymo Open Dataset provides around 200,000 labeled frames; nuScenes
includes not only daytime and sunny weather but also data captured at night or in rainy conditions. Moreover,
nuScenes also introduces more object categories, such as traffic cones, and includes radar data in addition
to LiDAR and camera data.

2.4.2 Synthetic Datasets

Synthetic datasets are recorded in a simulation environment by rendering synthetic scenes while driving a
vehicle equipped with virtual sensors. Simulation environments are usually based on game engines such as
Unreal Engine [83] or Unity [84]. During sensor data recording, the object labels of all surrounding objects, i.e.
the ground truth, can be stored and associated with each frame. As time-consuming and costly annotation
becomes no longer necessary, synthetic data are more scalable than real-world data. Furthermore, scenarios
can be exactly reproduced for systematic testing and can also include rare or dangerous situations that
can not be replicated in the real world. Despite the benefits of using synthetic data, the reduced realism
compared to the real-world dataset opens up new challenges. In addition, only a few synthetic datasets are
publicly available.

[85] and [86] suggest the use of the open-world video game Grand Theft Auto V [87] to create a dataset that
contains more than 250,000 annotated images at the pixel level. This dataset is intended for various vision
tasks, such as optical flow, semantic instance segmentation, object detection, and tracking. The synthetic
datasets Virtual KITTI [88] and the successor Virtual KITTI 2 [89] target the same perception tasks and
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mimic the real-world KITTI dataset. Car Learning to Act (CARLA) [90] is a simulation environment that is
based on Unreal Engine and allows for the collection of perception data by providing a Python Application
Programming Interface (API) for custom scenario generation. In addition, CARLA includes several virtual
sensor models for the camera, LiDAR, and RaDAR.

The All-In-One Drive dataset [91] employs CARLA to generate a large-scale synthetic dataset that includes
multiple sensor modalities, camera, LiDAR, RaDAR, IMU, GNSS, and the respective annotations for percep-
tion tasks. All-In-One Drive also incorporates out-of-distribution driving scenarios, such as traffic accidents,
violations of traffic rules, and adverse weather conditions.
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3 Related Work

This chapter presents the existing literature in the context of LiDAR domain shift and LiDAR domain adaptation
for AVs. The primary objective of this chapter is to review the state of the art in these areas to understand the
evolution and challenges in this field. This review serves as a basis for the definition of the research gap and
the formulation of the research questions in Chapter 4. The scope of the related work chapter comprises
the areas of LiDAR domain shift and LiDAR domain adaptation. In Section 3.1, the LiDAR domain shift is
defined, and the causes and impacts of LiDAR domain shift are discussed, along with the methods used
for its measurement and evaluation. Section 3.2 covers the problem definition of LiDAR domain adaptation.
Furthermore, domain adaptation techniques, in particular for the application of 3D point clouds from the
automotive domain, are discussed.

3.1 LiDAR Domain Shift

The first focus in this chapter is the concept of LiDAR domain shift, which emerges as a central aspect in
today’s LiDAR research. The phenomenon of LiDAR domain shift, which describes the change in LiDAR data
under different conditions, poses unique challenges in the handling of LiDAR data and has great impacts
on applications such as AD. This section aims to present the nature of LiDAR domain shift by introducing
a definition and explaining the background, i.e., exploring the factors that contribute to the domain shift. In
addition, the implications of the domain shift on perception algorithms for AVs are presented. Furthermore,
the main contribution of this section is the discussion of state-of-the-art quantitative and qualitative metrics
used to identify and precisely measure the shift between LiDAR point clouds originating from different
domains. This discussion provides a foundation for comprehending the complexity of the LiDAR domain shift,
paving the way for discussing methods to reduce the domain shift using domain adaptation techniques in
Section 3.2.

3.1.1 Definition and Background

The goal of machine learning is for a model to learn an objective function through training data, enabling its
application to unseen test data with minimal risk [92]. It is commonly assumed that the data used for training
and testing models are drawn from a fixed distribution [93], have shared joint probability distributions [92],
or share the same feature space [94]. This implies that the training and testing datasets are independent
and identically distributed (i.i.d.) [95]. Using this assumption, the uniform convergence theory guarantees a
training error close to the true error [93].

However, in real-world applications, this assumption is often violated and the distributions of training and
testing data differ. This difference between training and testing data is called the domain shift. In the literature,
the domain shift can also be found as domain gap [96], distribution shift [97], dataset bias [98], or reality gap
in the case of simulated training data and real-world testing for AD applications [99]. The annotated training
and testing data are termed source and target domains, denoted as S and T , respectively. Therefore, in the
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challenge of domain shift, it is assumed that the data distribution P differs, that is, PS ̸= PT [97]. Typically,
a domain refers to the scope of application of an algorithm [94]. In AD, this encompasses data attributes
like lighting conditions, weather, sensor perspectives, object types (e.g., pedestrians, vehicles, traffic signs),
and geographical settings. Domains can differ significantly; for example, urban driving domains may include
heavy traffic, high-rise buildings, and intricate intersections, while rural driving domains might consist of light
traffic, expansive fields, and straightforward road configurations. This domain shift can appear in various
applications in which models are trained using a specific dataset and applied in the real world, and is mainly
studied for image processing applications [100] with tasks such as semantic segmentation [101, 102] or
visual recognition [103, 104].

Kouw et al. [105] define three special types of domain shift, that is, prior shift, concept shift, and covariate shift.
Prior shift occurs when the class-conditional distributions, indicating the likelihood of data for a given class,
stay consistent across various domains, while the prior probabilities, representing the relative proportion
of each class, vary. In essence, the overall occurrence of each class shifts, but the relationship of each
class with the data remains unchanged. For example, the proportion of different objects changes between
datasets. Concept shift occurs when data distributions remain consistent between domains, while posterior
distributions vary. This means that the data appear unchanged, but the way classes are assigned to the data
is altered. For example, the appearance or characteristics of objects change between datasets. Covariate
shift occurs when there is a discrepancy in the data distributions between domains, while the posterior
distributions, which represent the likelihood of a class given the data, remain the same. Essentially, this
implies that although the data distribution may vary, the association between the data and the classes remains
consistent. For example, the environmental conditions such as weather or lighting change between datasets.

Schwonberg et at. [96] note that the overall domain shift is usually a mix between the three special forms
of domain shift. However, Kouw et al. [105] note that the covariate shift is the most studied form of domain
shift. Also, most related work presented in the following addressing the domain shift using domain adaptation
methods focuses on the covariate shift to align the data distributions of source and target datasets.

There are a variety of reasons for the domain shift. For example, the statistical properties of a domain can
change over time or space [92]. Another reason could be that it is preferable to use a publicly available
and annotated source dataset for model training, as the collection and generation of a custom dataset is a
time-consuming and costly process [92]. In the area of LiDAR domain shift, the reasons for the domain shift
can be attributed to environmental factors and hardware variability. In the following, several types of domain
shift are briefly explained using the notation of "source-to-target", whereas source and target represent the
source and target datasets, respectively.

The country-to-country domain shift occurs when the dataset is collected in a country different from where
the model trained on this dataset is utilized. Countries differ in terms of the shapes of traffic signs and road
layouts, or vehicle shapes and sizes. For example, the best-selling vehicle in USA is a full-sized pickup truck
with a length of over 5.8 m, whereas the best-selling vehicle in Germany is a compact car with a length of
around 4.3 m [106].

The sensor-to-sensor domain shift occurs when the sensor of the source dataset and the target application
differ. This can be caused by a difference in resolution, mounting position, noise characteristics, intensity
measurement, range, or scan pattern.

The dataset-to-dataset domain shift is a combination of the country-to-country and sensor-to-sensor domain
shift. This can occur when a model is trained, for example, using the KITTI dataset, and applied in the USA
using a vehicle with a different sensor setup.
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The weather-to-weather domain shift occurs when the weather between source and target differs. Most
datasets are captured during good and sunny weather, and hence the domain shift occurs when models
trained with these datasets are tested during rainy or foggy conditions.

Similarly, the season-to-season domains shift describes the changes of seasons between the source and
the target. For example, the scenery in winter may not only include snow, but also trees contain fewer leaves
in winter, and convertibles are rarely seen during winter, i.e. the intra-class distributions differ.

The day-to-night domain shift mainly affects the camera, as LiDAR is an active sensor.

Finally, the sim-to-real can be a combination of multiple domain shifts, depending on the simulation settings.
It occurs when training data is gathered in simulation, but the application of the model is in the real world.
Here, the differences between simulation and the real world itself have multiple sources, from limited agent
and environment selection, simplified virtual sensor models without noise characteristics of the real world,
simplified physics, lighting, textures, and material properties to idealized behavior of agents. Especially, the
noise characteristics of the LiDAR sensors are complex to model in simulation, as they are a combination of
multiple independent noise sources, such as thermal noise, shot noise, background noise, readout noise,
and speckle noise [30].

Domain shift affects data quality and application efficacy, regardless of the source of the domain shift.
Typically, the efficacy of a dataset is determined not solely based on the volume of data, but also on the
quality of the data in terms of its variety, distribution, and realism [107]. The domain shift specifically affects
the aspect of the quality of a dataset. Models may experience a decrease in performance when used with data
from a related but distinct domain compared to the one on which they were originally trained [95]. Even small
changes in, for example, camera or LiDAR parameters can have a huge impact on neural networks [108].
This reduced model performance leads to higher error rates, which is especially problematic for safety-critical
applications such as AD. Furthermore, the interpretation and validation of the model becomes more difficult,
as the characteristics of the models on the source dataset might not be transferable to the behavior on the
target dataset. To assess the domain shift and compare the source and target datasets, several methods
exist, which will be discussed in Subsection 3.1.2.

3.1.2 Analysis of the Domain Shift

To analyze and measure the domain shift, there are various methods that can be categorized into either
qualitative or quantitative methods. Moreover, different datasets are used to benchmark the performance of
methods that minimize the domain shift. In the following, these evaluation methods, metrics, and benchmark
datasets are presented.

Qualitative Analysis

The qualitative assessment of the domain shift is usually performed by a visual inspection of the samples
from both the source and target domains and by comparison of the global and local structural differences of
the samples. This is usually done to assess the quality of generated samples for image-based Generative
Adversarial Networks (GANs) as in [109–115], where the quality of a few generated image samples is
assessed by humans. This subjective evaluation can also be transferred to LiDAR point clouds, although
these require specific domain knowledge of human raters [116].

Another common method for qualitative domain shift evaluation is t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [117]. According to [96], after quantitative measures, t-SNE is the second most widely used
method for evaluating domain alignment. T-SNE is a statistical technique that uses non-linear dimensionality
reduction to reduce high-dimensional data and visualize the resulting dimensional-reduced data in two-
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or three-dimensional maps. Points that are close together in the low-dimensional t-SNE graph typically
correspond to similar points in the original high-dimensional space. Hence, the hypothesis is that neighboring
points in the low-dimensional space indicate a lower domain shift of the high-dimensional input data than
distant points. This means that after domain adaptation, the centroids of the adapted data points should be
closer to the centroids of the target data points than the source centroids are to the target centroids [118].

As an example for t-SNE, Figure 3.1 shows a t-SNE graph generated with data from the MNIST dataset [119].
This dataset contains 28x28 pixel black and white images of handwritten digits from zero to nine, hence each
image contains 784 dimensions. T-SNE is applied to reduce the dimension of each image to two dimensions,
resulting in the t-SNE graph in which each point presents a dimension-reduced image. The formation of
separate colored clusters indicates that t-SNE successfully differentiates between the ten different digits.

Figure 3.1: T-SNE graph for visualization of MNIST images (from [120]).

In the following, a few examples of the usage of t-SNE for domain shift analysis are described. [121] use
t-SNE to visualize the feature embeddings generated by a feature extractor to demonstrate the efficacy of
their LiDAR point cloud realism classifier. [44, 122, 123] use t-SNE to visualize the global shape features
learned of the shapes in the ModelNet40 [124] or ShapeNet [125] datasets. [126–128] use t-SNE to visualize
the distribution of features in the target domain to highlight the performance of their unsupervised domain
adaptation approaches. Wang et al. [100] follow the same approach, but utilize t-SNE to generate a three-
dimensional mapping instead of a two-dimensional mapping. Yan et al. [129] use t-SNE to compare their
3D shape reconstruction autoencoder with baselines and further analyze the size of the cluster radii in the
t-SNE graphs. They concluded that based on the smaller cluster radii of their approach, it is less sensitive to
sampling variations and able to learn more generalizable features.

It should also be mentioned that in addition to t-SNE for dimensionality reduction for visualization of high-
dimensional network features, Uniform Manifold Approximation and Projection (UMAP) [130] provides another
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method similar to t-SNE. In contrast to t-SNE, UMAP preserves a more global structure of the input data.
However, as of today, UMAP is not used in the context of qualitative domain shift evaluation.

Instead of directly applying t-SNE or UMAP on points clouds or latent feature vectors of task-specific
networks, such as object detection or semantic segmentation, Hubschneider et al. [131] employ a Variational
Autoencoder (VAE) to generate latent representations of real and synthetic point clouds, and compare and
analyze these latent representations using t-SNE. The VAE is trained on real-world target data and can
be used to generate latent representations of different source datasets, such as data from simulation or
generated with GANs for domain adaptation.

Another qualitative domain shift analysis method is introduced by Triess et al. [116]. The authors conducted a
human-centered survey to obtain a mean opinion score, which was first introduced by Ledig et al. [132] for
RGB images. To obtain this mean opinion score, Triess et al. [116] asked human rating experts to assign a
score to the generated point clouds, which should reflect the visual quality of the realism of these point clouds.
In contrast to RGB images, LiDAR data requires specific domain knowledge, which necessitates the human
raters to be familiar with LiDAR data rather than being laypersons. This process is time-consuming, potentially
expensive, and does not scale to large or multiple datasets. Furthermore, the qualitative assessment done by
humans is always subjective and makes a comparison of different methods across different works difficult.
Therefore, this requires quantitative methods to assess the domain shift in point clouds.

Quantitative Analysis

Apart from qualitative methods to prove the presence of a domain shift, quantitative methods allow to assess
the scale of the domain shift. This is especially important to assess the efficacy and compare methods
that reduce domain shift, that is, domain adaptation techniques, which are presented in Section 3.2. The
advantage of quantitative methods over qualitative methods is that the former allows for automatic evaluation
of entire datasets, which makes these approaches more scalable than qualitatively assessing a few selected
samples. Furthermore, quantitative evaluation is not susceptible to subjective assessment. In general, the
quantitative methods can be categorized into statistical comparison methods directly applied to the data, and
in methods using task-specific networks to evaluate the domain shift, e.g. using object detection or semantic
segmentation networks.

Statistical comparison methods rely on analyzing the available data of all datasets relevant for the domain
shift analysis, and can always be done as an initial step. Wang et al. [106] perform a comprehensive study
of several publicly available real-world datasets using simple statistics to compare different characteristics
and quantify the dataset-to-dataset domain shift. In detail, the authors compare the datasets KITTI [36, 37],
Argoverse [82], nuScenes [74], Lyft [133], and Waymo Open Dataset [79], as seen in Figure 3.2. The dataset-
to-dataset domain shift present between these public datasets is a combination of the country-to-country
and sensor-to-sensor domain shift, as these datasets are captured in Germany (KITTI), USA (Argoverse,
nuScenes, Lyft, Waymo Open Dataset), and Singapore (nuScenes), and use different LiDAR models, which
have different properties, e.g. a different number of vertically stacked lasers. The authors compare the
number of LiDAR points per car and per scene in the camera FoV up to a distance of 70 m and further
analyze the ground truth size of the bounding boxes for cars. They conclude that on average the Waymo
Open Dataset has more than ten times more points per car (1356) than nuScenes (86), and the average size
in all three dimensions of cars in KITTI is lower than the average size of cars in the Waymo Open Dataset.
The latter can be attributed to the fact that the average vehicles sold in each country differ, as explained in
Subsection 3.1.1 [106]. Other statistical methods include the comparison of the object’s spatial distribution
and an average number of objects per point cloud, as in [134].
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The second category of methods to quantify domain shifts is based on training and evaluating task-specific
networks [135]. In general, the idea is to train semantic segmentation or object detection networks utilizing a
source dataset for training the networks and assessing the performance of these trained networks on a target
dataset. Standard metrics, such as mean IoU for semantic segmentation or mean AP for object detection,
are used for quantitative evaluation. The mean IoU is calculated as

mean IoU =
T P

T P + F P + FN
, (3.1)

with TP, False Positive (FP), and False Negative (FN) indicating the predicted pixels that are true positive,
false positive, and false negative, respectively.
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Figure 3.2: Front-view images (left) of five datasets and their corresponding LiDAR point clouds (right). The datasets
are not only recorded in different geographic locations but also used different LiDAR sensor models to
record the point clouds (from [106]).

Most of the work in this area of domain shift quantification originates from the camera modality. Nevertheless,
few works apply similar metrics to the LiDAR modality and thereby prove their applicability to this domain. In
the following, first works quantifying domain shift are presented using camera semantic segmentation and
object detection, before describing works employing LiDAR semantic segmentation and object detection for
quantification.
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In order to measure the camera sim-to-real domain shift by utilizing semantic segmentation networks, the
source domain is usually synthetic data from Grand Theft Auto V (GTA V) [85] or SYNTHIA [136], and the
target domain is the Cityscapes dataset [137]. Several works use these datasets to test domain adaptation
methods; however, only a few report the performance of models trained on both the source and target
datasets, which is required to assess the domain shift. Furthermore, the choice of semantic segmentation
network also varies, making a comparison of different methods difficult. For example, Dundar et al. [138] use
the semantic segmentation networks Dilated Residual Network DRN-C-26 [139] and DeepLabV3 [140] and
report the mean IoU for GTA V and SYNTHIA as simulated source datasets and Cityscapes as real-world
target dataset. The results on DRN-C-26 show a mean IoU of 22.9 % (GTA V), 18.5 % (SYNTHIA), and
66.3 % (Cityscapes), and the results for DeepLabV3 a mean IoU of 40.0 % (GTA V), 31.8 % (SYNTHIA), and
75.6 % (Cityscapes). In conclusion, both networks show a pronounced sim-to-real domain shift, which can be
specified at 35.6 % (GTA V-to-Cityscapes) or 43.8 % (SYNTHIA-to-Cityscapes) mean IoU for DeepLabV3.

Instead of using semantic segmentation networks to quantify camera domain shift, Adam et al. [141] and
Nowruzi et al. [107] use the 2D Single Shot MultiBox Detector (SSD) [142] and compare the mean AP or the
recall and precision achieved using different training datasets. Both works conclude that the metric values
achieved by training with simulated data are in all experiments lower than the values when trained with
real-world data, given that both are compared on the same test split of the respective real-world dataset.
Nowruzi et al. [107] further analyze the performance of mixed data training, that is, combining simulated
and real-world images in a single training dataset. In addition, they explored the possibility of initial training
using simulated data and subsequent refinement with the target real-world data. Even though this reduces
the domain shift to a larger extent than mixed data training, it still can not fully close the sim-to-real domain
gap. Seib et al. [143] and Burdorf et al. [144] also investigate the possibilities of using mixed data to train 2D
object detectors and hence quantify the sim-to-real domain shift. The findings suggest that synthetic data
have the potential to substitute real-world data to some extent, but this requires a larger number of samples.
Additionally, the use of synthetic data for initial network training can improve performance, surpassing the
performance achieved by only relying on real-world data for training [88, 89]. Instead of comparing the
network output, that is, calculating metrics using the network outputs and comparing these, Ljungqvist et
al. [145] utilize both synthetic and real-world data to train 2D object detectors and analyze the outputs of
the individual network layers. In detail, the authors compute the linear centered kernel alignment similarity
index [146], which provides layer-wise information on the similarity of features. The comparison of networks
trained on synthetic and real-world data reveals a strong resemblance in the initial layers of the network,
while demonstrating more significant discrepancies in the detection head of the network.

In the field of domain shift quantification for LiDAR point clouds using neural networks, the approach involves
the use of semantic segmentation or object detection networks, similar to the camera domain. Most of the work
is focused on semantic segmentation networks, as these are the primary applications of domain adaptation
approaches. This is justified in the fact that the labeling effort for pixel-wise and point-wise annotation of
real-world images and point clouds exceeds the labeling effort of placing 2D or 3D bounding boxes in images
or point clouds needed for object detection. For reference, annotating a single 2D image with semantic labels
of Cityscapes requires seven minutes for coarse annotations and 1.5 h for fine annotations [137]. Yue et
al. [147] and Spiegel et al. [148] train LiDAR semantic segmentation networks using synthetic, real, or mixed
data, and evaluate trained networks on real-world data using the IoU metric. Yue et al. [147] conclude that a
domain shift of 35.6 % IoU exists between the source GTA V synthetic dataset (29.0 % IoU) and the target
KITTI real-world dataset (64.6 % IoU), and that the performance on the target dataset can be increased by
1.4 % IoU if using mixed data instead of data from only the real world for training. There exist also several
works targeting LiDAR domain adaptation methods, and they implicitly evaluate the domain shift using
LiDAR semantic segmentation networks to compare the performance of their domain adaptation approaches.
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Examples include [116, 149–152] for the sensor-to-sensor domain shift, [153–156] for dataset-to-dataset
domain shift, and [157, 158] for sim-to-real domain shift.

Alongside LiDAR semantic segmentation, the second task-specific method of using neural networks for
domain shift quantification is to employ LiDAR 3D object detectors and analyze the 3D mean AP achieved
when training these detectors with different datasets. Dworak et al. [159] train the 3D object detection
networks VoxelNet [56], YOLO3D [160], and PointPillars [71] on synthetic data generated in CARLA and
test the networks on real-world KITTI data. The best configuration achieves a mean AP of up to 89 % when
trained and tested on CARLA data, but only achieves 19 % mean AP when tested on KITTI data. Dworak et
al. [159] also analyze the performance of using mixed data for training or fine-tuning using real-world data.
Although the results align with the results of [107] for camera object detection, these additional methods can
not fully reduce the existing sim-to-real domain shift. Similarly to [159], Fang et al. [161] and Manivasagam et
al. [162] employ 3D object detectors and train them using data from CARLA and KITTI. However, their goal is
not the quantification of the sim-to-real domain shift, but rather to access the performance of their methods
that generate synthetic LiDAR data. Tsai et al. [163] and Wang et al. [106] focus on the dataset-to-dataset
domain shift in real-world datasets, and quantify it using the same method of training the 3D object detectors
PV-RCNN [164], SECOND [165], or PointRCNN [68], respectively.

Unlike the works discussed previously, Triess et al. [121] develop an adversarial network capable of quantifying
the realism of synthetically generated LiDAR point clouds. To validate the quantitative metric, they evaluated
it using semantic segmentation networks.

3.2 LiDAR Domain Adaptation

The second major area of focus in this chapter is the concept of LiDAR domain adaptation, which tries to
solve the challenge of domain shift introduced in the previous Section 3.1. LiDAR domain adaptation is
solved using a variety of methods, which will be introduced in this section. First, the problem of domain
adaptation independent of the sensor modality is introduced alongside the specific terminology used in this
field. Afterward, domain adaptation approaches specifically designed to adapt 3D point clouds of LiDAR are
discussed, with an emphasis on methods developed for AD applications. This review of the state of the art
serves as a basis for deriving the research gap in Section 4.1.

3.2.1 Definition and Taxonomy

Building upon the insights of the definition and background of domain shift in Subsection 3.1.1, this section
narrows the focus to the specific challenge of domain adaptation. Domain adaptation addresses the challenge
of creating models to adapt data or to utilize other techniques to make task-specific models generalize well
in the target domain, although these models are trained on a different source data distribution [93]. This
can be achieved by creating approaches that learn the mapping between the source and target domain so
that a task-specific model trained on the adapted source data can be applied to the target data at the test
time [166]. The motivation for domain adaptation is the prevalence of deep neural networks that are often
data-hungry, that is, the performance of DL models is limited due to insufficient training data in terms of size
and diversity [26]. This requires researchers to exploit methods that allow the use of large-scale datasets that
can be easily generated and annotated, but this poses the challenge of domain shift, as discussed in detail
in Section 3.1. For the domain adaptation problem, the training data from the source domain are usually
label-rich, whereas the dataset from the target domain is label-scarce or even has no labeled data [98].
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The main focus of research in the domain adaptation area is on vision-based approaches, that is, adapting
camera images for tasks such as classification, semantic segmentation, or object detection [94]. In general,
the main application is classification (image-level predictions) or semantic segmentation (pixel-wise predic-
tions), and more approaches and benchmarks can be found in this area. Nevertheless, some works address
domain adaptation for camera object detection, as highlighted in a comprehensive survey on unsupervised
domain adaptation of object detectors [97].

Domain adaptation can be assigned to the area of transfer learning [167], as seen in Figure 3.3. Within
this field, domain adaptation is categorized as transductive transfer learning, which, together with inductive
transfer learning and unsupervised transfer learning, is a special form of transfer learning. Transductive
transfer learning is distinguished by the presence of annotated data solely in the source domain, and in the
special case of domain adaptation, the source and target domains differ, but the task (e.g. object detection)
remains the same. In inductive transfer learning, the source and target tasks differ. Unlike transductive
transfer learning, this requires annotated data in the target domain [167]. Examples of inductive transfer
learning are multi-task learning or self-taught learning, whereas the former makes use of annotated data
from the source domain. The last subcategory of transfer learning is unsupervised transfer learning, in
which the target and source domains are different but related. Related domains are those found in similar
environments, such as outdoor driving scenarios, whereas dissimilar domains refer to specific attributes
within these environments, such as sunny versus rainy weather conditions [94]. Furthermore, unsupervised
transfer learning is characterized by the absence of annotated data in either domain during the training
process. Examples are clustering or dimensionality reduction [167].

Transfer Learning

Inductive
Transfer Learning

Unsupervised
Transfer Learning

Transductive
Transfer Learning

no annotated dataannotated data only
in source domain

annotated data in
target domain

same domain and
same task

different domains but
same task

Sample Selection Bias /
Covariance Shift

Domain Adaptation

annotated data in
source domain, source

and target tasks are
learned simultaneously

Self-Taught LearningMulti-Task Learning

no annotated data in
source domain

Figure 3.3: Integration of domain adaptation into the overarching research field of transfer learning and differentiation
from related research fields. The domain adaptation is highlighted, as it will be further categorized in the
following (adapted from [94]).

Domain adaptation itself can be further categorized into the three paradigms of semi-supervised, weakly
supervised, and unsupervised methods [97] (Figure 3.4). In the context of object detection, semi-supervised
domain adaptation requires the source dataset to be fully annotated, that is, the bounding boxes and classes
for each sample need to be labeled. For the target dataset, only a subset is fully annotated. Examples of
semi-supervised domain adaptation include [168–171]. Weakly-supervised domain adaptation methods
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are similar to semi-supervised methods in the sense that the source dataset is fully annotated with bounding
boxes and classes for all samples, but the target dataset labels only contain information on the presence or
absence of any classes in form of binary annotations, i.e. these are weak labels. In [172], these weak labels
are bounding boxes, but the task is semantic or instance segmentation. Paul et al. [173] use image-level
labels to predict the presence of classes. In the last category, unsupervised domain adaptation methods,
the source domain dataset is fully labeled while the target domain dataset is not labeled at all. For the
standard unsupervised domain adaptation, both the source and target domains can be used during the
adaptation, while the source-free unsupervised domain adaptation describes the process of only using target
data during adaptation without access to source data [96]. Oza et al. [97] highlight that the unsupervised
domain adaptation formulation is the most challenging and the other formulations can be easily adapted from
unsupervised domain adaptation. For this reason, most research in the area of domain adaptation is focused
on the field of unsupervised domain adaptation.

Domain Adaptation

Unsupervised
Domain Adaptation

Weakly-supervised
Domain Adaptation

Semi-supervised
Domain Adaptation

target domain weakly
annotated

target domain
subset fully annotated

target domain not
annotated

Figure 3.4: Categorization of different forms of domain adaptation according to [97]. Unsupervised domain adaptation
is highlighted, as it will be further categorized in the following.

According to [96, 174, 175], unsupervised domain adaptation itself can be categorized into different adaptation
spaces. For neural networks, these adaptation spaces can be at the input, feature, or output levels of the
network (Figure 3.5).

The input space domain adaptation is in most cases a form of style transfer, in which the style of the
frames is stylized before serving as network input during training or inference, such as converting daytime
scenes into nighttime scenes. This style transfer can be applied in two ways. The style of the source domain
can be transferred to match the style of the target domain before training the network, or the style of the
target domain can be transferred during inference to the style of the source domain with which the network
was initially trained. The latter requires style transfer during inference, which can increase latency or affect
real-time capabilities for AD applications. Style transfer is usually done using methods based on GANs,
for example, CycleGAN [176] for image-based style transfer, but it can also be achieved using histogram
matching or normalization techniques [96]. Other forms of input space adaptation include data augmentation
and frame mixing, which describe methods that increase the number of source domains or mix the source
with target domains within the images or point clouds.

Feature space domain adaptation (also network-level domain adaptation [175]) tries to align the distributions
of the source and target domains in the layers of the network. In this way, the network should map the same
semantic inputs of both domains to represent the same things in the output space. Feature-space alignment
can be achieved using methods minimizing the divergence measure by using adversarial training or by using
self-supervised approaches.

Lastly, output space domain adaptation methods avoid the complexity of dealing with the latent space
and try to achieve a distribution alignment in the output space [174], e.g. in the pixel-wise segmentation
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Figure 3.5: Adaptation spaces of unsupervised domain adaptation according to [96]. Style transfer is highlighted as it
is the method of choice for LiDAR 3D domain adaptation in this thesis.

predictions. This is mainly done using adversarial learning strategies or iterative self-training using generated
pseudo-labels [96].

A further distinction in the field of domain adaptation can be made concerning the semantic classes C in the
source (CS ) and the target dataset (CT ) that are learned during the training process. Here, the main forms
are closed-set domain adaptation and open-set domain adaptation, whereas closed-set is more common
in research according to [96]. In closed-set domain adaptation, the classes within the source and target
domains are exactly the same; e.g., both datasets contain annotated samples of cars, pedestrians, and
bicycles (CS = CT ). In open-set domain adaptation, however, the classes can differ; for example, the target
dataset can additionally contain samples of trucks (CS ⊂ CT ), and this class is not existing in the source
dataset. Toldo et al. [174] further introduce partial domain adaptation, open-partial domain adaptation, and
boundless domain adaptation. Partial domain adaptation describes the form in which all possible classes are
part of the source dataset, but only a subset of these classes are relevant for the target dataset (CS ⊃ CT ).
Open-partial domain adaptation is a combination of open-set and partial domain adaptation, which means
that some classes are only present in the source dataset and other classes are only present in the target
dataset, and some classes are present in both datasets (CS ̸= CT and CS ∩ CT ≠∅). Boundless domain
adaptation is similar to open-set domain adaptation, but all target domain classes are individually learned
Clearned (CS ⊂ CT and Clearned = CS ∪ CT ).

Other methods closely related to domain adaptation include domain randomization or data augmentation.
The goal of domain randomization is to create multiple stylized versions of the source domain which is used
during training, to make the task-specific model generalize better during inference on the target domain,
as it is not biased towards a single source domain [97]. One way to achieve this for object detection is to
insert a variety of objects with different styles into the original image or point cloud, as in [99, 177, 178] for
image-based object detection. An advantage of domain randomization is that it does not need access to
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data from the target domain during training. Data augmentation for domain adaptation is similar to domain
randomization in the sense that objects are inserted into existing frames, but in the case of data augmentation,
data from other domains are inserted into frames of the target domain. This also increases the number of
domains seen during training but still requires annotated target data. For example, Abu Alhaija et al. [179]
developed a pipeline to render synthetic objects and augment real-world camera images using the synthetic
objects rendered to create a robust object detection network for the application of AD.

3.2.2 LiDAR Domain Adaptation using 3D Point Clouds

The previous Subsection 3.2.1 provided an in-depth overview of the formulation of the domain adaptation
problem and explained the specific taxonomy in this area. These formulations originate mainly in the area
of image- or vision-based domain adaptation. However, these are still valid for different sensor modalities,
such as LiDAR. In this subsection, the specifics for LiDAR-based domain adaptation are explained and
the differences between the LiDAR-based methods compared to camera-based domain adaptation are
highlighted. The goal is to give a brief overview of the general research landscape of LiDAR domain
adaptation and to highlight research trends in this area. Furthermore, the specific field of domain mapping
is explained in detail, which should serve as a baseline for the remainder of this thesis, in which domain
mapping plays a crucial role. A focus will be on methods designed for the domain adaptation regarding the
sim-to-real domain shift, as this type of domain shift is also the primary focus of this thesis. Ultimately, this
subsection should cover state-of-the-art research in the area of LiDAR domain adaptation for AD to derive
the research gap based on the state of the art in the subsequent Chapter 4.

Overview

All methods in the area of LiDAR domain adaptation can be classified as unsupervised domain adaptation
methods [94], as introduced in Figure 3.5 in Subsection 3.2.1. This means the domain adaptation for LiDAR
perception can be achieved by either adapting point clouds before passing them into the perception network
(input space adaptation), by adapting the LiDAR perception network to align source and target distributions
in the feature space (feature space adaptation), or by adapting the output space (output space adaptation),
e.g. the bounding box labels. To specifically categorize LiDAR-based domain adaptation methods, Triess et
al. [94] introduce four categories (Figure 3.6). These include domain-invariant feature learning, normalization
statistics, domain-invariant data representation, and domain mapping, while the latter three categories
originally were defined by Wilson et al. [135] and are data-driven, and the first method is model-driven and
belongs to the feature space adaptation category. In the following, the approaches within these categories
are presented. An overview of all approaches, their taxonomy, and application can be found in Table 3.1.

Domain-Invariant Feature Learning

Domain-invariant feature learning techniques are located in the category of feature space domain adaptation,
characterized by being the only LiDAR-based unsupervised domain adaptation methods directly modifying
perception networks. These approaches aim to align the features extracted by the perception network feature
encoder between the different domains. Hence, the extracted features should be domain-invariant, and source
and target domain features should follow the same distribution. As these features are part of the perception
network, these are not hand-crafted but rather learned during the training process. The assumption is that if a
perception network performs well using the source domain during training, the same trained network should
also perform well using target data as input, as the intermediate features are domain-invariant and hence the
origin of the data is indistinguishable for the detection or segmentation network head. In general, there exist
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Figure 3.6: Categorization of LiDAR-based domain adaptation methods according to [94].

two methods to accomplish a feature alignment in the perception network. One is based on the reduction of
a divergence measure, and the second is based on adversarial learning.

The first method aims to reduce the divergence measure of the features. Wu et al. [158] propose the
network SqueezeSegV2, an improved version of SqueezeSeg [194], a DL model for point cloud segmentation.
SqueezeSegV2 is resilient to dropout noises present in point clouds, a common challenge in the sim-to-real
domain shift. SqueezeSegV2 achieves this by combining three major components in a domain adaptation
training pipeline: progressive domain calibration, geodesic correlation alignment, and learned intensity
rendering. Based on the geodesic correlation alignment proposed by Morerio et al. [195], the authors of
SqueezeSegV2 synchronize the batch statistics of the source and target domain data using geodesic
correlation alignment, which are synthetic and real-world data in their case, and constrain the network to learn
a domain-invariant feature representation. In detail, they calculate the geodesic distance between the output
distributions of a synthetic data batch and a real-world data batch and use this geodesic distance as a loss to
penalize the discrepancy between the source and target data. The authors note that the Euclidean distance
could also be used instead of the geodesic distance; however, they chose the geodesic distance as it takes
into account the manifold curvature. Another similar approach is cross-model UDA (xMUDA) [156], which
leverages multimodal data from 2D camera images and 3D LiDAR point clouds to reduce the day-to-night,
country-to-country, and dataset-to-dataset domain shifts. This semantic segmentation architecture consists
of two parallel branches that transfer knowledge at the prediction level. A 2D branch predicts the pixel-wise
semantic classes using images as input, and a 3D branch predicts the point-wise semantic classes using
point clouds as input. Knowledge transfer across modalities is done using the Kullback–Leibler divergence
as part of the overall loss function, with the objective for the predictions of the 2D branch to estimate the
predictions of the 3D branch and vice versa. Similarly to align features to reduce the weather-to-weather
domain shift, 3D-CoCo [180] presents a contrastive instance alignment method to enforce domain-invariant
features, which aligns the feature centroids of similar sample clusters independent of the source or target
domain.

The second method for domain-invariant feature learning employs discriminators to enforce networks to
learn domain-invariant features adversarially. LiDARNet [154] is a LiDAR domain adaptation model for
semantic segmentation using a two-branch structure to extract domain-shared and domain-unique features
using discriminators. Using these extracted features, the model is induced to learn a mapping between
both domains and, hence, to reduce the domain shift. The authors state that the model not only increases
the performance in the target domain but also keeps almost the same performance in the source domain
after adaptation; hence, it can be applied in both the source and target domains. Wang et al. [181] explore

27



3 Related Work

Table 3.1: Taxonomy of Domain Adaptation Methods for LiDAR Perception. DIFL: Domain-Invariant Feature Learning,
NormStat: Normalization Statistics, DIDR: Domain-Invariant Data Representation, DM: Domain Mapping.

Method Paper 2D/3D Domain Shift Task Technique

DIFL

SqueezeSegV2 [158] 3D Sim-to-Real Segmentation Divergence Measure Reduction

xMUDA [156] 3D
Day-to-Night
Country-to-Country

Segmentation Kullback–Leibler Divergence

3D-CoCo [180] 3D Sensor-to-Sensor Detection Contrastive Instance Alignment

LiDARNet [154] 2D Sim-to-Real Segmentation Adversarial Learning

Wang et al. [181] 3D Range-to-Range Detection Adversarial Learning

DeBortoli et al. [182] 3D Sim-to-Real Detection Adversarial Learning

SRDAN [183] 3D
Sim-to-Real
Day-to-Night

Detection Adversarial Learning

NormStat Wang et al. [106] 3D
Country-to-Country
Dataset-to-Dataset

Detection Statistical Normalization

DIDR

Triess et al. [116] 2D
Sensor-to-Sensor
Dataset-to-Dataset

Segmentation Up-Sampling 2D Sensor Image

Shan et al. [184] 2D
Sim-to-Real
Sensor-to-Sensor

Occupancy
Mapping

Up-Sampling 2D Sensor Image

Elhadidy et al. [152] 2D Sensor-to-Sensor Segmentation Up-Sampling 2D Sensor Image

Alonso et al. [155] 2D Sensor-to-Sensor Segmentation Scan Line Dropping 2D Sensor Image

PiLaNet [149] 3D Sensor-to-Sensor Segmentation 3D Voxelization

Yi et al. [153] 3D Sensor-to-Sensor Segmentation 3D Voxel Surface Completion

SPG [185] 3D
Dataset-to-Dataset
Weather-to-Weather

Detection 3D Voxel Point Generation Module

DM

Saleh et al. [186] 2D Sim-to-Real Detection CycleGAN 2D Bird’s-Eye-View

Sallab et al. [187] 2D Sim-to-Real Detection CycleGAN 2D Bird’s-Eye-View

Sallab et al. [188] 2D Sim-to-Real Detection CycleGAN 2D Bird’s-Eye-View

DUSty [189] 3D Sim-to-Real -
Adversarial Dropout Learning
on 2D Sensor Images

ePointDA [157] 3D Sim-to-Real Segmentation
Adversarial Dropout Learning
on 2D Sensor Images

Alonso et al. [155] 2D Sensor-to-Sensor Segmentation Data Alignment using Geometric Shifts

Langer et al. [150] 2D Sensor-to-Sensor Segmentation Raycasting on SLAM-generated Map

Other

SF-UDA3D [190] 3D Dataset-to-Dataset Detection Temporal-Consistent Self-Training

ST3D [191] 3D Dataset-to-Dataset Detection Self-Training

FAST3D [192] 3D Dataset-to-Dataset Detection Temporal-Consistent Self-Training

You et al. [193] 3D Dataset-to-Dataset Detection Temporal-Consistent Self-Training
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a cross-range adaptation for 3D object detection in LiDAR point clouds, focusing on adapting far-range
observations to near-range to optimize detection performance. This architecture also employs a discriminator
for adversarial learning of global feature alignment to learn domain-invariant features, which implies that the
features are range-invariant in the context of cross-range adaptation. In detail, a feature discriminator aligns
the features in such a way that features from far-range objects have a distribution similar to that of features
from near-range objects. Quantification of their method is done by training BEV object detectors, including
feature alignment discriminators. It should be noted that this is a special case of domain adaptation, as it
requires access to source (near-range) and target (far-range) annotations. Debortoli et al. [182] employ an
adversarial discriminator during training to align the features of a 3D feature extractor for object detection
on real-world point clouds. This application is targeted toward the sim-to-real domain shift found in robotic
environments, such as search and rescue robots. A similar approach is SRDAN [183].

Normalization Statistics

Normalization techniques are typically used in vision-based neural networks to address the internal covari-
ate shift to improve training convergence, stability, and speed. These techniques can also be applied to
LiDAR-based networks to improve feature extraction in point clouds. In particular, these comprise batch
normalization [196] and its adaptations such as adaptive batch normalization [197], group normalization [198],
instance normalization [199], or batch-instance normalization [200] to align the data distributions in the
network layers. In image-related tasks, these methods are also used for domain adaptation. Here, the
idea is that normalization can separate domain and task knowledge in images, leading to style-invariant
representations. However, Triess et al. [94] highlight that the findings of using normalization for vision-based
domain adaptation can not be transferred to LiDAR-based domain adaptation. For example, Rist et al. [151]
discuss that simply using adaptive batch normalization in LiDAR object detection does not improve detector
performance when tested in a sensor-to-sensor domain adaptation setup. Another variant of using statistics
to improve model generalization is presented by Wang et al. [106]. The authors use statistical normalization
by calculating the mean car sizes of the source and target domains and adding the difference in mean
size to the source bounding boxes. Different dataset-to-dataset experiments show that applying statistical
normalization can reduce the domain shift. However, this approach needs access to target data to calculate
the mean object sizes or other sources to obtain the data, such as local vehicle authorities of the respective
target area or car-selling websites.

Domain-Invariant Data Representation

Domain-invariant data representation refers to the input data of the perception network; therefore, these
methods belong to the input space adaptation approaches. Essentially, the goal is to find a representation of
the input point clouds in which the perception network can not distinguish between the source and target
data. These data preprocessing algorithms can transform 3D point clouds into a 2D sensor image or a 3D
voxel grid, as introduced in Section 2.2.

In a sensor-to-sensor domain adaptation setup, which mainly focuses on the different sensor resolutions,
2D sensor images captured from different sensors can be easily aligned by upsampling or dropping scan
lines. For example, a 2D sensor image of two LiDAR sensors with different vertical resolutions can be aligned
by upsampling the horizontal rows of the 2D sensor image of the lower resolution LiDAR or by dropping
certain horizontal rows of the 2D sensor image of the higher resolution LiDAR. Triess et al. [116] developed a
CNN-based residual upsampling network to synthetically increase the vertical resolution of 2D sensor images
by a factor of two. This network can be used to upsample LiDAR point clouds captured with a 32-layer sensor
to a 64-layer equivalent and use the upsampled source data to train a perception network to reduce the
sensor-to-sensor domain shift for a 64-layer sensor as the target application. Shan et al. [184] follow a similar
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approach of vertically upsampling of 2D sensor images up to four times, based on the widely used U-Net
network architecture [201], and evaluate their architecture using simulated data from CARLA. Elhadidy et
al. [152] perform a similar type of domain adaptation for the semantic segmentation of point clouds using
2D sensor images as a domain-invariant data representation. Their network is capable of upsampling either
eight-, 16-, or 32-layer 2D sensor images to a 64-layer sensor image, which is, in turn, used to train the
semantic segmentation network RangeNet++ [202] and compared to RangeNet++ trained with the original
64-layer 2D sensor images. The results of all three upsampling methods show an increase in the mean IoU
for semantic segmentation [116, 152] compared to the baseline methods or a reduction in the L1 error for
occupancy mapping [184]. Instead of upsampling the vertical resolution of 2D sensor images, Alonso et
al. [155] align the domains by reducing the number of vertical layers of the sensor with the higher number
of layers to have the same number as the other sensor. They evaluated their approach using a semantic
segmentation network and calculated the mean IoU for three different target datasets. The results show
that intuitively the higher the initial deviation of the number of LiDAR layers between the source and target
dataset, the higher the increase in mean IoU after aligning the number of layers. Furthermore, the results
show that compared to other data alignment strategies analyzed by [155], this type of domain-invariant data
representation has one of the highest impacts on segmentation performance.

The second form of domain-invariant data representation is the voxelization of 3D point clouds. Here, the
point cloud is discretized using rectangular cuboids. Therefore, domain-specific characteristics can be
removed while maintaining the semantics of the scene. Some work uses this representation to solve the
domain adaptation challenge. For example, based on VoxelNet [56] and PointPillars [71], PiLaNet [149] is
a pillar-based labeling network for semantic segmentation of point clouds using the regularity of voxel grid
for cross-sensor portability. The authors analyze the sensor-to-sensor domain adaptation performance of
their network by training and evaluating the network with datasets from a 32-layer and a 128-layer LiDAR
sensor. The results show that their network achieves a better cross-sensor domain adaptation performance
than an approach using a 2D sensor image (LiLaNet [203]) in a comparable setting. However, the results of
segmentation are expressed in terms of mean IoU drops by more than 16 % when evaluating the opposite
sensor dataset, showing that this domain-invariant data representation approach can not fully eliminate
the sensor-to-sensor domain shift. The authors note that this performance drop might be related to their
backbone CNN, which is not optimized to handle varying densities of the input data. The cross-sensor
domain shift also is targeted using 3D geometric priors as a domain-invariant data representation in the
work of [153]. The authors present a domain adaptation approach that leverages geometric priors to convert
the problem of domain adaptation into a task of completing a 3D surface. Their approach consists of a
sensor-specific sparse voxel completion network that transforms the point cloud into a domain-invariant
voxel representation and a subsequent perception network to perform a perception task, which is semantic
segmentation in their case. The sparse voxel completion network retrieves the underlying 3D surfaces
from sparse LiDAR voxels originating from various sources, and the subsequent sensor-agnostic semantic
segmentation network categorizes the restored 3D surfaces. The authors argue that moving the domain
adaptation problem from the perception network to the surface completion network is beneficial, as the latter
can be trained self-supervised. Another domain-invariant data representation method using 3D voxel grids is
SPG [185], which integrates a point generation module into a point cloud object detector. The goal of the
point generation module is to generate domain-invariant object point clouds, which substitute the object point
clouds at their initial location in the scene point cloud. The downstream object detection task utilizes these
augmented scene point clouds.

To summarize, the advantage of the domain-invariant data representation methods is that they do not require
a modification of the perception network, and hence the domain-adapted point clouds can be used by multiple
perception networks. However, these data preprocessing algorithms are mostly based on hand-crafted
methods, which limits their generalization. As shown by Piewak et al. [149], the sensor-to-sensor domain gap
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can not be fully eliminated, even though their 3D voxel approach achieved better results than comparable 2D
sensor image-based approaches.

Domain Mapping

In the area of domain mapping, the goal is to transfer the data from the source domain to the target domain
before passing the adapted data into the perception network for training. The idea is that the source domain
data is transferred to appear like the target domain while maintaining the semantic meaning, and hence the
labels, which now serve as pseudo-labels, are still identical to the adapted source data. Once the perception
network is trained using the adapted source data, it can be applied in the target domain. Triess et al. [94]
mention that domain mapping is mainly used to reduce the dataset-to-dataset or sim-to-real domain shift. Most
methods in the area of domain mapping rely on adversarial networks, as domain mapping has its origin in
image-based domain adaptation. For image-based domain adaptation, image-to-image translation is usually
done pixel-wise using conditional GANs [204–207]. Similarly to image-based approaches, LiDAR-based
domain mapping approaches also employ GANs to adapt point clouds.

For example, Saleh et al. [186] use the unmodified cycle-consistent GAN CycleGAN [176] to adapt synthetic
point clouds from simulation to real-world point clouds. To use the image-based network CycleGAN, they
transform 3D point clouds into 2D BEV images, as explained in Section 2.2. Instead of image-to-image
translation with conditional GANs that requires paired images of the source and target data, CycleGAN is
trained unsupervised and does not require paired images, so the source and target datasets do not need
to be aligned. Therefore, Saleh et al. [186] use synthetic data from the Motion-Distorted LiDAR Simulation
(MDLS) dataset [208] and real-world data from the KITTI dataset. They evaluated their domain mapping
method using YOLOv3 [209] for object detection, which detects objects on the adapted 2D BEV point cloud
images and reported AP. The results show a successful decrease in the sim-to-real domain shift using their
adapted data to train YOLOv3 from previously 27.33 % to 22.48 % AP. They further analyze the performance
of mixing real-world training data with adapted data, resulting in a 7.03 % AP performance increase over
only using real-world data. Note that the number of training images from synthetic, adapted, and mixed data
is higher than the number of training images from real-world data, which could also be attributed to the
reduction of domain shift. Nevertheless, as synthetic data is inexpensive to generate and adapt, this approach
shows the potential to use domain adaptation for LiDAR object detection. This can be underlined by similar
work of [187] and [188]. The authors follow the same approach of using CycleGAN to adapt BEV images
of point clouds from a synthetic source dataset to a real-world target style. In their experiments, they use
CARLA as a synthetic dataset and KITTI as a real-world dataset. The evaluation of [187] is mainly focused
on qualitative visual inspection of the adapted point cloud images, and the degree of sim-to-real domain shift
reduction is not quantified. However, the qualitative assessment shows promising results of their approach.
Sallab et al. [188] conduct a quantitative evaluation similar to [186] by training the custom object detection
algorithm oriented YOLO, based on YOLO3D [160], and report the mean AP for different configurations of
the training dataset. They do not explicitly evaluate the performance of using adapted simulated data only for
training the object detector but mix the adapted data with the real-world data to analyze the performance
gain of adding adapted simulated data to real-world data. The mix of adapted and real-world data training is
indeed increasing the performance compared to using real-world data only or using mixed simulated and
real-world data.

Instead of using the lossy projection of point clouds on 2D BEV images to employ image-based CycleGAN,
other works use the lossless projection of point clouds to 2D sensor images, which is also used by domain-
invariant data representation domain adaptation methods. However, instead of using hand-crafted methods
to align the 2D sensor images of the source and target domains, adversarial networks are utilized by domain
mapping methods to learn the correspondence between the source and target 2D sensor images. Based on
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the work of [210] using a GAN architecture to generate 2D sensor image LiDAR data, DUSty [189] extends
this framework and incorporates a learnable point dropout mask, which should mimic the point dropout
present in the real-world target dataset. Similarly, ePointDA [157] learns the point dropout for the domain
mapping of the simulated source data to the real-world target data. Their architecture is also based on a GAN
structure that uses 2D sensor view images as input and output. Evaluation using a semantic segmentation
perception network shows that learnable dropout has the greatest influence on mean IoU compared to other
parts of the ePointDA framework targeting sim-to-real domain shift reduction, that is, feature alignment and a
transferable segmentation model.

Alongside adversarial domain mapping methods, Alonso et al. [155] and Langer et al. [150] present non-
adversarial approaches. Alonso et al. [155] present multiple data alignment strategies, such as removing
scan lines as discussed in domain-invariant data representations. They also employ other simple strategies
in the area of domain mapping, such as x yz shifts to align sensor locations, per-class augmentation, and
using only relative rather than absolute distances of the input data. As already discussed in domain-invariant
data representations, the dropping of scan lines has the greatest potential to reduce the domain shift, but the
additional domain mapping strategies also reduce the domain shift to an extent. For non-adversarial domain
mapping in a sensor-to-sensor setup, Langer et al. [150] fuse sequential LiDAR scans to build a 3D map
using SLAM [211], in which they later generate semi-synthetic scans using raycasting. These semi-synthetic
scans are projected into 2D sensor images for the task of semantic segmentation.

To summarize, the best approaches in domain mapping methods use adversarial learning by either adapting
2D BEV or 2D sensor image projections, whereas the former can not be re-projected into 3D space and the
latter do not make use of the geometric correlations between points in 3D space.

Other Methods

Other methods not classified in the former categories are, for example, self-training approaches, such as
source-free unsupervised domain adaptation for 3D object detection (SF-UDA3D) [190], an unsupervised
domain adaptation method that does not require target and source annotations. This architecture leverages
the temporal consistency of pseudo-labels generated by the 3D object detection network PointRCNN [68]
pretrained on the unavailable source dataset. The idea is that the predictions made by the network in
subsequent target point clouds can be tracked by a tracking algorithm and should be consistent. Using
these predictions, the target dataset can be annotated in a self-training manner and fine-tuned using the
pseudo-labeled target data to increase object detection performance in the target domain. Similar self-training
approaches using pseudo-labels generated by source-trained networks include ST3D [191], FAST3D [192],
and [193]. Lastly, MLC-Net [212] utilizes a teacher-student paradigm with multi-level consistency to generate
reliable pseudo-targets.
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This chapter summarizes the findings of the literature review by deriving the research gap in Section 4.1
and further formulates the research questions in the area of LiDAR domain adaptation based on the
open challenges in Section 4.2. In addition, the overview of the methodology of this thesis is presented in
Section 4.3.

4.1 Conclusions and Research Gap Derived from Related
Work

Chapter 3 discussed the related work in the area of LiDAR domain adaptation by breaking down this topic into
two parts. First, the importance and motivation of LiDAR domain adaptation are highlighted by discussing the
topic of LiDAR domain shift, its cause, impact, and quantitative and qualitative measures. Second, domain
adaptation approaches are categorized independently of the sensor modality, as most of the works in this
area are focused on camera domain adaptation. Then, the specific approaches in the limited research area
of LiDAR domain adaptation are presented and detailed. Based on these discussions in these two areas and
the conclusions drawn in this section, the research gap will be derived in the following. The purpose of this
section is to highlight the shortcomings and open research topics in these areas and to pave the way for the
formulation of the relevant guiding research questions for this thesis in the next Section 4.2.

In the area of LiDAR domain shift, the focus is on quantitative and qualitative measures to evaluate the
different forms of domain shift presented. [94] emphasize that the dataset-to-dataset domain shift is the
most considered form of domain shift, but it involves a combination of individual domain shifts, such as a
combination of country-to-country and sensor-to-sensor domain shifts. Another example of combined domain
shifts is the sim-to-real domain shift, which not only includes a simplified virtual sensor model and hence a
sensor-to-sensor domain shift, but also different environments and agents from the real-world target domain,
hence a superimposed country-to-country domain shift. This makes it difficult to compare different domain
adaptation approaches, as they usually only target a specific form of domain shift. To isolate the influence of
the sensor-to-sensor domain shift in a sim-to-real setting, a dataset created in a simulated environment with
a minimal country-to-country domain shift is necessary. A dataset fulfilling these requirements is currently not
available. Publicly available synthetic datasets are limited to Grand Theft Auto V, Virtual KITTI, and CARLA
datasets and environments. Grand Theft Auto V and CARLA datasets are based on artificial landscapes and
do not replicate existing real-world environments. Virtual KITTI mimics the real-world KITTI dataset. However,
it does not include LiDAR point clouds and is focused on camera images only. Quantitative evaluation
of domain shift is done mainly by training and evaluating perception networks on source and target data.
However, a weakness in related work regarding domain shift evaluation is the qualitative measure. Here, in
addition to t-SNE for high-dimensional feature space visualization, researchers focus on visual inspection of
entire scene point clouds, without analyzing local structures, which is the crucial adaptation space, especially
for the sim-to-real, sensor-to-sensor, or weather-to-weather domain shift.
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In the research field of LiDAR domain adaptation, there are only a few approaches compared to the field
of camera domain adaptation. The taxonomy of these approaches in Table 3.1 shows that most of these
approaches are either approaches that adapt only a 2D representation of point clouds or approaches are
directly integrated into the perception network, i.e. domain-invariant feature learning approaches. The former
has the drawback that 3D point clouds can not be recovered or 3D perception networks can not be applied.
The latter has the drawback that these approaches can only be applied to specific perception networks or
perception tasks, which is not scalable for the usage and further development of these networks. Also, each
new update of the perception network requires an adaptation and validation of the domain-invariant feature
learning approach. Domain mapping approaches working with 3D data offer the greatest flexibility in terms
of scalability for domain adaptation of perception networks, but the only two approaches that fulfill these
requirements are DUSty [189] and ePointDA [157]. Both approaches are also focused on the specific topic of
analyzing the learning of dropout in synthetic point clouds, which is a special case of sim-to-real domain
shift. Furthermore, both approaches make use of 2D sensor images, which allow the lossless recovery of
3D point clouds, but do not make use of the 3D geometric local dependencies between neighboring points.
Another shortcoming in the related work of sim-to-real domain adaptation is that the impact of simple methods
potentially increasing the performance of simulation, such as integrated sensor noise models in simulation,
are not studied in detail.

These conclusions from related work allow for a precise formulation of research gaps:

• First, an annotated dataset with both synthetic and real-world point clouds in the same
environments with the same agents is not available to analyze the sim-to-real domain shift
systematically.

• Second, no systematic analysis of the sim-to-real domain shift includes a study of the impact
of simulation improvements.

• Third, as also [94] emphasizes, none of the adversarial domain mapping approaches is
capable of adapting realistic 3D point clouds for LiDAR domain adaptation that bridges the
sim-to-real domain shift directly in the 3D space.

4.2 Research Questions

Following the research gaps highlighted in the previous section, this section serves to formulate the guiding
research questions. The literature does not provide a conclusive approach to solve the 3D LiDAR domain
adaptation challenge for a sim-to-real domain shift. The goal of this thesis is to explore and develop a method
capable of solving this open research topic by answering the primary research question (PRQ):

PRQ: How can domain adaptation approaches directly applied to 3D point clouds
bridge the sim-to-real domain shift to enhance LiDAR perception in autonomous
vehicles?

Here, domain adaptation refers to the general type of method and focus of this thesis. The term sim-to-real
domain shift is used to describe the particular type of domain shift that this thesis is investigating. 3D point
clouds refer to the aspect of using and adapting 3D point clouds directly instead of 2D projections. LiDAR
perception refers to the specific application considered in this thesis, whereas the primary focus is 3D object
detection, but the method should be applicable to other LiDAR perception tasks.

To answer the primary research question, it is further subdivided into detailed research questions Q1 and
Q2 addressing the domain shift analysis in Chapter 5. Q3 to Q5 are addressing the domain adaptation in
Chapter 6 to Chapter 8.
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Q1: How should a sim-to-real LiDAR dataset be designed to effectively capture the
nature and extent of the sim-to-real domain shift, and what methodologies can be
employed to quantify and analyze this shift through various performance indica-
tors?

Using the developed method for domain shift analysis and quantification to answer this research question,
the domain shift from simulation to reality in the created dataset needs to be quantified, which serves as a
baseline for further research questions.

Q2: What impact do simulation enhancements, such as the integration of sensor noise
models, have on mitigating the sim-to-real domain shift in 3D LiDAR data?

Q2 addresses the research gap related to the influence of simulation improvements.

Q3: How can LiDAR domain adaptation techniques be applied at the object-level to
mitigate the impact of sim-to-real domain shift, and what are the specific challenges
and solutions associated with object-level domain adaptation?

Q3 should introduce a domain adaptation technique that utilizes adversarial learning and adapts 3D point
clouds, aiming to fill the existing research gap in this field. In Q3, object-level refers to the perception scope,
which are the labeled objects for the object detection task.

Q4: In what ways does the scene-level LiDAR domain adaptation address the broader
challenges posed by the sim-to-real domain shift compared to object-level domain
adaptation?

Q5: How can LiDAR domain adaptation techniques be developed and applied when
source and target data distributions are not aligned?

Q4 and Q5 extend Q3 to apply the developed domain adaptation method at the scene-level or on point
clouds from non-distribution-aligned data. The research questions formulated will be addressed throughout
this work and revisited as part of the discussion in Section 9.1.

4.3 Methodology Overview

The formulation of the research questions paves the way for describing the methodology for how these
questions are answered in the following chapters. First, Chapter 5 addresses Q1 by presenting a method to
quantify the sim-to-real domain shift. This is achieved initially by introducing a novel dataset that combines
synthetic and real-world data, which is utilized to evaluate the domain shift and to conduct a more detailed
qualitative analysis of the domain shift at a local level. This chapter further answers the research question Q2
on how sensor model noise in simulation influences the sim-to-real domain shift. Chapter 6 addresses the
research question Q3 by presenting a LiDAR domain adaptation method that can adapt synthetic 3D point
clouds of objects to their real-world counterparts. The adapted point clouds, which closely resemble the real
world, are employed to train 3D object detection algorithms and reduce the sim-to-real domain shift on target
real-world point clouds. Chapter 7 and Chapter 8 extend this domain adaptation approach to answer the
primary research question PRQ. In detail, Chapter 7 incorporates the adaptation of entire scene point clouds
to answer Q4, and Chapter 8 extends the method to a publicly available, non-distribution-aligned real-world
dataset, showing the generalization capabilities of the domain adaptation approach and answering Q5. The
discussion in Chapter 9 critically reviews the method, the implementations, and the results, and concludes
the thesis by answering the research questions and highlighting the directions for future work.
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In this chapter, a detailed analysis of the LiDAR sim-to-real domain shift is presented. The methodology
followed is described in Section 5.1, which further outlines the remainder of the chapter. The content of this
chapter is based on and adapted from [213].

5.1 Method

This chapter presents an approach to systematically analyze the LiDAR sim-to-real domain shift by extending
the related work in the field of LiDAR domain shift analysis discussed in Section 3.1. The goal of this chapter
is to address and answer the research questions Q1 and Q2.

Q1: How should a sim-to-real LiDAR dataset be designed to effectively capture the
nature and extent of the sim-to-real domain shift, and what methodologies can be
employed to quantify and analyze this shift through various performance indica-
tors?

Q2: What impact do simulation enhancements, such as the integration of sensor noise
models, have on mitigating the sim-to-real domain shift in 3D LiDAR data?

These questions will be answered by first describing the general methodology in this section before delving
into the specific details in the following sections.

The general methodology is as follows. The analysis of the domain shift is separated into quantitative and
qualitative evaluation and extends the state of the art in both areas.

For quantitative evaluation, the method is based on the idea of using task-specific perception networks to
directly measure the impact of using source datasets from different domains to train the perception network,
similar to the methods presented in [116, 147–158] for semantic segmentation or in [159, 161, 162] for
object detection. In contrast to these methods using non-matching datasets and hence combining multiple
forms of LiDAR domain shift, this thesis presents a domain shift analysis method using a scenario- and
distribution-aligned real-world and simulated dataset to isolate the sim-to-real domain shift. The process of
generating this synthetic and real-world dataset that is used to analyze the sim-to-real domain shift in an
isolated manner without superimposing other domain shift forms is explained in Section 5.2. In a second step,
the specific perception networks used for domain shift quantification are introduced in Section 5.3. This is
followed by proposing the specific Key Performance Indicators (KPIs) used for the quantitative and qualitative
evaluation of the domain shift using the presented networks.

Qualitative evaluation is performed using t-SNE to visualize the high-dimensional feature space of the
perception networks as in [44, 100, 121–123, 126–129]. Additionally, this thesis adds a contribution to the
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state of the art by presenting a qualitative evaluation based on visual inspection at the object-level, i.e.
analyzing the relevant targets of the perception task.

Once the basics of the analysis approach are presented, the results and in-depth analysis at the local
object-level are presented in Section 5.5.

5.2 Dataset Generation

The analysis of the sim-to-real domain shift necessitates a pair of datasets, one containing real-world data
and the other containing simulated data. The goal of the dataset is to minimize the discrepancy between
the real-world and simulated data and to isolate all possible forms of domain shift despite the sim-to-real
domain shift. This means that the same environment, agents, scenarios, positional distributions, and sensor
characteristics should be used in the real world and simulated counterpart environment.

To this end, data are recorded during the Vegas Autonomous Challenge, the inaugural head-to-head
autonomous race involving international university teams, as part of the IAC series [9, 214]. The race track
is the Las Vegas Motor Speedway, a 2.4 km tri-oval, depicted in Figure 5.1. The race cars are Dallara
AV-21 (Figure 5.2a), which are Dallara IL-15 race cars that have been adapted and fitted with the necessary
sensors for autonomous operation, such as cameras, LiDAR sensors, RaDAR sensors, GNSS devices, IMUs,
compute units, and actuation. The LiDAR configuration consists of three sensors, each with 120° horizontal
FoV, placed with 120° horizontal orientation spacing to cover a full 360° area around the race car. The
sensors offer a variable frame rate between one and 30 Hz but are fixed at 20 Hz for the trade-off between
frequency and resolution. The sensor range is up to 250 m at 10 % reflectivity. The sensor driver outputs the
point-wise xyz and intensity values and directly fuses the three individual point clouds to produce a single
360° point cloud per time step.

Figure 5.1: Tri-oval race track Las Vegas Motor Speedway used for real-world data collection (screenshot from [215]).
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(a) Real-world race car. (b) Simulation model of the race car.

Figure 5.2: Race car AV-21 (from [213]).

During each test run and actual competition (Figure 5.3a), LiDAR sensor data is recorded along with GNSS
data from all vehicles on the track. Recording of GNSS data from both ego vehicle and other agents is crucial
for both auto-labeling the real-world data and re-simulating the scenarios in the 3D simulation environment.
GNSS data includes the vehicle’s position in latitude and longitude and the orientation and velocity of each
vehicle, each recorded with a frequency of 20 Hz.

(a) Real-world picture of the autonomous race car AV-21 on the race
track.

(b) Simulation based on the Unity Engine [84]. The scenario was pre-
viously captured in the real world and then replicated in the 3D
simulation based on the captured trajectories of all agents on the
race track.

Figure 5.3: Comparison of the race track Las Vegas Motor Speedway in real world and simulation. Data for the
scenario- and distribution-aligned IAC dataset are recorded in both environments.

An auto-labeling pipeline is developed to label the recorded real-world point clouds [216]. For this purpose,
the relative position and orientation of each agent toward the ego vehicle are calculated based on the GNSS
data of both vehicles. The GNSS data of both vehicles are temporally not aligned as the sensors are not
triggered at the same time, but given the 20 Hz recording frequency, the maximum time deviation between
the measurements of both GNSS devices is 25 ms. This equals 1.75 m traveled at a speed of 70 m s−1,
a typical speed achieved during the final race. This error in label generation is corrected with a two-step
refinement pipeline. First, GNSS tracks are interpolated to a common time step of 1 ms, which is a valid
approach, since the velocity of both vehicles is quasi-constant during each time interval of 25 ms. This
reduces the error at a speed of 70 m s−1 to 0.07 m, which is in the magnitude of the root mean squared error
of the Real-Time Kinematic Positioning (RTK)-corrected GNSS device, which is specified at 0.01 m [217].
The second label-refinement step analyzes the point distribution in and around the proposal of the bounding
box of the first step and can move the bounding box up to 1 m in the x or y direction if the majority of points
are outside the initial box proposal. The limit of 1 m is derived from empirical observations. The size of the
bounding box is always constant with length lb = 4.88 m, width wb = 1.90m, and height hb = 1.18m since
the vehicle type is identical throughout the entire dataset recording.

The same GNSS data are used to generate the scenario-identical digital twin of the real-world dataset in
simulation. To reduce the potential sources of domain shift to a minimum, the simulator, which is built on
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the Unity Engine [84], incorporates a 3D representation of the race track (Figure 5.3b), a 3D model of the
race car (Figure 5.2b), and a virtual model of the LiDAR sensor. The virtual model of the LiDAR sensor is
a custom implementation and replicates the features of the sensor used on the real-world vehicle in terms
of resolution, frequency, scan pattern, and range specifications [218]. It contains a model to calculate the
point-wise intensity using the ray incidence angle and target material, but as this model is not validated
with real-world data, only the x yz values are used. To minimize the sim-to-real domain shift caused by this
limitation, the intensity channel of the real-world data is excluded as well. The final real-world and simulated
datasets are composed by selecting every fifth point cloud of the entire data available, as following point
clouds show a high similarity. This results in 6,000 point clouds per domain, divided into 4,000 point clouds
for training, 1,000 for validation, and 1,000 for testing covering multiple laps on the race track. In the following
chapters, this scenario- and distribution-aligned dataset is referred to as IAC dataset.

5.3 Neural Network Selection and Configuration

The networks used to analyze the sim-to-real domain shift are state-of-the-art LiDAR 3D object detection
algorithms. As explained in Subsection 2.3.2, LiDAR object detection networks are categorized into point- or
voxel-based approaches. To analyze whether the LiDAR sim-to-real domain shift is equally pronounced for
both approaches, a network is selected from each category. For the point-based approach, PointRCNN [68] is
selected, which was at the top of the KITTI 3D object detection benchmark at the time of selection. PointRCNN
is a two-stage approach that extracts features on a local point-level using PointNet++ [45] as a backbone and
subsequently predicts objects in 3D space. As a voxel-based object detection approach, PointPillars [71] is
chosen, which also ranked similarly to PointRCNN on the KITTI 3D object detection benchmark. PointPillars
is a one-stage approach that uses vertical pillars, each in which PointNet [44] is applied to extract pillar-wise
features from points within the pillars and subsequently uses a 2D CNN backbone to predict 3D bounding
boxes.

Both networks are used in their original configuration, with a single modification on the final output layer,
which is reduced to only predict a single class, as the IAC dataset also contains only a single object type.
Furthermore, the mean sizes of the anchors are fixed to the ground truth dimensions of the objects, that
is, a length lb = 4.88 m, a width wb = 1.90 m, and a height hb = 1.18 m. As the intensity channel of the
virtual sensor model of the LiDAR in simulation is not validated, only the positional x yz values are used as
input features. Despite the range of the LiDAR sensor in the real world of up to 250 m, the point clouds are
restricted to a horizontal extent of 100 m. The reason is that at a distance of more than 100 m, the number of
points reflected by the relevant objects is too low to extract meaningful features. The networks are trained for
75 epochs for each training dataset, motivated by no further decrease in validation loss. Network training and
evaluation are done using the DL library PyTorch [219], which uses non-deterministic functions. Therefore,
every network undergoes training five times, and the mean and standard deviations of the selected metrics
are reported, similar to [144].

5.4 KPIs for Evaluation

Before analyzing the performance of the trained networks, a statistical comparison is conducted based on
the raw point cloud data from the simulated and real-world datasets. Therefore, simple metrics are calculated,
such as the maximum and minimum extent of the point cloud in all dimensions, the maximum, minimum, and
mean number of points in either the entire scene point cloud or only within the target boxes. This upstream
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statistical comparison should enable a coarse estimation of the similarity of the simulated and real-world
datasets, before using them to train the object detection networks.

Once selected networks are trained using simulated or real-world datasets, their performance needs to be
assessed using a suitable metric. Therefore, a conventional metric for evaluating object detection is chosen,
that is, AP. The calculation of AP is based on the predictions of the object detection network, i.e. the 3D
bounding boxes, by comparing these predictions with the ground truth data, i.e. the 3D box annotations. Each
predicted bounding box is categorized as either TP or FP, depending on whether the 3D box’s overlap IoU
with a ground truth bounding box exceeds a defined threshold, e.g. 0.5 or 0.7. In the remainder of this work,
the more strict IoU threshold 0.7 is used as the base evaluation threshold. Nevertheless, the IoU threshold
0.5 is reported together for comparison, as in [192, 193]. In case a ground truth box is not covered by a
predicted bounding box, it is counted as a FN. Based on the number of TP, FP, and FN for all point clouds in
the test dataset, the metrics precision p and recall r can be calculated as follows [220]

p =
T P

T P + F P
(5.1)

and

r =
T P

T P + FN
. (5.2)

Using the point cloud-wise calculated precision and recall values, the precision-recall curve can be generated.
This precision-recall-curve is the baseline to calculate the AP, which is essentially an approximation of
the area under the curve by averaging the precision values pinterp at specific recall values r [221] and is
calculated as

AP|R =
1
|R|

∑

r∈R

pinterp(r), (5.3)

whereas the interpolation of the precision values is defined as

pinterp(r) = max
r ′:r ′≥r

p(r ′). (5.4)

In the original KITTI benchmark [36], eleven equal-spaced recall levels are used R11 = {0, 0.1, 0.2, . . . , 1}.
As [222] remark, starting with r = 0 can result in AP|R11 = 1/11≈ 0.0909 for the entire dataset even if only a
single prediction is TP. The authors suggest using a 40-point interpolation R40 = {1/40, 2/40, 3/40, . . . , 1}
starting at r = 1/40 instead of an 11-point interpolation starting at r = 0. This thesis also adopts this
suggestion to use AP|R40, and all the following notations of AP refer to AP|R40.

Furthermore, IoU is based on the 3D box overlap, so the notation is denoted 3D AP. Alongside the 3D AP,
there is the BEV AP, which uses the 2D BEV projections of the bounding boxes to calculate the IoU.
In this thesis, only 3D AP is considered, as the networks used predict the boxes in the 3D space and
also the datasets used contain scenarios with elevated objects. The average precision is in the range of
0 ≤ 3D AP ≤ 1 and is usually expressed in percent, whereas higher values are better. In the remainder of
this thesis, the 3D AP, measured in terms of IoU thresholds of 70 % and 50 %, is referred to as 3D AP (0.7)
and 3D AP (0.5), respectively.

Besides the quantitative evaluation of the sim-to-real domain shift as proposed in related work, this thesis
further analyzes the domain shift qualitatively by inspecting the point cloud visually on an object-level. That is,
3D renderings of the extracted object point clouds are compared in different poses, and also aggregated
point clouds from different poses and ranges to cover the entire object are compared. The idea of this visual
inspection is to analyze the differences in simulated and real-world data on a local level, which can provide
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valuable insights to LiDAR domain adaptation approaches. As explained in Section 5.1, the visualization
method t-SNE is also used to qualitatively analyze the domain shift present in the high-dimensional feature
space of networks.

5.5 Results

Based on the order of the proposed KPIs for evaluation, the results of the statistical comparison are first
presented. Following this, the results of the quantitative evaluation using neural networks are shown, which is
completed by the qualitative analysis.

5.5.1 Statistical Comparison

In the first step, the locations of all objects in the IAC dataset are analyzed. Figure 5.4 shows the relative
location of the annotated objects to the ego vehicle in BEV and their distribution on the x and y axis, with
x yz convention as defined in Section 2.2. These locations were extracted from all 6,000 point clouds in the
real-world dataset. The plot for the simulated data is not depicted, as it would show identical data because
the scenarios are identical in simulation and the real world.
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Figure 5.4: Object locations and distributions from real-world dataset relative to the ego vehicle (adapted from [213]).
The outliers with large y values can be attributed to scenarios where the ego vehicle is driving on the
track while the other vehicle is driving on the pit lane, or vice versa.

The plot shows that there exist two predominant positions, namely, the front left position at (+35m,+5m)
and the back right position at (−30m,−5m). This can be explained by the fact that the competition format
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required the race cars to keep a minimum distance from opponents if no overtaking maneuver was taking
place. Despite the existence of this unequal location distribution within the real-world dataset, it has no impact
on the sim-to-real domain shift, since the positions of the objects in the simulation are based on the positions
from the real-world dataset, and hence follow the same distribution.

Table 5.1 shows a comparison of key attributes of the simulated and real-world datasets, such as the point
cloud range and the number of points for the scene or objects individually. Comparison of the point cloud
range reveals that both the real-world data and the simulation data cover a similar area, cropped at a distance
of 100 m. The average number of points of the real-world point clouds is lower compared to the simulated
point clouds, for both the scene and object point clouds. For the object point clouds, this reduction is more
pronounced, which might be attributed to the materials and hence, reflectivity properties of the objects. Note
that in simulation, point intensity does not influence the likelihood of existence of points, whereas, in the real
world, reflections with an intensity lower than a threshold are not included in the output point cloud.

Table 5.1: Comparison of key statistical characteristics between the real-world and simulated datasets. Every value is
computed from the complete training set of each dataset, utilizing the whole point cloud range up to 100 m
(adapted from [213]).

Attribute Real-world dataset Simulated dataset

Point cloud range

mean
x in m 2.2 2.1
y in m −1.3 −0.5
z in m 1.2 1.9

min
x in m −100.0 −100.0
y in m −100.0 −87.0
z in m −12.0 −1.5

max
x in m 100.0 100.0
y in m 100.0 100.0
z in m 25.1 23.3

Number of points per
scene point cloud

mean 73,123 78,776
min 52,762 52,695
max 79,690 81,538

Number of points per
object point cloud

mean 219 251
min 0 5
max 4,959 6,465

Despite the differences in key attributes between real-world and simulated datasets, they show an overall
similarity when comparing high-level statistical measures. This alignment of the datasets enables a reduction
of the domain shift to a minimum, and the remainder of the domain shift is mainly due to the characteristics
of the virtual sensor model in simulation and will be quantified in the following.

5.5.2 Quantitative Evaluation

For the quantitative evaluation using object detection networks, the following notation is used for the remainder
of this chapter. An experiment in which a network is trained with simulated data and tested on real-world data
is referred to as sim-to-real. Hence, the sim-to-real domain shift is the difference between the sim-to-real
performance and the oracle performance, which is real-to-real in this case. Figure 5.5 displays the results for
the 3D AP (0.7) of PointRCNN trained and tested with simulated or real-world data, each combination showing
the five training runs with individual points and the mean of these runs with a horizontal line. This diagram
shows a notable sim-to-real domain shift of approximately 14 % AP when comparing real-to-real 52 % with
sim-to-real 38 %, despite using a scenario- and distribution-aligned dataset. Furthermore, a domain shift in
the opposite direction, i.e. a real-to-sim domain shift, is also notable. The domain shift from real to simulated
is even more pronounced than the shift from simulated to real, which can be attributed to generally superior
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results when performing tests with simulated data. Especially using simulated data for training and testing,
i.e. sim-to-sim, achieves a high AP of over 90 % due to the absence of noisy characteristic of simulated data.
These results align with the domain shift quantification results of [107, 159].
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Figure 5.5: The 3D AP (0.7) for PointRCNN, which was trained and evaluated using either real or sim data. The
horizontal lines represent the mean AP and the five points represent the five individual training cycles for
each training and testing combination (adapted from [213]).

Full results, including the performance of the second object detection network PointPillars, can be found in
Table A.1 in Section A.1. It also includes the 3D AP (0.5) and the recall for both IoU thresholds, all of which
show similar trends as the 3D AP (0.7). As expected, the performance of 3D AP (0.5) is higher than the
performance of 3D AP (0.7) due to the lower IoU threshold, but the relative magnitude of the domain shift in
both directions is similar. The general performance of PointPillars is lower compared to the performance of
PointRCNN, which aligns with their ranking order in the KITTI benchmark. However, the domain shift has a
similar extent for both PointRCNN and PointPillars networks, although the domain shift is somewhat more
pronounced with PointPillars, which indicates that this voxel-based architecture is more susceptible to domain
shift than the point-based PointRCNN.

Figure 5.6 shows the same training runs as in Figure 5.5, but is evaluated only in close-range [0.0m, 33.3m),
mid-range [33.3 m,66.6 m), or long-range [66.6m, 100.0m]. This range-individual evaluation provides
information on which area is most susceptible to domain shift. In general, with increasing evaluation range,
the AP drops as expected. Furthermore, the sim-to-sim performance is less affected by range than the
real-to-real performance, indicating that there are fewer noisy objects in the simulated data compared to
the real-world data. For the sim-to-real domain shift, mid- and long-range are barely affected by domain
shift, whereas for the real-to-sim domain shift, these ranges are affected more than the close-range. Both
can be attributed to the fact that real-world mid- and long-range objects are more noisy than close-range
objects. This leads to challenges during testing on real-world data for both the real-world and simulated
trained networks. In contrast, simulated mid- and long-range objects still have clear structures, which are hard
to detect for networks trained on real-world data. This will be analyzed in the following qualitative assessment
of the domain shift.
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(a) Close-Range [0.0m, 33.3m)
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(b) Mid-Range [33.3 m,66.6m)

Real Sim

Testing dataset

0

20

40

60

80

100

3D
A

P
(0

.7
)i

n
%

Training
dataset

Real

Sim

(c) Long-Range [66.6m, 100.0m]

Figure 5.6: The 3D AP (0.7) for PointRCNN, which was trained and evaluated using either real or sim data. The
horizontal lines represent the mean AP and the five points represent the five individual training cycles for
each training and testing combination. Note that in (a), the mean AP of sim-to-sim is close to 100 % and,
therefore, marked with an ellipse (adapted from [213]).

5.5.3 Qualitative Evaluation

Before qualitatively analyzing the datasets at the object-level, Figure 5.7 shows a scene point cloud from
both the real-world dataset (Figure 5.7a) and the simulated dataset (Figure 5.7b) of the same scenario
in BEV projection. This high-level comparison shows similarities, but also some differences between the
datasets. First, the general structure of the scenery made up of the race track, grass, walls, and one
object at approximately (+25m,−5m) in the ring-shaped point cloud can be identified in both point clouds.
Differences include the out-of-track reflections present in the real-world point cloud, and a LiDAR shadow
behind the ego vehicle due to blockage of the ego vehicle’s rear wing. Furthermore, the local structure of the
point cloud rings is more noisy in the real-world point cloud, as opposed to the smooth rings in the simulated
counterpart.
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(a) Point cloud captured in the real world.

100 75 50 25 0 25 50 75 100
x in m

40

20

0

20

40

y 
in

 m

(b) Point cloud generated in the 3D simulation environment.

Figure 5.7: Point clouds visualized in bird’s-eye-view of the real-world (left) or simulated (right) dataset. In both plots,
the ego vehicle recording the point clouds is driving to the right (adapted from [213]).

The IAC dataset used only contains a single object class, which is a non-deformable race car. This enables
the comparison of point clouds of this object within a dataset domain across different ranges, but more
importantly, the comparison of the object point clouds across the simulated and real-world domains. To this
end, Figure 5.8 shows the aggregated and zero-centered 3D object point clouds of real-world or simulated
data for the three different distant ranges. Comparing the close-range of real-world and simulated data, the
distinct shape of the object is sharper and less noisy in the simulated point cloud, leading to a domain shift.
With increasing distance, the shape in both domains becomes more noisy; however, even at long range,
the shape of the object in the simulated data is still recognizable. This further explains the observation of

45



5 Analysis of the LiDAR Sim-to-Real Domain Shift

quantitative analysis, in which increasing distance leads to a larger performance decrease for real-world data
than for the simulated data.
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(a) Real, Close-Range [0.0 m,33.3m)
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(b) Sim, Close-Range [0.0m, 33.3m)
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(c) Real, Mid-Range [33.3 m,66.6m)
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(d) Sim, Mid-Range [33.3 m,66.6m)
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(e) Real, Long-Range [66.6 m,100.0m]
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(f) Sim, Long-Range [66.6m, 100.0m]

Figure 5.8: Normalized and aggregated point clouds from the real dataset (left column) and the sim dataset (right
column). The visualization is split into the three distance ranges, in which the object point clouds were
captured or generated before normalization: close-range 0.0 m to 33.3 m (a)(b), mid-range 33.3 m to
66.6 m (c)(d), and long-range 66.6 m to 100 m (e)(f). The aggregation is done by randomly selecting
20,000 points from all available object points per distance range. The total number of points within the
long-range of the real-world dataset only contains 15,679 points and hence, is limited to this number
(adapted from [213]).

For further details on the qualitative domain shift analysis by means of visualizing point clouds, the reader is
referred to the corresponding publication [213], in which in addition to the point cloud noise, the effect of point
cloud dropout is explained in detail. However, in this thesis, the primary focus is on the LiDAR sim-to-real
domain shift due to point cloud noise.

The results of t-SNE dimension reduction to compare the high-dimensional latent feature space are depicted
in Figure 5.9 for feature vectors extracted from PointRCNN, generated by passing real-world point clouds
through the network, which is trained with real-world (orange) or simulated data (blue). Each point represents
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a high-dimensional latent feature vector reduced to two dimensions, generated by inference with a single
real-world point cloud. The five distinct clusters per training dataset are due to the non-deterministic training,
which produces different network weights, and hence different latent representations per training. The core
statement of this t-SNE graph is that even when passing the same point clouds through the same network
trained with different datasets, the network differentiates between the data domains with which it was trained,
emphasizing that the domain shift exists within the network.

Real

Sim

Figure 5.9: A visualization using t-SNE technique of the latent feature space generated by PointRCNN, trained
separately on real and simulated data for five training sessions each. Each point represents a feature
vector produced by the network’s inference when analyzing a single point cloud (adapted from [213]).

5.5.4 Parameter Sensitivity Analysis

The quantitative analysis of the domain shift in Subsection 5.5.2 shows the presence of a sim-to-real domain
shift even in the scenario- and distribution-aligned dataset, and the qualitative analysis in Subsection 5.5.3
identifies point cloud noise and dropout as possible causes of the domain shift. In this parameter sensitivity
analysis, the impact on the domain shift of simple models that integrate these sensor effects should be
analyzed to answer the research question Q2. To this end, two additional datasets based on the original
simulated dataset are generated. The first dataset adds Gaussian noise in the longitudinal ray direction to
every sensor measurement. Similar to [148], a standard deviation of σ = 2cm is used for the Gaussian noise.
In the second dataset, 20 % of the points per point cloud are randomly omitted, simulating a synthetic point
dropout. The datasets are denoted as sim noise and sim dropout, respectively. PointRCNN and PointPillars
are both trained with the additional simulated datasets and evaluated on the real-world dataset to measure
the sim-to-real domain shift.

All results can be found in Table A.1 in Section A.1. Figure 5.10 shows the 3D AP (0.7) of PointRCNN
trained with the additional datasets compared to the real-to-real and sim-to-real results. The plot reveals that
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the sim noise dataset can reduce the sim-to-real domain shift from approximately 14 % using the original
simulated dataset to 10.35 % using sim noise, a relative reduction of approximately 25 %. However, the
second dataset, sim dropout, results in a lower 3D AP than the original simulated dataset and therefore even
increases the sim-to-real domain shift, hence having a negative impact.

To summarize the findings of the parameter sensitivity analysis, the simple noise model in simulation can
reduce the sim-to-real domain shift to an extent but not fully eliminate it. Simple dropout modeling by random
dropping points, however, is increasing the sim-to-real domain shift, and more sophisticated dropout methods,
e.g. based on the point intensity, have to be studied in future work. Further details, such as t-SNE graphs
and 3D aggregated point clouds for these two additional datasets, can be found in the corresponding
publication [213].
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Figure 5.10: The 3D AP (0.7) for PointRCNN, which was trained and evaluated using either real, sim, sim noise, or
sim dropout, data. The horizontal lines represent the mean AP and the five points represent the five
individual training cycles for each training and testing combination (adapted from [213]).
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6 LiDAR Domain Adaptation of 3D Point Clouds
at the Object-Level

In the previous Chapter 5, the domain shift was analyzed in detail by quantification using a simulated and
real-world scenario- and distribution-aligned dataset, and non-accurate LiDAR sensor noise modeling is
identified as a possible cause of the resulting domain shift. The qualitative analysis of the LiDAR sim-to-real
domain shift further shows that, especially at the object-level, the point clouds between simulation and the
real world differ. In this chapter, a LiDAR domain adaptation method is presented to adapt simulated point
clouds at the object-level to real-world point clouds, to minimize the prevalent domain shift analyzed in the
previous chapter. The goal of this chapter is to address and answer the research question Q3.

Q3: How can LiDAR domain adaptation techniques be applied at the object-level to
mitigate the impact of sim-to-real domain shift, and what are the specific challenges
and solutions associated with object-level domain adaptation?

To this end, the problem is first formulated and the notation is explained in Section 6.1. The method, including
the choice of architecture and loss function, is discussed in Section 6.2. Section 6.3 explains the specifics of
the dataset, the preprocessing, and the training details. This chapter is concluded by presenting the results
in Section 6.4. This chapter is based on and adapted from [223].

6.1 Notation and Problem Formulation

Formally, a point cloud can be denoted as an unordered point set Xi = {p j|
N j

j=1}. Each of the i point sets

contains N j points p j , and each point is characterized by 3D coordinates p j = {x j , y j , z j} ∈ R3. In annotated

datasets, each point cloud Xi has a set of annotations Yi = {yk|
Nk
k=1}, containing k 3D bounding boxes yk,

each characterized by the seven degrees of freedom yk = {cx , cy , cz , l, w, h,θz}k for the center, dimension,
and rotation around the z axis [163]. As the rotations around the x and y axes are usually approximately zero
in autonomous driving applications, these two degrees of freedom are neglected. In this chapter, rather than
adapting entire scene point clouds Xi between data domains, the focus is on adapting single object point
clouds Oi,k, referring to the point cloud of the k-th object within the i-th scene point cloud and containing all
points enclosed by the 3D bounding box yk.

This chapter presents a method for the unsupervised domain adaptation of LiDAR point clouds. As described
in Subsection 3.2.1, in unsupervised domain adaptation, the source dataset is fully annotated, while there is
no access to the annotations of the target dataset. Formally, the source domain S= {(XS

i ,YS
i )|

NS
i=1} contains

NS point clouds XS
i with their corresponding annotations YS

i . However, the target domain T = {XT
i |

NT
i=1}

only contains NT point clouds XT
i without their corresponding annotations. This leads to the objective of

unsupervised domain adaptation, aiming to comprehend a mapping function Ψ that connects point clouds
from the source domain XS

i to those in the target domain XT
i without access to the target annotations.
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6.2 Method

As discussed in related work in Subsection 3.2.2, domain adaptation for LiDAR point clouds can be achieved
using approaches belonging to domain-invariant feature learning methods, normalization statistics methods,
domain-invariant data representation methods, or domain mapping methods. Domain-invariant feature
learning methods are model-driven and, therefore, require a modification of each specific perception network,
which is not scalable for the application of AD, in which multiple perception networks can be applied for
different perception tasks. Nowadays, normalization techniques are applied to neural networks in the form of
e.g. batch normalization, hence they are usually part of domain mapping methods or learning-based domain-
invariant data representation methods. Domain-invariant data representation methods transform the 3D point
cloud data to a 2D sensor image or a 3D voxel grid to achieve domain invariance. Despite not requiring
modifications to the target perception network due to their operation in the input space, these methods
restrict the choice of perception networks to those that utilize these specific representations. Moreover, the
transformation to the domain-invariant data representation mostly relies on hand-crafted techniques, which
limits the generalization.

For these reasons, domain mapping is chosen as an approach in this thesis to adapt point clouds. Domain
mapping works on the input space, and hence modifications to perception networks are not necessary.
Furthermore, these methods are learning-based and therefore can leverage the information of the target
data to assist or improve the adaptation process. Domain mapping originates from image-based domain
adaptation and is typically based on adversarial networks in this context. The adversarial domain adaptation
approaches for LiDAR point clouds are limited to methods that work with the 2D BEV representation of LiDAR
point clouds. The 3D LiDAR point clouds can not be recovered from adapted 2D BEV images and therefore
can not be used by perception networks using these 3D point clouds as input. In addition, [94] emphasizes
the absence of any adversarial LiDAR domain mapping technique that can directly adapt point clouds in the
3D space. As a consequence, this thesis presents the first LiDAR domain adaptation approach based on
adversarial learning that adapts 3D point clouds.

The remainder of this section explains the approach of the proposed object-level LiDAR domain adaptation
method by first providing a brief overview in Subsection 6.2.1, then explaining the network in detail in
Subsection 6.2.2, and finally describing the specific loss function designed for network training.

6.2.1 Conceptual Framework and Network Overview

Only annotated objects in the source dataset are adapted, as the qualitative evaluation of the domain shift in
the previous chapter showed a mismatch of simulated and real-world point clouds at the object-level. This
focus on adapting object point clouds instead of scene point clouds brings the following two advantages. First,
object point clouds are less sparse than entire scene point clouds and strive for more uniform density and
improved retention of global structure within the object point cloud. Second, networks used for adaptation are
initially intended for point cloud completion of single objects, and hence the transferability to other applications
is easier when the focus is on single objects. Nevertheless, the transferability to adapting entire scene point
clouds using the developed approach will be analyzed in Chapter 7.

Figure 6.1 depicts a general overview of the method presented in this chapter. In the first data preprocessing
step, the relevant source and target object point clouds, OS

i,k and OT
i,k, respectively, are extracted from the

source and target scene point clouds, XS
i and XT

i , respectively, based on their 3D bounding boxes. After
extraction, the point clouds are zero-centered and axis-aligned, i.e., the absolute coordinates of the center of
the 3D bounding box are subtracted from every point coordinate, and the point cloud is rotated to align with
the global coordinate system defined in Section 2.2. Zero-centering is performed to eliminate any possible
bias in the dataset. These objects can include all classes for the object detection task, such as cars, vans,

50



6 LiDAR Domain Adaptation of 3D Point Clouds at the Object-Level

trucks, motorcycles, pedestrians, cyclists, etc. Target object point clouds are used for training and source
object point clouds are used for inference. Both steps will be briefly explained in the following.

Object Extraction Object Injection

Scene Retention

Domain Adaptation

Source Object Point Cloud

Source Scene Point Cloud Adapted Scene Point Cloud

Adapted Object Point Cloud

Figure 6.1: High-level overview of the object-based domain adaptation method. The first step comprises the extraction
of the object point cloud OS

i,k from a source scene point cloud XS
i (here: simulated data, blue). The trained

domain adaptation network subsequently adapts the object point cloud to generate a target-style object
point cloud (here: real-world, green) OS,adapted

i,k , which is re-injected in their initial locations within the source

scene point cloud. The resulting output XS,adapted
i combines the original source scene point cloud with the

adapted object point cloud (adapted from [223]).

The domain adaptation network training is carried out solely using target object point clouds. These target
object point clouds are downsampled before being passed to the network. The goal of the downsampling
is to create a representation of these point clouds that is invariant across domains, and the objective of
the point completion network being used is to reconstruct the original non-downsampled version, given the
downsampled version as input. This forces the network during training to create target-style point clouds
using domain-invariant object point clouds as input. At the same time, the global structure of the object point
cloud must be maintained throughout the downsampling process, and the point completion network should
only apply the target style locally. Keeping the global structure is a hard requirement, as during inference, the
domain-adapted objects are injected back into their original location within the corresponding scene point
cloud and should neither change the semantic meaning nor the viewpoint.

Once the network is trained to reconstruct target-style object point clouds, it can be used during inference
to adapt source object point clouds, as depicted in Figure 6.1. To this end, the source object point clouds
OS

i,k that are extracted undergo downsampling in the same manner as the target object point clouds during
training, and the point completion network reconstructs these downsampled source object point clouds by
applying the learned target style. The output of the network is the adapted object point cloud OS,adapted

i,k .
These adapted object point clouds are re-injected into their original location within the source scene point
cloud XS

i where they have been extracted, with the same location and orientation. This results in the adapted

scene point cloud XS,adapted
i , which is the final output of the presented domain adaptation method and can be

used for downstream perception tasks, for example, for training object detection networks. The hypothesis is
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that employing these adapted scene point clouds for training will lead to a decrease in domain shift compared
to training with unaltered source scene point clouds.

As explained, the training and inference stages use different data domains as input. Training is based only
on target data, and source data are not needed during training. This approach has two implications: First,
some target data need to be annotated. However, the amount of annotated target data is low compared to
the theoretically unlimited number of source data that can be adapted using the trained domain adaptation
network. Second, once the domain adaptation network is trained, the trained network is capable of adapting
data from various source domains, as it has not seen any source data during training and, hence, is not
trained to only adapt data from a certain source domain. This approach is particularly beneficial for sim-to-real
domain adaptation. It enables the generation of synthetic data in various simulation environments, while each
environment can have different virtual LiDAR sensor models. After data generation in simulation, the data
can be adapted to a common real-world target style that was learned during training.

6.2.2 Architecture and Network Design

The network architecture is founded on a GAN and consists of a generator network G and a discriminator
network D which are trained adversarially. The goal of the generator is to produce target-style object point
clouds given the downsampled target object point clouds, whereas the discriminator tries to detect and
distinguish the generated samples from the original non-downsampled point clouds. The specifics of both
networks will be explained in the following, after briefly discussing the preprocessing of the input data.
Figure 6.2 illustrates the detailed processing steps within the architecture for both the training phase in
the upper part and the inference phase in the lower part. Patch extraction is a preprocessing step of the
discriminator and will also be explained as part of this subsection.

Training

Inference

FPS

 

Point Completion Network

Encoder Decoder Patch
Extraction

Discriminator

Patch
Extraction

Patches

Patches

FPS

 

Point Completion Network

Encoder Decoder

Patch Extraction

FPS

k-NN

Patch-wise
Zero-mean

Transformation
PatchesPatches centered

Figure 6.2: Visualization of the detailed network architecture of the domain adaptation network to adapt point clouds
at the object-level. During the training process, object-level point clouds OT

i,k are first downsampled using
Farthest Point Sampling (FPS) and then reconstructed with a point completion network that serves as
the generator G. To further assist in domain adaptation, a discriminator D is discriminating between point
cloud patches with λpatch points each from the reconstructed (fake) or original (real) object point cloud. In
the inference step, FPS-downsampled source point clouds OS

i,k are processed by the generator G for local

adaptation to generate output point clouds in the target style OS,adapted
i,k (adapted from [223]).
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In general, the input for both training and inference is a zero-centered and axis-aligned object point cloud. In
the first preprocessing step, the number of points in each point cloud is analyzed. The number of points per
object point cloud varies strongly with the distance to the LiDAR sensor since the density of points generally
decreases with increasing distance to the sensor. This requires the generator and discriminator to manage a
varying quantity of points and further introduces the challenge of missing the local structure for point clouds
consisting of only a few points. As the architecture is intended to adapt the local structure of point clouds, a
minimum number of points is defined. Point clouds that contain less points than the predetermined minimum
threshold are not considered in the training or inference steps.

Before passing the object point clouds to the generator, they are first downsampled in a second preprocessing
step to create a domain-invariant representation. This downsampling step is introduced to reduce the
discrepancy between the target object point clouds during training and the source object point clouds during
inference. During downsampling, the number of points in each point cloud is reduced by a fixed downsampling
factor δ. Farthest Point Sampling (FPS) algorithm [224] is used for downsampling, as FPS is capable of
maintaining the global structure of the object point clouds, while eliminating local structures, thereby ensuring
their domain-invariance. FPS iteratively calculates the distance from each point to the rest of all points and
selects the point with the largest distance to the current point, resulting in a computational complexity that
approaches O(n2) [225]. The choice of the downsampling factor δ defines the degree of reduction of the
local structures, where a higher δ removes more points and, hence, removes more local structures. Empirical
experiments show that a reasonable choice for the downsampling factor is 3 ≤ δ ≤ 10. Finally, the output
of FPS is a downsampled object point cloud OT,fps

i,k or OS,fps
i,k for training or inference, respectively.

Generator

The primary goal of the generator G is to upsample the previously downsampled object point cloud and
apply the learned local structure of the target domain during the upsampling step. The upsampling factor is
fixed and set to be identical to the downsampling factor since the output number of points should be equal
to the input number of points. During network training, the generator G reconstructs the target object point
cloud, therefore, G acquires the ability to complete the global structure of the point cloud by incorporating
the local structure. During inference, the identical trained G is employed to reconstruct the domain-invariant
and downsampled source object point cloud, and it upsamples the point cloud by incorporating points based
on the acquired local structure of the target. In this way, domain adaptation only occurs during inference,
whereas training is based only on the reconstruction of target domain point clouds.

The requirements for the generator network are that it has to be able to upsample point clouds with a varying
number of points. As a baseline, SeedFormer [226] is chosen, which is a state-of-the-art point completion
network. SeedFormer employs upsample transformers to recover local structures and completes point clouds
in a coarse to fine manner [226].

Several modifications are made to adapt the network to serve as a generator in the domain adaptation task
and to meet the requirements. First, the original implementation of SeedFormer generates seeds that are
derived from the global and patch features extracted. These seeds serve as support points to complete
the point cloud in the decoder of SeedFormer. Instead of using the seeds generated by the encoder, the
decoder in the domain adaptation setting is directly fed with the coarse, downsampled input point cloud. The
reason for this is that the downsampled point cloud already includes all the areas needed to be covered
by the output point cloud, which is not the case with the original point completion task, which uses partial
point clouds as input. The second modification to SeedFormer concerns the handling of a variable number of
points. To achieve this, the number of query points in the PointNet++ set abstraction layers in the encoder of
SeedFormer is computed dynamically, taking into account the quantity of input points.

53



6 LiDAR Domain Adaptation of 3D Point Clouds at the Object-Level

Discriminator

During training, the generator upsamples the previously downsampled object point cloud and produces the
reconstructed object point cloud OT,rec

i,k . This reconstructed point cloud maintains the global structure of the
input point cloud while simultaneously containing the local structure of the target domain. This is always a
trade-off and can lead to non-optimal solutions, as explained in the following example visualized in Figure 6.3.

For example, a point pi in the input object point cloud OT
i,k (Figure 6.3a) has no direct neighboring points;

hence, during downsampling using FPS (Figure 6.3b), it will be selected to serve as an input point for the
generator (Figure 6.3c). The generator’s task is to use this point pi as a seed point and upsample it by adding
δ− 1 points in the vicinity of pi (Figure 6.3d). This patch of δ− 1 points can potentially collapse at the same
coordinate as pi , since there exists only a single point in the input object point cloud OT

i,k, which serves as a

comparison to OT,rec
i,k during training (Figure 6.3e). To avoid these cases of collapsing point cloud patches, a

discriminator focusing on the local structures is employed during training. The goal of the patch discriminator
is to distinguish between point cloud patches generated by the generator and point cloud patches extracted
from the original input point cloud.
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Figure 6.3: Example showing the challenge of collapsing point clouds patches. (a) Crop of the original point cloud
(blue) serving as an input to the generator. (b) The FPS algorithm downsamples the original point
cloud by factor δ (here δ = 10). The selected points are visualized in orange. Furthermore, two points
are highlighted by a black or red circle, respectively. In contrast to the red-highlighted point, the black-
highlighted point has no direct neighboring points in the input cloud. (c) The input to the generator network,
maintaining the global structure of the original point cloud. (d) The upsampled output of the generator
network, which consists of the input points (orange) and the added δ− 1 points (green) in the vicinity of
each input point. (e) Each output point (orange and green) is compared to the closed point in the original
point cloud (blue). Because there are no neighboring points within the black-highlighted circle, all points
inside this circle are compared to the orange point located here, and consequently, they may collapse into
this orange point.
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To this end, the npatch patches are extracted from both OT,rec
i,k and OT

i,k before passing them to the discrimina-
tor D, as depicted in lower right box in Figure 6.2. First, the seed points of the patches are determined using
FPS in the same manner that the original input object point cloud is downsampled. The size of each patch
λpatch is set to be identical to the downsampling factor δ, since this is the size of a potentially collapsing
patch, as explained before. Once the npatch seeds are extracted, for each seed, the λpatch − 1 neighbors are
determined using the k-nearest neighbors algorithm. In the last step, the coordinates of each point cloud
patch are transformed individually to have a mean of zero.

The extracted patches are passed to the discriminator D, which discriminates between real OT
i,k and fake

OT,rec
i,k patches. The generator G and discriminator D are trained adversarially, i.e. the generator receives

the negative loss of the discriminator, which gives an incentive to the generator to produce reconstructed
point clouds OT,rec

i,k less distinguishable from the original point clouds OT
i,k. As the discriminator becomes

stronger during training, it can provide better feedback to the generator. The architecture of the discriminator
comprises two set abstraction layers from PointNet++ with three subsequent fully connected layers. More
details on the architecture can be found in the corresponding publication [223].

6.2.3 Loss Function

The objective of adversarial training is to reduce the individual loss functions of both generator LG and
discriminator LD. The linear combination of both loss functions results in the overall loss Ltotal and is defined
as

Ltotal = LG +LD. (6.1)

The generator loss function, denoted LG, is composed of two distinct components: reconstruction loss Lrec
G

and adversarial loss Ladv
G . For reconstruction loss Lrec

G , Chamfer Distance (CD) is used as in the SeedFormer
implementation [226]. The CD serves as a metric to evaluate the similarity between two point sets S1, S2 in a
three-dimensional space R3, by aggregating the minimum squared Euclidean distances from each point in
one set to its nearest neighbor in the other set, and vice versa. Mathematically, this distance is expressed as
follows:

dCD
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�

=
1
2
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min
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||x − y||22 +
1
|S2|

∑

y∈S2

min
x∈S1

||y − x ||22

!

. (6.2)

In this formulation, each component is normalized using the length of the point set |S1| or |S2|, respectively.
There exists also the non-normalized formulation of the CD, which will be used in the following. This metric is
employed to define the reconstruction loss for object-level point cloud comparison as

Lrec
G

�

OT,rec
i,k , OT

i,k

�

= dCD

�

OT,rec
i,k , OT

i,k

�

. (6.3)

Experiments using the Earth Mover’s Distance, a common metric for point set comparison, show worse
results compared to the CD.

The adversarial component of the generator’s loss, denoted as Ladv
G , is determined as the negative logarithm

of the discriminator’s prediction on the generator’s reconstructed point cloud, formulated as

Ladv
G

�

OT
i,k

�

= − log
�

D
�

G
�

OT
i,k

���

, (6.4)

where the notation G
�

OT
i,k

�

represents the generated reconstruction OT,rec
i,k . A value of D

�

G
�

OT
i,k

��

ap-
proaching one indicates the generator G has effectively fooled the discriminator.
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The discriminator’s loss function, represented as LD, is calculated using the following equation
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In this context, the term D
�

OT
i,k

�

refers to the discriminator’s result when analyzing an original point cloud,

with an expected value close to one. On the other hand, D
�

G
�

OT
i,k

��

indicates the discriminator’s evaluation
of a point cloud reconstructed by the generator G, which ideally should approach zero, indicating the
generator’s contribution to generation.

Incorporated into the equation for the overall loss Ltotal, as specified in Equation 6.1, the calculation is
expressed as follows
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With the CD from Equation 6.2, the final total loss function is defined as
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6.3 Experimental Setup

This section describes the experimental setup used to evaluate the proposed domain adaptation method. To
this end, the details of the dataset and model setup are introduced in Subsection 6.3.1 and Subsection 6.3.2,
respectively.

6.3.1 Dataset

To train and test the developed domain adaptation method for sim-to-real domain shift reduction, an annotated
dataset consisting of real-world and simulated point clouds is required. To minimize other sources of potential
domain shift, such as scenario discrepancy, and to isolate the remaining domain shift, a dataset pairing
is required that contains the same environment, agents, and scenarios in both domains. Therefore, the
IAC dataset generated for the domain shift analysis is employed, as it fulfills the requirements. The details
of the IAC dataset are described in Section 5.2, and only the specifics and differences are outlined in the
following.

In general, the IAC dataset contains 3D annotated point clouds from both real-world and simulated environ-
ments, which are essential for assessing the domain adaptation via the downstream perception task, i.e.
for training and evaluating using object detection networks. For the upstream domain adaptation approach,
which adapts the point clouds on the object-level, only object point clouds of the source and target domains
are needed. To this end, the object point clouds are extracted as explained in Subsection 6.2.1 and depicted
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in Figure 6.1. As defined in Subsection 6.2.2, a minimum number of points per object point cloud must be
adhered to. This number is empirically set at 512 points per object point cloud, resulting in a total of 556
object point clouds per domain. The 556 real-world samples are divided into 528 for training, 14 for validation,
and 14 for testing, and this target dataset is referred to as real dataset. The number of validation and testing
samples is intentionally low compared to the number of training samples, since validation and testing only
evaluate the performance of reconstructing the target domain, but do not evaluate the domain adaptation.
Splits and correlation of scene and object point clouds are visualized in Figure 6.4. The 556 simulated
samples are used entirely for domain adaptation inference with the trained model and are re-injected into the
scene point cloud once adapted at the object-level. This source dataset is denoted as sim dataset, and the
adapted dataset is denoted as sim-to-real object full dataset, i.e. showing the correlation of source-to-target.

10001000Scene Point Clouds Split 4000

6000Scene Point Clouds per
Domain

Adapted Scene Point
Clouds Split for

Object Detection
401 10001000

Training TestingValidation

556
Object Point Clouds

 512 points

Object Point Clouds Split
for Domain Adaptation

528 1414

Figure 6.4: Dataset splits for scene and object point clouds of the sim-to-real scenario- and distribution-aligned
IAC dataset.

6.3.2 Model Training and Evaluation

The domain adaptation model is trained in an adversarial manner in which both the generator and the discrimi-
nator are trained simultaneously. The generator aims to deceive the discriminator, while the discriminator tries
to distinguish between the real and generated fake samples. The training process is schematically illustrated
in Algorithm 1. Following the common practice of GAN training, the discriminator is updated more frequently
than the generator during training, because the discriminator typically converges faster and requires more
updates to provide meaningful gradients to the generator. In detail, the ratio between the discriminator and
the generator updates is set to 5:1, i.e. the discriminator is updated five times for every generator update. The
downsampling size δ is empirically set to seven, which will be analyzed in a parameter sensitivity analysis.
The patch size λpatch used as input for the discriminator is also set to seven, as both values should be equal,
as explained before. The number of patches npatch passed to the discriminator is based on the size of the
variable input point cloud and is chosen to be equal to 1

4 of the number of points of the object point cloud
OT,rec

i,k or OT
i,k. The batch size is limited to one, as the input number of points varies between each object
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point cloud and hence, can not be stacked. Both generator and discriminator networks are trained using
the AdamW optimizer [227] with a learning rate of 10−4 using the PyTorch framework [219]. Every setup
undergoes training for a total of 100 epochs, beyond which there is no noticeable decrease in validation loss.

Algorithm 1 Training Procedure for LiDAR Domain Adaptation
1: Input: Target dataset T, target validation dataset Tval, number of epochs nepoch, iterations/epoch nit,

learning rate α, downsampling size δ, patch size λpatch, number of patches npatch, update ratio rupdate.

2: Output: Trained generator GΘ and discriminator DΘ.

3: Initialize GΘ, DΘ.

4: for epoch= 1 to nepoch do

5: for i terat ion= 1 to nit do

6: Sample a batch OT
i,k from T.

7: if (i terat ion MOD rupdate) = 0 then

8: Downsample: OT,fps
i,k ← FPS(OT

i,k,δ)

9: Reconstruct: OT,rec
i,k ← GΘ(O

T,fps
i,k )

10: Calculate GΘ reconstruction loss: Lrec
GΘ
← dCD

�

OT,rec
i,k ,OT

i,k

�

11: Update GΘ with Lrec
GΘ

, α.

12: end if

13: patchesfake← PATCH EXTRACTION(OT,rec
i,k ,λpatch, npatch)

14: patchesreal← PATCH EXTRACTION(OT
i,k,λpatch, npatch)

15: Train GΘ adversarially: pfake← DΘ(patchesfake)

16: Calculate GΘ adversarial loss: Ladv
G ←− log(pfake)

17: Update GΘ with Ladv
G , α.

18: Train DΘ: preal← DΘ(patchesreal)

19: Calculate DΘ loss: LD←− log(preal)− log(1− pfake)

20: Update DΘ with LD, α.

21: Update α according to scheduler policy (cosine annealing).

22: end for

23: Perform validation on Tval.

24: end for

The evaluation of the domain adaptation network is similar to the method presented in Chapter 5. That is,
employing the object detection networks PointRCNN and PointPillars and reporting AP and recall evaluated
at different ranges and different IoU thresholds. Unlike the evaluation in Chapter 5, the scene point clouds
utilized for training object detection algorithms consist only of the subset that includes objects with more than
512 points, as these are the point clouds that are used for adaptation. Specifically, of the originally 4000
scene points clouds used for training object detection algorithms in Chapter 5, 401 scene points clouds of
these are adapted and hence used for training the object detection algorithms. Using the remaining 3599 of
the scene point clouds would make an isolated evaluation of the domain adaptation difficult, as the sim-to-real
object full dataset would consist of a mix of adapted (401) and non-adapted (3599) point clouds.

To benchmark the proposed domain adaptation method, a simulated dataset is generated that includes a
noise model that adds longitudinal Gaussian noise, having a standard deviation of 2 cm, to every sensor
ray, identical to the noise model presented in Subsection 5.5.4. For an equivalent comparison, only the rays
that intersect with the objects are subjected to the noise model, similar to the presented domain adaptation
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method, which also only adapts the object point cloud, not the entire scene point clouds. This benchmark
noise dataset is referred to as sim noise in the following. Alongside the quantitative evaluation, the adapted
point clouds are compared qualitatively by visual inspection at the local level with the source and target
domains.

In a further parameter sensitivity analysis, the influence of the discriminator is analyzed by training the domain
adaptation network using the generator only and removing the discriminator. For this experiment, the loss
function is reduced to only include the generator reconstruction loss, as expressed by

Ltotal = Lrec
G

�

OT,rec
i,k , OT

i,k

�

. (6.8)

The adapted dataset generated by this experiment is referred to as sim-to-real no-GAN. In two more
experiments, the choice of the downsampling factor δ is analyzed. For this purpose, the domain adaptation
network is trained with δ = 5 or δ = 3 instead of δ = 7 to generate the two adapted datasets. The three
datasets for the parameter sensitivity analysis are evaluated using the same method as described before.

6.4 Results

Before quantitative analysis of the results in Subsection 6.4.2, a visual inspection of the adapted object point
clouds is carried out in Subsection 6.4.1. The results of the parameter sensitivity analysis in Subsection 6.4.3
conclude this chapter.

6.4.1 Qualitative Evaluation

Figure 6.5 shows object points clouds from the source and target domains in Figure 6.5a and Figure 6.5e,
respectively, and the adapted version of the source domain in Figure 6.5c. Alongside the object point clouds,
the 3D plots in Figure 6.5b, Figure 6.5d, Figure 6.5f show the same cropped part extracted from the red
boxes in the object point clouds. The point clouds highlight the disparities in sensor noise characteristics
between the simulated and real-world point clouds, and that the adapted sim-to-real point cloud shows
characteristics more similar to the target point cloud compared to the source point cloud, especially when
analyzing the cropped areas. In detail, the simulated point cloud shows clear scan lines along the objects
surface, whereas the points in the scan lines of the adapted and real-world point clouds show a more irregular
pattern. For a more detailed qualitative comparison showing aggregated point clouds and comparing the
latent feature space of the networks using t-SNE, the reader is referred to the corresponding publication [223].
To summarize the findings of the qualitative analysis, it indicates that the proposed domain adaptation is
successful to an extent in reducing the prevalent sim-to-real domain shift.

6.4.2 Quantitative Evaluation

The object detection results of PointRCNN, which was trained using source, adapted, and target data, and
evaluated on target data for the close- (Figure 6.6a) or full (Figure 6.6b) range, are depicted in Figure 6.6.
Note that even though the same baseline dataset and network configuration are used, the results for
source and target are different from the results in Chapter 5. The reason is that the datasets used in these
experiments are composed of a subset of the original dataset, as explained in Subsection 6.3.1. Extensive
results for both networks of average precision can be found in Table 6.1, and the recall results can be found
in Table A.2 in Section A.2. To summarize the results, it can be stated that the sim-to-real domain shift of
8.63 % 3D AP (0.7) is reduced by almost 50 % to 4.36 % for PointRCNN in close-range. The results of
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Figure 6.5: Individual object point clouds of the sim, sim-to-real object full, and real datasets are visualized for the
comparative analysis of the domain adaptation technique. A detailed perspective of the local structure is
given by the crops of the red boxes shown in (b,d,f) corresponding to the ones in (a,c,e), respectively.
Simulated point clouds are depicted in blue shades, adapted point clouds are shown in green shades, and
real-world point clouds are represented in orange shades. As a reference, the 3D model and the image of
the object are included in (a,e), respectively (adapted from [223]).

PointPillars are similar, also showing a successful reduction of the sim-to-real domain shift using the proposed
domain adaptation method. Compared with the baseline sim noise dataset, the proposed learning-based
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6 LiDAR Domain Adaptation of 3D Point Clouds at the Object-Level

method consistently outperforms the integration of Gaussian noise in simulation, except in one case, that is,
PointPillars 3D AP (0.5) evaluated in close-range.

Sim
(Source)

Sim-to-Real
Object Full

Real
(Target)

Training Dataset

0

10

20

30

40

50

60

70

80

90

100

3D
 A

P 
(0

.7
) i

n 
%

Source

Target

Range: [0.0 m, 33.3 m)

(a) Close-Range [0.0 m,33.3 m)

Sim
(Source)

Sim-to-Real
Object Full

Real
(Target)

Training Dataset

0

10

20

30

40

50

60

70

80

90

100

3D
 A

P 
(0

.7
) i

n 
%

Source
Target

Range: [0.0 m, 100.0 m]

(b) Full Range [0.0m, 100.0m)

Figure 6.6: The 3D AP (0.7) for PointRCNN, which was trained and evaluated using either sim, sim-to-real object
full, or real data and evaluated on real data (target). The horizontal lines represent the mean AP and the
five points represent the five individual training cycles for each training and testing combination (adapted
from [223]).

Table 6.1: The 3D AP (0.7) and 3D AP (0.5) for IoU thresholds of 70 % and 50 %, respectively. The PointRCNN and
PointPillars networks are trained five times with the specified training dataset and then assessed on the
test split of the real dataset. ↑: Higher values are better, with the highest value in each category highlighted
in bold. All values in % (adapted from [223]).

Network Training Dataset
3D AP (0.7) ↑ 3D AP (0.5) ↑

Close-Range Full Range Close-Range Full Range

PointRCNN

Sim (Source) 44.85±2.82 17.06±1.34 52.48±1.42 24.11±2.31

Sim-Noise Object 41.34±3.89 15.58±2.83 49.14±5.07 22.17±4.47

Sim-to-Real Object No-GAN 48.09±2.05 20.03±3.29 57.94±0.81 30.58±1.75

Sim-to-Real Object δ = 3 48.10±2.72 20.39±3.44 55.44±1.68 28.67±3.93

Sim-to-Real Object δ = 5 48.00±3.03 20.19±2.65 56.36±1.14 28.89±2.43

Sim-to-Real Object Full 49.12±1.53 20.10±1.46 56.51±1.31 29.82±1.99

Real (Target) 53.48±3.15 20.40±1.71 59.17±1.88 28.46±4.09

PointPillars

Sim (Source) 26.39±0.00 9.85±0.00 63.51±0.00 23.75±0.00

Sim-Noise Object 31.46±0.00 11.80±0.00 67.16±0.00 28.45±0.00

Sim-to-Real Object No-GAN 26.33±0.00 10.90±0.00 63.77±0.00 29.20±0.00

Sim-to-Real Object δ = 3 28.03±0.00 10.86±0.00 61.47±0.00 30.01±0.00

Sim-to-Real Object δ = 5 30.69±0.00 11.91±0.00 61.10±0.00 28.79±0.00

Sim-to-Real Object Full 38.03±0.00 14.41±0.00 64.11±0.00 29.31±0.00

Real (Target) 51.32±0.00 18.33±0.00 81.52±0.00 32.62±0.00
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6 LiDAR Domain Adaptation of 3D Point Clouds at the Object-Level

6.4.3 Parameter Sensitivity Analysis

The average precision results for the three experiments of the parameter sensitivity analysis are presented in
Table 6.1, and the recall results can be found in Table A.2 in Section A.2.

The results for the analysis of the discriminator’s impact on the domain adaptation are twofold. On the
one hand, sim-to-real no-GAN achieves the best results for 3D AP (0.5) for both close- and full-range of
PointRCNN. However, in all other cases, it is outperformed by the default method sim-to-real object full using
the discriminator.

The parameter sensitivity analysis using a lower downsampling factor of δ = 3 or δ = 5 shows a tendency
to decrease performance with a lower δ.

The corresponding publication [223] further analyzes switching source and target datasets, that is, training a
real-to-sim domain adaptation using real as source and sim as target. In this setting, the domain adaptation
method is trained to reconstruct simulated object point clouds and uses real-world object point clouds during
inference to adapt them to the target style. This experiment shows that the domain adaptation method is also
applicable to different source and target datasets, as it successfully reduces the real-to-sim domain shift. The
complete results of this experiment can be found in [223].
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7 LiDAR Domain Adaptation of 3D Point Clouds
at the Scene-Level

In Chapter 5, the LiDAR sim-to-real domain shift is analyzed. This quantitative and qualitative analysis reveals
a difference between the real-world and simulated data, especially notable when inspecting the point clouds
at the object-level. As objects are especially relevant for the perception task, i.e., object detection, a method
is developed and presented in Chapter 6 to adapt the domains of these object point clouds. The evaluation
of this object-level domain adaptation method shows a successful reduction of the sim-to-real domain shift,
paving the way for the use of synthetic data for perception network training. Nevertheless, a domain shift
remains even when using the scenario- and distribution-aligned IAC dataset, as the adapted scene point
clouds still contain points in the style of the source domain, i.e. all non-object points are based on the source
domain. This leaves the open question of whether a domain adaptation at the scene-level can further reduce
the remaining domain shift, which is expressed in Q4.

Q4: In what ways does the scene-level LiDAR domain adaptation address the broader
challenges posed by the sim-to-real domain shift compared to object-level domain
adaptation?

The goal of this chapter is to answer this question by extending the domain adaptation method presented in
Chapter 6 to adapt point clouds at the scene-level, and the modifications needed for this will be explained
in Section 7.1. To compare the scene-level domain adaptation with the object-level adaptation, the same
dataset is used for the adaptation and evaluation of the experiments presented in Section 7.2, with the results
presented in Section 7.3.

7.1 Method

The domain adaptation method to adapt point clouds at the scene-level is based on the object-level domain
adaptation approach presented in Chapter 6. Instead of extracting object point clouds from scene point
clouds, adapting them, and re-injecting them into their original locations within the scene point clouds, the
entire scene point clouds are directly adapted by the network, as visualized in Figure 7.1. This approach is
extended to handle scene point clouds, which substantially differ from object point clouds.

First, the average number of points per scene point cloud Xi is considerably higher than the average number
of points per object point cloud Oi,k. To tackle this challenge, this requires modifications of the training setup
and parameters as described in Subsection 7.2.2.

Second, compared to object point clouds, scene point clouds are sparse and more irregular, i.e. the difference
in point cloud density within a point cloud is higher, as the scene point clouds cover a larger area. This
requires an extension of point cloud preprocessing, which will be explained in the following with the help
of Figure 7.2. This figure shows a scene point cloud in the upper part in a BEV representation and two
enlarged sections in the lower part. In both enlarged parts, a 2D circle with a diameter of 1 m is depicted
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Domain Adaptation

Source Scene Point Cloud Adapted Scene Point Cloud

Figure 7.1: High-level overview of the scene-based domain adaptation method. The domain adaptation network that
has been trained adapts the source scene point clouds XS

i (here: simulated data, blue) to generate the

target-style scene point clouds XS,adapted
i (here: real-world, green). The general architecture of the domain

adaptation network is identical to the architecture of the domain adaptation network that operates at the
object-level.

for visualization purposes. The enlarged right section covers an area close to the LiDAR sensor, so the
density of the point cloud is high and many points fall within the projected circle. However, the left enlarged
section covers a far range area, and thus the circle only includes two points due to low density. This means
that low-density areas in the far range do not contain local structures and therefore can not be adapted by
the domain adaptation method proposed in Chapter 6, which focuses on the adaptation of local structural
differences of the source and target domains.

For this reason, a radius outlier filter is implemented as an upstream preprocessing algorithm to remove
these points before processing the point cloud with the domain adaptation algorithm. This radius outlier
filter is both used during training and inference of the domain adaptation network. The result of the radius
outlier filter is also depicted in Figure 7.2. Here, black points are kept, and red points are removed before
domain adaptation. To still keep the global structure during inference of the perception network, i.e. the object
detector, the unaltered red points are appended to the adapted black points after domain adaptation. This
allows for the application of the domain adaptation model to scene point clouds.

Apart from this modification, the rest of the domain adaptation neural network is identical to the network
presented in Chapter 6.

7.2 Experimental Setup

This section describes the difference in the point cloud dataset used for the adaptation of the domain at the
scene-level compared to the object-level in Subsection 7.2.1. Furthermore, the training specifics due to the
higher average point number are explained in Subsection 7.2.2.

7.2.1 Dataset

The scenario- and distribution-aligned IAC dataset introduced in Section 5.2 is used for both training and
testing of the domain adaptation algorithm, as well as for training and evaluating the object detection
algorithms with the source, target, and domain adapted datasets. This is similar to the object-level domain
adaptation; however, entire scene point clouds are used for training and inference of the domain adaptation
algorithm. Thus, in addition to extracting 556 object point clouds that meet the minimum point requirement
from the target (real-world) dataset for training, the complete set of 6000 scene point clouds from the
real-world dataset is utilized. These 6000 scene point clouds are used for training, validation, and testing with
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Figure 7.2: Example application of the radius outlier filter. The upper part shows a scene point cloud in BEV repre-
sentation with two enlarged parts in the lower section. The black points indicate that they are passing
through the radius outlier filter, whereas the red points are dropped by the filter and are not processed by
the domain adaptation algorithm.

a split of 4000, 1000, and 1000, respectively. Once the domain adaptation algorithm is trained using the 4000
target point clouds, the inference is done using the entire source dataset, i.e. adapting 6000 source points.

A subset of the 6000 adapted point clouds is used for the qualitative evaluation in Subsection 7.3.1, as
explained in the following and visualized in Figure 6.4. For an objective comparison with the object-level
domain adaptation method of Chapter 6, of the 6000 adapted source scene point clouds, only 401 are
selected for object detection training, and these are point clouds with the same index as those from the
object-level domain adaptation evaluation. In summary, this means that Chapter 6 and Chapter 7 use the
same scene point clouds for a comparable evaluation, with the difference that they are adapted either at the
object-level or the scene-level, respectively.

7.2.2 Model Training and Evaluation

In general, the training process is similar to the training process when adapting the point clouds at the object-
level. The adversarial training of the generator and discriminator is conducted as outlined in Algorithm 1, with
the target dataset used for training consisting of scene point clouds instead of object point clouds. Despite
the similarities in training, there exist a few differences which are explained in the following:
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7 LiDAR Domain Adaptation of 3D Point Clouds at the Scene-Level

• First, the number of point clouds used for scene-level domain adaptation is approximately ten
times higher than the number of point clouds for object-level domain adaptation. Therefore,
the number of epochs for training is reduced from 100 to ten epochs to achieve a comparable
number of total iterations. This further reduces the computation time during training.

• Second, the reconstruction loss Lrec
G of the overall generator loss LG is calculated using

the chamfer distance dCD. Instead of using the non-normalized formulation of the chamfer
distance as used in Chapter 6, the normalized formulation defined in Equation 6.2 is used
for scene-level domain adaptation. The reason is that the higher number of points per point
cloud leads to a high value of Lrec

G , which could vanish the influence of adversarial generator
loss Ladv

G , as the latter is always normalized and therefore does not scale with the number of
points.

• Compared to the update ratio of 5:1 between the discriminator and the generator updates
during training as in Subsection 6.3.2, a ratio of 2:1 is used for the scene-level domain
adaptation. This decision is driven by the increased difficulty in generating target scene point
clouds compared to object point clouds, and hence the necessity to provide the generator with
more learning opportunities. To this end, a lower update ratio ensures balanced adversarial
training.

• The number of patches npatch is altered from 1
4 to 1

100 of the number of points of the input
point cloud due to the higher number of points in scene point clouds.

• As the scene point clouds span a larger range than the object point clouds, they are clipped
at a range of 100 m horizontally, instead of 3.3 m for object point clouds.

• Lastly, the radius outlier filter introduced in Section 7.1 is empirically set to contain at least
two points within a radius of 0.5 m.

7.3 Results

Before presenting the results of the evaluation using the object detection algorithms in Subsection 7.3.2, the
adapted scene point clouds are qualitatively assessed in Subsection 7.3.1.

7.3.1 Qualitative Evaluation

Figure 7.3 contains simulated (source), sim-to-real scene full (adapted), and real-world (target) points clouds
in BEV representation. The figure displays four scenarios of the dataset in the rows, and each subfigure
contains an enlarged part to highlight the differences in the local structure. This visualization in the middle
column shows the results of domain adaptation of entire scene point clouds. The results are twofold. First, the
full view indicates that the adapted point clouds contain an overall noisy structure, similar to the characteristics
of the target point clouds. Analyzing the local view, it shows that the local structure is visible in the point cloud
rings, but compared to the real-world target, it shows more outlier points. However, the overall local structure
is visually more similar to the local structure of the simulated source point clouds, indicating a form of domain
adaptation.
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Sim (Source) Real (Target)Sim-to-Real Scene Full

Figure 7.3: Qualitative results of the sim-to-real domain adaptation at the scene-level. Each row represents a different
scenario, and the columns within each row represent the sim (source), sim-to-real scene full (adapted),
and real-world (target) domains.
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7.3.2 Quantitative Evaluation

The quantitative results of the object detection evaluation for the average precision are in Table 7.1, and the
recall results can be found in Table A.3 in Section A.3. The 3D AP (0.7) for PointRCNN is further depicted in
Figure 7.4 for close- and full range. The plots show that in both ranges, the sim-to-real scene full (adapted)
dataset not only achieves a higher average precision than the source dataset but also outperforms the
target dataset. This will be discussed in Section 9.1 and further compared with the results of the object-level
adaptation from Chapter 6. The results for PointPillars show a mix of out-performance of the target dataset
and performance close to the target dataset, but still outperforming the source dataset by a large margin.

Table 7.1: The 3D AP (0.7) and 3D AP (0.5) for IoU thresholds of 70 % and 50 %, respectively. The PointRCNN and
PointPillars networks are trained five times with the specified training dataset and then assessed on the
test split of the real dataset. ↑: Higher values are better, with the highest value in each category highlighted
in bold. All values in %.

Network Train Dataset
3D AP (0.7) ↑ 3D AP (0.5) ↑

Close-Range Full Range Close-Range Full Range

PointRCNN

Sim (Source) 44.85±2.82 17.06±1.34 52.48±1.42 24.11±2.31

Sim-to-Real Scene δ = 7 47.60±1.13 20.51±2.84 52.75±0.73 31.91±2.37

Sim-to-Real Scene δ = 5 46.41±6.36 20.94±5.93 52.59±4.36 29.58±7.06

Sim-to-Real Scene Full 60.20±2.07 28.07±2.08 69.70±1.07 42.54±1.81

Real (Target) 53.48±3.15 20.40±1.71 59.17±1.88 28.46±4.09

PointPillars

Sim (Source) 26.39±0.00 9.85±0.00 63.51±0.00 23.75±0.00

Sim-to-Real Scene δ = 7 50.62±0.00 20.48±0.00 80.57±0.00 37.36±0.00

Sim-to-Real Scene δ = 5 43.49±0.00 18.48±0.00 78.36±0.00 36.56±0.00

Sim-to-Real Scene Full 44.20±0.00 20.37±0.00 79.80±0.00 37.45±0.00

Real (Target) 51.32±0.00 18.33±0.00 81.52±0.00 32.62±0.00

Sim
(Source)

Sim-to-Real
Scene Full

Real
(Target)

Training Dataset

0

10

20

30

40

50

60

70

80

90

100

3D
 A

P 
(0

.7
) i

n 
%

Source

Target

Range: [0.0 m, 33.3 m)

(a) Close-Range [0.0 m,33.3 m)

Sim
(Source)

Sim-to-Real
Scene Full

Real
(Target)

Training Dataset

0

10

20

30

40

50

60

70

80

90

100

3D
 A

P 
(0

.7
) i

n 
%

Source
Target

Range: [0.0 m, 100.0 m]

(b) Full Range [0.0m, 100.0m)

Figure 7.4: The 3D AP (0.7) for PointRCNN, which was trained and evaluated using either sim, sim-to-real scene
full, or real data and evaluated on real data (target). Horizontal lines represent the mean AP and the five
points represent the five individual training cycles per training and testing combination.
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7.3.3 Parameter Sensitivity Analysis

Similarly to the parameter sensitivity analysis of object-level adaptation in Subsection 6.4.3, the influence of
the downsampling factor δ on the scene-level domain adaptation is analyzed.

Figure 7.5 shows the qualitative evaluation of the two additional adapted datasets using δ = 7 and δ = 5.
The datasets of the parameter sensitivity analysis are compared with the sim-to-real scene full dataset using
δ = 3 and with the target real-world dataset. The four rows show cropped examples from different point
clouds, and within each row, the same scene is depicted. The visual comparison of the three downsampling
factors shows that for scene domain adaptation, a smaller downsampling factor aligns better with the target
domain, as the point cloud rings exhibit fewer outliers and are overall more consistent.

Quantitative results for δ = 7 and δ = 5 are shown in Table 7.1, along with the results of the original
sim-to-real scene full dataset with δ = 3. Both additional datasets outperform the source simulated dataset,
hence the domain adaptation is successful in both cases. For PointPillars, the average precision of sim-to-real
scene δ = 7 is on par with the performance of sim-to-real scene full. The comparison of these two datasets
in the case of PointRCNN, however, shows a noteworthy better performance of sim-to-real scene full with the
lower δ = 3.
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Sim-to-Real Scene Sim-to-Real Scene FullSim-to-Real Scene Real (Target)

Figure 7.5: Qualitative results of the parameter sensitivity analysis of the sim-to-real domain adaptation at the scene-
level. Each row represents a different scenario, and the columns within each row represent the four
domains sim-to-real scene (δ = 7), sim-to-real scene (δ = 5), sim-to-real scene full (δ = 3), and
real-world (target).
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8 LiDAR Domain Adaptation of 3D Point Clouds
from Non-Distribution-Aligned Data

The previous chapters consider the topic of domain shift and domain adaptation using the scenario- and
distribution-aligned IAC dataset. This has the advantage that the sim-to-real domain shift is isolated to
focus on the local characteristics of the point clouds and neglects the global differences between synthetic
and real-world data, such as different scenarios, agents, environments, and sensor characteristics. The
developed domain adaptation method has been shown to reduce domain shift using either an object-level
adaptation as in Chapter 6 or adapting entire scene point clouds as in Chapter 7 for the previously introduced
sim-to-real distribution-aligned IAC dataset. As this distribution-aligned IAC dataset is a special case and
usually not available or feasible to generate for application of AVs on public roads, this chapter delves into
the sim-to-real domain adaptation of non-distribution-aligned data. The goal is to prove that the developed
domain adaptation method is capable of generalization to other datasets, hence, increasing the potential
applicability of the domain adaptation algorithm by answering the research question Q5.

Q5: How can LiDAR domain adaptation techniques be developed and applied when
source and target data distributions are not aligned?

To this end, the method of domain adaptation of 3D point clouds from non-distribution-aligned data is
explained in Section 8.1, before introducing the datasets and highlighting their differences in Subsection 8.2.1.
Similarly to the previous chapters, the results in Section 8.3 are structured into qualitative and quantitative
evaluations.

8.1 Method

In this chapter, both object- and scene-level domain adaptation are analyzed and evaluated. The goal is to
analyze whether the findings from the object- and scene-level domain adaptation using distribution-aligned
IAC dataset are transferable to non-distribution-aligned data. Similarly to the scene-level domain adaptation
introduced in Chapter 7, the domain adaptation for non-distribution-aligned data is also based on the domain
adaptation algorithm originally presented in Chapter 6. To this end, the object-level domain adaptation
algorithm presented in Figure 6.2 is used with a few modifications, which are explained in the following,
broken down into object- and scene-level domain adaptation.

During inference of object-level domain adaptation, the object point clouds OS
i,k are first extracted from the

scene point clouds XS
i . In the case of the non-distribution-aligned dataset, the number of objects k per

scene point cloud is on average higher than one, compared to only one object per scene point cloud in
the distribution-aligned IAC dataset. The consequence of this is that multiple object point clouds need to
be adapted before re-injecting them into their original location within the scene point clouds, as depicted
in Figure 8.1. As the domain adaptation pipeline is executed offline, the adaptation of the objects can be
performed sequentially, and this does not influence the network design of the domain adaptation algorithm.
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The number of objects per scene does not impact the domain adaptation at the scene-level, and therefore
the method is identical to the method presented in Chapter 7 for the distribution-aligned IAC dataset, as
depicted in Figure 8.2.

Object Extraction Object Injection

Scene Retention

Source Object Point Cloud

Source Scene Point Cloud Adapted Scene Point Cloud

Adapted Object Point Cloud

Domain Adaptation

Figure 8.1: High-level overview of the object-based domain adaptation method for non-distribution-aligned data. The
first step comprises the extraction of the object point clouds OS

i,k from a source scene point cloud XS
i (here:

simulated data, blue). The trained domain adaptation network subsequently adapts the object point clouds
to generate target-style object point clouds (here: real-world, green) OS,adapted

i,k , which are re-injected in

their initial locations within the source scene point cloud. The resulting output XS,adapted
i combines the

original source scene point cloud with the adapted object point clouds.

Domain Adaptation

Source Scene Point Cloud Adapted Scene Point Cloud

Figure 8.2: High-level overview of the scene-based domain adaptation method for non-distribution-aligned data.The
domain adaptation network that has been trained adapts source scene point clouds XS

i (here: simulated

data, blue) to generate target-style scene point clouds XS,adapted
i (here: real-world, green).

72



8 LiDAR Domain Adaptation of 3D Point Clouds from Non-Distribution-Aligned Data

8.2 Experimental Setup

The experimental setup for the domain adaptation using the non-distribution-aligned datasets is similar to
the experimental setup for domain adaptation using the distribution-aligned IAC dataset. Therefore, only the
major differences will be explained in the following, which is mainly focused on the dataset being used.

8.2.1 Dataset

The selection of the synthetic and real-world datasets is conducted independently, as their distributions in
terms of scenario or distribution alignment do not need to correspond.

Consequently, KITTI [37] is chosen as a real-world dataset, which contains around 15,000 annotated point
clouds covering urban, rural, and highway areas in Germany. The main reasons for choosing KITTI are
that first, point clouds are recorded using a single 360° rotating LiDAR, which coarse characteristics can
be replicated in a simulation. Second, the object detection networks PointRCNN and PointPillar used for
the evaluation are developed and optimized for the KITTI benchmark [36] and thus can be used without
additional manual fine-tuning.

The synthetic dataset is generated using the simulation environment CARLA [90]. Although the All-In-One
Drive dataset [91] is a publicly available dataset that is also based on CARLA, its LiDAR configuration differs
strongly from the configuration of the real-world KITTI dataset. Thus, a new synthetic dataset is generated
in CARLA with a sensor setup similar to KITTI. The ego vehicle is equipped with a 360° rotating LiDAR
sensor. The sensor position on the ego vehicle is identical to the sensor position on the vehicle of the KITTI
dataset. The LiDAR sensor spins with a frequency of 10 Hz. To avoid collecting similarly looking point clouds
from subsequent time steps, only every 20th point cloud is saved, i.e. every 2 seconds. The ego vehicle is
autonomously driven and controlled by the integrated traffic manager in CARLA. The maps are populated
with other agents, which also drive autonomously. The agents are limited to vehicles from a selection of
around 25 actors and do not contain pedestrians or cyclists. 5,000 annotated point clouds each are collected
on the three CARLA maps "Town1", "Town4", and "Town5", which cover a village, a highway, and an urban
environment, respectively. As the intensity channel of the LiDAR sensor model is not validated, it is not
recorded. This non-distribution-aligned dataset pair is referred to as CARLA-KITTI dataset in the following.

Figure 8.3 shows examples of scenes that are commonly found in the KITTI or CARLA datasets. This
highlights the differences in datasets, with different environments, agents, scenery, weather, and road layouts,
For example, KITTI is recorded in Germany, whereas CARLA replicates the style of cities found in the
USA. Figure 8.4 shows the positions and their distributions of the vehicles of the entire datasets in BEV
representation. Only vehicles in the FoV of the front camera are annotated in the KITTI dataset, which
explains the limited triangular area found in the KITTI plot (Figure 8.4a). Apart from this difference, the
distributions of the positions also show major differences. For example, KITTI contains many vehicles parked
on both sides of the road, which explains the peaks of the distribution along the y axis. Furthermore, the
distribution in CARLA along the x axis is less consistent, with many vehicles located between x = 15 m
and x = 30m. This can be explained by situations in which the ego vehicle stops at red traffic lights and
recording crossing traffic, which often occurs due to the regular road layout of the simulation.

Table 8.1 shows a quantitative statistical comparison of both datasets. The attributes belonging to the
scene point clouds are more similar than the attributes regarding the objects, with an increased mean
count of objects for each scene point cloud and a greater mean count of points for each object point cloud
identified in the synthetic dataset. In addition, the object dimensions differ, since the vehicles in the synthetic
dataset are on average 17 % longer and 20 % wider than the vehicles in the real-world dataset, indicating a
country-to-country domain shift.
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(a) KITTI [37]

(b) CARLA [228]

Figure 8.3: Examples of environments, agents, and scenarios found in the KITTI or CARLA datasets.
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(b) CARLA

Figure 8.4: Bird’s-eye-view plot of the object (car) locations extracted from the annotations of the KITTI or CARLA
datasets.
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Table 8.1: Comparison of key statistical characteristics between the KITTI and CARLA datasets. Every value is
computed from the complete training set of each dataset, utilizing the whole point cloud range up to 100 m.

Attribute KITTI CARLA

Scene point cloud range

min
x in m −80.00 −100.00
y in m −79.98 −100.00
z in m −31.68 −26.88

max
x in m 79.99 100.00
y in m 79.99 100.00
z in m 2.91 4.19

mean
x in m −0.07 0.28
y in m 0.65 0.31
z in m −1.15 −1.23

Number of points per
scene point cloud

min 78596 104445
max 128467 129958
mean 119225 125821

Number of objects per
scene point cloud

min 0 0
max 19 24
mean 3.84 7.23

Number of points per
object point cloud

min 0 0
max 14466 20807
mean 394 618

Object dimensions

min
h in m 1.14 1.30
w in m 1.14 1.48
l in m 2.19 2.21

max
h in m 2.48 2.05
w in m 2.04 2.16
l in m 6.67 5.57

mean
h in m 1.53 1.56
w in m 1.63 1.95
l in m 3.88 4.55

Overall, this analysis shows a notable difference between the datasets with a combination of sim-to-real,
country-to-country, weather-to-weather, and dataset-to-dataset domain shifts.

The splits into training, validation, and testing for the scene and object point clouds are depicted in Figure 8.5.
Following the common split of the KITTI dataset, 3,712 point clouds are used for training and the remaining
3,769 point clouds for testing, and no validation point clouds are used. The split for the object point clouds
is skewed towards a high number of training samples compared to validation and testing, as the latter sets
only evaluate the reconstruction, but not adaptation performance. This is done similarly to the split of the
distribution-aligned IAC dataset.

8.2.2 Model Training and Evaluation

The adversarial training of the domain adaptation network is performed with a set of parameters similar
to the training using the distribution-aligned IAC dataset in Chapter 6 for object-level and Chapter 7 for
scene-level and follows the training process of Algorithm 1. The detailed parameters can be found in Table 8.2.
The main differences are the number of point clouds used per epoch, and hence, the adapted number of
epochs. As explained in Subsection 8.2.2, the reconstruction loss Lrec

G is calculated using the normalized
formulation of the chamfer distance dCD as defined in Equation 6.2. Here, this formulation is used not only
for the scene-level domain adaptation but also for the object-level domain adaptation. The reason is that for
the non-distribution-aligned CARLA-KITTI dataset, the absolute difference between the maximum (14466)
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3769Scene Point Clouds Split 3712

7481Scene Point Clouds per
Domain

6102
Object Point Clouds

 512 points

Object Point Clouds Split
for Domain Adaptation

6072 1515

Training TestingValidation

Figure 8.5: Dataset splits for scene and object point clouds of the CARLA-KITTI dataset.

and minimum (set to 512) number of points per object point cloud is larger than the maximum (4959) and
minimum (set to 512) number of points per object point cloud for the distribution-aligned IAC dataset (compare
Table 8.1 and Table 5.1).

For evaluation with the object detection algorithms PointPillars and PointRCNN, the training and evaluation
range of the source, adapted, and target datasets are limited to the range of the annotated KITTI dataset.

Table 8.2: Training parameters for non-distribution-aligned object-level and scene-level domain adaptation.

Object-level Scene-level

Number of point clouds 6072 3712
Epochs 20 10
Update ratio discriminator:generator 5:1 2:1
Point cloud range 3.3 m 100.0 m
Downsampling size δ 5 7
Patch size λpatch 5 7
Number of patches npatch

1
4

1
100

Radius outlier filter: number of points 3 2
Radius outlier filter: radius threshold 0.2 m 0.5 m

8.3 Results

In the same manner as in the previous chapters, the results are structured in a first visualization of qualitative
examples of the adaptation and t-SNE graphs before presenting quantitative measures generated by
evaluating object detectors.

8.3.1 Qualitative Evaluation

Figure 8.6 shows three object point clouds from the CARLA, CARLA-to-KITTI Object, and KITTI dataset,
along with a cropped section of each point cloud for visualization of the local structure. The CARLA-to-
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KITTI Object point cloud is the adapted version of the CARLA point cloud, while the KITTI point cloud is
a random but similarly selected object in the dataset since a aligned object does not exist. The cropped
sections in Figure 8.6b and Figure 8.6c highlight the output of the domain adaptation, in which local noise is
injected onto the surface of the object, similar to the noise found in the real-world point cloud in Figure 8.6f.
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(d) CARLA-to-KITTI Object crop
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Figure 8.6: Individual object point clouds of the CARLA, CARLA-to-KITTI Object, and KITTI datasets are visualized for
the comparative analysis of the domain adaptation technique. A detailed perspective of the local structure
is given by the crops of the red boxes shown in (b,d,f) corresponding to the ones in (a,c,e), respectively.
Simulated point clouds are depicted in blue shades, adapted point clouds are shown in green shades, and
real-world point clouds are represented in orange shades.
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Qualitative examples of the scene-level domain adaptation are depicted in Figure 8.7. The three CARLA-to-
KITTI Scene point clouds in the middle column are the adapted versions of the CARLA point clouds in the
respective row on the left side. The BEV shows that the point clouds do not change on a global level after
adaptation and only differ on a local level, as seen in the scaled-up sections in each plot.

CARLA (Source) KITTI (Target)CARLA-to-KITTI Scene

Figure 8.7: BEV plots of point clouds from CARLA (source), CARLA-to-KITTI Scene (adapted), and KITTI (target)
datasets.

Figure 8.8 shows two t-SNE plots, in which either CARLA-to-KITTI Object (Figure 8.8a) or CARLA-to-
KITTI Scene (Figure 8.8b) are compared with the source and target datasets. This side-by-side comparison
shows that the scene-level domain adaptation is closer to the target than the object-level domain adaptation
is to the target, indicating a better domain adaptation of the scene-level domain adaptation.

8.3.2 Quantitative Evaluation

Quantitative results for both object-level and scene-level domain adaptation can be found in Table 8.3 for
both PointRCNN and PointPillars and are visualized for PointRCNN in Figure 8.9. Further results for the
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CARLA
CARLA-to-KITTI Object
KITTI

(a) CARLA-to-KITTI Object

CARLA
CARLA-to-KITTI Scene
KITTI

(b) CARLA-to-KITTI Scene

Figure 8.8: A visualization using t-SNE technique of the latent feature space generated by PointRCNN, trained
separately on CARLA (source), CARLA-to-KITTI Object, CARLA-to-KITTI Scene, or KITTI (target) data
for five training sessions each. Each point represents a feature vector produced by the network’s inference
when analyzing a single point cloud of the KITTI test set.

recall are located in Table A.4 in Section A.4. As expected, the scene-level domain adaptation outperforms
the object-level domain adaptation in all categories. In detail, the object-level domain adaptation reduces
the sim-to-real domain shift by only single-digit percentages, and in some cases (PointPillars) increases the
sim-to-real domain shift. In general, domain adaptation is more successful for PointRCNN than for PointPillars.
The scene-level domain adaptation successfully reduces the sim-to-real domain shift, e.g. by doubling the
3D AP (0.7) of the source dataset from 8.61 % to 18.78 % in close-range. Although domain adaptation is
successful in most cases, the distance from the performance of the target dataset is still large and can not be
fully reduced by the presented domain adaptation method.

Table 8.3: CARLA-to-KITTI: The 3D AP (0.7) and 3D AP (0.5) for IoU thresholds of 70 % and 50 %, respectively. The
PointRCNN and PointPillars networks are trained five times with the specified training dataset and then
assessed on the test split of the KITTI dataset. ↑: Higher values are better, with the highest value in each
category highlighted in bold. All values in %.

Network Train Dataset
3D AP (0.7) ↑ 3D AP (0.5) ↑

Close-Range Full Range Close-Range Full Range

PointRCNN

CARLA (Source) 8.61±0.67 7.69±0.52 45.96±1.52 38.25±1.33

CARLA-to-KITTI Object 9.88±1.67 8.46±1.38 46.18±2.57 38.94±2.46

CARLA-to-KITTI Scene 18.78±1.46 16.24±1.15 55.14±1.28 47.20±1.12

KITTI (Target) 70.69±0.39 64.16±0.38 86.97±0.54 84.03±0.80

PointPillars

Sim (Source) 3.71±0.00 3.02±0.00 33.11±0.00 27.44±0.00

CARLA-to-KITTI Object 3.61±0.00 3.04±0.00 30.86±0.00 26.81±0.00

CARLA-to-KITTI Scene 5.43±0.00 4.51±0.00 38.66±0.00 33.56±0.00

Real (Target) 48.76±0.00 44.58±0.00 82.06±0.00 82.47±0.00
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Figure 8.9: The 3D AP (0.7) for PointRCNN, which was trained and evaluated using either CARLA (source), CARLA-
to-KITTI Object (adapted), CARLA-to-KITTI Scene (adapted), or KITTI (target) data and evaluated on
KITTI data. The horizontal lines represent the mean AP and the five points represent the five individual
training cycles for each training and testing combination.
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9 Discussion and Future Work

This chapter discusses the method and results presented in the previous chapters of this thesis and answers
the research questions. Furthermore, the open challenges that can be addressed in future work are presented
in Section 9.2.

9.1 Discussion

This section answers the research questions, critically discusses the results by comparing them with the state
of the art, and highlights the limitations of the approach. The discussion is split into five parts. The first part
discusses the analysis of the sim-to-real domain shift addressed in Chapter 5. The second part combines
the discussion of the domain adaptation for object- and scene-level adaptation using the distribution-aligned
IAC dataset presented in Chapter 6 and Chapter 7, respectively. The third part deals with the discussion
of the domain adaptation approach applied to point clouds from non-distribution-aligned data, which was
presented in Chapter 8. The real-world application of perception algorithms and the significance of LiDAR
domain adaptation for this purpose are discussed in Subsection 9.1.4. Lastly, Subsection 9.1.5 highlights the
practical relevance of this thesis in terms of economic, scientific, and societal impact.

9.1.1 Analysis of the LiDAR Domain Shift

Chapter 5 on the analysis of the domain shift serves to answer the research questions Q1 and Q2.

Q1: How should a sim-to-real LiDAR dataset be designed to effectively capture the
nature and extent of the sim-to-real domain shift, and what methodologies can be
employed to quantify and analyze this shift through various performance indica-
tors?

The first part of Q1 is answered by introducing a method that consists of three steps. The first step involves
the capturing of real-world LiDAR and precise RTK-corrected GNSS data from all agents, while the latter is
used to automatically annotate the LiDAR point clouds. In the second step, a 3D simulation environment is
generated that matches the real-world scenery, including a virtual LiDAR sensor model to generate synthetic
LiDAR point clouds in simulation. The last step is to replay the real-world GNSS trajectories in the simulated
environment and simultaneously generate the synthetic point clouds.

The second part of the research question Q1 is answered by presenting a method that utilizes object detection
algorithms trained using the datasets of both domains and compares their performance when evaluating in
the opposite domain. Similar methods exist in the state-of-the-art literature for domain shift quantification [107,
159]. However, the method presented in this thesis expands the state of the art for domain shift analysis in
two ways. First, the method presented in this thesis quantifies the domain shift using the distribution-aligned
dataset and hence narrows the remaining domain shift down to the local differences between the simulation
and the real world. Second, the analysis is extended not only to a quantitative evaluation using the object
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detectors but also introduces a qualitative comparison by comparing the datasets using t-SNE plots and
comparing visual examples at the object-level, which is possible due to the usage of the scenario- and
distribution-aligned IAC dataset. Using the method developed to answer Q1, the sim-to-real domain shift for
the specific dataset is approximately 14 % 3D AP (0.7).

Q2: What impact do simulation enhancements, such as the integration of sensor noise
models, have on mitigating the sim-to-real domain shift in 3D LiDAR data?

To answer Q2, the virtual LiDAR sensor model is extended to include either sensor noise in longitudinal ray
direction or integrates a point dropout by randomly removing 20 % of the points. The evaluation shows that
sensor noise successfully minimizes the sim-to-real domain shift, whereas dropout increases the sim-to-real
domain shift. These experiments were previously not found in state-of-the-art domain shift analysis and
hence contribute to an extension of state-of-the-art knowledge in this field.

Although the results of the domain shift analysis are a valuable contribution to the state-of-the-art, this
discussion will highlight the limitations of the analysis, which will be elaborated on in the following.

Even though the 3D simulation environment to record the synthetic data is derived from the real world, still
there exist discrepancies between the datasets. For instance, the 3D simulation environment has missing
static objects in the scenery outside of the driveable area, and therefore a difference in global structure
is visible in the point clouds. In addition, the real-world dataset is semi-automatically annotated using the
GNSS recordings of the ego vehicle and the other agents. The GNSS units offer a high precision using
RTK-correction, but are neither synchronized nor triggered to capture the location of the vehicles at identical
time stamps. Interpolation and a high recording frequency as proposed in this thesis can mitigate potential
offsets between labels derived from the relative GNSS positions and the actual position of vehicles in the
point clouds. Furthermore, the subsequent refinement step can improve the auto-labeling. However, there
might still be an error that is more pronounced in higher ranges as the density of points drops and the
accuracy of the refinement steps decreases. These inaccuracies are present only in the real-world dataset
and not in the simulated dataset, as the latter is automatically annotated by the simulation engine itself.

Nevertheless, the statistical comparison shows that the overall similarity of both datasets in terms of point
distribution is high, which justifies the utilization of the dataset pair in the following analysis and for domain
adaptation experiments. Although these inaccuracies can have an impact on the sim-to-real domain shift, the
generated sim-to-real dataset is still the dataset with the most similar distribution between the two domains
found in the literature. This makes it suitable for the analysis of the domain shift as well as for the domain
adaptation focusing on the local structures.

The auto-labeling pipeline to annotate the real-world point clouds only defines seven degrees of freedom per
bounding box and neglects the roll and pitch angles. This is done because the object detection networks
PointRCNN and PointPillars also disregard these angles. However, the dataset contains scenarios in which
either the ego vehicle or another agent is on the banked turns of the race track and a relative roll and pitch
angle exists between both vehicles. This can further lead to inaccuracies in the labeling as ground reflections
can be included in the 3D bounding box. Nonetheless, this is present in both simulated and real-world data
and does not influence the analysis of the sim-to-real shift.

Moreover, the scenario- and distribution-aligned IAC dataset only contains one object class, i.e. the class
race car, and within this class, all objects are identical in size and shape. This reduces the task complexity
for object detectors, as they only have to learn the characteristics of this single object. Nevertheless, as the
results show, even with reduced complexity, the sim-to-real domain shift is still pronounced for this simple
object detection task.

To summarize, the findings underscored the presence of a sim-to-real domain shift in LiDAR data, impacted
by factors like sensor noise and point cloud dropout. The addition of noise in the virtual LiDAR sensor
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model showed a reduction in domain shift, indicating an important impact of sensor noise on the sim-to-real
domain shift. The approaches adopted for analyzing domain shift expand upon existing literature by providing
a detailed quantitative and qualitative analysis. Despite advances in improving the virtual LiDAR sensor
model, the complete elimination of the sim-to-real domain shift is not achieved, indicating the complexity
and multifaceted nature of the problem, hence motivating research in learning-based domain adaptation
approaches.

9.1.2 LiDAR Domain Adaptation at the Object- and Scene-Level

In Chapter 6 and Chapter 7 on the domain adaptation at the object- and scene-level using the distribution-
aligned IAC dataset, the research questions Q3 and Q4 are addressed.

Q3: How can LiDAR domain adaptation techniques be applied at the object-level to
mitigate the impact of sim-to-real domain shift, and what are the specific challenges
and solutions associated with object-level domain adaptation?

Q3 is answered by presenting a method adapting object-level point clouds based on adversarial training.
The key to this method is the following three characteristics. First, the training is performed using the target
data only, and the inference is performed using the source data only. This makes this method capable of
scaling to an infinite quantity of source data without requiring retraining for each new source domain. Second,
domain-invariant representation within the network is achieved by using FPS downsampling, which keeps the
global structure and solely removes the local characteristics of point clouds. Lastly, adversarial training is
based on comparing small point cloud patches instead of comparing the entire object point clouds, which
further improves the adaptation process within the reconstruction network to focus on the local structures.
Evaluation using the same method as introduced in Chapter 5 shows a successful reduction of the sim-to-real
domain shift on the same IAC dataset, emphasizing the efficiency of the domain adaptation technique.

Q4: In what ways does the scene-level LiDAR domain adaptation address the broader
challenges posed by the sim-to-real domain shift compared to object-level domain
adaptation?

To answer Q4, the method from Q3 is extended to incorporate adaptation of scene point clouds. This is
achieved by modifying the training setup and parameters, and by adding a point cloud preprocessing before
the actual domain adaptation is executed in the reconstruction network. The upstream preprocessing consists
of a radius outlier filter, which removes areas with low density from the adaptation process. The results of the
scene-level domain adaptation show an improvement compared to the object-level adaptation. Moreover,
the adapted dataset even outperforms the target dataset, which can have several reasons elaborated in the
following:

1. A possible cause could be that the model trained on the target dataset is overfitting on the
training split and does not generalize well to the testing samples of the target dataset. In
contrast, the model trained on the adapted data might introduce more variation in the training
samples to prevent overfitting. However, the validation loss during training does not show
signs of overfitting.

2. Another cause for the outperforming of the adapted dataset could be that the domain adapta-
tion process enhances certain features or introduces beneficial regularization effects, e.g. by
highlighting critical features in the point cloud more effectively.

3. Another explanation could be that objects in higher ranges contain more points in the adapted
dataset compared to the target dataset. This higher number of points makes the detection for
the object detectors easier, potentially leading to higher metric scores.
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4. The last possible cause could be that the choice of hyperparameters and optimization
techniques for object detection training is in favor of the adapted dataset compared to the
target dataset. These hyperparameters were adopted from the original implementations of
PointRCNN and PointPillars, and their fine-tuning is an open topic for future work.

The final cause can be analyzed in future work but does not diminish the significance of the presented domain
adaptation approach that reduces the sim-to-real domain shift.

The object- and scene-level domain adaptation methods both have limitations, which are elaborated on in
the following. Training of the object-level domain adaptation is carried out using target object point clouds.
Hence, the target dataset needs to be annotated to extract the objects from the scene point clouds. This
is counter-intuitive at first, as the goal of domain adaptation is to remove the necessity of annotated target
data. This limits the approach; however, only a small subset of the target data needs to be annotated. The
advantage that arises from choosing this approach is that once the network is trained using the target data, it
has the capability to adapt to an infinite amount of source data from various source domains, eliminating the
requirement for retraining for each individual source domain.

Both object-level and scene-level domain adaptation can adapt point clouds with a variable point number,
but necessitate a certain quantity of points as sparse point clouds lack substantial information about the
structure on a local level. This limits especially the object-level domain adaptation in a way that objects with
a lower number than the defined minimum number of points are not adapted, which are usually objects at
higher distances.

9.1.3 LiDAR Domain Adaptation for Non-Distribution-Aligned Data

The last research question Q5 is addressed in Chapter 8.

Q5: How can LiDAR domain adaptation techniques be developed and applied when
source and target data distributions are not aligned?

To this end, the developed domain adaptation method for both object- and scene-level adaptation is modified
for usage with non-distribution-aligned datasets, in this case, the CARLA-KITTI dataset. Due to the higher
number of objects in scene point clouds in the CARLA-KITTI dataset compared to the IAC dataset, the
domain adaptation pipeline is modified to extract, adapt, and re-inject all objects per scene point cloud.
Except for tuning the training parameters for the CARLA-KITTI dataset, the domain adaptation algorithm is
the same as for use with the IAC dataset. The results show that a transfer of the domain adaptation approach
from the distribution-aligned IAC dataset to the non-distribution-aligned CARLA-KITTI dataset is successful.
The object-level domain adaptation achieves only a minor improvement over the source domain, whereas the
scene-level domain adaptation manages to reduce the sim-to-real domain shift to a greater extent.

Nevertheless, it should be mentioned that despite the scene-level domain adaptation reducing the sim-to-real
domain shift, a large sim-to-real domain shift is still present in the CARLA-KITTI dataset after adaptation. The
reason for this is that the sim-to-real domain shift is a superposition of several individual domain shifts, such
as country-to-country, weather-to-weather, sensor-to-sensor, and dataset-to-dataset. The domain adaptation
method presented in this thesis only tackles the sensor-to-sensor domain shift which arises from the simplified
virtual sensor model in simulation compared to the real-world sensor, and hence, can not fully reduce the
sim-to-real domain shift in a non-distribution-aligned dataset.

After answering the derived research questions Q1 to Q5, the primary research question can be answered.

PRQ: How can domain adaptation approaches directly applied to 3D point clouds
bridge the sim-to-real domain shift to enhance LiDAR perception in autonomous
vehicles?
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An effective domain adaptation algorithm that minimizes the sim-to-real domain shift can leverage an
adversarial network that concentrates on modifying the local structure of point clouds. This algorithm involves
the preprocessing of point clouds to a domain-invariant representation, a reconstruction network based on
operators for 3D point cloud handling, such as PointNet++, and a patch-based discriminator encouraging
the generator to produce target-style local structures. This domain adaptation algorithm can be used for
either object- or scene-level adaptation, whereas the latter reduces the domain shift to a greater extent.
Furthermore, it can be applied to either distribution-aligned or non-distribution-aligned datasets. While the
reduction of domain shift is more pronounced for distribution-aligned datasets, the method’s applicability to
non-distribution-aligned datasets enhances its relevance for practical applications, as explained in the next
Subsection 9.1.5.

9.1.4 Real-World Application

The AP obtained in this thesis does not attain 100 % and remains under 60 % for the majority of configurations.
However, neural networks are still applied to solve perception challenges in the real world. An example is the
IAC, during which the TUM autonomous motorsport team deployed PointRCNN with a configuration similar to
this thesis. For real-world integration, this network was trained with annotated real-world data collected during
test runs on the race track. The performance of this network was similar to the performance of PointRCNN
as employed in this thesis when trained and tested on real-world data, i.e. achieving a 3D AP (0.7) of
approximately 50 %. Despite these limitations, this network has still been used successfully in competitive
head-to-head races to detect opponent vehicles on the race track. Several factors contribute to why networks
with an AP significantly less than 100 % can still be used effectively in real-world autonomous vehicles, as
discussed in the following.

First, alongside a neural network that extracts information to detect objects within LiDAR point clouds, a
parallel clustering pipeline complements the neural network. This pipeline uses a two-stage Euclidean
clustering algorithm and detects all objects whose reflected points match the criteria regarding cluster size
and point density. As clustering is an unsupervised machine learning technique, it does not require training
and can detect vehicle components that the neural network fails to detect. Second, in addition to the LiDAR
sensor, the race car is equipped with cameras and RaDAR sensors. These can be leveraged for sensor
fusion to enhance the robustness of perception. For the IAC, the RaDAR sensor detections are utilized,
providing both velocity and spatial data. Finally, the perception pipelines are followed by a subsequent
tracking algorithm. This tracking algorithm not only fuses the individual perception pipelines, but also keeps
track of the detected objects in the event they are not detected at each individual time step. This allows
the perception systems to occasionally miss detections at some time steps without adversely affecting the
prediction and planning algorithms.

In general, this combination of factors enables a robust perception system, even if each pipeline does not
achieve the highest metric scores. Therefore, it is not necessary to attain 100 % AP. Nevertheless, the
development goal should be to achieve the highest possible AP. Research in LiDAR domain adaptation
algorithms, as presented in this thesis, can pave the way toward this goal, particularly by improving the
performance of networks trained with synthetic simulation data.

9.1.5 Practical Relevance

The last part of the discussion highlights the practical relevance of the presented domain adaptation method
in terms of economic, scientific, and societal impact.
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Economic Relevance

The traditional data acquisition for the generation of an annotated training dataset involves significant financial
and time investments, which are valuable resources for companies, startups, and researchers. Costs are
associated with sensor-equipped vehicle operations, data recording, and manual annotation of LiDAR point
clouds. In particular, manual annotation requires extensive human effort. Depending on the complexity and
volume of the data, this can cost several minutes and dollars per 3D point cloud. The proposed domain
adaptation method has the potential to drastically reduce the costs related to datasets, by reducing the
amount of required annotated real-world data. Datasets in simulation can be generated with a fraction of
the costs and time of real-world datasets and can include safety-critical scenarios difficult to capture in the
real world. These simulated datasets can be adapted using the proposed sim-to-real domain adaptation
method and hence used for training of object detection algorithms. Moreover, the adapted data can be used
for network pretraining, and fine-tuning can be done using only a small subset of the real-world data. Similar
studies are shown in [159], where pretraining with simulated data and subsequent fine-tuning using only
20 % of the available real-world data yields performance comparable to training with 100 % of the real-world
data.

Scientific Relevance

The proposed solutions in this thesis are open source to accelerate research and development in AD. The
distribution-aligned IAC dataset [229, 230] is publicly available for further studies of the sim-to-real domain
shift. The source code of the domain adaptation algorithm is available on GitHub [231]. In addition to these
contributions, the previously explained method of using adapted simulated data for pretraining of object
detection algorithms can further accelerate the research in AD, as researchers can focus on collecting small
and task-tailored real-world datasets used for fine-tuning instead of collecting large foundation datasets.

Societal Relevance

The research presented in this thesis enables the development of a more robust perception software, which
is a crucial part of the AD software stack. Therefore, this research contributes to the overall development and
diffusion of AVs, which can enable a revolution in the field of transportation. For example, with a dissemination
of AVs, the number of vehicle crashes could be reduced as much as by 90 %, according to [232]. This also
has the positive impact of reducing the costs of healthcare and vehicle repairs, which are expected to save
together up to US$180 billion yearly, according to a report by McKinsey Global Institute [233]. Furthermore,
the number of parking spaces is expected to be reduced due to fewer shared vehicles, which are used more
efficiently, with parking spaces currently taking up to 24 % of the area in cities in the USA [232]. Moreover,
the costs of using shared vehicles are expected to be lower than those of owning vehicles [232], which
leads to monetary relief for mobility spending. Lastly, the proposed domain adaptation approach reduces the
need or extension of real-world datasets and hence the collection of these, which often involves large fleets
contributing to environmental pollution.

9.2 Future Work

This thesis proposes a first approach to 3D domain adaptation targeting the sim-to-real domain shift in LiDAR
object detection. The approach serves as a baseline for this research field and can be extended in several
ways, which are elaborated in the following.
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9 Discussion and Future Work

The perception task used for evaluating domain adaptation is object detection. However, extension to
different tasks using LiDAR point clouds as input, such as semantic segmentation [234], learning-based
LiDAR localization [235], or approaches combining object detection and localization tasks [236] can give
insight on the generalizability of the domain adaptation method. This would provide a more comprehensive
understanding of the effectiveness of the domain adaptation method for different perception tasks. In addition,
the impact of different domain adaptation techniques on the performance of these tasks could also be
investigated. This could potentially lead to the development of more robust and versatile domain adaptation
methods for LiDAR point clouds.

In the current implementation, the domain adaptation method is tested with datasets containing only a single
object class, that is, race car or car for the IAC or CARLA-KITTI datasets, respectively. Future work can
extend the method by using datasets containing additional classes, such as pedestrians, cyclists, and trucks.
This opens up new questions. For example, if the object-level domain adaptation can be trained on multiple
classes simultaneously or if the network has to be trained for each class individually.

The domain adaptation approach presented is aimed at minimizing the sim-to-real domain shift. In future
work, it can be analyzed if the same domain adaptation approach is also capable of reducing other forms of
domain shift, e.g. the weather-to-weather domain shift within a single public dataset.

Also, the domain adaptation method only uses the x yz features of the point clouds and neglects the intensity
channel, although some object detection algorithms support the inclusion of this additional feature channel.
Including the intensity channel within the domain adaptation algorithm requires only minor algorithmic
changes, but the simulated dataset must provide an initial value for the point-wise intensity. In future work, the
incorporation of the intensity channel into the domain adaptation method can be analyzed. This will involve
modifying the domain adaptation algorithm to accommodate the additional feature channel and updating
the simulation environment to include initial values for point-wise intensity, which requires validation of the
intensity values with the collected data in the real world. This enhancement can improve the performance of
the object detection algorithms that utilize the domain adaptation method, as the intensity value is a distinct
feature, especially for high-reflectivity objects such as license plates on vehicles.

Another interesting direction for future work could be the online application of the domain adaptation algorithm
in the context of the inverted real-to-sim use case. The idea behind this application is that an object detection
algorithm is trained using a large simulated dataset, and during inference, it is fed by real-world data recorded
from a LiDAR sensor but adapted online to follow the characteristics of the simulation using a real-to-sim
domain adaptation algorithm. This adds another algorithm to the AD software stack and hence can increase
computational requirements and latency. However, this combination of real-to-sim domain adaptation and
object detection pipeline has the advantage of being universally applicable to different real-world data inputs
without retraining any of the two algorithms, as both of them are only trained using the simulated data.

The last area of future work concerns the definition or standardization of evaluating the realism of simulated
data. To date, and also in this thesis, the realism of point clouds is assessed using metrics of object detection
algorithms, such as the mean AP. However, the mean AP itself is not easy to interpret. This leads to the
need for more comprehensive and interpretable metrics to assess the realism of simulated data. Developing
such metrics could involve considering various aspects of the data, such as the accuracy of object shapes
and positions, the consistency of lighting and shading, and the realism of textures. Furthermore, it would be
beneficial to establish benchmarks for these metrics to provide clear goals for the development of simulation
techniques. These benchmarks could be based on the performance of human perception or the requirements
of specific applications of point cloud data. This leads to the final question in automotive perception that
needs to be addressed: How good is good enough?
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10 Summary and Conclusion

This thesis presents a method to bridge the sim-to-real domain shift in LiDAR point clouds in the context of
AD. The method consists of analyzing the key characteristics of point clouds and introducing an algorithm
based on adversarial learning for domain adaptation of point clouds in 3D space. This method can be applied
to distribution-aligned as well as to non-distribution-aligned simulation and real-world data and operates on
the object- or scene-level of point clouds. The method was developed based on findings from related work
and evaluated using object detection algorithms, which are a crucial element in the perception task of AD.
Extensive experiments on different datasets show the effectiveness of the presented method in reducing the
sim-to-real domain shift.

This thesis is motivated by the challenge of data hunger in the training of safety-critical neural networks for
automotive perception. This requires large annotated real-world datasets, which are costly to obtain, and
hence new solutions should be analyzed. Another motivation for this thesis is the participation at the IAC,
where training data is scarce and simulation data offers an alternative. However, the impact of the use of
simulation data can not be assessed and needs to be analyzed.

In the related work section, the current state of the art in the field of domain shift and domain adaptation for
the sim-to-real applications are presented. Based on the conclusions of the related work, the research gaps
are highlighted and the research questions are derived, which serve as a guideline for the structure of the
thesis.

The first part of the method deals with the analysis of the sim-to-real domain shift. To this end, an annotated
distribution-aligned simulated and real-world LiDAR dataset is generated. Real-world data is recorded using
autonomous race cars on a race track during the IAC and annotated using the GNSS positions of the agents.
These positions are further used to generate a simulated counterpart of the dataset in a 3D simulation
environment. Using this IAC dataset pair, the domain shift is quantified using the LiDAR perception algorithms
PointRCNN and PointPillars and the object detection metric 3D AP. The specific sim-to-real domain shift
is evaluated to be almost 14 % 3D AP. Qualitative analysis of the 3D point clouds shows that the noise
pattern and LiDAR dropout differ between simulation and the real world, which is especially noticeable in the
reflections of the objects.

Once the major contributing factor to the sim-to-real domain shift is identified, a domain adaptation method is
developed to reduce this domain shift. This domain adaptation algorithm is based on adversarial learning
by combining a point completion network as a generator and a discriminator that operates on patches of
point clouds. The approach is the first LiDAR domain adaptation network that uses adversarial learning to
adapt point clouds directly in the 3D space and leverage information found in the spatial relationship between
points. One key characteristic of the method is that it is utilizing downsampling to produce representations of
point clouds that are invariant to the domain before learning the local structure of the target domain in the
network. This approach allows to use of target data only during training, and hence, is scalable to adapt a
theoretically unlimited number of source domains during inference, eliminating the requirement for each new
source domain to undergo retraining. As the qualitative analysis of the sim-to-real domain shift showed a
difference, especially in the object point clouds, the approach focuses on the adaptation on the object-level.
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10 Summary and Conclusion

Using the same evaluation method as introduced in domain shift quantification, the domain shift could be
successfully reduced from 8.63 % to 4.36 % 3D AP on the distribution-aligned IAC dataset.

The same algorithm is modified to adapt scene-level point clouds with the idea of further reducing the
remaining domain shift. The modifications mainly comprise the preprocessing of the point clouds, as the
scene-level point clouds are more sparse than object-level point clouds. The evaluation shows that for
the distribution-aligned IAC dataset, the scene-level domain adaptation is capable of fully eliminating the
sim-to-real domain shift in various settings.

To further analyze the performance and generalization ability of the network on a non-distribution-aligned
dataset, a synthetic dataset is generated using the simulation environment CARLA, and real-world LiDAR
point clouds from the public KITTI dataset are used. This CARLA-KITTI dataset pair is tested for adaptation
at the object- and the scene-level. The domain adaptation architecture is modified to handle the adaptation
of multiple object point clouds per scene point cloud. The results of the CARLA-KITTI dataset show that
adaptation at the scene-level is especially capable of reducing the domain shift from 62.08 % to 51.91 %
3D AP, although a large shift still exists after the adaptation. This demonstrates the success of the method.
However, it’s important to note that the overall domain shift is a combination of multiple domain shifts. The
domain adaptation approach presented in this thesis specifically targets the domain shift that occurs due to
differences in sensor modeling.

The discussion critically reviews the method and results, and further answers the research questions. The
practical relevance of the method is highlighted, which is reflected mainly in saving costs and time due to
the ability to use simulation data instead of expensive real-world data, which contributes to the overall faster
development of reliable and robust perception systems for AVs.

Future work can include the extension of the proposed method to different perception tasks, such as
segmentation, or extend the method by using datasets containing additional object classes. Furthermore, the
inverse real-to-sim domain adaptation for online applications is an open challenge and can be addressed in
follow-up works.

Finally, to support forthcoming research in the realm of 3D LiDAR domain adaptation, the code developed as
part of this thesis is open source on GitHub.
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A Appendix

A.1 LiDAR Sim-to-Real Domain Shift Quantification Results

Table A.1: Average Precision and Recall for the two object detection networks PointRCNN and PointPillars trained
and tested on four different datasets. The evaluation of both AP and Recall is carried out at different IoU
thresholds, specifically 50 % and 70 %, which are referred to as 3D AP (0.5) and 3D AP (0.7), respectively.
The values given are the average results from five identical training runs, with the standard deviation
indicated in parentheses. The evaluation is performed over the full range of the point cloud, encompassing
points with a radial distance up to 100 m. All values in % (from [213]).

Network Train dataset Test dataset 3D AP (0.5) 3D AP (0.7) Recall (0.5) Recall (0.7)

PointRCNN

Real

Real 74.33 (1.9) 51.96 (1.21) 92.12 (0.7) 80.92 (1.21)
Sim 86.56 (1.0) 62.53 (2.62) 93.78 (0.48) 87.26 (0.88)
Sim Noise 77.27 (2.08) 52.25 (2.15) 87.88 (0.74) 77.48 (0.98)
Sim Downsampled 83.64 (0.72) 58.17 (3.37) 92.7 (0.5) 84.62 (0.89)

Sim

Real 56.29 (1.36) 38.23 (0.98) 76.56 (0.78) 65.5 (0.95)
Sim 97.31 (1.35) 96.82 (1.16) 99.46 (0.1) 98.64 (0.21)
Sim Noise 88.96 (1.11) 88.48 (1.19) 94.4 (0.82) 92.96 (0.83)
Sim Downsampled 96.31 (0.18) 96.28 (0.17) 99.04 (0.14) 98.08 (0.26)

Sim Noise

Real 60.36 (1.35) 41.61 (1.65) 78.3 (0.63) 67.8 (0.78)
Sim 97.07 (1.07) 96.58 (0.12) 99.42 (0.12) 98.48 (0.16)
Sim Noise 96.93 (1.29) 96.43 (0.43) 99.08 (0.13) 98.16 (0.21)
Sim Downsampled 96.21 (0.29) 96.19 (0.29) 99.08 (0.25) 97.92 (0.3)

Sim Downsampled

Real 55.84 (2.72) 37.57 (2.44) 75.98 (0.55) 65.72 (0.17)
Sim 97.33 (1.08) 96.82 (0.94) 99.3 (0.11) 98.48 (0.32)
Sim Noise 86.86 (2.48) 86.38 (3.31) 92.78 (1.91) 90.74 (2.29)
Sim Downsampled 95.93 (0.5) 95.87 (0.54) 99.02 (0.13) 98.12 (0.19)

PointPillars

Real

Real 69.22 (0.0) 41.1 (0.0) 80.5 (0.0) 55.7 (0.0)
Sim 68.65 (0.03) 20.68 (0.0) 83.1 (0.0) 41.0 (0.0)
Sim Noise 67.32 (0.0) 19.98 (0.0) 83.2 (0.0) 40.7 (0.0)
Sim Downsampled 63.44 (0.0) 18.41 (0.02) 82.3 (0.0) 39.7 (0.0)

Sim

Real 30.49 (0.02) 13.36 (0.12) 69.7 (0.0) 39.9 (0.0)
Sim 98.75 (0.0) 98.18 (0.0) 99.7 (0.0) 98.9 (0.0)
Sim Noise 98.98 (0.0) 98.63 (0.0) 99.8 (0.0) 99.1 (0.0)
Sim Downsampled 98.63 (0.0) 98.11 (0.0) 99.6 (0.0) 98.7 (0.0)

Sim Noise

Real 39.81 (0.02) 18.77 (0.08) 68.8 (0.0) 43.2 (0.0)
Sim 99.41 (0.0) 99.22 (0.0) 99.8 (0.0) 98.7 (0.0)
Sim Noise 98.95 (0.0) 98.51 (0.0) 99.7 (0.0) 98.3 (0.0)
Sim Downsampled 99.07 (0.0) 98.71 (0.0) 99.8 (0.0) 98.0 (0.0)

Sim Downsampled

Real 30.25 (0.16) 14.05 (0.02) 67.0 (0.0) 39.1 (0.0)
Sim 99.15 (0.0) 94.96 (0.0) 99.6 (0.0) 96.7 (0.0)
Sim Noise 98.73 (0.0) 95.28 (0.0) 99.5 (0.0) 96.9 (0.0)
Sim Downsampled 98.31 (0.0) 94.46 (0.0) 99.6 (0.0) 97.5 (0.0)
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A Appendix

A.2 LiDAR Sim-to-Real Domain Adaptation Results for Adap-
tation of 3D Point Clouds at the Object-Level

Table A.2: The IoU thresholds for recall are set at 70 % and 50 %, referred to as Recall (0.7) and Recall (0.5),
respectively. The PointRCNN and PointPillars networks are trained five times with the specified training
dataset and then assessed on the test split of the real dataset. ↑: Higher values are better, with the highest
value in each category highlighted in bold. All values in % (from [223]).

Network Train Dataset Recall (0.7) ↑ Recall (0.5) ↑

PointRCNN

Sim (Source) 32.22±2.11 44.52±2.91

Sim-Noise Object 29.92±1.20 43.04±1.44

Sim-to-Real Object No-GAN 32.18±1.88 44.20±1.51

Sim-to-Real Object δ = 3 31.32±3.56 42.76±3.05

Sim-to-Real Object δ = 5 32.12±1.64 42.66±0.78

Sim-to-Real Object Full 33.00±0.73 43.22±0.88

Real (Target) 38.50±2.32 64.32±1.63

PointPillars

Sim (Source) 15.50±0.00 26.40±0.00

Sim-Noise Object 18.00±0.00 32.90±0.00

Sim-to-Real Object No-GAN 18.70±0.00 34.80±0.00

Sim-to-Real Object δ = 3 15.90±0.00 33.10±0.00

Sim-to-Real Object δ = 5 19.40±0.00 36.20±0.00

Sim-to-Real Object Full 21.90±0.00 36.40±0.00

Real (Target) 22.10±0.00 34.40±0.00
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A Appendix

A.3 LiDAR Sim-to-Real Domain Adaptation Results for Adap-
tation of 3D Point Clouds at the Scene-Level

Table A.3: The IoU thresholds for recall are set at 70 % and 50 %, referred to as Recall (0.7) and Recall (0.5),
respectively. The PointRCNN and PointPillars networks are trained five times with the specified training
dataset and then assessed on the test split of the real dataset. ↑: Higher values are better, with the highest
value in each category highlighted in bold. All values in %.

Network Train Dataset Recall (0.7) ↑ Recall (0.5) ↑

PointRCNN

Sim (Source) 32.22±2.11 44.52±2.91

Sim-to-Real Scene δ = 7 35.42±3.30 51.46±0.79

Sim-to-Real Scene δ = 5 38.54±2.75 55.66±0.89

Sim-to-Real Scene Full 46.26±1.31 62.42±0.92

Real (Target) 38.50±2.32 64.32±1.63

PointPillars

Sim (Source) 15.50±0.00 26.40±0.00

Sim-to-Real Scene δ = 7 22.90±0.00 39.10±0.00

Sim-to-Real Scene δ = 5 24.30±0.00 37.30±0.00

Sim-to-Real Scene Full 25.80±0.00 39.70±0.00

Real (Target) 22.10±0.00 34.40±0.00
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A Appendix

A.4 LiDAR Sim-to-Real Domain Adaptation Results for Adap-
tation of 3D Point Clouds from Non-Distribution-Aligned
Data

Table A.4: The IoU thresholds for recall are set at 70 % and 50 %, referred to as Recall (0.7) and Recall (0.5),
respectively. The PointRCNN and PointPillars networks are trained five times with the specified training
dataset and then assessed on the test split of the KITTI dataset. ↑: Higher values are better, with the
highest value in each category highlighted in bold. All values in %.

Network Train Dataset Recall (0.7) ↑ Recall (0.5) ↑

PointRCNN

CARLA (Source) 38.26±0.84 55.88±0.90

CARLA-to-KITTI Object 38.37±1.14 56.25±1.07

CARLA-to-KITTI Scene 43.20±0.66 61.59±0.71

KITTI (Target) 76.99±0.32 84.45±0.33

PointPillars

Sim (Source) 14.16±0.00 39.61±0.00

CARLA-to-KITTI Object 13.93±0.00 42.13±0.00

CARLA-to-KITTI Scene 16.29±0.00 43.98±0.00

Real (Target) 60.85±0.00 82.45±0.00
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