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Abstract

The emergence of renewable energy sources (RES) introduces new gateways of uncer-
tainty within power grid networks, necessitating robust and efficient probabilistic mod-
els to account for the inherent variability. This variability stems from renewable energy
generation and various other factors, including load fluctuations and technical failures.
Developing and applying such probabilistic methods is crucial for ensuring that policy-
makers can make informed decisions based on reliable information, thereby enhancing
the stability and resilience of the energy sector.

In the first part of this work, we present the basic theory of Uncertainty Propagation
and Monte Carlo sampling, followed by the theory of Polynomial Chaos Expansion (PCE)
and Sensitivity Analysis (ANOVA, Saltelli, and Rank-based Estimation). Examples and
allusions of how we can apply the theories to probabilistic power flow analysis (PPF) are
given throughout the sessions using representations of the PF system. In the second part of
this thesis, we present a case study using the European high-voltage transmission network
1354pegase, in which we analyze scenarios with different numbers of input random vari-
ables (RVs), ranging from 100 to 621 RVs. We then propose an efficient pipeline, in which
PCE is combined with clustering techniques, and a new sensitivity analysis approach, with
rank-based estimation, to reduce the size of the stochastic input space. Finally, we present
the results and comparisons of the case analyses in the third and last part.

Index Terms: Probabilistic Power Flow, Uncertainty Quantification, Surrogate Model-
ing, Polynomial Chaos Expansion, Sensitivity Analysis, Clustering.

ix





Contents

 Acknowledgements vii

 Abstract ix

 I. Introduction and Background Theory 1

 1. Introduction 3
 1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
 1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

 2. Power Flow Analysis 5
 2.1. Deterministic Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
 2.2. Probabilistic Power Flow (PPF) . . . . . . . . . . . . . . . . . . . . . . . . . . 7

 3. Uncertainty Propagation 9
 3.1. Random Variables and Statistics of Interest (SoI) . . . . . . . . . . . . . . . . 9
 3.2. Forward Uncertainty Quantification Pipeline . . . . . . . . . . . . . . . . . . 11
 3.3. Monte Carlo (MC) Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
 3.4. PPF with MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

 4. Polynomial Chaos Expansion (PCE) 15
 4.1. General PCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

 4.1.1. Truncation of Polynomial Series . . . . . . . . . . . . . . . . . . . . . 16
 4.1.2. Statistical Moments with PCE . . . . . . . . . . . . . . . . . . . . . . . 17

 4.2. Evaluation of PCE Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 17
 4.2.1. The Pseudo-spectral Approach . . . . . . . . . . . . . . . . . . . . . . 17
 4.2.2. Regression Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 4.2.3. Stochastic Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . 19

 5. Sensitivity Analysis 21
 5.1. Analysis of Variance (ANOVA) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
 5.2. Saltelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 5.3. Rank-Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

 5.3.1. Chatterjee’s correlation coefficient . . . . . . . . . . . . . . . . . . . . 24
 5.3.2. Rank-estimation definition . . . . . . . . . . . . . . . . . . . . . . . . 25

xi



Contents

 6. Clustering Algorithms 27
 6.1. Affinity Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
 6.2. Clauset-Newman-Moore greedy modularity . . . . . . . . . . . . . . . . . . 28
 6.3. K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

 II. Implementation of Study Case 31

 7. Implementation of Case Study: 1354pegase 33
 7.1. Case Study Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
 7.2. Standard cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

 7.2.1. Standard Cases - Partitions . . . . . . . . . . . . . . . . . . . . . . . . 37
 7.2.2. MC Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

 7.3. Random Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
 7.4. Computations with PCE Alone . . . . . . . . . . . . . . . . . . . . . . . . . . 40
 7.5. Computations with MC and PCE . . . . . . . . . . . . . . . . . . . . . . . . . 42
 7.6. The Efficient Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

 III. Results and Conclusion 49

 8. Results 51
 8.1. Failure Risk of Critical Buses . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

 8.1.1. Standard Case – 100 RVs . . . . . . . . . . . . . . . . . . . . . . . . . . 52
 8.1.2. Standard Case – 200 RVs . . . . . . . . . . . . . . . . . . . . . . . . . . 54
 8.1.3. Standard Case – 400 RVs . . . . . . . . . . . . . . . . . . . . . . . . . . 57
 8.1.4. Standard Case – 500 RVs . . . . . . . . . . . . . . . . . . . . . . . . . . 60
 8.1.5. Standard Case – 621 RVs . . . . . . . . . . . . . . . . . . . . . . . . . . 63

 8.2. Critical Buses and Influential RVs on the Map . . . . . . . . . . . . . . . . . . 66
 8.2.1. Standard Case – 100 RVs . . . . . . . . . . . . . . . . . . . . . . . . . . 67
 8.2.2. Standard Case – 200 RVs . . . . . . . . . . . . . . . . . . . . . . . . . . 68
 8.2.3. Standard Case – 400 RVs . . . . . . . . . . . . . . . . . . . . . . . . . . 69
 8.2.4. Standard Case – 500 RVs . . . . . . . . . . . . . . . . . . . . . . . . . . 70
 8.2.5. Standard Case – 621 RVs . . . . . . . . . . . . . . . . . . . . . . . . . . 71

 8.3. Comparison of Computation Times . . . . . . . . . . . . . . . . . . . . . . . . 72

 9. Conclusion 73

xii



Contents

 Appendix 77

 A. Software Tools 77
 A.1. PANDAPOWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

 A.1.1. Power Grid Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
 A.1.2. Power Flow Analysis with Pandapower . . . . . . . . . . . . . . . . . 77

 A.2. OPENTURNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
 A.2.1. MC Sampling with OpenTURNS . . . . . . . . . . . . . . . . . . . . . 78
 A.2.2. PCE with OpenTURNS . . . . . . . . . . . . . . . . . . . . . . . . . . 78

 A.3. NETWORKX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
 A.3.1. Creation of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
 A.3.2. Graph Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

 A.4. SCIKIT-LEARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
 A.4.1. Grid Partition with K-Means . . . . . . . . . . . . . . . . . . . . . . . 80

 B. Source Codes 81
 B.1. Rank-based Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
 B.2. Creation of Stochastic Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 82
 B.3. K-Means Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

 Bibliography 85

xiii





Part I.

Introduction and Background Theory
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1. Introduction

In modern power systems, the ever-increasing integration of renewable energy sources [ 5 ]
introduces new gateways of power fluctuations and poses significant challenges to tradi-
tional deterministic power flow analysis methods [ 5 ], [  44 ]. Addressing these challenges
demands a paradigm shift towards more advanced techniques to capture these systems’
inherent uncertainties and complexities [ 1 ].

This thesis explores the intersection of two promising fields: Probabilistic Power Flow
(PPF) Analysis and Surrogate Modeling. PPF amplifies traditional power flow analysis by
considering probabilistic models and accounts for uncertainties arising from renewable en-
ergy generation, load fluctuations, and network incidents [ 69 ]. We perform traditional PPF
analysis by applying Monte Carlo (MC) methods, and although accurate, they are compu-
tationally expensive [ 18 ], [ 27 ]. In contrast, surrogate models, also known as meta-models,
offer computationally efficient alternatives to intensive MC simulations by approximating
the behavior of intricate stochastic systems using simpler models.

1.1. Motivation

Power grids are the primary means of distributing electrical energy in modern society and
countless equipments and activities require electricity to operate: factories, household ap-
pliances, computers, etc. This fundamental role of electricity requires a robust and reliable
power grid infrastructure so that the demand for electrical energy is met in a constant and
efficient manner. However, the advent of alternative sources for generating electrical en-
ergy has gradually increased the fluctuation levels in power generation and, consequently,
the instability in the electrical distribution systems. The need to monitor and optimize
electrical networks becomes critical to ensure acceptable security of the distribution sys-
tems. One of the crucial monitoring steps is the power flow analysis of a given network,
in which we calculate the active and reactive powers, and the voltage magnitudes of each
bus in a power grid.

A PPF analysis is necessary in order to measure how fluctuations in the power grid
affect the distribution system as a whole. MC simulations are one of the most widely used
means for this purpose, however, these simulations are computationally intensive. One of
the ways to calculate the PPF analysis more efficiently is through probabilistic models such
as Polynomial Chaos Expansion (PCE) [ 43 ], [ 32 ] and Gaussian Process. To create more
efficient models for the PPF analysis, we explore in this work surrogate modeling with
PCE, combined with clustering techniques [ 31 ], and a novel rank-based sensitivity analysis
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1. Introduction

method [ 21 ], to reduce the stochastic space. With this combination of techniques, we can
bring promising results in terms of efficiency in the PPF analysis.

Ultimately, the findings of this thesis aim to contribute to the broader academic com-
munity, industry practitioners, and policymakers, facilitating the adoption of advanced
analysis techniques for enhancing the resilience, reliability, and sustainability of modern
power systems.

1.2. Related Work

Several studies that present probabilistic models to solve the PPF analysis range from sam-
ple generation using Latin Hypercubes and Cholesky Decomposition [ 70 ] to the use of
probabilistic models with Gaussian Process [ 47 ] and Information Gap Decision Theory
(IGDT)[ 50 ], which addresses the problem of optimal power flow (OPF) applied to offshore
wind farms and validates the application of the IGDT-based OPF model for the optimal
operation of AC/DC power systems with high penetration of wind farms.

In addition, studies that investigate and propose applying PCE exploring adaptive spar-
sity schemes have been presented in [ 46 ]. This paper introduces the Basis-Adaptive Sparse
Polynomial Chaos (BASPC) methodology for calculating the PPF analysis. BASPC relies
on three state-of-the-art uncertainty quantification methodologies: the hyperbolic scheme
to truncate the infinite polynomial chaos (PC) series, the Least Angle Regression (LARS)
method to select the optimal degree of each univariate PC series, and the Copula method
to address nonlinear correlations among input random variables.

Moreover, PCE has been extensively used as an efficient means of performing PPF anal-
ysis. In [ 41 ], PCE is combined with clustering techniques that reduce the stochastic space,
increasing computation efficiency with PCE.

Other works explore the computation of PPF analysis through Hammersley-importance
sampling and eigen-decomposition [ 36 ] and also through Copula and Latin hypercube
sampling [ 13 ].
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2. Power Flow Analysis

In the context of graph theory, an AC power grid can be represented as a graph G where
N denotes the buses as vertices, and L denotes the transmission lines as edges, thus G =
(N,L), with the bus index set N = {1, 2, ..., N}. The power grid network has a complex
bus impedance matrix Y ∈ CN×N with entries represented by Yij = Gij + ȷBij ∈ C for all
i, j ∈ N and ȷ the imaginary unit.

2.1. Deterministic Power Flow

The deterministic power flow equations can be mathematically formulated, given the
power phasor s⃗ ∈ CN and the voltage phasor v⃗ ∈ CN using two significant coordinate
systems based on the voltage phasor representation: polar coordinates and rectangular co-
ordinates [ 43 ]:

polar: v⃗i = vie
ȷδi , s⃗i = pi + ȷqi, (2.1)

rectangular: v⃗i = vrei + ȷvimi , s⃗i = pi + ȷqi, (2.2)

where pi is the active power, qi is the reactive power, and δi is the phase angle for all i ∈ N .
The deterministic polar power flow equations are defined ∀i ∈ N as:

xpi =
[
vi, δi, pi, qi

]⊤ ∈ R4, (2.3)

pi =
∑
j∈N

vivj (Gij cos (δi − δj) +Bij sin (δi − δj)) , (2.4)

qi =
∑
j∈N

vivj (Gij sin (δi − δj)−Bij cos (δi − δj)) , (2.5)

with variables xp =
[
xp⊤1 , . . . , xp⊤N

]⊤
∈ R4N [ 43 ].

In a similar way, we define the deterministic rectangular power flow problem as:

xi =
[
vrei , vimi , pi, qi,

]⊤ ∈ R4, (2.6)

pi =
∑
j∈N

Gij

(
vrei vrej + vimi vimj

)
+Bij

(
vimi vimj − vrei vimj

)
, (2.7)
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2. Power Flow Analysis

qi =
∑
j∈N

Gij

(
vimi vimj − vrei vimj

)
−Bij

(
vrei vrej + vimi vimj

)
, (2.8)

with variables x =
[
x⊤1 , . . . , x

⊤
N

]⊤ ∈ R4N . The polar and rectangular power flow problems
need specifications that define variables at each bus i ∈ N , such that the problems involve
2N unknowns and 2N equations, becoming a well-defined system of equations. The most
common bus specifications are Slack buses (a slack bus is used to balance the active power
and reactive power), Active / Reactive Power (PQ), Active Power / Voltage (PV):

• Polar power flow specifications:

Slack buses:
[
1 0 0 0
0 1 0 0

]
xpi

!
=

[
vref

δref

]
, (2.9)

Actice / Reactive Power (PQ):
[
0 0 1 0
0 0 0 1

]
xpi

!
=

[
prefi ,
qrefi

]
, (2.10)

Active Power / Voltage (PV):
[
0 0 1 0
1 0 0 0

]
xpi

!
=

[
prefi

vrefi

]
. (2.11)

• Rectangular power flow specifications:

Slack buses:
[
1 0 0 0
0 1 0 0

]
xi

!
=

[
vref

0

]
, (2.12)

Actice / Reactive Power (PQ):
[
0 0 1 0
0 0 0 1

]
xi

!
=

[
prefi

qrefi

]
, (2.13)

Active Power / Voltage (PV):
[

[0 0 1 0]xi
(vrei )2 + (vimi )2

]
!
=

[
prefi(
vrefi

)2 ]
. (2.14)

The rectangular power flow formulation exhibits quadratic (polynomial) non-linearities
in its variables, contrasting the trigonometric non-linearities inherent in the polar power
flow formulation. This fundamental distinction renders the rectangular formulation ad-
vantageous for specific advanced analytical techniques. Specifically, the polynomial nature
of the non-linearities in the rectangular power flow allows for more effective exploitation
in PPF analysis and the application of Polynomial Chaos Expansion (PCE). The quadratic
non-linearities facilitate the mathematical treatment of uncertainties within the power sys-
tem, enhancing the ability to model and analyze the impacts of variability in system pa-
rameters, such as load fluctuations and renewable generation outputs. Consequently, the
rectangular power flow formulation is a powerful tool for probabilistic studies and relia-
bility assessments in power systems engineering.
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2.2. Probabilistic Power Flow (PPF)

2.2. Probabilistic Power Flow (PPF)

The PPF occurs when the power flow specification values in Equations [ 2.9 -  2.14 ] are de-
fined using random variables (RVs) with distributions characterized with a probability
density function (PDF). This approach allows for incorporating uncertainties in the input
parameters, such as load demands and generation outputs, by modeling them probabilisti-
cally rather than deterministically. PPF analysis can more accurately reflect modern power
systems’ inherent variability and unpredictability by representing these input variables as
RVs.

Due to their robustness and accuracy, Monte Carlo simulations are often used to solve
the probabilistic power flow (PPF) problem [  18 ], [ 27 ]. However, these simulations are
computationally expensive and time-consuming, particularly for large-scale systems. To
achieve reasonable accuracy of results, the number of samples to use Monte Carlo can
become cumbersome or even impractical.

Additionally, when using surrogate modeling, the dimension of the RVs can be exces-
sively high, making the computational load impractical. To address this, techniques such
as clustering with K-Means [ 31 ], [ 10 ], [ 12 ], [ 37 ] can be employed to reduce the dimension-
ality of the RV space, especially in cases where the RVs are known to be correlated or
influenced by factors such as geographical area [ 41 ].

In this context, Polynomial Chaos Expansion (PCE) becomes valuable when combined
with clustering techniques and sensitivity analysis to reduce the RV space and perform
PPF analysis. With this approach, we can obtain computationally efficient alternatives to
Monte Carlo simulations. This procedure enables faster yet reliable solutions by approx-
imating the stochastic behavior of power systems. By leveraging clustering techniques
[ 41 ] and sensitivity analysis, we can reduce the problem’s stochastic dimensionality, and
by using PCE, we lead to significant improvements in computational efficiency without
compromising the accuracy of the results, as we are going to show later in this work.
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3. Uncertainty Propagation

Numerous phenomena and mechanisms in nature, such as the structure of solid materials
and molecular dynamics, are described and modeled by physical laws developed through
rigorous scientific work and observations aimed at elucidating the behavior of physical
systems and, ultimately, the dynamics of nature. In this environment, mathematical mod-
eling plays a crucial role in analyzing and studying these real-world models, enabling pre-
dicting and comprehending various events recurrent in science and engineering. In this
context, numerous events are characterized by randomness and underlying uncertainties,
which influence the performance and outcomes of engineering and natural systems. In
the specific case examined in this work, we will explore how to apply forward uncertainty
quantification in power flow analysis.

3.1. Random Variables and Statistics of Interest (SoI)

Our goal is to quantify uncertainties in complex, real-world systems that are governed by
a model F characterized by a (usually non-linear) system of equations that lack known
analytical solution and only have numerical solutions, e.g., the power flow non-linear
system of equations in chapter  2 . The model F depends on deterministic inputs x, and
stochastic inputs θ, i.e. F ≡ F(x,θ). Let ndet ∈ N be the dimension of the deterministic
space and nθ ∈ N represent the dimension of the stochastic input space. Our numerical
model F specifying the real-world complex phenomena (PPF in our case) is characterized
as F : Rndet × Rnθ → RnY , i.e., a mapping from a ndet-dimensional deterministic input
x ∈ Rndet , and nθ-dimensional stochastic input θ ∈ Rnθ , to our quantity of interest (QoI)
Y ≡ F(x,θ) ∈ RnY , with dimension of the QoI stochastic space nY ∈ N.

We can now introduce the multivariate real-valued random variable θ, which is defined in
the complete probability space (Ωθ, Aθ, Pθ), where Ωθ is the sample space, Aθ is the event
space with σ-field on Ωθ, and Pθ : Aθ → [0, 1] is the probability measure [ 33 ]. More-
over, we consider Bnθ the representation of the Borel σ-field on Rnθ , and θ : (Ωθ, Aθ) →
(Rnθ ,Bnθ) is a continuous random vector that we further simplify the notation θ = θ(ω) or
θi = θ(ωi) for each component {ωi}nθ

i=1. θ is characterized by the probability density func-
tion (PDF) ρθ : Rnθ → R+

0 (with ρθi : R→ R+
0 for each component i = 1, · · · , nθ). {ρθi}

nθ
i=0

are in the finite-dimensional second-order random space L2, i.e., they have finite second
statistical moment value as follows:

µ2[θi] :=

∫
Ωθi

(θi − E[θi])2ρθi(θi)dθi for i = 1, · · · , nθ. (3.1)

9



3. Uncertainty Propagation

The expectation value and variance are the first and second statistical moments, respec-
tively:

µ1[θi] := E [θi] =

∫
Ωθi

θiρθi (θi) dθi,

µ2[θi] := V [θi] = E
[
θ2i
]
− E [θi]

2 .

(3.2)

Y is a multivariate real-valued random variable and is defined in the complete proba-
bility space (ΩY , AY , PY ), where ΩY is the sample space, AY is the event space with
σ-algebra, and PY : AY → [0, 1] is the probability measure. The multivariate random
variable Y : (ΩY , AY ) → (RnY ,BnY ), with BnY the representation of the Borel σ-field on
RnY , is characterized by the PDF ρY : RnY → R+

0 (with ρYi : R→ R+
0 for each component

i = 1, · · · , nY ). {ρYi}
nY
i=0 are in the finite-dimensional second-order random space L2. We

are interested in evaluating the statistics of interest (SoI) of our QoI, and we look at two
specific statistics given by
• expected value:

E[F(x,θ)] :=
∫
ΩY

F(x,θ)ρY dY , (3.3)

• and variance:

V[F(x,θ)] :=
∫
ΩY

(F(x,θ)− E[F(x,θ)])2ρY dY = E
[
F(x,θ)2

]
− E[F(x,θ)]2. (3.4)

A third SoI derives from the variance, namely the standard deviation given by:

σ[F(x,θ)] :=
√
V[F(x,θ)], (3.5)

and the covariance is defined as:

Cov(Yi, Yj) = E[(Yi − E[Yi])(Yj − E[Yj ])] ∀ i, j = 1, . . . , nY . (3.6)

In this work, we assume that the random variables are independent and identically dis-
tributed (i.i.d.); thus, the joint distribution yields:

ρθ =

nθ∏
i=1

ρθi , (3.7)

and

ρY =

nY∏
i=1

ρYi , (3.8)
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3.2. Forward Uncertainty Quantification Pipeline

where ρθi and ρYi are marginal PDFs.
Computing the statistics of interest (SoI), such as expected values and variances, neces-

sitates the calculation of multivariate integrals, which, in our case, are of dimension nY .
Typically, these high-dimensional integrals do not have a closed form for the integrand,
which originates from a numerical model and must be evaluated numerically. This process
requires discrete realizations of θ, denoted as samples θ(i) = θ(ω), where ω represents a
specific event. These samples, in turn, result in samples of our QoI Y(i) = F (i) = F(x,θ(i))
through forward propagation (see Section  3.2 ).

3.2. Forward Uncertainty Quantification Pipeline

We incorporate uncertainties into our model F to more accurately approximate the behav-
iors of the real-world system, which is inherently stochastic. In this context, Uncertainty
Quantification (UQ) problems can be integrated into our numerical model through two
categories: Forward Uncertainty Propagation (or forward UQ) and Inverse Uncertainty Quan-
tification (or inverse UQ).

Forward UQ involves considering the model inputs as deterministic and stochastic, en-
abling the modeling of stochastic inputs using random variables with PDFs derived from
experimental data, theoretical knowledge, or professional opinion. Figure  3.1 illustrates
the functioning of the forward UQ pipeline.

Input (x, θ)

Model:
Y = F(x,θ)

Output: QoI (Y)→ SoI

Figure 3.1.: Forward UQ Pipeline.

Inverse UQ is the process of quantifying input uncertainties by working backward from
experimental data. This approach aims to refine the estimation of input uncertainties,
thereby enhancing the precision of these initial, often ad-hoc, specifications [ 66 ].

This study will focus exclusively on forward UQ. Through the forward UQ pipeline, we
obtain a set of Quantities of Interest (QoI), from which we can calculate the SoI, such as the

11



3. Uncertainty Propagation

expected value and variance.

3.3. Monte Carlo (MC) Sampling

One of the most widely used sampling algorithms in forward uncertainty quantification is
Monte Carlo sampling [ 42 ], [  28 ], [  33 ]. The primary objective of this method is to generate
samples of the QoI using (pseudo-)random number generators, such that the expected
value of the QoI, given the number of samples Nsamples ∈ N, is:

µ̂1[F(x,θ)] :=
1

Nsamples

Nsamples∑
i=1

F
(
x,θ(i)

)
=

1

Nsamples

Nsamples∑
i=1

Y(i), (3.9)

and the sampling variance is given by:

V[F(x,θ)] = 1

Nsamples − 1

Nsamples∑
i=1

(
Y(i) − µ̂1[F(x,θ)]

)2
, (3.10)

assuming that the samples
{
θ(i)

}Nsamples

i=1
are i.i.d..

To express two essential properties of the estimator given in Eq.  3.9 , we must first define
two crucial quantities of estimators: the bias and the root mean squared error (RMSE).
The bias of an estimator Ĥ , given the true value (H) of the estimated quantity, is:

BIAS(Ĥ) = E[Ĥ]−H, (3.11)

and an estimator is said to be unbiased if BIAS(Ĥ) = 0, i.e. E[Ĥ] = H .
The RMSE of an estimator is defined by:

RMSE(Ĥ) =

√
E
[
(Ĥ −H)2

]
=

√
BIAS(Ĥ)2 + V[Ĥ]. (3.12)

Now, we can state the two major properties of the estimator from Eq.  3.9 :

1. The estimator µ̂1[F(x,θ)] from MC sampling is an unbiased one for E[F(x,θ)]:

E [µ̂1[F(x,θ)]] = E[F(x,θ)]. (3.13)

2. The RMSE for the estimator µ̂1[F(x,θ)] is given by:

RMSE [µ̂1[F(x,θ)]] =

√
V[F(x,θ)]
Nsamples

. (3.14)
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3.4. PPF with MC

From Eq.  3.14 , the rate of convergence of the RMSE [µ̂1[F(x,θ)]] is O(1/
√

Nsamples)
[ 35 ], indicating that the convergence rate is solely dependent on the number of generated
samples. Notably, a lower RMSE corresponds to a higher accuracy of the results. The
RMSE can be reduced by decreasing the sampling variance or increasing the number of
samples. In this study, we will utilize a minimum sample size of 104 for MC simulations
of our Case Study. This minimum sample size is based on the Gelman-Rubin statistics (see
Sub-section  7.2.2 ) to ensure reliable accuracy of results.

3.4. PPF with MC

In this thesis, we apply Monte Carlo methods to the power flow analysis by adding ran-
dom fluctuations to the specifications given by equations  2.13 . We generate the fluctua-
tion’s samples θ(i) = θ(ωi) for i = 1, . . . , Nsamples from the joint probability distribution
ρθ of the RV θ (see Section  3.1 ), and assign them to the active and reactive loads in the
following manner:

pload = pref
load

(
1 + θ(i)ϵ

)
, (3.15)

qload = qref
load

(
1 + θ(i)ϵ

)
, (3.16)

where ϵ ∈ R+ is a control parameter of fluctuation intensity, that is, we can scale the fluc-
tuations of a given distribution sample to higher or lower values by changing the values
of ϵ. In other words, Monte Carlo simulations allow for assessing the power system’s per-
formance under various operating conditions by incorporating random fluctuations into
the power flow equations [ 2.6 -  2.8 ] and  2.13 through Algorithm  1 .

Algorithm 1 PPF with MC.
Input: i.i.d. samples from the joint distribution ρθ; Deterministic inputs x.
Output: QoI Y; SoI

1: for 1 ≤ i ≤Nsamples do

2: pload ← pref
load

(
1 + θ(i)ϵ

)
▷ Set RV realization of active powers

3: qload ← qref
load

(
1 + θ(i)ϵ

)
▷ Set RV realization of reac. powers

4: Run Yi = F(x,θ(i)) ▷ Evaluate model for iteration step i
5: Y[i]← Y(i)

6: end for
7: µ̂ = mean(Y)
8: V[Y] = variance(Y)
9: Return µ̂, V[Y], Y

13



3. Uncertainty Propagation

Thus, we lead to obtaining the stochastic output results:

Y = F(x,θ) =
[
x⊤1 , . . . , x⊤N

]⊤
∈ R4N×Nsamples , (3.17)

µ̂ :=
1

Nsamples

Nsamples∑
i=1

Y(i), (3.18)

V[Y] =
1

Nsamples − 1

Nsamples∑
i=1

(Y(i) − µ̂)2. (3.19)

To derive the Quantity of Interest from Equations  3.17 to  3.19 , it is necessary to perform
multiple evaluations of the model F(x,θ), corresponding to the number of samples of
θ. Executing these simulations can be time-intensive, and despite the accuracy of our QoI,
Monte Carlo simulations may prove to be highly inefficient or even impractical, depending
on the size of the sample set.
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4. Polynomial Chaos Expansion (PCE)

The development of the so-called Polynomial Chaos (PC) decomposition dates back to the
1930s, pioneered by Norbert Wiener [ 65 ]. This mathematical framework gained renewed
attention in engineering through the work of Ghanem et al. [ 23 ]. PCE is an infinite series
expansion of an output random variable, expressed in orthogonal polynomials of the input
random variables. Initially introduced by Wiener for Gaussian input random variables, a
proof of convergence accompanied the methodology [  14 ]. This proof cemented the original
PCE, referred to as the classical PCE.

The classical PCE was subsequently extended to a generalized PCE [ 68 ] to accommo-
date non-Gaussian input variables, broadening its applicability. Approximations of PCE,
achieved by truncating its infinite series, allow for the creation of surrogate models to
solve UQ problems. These surrogate models enhance the efficiency of UQ computations
while maintaining good accuracy of results, making PCE a valuable tool in uncertainty
quantification.

4.1. General PCE

Let a random vector θ = (θ1, · · · , θnθ
) be in a finite-dimensional second-order random

space L2(Ωθ, Aθ, Pθ) [ 9 ], as defined in Section  3.1 . We can expand any stochastic response
Y with a finite second moment in a convergent series of orthogonal polynomials of the
random inputs according to the Cameron-Martin theorem [ 6 ], [ 43 ]. Thus, a model P : θ →
Y can be defined such that

Y = P(θ) =
∞∑
i=0

biΨi(θ), (4.1)

where {Ψi} refers to the multivariate orthogonal polynomial basis constructed as a ten-
sor product of univariate orthogonal polynomials Φ. A single multivariate polynomial is
defined as follows:

Ψi(θ) =

nθ∏
k=1

Φik (θk) . (4.2)

The index ij , for j = 0, . . . , nθ, refers to the j-th degree of the i-th univariate polynomial
basis.
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4. Polynomial Chaos Expansion (PCE)

The space of second-order random variables L2 is a Lebesgue space (Hilbert space) and
is equipped with the inner product and norm, given f, g ∈ L2, defined by:

⟨f, g⟩ = E[f(θ)g(θ)] =
∫
Ωθ

f(θ)g(θ)ρ(θ)dθ, ∥f∥ =
√
⟨f, f⟩. (4.3)

The orthogonality of the polynomials Ψi holds with repect to L2 when satisfying

E [Ψl(θ)Ψk(θ)] =

∫
Ωθ

Ψl(θ)Ψk(θ)ρ(θ)dθ = ∥Ψl∥22 δlk, (4.4)

and the same holds for the univariate polynomials:

E [Φl (θi) Φk (θi)] =

∫
Ωθi

Φl(θi)Φk(θi)ρi(θi)dθi = γlδlk, (4.5)

where E[·] is the expected-value operator, ρ and ρi are the probability density functions
(PDFs) ρθ : Rnθ → R+

0 , γ ∈ R+ is a positive scalar, and δ is the Kronecker-delta.
If we consider the PDFs ρθ that fit within the Askey-Wilson scheme (see Table  4.1 ) [  3 ], we

can determine the corresponding orthogonal polynomials almost instantaneously. How-
ever, for other types of PDFs, the expansion must be constructed to ensure the orthogonal-
ity property is maintained [ 61 ].

It is crucial to highlight that PCE is a good approximation model because the polynomial
basis is orthogonal concerning the PDFs of the input random variables, which leads to the
best approximation we can get when truncating the polynomial series. For this reason, the
class of the polynomial basis depends on the input’s stochastic distribution.

Table 4.1.: Askey-Wilson Scheme Table.

PDF Type Support Polynomial Basis
Beta (−1, 1) Jacobi
Gamma (0,∞) Laguerre
Gaussian (−∞,∞) Hermite
Uniform [−1, 1] Legendre

4.1.1. Truncation of Polynomial Series

The infinite series expansion in Eq.  4.1 is impractical for real-world applications. There-
fore, to apply PCE in practical scenarios, the series in Eq.  4.1 is usually truncated to include
only the first L+ 1 polynomials with a degree of at most p, yielding:

L+ 1 =

(
nθ + p

p

)
=

(nθ + p)!

nθ!p!
. (4.6)
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4.2. Evaluation of PCE Coefficients

4.1.2. Statistical Moments with PCE

The computation of statistical moments using PCE is not only straightforward but also
highly efficient. With PCE, one can quickly and accurately determine the expected value
and the variance, as follows:

µ(Y) = b0 (4.7)

σ2(Y) =
L∑
i=1

b2i ⟨Φi,Φi⟩ (4.8)

4.2. Evaluation of PCE Coefficients

The PCE coefficients can be evaluated in several ways and methods [ 67 ] with intrusive and
non-intrusive approaches. In this section, we discuss three of them: The Pseudo-spectral
Approach, The Regression Approach, and The Stochastic Galerkin Method.

4.2.1. The Pseudo-spectral Approach

The pseudo-spectral approach, classified as a non-intrusive projection method, leverages the
orthogonality of the polynomial basis [ 61 ]. This method involves multiplying Equation  4.1 

by Ψj and integrating with respect to the joint PDF ρθ, yielding:

bj = E [P(θ)Ψj(θ)] ≡
∫
Ωθ

P(θ)Ψj(θ)ρθ(θ)dθ = ⟨Y ,Ψj⟩. (4.9)

With Eq.  4.9 , one can obtain the polynomial coefficients bj . In practice, Eq.  4.9 is esti-
mated using classical methods for numerical integration. These methods involve approx-
imating the multidimensional integral through a weighted sum. This approach enables
the transformation of a complex integral into a more manageable form. It facilitates its
evaluation by summing the integrand values at specific points, each multiplied by a corre-
sponding weight as follows:

b̂j ≈
K∑
i=1

wiP
(
θ(i)

)
Ψj

(
θ(i)

)
, (4.10)

where K is the number of integration points of a chosen quadrature rule. Several nu-
merical quadrature techniques can be employed to select the integration points θ(i) and
their corresponding weights wi. Notable examples include the Gauss quadrature and the
trapezoidal rule, among others. These methods offer various approaches to accurately
approximate the value of the integral by strategically choosing the points and weights to
optimize the numerical estimation.
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4. Polynomial Chaos Expansion (PCE)

The so-called simulation method relies upon the choice of M random integration points,
with integration weights being 1/M , yielding:

b̂j ≈
1

M

M∑
i=1

P
(
θ(i)

)
Ψj

(
θ(i)

)
. (4.11)

This corresponds to applying Monte Carlo simulation to estimate the expectation value
in Eq.  4.7 . In this case, the accuracy of the coefficients depends on the chosen sampling
approach.

4.2.2. Regression Approach

The regression approach is an alternative to the pseudo-spectral approach as a non-intrusive
method. It consists of computing the PCE coefficients which provide the best approxima-
tion of Y = F(x,θ) by using regression methods such as Least Squares [ 61 ]. We can
elaborate better on this method considering a truncated PC expansion with L + 1 terms,
with:

b = [b0, . . . , bL]
⊤, (4.12)

Ψ(θ) = [Ψ0(θ), . . . ,ΨL(θ)]
⊤. (4.13)

Eq.  4.1 can be then rewritten in a truncated form as:

Y = b⊤Ψ(θ) (4.14)

Consider the set of input realizations X ≡ [θ(1) . . .θ(n)]⊤, namely an experimental design,
where n = Nsamples and Y is the set of corresponding model evaluations. The problem
consists in finding the vector of coefficients b̂ that minimize the sum of squared errors
such that:

b̂ = argmin
b

n∑
i=1

(
b⊤Ψ

(
θ(i)

)
−F

(
θ(i)

))2
. (4.15)

The solution for the problem from Eq.  4.15 can be obtained in closed form as follows
[ 61 ]:

b̂ =
(
Ψ⊤Ψ

)−1
Ψ⊤Y, (4.16)

where the entries for Ψ are given by:
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4.2. Evaluation of PCE Coefficients

Ψij = Ψj

(
θ(i)

)
i = 1, . . . , n j = 0, . . . , L. (4.17)

To get a well-posed problem, the number of model evaluations n must be greater than
the number L + 1 of unknown coefficients. The rule of thumb n = 2L generally leads to
good results [ 61 ].

4.2.3. Stochastic Galerkin Method

The stochastic Galerkin method relies on the PC expansion to find a solution for the co-
efficients. The method is similar to the Finite Elements (FE) method in finding the best
approximation for the PCE coefficients when embedding the PC expansion in the model’s
equations. The orthogonal polynomials work as the shape functions in the FE analogy, and
the coefficients can be found by solving the resulting system of equations from the PC ex-
pansion embedded in the system’s equations. The stochastic Galerkin method unfolds in
a series of steps, each building upon the previous one. This iterative process is as follows:

1. Expand the stochastic inputs as a series of PCE.

2. Write the model’s solution as a p-th order PCE.

3. Insert both expansions above into the system’s equations F .

4. Take advantage of the polynomials orthogonality to get a system of equations with
L+ 1 unknowns.

When following the steps described above in the Power Flow equation, we obtain the
equations as described in table  4.2 . The stochastic Galerkin method is an intrusive one and
we need to modify the system’s equations. It is necessary access to the model, however
there is no quadrature error such as in the pseudo-spectral approach. This method is more
accurate, however more complex to be applied.

The idea of intrusive PCE is to plug the gPCE into the system’s equations F(x,θ), trun-
cating the series to L + 1 functions and performing a Galerkin projection [ 4 ], while the
main idea of non-intrusive PCE is to compute the coefficient functions as numerical inte-
grals, where the integral in Eq.  4.9 is a Banach space-valued integral [ 17 ].
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4. Polynomial Chaos Expansion (PCE)

Table 4.2.: Power Flow Equations and Statistical Moments in Terms of PCE coefficients [ 41 ].
Rectangular power flow in terms of PCE coefficients with i ∈ N , l ∈ L, where L = {0, . . . , L}

⟨Ψl,Ψl⟩
(
pi,l

)
=

∑
j∈N

∑
l0,l1∈L

〈
Ψl0

Ψl1
,Ψl

〉 (
Gij

(
v
re
i,l0

v
re
j,l1

+ v
im
i,l0

v
im
j,l1

)
+ Bij

(
v
im
i,l0

v
re
j,l1

− v
re
i,l0

v
im
j,l1

))
⟨Ψl,Ψl⟩

(
qi,l

)
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∑
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∑
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Moments of squared line current magnitudes with ij ∈ L, vreij,l = vrei,l − vrej,l, v

im
ij,l = vimi,l − vimj,l

E
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i
2
i→j

]
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l∈L

⟨Ψl,Ψl⟩
((

v
re
ij,l
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5. Sensitivity Analysis

When performing forward UQ over a numerical model F , it is known that uncertainty
parameters θ influence the model’s outcomes. However, the extent and manner of this
influence remain unknown, as some input uncertainties may be more influential than oth-
ers on a specific system output. Sensitivity Analysis is crucial in this context, enabling
the analysis of how uncertainties in the input θ affect the QoI Y [ 49 ]. This chapter elab-
orates on three essential methods to perform Sensitivity Analysis: ANOVA, Saltelli, and
Rank-based Estimation. The latter, the most recent one, was used to perform a Sensitivity
Analysis of the problem analyzed in this work.

ANOVA, or Analysis of Variance, was first introduced by Hoeffding in the 1940s con-
cerning his work on U-statistics [ 29 ]. Since its inception, the method has evolved and been
studied across several fields, including mathematics [ 59 ], statistics [ 19 ], finance [ 25 ], and
various engineering disciplines [ 51 ]. ANOVA decomposes the variance of a dataset to at-
tribute portions of the variance to different sources of variation, thereby identifying the
impact of each input variable on the output variability.

Sobol’s method, presented by I.M. Sobol in 1993, is a foundational technique for cal-
culating global sensitivity indices of a function of independent variables [ 60 ]. Building
on Sobol’s work, Andrea Saltelli developed new methods to efficiently calculate Sobol’s
indices [ 54 ], [ 55 ], [ 56 ], [ 57 ]. Saltelli’s method has become a standard for global sensitiv-
ity analysis and is known for its robustness in handling complex models. It decomposes
the output variance into fractions attributed to inputs and their interactions, providing a
comprehensive view of the input-output relationship.

Until recently, rank-estimation methods had not been fully developed to calculate Sobol’s
indices. However, a recent study by Gamboa et al. [ 21 ] introduced a new class of rank-
based estimators to calculate Sobol’s indices. This new method shows substantial effi-
ciency improvements, making it a valuable tool for sensitivity analysis. Rank-based es-
timation provides a non-parametric approach, offering robustness against outliers and
model assumptions.

In summary, while ANOVA and Saltelli’s methods have long been established for sen-
sitivity analysis, the recent advancements in rank-based estimation methods represent a
significant leap forward in the efficiency and robustness of calculating sensitivity indices.
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5. Sensitivity Analysis

5.1. Analysis of Variance (ANOVA)

Considering the multivariate random variable θ with a probability density measure de-
fined in Eq.  3.7 , and our QoI Y = F(x,θ), the classical ANOVA is structured as a hi-
erarchical expansion of Y in terms of its stochastic input variables θi with increasing di-
mensions [ 60 ]. To elaborate on this method, let Dθ = {1, · · · , nθ} be the index set of the
marginals θi of θ, and let v ⊂ Dθ be a non-empty subset of indices from Dθ. Additionally,
we define ρv =

∏
v ρθi , with i ∈ v.

We can express each marginal distribution {Yr = Fr(x,θ)}nY
r=1 of the output random

vector as a finite sum of functions of subsets of its inputs {θi}nθ
i=1:

Fr(x,θ) = F0
r +

nθ∑
i=1

F i
r(x, θi) +

∑
1≤i<j≤nθ

F i,j
r (x, θi, θj) + . . .+ F1,2,...,nθ

r (x,θ), (5.1)

which can be rewritten in a compact form:

Fr(x,θ) = F0
r +

∑
v⊂Dθ

Fv
r (x,θv), (5.2)

whereF0
r is a scalar function, andFv

r (x,θv) is a |v|-variate component function describing
the joint effect of θv on Y for |v| > 0 [ 52 ]. The total number of component functions in Eq.
 5.2 is 2nθ . To ensure desirable orthogonal properties of the component functions, strong
annihilating conditions are applied, yielding:∫

Θi

Fv
r (x,θv)ρi(θi)dθi = 0, ∀i ∈ v,∀v ⊂ Dθ, (5.3)

i.e., the strong annihilating conditions relevant to the ANOVA require all nonconstant com-
ponent functions Fv

r (x,θv) to integrate to zero concerning the marginal density of each
random variable with index in v, ∀v ⊂ Dθ .

The decomposition from Eq.  5.2 with the annihilating conditions from Eq.  5.3 is named
Sobol-Hoeffding or Analysis of Variance (ANOVA) decomposition and allows the following
decomposition of the variance:

V[Fr(x,θ)] =

nθ∑
i=1

V[F i
r(x, θi)] +

∑
1≤i<j≤nθ

V[F i,j
r (x, θi, θj)] + . . .+ V[F1,2,...,nθ

r (x,θ)], (5.4)

which can be writen in a compact form as below:

V[Fr(x,θ)] =
∑
v⊂Dθ

V[Fv
r (x,θv)]. (5.5)
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5.2. Saltelli

From Eq.  5.5 , one can define the total Sobol’s indices for the global sensitivity analysis
[ 58 ], [  60 ], which can be extended for the cases where our output Y is a realization of a
random vector with stochastic dimention nY . In this latter case, we consider the matrix of
total Sobol’s indices Sv ∈ RnY ×(2nθ−1), with nY rows and 2nθ − 1 columns, with elements
given by:

Srv =
V[Fv

r ]

V[Fr]
, (5.6)

where Fr stands for a scalar value from our QoI Y, for all r = 1, . . . , nY and v ⊂ Dθ.
Similarly, the matrix of first-order Sobol’s indices S ∈ RnY ×nθ , with nY rows and nθ

columns, has its elements given by:

Srj =
V[F j

r ]

V[Fr]
, (5.7)

for all r = 1, . . . , nY and j = 1, . . . , nθ.
These indices quantify the relative contribution of the input subset v to the overall out-

put variance V[F ]. In essence, Sobol’s indices assess the significance of the stochastic in-
puts in relation to the uncertainty of the output. In particular, the first-order Sobol’s indices
individually measure each stochastic input’s importance.

Applying ANOVA and computing Sobol’s indices is highly computationally expensive,
especially when the stochastic space dimension is high (curse of dimensionality). More effi-
cient methods for the analysis of variance are necessary, and we elaborate on two of them
in the following sections: Saltelli and Rank-Estimation.

5.2. Saltelli

Considering n = Nsamples and the existence of two independent input sample matrices X,
W ∈ Rn×k, with generic elements xij , wij ∈ R, and k = nθ, we define the following: Let
X

(j)
W be the matrix where all columns are from X, except the j-th column, which is from

W. Similarly, we define W
(j)
X . Using these matrices, we can calculate the numerator of the

first-order Sobol’s indices from Equation  5.7 and the local Sobol’s indices from Equation
 5.6 as follows [ 53 ]:

V[F j
r ] = VXj (EX∼j (Yr | Xj)) =

1
n

∑n
i=1Fr(X)i(Fr(W

(j)
X )i −Fr(W)i), (5.8)

V[Fv
r ] = VX∼j (EXj (Yr | X∼j)) = V [Yr]− 1

n

∑n
i=1Fr(X)i(Fr(X)i −Fr(X

(j)
W)i), (5.9)
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5. Sensitivity Analysis

∀j = 1, · · · , k and v ⊂ Dθ. {Fr(X)i}nY
r=1 represents the model outputs evaluated at the

sample points i = 1, · · · , n from matrix X. In addition, Fr(W
(j)
X ) and Fr(X

(j)
W) represent

the model output at the modified sample points, where the j-th column has been swapped
between X and W. These calculations allow for the quantification of the contribution of
each input variable to the output variance, facilitating a comprehensive sensitivity analy-
sis. However, generating additional input samples and new MC simulations is necessary
to calculate the outputs considering the swapped matrices and the additional sample. In
the next section, we will see a new way of calculating Sobol’s indices without generating
new samples as necessary to compute Eq.  5.8 .

5.3. Rank-Estimation

Rank estimation is a new class of estimators to calculate Sobol’s indices [ 21 ]. This new class
allows the computation of Sobol’s indices in a way that does not require to create any spe-
cific sampling type, such as in the case of Saltelli sensitivity analysis, making computation
way more feasible. To start presenting this class, we shall discuss Chatterjee’s correlation
coefficient, which relies on Cramér-von-Mises indices [ 22 ].

5.3.1. Chatterjee’s correlation coefficient

Let (θ,Y ) be a pair of real-valued multivariate random variables with an i.i.d. sample
{θj ,Yj}nj=1, also we assume that n = Nsamples and the stochastic dimensions nθ, nY ∈
N are not necessarily equal. The pairs of marginal distributions {θjl , Y

j
r }nj=1 for all l =

1, · · · , nθ and r = 1, · · · , nY are rearranged in such a way that θ1l < . . . < θnl .
We can introduce the correlation coefficient matrix ξn(θ,Y ) ∈ RnY ×nθ , which is an ex-

tension of the real-valued correlation coefficient between two general uni-variate (X,Z)
random variables defined by Chatterjee in [ 15 ].

Given the rank πl(j) of {θjl }
n
j=1, that is, the number of i such that θil ≤ θjl , we define Nl(j)

as:

Nl(j) =

{
π−1
l (πl(j) + 1) if πl(j) + 1 ≤ n

π−1
l (1) if πl(j) = n

. (5.10)

The entries ξrln = ξn(θl, Yr) of the correlation coefficient matrix, for all l = 1, · · · , nθ and
r = 1, · · · , nY , are given by:

ξrln =

∑n
j=1

1
n

∑n
k=1 1{Y k

r ≤Y j
r }1

{Y k
r ≤Y

Nl(j)
r }

− ( 1n
∑n

k=1 1{Y j
r ≤Y k

r })
2∑n

j=1 Fn(Y
j
r )(1− Fn(Y

j
r ))

, (5.11)

with the indicator function 1{Xi≤x}:
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1{Xi≤x} =

{
1 if Xi ≤ x

0 otherwise
, (5.12)

and the empirical distribution function of the marginal distribution Yr given by:

Fn(τ) =

n∑
k=1

1{Y k
r ≤τ}. (5.13)

We then obtain the correlation coefficient matrix:

ξn(θ,Y ) =


ξ11n ξ12n · · · ξ1nθ

n

ξ21n ξ22n
. . . ξ2nθ

n
...

. . . . . .
...

ξnY 1
n ξnY 2

n · · · ξnY nθ
n

 ∈ RnY ×nθ , (5.14)

that consistently estimates how each marginal distribution {Yr}nY
r=1 depends on the marginal

distributions {θl}nθ
l=1. A matrix entry ξrln ∈ [0, 1] is 0 if and only if the variables θl and Yr

are independent and 1 if and only if one variable is a measurable function of the other, i.e.
Yr = f(θl).

5.3.2. Rank-estimation definition

With the results from above, we can levarage the construction of a new family of estimators
for Sobol’s indices [ 21 ], [ 60 ]. Considering our model Y ≡ F(x,θ), we want to estimate the
first-order Sobol’s indices Srl

n = Srl
n (θl, Yr) for all sample pairs {θjl , Y

j
r }nj=1 of marginal dis-

tributions (θl, Yr) given l = 1, · · · , nθ and r = 1, · · · , nY and Nl(j) defined in Eq.  5.10 . The
matrix Sn(θ,Y ) with first-order Sobol’s indices of the marginal distribution pairs (θl, Yr)
has its elements given by:

Srl
n :=

1
n

∑n
j=1 Y

j
r Y

Nl(j)
r −

(
1
n

∑n
j=1 Y

j
r

)2

1
n

∑n
j=1

(
Y j
r

)2
−
(

1
n

∑n
j=1 Y

j
r

)2 . (5.15)

We can then represent Sn(θ,Y ) as follows:

Sn(θ,Y ) =


S11
n S12

n · · · S1nθ
n

S21
n S22

n
. . . S2nθ

n
...

. . . . . .
...

SnY 1
n SnY 2

n · · · SnY nθ
n

 ∈ RnY ×nθ . (5.16)

To illustrate how this method is straightforward, an example on how to implement it in
Python for an arbitrary Yr is given in  B.1 .
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6. Clustering Algorithms

Clustering, or cluster analysis, is a fundamental technique in data analysis that is valu-
able for identifying and categorizing distinct groups within datasets. As an unsupervised
learning problem, clustering does not rely on predefined labels, allowing the data to reveal
underlying structures. Numerous algorithms are available to implement clustering, each
offering unique approaches and benefits. We want specifically to cluster stochastic input
data based on geographical locations.

This chapter provides a concise overview of three notable clustering algorithms: Affinity
Propagation, Clauset-Newman-Moore greedy modularity, and K-Means. We will focus on
applying the K-Means algorithm in our case study, demonstrating its practical utility and
effectiveness in data categorization.

6.1. Affinity Propagation

Affinity propagation uses as input similarity measures amid pairs of data points. This
method does not require the number of clusters to be specified beforehand [ 20 ]. Instead, it
simultaneously considers all data points as potential exemplars or cluster centers. The al-
gorithm iteratively refines the selection of exemplars by exchanging real-valued messages
between data points. These messages convey two types of information: responsibility,
which reflects how well-suited a point is to serve as an exemplar for another point, and
availability, which indicates the appropriateness of a point being chosen as an exemplar
by another point [ 39 ].

The message-passing process continues until convergence, resulting in a high-quality
set of exemplars and their corresponding clusters. This iterative refinement ensures that
the final set of exemplars and clusters is based on the overall data structure rather than an
arbitrary initial configuration. The ability of affinity propagation to dynamically determine
the number of clusters and to iteratively improve the clustering quality makes it a powerful
alternative to traditional methods like K-Means, especially in complex and diverse data
environments.

We will not use this method in this thesis as we want to specify beforehand the number
of clusters, and this can be done more efficiently using K-Means.
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6. Clustering Algorithms

6.2. Clauset-Newman-Moore greedy modularity

Greedy modularity works on detecting communities by modularity maximization [ 45 ], which
involves defining a benefit function, known as modularity, that measures the quality of
network divisions into communities [ 24 ]. The following equation gives the considered
modularity function 

1
 :

Q(γ) =
1

2m

∑
ij

(
Aij − γ

kikj
2m

)
δgigj , (6.1)

where m is the number of edges (or the sum of all edge weights as in [ 8 ]), A is the adjacency
matrix of the graph G, ki is the (weighted) degree of node i, γ is the resolution parameter,
and δgigj is 1 if nodes gi and gj are in the same community and 0 otherwise. Clauset-
Newman-Moore greedy modularity maximization finds the community partition with the
largest modularity [ 16 ].
As this method relies on the maximization of Equation  6.1 , we can set an interval for the
desired number of clusters. However, the exact final number of clusters, based on our
desired interval, is determined by the maximization result of Equation  6.1 , which means
we cannot precisely control the final total number of clusters. Consequently, this method is
not well-suited for clustering power grid buses based on their geographical location, and
hence, we do not employ it in this work.

6.3. K-Means Clustering

The K-Means algorithm is widely used for clustering data partitionally into distinct groups
based on feature similarity. This unsupervised learning technique aims to partition a given
set of N data points into n clusters, where each data point belongs to the cluster with the
nearest mean. The algorithm minimizes the within-cluster variance, known as the sum of
squared errors (SSE) J =

∑n
j=1

∑
zi∈Cj

∥zi − cj∥2, where c = [c1, · · · , cn]T ∈ Rn×d is the
operator with chosen centroids, z = [z1, · · · , zN ]T ∈ RN×d is the operator with data points,
and d is the dimensionality of the data set. In our case, we use K-Means to cluster the
stochastic input data to specific regions of the grid.

The steps involved in the K-Means algorithm are described below:

1
 https://networkx.org/documentation/stable/reference/algorithms/generated/
networkx.algorithms.community.modularity_max.greedy_modularity_communities.
html 
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6.3. K-Means Clustering

Algorithm 2 K-Means.
Input: Number of clusters n; Initial centroids c0 = z[n random indices]
Output: Clustered data sets C

1: iterations← 0
2: initialize D ∈ RN×n

3: C← ∅
4: N ← dataset indices
5: while iterations ≤ max iteration number do
6: for i in N do
7: for 1 ≤ j ≤ n do
8: d (zi, cj)← ∥zi − cj∥2 ▷ Distance between each data point and each centroid
9: Dij ← d (zi, cj)

10: end for
11: C[j]← min∀j=1,...,nD[i, j] ▷ Assign each data point to the closest centroid
12: end for
13: for j in n do
14: cj ← 1

∥C[j]∥
∑

zi∈C[j] zi ▷ Update centroids using current cluster
15: end for
16: iterations← iterations+ 1
17: end while

In this work, K-Means clustering is used to group the buses of the power grid network
based on their geographical coordinates. Specifically, we can represent the coordinates
of the buses as z ∈ RN×2. This approach allows us to cluster the buses effectively by
their spatial locations, which can be particularly useful for simplifying the analysis and
reduction of random variables. Moreover, spatial clustering is beneficial in the context of
power grids due to the high correlation of fluctuations arising from spatial proximity. For
example, photovoltaic (PV) power generation exhibits a significant correlation in output
fluctuations due to the close physical proximity of PV installations [ 34 ], [ 62 ].
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7. Implementation of Case Study: 1354pegase

The Case 1354pegase 

1
 is a Pandapower (see Section  A.1 ) test case network representing a

portion of the European high voltage transmission network. The grid network consists
of 1354 buses, of which 621 are load buses (with active/reactive powers). In this case
study, we evaluate the 1354pegase grid from Fig.  7.1 , using as benchmark the scenarios
where Monte Carlo (MC) simulations are performed, and i.i.d. fluctuation samples are
assigned to each bus load in the grid, according to the specifications of Eq.  2.13 . This
results in an input stochastic space with dimension nθ, where each marginal distribution of
the stochastic power fluctuations θ is assigned to the corresponding load bus as described
in Eqs.  3.15 and  3.16 .

7.1. Case Study Definition

We assume that each bus in the 1354pegase network should operate with voltage magni-
tudes v such that 0.95 ≤ v ≤ 1.09 (v is considered p.u.), respecting an European high
transmission network operational constraints [ 40 ], [ 30 ]. If any bus operates outside this
range of voltage magnitudes, the network is at risk of failure or collapse, and such buses
are considered critical. The PPF analysis aims to identify potential critical buses within the
grid, given the probability distributions of the fluctuations, and to determine the probabil-
ity that these critical buses will operate outside the specified voltage limits. We can state
our problem in the following mathematical formulation:

P
(
vj ≤ vmax

j

)
≤ ϵV , ∀j∈N , (7.1)

P
(
vj ≥ vmin

j

)
≤ ϵV , ∀j∈N , (7.2)

where for our case vmin
j = 0.95, vmax

j = 1.09, and ϵV stands for an acceptable violation
probability of the voltage magnitudes.

This case study proposes a new efficient pipeline for performing the PPF analysis, al-
lowing us to gain a time advantage over Monte Carlo simulations in identifying and cal-
culating the likelihood of critical buses. This pipeline leverages grid partitions to reduce
the stochastic input space θ, followed by a sensitivity analysis with rank-based estimation
to identify the buses that most influence the critical ones. Finally, PCE is used to calculate

1
 https://arxiv.org/abs/1603.01533 
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7. Implementation of Case Study: 1354pegase

the likelihood that the critical buses will operate outside the specified voltage limits, given
the reduced stochastic space from the sensitivity analysis.

Figure 7.1.: Representation of total grid 1354pegase with bus labels.
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7.2. Standard cases

7.2. Standard cases

Five standard cases were considered to perform a UQ analysis across different scenarios
for the grid 1354pegase. These cases are structured to explore various grid partition config-
urations to understand how grid uncertainties behave under different partition schemes.
In each standard case, the load buses within the same partition share an identical distri-
bution, implying they are entirely correlated. However, the distributions of load buses
across different partitions are considered i.i.d.. The partitions where obtained applying
the K-Means algorithm as explained in section  6.3 and implemented with code  B.3 .

The standard configurations are as follows:

1. Grid with 100 partitions (nθ = 100).

2. Grid with 200 partitions (nθ = 200).

3. Grid with 300 partitions (nθ = 400).

4. Grid with 500 partitions (nθ = 500).

5. Grid with 1354 partitions and nθ = 621: Each load bus of the grid is an independent
random variable.

It is crucial to emphasize that the fluctuations (random variables) are considered geo-
graphically dependent, being completely correlated within a given partition and utterly
independent between different partitions.

We randomly created uniform distributions for each partition with load buses in this
study. These uniform distributions were then used to generate (pseudo-)random samples
through MC simulations, as described in Section  3.3 . This approach was adopted to inves-
tigate the behavior of the grid 1354pegase under different uncertainty scenarios. In practical
applications involving real-world power grids, the distributions of random fluctuations
can be determined based on experimental data and/or expert professional opinion, from
which MC samples can subsequently be generated.
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7.2.1. Standard Cases - Partitions

Figure 7.2.: Grid partitions.
100 PARTITIONS (with 100 RVs) 200 PARTITIONS (with 200 RVs)

400 PARTITIONS (with 400 RVs) 500 PARTITIONS (with 500 RVs)

1354 PARTITIONS (with 621 RVs)
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Our standard cases are presented in Figure  7.2 , where each partition is represented by a
distinct color. In each case, all load buses within a partition share the same fluctuation
random distribution. Figure  7.2 illustrates the grid 1354pegase divided into 100, 200, 300,
500, and 1354 partitions. To partition the grid, we consider all buses: load buses and non-
load buses.

7.2.2. MC Convergence

We conducted Monte Carlo simulations with 104 samples for each standard case. The
decision to use this number of samples was informed by the Gelman-Rubin statistics [ 11 ],
[ 48 ], [  64 ], which allows us to monitor the convergence of the MC simulations based on the
sample size. The Gelman-Rubin statistics can be calculated as follows:

Mean value of chain Yr (r-th row of the matrix Y ∈ RnY ×Nsamples):

Ȳr =
1

Nsamples

Nsamples∑
i=1

Y(i)
r , ∀r = 1, . . . , nY . (7.3)

Mean of the means of all chains:

Ȳ∗ =
1

nY

nY∑
r=1

Ȳr. (7.4)

Variance of the means of the chains:

B =
Nsamples

nY − 1

nY∑
j=1

(
Ȳj − Ȳ∗

)2
. (7.5)

Averaged variance of the chains across all chains:

W =
1

nY

nY∑
j=1

 1

Nsamples − 1

Nsamples∑
i=1

(
Y

(j)
i − Ȳj

)2

 . (7.6)

An estimate of the Gelman-Rubin statistic R then results as

R =

(Nsamples−1)

Nsamples
W + 1

Nsamples
B

W
. (7.7)

We can then say that the results of the MC simulations are convergent if the estimator R
tends to 1 when Nsamples tends to infinity. For our study case with 621 random variables,
we obtained the following results for the Gelman-Rubin statistics:

38



7.3. Random Fluctuations

Figure 7.3.: Gelman-Rubin statistics.

From the graph in Figure  7.3 , we observe that the rate of change of R decreases mono-
tonically and tends to 0 (with R tending to 1), as the number of samples tend to infinity.
From the sample size ∼104 onwards, we obtain a value for R ≥ 0.9999, sufficiently close
to 1. This indicates that the MC calculations have good convergence for our case around
this sample size and onwards. The MC calculations of the probabilities that critical buses
operate outside their voltage range are used as a benchmark for the probability values
calculated with PCE and with the Efficient Pipeline (section  7.6 ).

7.3. Random Fluctuations

The marginal PDFs of the random fluctuation θ were defined as Uniform distributions
with limits (−a, a) (critical scenarios), where a was randomly chosen for each marginal
distribution in θ such that 1 < |a| ≤ 2. This approach ensures variability in the range of
fluctuations, reflecting realistic uncertainty levels.

Ultimately, a joint PDF of θ was created using the OpenTURNS library (see Section  A.2 ).
MC samples from the joint distribution were then generated to facilitate running the for-
ward UQ pipeline as outlined in Algorithm  1 . This procedure allowed for a comprehen-
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sive and accurate analysis of the grid’s behavior under the defined uncertainty scenarios
and is our benchmark procedure to compare the results calculated with PCE and with the
proposed Efficient Pipeline.

7.4. Computations with PCE Alone

Truncation strategies for the generalized Polynomial Chaos (gPC) expansion generally rely
on a predetermined polynomial degree p. However, no universal guidelines have been
established on how to accurately determine the degree p, which is problem-specific. Some
authors suggest that a gPC expansion with p = 2 typically yields accurate estimates for
the first two statistical moments of a stochastic response [ 38 ]. Although this assertion lacks
comprehensive validation across diverse problem sets, it can be supported by the fact that
the rectangular PF formulation results in quadratic nonlinearities.

For training our PCE cases, that is, to obtain the coefficients as illustrated in the schemes
from Section  4.2 , we used a minimum training data set of size 1500. After training, we gen-
erated a new MC sampling of size 60000 from the corresponding standard case’s stochastic
input PDF to use as inputs to evaluate and predict our PCE model Y = P(θ).

For calculations with PCE alone (different of the case that we use PCE in the Efficient
Pipeline’s steps), we used polynomials with a degree at most p = 1. This choice was made
due to the size of our stochastic spaces, which ranged from 100 to 621 dimensions. With
p = 1, the number of truncated polynomial basis functions is given by:

L+ 1 =

(
nθ + 1

1

)
=

(nθ + 1)!

nθ!1!
= nθ + 1.

This means the number of basis functions is of the same order as the dimension size of our
stochastic input. For comparison, if we had chosen p = 2, the number of basis functions
would be:

L+ 1 =

(
nθ + 2

2

)
=

(nθ + 2)!

nθ!2!
=

(nθ)
2 + 3nθ + 2

2
.

This would result in a significantly larger number of basis functions, leading to high com-
putational intensity, especially for our random variables’ dimension order range.

To compare the difference in computation time when using PCE with degrees 1 and 2,
we ran simulations using the total number of input RVs for each of the considered cases.
However, the simulation could not be completed for the case with 621 RVs and p = 2
due to a computational memory error. Specifically, for the case with 621 RVs and p = 2, it
is necessary to create 193, 753 basis functions, each multiplied by the dimension of our
stochastic output nY , which in our case equals the total number of buses nY = 1354 in
our grid, as we consider only the voltage magnitudes v. Even considering the sparsity
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of the coefficients, which reduces the computational dimension, the number of function
evaluations is prohibitive.

Figure 7.4.: Computation time between PCEs for p = 1, 2.

Figure  7.4 compares computation time and illustrates how each PCE case behaves. For
all cases in this study, we consider computation time as the time interval between the start
of generating the training data for our PCE surrogate models and obtaining all the PPF
results, that is, the variables x of our PF system. It is important to note that the computa-
tion times obtained from our simulations are not purely analytical but CPU times of our
numerical models. These models leverage advanced numerical techniques, such as matrix
decomposition and sparsity, to solve the problem efficiently.

For p = 1, we observe that the computation time increases monotonically and at a slower
rate than for p = 2, where the computation time increases non-linearly.
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7.5. Computations with MC and PCE

Figure 7.5.: Comparison between means of each bus from MC and PCE results.
100 PARTITIONS 200 PARTITIONS

400 PARTITIONS 500 PARTITIONS

1354 PARTITIONS (621 RVs)
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Figure 7.6.: Comparison between standard deviations of each bus from MC and PCE results.
100 PARTITIONS 200 PARTITIONS

400 PARTITIONS 500 PARTITIONS

1354 PARTITIONS (621 RVs)
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Figure 7.7.: Histogram of relative errors.
100 PARTITIONS 200 PARTITIONS

400 PARTITIONS 500 PARTITIONS

1354 PARTITIONS (621 RVs)

To evaluate the accuracy of PCE relative to MC simulations for the same grid cases, we
compared both the mean and standard deviation of the results for each bus. These compar-
isons are shown in Figures  7.5 and  7.6 .

Moreover, the histograms of the relative errors of the mean and standard deviation be-
tween the results obtained from MC and PCE are given in Figure  7.7 for all standard cases
analyzed.

We observe that the results obtained using PCE are accurate for all standard cases com-
pared to those from MC simulations. This attests to PCE as a precise method for perform-
ing UQ computations in our standard cases.
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7.6. The Efficient Pipeline

In this work, we developed an efficient pipeline to perform PPF analysis and to calculate
the probability of buses operating outside the allowed voltage magnitude range in systems
characterized by high-dimensional stochastic input random variables. Surrogate modeling
with PCE is employed in two of the six pipeline steps to enhance the pipeline’s efficiency.
For all PCEs considered in these steps, we set the degree to p = 2, because the used stochas-
tic inputs are reduced, which will not increase the computation time significantly, and the
obtained results are more accurate than when we try with p = 1.

The initial training data set comprises 1500 samples (Ntotal-samples = 1500). For the PCE
prediction, we utilized MC sampling from the reduced stochastic input created in a respec-
tive step, with a size of 40×Nstep-sample, where Nstep-sample represents the sample size used
for training a PCE at a specific step of the pipeline.

The pipeline is composed of the following six steps:

1. Generate Training Data Set

• Generate a small training data set of size Ntotal-samples with the respective stan-
dard case to be computed.

2. Partition Grid and Identify Critical Buses

• Partition the standard case grid into four sections using the K-Means algorithm
(see Code  B.3 ).

• Assign to each new partition a uniform random variable with new limits (−a, a),
where |a| is the mean of former distribution limits in that partition area, such
that we obtain a new reduced stochastic input θ with nθ = 4.

• Train a new PCE surrogate model giving as training inputs a small sample frac-
tion (Nstep-sample ≈ 10 × nθ = 10 × 4 = 40) of the training data set from Step
1.

• Evaluate/Predict the trained PCE surrogate model Y = P(θ) with the realiza-
tions {θ(i)}40×Nstep-sample

i=1 using MC sampling of the new reduced stochastic input
(with nθ = 4).

• Identify the buses that work out of their voltage magnitude limits with the re-
sults Y of the PCE prediction.

45



7. Implementation of Case Study: 1354pegase

Figure 7.8.: Step 2 – 4 Partitions.

3. Sensitivity Analysis with Rank-based Estimation

• Select the identified critical buses of the previous step.

• Perform rank-based estimation sensitivity analysis using only the selected criti-
cal buses and the original input training data set with nθ =original number of RVs
(see Code  B.1 ).

4. Identify Influential Load Buses (marginal RVs)

• Identify and get the load buses (marginal RVs) from Step 3 that genuinely in-
fluence the critical buses given by considering the non-zero first order Sobol’s
indices.

5. Run Forward UQ with Selected Inputs

• Train a new PCE surrogate model giving the entire samples of the training data
set created in Step 1 with Nstep-sample = Ntotal-samples = 1500, but only with the
stochastic inputs identified as influential in Step 3.

• Evaluate/Predict the trained new PCE surrogate model.

6. Calculate Probabilities for Critical Buses

• Determine the probabilities that the critical buses will operate outside the volt-
age magnitude range using the results from the previous step.

As a result, we obtained the computation time advantage shown in Figure  7.9 .
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Figure 7.9.: Computation time between Efficient Pipeline and PCEs alone.

From Figure  7.9 , we observe that for a given training size, the computation time of the
efficient pipeline does not scale up when the number of RVs increases. This behavior
contrasts with the performance of using PCE alone, where computation time increases
with the number of RVs. This characteristic endows the efficient pipeline with a significant
advantage for calculating systems with high-dimensional stochastic spaces, making it a
more practical and advantageous approach than using PCE alone.

The efficient pipeline is particularly competitive for performing PPF analysis of large
power grids, such as those of mid-sized cities or networks of connected small cities within
a regional ring. This makes it a tool for analyzing complex power systems where tradi-
tional methods would become computationally prohibitive.

The main reason for the efficient pipeline’s computation time not scaling up with the in-
creasing number of RVs lies in step 3, Sensitivity Analysis with Rank-based Estimation.
In this step, we reduce the number of input random variables to only those genuinely
influencing the critical buses. This reduction allows for a significantly smaller stochas-
tic input space in step 5, Run Forward UQ with Selected Inputs. By focusing only on
the relevant RVs, the efficient pipeline can maintain a manageable computation time even
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as the potential number of RVs increases, ensuring an optimized and efficient calculation
process.

The flowchart in Figure  7.10 shows the efficient pipeline in a compact form.

Figure 7.10.: Flowchart of Efficient Pipeline.
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8. Results

In this chapter, we present and compare the results of our case study using the 1354pegase
power network for all considered standard cases.

Section  8.1 shows the probability values of all identified critical buses operating outside
their specified voltage magnitude range, calculated with different approaches (MC, Effi-
cient Pipeline, and PCE alone), and the compared histograms of voltage magnitudes from
the results of the respective calculation approaches for the respective critical buses.

Section  8.2 presents the critical buses and their most influential load buses, which are
given by the rank-based estimation sensitivity analysis, on the grid map.

Finally, in Section  8.3 , we compare the computation times of all computation schemes
used.

8.1. Failure Risk of Critical Buses

The results for the probabilities of the critical buses obtained using the Efficient Pipeline,
PCE, and MC simulations are presented for all standard cases from Subsection  8.1.1 to

 8.1.5 .
The way the critical buses are identified, and the risk of failure probabilities are calcu-

lated is the following:

• For MC: we count the number of voltage magnitudes from the MC simulations that
exceed the voltage limits by iterating over the result array. We can then divide this
number by the total result array size to obtain the probabilities/risk of failure in a
frequentist fashion.

• For PCE and the Efficient Pipeline: by generating a new and large sample from the
considered input PDF and then inputting these samples into the trained PCE sur-
rogate model Y = P(θ), we obtain the predicted results. We can then identify the
critical buses and calculate their probabilities of failure in the same manner as in the
MC case. The Efficient Pipeline uses PCE in Step 2 with a reduced stochastic space
to identify the critical buses.

Our observations indicate that the accuracy of probability calculations using PCE and
the Efficient Pipeline is highly satisfactory compared to the probability values obtained
from MC simulations (our benchmark simulations). This suggests that both PCE and the
proposed Efficient Pipeline provide accurate and realistic results in identifying the proba-
bilities of critical buses operating outside their voltage magnitude range.
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8.1.1. Standard Case – 100 RVs

In Figure  8.1 , we show the probabilities of buses working outside their voltage magni-
tude range. For the standard case of 100 RVs, four buses were identified to work out of
their magnitude voltage range: buses 919, 1179, 1230, and 1301. Table  8.1 provides more
detailed information on the probabilities of the critical buses and the respective schemes
from which they were computed.

Figure 8.1.: Failure Risk of Critical Buses – Standard Case with 100 RVs.

Method
name

Failure risk
bus 919

Failure risk
bus 1179

Failure risk
bus 1230

Failure risk
bus 1301

Computational
cost (s)

MC 0.84 0.84 0.31 0.68 104

Eff. Pipeline 0.85 0.85 0.31 0.69 102

PCE, p = 1 0.85 0.85 0.31 0.67 102

Table 8.1.: Details on the risk of failure of critical buses.

Figures  8.2 and  8.3 show the compared histograms of the critical buses’ voltage magni-
tudes obtained from the different calculation schemes’ results. In Figure  8.2 , we compare
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the histograms from the Efficient Pipeline and MC; in Figure  8.3 , we compare the his-
tograms from the Efficient Pipeline, PCE, and MC. The histograms are superimposed, and
we used translucid colors for better visualization.

For the case with 100 RVs, we observe a strong similarity between the different his-
tograms, what indicates our proposed Efficient Pipeline method is accurate and correct
when compared to the benchmark MC simulations.

Figure 8.2.: Comparison between histograms from MC and Efficient Pipeline.
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Figure 8.3.: Comparison between histograms from MC, Efficient Pipeline, and PCE.

8.1.2. Standard Case – 200 RVs

In Figure  8.4 , we show the probabilities of buses working outside their voltage magni-
tude range. For the standard case of 200 RVs, four buses were identified to work out of
their magnitude voltage range: buses 919, 1179, 1230, and 1301. Table  8.2 provides more
detailed information on the probabilities of the critical buses and the respective schemes
from which they were computed.
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Figure 8.4.: Failure Risk of Critical Buses – Standard Case with 200 RVs.

Method
name

Failure risk
bus 919

Failure risk
bus 1179

Failure risk
bus 1230

Failure risk
bus 1301

Computational
cost (s)

MC 0.91 0.91 0.26 0.74 104

Eff. Pipeline 0.92 0.92 0.25 0.75 102

PCE, p = 1 0.91 0.91 0.28 0.75 1.3× 103

Table 8.2.: Details on the risk of failure of critical buses.

Figures  8.5 and  8.6 show the compared histograms of the critical buses’ voltage magni-
tudes obtained from the different calculation schemes’ results. In Figure  8.5 , we compare
the histograms from the Efficient Pipeline and MC; in Figure  8.6 , we compare the his-
tograms from the Efficient Pipeline, PCE, and MC. The histograms are superimposed, and
we used translucid colors for better visualization.

For the case with 200 RVs, we also observe a substantial similarity between the differ-
ent histograms, indicating our proposed Efficient Pipeline method is accurate and correct
when compared to the benchmark MC simulations.
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Figure 8.5.: Comparison between histograms from MC and Efficient Pipeline.
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Figure 8.6.: Comparison between histograms from MC, Efficient Pipeline, and PCE.

8.1.3. Standard Case – 400 RVs

In Figure  8.7 , we show the probabilities of buses working outside their voltage magni-
tude range. For the standard case of 400 RVs, four buses were identified to work out of
their magnitude voltage range: buses 919, 1179, 1230, and 1301. Table  8.3 provides more
detailed information on the probabilities of the critical buses and the respective schemes
from which they were computed.
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Figure 8.7.: Failure Risk of Critical Buses – Standard Case with 400 RVs.

Method
name

Failure risk
bus 919

Failure risk
bus 1179

Failure risk
bus 1230

Failure risk
bus 1301

Computational
cost (s)

MC 0.94 0.94 0.22 0.78 104

Eff. Pipeline 0.96 0.96 0.21 0.80 102

PCE, p = 1 0.96 0.96 0.21 0.79 1.4× 103

Table 8.3.: Details on the risk of failure of critical buses.

Figures  8.8 and  8.9 show the compared histograms of the critical buses’ voltage magni-
tudes obtained from the different calculation schemes’ results. In Figure  8.8 , we compare
the histograms from the Efficient Pipeline and MC; in Figure  8.9 , we compare the his-
tograms from the Efficient Pipeline, PCE, and MC. The histograms are superimposed, and
we used translucid colors for better visualization.

For the case with 400 RVs, we start observing that the similarities between the different
histograms are lower than in the previous cases. However, the proposed Efficient Pipeline
method is still accurate and correct compared to the benchmark MC simulations.
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Figure 8.8.: Comparison between histograms from MC and Efficient Pipeline.
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Figure 8.9.: Comparison between histograms from MC, Efficient Pipeline, and PCE.

8.1.4. Standard Case – 500 RVs

In Figure  8.10 , we show the probabilities of buses working outside their voltage magni-
tude range. For the standard case of 500 RVs, four buses were identified to work out of
their magnitude voltage range: buses 919, 1179, 1230, and 1301. Table  8.4 provides more
detailed information on the probabilities of the critical buses and the respective schemes
from which they were computed.
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Figure 8.10.: Failure Risk of Critical Buses – Standard Case with 500 RVs.

Method
name

Failure risk
bus 919

Failure risk
bus 1179

Failure risk
bus 1230

Failure risk
bus 1301

Computational
cost (s)

MC 0.95 0.95 0.22 0.78 104

Eff. Pipeline 0.97 0.97 0.17 0.83 102

PCE, p = 1 0.94 0.94 0.21 0.75 1.6× 103

Table 8.4.: Details on the risk of failure of critical buses.

Figures  8.11 and  8.12 show the compared histograms of the critical buses’ voltage magni-
tudes obtained from the different calculation schemes’ results. In Figure  8.11 , we compare
the histograms from the Efficient Pipeline and MC; in Figure  8.12 , we compare the his-
tograms from the Efficient Pipeline, PCE, and MC. The histograms are superimposed, and
we used translucid colors for better visualization.

For the case with 500 RVs, we see a decrease in the similarities between the different
histograms. Now, the similarities are lower than in the previous cases. This is explained
by the fact that we used the same training data set size for all standard cases, even when
the number of RVs increase. Nevertheless, the proposed Efficient Pipeline method shows
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good accuracy compared to the benchmark MC simulations.

Figure 8.11.: Comparison between histograms from MC and Efficient Pipeline.
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Figure 8.12.: Comparison between histograms from MC, Efficient Pipeline, and PCE.

8.1.5. Standard Case – 621 RVs

In Figure  8.13 , we show the probabilities of buses working outside their voltage magni-
tude range. For the standard case of 621 RVs, four buses were identified to work out of
their magnitude voltage range: buses 919, 1179, 1230, and 1301. Table  8.5 provides more
detailed information on the probabilities of the critical buses and the respective schemes
from which they were computed.
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Figure 8.13.: Failure Risk of Critical Buses – Standard Case with 621 RVs.

Method
name

Failure risk
bus 919

Failure risk
bus 1179

Failure risk
bus 1230

Failure risk
bus 1301

Computational
cost (s)

MC 0.98 0.98 0.17 0.84 104

Eff. Pipeline 0.97 0.97 0.20 0.83 102

PCE, p = 1 0.98 0.98 0.17 0.85 2.2× 103

Table 8.5.: Details on the risk of failure of critical buses.

For this case, the similarity between the histograms from PCE and the Efficient Pipeline
and those from MC decreases compared to the former standard cases. This is because we
used the same training data set size for all standard cases. As the number of input RVs
increases, the training data set size should also increase to ensure the surrogate models
can accurately capture the uncertainties of the high-dimensional stochastic space. Never-
theless, for the sake of time comparison and to assess the accuracy of the standard cases,
we kept the training data set size the same for all cases.

In Figures  8.14 and  8.15 , we present the compared histograms, given from results ob-
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tained from different schemes, of the voltage magnitudes for each critical bus.

Figure 8.14.: Comparison between histograms from MC and Efficient Pipeline.
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Figure 8.15.: Comparison between histograms from MC, Efficient Pipeline, and PCE.

8.2. Critical Buses and Influential RVs on the Map

In this section we present the critical buses (highlighted as large red dots) on the 1354pegase
grid map for each standard case. The most influential buses are determined by the rank-
based estimation sensitivity analysis method.

In the maps, influential load buses within the same partition are represented with the
same color, indicating they share the same probability distribution. Different partitions are
shown in different colors. However, in the case of 621 RVs, all load buses with different
probability distributions are represented by the same color, blue.
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8.2.1. Standard Case – 100 RVs

Table 8.6.: Grid map with critical buses and their influential RVs - Standard Case 100 RVs.
Critical Bus 919 (big red one) Critical Bus 1179 (big red one)

Table 8.7.: Grid map with critical buses and their influential RVs - Standard Case 100 RVs.
Critical Bus 1230 (big red one) Critical Bus 1301 (big red one)
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8.2.2. Standard Case – 200 RVs

Table 8.8.: Grid map with critical buses and their influential RVs - Standard Case 200 RVs.
Critical Bus 919 (big red one) Critical Bus 1179 (big red one)

Table 8.9.: Grid map with critical buses and their influential RVs - Standard Case 200 RVs.
Critical Bus 1230 (big red one) Critical Bus 1301 (big red one)
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8.2.3. Standard Case – 400 RVs

Table 8.10.: Grid map with critical buses and their influential RVs - Standard Case 400 RVs.
Critical Bus 919 (big red one) Critical Bus 1179 (big red one)

Table 8.11.: Grid map with critical buses and their influential RVs - Standard Case 400 RVs.
Critical Bus 1230 (big red one) Critical Bus 1301 (big red one)
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8.2.4. Standard Case – 500 RVs

Table 8.12.: Grid map with critical buses and their influential RVs - Standard Case 500 RVs.
Critical Bus 919 (big red one) Critical Bus 1179 (big red one)

Table 8.13.: Grid map with critical buses and their influential RVs - Standard Case 500 RVs.
Critical Bus 1230 (big red one) Critical Bus 1301 (big red one)
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8.2.5. Standard Case – 621 RVs

Table 8.14.: Grid map with critical buses and their influential RVs - Standard Case 621 RVs.
Critical Bus 919 (big red one) Critical Bus 1179 (big red one)

Table 8.15.: Grid map with critical buses and their influential RVs - Standard Case 621 RVs.
Critical Bus 1230 (big red one) Critical Bus 1301 (big red one)
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8.3. Comparison of Computation Times

The comparisons of computation time between the three computation schemes used —
Monte Carlo, Polynomial Chaos Expansion with degrees p = 1, 2, and the Efficient Pipeline
— is shown in Figure  8.16 .

The figure illustrates the performance of the Efficient Pipeline relative to the other meth-
ods. From the graph, it is evident that the Efficient Pipeline demonstrates an advantage
in computation time over all the compared schemes. The Monte Carlo method is the least
efficient among these.

Figure 8.16.: Computation time comparison between the Efficient Pipeline, PCEs and MC.
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9. Conclusion

In this work, we explained the theory behind the PPF analysis and explored various ap-
proaches for applying forward Uncertainty Quantification to solve the PPF problem. MC
simulations were significantly less efficient than the surrogate models using PCE imple-
mented in this study. Additionally, we proposed an Efficient Pipeline that leverages the
reduction of random variables through clustering, a novel rank-based sensitivity analysis
technique, and PCE to solve the PPF problem, ultimately determining the probabilities of
critical buses operating outside their voltage magnitude range.

Our Efficient Pipeline, as demonstrated in our case study, proved to be more efficient
than MC simulations and standalone PCE modeling (with degrees 1 or 2). Importantly,
this pipeline does not scale adversely when the number of random variables are increased,
given an initial training data set size, ensuring its adaptability to varying stochastic com-
putational needs.

The new Efficient Pipeline has broad applicability and can be a game-changer in various
domains where PPF analysis is crucial. From cost optimization of power grids to secu-
rity analysis and monitoring of large-scale power systems, this pipeline can be applied to
a wide range of scenarios, inspiring new possibilities in power system management and
optimization. Moreover, the methods presented in this work can be enhanced through
advancements in machine learning approaches and parallel computing using General-
Purpose Graphics Processing Units (GPGPUs) and distributed memory systems. Specif-
ically, the generation of training data sets with MC simulations is highly parallelizable,
which would significantly improve the efficiency of surrogate modeling both with PCE
alone and our proposed Efficient Pipeline.

In summary, the proposed Efficient Pipeline offers a promising solution for efficient and
scalable PPF analysis with high-dimensional stochastic space, with potential applications
across various power system management and optimization domains. Future work can
further refine these methods and explore their integration with emerging computational
technologies to enhance their applicability and performance.
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A. Software Tools

A.1. PANDAPOWER

The power network utilized in the case study of this thesis was developed using the open-
source library Pandapower 

1
 [ 63 ], which builds upon the PANDAS  

2
 library and the power

systems analysis toolbox PYPOWER  

3
 .

Pandapower offers an extensive range of electric components for element-based power
network calculations. The primary objective of the library is to facilitate static analysis
of three-phase power systems, enabling the examination of three-phase distribution systems
(commonly found in Europe), as well as transmission and subtransmission systems.

The program employs a tabular-based data structure where all elements are represented
by tables containing their respective parameters. Users select these parameters depending
on various analysis methods to address their specific problems. Upon completion of the
analysis, a new table of results is generated, with the results’ parameters depending on the
analysis type conducted.

A.1.1. Power Grid Creation

Pandapower facilitates the creation of customized power grid networks from scratch through
its APIs. Users intending to develop their power networks can utilize a set of commands to
initialize an empty power grid and incrementally add buses, lines, and other components
to construct a complete power grid 

4
 .

In addition to this capability, Pandapower offers synthetic and benchmark networks via
the networks module, which can be accessed using the command Pandapower.network. In
this work, we will used the power system test case Case 1354pegase, which has 1354 buses
and 621 loads. More on this test case will be elaborated in the next chapters.

A.1.2. Power Flow Analysis with Pandapower

The power flow system of equations defined in Chapter  2 is solved by Pandapower with
the command pandapower.runpp(net, algorithm=’list’) 

5
 , where net is an specific power grid

1
 https://www.Pandapower.org/about/ 

2
 https://pandas.pydata.org/ 

3
 https://pypi.org/project/PYPOWER/ 

4
 https://www.Pandapower.org/start/ 
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created by Pandapower (with buses, lines and other elements characteristic of the grid),
and ’list’ refers to one of the algorithms listed below:

1. ’nr’ Newton-Raphson (pypower implementation with numba accelerations),

2. ’iwamoto nr’ Newton-Raphson with Iwamoto multiplier,

3. ’bfsw’ backward/forward sweep,

4. ’gs’ gauss-seidel (pypower implementation),

5. ’fdbx’ fast-decoupled (pypower implementation),

6. ’fdxb’ fast-decoupled (pypower implementation).

A.2. OPENTURNS

OpenTURNS 

6
 (Open source Treatment of Uncertainty, Risk’N Statistics) [ 2 ] is an open-

source software library dedicated to uncertainty quantification in numerical simulations.
Developed by a consortium of industrial and academic partners, OpenTURNS provides a
comprehensive framework for probabilistic modeling, statistical analysis, and uncertainty
propagation.

Openturns supports various probability distributions and copulas for modeling com-
plex dependencies between random variables and allows users to define custom probabil-
ity distributions and empirical data-based models. Moreover, the library also offers tools
for descriptive statistics, hypothesis testing, and parameter estimation, providing methods
for fitting distributions to data and performing goodness-of-fit tests.

In uncertainty propagation, it is possible to implement various methods with Open-
TURNS for propagating uncertainties through mathematical models, including Monte
Carlo simulation, Latin Hypercube Sampling, and Polynomial Chaos Expansion (PCE).

A.2.1. MC Sampling with OpenTURNS

We use OpenTURNS to create the multivariate random variable distributions for our stochas-
tic input and to generate random samples from these distributions. The method by which
the stochastic fluctuations are created and assigned to the partitions of our test grid is
detailed in Section  B.2 .

A.2.2. PCE with OpenTURNS

In this work, we use OpenTURNS to construct Polynomial Chaos Expansion (PCE) to cre-
ate the surrogate model of our power grid test case. A customized class PolynomialChaos-
Expansion() was utilized.

6
 https://openturns.github.io/www/index.html# 
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A.3. NETWORKX

The NetworkX 

7
 [ 26 ] package is a versatile and powerful network analysis tool developed

in Python. NetworkX provides fundamental network data structures that represent var-
ious graphs, including simple graphs, directed graphs, and graphs with self-loops and
parallel edges. Notably, NetworkX supports using (almost) arbitrary objects as nodes and
associating arbitrary objects with edges. This flexibility allows for the seamless integra-
tion of network structures with custom objects and data structures, complementing any
pre-existing code and facilitating network analysis in diverse application settings without
significant software development.

Once a network is represented as a NetworkX object, a range of standard algorithms
can be employed to analyze its structure. These algorithms include those for determining
degree distributions (the number of edges incident to each node), clustering coefficients
(the number of triangles each node is part of), shortest paths, spectral measures, and com-
munity detection. This comprehensive suite of tools enables detailed and sophisticated
analysis of network properties and behaviors, making NetworkX an essential tool for re-
searchers and practitioners in network science.

A.3.1. Creation of Graphs

Transforming a Pandapower network into a NetworkX Multigraph can be easily accom-
plished. The Pandapower.topology module provides the method create nxgraph, which facil-
itates the conversion of a Pandapower network into a Multigraph 

8
 . Our application used

the Python function detailed in  A.1 to create a NetworkX Multigraph from the network
object net.

1 import Pandapower.topology as top
2 def create_graph(net):
3

4 G = top.create_nxgraph(net)
5

6 return G
7

Source Code A.1.: NetworkX graph creation from Pandapower network (net)

This function simplifies the integration of power network analysis with NetworkX’s

7
 https://networkx.org/documentation/stable/ 

8
 https://Pandapower.readthedocs.io/en/v2.0.0/topology/create_graph.html 
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graph-based analysis capabilities, enhancing the flexibility and functionality of our re-
search tools such as the application of clustering algorithms.

A.3.2. Graph Partitioning

Once the power grid graph is created, we can utilize it for further analysis. In this thesis,
the graph of the power grid network is partitioned into regions based on the geographical
proximity of the buses. We assume buses within the same partition exhibit identical fluc-
tuations, meaning the same marginal random variable describes their fluctuations. Con-
versely, buses from different partitions have completely independent fluctuations, with
their fluctuations described by i.i.d. random variables.

The K-Means algorithm is employed to obtain the partitions of the power grid, as we
will explain in next section, and a Python function was developed to assign the random
fluctuation distributions respective to each partition as describes in the subsetion  A.2.1 and
in the code  B.2 . Scikit-learn provides a standard package for implementing the K-Means
algorithm, among other clustering algorithms. The next chapter will present Scikit-learn
and the Python function used for the graph partitioning.

A.4. SCIKIT-LEARN

Scikit-learn 

9
 is a Python library that provides a standard interface for implementing ma-

chine learning algorithms [ 7 ]. It encompasses a variety of ancillary functions integral to
the machine learning pipeline, including data preprocessing steps, data resampling tech-
niques, evaluation metrics, and search interfaces for tuning and optimizing an algorithm’s
performance. This comprehensive suite of tools allows for efficient development, evalua-
tion, and refinement of machine learning models, facilitating robust and reliable predictive
analytics.

A.4.1. Grid Partition with K-Means

The K-Means algorithm, described in Algorithm ??, was implemented using the Scikit-
learn package sklearn.cluster and the KMeans method 

10
 . The dataset chosen for clustering

comprised the geographical coordinates (x, y) of the buses in our power grid test case. This
selection is based on the assumption that bus fluctuations are significantly influenced by
their geographical locations, owing to the connections between buses and geographically-
dependent conditions of renewable energy generation, such as sunlight intensity (for solar
energy sources) and wind speed (for wind turbine generators). More details on the imple-
mentation of the K-Means algorithm is show in  B.3 

9
 https://scikit-learn.org/stable/getting_started.html  

10
 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans 
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B.1. Rank-based Estimation

1 import numpy as np
2

3 def rank_estimation(Y_r, X):
4

5 dim = X.shape[1]
6 N = X.shape[0]
7

8 if len(Y_r.shape) == 2:
9 Y_r = Y_r.ravel()

10 mean = np.mean(Y_r)
11 var = np.var(Y_r, ddof=1)
12 sobol = np.zeros(dim)
13 px = X.argsort(axis=0)
14

15 pi_j = px.argsort(axis=0) + 1
16

17 argpiinv = (pi_j % N) + 1
18 for i in range(dim):
19 N_j = px[argpiinv[:, i] - 1, i]
20 YN_j = Y_r[N_j]
21 sobol[i] = (np.mean(Y_r*YN_j) - mean**2)/var
22

23 return sobol
24

Source Code B.1.: Rank-estimation function 

1
 

1
 https://github.com/elizqian/mfgsa/tree/master 
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B.2. Creation of Stochastic Fluctuations

1 import openturns as ot
2 def set_fluctuation(bus_active_areas):
3

4 active_fluctuation = []
5

6 dist_active = {}
7

8 for key in bus_active_areas.keys():
9 # Active areas are the partitioned areas with active loads

10

11 a = np.random.uniform(1,2,size=1)
12

13 if a < 0.0:
14 a = abs(a)
15 elif a == 0.0:
16 a = 0.1
17 dist_active[key] = a[0]
18

19 for key in bus_active_areas.keys():
20

21 a = dist_active[key]
22 active_fluctuation.append(ot.Uniform(-a,a))
23

24 dist_partition_a = ot.ComposedDistribution(active_fluctuation)
25

26 return dist_partition_a
27

Source Code B.2.: Creation of stochastic fluctuations
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B.3. K-Means Implementation

1

2 from sklearn.cluster import KMeans
3 def partition_kmeans(pos, n_clusters=16, random_state=0):
4

5 ## Array of coordinates
6 C = []
7 Carray = np.zeros([len(pos),2])
8 for key in pos.keys():
9 C.append(np.array(pos[key]))

10

11 for i, val in enumerate(C):
12 Carray[i,0] = val[0]
13 Carray[i,1] = val[1]
14

15

16 ## K-Means Algorithm
17 algo = KMeans(n_clusters=n_clusters, \
18 random_state=random_state, n_init=3)
19 algo.fit(Carray)
20 centers = algo.cluster_centers_
21

22 L = algo.labels_
23

24 P = {} # Dictionary with partitions
25 for key in L:
26 P[key]=[]
27

28 for i, labels in enumerate(L):
29 P[labels].append(i)
30

31 return P, centers
32

Source Code B.3.: K-Means Implementation
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[51] Herschel Rabitz and Ömer F Aliş. General foundations of high-dimensional model
representations. Journal of Mathematical Chemistry, 25(2):197–233, 1999.

[52] Sharif Rahman. A generalized anova dimensional decomposition for dependent
probability measures. SIAM/ASA Journal on Uncertainty Quantification, 2(1):670–697,
2014.

[53] Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto,
and Stefano Tarantola. Variance based sensitivity analysis of model output. de-
sign and estimator for the total sensitivity index. Computer physics communications,
181(2):259–270, 2010.

[54] Andrea Saltelli and Ilya M Sobol. About the use of rank transformation in sensitivity
analysis of model output. Reliability Engineering & System Safety, 50(3):225–239, 1995.

[55] Andrea Saltelli and Stefano Tarantola. On the relative importance of input factors
in mathematical models: safety assessment for nuclear waste disposal. Journal of the
American Statistical Association, 97(459):702–709, 2002.

[56] Andrea Saltelli, Stefano Tarantola, and Francesca Campolongo. Sensitivity analysis
as an ingredient of modeling. Statistical science, pages 377–395, 2000.

[57] Andrea Saltelli, Stefano Tarantola, and KP-S Chan. A quantitative model-
independent method for global sensitivity analysis of model output. Technometrics,
41(1):39–56, 1999.

[58] Ilya M Sobol. Global sensitivity indices for nonlinear mathematical models and their
monte carlo estimates. Mathematics and computers in simulation, 55(1-3):271–280, 2001.

[59] Ilya M Sobol’. Theorems and examples on high dimensional model representation.
Reliability Engineering and System Safety, 79(2):187–193, 2003.
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