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Abstract—The development of 5G networks has enabled
support for a vast number of applications with stringent traffic
requirements, both in terms of communication and computation.
Furthermore, the proximity of the entities, such as edge servers
and User Plane Functions (UPFs) that provide these resources
is of paramount importance. However, with the ever-increasing
demand from these applications, operators often find their
resources insufficient to accommodate all requests. Some of these
demands can be forwarded to external entities, not owned by the
operator. This introduces a cost, reducing the operator’s profit.
Hence, to maximize operator’s profit, it is important to place the
demands optimally in internal or external edge nodes. To this end,
we formulate a constrained optimization problem that captures
this objective and the inter-play between different parameters,
which turns out to be NP-hard. Therefore, we resort to proposing
a heuristic algorithm which ranks the demands according to their
value to the operator and amount of resources they need. Results
show that our approach outperforms the benchmark algorithms,
deviating from the optimal solution by only ~ 3% on average.

Index Terms—5G core, UPF, Edge clouds, Routing.

I. INTRODUCTION

The introduction and deployment of 5G networks has
enabled an array of new applications that leverage the
high-throughput, scalability and flexibility of such networks.
Computationally-intensive and delay-sensitive applications,
such as Augmented and eXtended Reality (AR/XR), rely on
the availability of compute and network resources at users’
proximity. Through technologies such as Network Function
Virtualization (NFV), network resources can be leveraged by
flexibly deploying User Plane Functions (UPFs) [1]. Moreover,
Multi-Access Edge Computing (MEC) allows users to offload
compute tasks to servers at the network edge.

Currently, MEC solutions consider a separate orchestration
of the compute and network resources, where cloud operators
and Telco Network Operators (TNOs) manage only the
resources of their domain. The importance of the joint
consideration of these types of resources is highlighted by
concepts such as in-network computing and Compute and
Network Convergence (CNC) [2]. Collaboration initiatives
from AWS [3] and Verizon [4], aim to facilitate the
deployment of Edge Applications (EAs) close to the TNO’s
UPFs. These approaches have two main shortcomings: 1)
EA orchestration burden falls on the EA Providers (EAPs),
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who must know their users’ location to orchestrate compute
resources efficiently; and ii) TNOs lack prior information
about the deployment locations of specific EAs, resulting in
inefficient orchestration of network resources.

Therefore, in this work, we propose a different approach
where the TNOs establish agreements with EAPs to take over
the orchestration of the EAs, in addition to the UPFs. This way,
they can efficiently route user demands within the transport
network, while establishing a new line of revenue through the
deals made with the EAP. This approach is applicable also to
private 5G network operators looking to expand the services
they offer and efficiently utilize their edge infrastructure.

Research works investigating the joint allocation of compute
and network resources, consider the problem from a network
planning perspective. As such, they focus on optimally placing
dimensioning the edge infrastructure and statically deploying
the UPFs, predominately assuming a 1-to-1 association
between Base Stations (BSs), Edge Nodes (ENs), and
UPFs [5]-[8]. In contrast, in this work, we consider an
already-deployed edge infrastructure and transport network. A
holistic approach to the problem is taken, integrating aspects
such as UPF and EA deployment, user demand placement and
routing, in a single problem formulation. Modeling such a
system with realistic assumptions presents challenging tasks,
especially given the multiple dimensions of the problem.

To this end, we model a system with integrated compute
and network infrastructure, and then formulate the joint UPF
and EA placement and routing problem as a constrained
optimization problem using Integer Linear Programming
(ILP). The problem is NP-hard, and therefore, we design and
implement a greedy heuristic called RanGr. Our evaluations
based on extensive realistic simulations show that RanGr
outperforms the benchmark algorithms and is able to find
high-quality solutions within a very short time, making it a
viable algorithm to be used by TNOs for the joint orchestration
of their compute and network resources.

The remainder of the paper is organized as follows. A
detailed explanation of the system model is provided in
Section II, followed by the problem formulation in Section III.
Section IV introduces RanGr, our proposed heuristic approach,
while Section V details the evaluation scenarios and the
obtained results. Section VI presents related work in the
areas of edge infrastructure and UPF deployment. Lastly,
Section VII discusses future work and concludes the paper.
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Fig. 1. System overview depicting the initialization of UPFs and EAs, and
the placement of demands in the OENs and the EEN.

II. SYSTEM MODEL

An overview of the system considered in this work is given
in Fig. 1. The edge infrastructure consists of two types of
ENs: i) Operator Edge Node (OEN), and ii) External Edge
Node (EEN). The former, represents edge servers owned by
the TNO, and used to deploy UPFs, EAs, and place incoming
demands that are served by the EAs. OENs are denoted
by e € & and there are || OENs comprising the edge
infrastructure. Each OEN e is characterized by its processing
and storage capacity, denoted by P. and S, respectively,
and by its operational cost C,. On the other hand, the EEN,
denoted by e*, is an abstraction of edge servers not owned by
the operator (e.g., provided by AWS or Google). The resources
in the EEN, which are assumed to be abundant, are rented by
operators for additional deployment of EAs and demands.

In addition, the edge network comprises |7 | BSs denoted by
j € J, |K| forwarding nodes denoted by k € K, and |V] links
interconnecting the transport network, denoted by v € V. Each
link v is characterized by its bandwidth capacity B,, and its
latency t¥!'. We assume that the forwarding nodes can process
the incoming traffic at line rate, as long as the link capacity
is not exceeded. Thus, we do not model their capacity and
processing latency. The edge network topology is modeled as
a directed graph G = (FUK UEUe*, V).

A. EAs and User Demands

In our system, agreements exist between EAPs and TNOs
to manage the orchestration of |Z| different EAs denoted by
i € Z. They represents services (e.g., AR/XR applications) that
are deployed on ENs and serve the incoming user demands.
EAs are characterized by their idle CPU utilization p; (e.g.,
due to monitoring) and storage requirement s;.

Demands are abstracted as Packet Data Unit (PDU)
sessions. In this work, we consider the BS as the source
of a demand since that is the entry point of the traffic into
the transport network, and thus, demands can belong to the

ILink latency is defined as the sum of the transmission and propagation
latencies. We assume that the link latency between any OEN and the EEN is
higher than between any two nodes in operator’s transport network.

same user or to different ones, making the approach general
enough. From each BS j there are |£; ;| demands of EA type
i that need to be served, denoted by | € £;;. Demands are
uniquely identified by the tuple {7, 4,1}, and are characterized
by their CPU requirement p; ; ;, bandwidth requirement b; ; ;,
and maximum delay budget ¢;;;. Serving a demand (i.e.,
placing it on an OEN or EEN) generates revenue for the
operator and is captured by the utility value, denoted as U; ; ;.
Conversely, the cost incurred for renting resources in the EEN
to place a demand is captured by C ; ;.

B. UPFs and Routing

One of the new key aspects of 5G Core architecture is the
softwarization of its entities, enabled by advancements in NFV
and programmable data planes technologies [9]. UPFs in 5G
are commonly deployed as Virtual Network Functions (VNFs)
on general-purpose servers. On this basis, UPFs in our system
are modeled as VNFs. Clusters of UPFs are dynamically
initialized on OENs and can be horizontally scaled (i.e., new
replicas are deployed to keep up with the input traffic), where
r € R denotes the number of UPFs in a cluster, and R = |R|
is the maximum cluster size. For a UPF of scale r deployed on
the OEN, p, CPU resources have to be reserved, amounting
to a total processing bandwidth of B,..

One of prime tasks accomplished by the UPF is to anchor
user traffic that leaves the core network, and forward it to
its destination. In our system, the user traffic is represented
by the demands, whose destinations are the EAs deployed on
OENSs or EEN. Thus, “accepting” a demand means finding an
EN with enough resources to place the demand, and routing
it through a viable path from the source BS to the anchoring
UPEF, and further to the destination EA. We assume that if a
demand is to be placed on an OEN, it will be anchored on
a UPF instance deployed on that same OEN (e.g., demand
D4 shown in red in Fig. 1). Otherwise, if the demand is to
be offloaded to the EEN (e.g., demand D4 shown in blue
in Fig. 1), it will be anchored on a UPF deployed on a
viable OEN and will then be routed to the EEN. To this
end, for routing we consider a link-path formulation [10],
aimed to find the best path from source BS to destination
OEN/EEN. Therefore, a set of |A/| paths from any BS to any
OEN and the EEN is calculated, each denoted by n € N.
This formulation allows for a more granular representation of
routes and captures constraints and objectives related to path
characteristics (e.g., latency, bandwidth) more effectively.

III. PROBLEM FORMULATION

In this work, we focus on maximizing the utility derived
from demands that are accepted and served on the OENSs.
We also consider the costs associated with keeping the OENs
operational and the rental costs incurred from offloading
demands to the EEN. The objective is to maximize the
following function:

max Z(Uj,i,l'(1*Fj,i,z)*Cj,i,z’Tj,i,l)*zZe'C'e , (D
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where Uj ; ; represents the utility (profit) gain from accepting
a demand, F;;; € {0,1} denotes whether demand {j,i,[}
is rejected, C;;; denotes costs incurred if demand is placed
on EEN, and T},; € {0,1} denotes whether the demand is
offloaded to the EEN. z, € {0,1} denotes whether OEN e
is operational and C, denotes the operational costs. The first
term refers to the utility gained from accepting a demand, the
second term refers to the cost paid to the EEN operator, and
the last term captures the operating cost of OENSs.

In addition, we formulate 17 constraints related to the finite

resources of OENs, UPFs, network resources, EA deployment
and demand anchoring and placement.
1) OEN capacity constraints: The CPU resources allocated for
the deployment of UPFs, initialization of EAs, and placement
of demands, should not exceed the OEN’s total CPU capacity:
IR| Izl [T 1Z] 1454

Zprwr e+zpzxz e+zz Z Dji, ld ,i,0,e < Peave € 5

Jj=14i=1 [=1
()
where w, . € {0,1} denotes whether a UPF cluster with r

replicas is initialized on OEN e, z; . € {0, 1} denotes whether
EA i is deployed on OEN e, and d;;;. € {0,1} denotes
whether demand {j,¢,1} is placed on OEN e.
The storage resources taken up by the deployment of EAs
should not exceed the OEN’s total storage capacity:
IZ|
Zsrxi,egSe, Ve e &. 3)
i=1
2) EA deployment constraint: EAs can be deployed on an OEN
only if the OEN is in operational mode (ON):

Tie < 2z, Vi€ Veel. (@)

3) UPF deployment constraints: UPF clusters can be

initialized on an OEN only if it is in operational mode (ON):
IR

ane <z, Veefl. %)
r=1

On an OEN, there can only be one UPF cluster deployed:
IR|

Z Wre <1,
r=1

4) Demand placement constraints: A demand can be placed
on an OEN only if an EA of the same type is initialized on
the OEN:

djite < Tie,

Ve € €. (6)

VieJ,VieIVleL;;,YNec & ()
An EA should be initialized on an OEN only if there are
demands of the same type that will be placed on the OEN:
[T L5,
SN djite > wie, VieIVeek. (8)
j=1 i=1
There are three options for handling a demand: it can be
rejected, offloaded to the EEN, or placed on exactly one OEN:
€]
Fiiat+Tjia+Y djire=1,Yj € J, Vi € T,V € Lj;. (9)

e=1

5) Demand anchoring constraints: An accepted demand must
be anchored on exactly one OEN:

2

Fjii+ E Wi ite =1,
e=1

where w;, ;. € {0,1} denotes whether demand {j,i,1} is
anchored on the UPF cluster deployed on OEN e.

Demands will be anchored on OEN e if they are also placed
on OEN e, or if they are placed on the EEN but OEN e is the
last hop in the path:

VieJ,YieIVleL;;, (10)

V]
n,v
djﬂﬂ& + Z 5] 4,07
n=1

Vie I VieZIVleLl;; Vee& v=_ee"},

(11)

Wiyile =

where 077", € {0,1} denotes whether link v is part of the
path n that routes the demand {j,¢,{}. As v = {e,e*}, the
constraint considers only the last hop from any OEN to EEN.
A demand can be anchored on an OEN, if there is a UPF
cluster deployed on that OEN:
|R|
Wiile< Y Wre, VjETVi€IVIEL;Veek. (12)
r=1
UPF clusters are initialized on an OEN only if there are
demands anchored on that OEN:
|T11Z1 1£5.4 IR|

ZZZwﬂle>wa, Ve € &.

j=114i=1 [=1

13)

6) Routing constraints: Accepted demands can be routed

through exactly one path:
V]
Z 051 =

djite+ Tt (14)

VieJ,VieI,VleL;;,Ve€l,

where 07, , € {0,1} denotes whether path 7 is used to route
demand {j,1,1}.

If a demand is routed through a path, then all the links in
that path are used to transport the demand:

Vjie I, VieZVle Lj;,VneN,VveV. (15)

The latency incurred in the selected path, expressed as a
function of the number of links in the path and the links’
latency, cannot exceed the demand’s maximum delay budget:
V]
Zézzvl
p—t
7) Network resources: The total volume of traffic that is
anchored on an OEN cannot exceed the total capacity of
OEN’s UPF cluster:

[T |Z] 1£5.4] IR|

ZZZU&W' ]Zl<zwre'8r, Yeec & (17)

j=1i=1 I=1

n,v n
6] zl VRN

t' < tjils VieJ,VieZVle Ejyi,Vn e N. (16)

The total volume of traffic transported through a link cannot
exceed the link’s bandwidth:
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To summarize, the constrained optimization problem related
to our system, and in the focus of this paper, is:

(18)

max Z(Uj,i,l'(1_Fj,i,l)_cj,i,l'Tj,i,l)_zZe'Ce
Jitsl e
s.t. (2) — (18).

The optimization problem (1)-(18) is an ILP since all the
decision variables are binary, and the relation between them in
all the constraints are linear. Moreover, the problem of demand
placement in an EN with limiting CPU resources is NP-hard.
Due to space limitations, we refer the readers to the technical
report [11] for the proof of the NP-hardness of our problem
by reducing the Multiple Knapsacks Problem to it.

IV. RANGR

Since our problem is NP-hard, finding the optimal solution
with a solver is computationally very expensive. Therefore,
to overcome this inherent limitation of any variation of the
Knapsack Problem (KP), we design and implement our own
ranked greedy algorithm called RanGr. As will be shown in
Section V, RanGr finds near-optimal solutions and very fast.

Algorithm 1 provides a detailed overview of RanGr’s
execution. For enhanced clarity, we have separated the
definitions of the Main and anchorAndPlaceDemands
procedures. Initially, the algorithm calculates paths from each
BS to every OEN and EEN, for the given network topology.
The function called in line 2 does not calculate only the
shortest path, but all the paths between two nodes that are
shorter than a predefined cutoff value. This threshold on the
maximum number of hops in the path is used as a stopping
condition for the path calculation, and is based on the fact that
routing demands via longer paths may violate their latency
constraint. In analogy with the ILP’s link-path formulation,
this is the same function that calculates the list of paths which
are then given as input to the ILP (1) — (18), with the only
difference being that in RanGr the paths are also sorted based
on the number of hops.

RanGr is designed as a primal greedy heuristic, meaning
that the demands are ranked and sorted in descending order
of their rank (lines 3-5) before executing the anchoring and
placement procedure in line 6. More details on the ranking
formula and the anchoring and placement algorithm are given
in the following subsections. In lines 7-13 a “reallocation”
process takes place. First, a list of the rejected demands is
created, and then RanGr evaluates if the OENs have become
profitable. Therefore, if the profit from demands anchored or
placed on the OEN is not greater than its operational costs,
the algorithm proceeds to undo the anchoring/placement of
the demands from that OEN, and appends them to the list of
rejected demands. Lastly, the list is sorted based on the rank
of the demands, and the anchoring and placement algorithm is
executed again for this subset of the initial demands. This step
marks the end of RanGr’s execution, and the final UPF and

Algorithm 1: RanGr
D List of input demands

Input: BSList List of BSs in the topology
PUL OENList  List of OENSs and their parameters
EEN EEN and its parameters

Output: Demands’ anchoring and placement scheme

1 def Main ():

2 getAndSortPaths (BSList, OENList, EEN)

3 for d in D:

4 dyani < rankDemand (dy, d¢, depy)

5 Dyortea + sort (D, key < dpani)

6 anchorAndPlaceDemands (Dgypeq, OENList, EEN)
7 DR getRejectedDemands ()

8 for OEN in OENList:

9 if OENpfiy < OENON_cost?

10 DROEN <+ undoAnchorAndPlacement ()
1 DR . append (DR ogn)

12 DRmrted < sort (DR) key <~ dmnk)

13 anchorAndPlaceDemands (DRm,.md)

14 def anchorAndPlaceDemands (Dgypeq, OENList, EEN) :
15 initEmptyList (anchoredDemands)

16 for d in Dy,eq:

17 danchored <— False

18 for OEN in OENList:

19 OENR,, OENg, < rankOEN (OEN)

20 rankedOENs <— sort (OENList, key <— OENg,)
21 topOEN < rankedOENs[0]

22 if canPlaceInEdge (topOEN):

23 anchorInOEN (d, topOEN)

24 appendAnchoredd

25 degge < topOEN

26 danchored — True

27 else:

28 rankedOENs < sort (OENList, key <— OENg,)
29 for OEN in rankedOENs:

30 if canAnchorInOEN (OEN):

31 anchorInOEN (d, OEN)

32 danchared < True

33 break

34 if dunchorea is False:

35 rejectDemand (d)

36 for d in anchoredDemands:

37 if canPlaceInEdge (degge)

38 placeInEdge (d, deage)

39 elif canPlaceInEdge (EEN):

40 placeInEdge (d, EEN)

] else:

42 rejectDemand (d)

EA deployment schemes, demands’ anchoring and placement
schemes and the selected routes are obtained.

A. Demand Ranking

In order to obtain high-quality solutions that maximize the
operator’s profit, it is important to define a ranking criteria that
efficiently captures the “attractiveness” of anchoring/placing
a demand. In the classic KP, the efficiency of an item is
defined as the profit-to-weight ratio, where weight is the only
constraint that determines whether an item can be placed
into the knapsack. In our problem, although there are many
constraints on the resources at hand, most of them serve the
purpose of identifying the subset of OENs where the demand
can be anchored/placed on (e.g., the latency and bandwidth
constraints). Therefore, CPU and storage represent the only
resources counterpart to the weight in the classic KP. As the



latter is related to the EA that will serve the demands and not
directly to the demand itself, for the sake of simplicity, it is
omitted from the rank calculation. Summarizing, we have the
following:

Definition 1. The rank/efficiency of a demand is defined as
d
dmnk - < v *(dU - dC)) 5

depy’
where dy, dc and dcpy represent the utility, offloading cost,
and CPU requirement of the demand, respectively.

19)

To prevent any unintentional bias caused by varying ranges
among the values, all data are normalized. The rank of the
demand is defined as a tuple, where the ratio of utility to
CPU requirement takes precedence. In cases when this ratio
is identical for more than one demand, the difference between
its utility and cost (i.e., the profit margin) is the deciding factor.
Following this ranking methodology, we compile a list where
demands that are more profitable when placed on OENs, and
that have a lower profit margin when offloaded to the EEN,
are ranked higher.

At a first glance, it may seem that the chosen ranking
formula is too simple for such a complex problem.
Nonetheless, we experimented with other formulas that take
into account the relationship between utility, cost, and CPU
resources in a single equation rather than a tuple, but the
quality of the solution did not improve, and in some cases
it even degraded.

B. Anchoring and Placement Procedure

After the demands are ranked and sorted, in line 6,
the anchoring and placement procedure (lines 14-42) is
executed. This procedure implements a best-fit algorithm,
which identifies the most suitable EN for each demand being
evaluated. The objective of maximizing the operator’s profit
is translated in this procedure to: i) maximize the number of
accepted (i.e., anchored) demands, ii) maximize the number of
highly-profitable demands placed on OENSs, and iii) minimize
the number of OENSs in operation mode. Anchoring demands
on an OEN means that UPF instances need to be initialized
on the OENs, and CPU resources have to be allocated to these
UPFs. At the same time, OENs’ CPU resources constrain the
placement of demands onto these OENs. For this reason, the
anchoring and placement procedures are separated from each
other and executed sequentially.

RanGr tries first to anchor as many demands as possible
(lines 16-35). For each demand being evaluated, it ranks the
OENSs by calculating:

e OENp, — the remaining CPU resources at the OEN after
anchoring the demand, defined as:

OENRA = OENCPU’ - UPFupscaleCPUy (20)

where OENp;s is the amount of available CPU
resources, and UPF s q.cpy represents the CPU
resources to be allocated to the UPF in case that
anchoring the demand would lead to a UPF upscale.

e OENpg, — the remaining CPU resources in the OEN after
anchoring the demand and assuming it will also be placed
there, defined as:

OENR,=OEN py' —UPF pscaiecrv —EAcpy—dcpy, (21)

where OENpy is the amount of available CPU
resources assuming that previous demands anchored on
this OEN are also placed there, EAcpy is the CPU
requirement of the EA that would serve the demand
(considered only in the first occurrence of the EA in the
given OEN), and d¢py is the demand’s CPU requirement.

Since the demands can be placed either on the same OEN
where they are anchored, or on the EEN, we can think of the
anchoring procedure as a non-binding placement procedure.
After OENSs are ranked, they are sorted by the value of OENg,,
in decreasing order. The viability of the top-ranked OEN to
place the demand is then evaluated. If placing the demand
would not violate any of the constraints, RanGr proceeds
to anchor the demand on the OEN and save the placement
scheme for later. If placing would not be possible, then the
OENs are again sorted in decreasing order, but this time by
the value of OENg,. The algorithm iterates over the list of
sorted OENSs for anchoring, and once it finds a suitable OEN,
it anchors the demand and breaks the loop. In cases where a
suitable OEN could not be found, the demand is rejected.

Lastly, RanGr executes the placement procedure
(lines 36-42) by iterating through the demands that were
successfully anchored. Here, RanGr evaluates again if
it would be possible to place the demand on the same
OEN where it is anchored on. The reason why this check is
performed again is due to scenarios where as RanGr evaluates
more demands, CPU resources end up being used to initialize
more UPFs, and the assumed placement schemes for some
of the demands may not be valid anymore. If the placement
scheme is still valid, RanGr proceeds to place the demands;
otherwise, it checks if the demand can be offloaded to the
EEN (while still being anchored on the original OEN). If
that is not the case (e.g., the latency requirement cannot be
satisfied), the demand is rejected.

Regarding its computational complexity, RanGr exhibits a
worst-time complexity of O(|D|log |D| + |D| x |E|log |E|).
For the complete analysis on how this value is obtained, we
refer the readers to the technical report [11].

V. PERFORMANCE EVALUATION

We implement RanGr in Python and compare its
performance with the ILP solved with Gurobi [12], and two
benchmark algorithms. The evaluation setup consists of a
Virtual Machine (VM), to which we allocate 20 CPU cores
and 64 GB of RAM. In the following, we discuss in detail the
evaluation scenarios and the obtained results.

A. Benchmarks

With reference to algorithm evaluations performed in
the literature for similar problems [5], [6], [13]-[15], we
have implemented two benchmark algorithms to compare
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Fig. 2. Edge network topologies considered for the evaluation. The
configuration of the number of BSs (triangles), switches (circles), and OENs
(squares) for each topology is: a) (4,6,2), b) (8,8,4), and ¢) (12,10, 6).
The same amount of resources is allocated to each OEN and link in each
topology.

TABLE I
PARAMETERS USED FOR GENERATING INPUT DEMANDS
Demand parameter Value
EA type [1,2,3,4,5]
CPU req. [750,1000, 1250, 1500] mCPU

Bandwidth req.
Delay budget
Cost of EEN offloading
Utility

[30, 40, 50, 60] Mbps
[3,4,5] ms
[40, 50, 60, 70] units
[44 — 91] units

to RanGr. These are: i) Greedy, and ii) Top-K. Instead
of RanGr’s ranking mechanism, these algorithms rank the
demands based on their utility values. Moreover, RanGr
dynamically initializes OENs and UPF clusters. Greedy and
Top-K determine these aspects in the beginning, based on
the CPU and bandwidth requirements of the input demands.
Lastly, RanGr employs a best-fit strategy when selecting
on which OEN to place the demand, while the benchmark
algorithms utilize a first-fit approach, where demands are
placed on the first viable OEN.

B. Evaluation Scenarios

We compare the performance of RanGr for three different
topologies of different sizes: i) small, ii) medium, and iii)
large, as illustrated in Fig. 2. Each OEN is assumed to
have 32 CPU cores (32000 mCPU) and 250 GB of storage,
while the links have a capacity of 10 Gbps. Moreover, we
assume a switching on cost of 200 units for OENs, 1ms
latency for the transport links, and 1.5 ms latency for the
links connecting OENs to EEN. The sets of input demands are
generated as a percentage of the total OENs’ CPU resources
that they require. Thus, sets with demands that in total have
CPU requirements amounting to [30, 60, 100, 150, 200, 300]%
of the capacity of OENs are generated. For each scenario,
we generate 100 different inputs, where the parameters of a
demand are picked randomly from a pre-defined set, and each
demand is assigned randomly to a BS. The demand parameters
are summarized in Table I. Due to the high execution time,
ILP results are available only for the small topology, and for
the medium and large topologies, results are obtained only for
the lightly-loaded scenarios.

B ILP A RanGr V Greedy Top-K =——Large ==Medium -:-*Small
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Fig. 3. Performance of the algorithms for different configurations of input
demands, in terms of a) total profit, b) OEN CPU utilization, and c) number of
demands placed on OENs. Results for the small, medium and large topologies
are shown in dotted, dashed, and solid lines, respectively.

C. Results

In this subsection, we discuss the results of our evaluation
with respect to the total profit, CPU utilization of the OENSs,
and the number of demands placed in OENs . Due to space
limitations, for the comparison of the execution time of each
algorithm we refer the readers to the technical report [11].

1) Profit: Fig. 3a shows the average total operator’s profit
for different topologies and demands. RanGr exhibits a
near-optimal performance consistently, deviating only ~ 3%
from the optimal solution found by solving the ILP with
Gurobi. Greedy and Top-K, on the other hand, perform good
only for the lightly-loaded scenarios, and as the number of
demands increases, their performance degrades, deviating on
average ~ 19% and ~ 33% from the optimal solution.
In highly-loaded scenarios, RanGr consistently outperforms
Greedy, with the latter deviating by on average ~ 18% and
~ 10% from RanGr’s solution, for the medium and large
topologies, respectively. The total profit obtained by using
Top-K is on average ~ 29% lower than RanGr for the
medium topology, and ~ 17% for the large topology. The
superior performance of RanGr can be attributed to its ranking
mechanism, and the best-fit strategy taken for anchoring and
placing the demands in the edge infrastructure.

2) CPU Utilization and Demands in OENs: Fig. 3b shows
the average CPU utilization (considering all OENs) for the
large topology. RanGr again performs very good, reaching
~ 98% CPU utilization as the demands increase. However, it is
important to also evaluate how these resources are distributed.
Fig. 3c, shows the number of demands placed on the OENs
for all the topologies. In the case of RanGr, this number
increases consistently as the input size increases, proving
that the ranking operation can efficiently capture the value



of the demands. In terms of CPU utilization, Top-K could
only reach up to ~ 90%, for all the overloaded scenarios. By
investigating the average number of demands it has placed on
OENSs, we see that it is almost static for all the highly-loaded
scenarios. The reason is that Top-K considers only K demands
for placement, leading to inefficient CPU utilization. Lastly,
Greedy also reaches ~ 98% CPU utilization, but in Fig. 3¢
we see that it performs bad in allocating these resources to the
demands. Specifically, this is a result of the inefficient ranking
mechanism, which allocates “heavy” demands first, saturating
the available resources as a result.

VI. RELATED WORK

The edge server placement problem has been investigated
for different objectives and with different considerations [6],
[8], [16]-[18]. From a profit perspective, the authors in [16]
minimize the number of MEC locations and model the
relation between BSs and MECs, while the authors in [6]
additionally consider UPF deployment when dimensioning the
edge infrastructure and formulate an objective that maximizes
the operator’s profit. The authors in [8] optimize the placement
of edge servers in a BS topology, while minimizing the access
delay. Energy-aware [17] and load-aware [18] deployment
procedures are also investigated. A joint approach to the
edge server and service placement problem is given in [7].
However, these works assume a network planning approach,
trying to optimally dimension the edge infrastructure for any
future services that might be deployed. Here, we formulate
the problem for an already-deployed edge infrastructure, and
consider aspects related to service and UPF placement, as well
as demand routing.

Leyva-Pupo et al. formulate the problems of minimizing
capital and operating expenditures when deploying UPFs [19]
and UPF chains [13] in the 5G infrastructure. In another
research work, the authors take a more holistic approach for
jointly dimensioning the edge infrastructure and deploying
UPFs. A multi-objective framework is presented in [20] which
solves the multi-objective optimization problem of minimizing
the number of edge nodes, UPFs, and relocations.

Service placement and scheduling for edge applications is
investigated in [14], while the problem of jointly placing
services in edge servers located in BSs, and routing user
requests in the access network is investigated in [21]. Lastly,
the authors in [15] propose a model to jointly slice the network
and compute resources available at the edge, while minimizing
the overall user-experienced latency.

Therefore, to the best of our knowledge, this is the first
work that models and formulates the problem of jointly
orchestrating the deployment of UPFs, Edge Applications
(EAs), and demands on the edge infrastructure, with the
objective of maximizing TNO’s profit.

VII. CONCLUSION

In this paper, we considered the problem of jointly
placing UPFs and edge applications as well as routing the
demands, encompassing the entire cellular network. The goal

was to maximize the operator’s profit. The different traffic
requirements of the tasks are taken into account, including
the tolerable maximum latency of each demand, as well
as the limitations across different types of resources in the
network. The resulting optimization problem is NP-hard, and
we resort to using a heuristic, RanGr. Results showed that
the performance of RanGr is near-optimal and considerably
better than the benchmark. As future work, multi-objective
formulations that consider the energy consumption of ENs and
scenarios with dynamic input demands will be considered.
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