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Abstract

Turbulent flows, characterized by their complex and chaotic nature, play a pivotal role in
various engineering and natural systems. Understanding and analyzing these phenomena
is essential for optimizing design, predicting crucial outcomes and addressing real-world
challenges. Therefore, obtaining accurate, efficient and rapid predictions of turbulent be-
haviors is of utmost importance. Data-driven methods such as deep learning algorithms
are being increasingly implemented to speed up flow predictions compared to numerical
solvers. However, these models tend to have poor generalization capabilities and are of-
ten restricted to simple geometries on structured grids. Hence, a Graph Neural Network
(GNN) based surrogate model is proposed to handle unstructured mesh data of turbulent
flow simulations. The underlying goal of this research is to leverage the predictions of
the surrogate model to perform an exploratory analysis on the behavior of a High-speed
Orienting Momentum with Enhanced Reversibility (HOMER) nozzle operating in turbu-
lent flow conditions. Additionally, clustering and dimensional reduction techniques are
employed to classify the various cases and phenomena occurring in this application, en-
hancing our understanding of turbulent nozzle flow dynamics.
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1. Introduction

Fluid mechanics, a foundational branch of physics and engineering, underpins technolog-
ical advancements in numerous critical sectors, including aerospace, automotive engineer-
ing, energy systems, environmental science, and biomedical engineering. The predictive
modelling of fluid flow is central to the design, optimization, and operational efficiency of
countless applications that fuel technological and scientific progress. At the heart of fluid
mechanics are the  Navier-Stokes Equations (NSE) , a set of  Partial Differential Equations
(PDE) that describe the motion of fluids in space and time. Despite their foundational
importance, these equations pose significant challenges due to their complexity, often de-
fying exact analytical solutions and remaining one of the most perplexing open problems
in mathematics [ 9 ]. These difficulties ushered in the era of  Computational Fluid Dynamics
(CFD) , a transformative approach employing numerical methods to approximate solutions
to the NSE. CFD has become an indispensable tool, leveraging advanced computing algo-
rithms to simulate fluid flow scenarios. CFD still grapples with computational intensity
and a suite of issues ranging from grid dependency to convergence challenges [  10 ], under-
scoring a persistent need for innovation.
Turbulence modelling, in particular, stands out as a formidable challenge. Turbulence is
characterized by velocity and pressure fluctuations across a diverse range of scales, from
large vortices to minute eddies, compounded by numerical instabilities, especially in re-
gions close to walls. While  Direct Numerical Simulation (DNS)  offers an avenue for precise
modelling, its demand for extensive computational resources often renders it impractical
for routine applications [  28 ]. Consequently, in many practical scenarios, simplified turbu-
lence models are employed, even though this comes at the expense of accuracy.
Advancements in the dynamically evolving field of CFD have seen substantial efforts
channeled into enhancing turbulence models [ 34 ], improving meshing techniques [ 42 ],
developing efficient  Reduced Order Modelling (ROM) surrogates [ 1 ], and reducing com-
putational complexity [  40 ]. The pursuit of efficiency and optimization in CFD, marked by
a growing interest in  Machine Learning (ML) and  Deep Learning (DL) , has led to the appli-
cation of these technologies for fluid dynamics. Unlike traditional computational methods,
which are tethered to the constraints of processing power and simulation time, DL algo-
rithms, once trained, can offer rapid predictions for new datasets. The integration of DL
into CFD represents a promising frontier, with the potential to generate novel insights into
fluid dynamics ([ 22 ], [ 36 ]).
Despite the advancements, DL methods have not yet been widely adopted in engineer-
ing practice, possibly due to the scarcity of extensive datasets and the poor generalization
performance on previously unseen data [ 4 ]. This thesis leverages  Graph Neural Networks 
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1. Introduction

 

(GNN) to enable precise and efficient predictive models, specifically tailored for the nu-
anced application of nozzle flow simulation on unstructured meshes.

1.1. Literature review

In this section, we review significant contributions and advancements in the intersection
of ML and CFD, with a particular focus on turbulence modelling. The foundational work
in turbulence modelling can be traced back to Osborne Reynolds, who, in the late 19th
century, pioneered the concept of turbulence through studies on fluid flow in pipes [ 37 ].
However, it was only in the 20th century that significant strides were made in formalizing
turbulence models. The 1970s saw the introduction of the k-ϵ model [ 23 ], which improved
RANS models by balancing accuracy with computational demands. Increased computa-
tional capabilities later enabled the adoption of DNS and  Large Eddy Simulation (LES) [ 41 ]
for more precise flow simulations. Recent trends show hybrid RANS-LES models emerg-
ing as a promising approach for accurate simulations.
ML algorithms have been increasingly deployed to construct surrogate models for com-
plex turbulence systems. These surrogate models, embodying reduced-order representa-
tions, offer a streamlined computational alternative to exhaustive simulations. By the early
2010s, the exploration of ML in CFD began with significant contributions like Brunton’s re-
view [ 5 ], categorizing ML techniques into supervised, semi-supervised, and unsupervised
learning. Supervised learning involves training models on well-labeled datasets to pre-
dict predefined outcomes, with regression algorithms playing a pivotal role in predicting
continuous variables such as turbulence quantities. Semi-supervised learning, blending
elements of supervised and unsupervised learning, has shown effectiveness in analyzing
time-series data and images. Unsupervised learning focuses on unlabeled data and iden-
tifies patterns, clusters, or structures using methodologies like ROM and POD [ 2 ].
Beyond traditional classification, ML techniques can be discerned by their optimization
goals into physics-informed and data-driven methods. Physics-informed methods inte-
grate domain-specific knowledge, typically based on physical laws and principles, into
the model formulation. They rely less on large amounts of data, as they primarily lever-
age the governing equations of the system. Termed  Physics-Informed Neural Networks
(PINN) [ 36 ], these methods are suitable when the physics of the problem is well under-
stood and when data may be sparse or expensive to obtain.
In contrast, data-driven models aim to reduce the prediction error, relying on available
data to make predictions or decisions. DL has facilitated the generation of data-driven
closure terms for RANS and LES models, significantly elevating the precision of turbu-
lence simulations [ 25 ]. Among the spectrum of DL methodologies,  Convolutional Neural
Networks (CNN) and  Recurrent Neural Networks (RNN) have emerged as particularly
potent in modelling turbulence. They adeptly capture and learn from the complex pat-
terns inherent in turbulent flows. This capability extends to challenging scenarios such
as non-equilibrium and multiphase flows. Milano and Koumoutsakos [ 27 ] explored the
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1.2. Scope and objectives

use of neural networks for approximating flow fields around complex geometries, setting
a precedent for DL in fluid mechanics. Tracey, Duraisamy, and Alonso ([ 44 ]) introduced
machine learning techniques to modify turbulence models, illustrating ML’s potential to
refine simulation models. Zhang and Duraisamy’s work [ 48 ] on data-driven turbulence
closure models via multiscale Gaussian process regression paved the way for enhanced
RANS equations.
Subsequent research efforts have further broadened the application of ML in CFD. More
recently, Parish and Duraisamy [ 32 ] leveraged ML to inform turbulence model discrep-
ancies, enhancing predictive capabilities. Ling, Kurzawski, and Templeton [ 25 ] signifi-
cantly advanced RANS models’ accuracy by incorporating Galilean invariance through
deep neural networks. This period also witnessed the utilization of fully-convolutional
neural networks by Guastoni et al. [ 13 ] for predicting velocity fields in turbulent flows,
demonstrating the applicability of DL in fluid dynamics.
Expanding the scope to unstructured mesh data, recent advancements have explored graph-
based and mesh-free techniques for fluid data representation. Trask et al. [ 46 ] introduced
GMLS-Nets for mesh-free data analysis, demonstrating the versatility of ML approaches
in handling complex data structures. Furthermore, Ogoke et al. [ 31 ] demonstrated the
effectiveness of  Graph Convolutional Neural Networks (GCNN) in predicting drag forces
around airfoils. Liu et al. [ 26 ] showcased the effectiveness of GCNNs and meta-learning
in predicting flow dynamics and enhancing turbulence models, highlighting the adaptive
capabilities of GNNs in fluid dynamics.
In light of these developments, this research proposes a GNN-based surrogate model to
analyze unstructured mesh data arising from turbulent flow within a  High-speed Ori-
enting Momentum with Enhanced Reversibility (HOMER) nozzle, developed by Michele
Trancossi [ 45 ].

1.2. Scope and objectives

This thesis focuses on the cutting-edge intersection of DL, specifically GNNs, and CFD
to enhance the predictive modelling of turbulent nozzle flow simulations. Traditionally,
reaching stable solutions entails running simulations for extensive time intervals, a pro-
cess that requires considerable computational resources and time. This thesis introduces
surrogate models that circumvent the need for prolonged simulation times. By capturing
transitional solutions at earlier stages, which take significantly less time, and processing
them through a surrogate model, we can predict stable, steady-state solutions more ef-
ficiently. This approach utilizes GNNs as the core technology for the surrogate models,
aiming to significantly reduce the computational burden associated with traditional CFD
simulations. The research encapsulated within this thesis covers the development, evalu-
ation, and practical application of a GNN-based surrogate model tailored for nozzle flow
simulations. Furthermore, we employ data analysis techniques to categorize simulations
based on velocity ratios and Coanda effect occurrences. The objectives set forth outline a
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1. Introduction

clear and structured path towards achieving the goals of this research and its outcomes.

1. Develop a GNN model for predicting nozzle flow simulation quantities: The pri-
mary objective is to design and train a GNN model, that serves as a surrogate to
accurately predict the steady-state velocity and pressure fields of nozzle flow sim-
ulations from early, transition states. This model leverages short-term, less compu-
tationally intensive simulation results to accurately forecast stable, steady-state flow
conditions.

2. Investigate the accuracy, efficiency and feasibility of the surrogate model: This
research seeks to assess the viability of the developed GNN model as a surrogate
to traditional CFD simulations for nozzle flow analysis. The surrogate model’s effi-
ciency, in terms of computational resources and time, will be evaluated against con-
ventional simulation methods to establish its practicality for real-world applications.
This includes an examination of the model’s accuracy as well as a detailed com-
parison between the steady-state solutions predicted by the GNN models and those
obtained from traditional CFD simulations, highlighting the computational savings
and potential limitations.

3. Perform clustering on low-dimensional data to classify simulations: Another as-
pect of this thesis is the application of clustering techniques to low-dimensional rep-
resentations of simulation data. The goal is to categorize simulations based on the
velocity ratios between the two inlets of the nozzle to determine occurrences of com-
plete adhesion of the outflow jet to the Coanda surface (referred to in this work as
Coanda adhesion) and identify to which wall the complete adhesion takes place. This
objective aims to provide deeper insights into the simulation outcomes, facilitating
more effective analysis and optimization of nozzle designs and flow conditions.

4. Investigation of advanced GNN architectures for enhanced model performance:
To explore the potential benefits of incorporating advanced GNN architectures and
training strategies, aiming to optimize the model’s performance for the complex task
of predicting fluid dynamics in nozzle flow scenarios.

Together, these objectives aim to substantially contribute to the field of turbulence mod-
elling using DL techniques, guiding future research and application developments in noz-
zle flow dynamics and beyond. They offer efficient and adaptable surrogate modelling
approach for simulating the dynamics of nozzle flows, thereby reducing the dependence
on extensive computational resources and time.
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2. Nozzle simulation and fluid mechanics
primer

This chapter delves into the nozzle flow dynamics of a High-speed Orienting Momentum
with Enhanced Reversibility (HOMER) nozzle, developed by Trancossi and Dumas [ 45 ].
We begin with an understanding of the problem and the underlying principle, which is the
Coanda effect. In Section  2.2 , we elucidate the governing equations that mathematically
define the fluid flow, as well as additional equations for turbulence modelling. Subse-
quently, we discuss various numerical approaches that discretize the governing equations.
Additionally, the chapter provides insights into the simulation setup in Section  2.4 , encom-
passing meshing strategies, boundary condition specifications, and solver settings for the
problem.

2.1. Jet deflection in the HOMER nozzle

The HOMER nozzle is designed to produce a controllable and selective deviation of a
synthetic jet, generated by mixing two primitive jets. The jet is controlled solely by taking
advantage of the Coanda effect and does not require any mechanical parts. The general
structure of the nozzle is depicted in Figure  2.1 . As we can see from the figure, the nozzle
has two inlets fed by two impinging jets, followed by a convergence zone, or a septum,
where mixing of the flows occurs. This generates a synthetic outflow jet, which can be
controlled by modifying the momentums of the primitive jets. Next to the convergence
zone is the outflow mouth, with curved walls connected to two convex Coanda surfaces on
the top and bottom. The system requires a minimum operating condition of the primitive
jets [ 45 ] to ensure effective mixing. The impinging jets must have velocities high enough
to generate a synthetic jet of Reynolds number greater than 5000 at the outlet mouth. To
guarantee optimum operation, the Reynolds number at the outlet must exceed 10000. In
the case of lower Reynolds numbers, the system’s behavior is unpredictable.

2.1.1. Coanda effect

Coanda effect is the tendency of a stream of fluid emerging from an orifice to follow an
adjacent flat or curved surface and to entrain fluid from the surroundings so that a region
of lower pressure develops. In simple terms, it is the tendency of a fluid to adhere to and
stay attached to the walls of a convex surface, as demonstrated in Figure  2.2 . Different
fluid dynamic effects concur to create the Coanda effect, namely the boundary layer effect,
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2. Nozzle simulation and fluid mechanics primer

Figure 2.1.: Schematic overview of the HOMER nozzle design, highlighting the dual inlets
and Coanda effect surfaces, adapted from Trancossi and Dumas [ 45 ]

the adhesion effect, and the attraction effect. Newman [  30 ] has demonstrated that Coanda
adhesion to a curved surface is dependent on the equilibrium of forces applied on the fluid.
Adhesive motion on a curved surface involves centrifugal force and radial pressure, with
contact pressure decreasing due to viscous drag upon jet exit. This pressure differential
propels fluid along the curved surface until surface pressure matches ambient pressure,
causing detachment between the wall and the fluid jet.

Figure 2.2.: Demonstration of the Coanda effect: Visualization of a fluid jet adhering to and
flowing along a curved surface, illustrating the fundamental principle utilized
in the HOMER nozzle design.

10



2.2. Governing equations

2.2. Governing equations

In this section, we talk about the mathematical equations that govern the fluid flow in the
nozzle setup. The computational domain for our fluid flow problem is shown in Figure  2.3 .
We consider the same homogenous fluid for both primitive jets. This refers to streams with
the same chemical and physical properties, i.e.; the density of the fluid  ρ remains constant.
The fluid in consideration is air in ideal gas conditions. The Navier Stokes Equations (NSE)
can then be used to mathematically model the flow of an incompressible Newtonian fluid
within the computational domain, given as,

Figure 2.3.: Visualization of the HOMER Nozzle: Left - Geometry of the modified HOMER
nozzle; Right - CAD model showcasing the computational simulation domain.

∂ui
∂xi

= 0

∂ui
∂t

+ uj
∂ui
∂xj

=
−1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j

(2.1)

where,  ui  is the flow velocity in the spatial direction xi,  ν  is the kinematic viscosity,  µ is
the dynamic viscosity (ν = µ/ρ), and  p is the pressure. We set constant velocities at the
two inlets based on which a velocity profile corresponding to a fully-developed turbulent
plane channel flow is computed at the inlet channels ∂Ωin. At the walls ∂Ωwall, we apply
no-slip boundary conditions. We impose zero-gradient Neumann boundary conditions on
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2. Nozzle simulation and fluid mechanics primer

the flow quantities at the outlet.
Turbulence, characterized by its unsteady, highly irregular, and energy-dissipative behav-
iors at high Reynolds numbers, causes minute fluctuations in velocity, pressure, and tem-
perature across varying scales. While a DNS could theoretically capture these fluctuations
by solving the NSE, the immense computational resources required render it impracti-
cal for most engineering simulations. Turbulence modelling using  Reynolds Averaged
Navier-Stokes (RANS) equations offers a practical compromise by solving time-averaged
equations for steady-state or unsteady RANS (URANS) flows. RANS relies on turbulence
models to account for unresolved turbulence effects, allowing for efficient simulations of
complex engineering systems without resolving every turbulent detail. The underlying
principle is to consider the flow as the sum of the mean flow and turbulent/fluctuating
components. For a steady-state flow field, Reynolds decomposition is applied to flow
quantities. For example, the flow velocity is expressed as ui = ūi+u′i, where ūi is the mean
velocity and u′i is the fluctuating turbulent component. The Reynolds averaging process
introduces an additional term to the NSE known as Reynolds stress. By substituting the
averaged quantities in the NSE, we obtain the RANS equations for our steady-state, 2D
incompressible flow as,

∂ūi
∂xi

= 0

ρūj
∂ūi
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

[
µ

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ρu′iu

′
j

] (2.2)

where, −ρu′iu
′
j is the Reynolds stress tensor term and represents the effect of the small-

scale turbulence on the average flow and p̄ is the averaged pressure. The RANS equations
have no unique solution because they are not in closed form, that is the unknowns are
more than the equations. Thus, additional equations are needed for turbulence closure.
The most common strategy used in CFD is to relate the Reynolds stress to the shear rate
by the Boussinesq relationship:

u′iu
′
j = −νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
+

2

3
kδij (2.3)

where,  k  is the turbulent kinetic energy and  δij  is the Kronecker delta, which is 1 if i = j
and 0 otherwise.  νt  is the turbulent viscosity, computed from the turbulence models. Some
of the RANS-based turbulence models are outlined below:

1. The Spalart-Allmaras model is a computationally efficient, one-equation model that
solves for a single variable νt.

2. The k−ϵ model resolves turbulence through two equations: one for turbulent kinetic
energy k and another for the rate of dissipation of turbulent kinetic energy  ϵ .
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2.3. Numerical analysis

3. The k−ω model is another two-equation model that features transport equations for
k and a specific rate of turbulence dissipation  ω  . This model is particularly advan-
tageous in accurately predicting near-wall flows and is less susceptible to numerical
issues than the k − ϵ model in adverse pressure gradient regions.

4. The k − ω  Shear Stress Transport (SST) model combines aspects of the k − ϵ model
near walls and the k − ω model away from walls to provide accurate predictions in
both regions. The k − ω SST model is particularly suitable for boundary layer flows,
capturing the near-wall behavior accurately while providing robust predictions in
the outer flow regions. Its versatility and computational efficiency make it a popular
choice for a wide range of engineering applications.

For the purposes of this work, the k − ω SST turbulence model has been adopted.

2.3. Numerical analysis

Numerical analysis on PDEs - in our case, the RANS equations, is performed by discretiz-
ing the continuous domain into a discrete setup. This results in a system of algebraic
equations, usually linear systems, that can be solved by iterative techniques such as Jacobi
or Gauss-Seidel. Multigrid methods are another class of iterative numerical techniques
used to solve discretized PDEs by employing a hierarchy of grids with varying levels of
resolution - from coarse to fine - to accelerate convergence.
Some commonly used discretization techniques are the  Finite Difference Method (FDM) ,

 Finite Element Method (FEM) , and  Finite Volume Method (FVM) . All three methods end
up solving one (or several) system(s) of linear equations to compute an approximate nu-
merical solution to the PDE at hand. And for all three methods, these linear systems are
sparse, and the equation for an unknown ui involves a few neighbors of point i. Overall,
FDM is mostly used for geometries that can be discretized by structured grids (e.g., rect-
angles), while FEM and FVM are more suitable for complex domains.
FVM discretizes PDEs by dividing the computational domain into finite volumes or cells.
It conservatively approximates integral forms of conservation laws within each cell. The
method calculates fluxes across cell interfaces, preserving conservation principles, making
it particularly suited for problems involving fluid flow, heat transfer, and other conserva-
tion phenomena. As FVM is based on the integral formulation of a conservation law, it is
mainly used to solve PDEs in fluid dynamics, which involve fluxes of the conserved vari-
able. In this thesis, we are only interested in the discretization of PDEs using FVM, which
is the most widely used discretization approach in CFD solvers.

2.4. Simulation setup

Trancossi and Dumas [ 45 ] proposed a mathematical model of the HOMER nozzle and car-
ried out 2D, incompressible flow simulations on this geometry. The simplified model pre-
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2. Nozzle simulation and fluid mechanics primer

dicts the detachment angle of the jet stream over the curved surface. The nozzle chosen for
our study is a slightly modified version of a thrust-vectoring propulsive HOMER nozzle.
The modified design is inspired by the numerical investigation and experimental valida-
tion of Kara and Erpulat [ 19 ]. The geometry adopted for the simulations as well as the
computational domain are depicted in Figure  2.3 . The selected channel length ensures the
mean flow quantities are fully developed, hence establishing steady-state conditions. The
meshing and simulation are carried out on OpenFOAM which uses finite volume methods
to discretize the PDEs.

2.4.1. Mesh generation

The geometry is created using FreeCAD [ 11 ] and patch names are assigned based on the
type of boundaries. The meshing process on OpenFOAM begins with the discretization of
the geometry into hexahedral blocks using blockMesh. Then, snappyHexMesh refines
the mesh based on parameters specified in snappyHexMeshDict. This includes defining
refinement controls, snapping settings, adding boundary layers, and ensuring mesh qual-
ity. The process iteratively refines the mesh until the desired quality and resolution are
achieved, enabling accurate simulations of the geometry’s physical behavior. An unstruc-
tured, 3D hybrid mesh with tetrahedral and hexahedral elements has been generated for
the computational domain and is enhanced by boundary layer refinement and a refine-
ment box around the nozzle region.

2.4.2. Boundary conditions and solver settings

We carry out an incompressible steady-state CFD simulation on the mesh, setting appro-
priate boundary and initial conditions. By applying low Reynolds number wall functions
for k, ω, and turbulent viscosity νt at walls, we account for near-wall turbulence effects, en-
suring accurate modelling near boundaries. We also prescribe adiabatic stationary walls
with no slip conditions, and pressure to zero gradient, at the Coanda surfaces and the
inner walls of the nozzle. We define the flow entering the domain by prescribing inlets
with fixed velocities and set both inlet turbulence intensities to 1% (medium turbulence).
Furthermore, we specify the pressure at outlets through a pressure outlet boundary con-
dition, allowing flow to exit the domain without reflecting back. These actions collectively
ensure the proper representation of flow behavior within the computational domain. The
simpleFoam solver is the tool we use for the simulations, employing the  Semi-Implicit
Method for Pressure Linked Equations (SIMPLE) algorithm for effective pressure-velocity
coupling. We iteratively resolve the momentum and pressure equations until achieving
a predetermined convergence criterion. The k − ω SST turbulence model serves our pur-
poses, with the fluid’s kinematic viscosity set at 1.51×10−5. For velocity’s convective term,
we use the linear Upwind scheme for discretization, while the divergence term undergoes
discretization via a bounded Gauss linear scheme. For the turbulence fields k, ω, νt, we
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employ a bounded Gauss upwind scheme for discretization. We have set the convergence
criterion to 10−6 for the pressure field and 10−8 for all other quantities.

2.5. Simulation results

In this section, we highlight the simulation results of a few flow scenarios. Figure  2.4 

showcases the velocity fields of four distinct cases and their behavior towards the Coanda
surfaces. Figure  2.5 presents the pressure fields for the same cases.

Figure 2.4.: Velocity fields from four simulation cases, from left to right: (a) (18 m/s, 27
m/s) shows jet deflection towards the bottom surface, (b) (35 m/s, 5 m/s)
shows Coanda adhesion to the top surface, (c) (6 m/s, 24 m/s) shows Coanda
adhesion to the bottom surface, (d) (20 m/s, 10 m/s) shows jet deflection to-
wards the top surface, where (Inlet 1, Inlet 2) describe the initial velocities.

Figure 2.5.: Results from simulations showcasing pressure fields for four cases of interest,
from left to right: (a) (18 m/s, 27 m/s), (b) (35 m/s, 5 m/s), (c) (6 m/s, 24 m/s),
and (d) (20 m/s, 10 m/s). The initial velocities are enclosed as (Inlet 1, Inlet 2).
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This chapter provides a comprehensive explanation of foundational concepts and method-
ologies in deep learning, with a particular emphasis on Graph Neural Networks (GNNs).
It begins by introducing deep learning and elucidating the basics of neural networks, fo-
cusing on their architecture and operational principles. Section  3.3 navigates through the
intricacies of training neural networks with topics including feature scaling, weights ini-
tialization, batch training, and hyperparameter tuning. Subsequently, it delves into opti-
mization techniques, addressing essential elements such as loss functions, backpropaga-
tion, learning rates, and optimizers. Furthermore, this chapter examines model evaluation
metrics and explores advanced neural network architectures such as CNNs in Section  3.5 

and GNNs in Section  3.6 , highlighting their important features and components.

3.1. Introduction to machine learning and deep learning

Machine learning, a dynamic subset of artificial intelligence, is dedicated to developing
algorithms that extract insights and patterns from data. This enables systems to enhance
their accuracy and decision-making capabilities without being explicitly programmed for
each task. The learning process utilizes statistical models and optimization algorithms to
iteratively adjust parameters and improve performance. Machine learning approaches are
broadly categorized into supervised learning and unsupervised learning based on learn-
ing objectives.
Supervised learning involves training a model using labeled data, where each input is
paired with a corresponding output. During training, the model learns to map input data
to output labels by minimizing the difference between its predictions and the true labels.
This approach is commonly used for tasks such as classification and regression.
Unsupervised learning involves training a model on unlabeled data, where the algorithm
aims to find hidden patterns or structures within the data without explicit guidance. It is
often used for tasks like anomaly detection, data exploration, and feature learning, where
the data lacks labeled examples or where the underlying structure is unknown.
Deep learning is a subset of machine learning that has gained significant attention due to
its remarkable performance in various tasks, ranging from image and speech recognition
to autonomous driving. It utilizes neural networks consisting of multiple layers of inter-
connected neurons to learn representations of data through iterative processing of input
data to make predictions or decisions.
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3.2. Fundamentals of neural networks

 Artificial Neural Networks (ANN) are computational models inspired by the structure
and function of biological neural networks [  39 ]. They consist of interconnected nodes or-
ganized into layers, typically including an input layer, one or more hidden layers, and an
output layer.
A perceptron or an artificial neuron, is the fundamental building block of ANNs. It takes
multiple input signals (x1, x2...xn), each weighted by a connection weight w1, w2, ...wn,
sums them up, and applies an activation function  σ  to produce an output y = σ

(
wTx+ b

)
,

where b is the bias, w and x are the weight and input vectors, respectively. Perceptrons are
arranged in layers to build complex neural network architectures.

Activation functions are usually non-linear functions to introduce non-linearity within

Figure 3.1.: Schematic representation of a perceptron - the basic computational unit of ar-
tificial neural networks, illustrating input connections, weights, bias, and an
activation function.

the layers of neural networks, allowing them to learn and represent complex relationships
in data. Common activation functions include sigmoid, tanh, and  Rectified Linear Unit
(ReLU) and these are plotted in Figure  3.2 . Without the nonlinear transformation via the
activation function, the network would be confined to solving only linear problems.
Weights in a neural network represent the strength of connections between neurons. They

are learned parameters to adjust the influence of input signals on the neuron’s output. Bi-
ases allow neural networks to model the offset from zero output, influencing the activation
of neurons regardless of the input.
 Neural Networks (NN) consist of interconnected layers of perceptrons that process input
data to produce output predictions. They can be represented as directed graphs, where
nodes correspond to perceptrons and edges depict connections between them. These con-
nections typically carry weighted signals from one neuron’s output to another neuron’s
input. In particular, we are interested in feed-forward neural networks, in which infor-
mation flows only in one direction from the input layer through one or more hidden layers
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Figure 3.2.: Comparative visualization of common activation functions used in neural net-
works: (a) Sigmoid, (b) Tanh, (c) ReLU, and (d) Leaky ReLU.

to the output layer. Each layer processes the input data independently, and the output of
one layer serves as the input to the next layer. The connections between neurons do not
form directed cycles, ensuring that the network architecture is acyclic.  Multi Layer Per-
ceptrons (MLP) are the simplest feed-forward neural networks, described in Figure  3.3 .

3.3. Training of neural networks

In this section, we delve into the training practices of neural networks, highlighting the op-
timization of model parameters to enhance task performance. We particularly focus on the
methodologies of data handling like data partitioning, feature scaling, regularization tech-
niques, batch training and weight initialization. The process of training neural networks is
aimed at optimizing a model’s parameters to improve its performance on given tasks. We
also talk about optimization strategies, which leverage algorithms like backpropagation to
calculate gradients and apply updates via optimizers such as SGD or Adam.

3.3.1. Data partitioning

Data partitioning is a crucial step in deep learning in which the dataset is divided into
separate subsets for training, validation, and testing. The data partitioned into training
data is used to train the model, and validation data is used to tune hyperparameters and
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Figure 3.3.: Architecture of a Multi-Layer Perceptron (MLP) showcasing an input layer,
multiple hidden layers, and an output layer, demonstrating the flow of infor-
mation in feed-forward neural networks.

monitor performance. The test data remains unknown during training and is used to eval-
uate the final model’s generalization performance. The partitioning process ensures that
the model’s performance is assessed accurately on unseen data and provides independent
datasets for training and evaluation.

3.3.2. Feature scaling

Feature scaling or normalization, is a preprocessing step aimed at bringing all input fea-
tures to a similar scale. Features with large magnitudes can lead to large gradients during
training, which may cause unstable behavior. Feature scaling mitigates this issue by re-
ducing the range of feature values, thus preventing gradient instability and ensuring more
reliable optimization. Common feature scaling techniques include min-max normaliza-
tion, Z-score standardization, and unit length scaling.

3.3.3. Weight initialization

Weight initialization sets the initial values for the model’s parameters before training be-
gins. The initial weights dictate the local minimum the weights should converge to; thus,
better initialization leads to improved model performance. Random initialization with
small weights is a common practice in deep learning. Initializing weights to random
values drawn from a suitable distribution with a zero mean and small variance breaks
symmetry and helps prevent both vanishing and exploding gradients. It encourages each
neuron to learn different features from the input data, promoting diverse representations
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and effective learning. Techniques like Xavier [ 12 ] and Kaiming [ 17 ] initialization refine
this process by adapting to the characteristics of activation functions.

3.3.4. Regularization

Regularization broadly refers to techniques used to prevent overfitting by imposing addi-
tional constraints on the model’s parameters, i.e.; by adding penalties to the loss function.
Regularization penalizes large weights in the model, thereby promoting simpler models
that generalize better to unseen data. L1 regularization encourages sparsity in the weights,
performing feature selection by setting irrelevant weights to zero, making the model sim-
pler and more interpretable.

LossL1Reg = Lossoriginal +λ
n∑

i=1

|wi|

L2 regularization encourages the weights to be spread out more evenly, preventing indi-
vidual weights from becoming too large.

LossL2Reg = Lossoriginal +λ

n∑
i=1

w2
i

Here,  λ is the regularization strength and determines the degree of penalty imposed on
large weights. A smaller λ value results in weaker regularization, increasing the risk of
overfitting. Conversely, a larger λ value results in a simpler model that generalizes better
but may underfit the training data.

3.3.5. Batch training and batch normalization

Batch training is a technique in deep learning in which the model updates its parameters
based on a subset (or batch) of the training data, rather than the entire dataset. The training
data is divided into batches of fixed size, and the model computes the gradient updates
based on an average of the samples in each batch. This reduces the variance in the gradient
estimates, stabilizes the gradients, and prevents large fluctuations during training.
Too small a batch size leads to frequent and noisy gradient updates. On the other hand, too
large a batch requires more computational resources and memory, despite providing pre-
cise gradient estimates and stable optimization. Selecting an optimal batch size requires
balancing the trade-off between computational efficiency and the quality of gradients.
Another important term in this context is an epoch, which refers to a single pass through
the entire training dataset. During one epoch, each batch is processed sequentially through
the neural network, completing a full iteration over the entire dataset. Typically, training
iterates over the entire dataset for multiple epochs until the model converges or a prede-
fined stopping criterion is met.
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3.3.6. Overfitting and underfitting

Overfitting and underfitting are two common phenomena that affect the performance and
generalization ability of the model. Overfitting occurs when a model learns to perform
well on the training data but fails to generalize to unseen data. The model becomes overly
complex and specific to the training set, leading to poor generalization. Signs of overfitting
include high training accuracy but low validation or test accuracy as the model memorizes
training examples. Techniques such as regularization, dropout and early stopping can help
prevent overfitting by reducing the model’s capacity and complexity.
Underfitting occurs when a model is too simple to capture the underlying structure of the
data. In this case, the model fails to learn the patterns present in the training data and
performs poorly both on the training and unseen data. Underfitting often occurs when the
model is too shallow or simple. Signs of underfitting include low training and validation
accuracy. Increasing the model’s capacity, adding more data, or improving feature engi-
neering can help alleviate underfitting by allowing the model to capture more complex
relationships in the data.

3.3.7. Hyperparameters

Hyperparameters in deep learning are fixed parameters set prior to the training process
that are not learned from the data. They control various aspects of the learning process,
such as the model architecture, optimization settings and the training procedure itself.
Some important hyperparameters are the number of neurons per layer, number of layers,
activation function, batch size, number of epochs, optimizer, loss function, weight initial-
ization, dropout rate, and regularization strength.
Hyperparameter tuning is the process of selecting the optimal values for these hyperpa-
rameters to maximize the performance of the model on unseen data. It involves systemati-
cally searching through a predefined space of hyperparameters and evaluating the model’s
performance using a validation set or cross-validation. The goal is to find the hyperparam-
eters that result in the best generalization performance, balancing between underfitting
and overfitting.

k-Fold cross-validation

In k-fold cross-validation [ 15 ], the dataset is divided into k subsets or folds, of approx-
imately equal size. The model is trained k times, each time using k-1 folds for training
and the remaining fold for validation. This process is repeated k times, with each fold
used exactly once as the validation set. Instead of relying on a single validation set, this
method averages the performance over multiple folds, providing a more stable estimate of
the model’s performance. k-fold cross-validation helps evaluate the performance of differ-
ent hyperparameter configurations during hyperparameter tuning. Figure  3.4 represents
 Leave One Out Cross-Validation (LOOCV) - a variant of k-fold cross-validation.
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3.3. Training of neural networks

Figure 3.4.: Schematic Representation of LOOCV - In every iteration, exactly one fold is
subsequently chosen as the validation fold while the remaining (k-1) folds are
combined to become the training dataset.

3.3.8. Optimization

Optimization involves adjusting the parameters of the neural network, such as weights
and biases, to minimize a predefined objective function, typically referred to as the loss
function. The optimization process iteratively updates the parameters based on the gra-
dients of the loss function with respect to the network’s parameters, aiming to converge
to a set of optimal parameters that yield the best performance on the given task. Some
important aspects of the optimization process are discussed in the following subsections.

Loss function

The loss function quantifies the difference between the model’s predictions and the actual
target values. It represents the measure of how well the model is performing on the train-
ing data. Common loss functions include mean squared error (MSE) for regression tasks
and categorical cross-entropy for classification tasks. The loss function  L(θ) is defined as:

L(θ) = 1

N

N∑
i=1

L (yi, ŷi; θ) (3.1)

Here,  θ  represents the parameters of the neural network being optimized, such as weights
and biases,  yi  is the ground truth and  ŷi  is the model prediction. The loss function L(θ)
depends on these parameters, and it is computed as the average of the individual loss
L (yi, ŷi; θ) over all the training examples of size N .

Backpropagation

Backpropagation is a fundamental algorithm used to compute the gradients of the loss
function with respect to the parameters (weights and biases) of the neural network. It
involves propagating the error backward from the output layer to the input layer, updating
the parameters along the way to minimize the loss. The gradients are computed using the
chain rule of calculus, enabling efficient optimization of the network’s parameters. The
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3. Deep learning primer

gradients ∇θL(θ) of the loss function are computed as,

∇θL(θ) =
1

N

N∑
i=1

∇θL (yi, ŷi; θ) (3.2)

Learning rate

The learning rate is a hyperparameter that controls the size of the parameter updates, that
is, the step-size in the direction of the gradients computed by backpropagation. A higher
learning rate may lead to faster convergence but risks overshooting the optimal solution,
while a lower learning rate may result in slower convergence but more stable training. The
parameter update rule with learning rate  η  is given by:

θt+1 = θt − η∇θL(θ) (3.3)

Here, θt+1 and θt represent the parameters at time-step t and t + 1 respectively. Learning
rate decay is often used to gradually reduce the learning rate during training with the help
of learning rate schedulers.

Optimizer

The optimizer is responsible for updating the parameters of the neural network based on
the gradients computed during backpropagation. It determines the direction and magni-
tude of parameter updates to minimize the loss function efficiently. Popular optimizers
include  Stochastic Gradient Descent (SGD) [ 3 ],  Adaptive Moment Estimation (Adam) [ 20 ],
 Root Mean Squared Propagation (RMSProp) [ 43 ], and  Adaptive Gradient (AdaGrad) [ 7 ].
We use the Adam optimizer in the training and testing phases of our work.
Adam (Adaptive Moment Estimation) is an algorithm for stochastic optimization that
combines the ideas of SGD with momentum and RMSProp. It maintains exponentially
decaying moving averages of past gradients and past squared gradients for each param-
eter. These moving averages serve as estimates of the first and second moments of the
gradients, respectively. Adam also incorporates bias correction terms to compensate for
the initial bias towards zero at the beginning of training. The parameter update rules at
time-step t are given by,

1. Compute the gradient of the loss function with respect to the parameters, θt.

2. Update biased first moment estimate: mt = β1mt−1 + (1− β1)θt.

3. Update biased second raw moment estimate: vt = β2vt−1 + (1− β2)θ
2
t .

4. Compute bias-corrected first moment estimate: m̂t =
mt

(1−βt
1)

.

5. Compute bias-corrected second moment estimate: v̂t = vt
(1−βt

2)
.

24



3.4. Model evaluation metrics

6. Update the parameters: θt+1 = θt − η · m̂t

(
√
v̂t+ϵ)

.

Here, β1 and β2 are exponential decay rates for these moment estimates, typically close to
1, and ϵ is a small constant added to avoid division by zero.

3.4. Model evaluation metrics

Model evaluation metrics are essential for assessing the performance of deep learning
models. The loss function serves as a crucial metric for evaluating model performance,
in addition to optimizing model parameters during training. In regression tasks, where
the goal is to predict continuous values, common loss functions include the following:

•  Mean Absolute Error (MAE) : MAE measures the average absolute difference be-
tween the predicted values and the actual values:

MAE =
1

N

N∑
i=1

|yi − ŷi|

MAE is robust to outliers and does not penalize large errors heavily.

•  Mean Squared Error (MSE) : MSE measures the average squared difference between
the predicted values and the actual values:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

MSE penalizes larger errors more heavily than MAE since errors are squared. This
makes it more sensitive to outliers.

•  Root Mean Squared Error (RMSE) : RMSE is the square root of the average squared
difference between the predicted values and the actual values:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

RMSE is sensitive to outliers, similar to MSE, but is more interpretable as it is in the
same units as the target variable.

3.5. Convolutional Neural Networks (CNNs)

CNNs [ 24 ] are specialized neural networks designed to process grid-like data, such as im-
ages. They utilize convolutional layers and pooling operators to learn spatial hierarchies of
features from input data, making them highly effective for tasks like image classification,
object detection, and image segmentation. In this section, we outline the major compo-
nents of CNNs, such as convolutional layers, pooling and unpooling operations.
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3.5.1. Convolutional layer

The convolutional layer in a CNN consists of a set of learnable filters (kernels) that slide
over the input data, performing element-wise multiplication and summing to produce
feature maps. The convolution operation preserves the spatial relationship between pixels
and learns local patterns like edges, textures, and shapes. Figure  3.5 shows the working of
a convolution kernel.

Figure 3.5.: Detailed view of a convolutional layer’s operation in a CNN, depicting the
convolution process over an input matrix with a specified kernel to produce
feature maps.

3.5.2. Pooling and unpooling

Pooling and unpooling operators perform sampling operations, enabling hierarchical fea-
ture extraction while preserving spatial information. Pooling is a down-sampling oper-
ation commonly used in CNNs to reduce the spatial dimensions of feature maps. Max
pooling and average pooling are popular pooling techniques that select the maximum or
average value within each pooling region, respectively. These operations are depicted in
Figure  3.6 . Conversely, unpooling layers, used in upsampling, reconstruct the original in-
put resolution from the lower-dimensional representations generated by pooling. These
layers store the indices of the maximum values during pooling and use them for upsam-
pling. Nearest neighbor interpolation is a simple upsampling method where each pixel in
the input is replicated multiple times to form the output, as seen in Figure  3.7 .

3.5.3. The U-Net architecture

U-Net [ 38 ] is a CNN consisting of a U-shaped network structure with a contracting path
(encoder) followed by an expanding path (decoder), which is widely used for image seg-
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Figure 3.6.: Visualization of pooling operations in CNNs, (a) max pooling, and (b) average
pooling.

Figure 3.7.: Illustration of nearest neighbor interpolation based unpooling used in CNNs.

mentation. Some important components of the U-Net architecture are discussed below.

1. The encoder comprises a series of down-convolutional and max pooling layers that
gradually reduce the spatial dimensions of the input image while increasing the
number of feature channels. This path extracts high-level features from the input
image while preserving spatial context.

2. The decoder consists of up-convolutional (transposed convolution) and concatena-
tion layers that gradually increase the spatial dimensions of the feature maps while
reducing the number of feature channels. This path generates segmentation masks
by upsampling the low-resolution feature maps obtained from the encoder and com-
bining them with high-resolution feature maps using skip connections.

3. Skip connections or residual connections [ 18 ], are direct connections between layers
at the same hierarchical level in the network. Skip connections connect the encoder
to the corresponding layers in the decoder. This enables the network to retain fine-
grained spatial information from the encoder while recovering spatial details lost
during downsampling.

A notable observation pertinent to our current endeavor is the striking resemblance be-
tween the U-Net architecture and the V-cycle multi-grid method, as noted by He and Xu
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Figure 3.8.: Structure of the U-Net architecture demonstrating its U-shaped design with
contracting and expanding paths. Image taken from [ 38 ].

[ 16 ]. Both employ a hierarchical structure wherein information is exchanged across vary-
ing resolutions. A major limitation of CNNs is their inability to directly operate on irregu-
lar data formats, such as social networks, recommender systems, molecular structures, or
citation networks. In contrast to CNNs, which are well-suited for grid-like structured data
such as images, GNNs are tailored for data represented as graphs, which are discussed in
the upcoming section.

3.6. Graph Neural Networks (GNNs)

In 2017, Kipf and Welling introduced the Graph Convolutional Network (GCN) [ 21 ], a
foundational architecture that laid the groundwork for modern Graph Neural Networks
(GNNs). Since then, numerous advancements and variants of GNNs have been proposed.
Graph data are characterized by non-Euclidean and irregular structures, where entities
(nodes) and their relationships (edges) vary in connectivity and structure. GNNs excel in
processing unstructured data by leveraging the inherent graph structure by dynamically
aggregating information from neighboring nodes based on their connectivity. Formally, a
graph  G can be denoted as G = (V,E), where  V  is the set of nodes and  E  is the edge set.
The key components of a graph are outlined below.

1. Nodes: Nodes represent entities in a graph, such as users in a social network, atoms
in a molecule, or words in a document.
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Figure 3.9.: Diagram demonstrating the concept of skip connections within neural network
architectures. Skip connections bypass one or more layers by directly feeding
the output from an earlier layer to a later layer.

2. Edges: Edges define relationships or connections between nodes in a graph. Each
edge eij connects node vi to node vj , where vi, vj ∈ V . The edge set E can be repre-
sented as a collection of tuples (vi, vj) indicating the connections between nodes.

3. Adjacency matrix: An adjacency matrix is a binary N × N matrix representing the
connections between N nodes in a graph. For an undirected graph, Aij is 1 if there
exists an edge between nodes vi and vj , and 0 otherwise. For directed graphs, the
adjacency matrix may be asymmetric to represent the directionality of edges. The
adjacency matrix  A of the graph G can be defined as,

Aij =

{
1 if (vi, vj) ∈ E

0 otherwise

4. Node attributes and node feature matrix: Node attributes or features represent in-
formation associated with each node in the graph. These features can encode charac-
teristics such as velocity, pressure, and temperature as node embeddings. The node
feature matrix  X  for a graph with N nodes and D features is a N ×D matrix where
each row corresponds to a node and each column represents a feature dimension,
given by,

X =


xT1
xT2
...

xTN

 where, xi =


xi1
xi2

...
xiD


where xi represents the feature vector associated with node vi.

5. Edge weights: Edge weights  W  quantify the strength or intensity of relationships be-
tween nodes connected by edges. These weights can represent similarity measures,
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distances, or any other relevant information associated with edge connections. Sim-
ilar to node weights, edge weights can be learned or predefined.

Figure 3.10.: Schematic diagram of graph connectivity depicted by an adjacency matrix
using binary representation of node relationships in graph-structured data.

GNNs leverage these components to perform message passing and aggregation operations
across the graph structure, which are discussed below.

3.6.1. Graph convolutions

Graph convolutions update the feature representations of nodes in a graph by aggregat-
ing information from their neighboring nodes. Graph convolutional operators typically
exhibit local connectivity, where each node’s representation is updated based on the infor-
mation from its neighboring nodes. This local connectivity property allows the model to
capture localized patterns and dependencies within the graph structure. Weight sharing is
a key aspect of graph convolutions, where the same set of learnable parameters (weights)
is shared across different nodes in the graph. This allows for parameter efficiency and
enables the model to generalize well to unseen nodes and graphs. GCNConv [ 21 ], GMM-
Conv [ 29 ], and SAGEConv [ 14 ] are some common classes of convolution operators. Here,
we discuss the GCNConv operator that is used in Graph Convolutional Networks (GCNs).

GCNConv

GCNConv aggregates information from neighboring nodes and updates the representa-
tions of each node based on this aggregated information. The main steps involved are:

1. Message passing: Nodes exchange messages with their neighbors, aggregating in-
formation from neighboring nodes. The message passed from node vj to node vi at
layer l can be represented as:

m
(l)
ij =

1

cij
W(l)h

(l)
j +B(l)h

(l)
i
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where m
(l)
ij is the message from node j to node i,  W(l)

 and  B(l)
 are the learnable

weight and bias matrices,  h
(l)
i  denotes the feature vector of node i at layer l, and cij

is a normalization factor.

2. Aggregation:Nodes aggregate the messages received from their neighbors to update
their own feature representations. The aggregated message a

(l)
i for node i can be

computed as the sum or average of the incoming messages.

a
(l)
i =

∑
j∈N (i)

m
(l)
ij

where  N (i) denotes the set of neighboring nodes of vi.

3. Update: Nodes update their feature representations using the aggregated messages
and their own features. The updated feature representation h

(l+1)
i for node i at layer

l + 1 can be computed as:

h
(l+1)
i = σ(a

(l)
i ) = σ

 ∑
j∈N (i)

1

cij
W(l)h

(l)
j +B(l)h

(l)
i


These steps are performed iteratively across multiple layers of the GNN. At each layer,
nodes update their feature representations based on the aggregated messages. The itera-
tive propagation of messages allows nodes to incorporate information from distant parts
of the graph and refine their representations over multiple layers.

3.6.2. Graph pooling

Graph pooling aggregates node representations across the entire graph to compute global
graph-level features and create a coarser graph representation. It reduces the size of the
graph representation while preserving important structural and relational information.
The different types of graph pooling are:

Top-k pooling

This algorithm selects the top k nodes based on criteria such as node importance or feature
values, and aggregates their information to create a coarser graph representation. It retains
the most informative nodes while reducing the size of the graph, making it suitable for
tasks requiring node selection or summarization. It uses a pooling ratio approach such
that the graph has ⌊kN⌋ nodes after the pooling operation, where k ∈ (0, 1] is the pooling
ratio. The decision of which nodes to discard is based on a projection score computed
against a learnable vector.
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Max pooling

Max pooling selects the node with the maximum feature value from each neighborhood
and aggregates their information to create a coarser representation of the graph. It em-
phasizes the most salient nodes in each neighborhood, capturing important features while
reducing redundancy.

3.6.3. Graph unpooling

Graph unpooling is a complementary operation to graph pooling, aimed at upsampling or
reconstructing the original graph representation after downsampling. While graph pool-
ing creates a coarser representation, graph unpooling aims to recover the finer details and
restore the original graph structure. Some common types of graph unpooling include,

Nearest neighbor interpolation

 k - Nearest Neighbors (k-NN) interpolation, introduced with PointNet++ [ 35 ] for graphs,
is a technique used in GNNs to upsample or unpool graph data. In this method, for each
node in the coarser graph, the k nearest neighbors from the finer graph are identified.
Then, the features of these k-NN nodes are combined to interpolate the features of the
target node. Let z be a node from the coarser mesh M1, and assume its k nearest neighbors
on the finer mesh M2 are denoted as x1, . . . , xk. For a node feature f , the interpolated
feature f(z) of M1 is defined based on the features of the k nearest points to z on M2 as,

f(z) =

∑k
i=1w (xi) f (xi)∑k

i=1w (xi)
, where w (xi) =

1

∥z − xi∥2
(3.4)

Max unpooling

A common unpooling strategy used in conjunction with max pooling, the locations of the
maximum activations are stored. In max unpooling, these locations serve as masks to place
the pooled values back into their original positions in the unpooled feature map.
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Application and analysis
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4. Implementation, results and discussion

This chapter begins with a detailed exploration of the processes and methodologies em-
ployed to implement GNNs for the predictive analysis of nozzle flows. In the subsequent
section, we introduce the Graph U-Net architecture, outline its implementation settings,
present the results obtained, and validate them with the simulation outcomes. This dis-
cussion sets the stage for the development of three modified surrogate models with the
aim of enhancing model performance, detailed in Section  4.3 . Through quantitative anal-
ysis and performance evaluation, we identify the successes and challenges encountered in
modelling nozzle flow dynamics with GNNs. Thus, this chapter demonstrates the practi-
cal implementation of the proposed methodologies and performs a critical examination of
the results and the efficacy of these models.

4.1. Data pre-processing

In this section, we describe the process for dataset preparation, how the data from CFD
simulations are extracted and converted into graph-structured formats that facilitate effi-
cient GNN training. It includes dataset generation from nozzle flow simulations at varied
conditions, transformation of unstructured mesh data into a graph format for GNN com-
patibility, and the specification of GNN inputs and outputs.

4.1.1. Dataset generation

Nozzle simulations are carried out for 120 cases, each with a different set of Inlet 1 and Inlet
2 velocities. The velocity ratio between the two velocities lies in the range of [1, 10]. Veloc-
ity ratio in our case refers to the ratio of higher velocity to lower velocity. Simulation data
are obtained at two intervals: after 1000 and 30000 iterations or steps. The results at 1000
iterations, which are still developing and unstable, serve as inputs to the surrogate model.
Whereas, the results at 30000 iterations, which represent stable solutions, are considered
the ground truth or target data for model training. These results are then transformed into
graph data, which encapsulate the spatial relationships and properties of flow fields. The
GNN architecture is designed to learn these features and predict stable, steady-state fields
from the early, unstable simulation results.
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4.1.2. Transformation of mesh data to graph data

Conventional RANS solvers require substantial distances from domain boundaries to mit-
igate adverse effects on solutions around the region of interest. However, this is not re-
quired for the deep learning task. Hence, we narrow our attention to a small region just
enclosing the nozzle, as seen in Figure  4.1 . We clip the CFD mesh appropriately and resam-
ple the velocity and pressure fields to this mesh with reduced spatial extent. We define the
cell centers on the clipped mesh and assign them as the nodes of the graph. Two adjacent
cells i and j (cells that share an edge) in this resulting unstructured mesh are represented
as nodes vi and vj on the graph and are connected by an edge eij . The graph connectiv-
ity is then given by the edge index data structure, which comprises two lists - one stores
the source node indices, and the other has the destination node indices. CFD solvers typ-
ically assign pressure, velocity and other fields to each cell of the mesh, whereas graphs
require node features, i.e.; fields defined on each node. Therefore, the cell data (fields)
are converted to point data at the cell centers, making them suitable for graph represen-
tation. The simulation data is then saved in a hdf5 format. This is then directly used to
read pressure, velocity and co-ordinate information at cell centers. The edge index data
required for the GNN is generated by computing adjacent cells and storing their indices in
a  Co-Ordinate list (COO) format.

Figure 4.1.: Depiction of the area of focus - the original CFD mesh (left) is clipped and
transformed into the region of interest (right)

4.1.3. Model inputs and outputs

After data pre-processing, the simulation mesh is considered as a bidirectional graph G =
(V,E) where the set of  N  nodes denoted as V are linked by the set of edges E of the graph.
To construct a graph, we need,
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4.1. Data pre-processing

Figure 4.2.: Visualization of the adjacency matrix representing the graph connectivity of
the clipped, unstructured mesh with 7329 nodes.

• A feature description, consolidated into an N×D feature matrix X , where  D  denotes
the number of input node features.

• The graph connectivity or relationships within nodes is represented in matrix form
as an adjacency matrix, A or as an edge set E of the shape 2 × P , where P is the
number of pairs of connected nodes in E.

Let each node have  FX  features, and  FY  predictions. The GNN maps the set of node
features and edge index matrices to predictions as,

GNN : RN×FX ,W2×P → RN×FY (4.1)

We then get a graph-level output of the shape N × FY. The node feature vector xi and
prediction vector yi of interest at each node vi is given as,

xi = [ux,i, uy,i, cx,i, cy,i, γtag,i]

yi = [ux,i, uy,i, pi]
(4.2)

where ux,i and uy,i are the node velocities in X and Y directions, pi is the node pressure,
and  cx,i  and  cy,i  are the spatial co-ordinates of the nodes.  γtag,i  is the node tag that defines
which cell the node belongs to: inlet, walls or internal mesh. To summarize, our model
has 5 input channels (representing node features) and 3 output channels (denoting node
predictions). In addition to these channels, the GNN model also requires an edge index
matrix to internally compute the adjacency matrix for the graph.

4.1.4. Data normalization

Data normalization is performed on both input channels (node features) and output chan-
nels (target vectors), carried out using the three steps outlined below.
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1. Following common practice, we normalize all the fields of interest with respect to
the magnitude of free-stream or reference velocity u0 to make them dimensionless.

ũ = u/ ∥u0∥ , p̃ = p/ ∥u0∥2 (4.3)

The latter plays a crucial role as it eliminates the quadratic scaling effect present in the
pressure values of the target data, effectively flattening the solution space, thereby
simplifying the task for the neural network in subsequent stages.

2. Next, we subtract the mean pressure from the dimensionless pressure values.

p̂ = p̃− pmean, where pmean =
∑
i

pi/n (4.4)

n is the number of training samples and pi denotes individual pressure values. With-
out this step, the pressure targets depict an ill-posed learning objective since the ran-
dom pressure offsets in the solutions lack correlation with the inputs.

3. As a final step, every channel undergoes normalization to the range of [-1, 1] or
[0,1]. This standardization aims to mitigate errors stemming from finite numerical
precision during the training period. We opt for the maximum absolute value of
each quantity across the entire training dataset to normalize the data.

After performing normalization, we shuffle the entire dataset, split it into 3 parts and dis-
tribute it as training data, validation data and test data in the ratio of 80:10:10.

4.2. Graph U-Net

Here, we introduce the Graph U-Net architecture, a foundational framework for the sur-
rogate models used in this work. We analyze the benefits and shortcomings of this model
as well as explain the motivation behind developing a modified GNN.

4.2.1. Architecture

GCNConv layers are used to perform convolution operations in Graph U-Nets. The down-
sampling operation is carried out using the top-k pooling strategy, which retains the most
important nodes in the graph while discarding less relevant nodes based on a specified
criterion. Here, unpooling is not a distinct operation like in traditional U-Nets. Instead,
skip connections are used to implicitly perform unpooling. During decoding, downsam-
pled features from the encoder are combined with zeros or empty features in the decoder
using skip connections. This integration effectively restores spatial details and contextual
information from the original input graph, ensuring that important features are retained
and allowing for the recovery of detailed graph structures. Therefore, unpooling in Graph
U-Net is seamlessly integrated into the skip connection mechanism, facilitating the recon-
struction of the original graph resolution during decoding. Figure  4.3 presents a schematic
overview of the Graph U-Net architecture.
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4.2. Graph U-Net

Figure 4.3.: Detailed view of the Graph U-Net architecture, showcasing an encoder-
decoder structure with skip connections. Each layer’s application is annotated
with the resultant dimensions, illustrating the feature reduction or expansion
throughout the network. Here, L is the number of channels in a convolutional
layer.

4.2.2. Results and discussion

We develop a surrogate model that uses the exact Graph U-Net architecture. As a first step,
we are interested in investigating the ability of the model to reproduce the target data, i.e.;
when the same target data is given as input. This means that the task solely performs re-
construction of the target dataset without requiring prediction. We also go on to perform
the prediction task with the same model architecture, which forms the baseline for all the
other architectures proposed in this work. The following settings are maintained for both
the reconstruction and prediction tasks. We implement a 9-fold cross-validation for the
training process. The initial learning rate is set to 0.0005, and a Step LR scheduler is used
to decay the learning rate by a factor of 0.75 after every 100 epochs. We use the Adam
optimizer and train on the RMSE loss for 500 epochs. The model’s hyperparameters are
selected by a hyperparameter tuning process. Table  4.1 presents the model complexity and
performance on varying the number of channels and hidden layers. It is to be noted that
each hidden layer refers to the combination of sampling (pooling and unpooling) and con-
volution operations (up and down convolutions). That is, if we perform the pooling and
convolutions d times in the encoder and reverse this process d times in the decoder, the
number of hidden layers in this architecture is taken as d.
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Out of the various architectures, we select the model that gives the lowest training loss

Table 4.1.: Hyperparameter tuning - Table depicting the number of channels, hidden lay-
ers, trainable parameters, training loss, and validation loss, measured with the
RMSE criterion, for the Baseline architecture corresponding to each setting.

Channels Hidden layers Trainable parameters Training loss Validation loss

48

2 7k 0.04876 0.05166
3 12k 0.04713 0.05128
4 17k 0.04386 0.05237
5 22k 0.04272 0.05299

64

2 13k 0.04536 0.05349
3 21k 0.05074 0.05472
4 30k 0.04139 0.05615
5 31k 0.04692 0.05587

128

2 51k 0.03983 0.05639
3 84k 0.03840 0.05492
4 117k 0.03642 0.05341
5 150k 0.05011 0.05563

and validation loss, or one that offers a good compromise between the two losses. Among
the models with similar performance, we choose the one that is the simplest, i.e.; has rel-
atively feweer trainable parameters, without compromising on accuracy or facing the risk
of overfitting. Hence, we execute the training process using a GNN architecture with 48
channels and carry out the sampling and convolution operations 4 times (number of hid-
den layers) on the encoder and the decoder sides. Similar experiments have been con-
ducted to choose the ideal batch size, activation function and other hyperparameters. The
key hyperparameters are listed in Table  4.2 .

Table 4.2.: Model hyperparameters
Hyperparameter Value/Description
Channels 48
Hidden layers 4
Pooling ratios [0.5,0.5,0.5,0.5]
Batch size 4
Activation function ReLU
Weight initialization Kaiming
Initial learning rate 0.0005
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Reconstruction task

As mentioned previously, we prescribe the same steady-state CFD dataset as the input and
target data to evaluate the effectiveness of reconstruction of the Graph U-Net model. The
CFD results, predictions of the GNN model and the absolute difference between them for
four simulation cases from the test dataset are shown in Figure  4.4 . We note down some

Figure 4.4.: Visualization of velocity fields for four cases from the baseline’s reconstruction
task, with inlet velocity values prescribed as (Inlet 1, Inlet 2). Here, the first
row represents the target data, the second row corresponds to the model pre-
dictions, and the last row is the absolute difference between them. The colour
bar denotes the magnitude of velocity.

key observations:

1. The GNN predictions closely mimic the overall flow patterns observed in the CFD
results across all the different flow conditions, suggesting the model has a good grasp
of the flow dynamics around the nozzle.

2. There are discrepancies in the velocity magnitude between the CFD results and GNN
predictions. These are observable in the color intensity differences, indicating that
the GNN overpredicts the velocity magnitude of the outflow jet. The pressure field,
though not visualized here, also faces the same problem.

41



4. Implementation, results and discussion

3. There is a visible discrepancy in the finer details - the GNN seems to smooth out
some finer features particularly behind the convergence zone and around the walls
of the nozzle.

4. The areas of highest error (red zones) tend to occur in regions with complex flow
features, such as sharp gradients, separation and attachment points.

5. In regions where the flow is more predictable and less influenced by the geometry,
such as the far field away from the object, the GNN predictions have lower errors.

The scale discrepancy observed could be due to several reasons. Rounding errors in nor-
malized quantities may be more pronounced when converting them back to their original
scale for visualization, due to limited floating-point precision. Furthermore, loss of pre-
cision for smaller values can occur on undoing the normalization, due to the dynamic
range of data (presence of extreme values). The lack of explicit unpooling layers in Graph
U-Nets can also be a cause of inadequate reconstruction of the original graph structure
during decoding.

Prediction task

In this case, we predict the steady-state solutions from the earlier transition state. The
CFD results, predictions of the GNN model, and the absolute difference between these
data for four simulation cases from the test dataset are shown in Figure  4.5 . To better
comprehend and evaluate the model performance, we estimate the training, validation
and test losses of the baseline model for both tasks in Table  4.3 . We also note down the
absolute difference between the input and target data for the test dataset of the prediction
task. Some important observations are:

Table 4.3.: Model evaluation metrics of the Baseline model for the reconstruction and pre-
diction tasks.

Model Training Loss Validation Loss Test Loss Abs. diff.
Baseline - Reconstruction 0.025627 0.028391 0.029312 0
Baseline - Prediction 0.1459 0.1503 0.1635 0.2626

1. For the different flow conditions presented, the GNN seems to capture the correct
flow patterns, such as the direction of the flow and areas of flow separation and
reattachment around the geometrical feature.

2. There is a clear mismatch in the velocity magnitude between the GNN predictions
and the CFD results, indicated by the difference in their colour intensities.

3. The loss values suggest that the model is generalizing reasonably well, although
there’s a slight increase in the test loss, indicating potential overfitting or high model
variance when exposed to new data.
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Figure 4.5.: Visualization of velocity fields for four cases from the baseline’s prediction
task, with inlet velocity values prescribed as (Inlet 1, Inlet 2) presented in four
columns. Here, the first row represents results the target data, the second row
corresponds to the GNN predictions for the velocity field, and the last row
is the absolute difference between the target data and GNN predictions. The
colour bar denotes the magnitude of velocity.

4. The mismatch is especially pronounced in regions where velocity gradients are sig-
nificant, such as the flow constriction and separation regions.

5. Even in the far-field, the GNN model does not seem to replicate the exact velocity
magnitudes, as observed from the consistent overestimation of velocity magnitude
across different flow regions.

Thus, the model generally captures the flow patterns accurately across various conditions,
as shown by the similarity in the large-scale flow features in the CFD and GNN results.
The model has learned to approximate the fluid dynamics involved with a fairly good
degree of accuracy given the proximity of the training, validation, and test losses.
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4.2.3. Limitations

Originally designed for small graphs with around 100 nodes, Graph U-Nets relies on dense
matrix multiplications, which are memory-intensive and not scalable. This leads to mem-
ory constraints and slower training times, thus making it impractical for complex, large-
scale graph data. GCNConv layers used in this architecture may have limited expres-
siveness in capturing higher-order graph structures and long-range dependencies in the
graph. Its optimal depth is found to be 2 or 3 layers [ 21 ]. Deeper models beyond 7 layers
can encounter training difficulties due to the risk of overfitting. Apart from these issues,
there is also a lack of a dedicated upsampling layer in the architecture, which leads to
poor reconstruction of the latent space. Due to these disadvantages, Graph U-Net may ex-
hibit poor performance in terms of both accuracy and efficiency, particularly for complex
geometries or large datasets. Hence, there is a paramount necessity to rely on modified
GNN architectures for our work.

4.3. Proposed architecture

In this section, we propose three GNN surrogate models and elucidate the architecture and
improvements made to the original Graph U-Net framework. Then, we proceed to pro-
vide details on the hyperparameters and other implementation specifics of the proposed
models. Finally, we demonstrate the training process and share the prediction results ob-
tained for the CFD application. The models are developed on the Pytorch deep learning
framework using the Pytorch Geometric (PyG) library. Training and testing are performed
on a compute node of the  High Performance Computing (HPC) cluster Loewenburg, using
a single nVidia Tesla V100 GPU.
There are three different surrogate models proposed, and each of them tackles the un-
pooling limitation in Graph U-Net by using a k-NN approach for upsampling, as used in
PointNet++ [ 35 ], with k set to 3. The downsampled features at different depths (levels
of coarsening) are stored so that the upsampled node co-ordinates required for k-NN in-
terpolation can be obtained from [cx, cy] at the downsampled feature of the same depth.
The architectures also include skip connections, although they do not perform the task of
upsampling here. The three surrogate models differ in the convolutional operations used,
as described below.

1. Graphknn uses GCNConv layers as used in Graph U-Nets to perform convolutions
and executes the upsampling operation with the help of k-NN interpolation.

2. The SAGEknn surrogate model replaces the GCNConv layers of Graph U-Net with
SAGEConv layers from GraphSAGE [ 14 ] and uses k-NN interpolation for unpooling.

3. In MoNetknn, we carry out convolutions using the GMMConv layers from the MoNet
[ 29 ] architecture, along with k-NN interpolation for upsampling.
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We perform hyperparameter tuning for each of the architectures to arrive at the ideal
choice of design parameters. All the models showcase their best performance for the same
hyperparameter configuration - 48 channels, 3 hidden layers each with a pooling ratio of
0.5, ReLU activations and weights initialized by the Kaiming method. We use a batch size
of 4 and set up the initial learning rate as 0.0005, to be used along with a Step LR scheduler
similar to the baseline surrogates. We use the Adam optimizer and train on the RMSE loss.

4.4. Results and discussion

We perform a 9-fold cross-validation on the training and validation datasets. Figures  4.7 

and  4.8 depict the predicted velocity fields and the associated absolute errors obtained
from the three surrogates for four different flow conditions. Figure  4.6 provides an overview
of the predicted pressure and velocity fields for all the surrogate models discussed here for
a case showing Coanda adhesion.

We note that the duration of steady-state simulations is extremely long, about 8.5 hours.

Figure 4.6.: Predicted velocity and pressure fields for the case with (Inlet 1, Inlet 2) = (35
m/s, 5 m/s). The leftmost column represents simulation results, whereas the
subsequent columns correspond to the predictions of the respective architec-
tures.

Roughly eight cases are concurrently processed on the Loewenburg HPC cluster with an
Intel Xeon Gold 6130F  Central Processing Unit (CPU) , running at a base frequency of 2.10
GHz. Subsequent simulation cases queued and initiated as prior ones conclude using the

 Simple Linux Utility for Resource Management (SLURM) scheduler. A simulation takes
around 32 minutes on average in the parallel configuration of OpenFOAM, amounting to
around 8.5 hours for the cumulative simulations of 120 cases.
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Investigating further into the test cases, we compute the test loss of each sample in the test
dataset and tabulate them in Table  4.6 .

Table 4.4.: Evaluation metrics of 1. Graphknn, 2. SAGEknn, and 3. MoNetknn architectures.
Model Training Loss Validation Loss Test Loss
Graphknn 0.134412 0.143149 0.136981
SAGEknn 0.123704 0.138665 0.133959
MoNetknn 0.129066 0.138896 0.146817

Table 4.5.: Time taken for training and testing of (1) Graphknn, (2) SAGEknn, (3) MoNetknn
models, (4) Transition, and (5) Steady-state simulations. Note that the training
time for (4) and (5) refers to simulation times.

Setup Training time (hours) Test time (seconds)
Graphknn 3.88 0.09157
SAGEknn 3.2 0.09382
MoNetknn 4.15 0.09413
Steady-state 8.5 -
Transition 0.3 -

4.5. Key observations and inference

We make the following key observations in regard to the evaluation metrics obtained:

1. The comparative analysis reveals a positive trend: all three surrogate models exhibit
superior performance over the baseline model in predicting steady-state solutions.

2. SAGEknn stands out as the most balanced model, offering both the best generaliza-
tion performance (as indicated by the lowest test loss) and the shortest training time.
This reflects an optimal blend of computational efficiency and model precision mak-
ing it the most effective surrogate model discussed here.

3. Out of the other two models, MoNetknn fits the training data better (as indicated by
the lower training loss), but has a higher test loss, indicating potential overfitting and
poor generalization. Graphknn not only takes less time to train but also generalizes
better compared to MoNetknn, making it the next effective model.

4. Test times for all models are impressively short, indicating that once trained, any of
the models can make predictions quickly.
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Table 4.6.: Individual loss estimation of test samples in 1. Graphknn, 2. SAGEknn, 3. MoN-
etknn models and identification of noisy data (highlighted in red). For each test
case, the value in bold corresponds to the best test loss achieved out of the three
models. The average test loss, excluding noise data, is also computed and the
best prediction case for each model are stated.

Case No. (Inlet 1, Inlet 2) Graphknn SAGEknn MoNetknn
10 (18 m/s, 27 m/s) 0.1627682 0.141760 0.161019
85 (45 m/s, 20 m/s) 0.227854 0.294137 0.256933
96 (45 m/s, 10 m/s) 0.146616 0.153643 0.158489
115 (27 m/s, 3 m/s) 0.111698 0.100347 0.116409
93 (32 m/s, 8 m/s) 0.1099330 0.095786 0.125213
31 (6 m/s, 24 m/s) 0.115487 0.073103 0.108589
94 (36 m/s, 9 m/s) 0.130061 0.120798 0.152372
88 (15 m/s, 5 m/s) 0.123582 0.133565 0.128406
97 (15 m/s, 3 m/s) 0.134011 0.122433 0.144798
110 (35 m/s, 5 m/s) 0.111097 0.0962448 0.122681
48 (3 m/s, 21 m/s) 0.124982 0.135190 0.140194
80 (20 m/s, 10 m/s) 0.145688 0.140505 0.146698
Test Loss 0.136981 0.133959 0.146817
Test Loss (w/o noise) 0.128720 0.119398 0.136806
Best Case Case 93 Case 31 Case 31

5. As highlighted in the table, Case 85 has significantly higher error values across all
three models compared to the other cases, which is flagged as potential noise or an
outlier. This suggests that there’s something inherently different or problematic with
this particular case, which the models are struggling to predict accurately.

6. The test loss of the models shows a decrease when potentially noisy data is removed,
suggesting that outliers like Case 85 are adversely affecting the model’s performance.
This is especially significant for SAGEknn, where the test loss drops from 0.1339 to
0.1193, a substantial reduction.

7. SAGEknn not only has the lowest test loss but also shows the greatest improvement
when noise is removed, suggesting it has better noise handling or generalization
capability compared to the other two models.

8. Case 31 seems to be the overall best scenario for all models, indicating this particular
case is well represented in the training data.

We proceed to make further observations based on visual inspection,

1. All the models are able to capture key physical flow features critical to jet deflection
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and adhesion to Coanda surfaces such as points of attachment and separation. This
indicates that they have learned significant aspects of nozzle flow dynamics.

2. It is noticeable that while qualitative features of the flow are predicted, the quanti-
tative aspects such as exact speed or pressure within the flow field may not be as
accurately captured, as indicated by differences in the color intensity between the
CFD and model predictions.

3. While comparing the models, SAGEknn appears to most closely match the CFD re-
sults in terms of capturing the flow direction and adherence to surfaces, which is
consistent with the earlier noted superior performance in terms of test loss.

4. The CFD results display sharper gradients near the convergence zone and the Coanda
surface, whereas the predictions tend to show smoother gradients.

4.5.1. Checkerboard artifacts

An important observation that is consistent with all three models and flow conditions is
the occurrence of a checkerboard pattern in the visualization of velocity fields. We note
that these checkerboard patterns are more pronounced in cases with lower velocity ratios
compared to those with higher velocity ratios. Among the three models, SAGEknn seems
to have the least pronounced checkerboard effect, suggesting a better handling of spatial
information. Graphknn, while slightly exhibiting this pattern, still maintains a good ap-
proximation of the flow, balancing the artifact against accurate flow prediction.
The checkerboard pattern observed is usually seen in CNNs due to factors like strided
convolutions, which are not inherent to GNNs. It is to be noted that the checkerboard pat-
tern is not observed in the baseline models, which do not implement k-NN interpolation.
Hence, we can attribute the source of this discrepancy to k-NN interpolation, which up-
samples the graph back to its original fine resolution. This process may introduce regular,
grid-like patterns if the interpolation points are evenly spaced or if there is a scale mis-
match between the graph’s resolution and the visualization grid. Additionally, the value
chosen for ’k’ in the k-NN algorithm might not sufficiently capture the data’s continuity,
leading to abrupt changes in interpolated values that manifest as checkerboard artifacts.

In summary, these observations suggest that all models are reasonably well calibrated,
with SAGEknn slightly outperforming the others. The impact of the outlier Case 85 on the
test loss underscores the importance of robust outlier detection and handling in the train-
ing process to improve model accuracy and reliability. The checkerboard problem can be
mitigated by integrating physics-informed components such as imposing the continuity
equation as a constraint in the loss function.
When combined with transitional simulations, properly trained and fine-tuned GNN mod-
els can offer a more time-efficient alternative to standalone steady-state simulations. The
current suite of steady-state simulations sets a high benchmark in terms of accuracy for
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modelling complex physical phenomena. While there is still room for enhancement in ac-
curately capturing the complex physics of turbulent flows, SAGEknn emerges as the better
alternative as the successor for Graph U-Nets in this scenario.

4.6. Challenges

The endeavor to enhance the performance of Graph U-net architectures through the devel-
opment of Graphknn, SAGEknn, and MoNetknn models has provided significant insights,
albeit alongside challenges reflected in the predictive accuracy. Thus, it remains crucial to
reflect on and recognize the factors affecting the models’ performance.

• Training data diversity: The variety of scenarios and varied parameters in the train-
ing data critically influence the model’s robustness. Since the model is trained on a
limited range of data, it may not generalize well to new, unseen scenarios, leading to
poor predictive performance.

• Boundary conditions: In the context of simulations for fluid dynamics, accuracy in
modelling boundary conditions is essential. Inaccuracies or inadequate modelling
may have led to significant errors in predictions around the walls.

• Data imbalance: The inlet velocity ratios for the simulations were sampled from the
range [1,10] and based on the ratios, the velocities are fixed. By not sampling from
a well-defined probability distribution, the model might be missing out on learning
the nuances of more complex inlet velocity profiles, which are often encountered in
practical applications.

• Training adequacy: The extent of training can dictate the model’s ability to learn
from the data, and is influenced by factors such as dataset size and training duration.
For the models, a limitation to only 500 epochs of training and a limited dataset of
merely 120 cases might not suffice to converge to a robust solution. This restricted
scope of training could hinder the generalization and learning of complex patterns,
particularly for complex domains like fluid dynamics.

Extensive datasets with different flow scenarios and longer training periods could offer
promising solutions. Future work could also involve employing a more representative
dataset sampling strategy, such as sampling from a probability distribution that better
captures the variability of real-world conditions. Another suggestion to improve the pre-
dictions is to include the pressure of the transition state as a node feature.
Apart from the aforementioned factors, the downsampling operation using top-k pooling
may also be a contributing factor to the suboptimal predictions. Feature selection bias,
spatial hierarchy distortion, loss of information, and hyperparameter sensitivity are areas
of concern regarding this approach. Alternative strategies such as hierarchical pooling,
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differential pooling or attention mechanisms can be used to tackle the challenges faced
by top-k pooling. These considerations serve as a foundation for future research to en-
hance the performance of GNN architectures in this domain, ensuring that the essential
characteristics of the data are captured.

4.7. Hierarchical multi-resolution pooling mechanism in GNN
architecture

As part of our continuous effort to enhance the performance and applicability of GNNs,
we also embarked on an ambitious endeavor aimed at integrating a hierarchical multi-
resolution sampling operator. Multi-resolution approaches in the context of GNNs involve
operating on graphs at multiple levels of granularity, similar to the multigrid method in
numerical analysis. Unlike CNNs, where downsampling operators automatically coarsen
the structured mesh, in GNNs, we create a hierarchy of meshes with increasing complexity
over the domain of interest. Hence, traditional pooling operators may not be suitable for
GNNs, as they focus on selecting nodes to construct a coarse graph, which is unnecessary
for mesh data. Instead, we can easily define operators that transform features from one
mesh to the next by generating a set of meshes with varying coarseness.
Creating a mesh hierarchy of different levels of coarseness can be performed by well es-
tablished techniques in numerical analysis. One commonly used algorithm for mesh con-
struction is Delaunay triangulation, which maximizes the minimum angle of all triangles
to avoid sliver triangles. This algorithm gradually inserts new nodes into the triangula-
tion and connects them with their neighbors under specific rules. Incremental decimation
is another mesh coarsening method that aims to reduce the number of points while pre-
serving specific properties of the original mesh. It iteratively removes one vertex or edge
with minimal changes until certain criteria are met.
We then introduce the sampling operator for converting data between two meshes, de-
noted as M1 (downsampled mesh) and M2 (mesh to be downsampled), from the k-NN
interpolation proposed in PointNet++ [ 35 ]. Liu et al. [ 26 ] defines this operator as,

f(z) =

∑k
i=1w (xi) f (xi)∑k

i=1w (xi)
, where w (xi) =

1

∥z − xi∥2
(4.5)

However, this aspect of the research is currently in a developmental phase. Preliminary
efforts have encountered challenges, particularly in adapting the pooling operation to effi-
ciently process batched data. While the work to fully realize and integrate this new pooling
operator within the GNN framework remains underway, the preliminary insights gained
and the challenges encountered offer valuable perspectives for advancing GNN method-
ologies. The ongoing nature of this work underscores the dynamic and evolving landscape
of GNN research, where iterative exploration is essential for uncovering new possibilities
and overcoming existing limitations.
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(a) Case (20 m/s, 10 m/s) showing jet deflection to the top Coanda surface.

(b) Case (18 m/s, 27 m/s) showing jet deflection to the bottom Coanda surface.

Figure 4.7.: Visualization of velocity fields for two cases with inlet velocities (Inlet 1, Inlet
2): the first row depicts the predictions, and the second row shows the absolute
difference between the target and predictions. The top left corner presents the
simulation results. The colour bar denotes the magnitude of velocity.
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(a) Case (35 m/s, 5 m/s) showing complete adhesion to the top Coanda surface.

(b) Case (6 m/s, 24 m/s) showing complete adhesion to the bottom Coanda surface.

Figure 4.8.: Visualization of velocity fields for two cases with inlet velocities (Inlet 1, Inlet
2): the first row depicts the predictions, and the second row shows the absolute
difference between the target and predictions. The top left corner presents the
simulation results. The colour bar denotes the magnitude of velocity.
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5. Dimensionality reduction and clustering

In this chapter, we explore the application of unsupervised learning techniques, specifi-
cally dimensionality reduction and clustering, to analyze and interpret high-dimensional
CFD simulation data of nozzle flows. Unsupervised learning, a class of machine learn-
ing methods that operate on unlabeled data, aims to discover hidden patterns or intrinsic
structures within the data. Our objective is to distill high-dimensional simulation data into
insightful, low-dimensional representations and identify distinct patterns through cluster-
ing, facilitating a deeper understanding of fluid behavior under various conditions. We use

 Principal Component Analysis (PCA) [ 33 ], and  t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [ 47 ] for dimensionality reduction. Subsequently, we apply the  Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)  algorithm [ 8 ] to the reduced-
dimensional data to identify distinct clusters representing various fluid flow behaviors.

5.1. Dimensionality reduction

Dimensionality reduction is crucial in simplifying high-dimensional data, making it amenable
to visualization and data analysis. Here, we focus on PCA and t-SNE.

5.1.1. Principal Component Analysis (PCA)

PCA is a linear technique that reduces the dimensions of a dataset by transforming them
to a new basis, where the axes are the directions of maximum variance. It effectively com-
presses the data while attempting to retain the original variance in the data.

5.1.2. t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE, a non-linear technique, converts the high-dimensional Euclidean distances between
points into conditional probabilities that represent similarities, aiming to preserve the lo-
cal structure of the data. The cost function minimized by t-SNE is based on the Kullback-
Leibler divergence [ 6 ] between the distribution of the high-dimensional data and the dis-
tribution of the low-dimensional embedding.
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5.2. Density-Based Spatial Clustering of Applications with Noise
(DBSCAN)

The DBSCAN algorithm can be employed to identify clusters of varying shapes and sizes
based on densities within low-dimensional data, as well as mark outliers in low-density
areas. Its idea is to classify points as core points, border points, or outliers, based on the
density of their neighborhoods. DBSCAN is defined by a parameter denoting the radius of
the neighborhood with respect to a point and another parameter for the minimum number
of points required to form a cluster.

5.3. Experiments, results and inference

Dimensionality reduction techniques such as PCA and t-SNE were applied to both tran-
sitional and steady-state simulation data constituting the training-validation dataset from
surrogate modelling, facilitating the visualization and interpretation of complex flow dy-
namics. PCA and t-SNE are used to transform the target data to two dimensions, and the
results from this transformation can be seen in Figure  5.2 and Figure  5.1 . Each data point
corresponds to a simulation case and marked by its velocity ratio, which is taken as the
ratio of the higher of the two inlet velocities to that of the lower. In the t-SNE plot, we ob-
serve clearly distinct clusters of data points on the bottom left and top right corners. The
clusters are formed by velocity ratios greater than four, likely indicating the phenomenon
of complete adhesion to the Coanda surfaces.
Evidenced by the clustering of points with higher velocity ratios, we propose the hypoth-
esis that as the velocity ratio increases, the tendency of the outflow jet to exhibit complete
adhesion to one of the surfaces becomes more pronounced. Simulations with lower veloc-
ity ratios appear to be more dispersed across the t-SNE plot, which might indicate a more
varied flow behavior at these ratios or a weak adhesion effect. The data does not cluster
as tightly as those with higher velocity ratios, implying a case of jet deflection without ad-
hesion to surfaces. We also plot the t-SNE data, categorizing each data point based on its
inlet velocities relationship as seen in Figure  5.3 . The application of DBSCAN to these low-
dimensional representations from the t-SNE transformation provides further evidence for
our speculated theories with the identification of distinct flow behavior clusters, based on
Coanda adhesion phenomena. An examination of the scatter plot in Figure  5.4 shows two
clusters as well as outlier points scarcely distributed between these two regions:

• Blue cluster (Coanda adhesion to the top surface): The blue cluster, isolated in the
upper quadrant of the plot, likely represents instances of Coanda adhesion to the top
surface of the nozzle. The spatial separation of these points from the central mass
suggests a specific, consistently observed flow behavior across these simulations.

• Yellow cluster (Coanda adhesion to the bottom surface): The cluster circled in yel-
low, situated in the bottom left of the plot, corresponds to the simulations exhibiting
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Figure 5.1.: Scatter plot visualizing the 2D t-SNE reduction of steady-state simulation data,
categorized by varying velocity ratios. Each point on the plot represents a
simulation data sample, and the color coding corresponds to the velocity ratios.

Coanda adhesion to the bottom surface. The compactness and isolated location of
this cluster signify a distinct and strong pattern of flow behavior.

• Purple outlier points (Jet deflection): The outliers marked in purple, dispersed be-
tween the blue and yellow clusters, likely characterize scenarios where the jet deflects
towards either surface, representing a transitional behavior that does not culminate
in pronounced Coanda adhesion.

We also perform visual inspection of the simulations and classify them into four instances:

1. Complete adhesion to the bottom Coanda surface.

2. Jet deflection and partial adhesion to the bottom Coanda surface.

3. Complete adhesion to the top Coanda surface.

4. Jet deflection and partial adhesion to the top Coanda surface.

It is observed that the cluster on the bottom left corresponds to cases displaying complete
adhesion to the bottom Coanda surface whereas the one on the top right are constituted
by cases that show complete Coanda adhesion to the top wall. The classification of the

55



5. Dimensionality reduction and clustering

Figure 5.2.: Scatter plot visualizing the 2D PCA reduction of steady-state simulation data,
categorized by varying velocity ratios. Each point on the plot represents a
simulation data sample, and the color coding corresponds to the velocity ratios.

cases is presented in the Appendix  6.2 serve as the ground truth: cases 89 to 120 show
Coanda adhesion to the top wall, whereas cases 29 to 60 display complete adhesion to
the bottom surface. We annotate all the points on the t-SNE plot to analyze and evalu-
ate our argument. As seen in Figure  5.5 , we observe an exact match in the cluster be-
havior and associated cases demonstrating a 100% prediction accuracy in clustering the
low-dimensional, steady-state data. Thus, we can assert that simulation cases with higher
velocity ratios (around four and above) show complete Coanda adhesion to either of the
surfaces. Higher Inlet 1 velocity shows adhesion to the top surface and vice-versa.
The effective application of dimensionality reduction and clustering methods, such as t-
SNE and DBSCAN, allows for the automation of the identification and classification of
instances where Coanda adhesion takes place. This approach is particularly valuable
for large datasets where manual classification would be impractical and time-consuming,
demonstrating how these techniques can streamline and enhance data analysis processes.
The PCA-reduced data also shows dense regions formed by cases with higher velocity ra-
tios. However, clustering of simply PCA-reduced target data fails to recognize these clus-
ters, as demonstrated by Figure  5.6 . This may be attributed to the fact that PCA is a linear
dimensionality reduction technique and may sometimes not work effectively for certain
datasets when the structure of the data is non-linear. PCA preserves global structure and
may not unfold the data in a way that emphasizes the separation between clusters, par-
ticularly if the clusters are non-linearly separable in the original high-dimensional space.
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Figure 5.3.: Scatter plot visualizing the 2D t-SNE reduction of steady-state simulation data,
categorized by Inlet 1 and Inlet 2 relationship.

t-SNE, on the other hand, is specifically designed to preserve local neighborhood structure
and can reveal clusters even in complex datasets with non-linear structures. This result
led us to perform a PCA reduction to 50 components, followed by a t-SNE reduction to 2
dimensions. This combination was able to replicate similar results to t-SNE-reduced data,
as seen in Figure  5.7 . The outcome of clustering from DBSCAN is shown in Figure  5.8 .

Additionally, we reduce the simulation data to a one-dimensional representation, as
demonstrated in Figure  5.9 . We observe that the data points are distinctly clustered even
along the single t-SNE component axis, indicating that the t-SNE algorithm has success-
fully captured and represented the variance within the high-dimensional dataset in a one-
dimensional space. We can also see the emergence of distinct clusters, each cluster denot-
ing a type of fluid behavior.
It is to be noted that t-SNE has an element of randomness in the way it projects high-
dimensional data into a lower-dimensional space. This randomness is due to the stochastic
nature of the algorithm, particularly in the initial placement of points in the low-dimensional
space. The orientation and the exact position of the clusters in the map are not fixed and
can differ by a rotation or reflection. This is because t-SNE does not preserve the orienta-
tion or the exact distances; instead, preserves the local structure of the data and the global
relationships between clusters.
For the transitional state, t-SNE did not reveal any distinct clusters, indicating that at this
early stage, the flow behaviors do not exhibit clear patterns that can be distinguished.
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Figure 5.4.: DBSCAN clustering visualized on t-SNE-reduced steady-state simulation data.

Figure 5.5.: Annotation of each sample point based on its simulation case. Here, the green
box captures the cluster that is representative of cases exhibiting complete
Coanda adhesion to the top surface, whereas the red box likely shows the clus-
ter comprising the cases marked by complete Coanda adhesion to the bottom
wall. Note that the original clusters are zoomed in for readability.
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Figure 5.6.: DBSCAN clustering visualized on PCA-reduced steady-state simulation data.

Figure 5.7.: Scatter plot visualizing the subsequent PCA and t-SNE reduction of steady-
state simulation data, categorized by varying velocity ratios.
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Figure 5.8.: DBSCAN clustering visualized on subsequent PCA and t-SNE reduced steady-
state simulation data.

Figure 5.9.: Visualization of 1D t-SNE-reduced steady-state simulation data
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6. Conclusion

This thesis undertakes a critical exploration into the application of Graph Neural Networks
(GNNs) within turbulence modeling, motivated by the simulation of nozzle flow dynam-
ics on unstructured meshes. Through a series of methodical experiments and analyses, the
study attempts to gauge the efficacy of GNNs as surrogate models. In this final chapter,
we conclude by reviewing the initial objectives of the research described in Chapter  1 and
presenting a summary of our key contributions. Finally, we recommend a roadmap for fu-
ture work that can address the challenges faced and pave the way for subsequent research
efforts.

6.1. Recap of objectives and contributions

At the outset of this thesis, we outlined several key objectives aimed at exploring the in-
tegration of GNNs for the application of nozzle flow simulations. As we conclude, it is
important to revisit these objectives to assess the contributions of this research in address-
ing the initial goals:

1. Develop a GNN model for predicting nozzle flow simulation quantities:
Contribution:

• Computational modelling and simulation of the HOMER nozzle and generation
of a CFD dataset for nozzle flow simulations comprising unstructured mesh
data for various flow conditions.

• Extraction of CFD simulation data and transformation of the raw data from
unstructured meshes into graph-structured data.

• Successful development and implementation of various GNN models, includ-
ing a baseline Graph U-Net and three other architectures — Graphknn, SAGEknn,
and MoNetknn. These models were trained to predict key simulation quanti-
ties, demonstrating GNNs’ potential in modelling fluid dynamics.

2. Investigate the accuracy, efficiency and feasibility of the surrogate models:
Contribution:

• Transformation of graph data back to CFD format for visual analysis of predic-
tions with respect to targets, facilitating a clear visual framework to assess the
accuracy of the surrogate models.
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• Performed comparative analysis across different GNN architectures to evaluate
their performance in terms of both training and testing losses, which serves as a
measure of accuracy, as well as runtimes, which elucidate the models’ efficiency.
This also highlights their potential to significantly reduce the computational
time and resources required for fluid dynamics simulations.

3. Perform clustering on low-dimensional data to classify simulations:
Contribution:

• Applied dimensionality reduction using PCA and t-SNE, enabling the visual-
ization of fluid dynamics patterns from high-dimensional data as well as cate-
gorization of the simulations based on velocity ratios.

• Applied the DBSCAN clustering technique to low-dimensional data to identify
distinct fluid flow behavior clusters. We achieved 100% prediction accuracy in
clustering steady-state data, accurately distinguishing between complete adhe-
sion to top or bottom Coanda surfaces and the outliers depicting partial adhe-
sion. This highlights the precision of the approach in automating the classifica-
tion of flow dynamics.

4. Investigation of advanced GNN architectures for enhanced model performance:
Contribution:

• Explored the optimization of GNN architectures using a sampling operator for
hierarchical multi-resolution feature learning.

The results obtained from these experiments underscore the nascent potential of GNNs
within the realm of CFD, albeit with the acknowledgment that there remains much room
for improvement. The process of model evaluation and the insights gained from these
comparisons serve as a modest contribution to the broader effort to integrate machine
learning techniques with CFD simulations. By systematically addressing each objective,
we offer valuable insights into the potential and challenges of GNN applications in fluid
dynamics. Through this endeavor, we contribute to the ongoing discourse in the intersec-
tion of deep learning and CFD, setting a foundation for future investigations to build upon
in pursuit of more efficient, accurate, and broadly applicable models.

6.2. Future directions

The research presented in this thesis asserts the transformative potential of GNNs as sur-
rogate models in the domain of CFD. Looking forward, it is imperative to expand upon
this work by exploring more complex geometries and further refining GNN architectures
to enhance their generalizability and predictive capabilities across a broader spectrum of
fluid dynamics applications. Several paths for future work emerge, each aimed at advanc-
ing our understanding of GNNs in fluid dynamics:
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1. Enhancement of GNN architecture for improved accuracy: One of the primary ob-
jectives moving forward is the development of improved GNN architectures that
enhances prediction accuracy. This involves exploring novel graph convolutional
layers, attention mechanisms, and network structures that can more effectively cap-
ture the complexities of fluid dynamics.

2. Prediction of extended flow quantities of interest: An additional critical objective
for future work is the extension of the GNN model’s capabilities to predict a broader
array of flow quantities. Specifically, we can tailor the model to accurately forecast
values such as turbulent viscosity νt,turbulent kinetic energy k, and the specific rate
of dissipation ω. These quantities are fundamental in the analysis and modelling
of turbulent flows, providing deeper insights into the behavior of fluids in various
engineering applications.

3. Optimization of model training times: Another crucial area of research is the op-
timization of the GNN model to reduce training times without compromising accu-
racy. We can leverage parallel computing and advanced hardware accelerators to
further enhance training efficiency, enabling the model to learn from larger datasets
in shorter time frames.

4. Development of physics-informed GNNs: Incorporating the governing equations
of fluid dynamics into the model’s loss function presents a promising approach to en-
hance prediction accuracy. By developing a physics-informed GNN, the model can
leverage both data-driven learning and the inherent physics of fluid flow, ensuring
more accurate and physically plausible predictions. This approach aids in better cap-
turing complex phenomena associated with turbulent flows and also in improving
the model’s interpretability and reliability.

5. Model generalization and adaptability: The key direction for future research is to
enhance the generalization and adaptability of GNN models to different nozzle con-
figurations, flow conditions, and novel scenarios. Incorporating transfer learning
by leveraging pre-trained models on extensive datasets could aid in generalization
across various nozzle flow scenarios. Ultimately, the aim is to develop robust models
capable of accurately simulating fluid behavior across a wide range of scenarios with
minimal need for retraining.

The future directions outlined above offer a roadmap for further investigation and reflect
the iterative nature of research in integrating deep learning with fluid dynamics. In sum-
mary, this thesis not only fulfills its objectives but also opens new avenues for research,
underscoring the pivotal role of DL in advancing CFD towards more efficient and accu-
rate simulations. The technical achievements documented herein confirm the feasibility
of GNNs as powerful surrogate models, signifying a major step forward in our ability to
simulate and understand complex fluid dynamics phenomena.
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Figure 1.: Categorization of 120 simulation cases - the simulation cases encapsulated by a
green box represent complete Coanda adhesion to the bottom surface, and those
enclosed in a red box represents complete adhesion to the top wall.



Figure 2.: Loss curves showing the average training and validation loss characteristics over
9 folds across 500 epochs of the prediction models: (a) Baseline (b) Graphknn (c)
SAGEknn (d) MoNetknn
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