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Abstract. We consider the edge-reinforced random walk with multiple (but finitely many) walkers
which influence the edge weights together. The walker which moves at a given time step is chosen
uniformly at random, or according to a fixed order. First, we consider 2 walkers with linear rein-
forcement on a line graph comprising three nodes. We show that the edge weights evolve similarly to
the setting with a single walker which corresponds to a Pólya urn. In particular, the left edge weight
proportion is a martingale at certain stopping times, showing that a (random) limiting proportion
exists. We then look at an arbitrary number of walkers on Z with very general reinforcement. We
show that in this case, the behaviour is also the same as for a single walker: either all walkers are
recurrent or all walkers have finite range. In the particular case of reinforcements of “sequence type”,
we give a criterion for recurrence.

1. Introduction

1.1. Model. In this paper, we study the edge-reinforced random walk with multiple walkers. The
edge-reinforced random walk (ERRW) with a single walker is a stochastic process in discrete time
defined on a graph. The edges in the graph are weighted, and the probability to leave a node via
one of the incident edges is proportional to the respective edge weight compared to the weights of
the other incident edges. Each time an edge is crossed, its weight is increased according to some
reinforcement scheme. Thus, it becomes more likely to visit parts of the graph which have already
been visited before and the process is not a Markov process. If the initial edge weights are the same
everywhere and the edge weight increment is 1 (upon traversal), then the walk is called linearly
edge-reinforced random walk (LERRW), the most commonly studied model of reinforced random
walks.
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We extend the above model to include multiple walkers. There is a common set of edge weights
for all walkers, and at every time step, one of the walkers moves (the walker to move may be
selected at random, or according to some fixed order). The probability to take a specific edge is
still proportional to the weight, and we keep the reinforcement: the weight of an edge is increased
whenever any of the walkers crosses it. The main problem arising when studying multiple walkers is
that the process is no longer partially exchangeable, in contrast to the single walker case, such that
methods used previously are no longer applicable. More details are given in the following literature
overview.

1.2. Literature. The ERRW (as well as its counterpart, the vertex-reinforced random walk) has
been studied extensively, the first papers dating back to 1987, when the model was introduced by
Coppersmith and Diaconis. Even before, Diaconis and Freedman (1980) showed that the LERRW (if
certain assumption are satisfied) has a representation as a mixture of Markov chains, i.e. a Markov
chain with random transition probabilities, also known as random walk in random environment. In
Diaconis and Freedman (1980), it was proved that the existence of such a representation as mixture
of Markov chains is equivalent to the random walk being partially exchangeable, which means that
two finite path fragments which the random walker can take starting from the same state have the
same probability if the (directed) edges in the path are traversed the same number of times. Much
later, Merkl and Rolles (2007) showed that this representation can be used for the LERRW on any
graph, and Merkl et al. (2008) even gave a formula for the so-called mixing measure on finite graphs.
The mixing measure simply is the distribution of the random transition probabilities in the mixture
of Markov chains.

Relatively early, results for the LERRW on trees were obtained. Pemantle (1988); Lyons and
Pemantle (1992, 2003) showed that there is a phase transition between recurrence and transience
in the initial edge weights. The interesting case of Zd remained open much longer until Angel
et al. (2014) showed that the LERRW on Z2 and on any graph of bounded degree is recurrent for
sufficiently small initial weights, and until Angel et al. (2014); Sabot and Tarrès (2015); Disertori
et al. (2015) showed that for d ≥ 3, there is again a transition from recurrence to transience in
the initial weights. Poudevigne-Auboiron (2024) proved that this transition is sharp, i.e. there is a
certain critical initial edge weight such that for smaller initial weights, the random walk is recurrent,
and transient for larger weights. Poudevigne-Auboiron (2024, Theorem 4) also demonstrated that
the LERRW on Z2 is recurrent for any choice of initial edge weight (if every edge has the same initial
weight), and thereby answered one of the most interesting remaining questions on the LERRW on
the lattice Zd.

These results were obtained by exploiting a connection of the LERRW and the so-called vertex-
reinforced jump process (VRJP). The VRJP is a continuous-time process (Yt)t≥0 on a graph with
conductances ce on every edge e. If the process is at vertex v at time t, then, conditional on
(Ys, s ≤ t), the process jumps to neighbor u of v at rate c{v,u} · Lu (t) where {v, u} is the edge
between v and u, and where

Lu (t) = 1 +

∫ t

0
1Ys=u ds .

When using independent Gamma-distributed conductances, the distribution of the VRJP at jump
times corresponds to the distribution of the LERRW. The VRJP, in turn, and similarly to the
LERRW, is distributed as a mixture of time-changed Markov jump processes which are more
amenable to analysis on Zd than the mixing measure of the LERRW.

An overview of results on reinforced processes in general can be found in Pemantle (2007); Kozma
(2012). These surveys also show that reinforced random walks are closely related to urn processes,
which have a very similar reinforcement component to the linearly reinforced walks: in most urn
models, when a ball of a certain color is drawn, a fixed number of balls of the same color is added
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to the urn. This is also a type of linear reinforcement, and urns have been used on many occasions
to analyze reinforced walks (see, for example, Pemantle (1988)).

Results for multiple interacting reinforced random walks are scarce. In Erhard and Reis (2021),
the authors consider multiple ant random walks. However, the ant random walk is defined via a
reinforcement rule on oriented edges instead of on non-oriented edges (as for the ERRW). Erhard
and Reis (2021) also consider the case of superlinear reinforcement and compare the reinforced walk
with Pólya urns.

Edge-Reinforced walks with multiple walkers on non-oriented graphs have (to the best of our
knowledge) not been studied yet. For multiple walkers, there is no representation as a mixture of
Markov chains, even in the case with linear reinforcement. This is due to the fact that the interacting
random walks are no longer partially exchangeable. Therefore, most of the methods which have
been used to study the LERRW cannot be applied to the case of multiple walkers. However, our
paper is partially based on methods which have been used to study urn processes as there still is
a similarity to urn models where multiple balls are drawn from the urn. In particular, Crimaldi
(2016) studied urns where multiple balls are drawn and replaced, and new balls are added according
to a random distribution depending on the balls which were drawn. The methods used to study
the limiting proportions of balls in the urn are also useful to study two edge-reinforced walkers on
a 3-node segment ( ) and the limiting proportions of the corresponding edge weights. A
comprehensive overview of urn models and methods to analyse them may be found in Mahmoud
(2009). In particular, Mahmoud (2009, Chapter 10) also considers urns where multiple balls are
drawn. As will become apparent later, however, none of the previously studied urn models exactly
match the model we study.

Apart from using methods from the theory on urn models, we can also fall back on Davis (1990)
who studied the ERRW on Z with very general reinforcement (and not just linear reinforcement)
without using the representation as a mixture of Markov chains. Davis (1990) showed that a single
walker is either recurrent or visits only a finite part of Z. The methods used there can be adapted
for multiple walkers, but the method is specific to Z.

1.3. Results. In the following, the random walkers will be denoted by sequences
(
X

(i)
n

)
n≥0

, where

X
(i)
n is equal to the position of walker i at time n, so X

(i)
n is a node of the graph. We will show the

following four main results:

• Theorem 3.1: consider two walkers on a 3-node segment with linear reinforcement where
the walkers move alternately. Then, the proportion of the left edge weight converges to a
random limit which has no atoms. Specifically, if we denote the weights of the left and
right edges at time n by w(n,−1) and w(n, 0), respectively, then the fraction w(n,−1)

w(n,−1)+w(n,0)

converges to a random limit M∞ which satisfies P [M∞ = a] = 0 for any a ∈ [0, 1].
• Theorem 3.3: consider two walkers on a 3-node segment with linear reinforcement where the

walker to move is selected uniformly at random at every step. Then, the proportion of the
left edge weight converges to a random limit. Furthermore, the left edge weight proportion
is a martingale if looked at at certain stopping times. Specifically, the fraction w(n,−1)

w(n,−1)+w(n,0)

converges to a random limit, which is identical to the limit of the martingale w(τn,−1)
w(τn,−1)+w(τn,0)

,

where τn = inf
{
m > τn−1 : X

(1)
m and X

(2)
m are both in the center node

}
.

• Theorem 4.1: consider K walkers on Z with very general reinforcement, but where all but
finitely many initial weights are 1, and where the walker to move is selected uniformly at
random. Then, either all walkers are recurrent or all walkers have finite range (visit only a
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finite part of Z) a.s. That is, under these assumptions,

P
[
∀i : X(i) is recurrent

]
+ P

[
∀i : X(i) has finite range

]
= 1 .

• Theorem 4.2: consider K walkers on Z with sequence type reinforcement where the walker to
move is selected uniformly at random. Then, we can characterize the two possible behaviors
depending on the sequence of edge weight increments. “Sequence type” means that all
initial edge weights are 1, and that the edge weights are then increased by a fixed sequence
of increments a = (ak)k≥1 which do not depend on the location of the edge. Specifically, if
we set

ϕ (a) =
∞∑
k=1

(
1 +

k∑
l=1

al

)−1

,

then, if ϕ (a) = ∞, all walkers are recurrent a.s., and if ϕ (a) < ∞, all walkers have finite
range a.s.

1.4. Methods. Section 3.1 treats the case of two walkers on the 3-node segment. When considering
alternating walkers, the analysis of the left edge weight proportion w(n,−1)

w(n,−1)+w(n,0) mostly relies on
relatively straightforward calculations which show that the proportion is a martingale at times 4n.
Since this martingale is bounded, the existence of a limit can be derived. We will use the notation
Mn = w(4n,−1)

w(4n,−1)+w(4n,0) , und use M∞ to denote the (random) limit. Subsequently, methods taken
from Crimaldi (2016) allow us to show the following central limit type result in Theorem 3.1 (ii):

√
n (Mn −M∞) → N

(
0,

1

2
M∞ (1−M∞)

)
where N

(
µ, σ2

)
denotes a normal distribution. This result, and the comparison to the case with a

single walker (which is in 1-to-1 correspondence to a Pólya urn where two balls of the drawn color
are added after every draw) allow us to show that M∞ has no atoms. The question of whether M∞
has a density remains open.

For the 3-node segment with two walkers where the walker to move is selected randomly, the
straightforward calculations from the previous case become much more complicated. Using a re-
cursive formula for the conditional expectation, we can show that w(τn,−1)

w(τn,−1)+w(τn,0)
is a martingale,

where τn = inf
{
m > τn−1 : X

(1)
m and X

(2)
m are both in the center node

}
. This again results in the

existence of a limit random variable. The method we used for the alternating walkers to show that
no atoms exist might be applicable in this case as well, but we could not carry through some of the
necessary calculations.

Section 4 treats a finite number of walkers K on Z. To show that all walkers are recurrent or all
have finite range, we use a martingale technique which originates from Davis (1990). In particular,
if you sum up the inverse of the edge weights between 0 and the position of one of the walkers, the
resulting sum is a nonnegative supermartingale. By convergence of this supermartingale, we can
deduce that every walker either reaches 0 at some point or only visits finitely many nodes which
have not been visited before by any of the other walkers. In addition, you can exchange tails of the
paths of walkers after they met in a certain node without affecting the law of the overall process.
These two key lemmata allow us to show that all walkers will have the same behavior.

Finally, in order to characterize the two possible behaviors for sequence type reinforcements, we
only have to adapt the method from Davis (1990) slightly in order to apply it to multiple walkers
simultaneously. The proof idea here is to show that all walkers get stuck on a single edge with
positive probability if the weight increments grow fast enough. On the other hand, one can show
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that the neighbor of a node which is visited infinitely often is visited infinitely often as well if the
increments grow slower.

2. Preliminaries

2.1. Graphs. Throughout this paper, random walks on Z and on the 3-node segment will be consid-
ered. Recall that Z has node set V = Z and edge set E = {{u, v} | u, v ∈ V and |u− v| = 1}. The
3-node segment is the subgraph P3 of Z with vertex set {−1, 0, 1} and edges {{−1, 0}, {0,+1}}.

2.2. Edge-reinforced random walk. We define the edge-reinforced random walk, which is the main
object of this paper.

Definition 2.1 (Edge-Reinforced Random Walk). For this definition we consider only the graph Z.
We define the crossing number induced by the edge-reinforced random walk (ERRW) (Xn)n≥0

on the edge {x, x+1} (which we will identify with x for more concise notation) as follows: c(0, x) = 0,
and

for n ≥ 1 : c (n, x) =
n∑

i=1

1{{Xi−1, Xi}={x,x+1}} , w(n, x) := Wx(c(n, x)) ,

i.e. c counts the number of edge traversals and w describes the evolution of the edge weights. For
x ∈ Z, Wx : N ∪ {0} → R>0 is a non-decreasing function, called the reinforcement function for the
edge {x, x+1}. The choice of reinforcement w(n, x) = 1+c(n, x) is called linearly edge-reinforced
random walk (LERRW).

Given the history Hn = σ(Xm : m ≤ n), we have

P [Xn+1 = Xn + 1 | Hn] =
w(n,Xn)

w (n,Xn − 1) + w (n,Xn)

P [Xn+1 = Xn − 1 | Hn] =
w(n,Xn − 1)

w (n,Xn − 1) + w (n,Xn)
.

In words, the probability to take the transition from Xn to Xn + 1 at time n is proportional to the
weight w(n,Xn) associated to the edge {Xn, Xn + 1}, which depends on the number of traversals
of the edge.

In the following, we will generalize the edge-reinforced random walk to include multiple walkers
which move on the same graph and influence the edge weights together. We start by looking at
a 3-node segment with two walkers in Section 3, and then consider Z with an arbitrary but finite
number of walkers in Section 4.

2.3. Almost sure conditional convergence.

Definition 2.2. Let (Ω,G,P) be a probability space. Consider a real random variable X on Ω and
a sub-σ-field F of G. We define the conditional distribution µX|F of X given F as follows: µX|F
is a mapping from Ω to the set of probability measures on R (with the Borel σ-algebra). Let A ⊆ R
be a measurable set. Then

µX|F (A) = E [1X∈A | F ]

Note that ω 7→ µX|F (A) (ω) is F-measurable for every measurable set A.
Consider now a sequence Xn of random variables on Ω and a sequence of sub-σ-fields Fn. Denote

by µn the conditional distribution of Xn given Fn. Let µ be a random probability measure on R,
where µ maps from Ω to the set of probability measures on R, and ω 7→ µ (A) (ω) is G-measurable for
every set A ⊆ R which is Borel-measurable. We say that Xn converges to µ in the sense of almost
sure conditional convergence with respect to the conditioning system Fn if µn converges weakly
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to µ for almost every ω ∈ Ω. Notice that Xn → µ in the sense of almost sure conditional convergence
with respect to (Fn)n≥0 if, and only if, for all f : R → R continuous and bounded it holds that

E[f(Xn)|Fn](ω) →
∫

f(ω̄)µω(dω̄) , (2.1)

where µω represents a realization of the random measure µ.

The notion of almost sure conditional convergence is stronger than the notion of weak convergence:
in the setting of Definition 2.2, using the dominated convergence theorem, (2.1) implies that, for all
continuous and bounded function f ,

E[f(Xn)] →
∫ ∫

f(ω̄)µω(dω̄)P(dω) ,

that is, the sequence (Xn)n≥0 converges weakly to the distribution defined through

µ̄(A) :=

∫
µω(A)P(dω) .

The following lemma will be useful.

Lemma 2.3. Let µ be a random probability measure and

µ̄(A) :=

∫
µω(A)P(dω) .

Assume that (Xn)n≥0 converges to µ in the sense of almost sure conditional convergence. Let (Yn)n≥0

be a sequence of random variables such that

lim
n→∞

|Xn − Yn| = 0 , almost surely.

Then the laws of Yn converge weakly to µ̄ for n → ∞.

Proof : Observe that
|E[f(Xn)]− E[f(Yn)]| ≤ E[|f(Xn)− f(Yn)|] ,

which goes to zero using the dominated convergence theorem. □

In this work N (0, V ) denotes the distribution of a normal random variable with mean zero and
(random) variance V . We write N (0, V ) for the mixture of the laws N (0, V ) when we average on
the randomness of V :

N (0, V ) (A) :=

∫
N
(
0, V )(A)dL(V ) .

Theorem 2.4. Let Mn be a bounded martingale with respect to a filtration Fn and let V be a random
variable. Let M∞ be the random variable such that Mn → M∞ a.s. and in L1. Assume that

(i) E
[
sup
n≥1

√
n |Mn−1 −Mn|

]
< ∞

(ii) n
∑
j≥n

(Mj−1 −Mj)
2 → V a.s.

Then, the following convergence holds in the sense of almost sure conditional convergence with
respect to Fn: √

n (Mn −M∞) → N (0, V ) .

Proof : See Crimaldi (2016, Theorem A.1 (A.3 in the arxiv version)). The stated version is just a
simplified version of it. □

Lemma 2.5. Let Xn be a sequence of random variables adapted to the filtration Fn and let X be a
random variable. Assume that
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(i)
∑
n≥1

n−2E
[
X2

n

]
< ∞ and

(ii) E [Xn | Fn−1] → X a.s.
Then

n
∑
j≥n

Xj

j2
→ X a.s.

Proof : See Crimaldi (2016, Lemma A.2). □

3. Two walkers on a segment of 3 nodes

3.1. The model. We start with a very simple model, the linearly edge-reinforced random walk with
two walkers on a segment of Z with three nodes. We use the notation shown in Figure 3.1.

0−1 1

w (n,−1) w (n, 0)

Figure 3.1. Edge weights of the line segment at time n

We can interpret this as a two-player urn: the left and right edge weights correspond to the
number of balls in an urn, and the two walkers correspond to two players which draw balls from
the urn and add more balls of the drawn color.

We adapt Definition 2.1 for two walkers on the 3-node segment as follows:

• There are two walkers X(1) and X(2), which both start at the node in the center, i.e. X(1)
0 =

0, X
(2)
0 = 0.

• Initially, both edge weights are 1. We denote the edge weight of the left edge at time n by
w (n,−1), the weight of the right edge by w (n, 0).

• Whenever an edge is crossed by either of the walkers, its weight is increased by 1, which
corresponds to the linear reinforcement function W (n) = 1 + n in Definition 2.1. More
specifically, we define, for ℓ ∈ {−1, 0}, c(0, ℓ) = 0 and

for n ≥ 1 : c (n, ℓ) =
2∑

k=1

n∑
i=1

1{{X(k)
i−1, X

(k)
i }={ℓ,ℓ+1}} , and w(n, ℓ) = 1 + c (n, ℓ) .

• When a walker at the node in the center is about to move, he chooses the edge to traverse
with probability proportional to the respective edge weight. It remains to decide which
walker jumps at each time.

• We will consider two variants of the order in which the walkers move:
– Alternating walkers: the walkers move alternately, i.e. at odd time steps, walker 1

moves (in particular, walker 1 moves first at step 1) and at even time steps, walker 2
moves. Notice that the walkers will meet at the node in the center every four steps. As
an example, given the history H4n = σ(X

(j)
m : m ≤ 4n, j = 1, 2), X(2)

4n+1 = X
(2)
4n and

X
(1)
4n+1 = X

(1)
4n + 1 with probability

w(4n, 0)

w (4n,−1) + w (4n, 0)
.
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– Random walker selection: at every step, we choose uniformly at random (indepen-
dently of all other steps) which of the two walkers moves. As an example, given the
history Hn = σ(X

(j)
m : m ≤ n, j = 1, 2), we select the walker 1 to jump with probability

1
2 , and assuming that X

(1)
n = 0, we have that X

(2)
n+1 = X

(2)
n and X

(1)
n+1 = X

(1)
n + 1 with

probability

w(n, 0)

w (n,−1) + w (n, 0)
.

3.2. Results. We define

Nn :=
w (n,−1)

w (n,−1) + w (n, 0)

and let Gn := σ (N0, . . . , Nn). Our goal is to prove limit theorems for the sequence (Nn)n≥0.
To illustrate our methods, consider first the special case of just one walker on the 3-node graph.

The walker decides to jump either to the right or to the left and afterwards comes back again to
the center. As a consequence, the number of visits of each edge at times 0, 2, 4, ... has the same
distribution as the number of balls in a Pólya urn where we add 2 more balls of the drawn color at
every step. It is a classical result that the proportion of balls in the Pólya urn is a martingale.

The case of two alternating walkers can also be described in terms of an urn:
(1) We start with one black and one white ball (the number of black balls corresponds to the

left edge weight, and the number of white balls to the right edge weight).
(2) We draw a ball from the urn, and replace it along with another ball of the same color

(this corresponds to the first walker choosing an edge to traverse in outwards direction and
incrementing the respective edge weight by 1). We then put another ball of the drawn color
on hold, outside the urn.

(3) We draw another ball from the urn, and replace it along with two more balls of the drawn
color as well as with the ball on hold (this corresponds to the second walker choosing an
edge to traverse in both directions and incrementing its weight by 2, and to the first walker
returning to the central node in between). We then go back to (2) and repeat the procedure.

In contrast to previously studied urn models, we cannot describe our model as an urn where mutliple
balls are drawn and then immediately replaced along with additional balls whose colors depend on
the sample drawn. Instead, we have to put some balls on hold before placing them in the urn.
Again, we note that the sequence of drawn colors is no longer exchangeable as it is for the Pólya
urn. However, we can still use some of the methods which have been applied to study standard
urns – in particular the martingale property of the proportion of balls.

In the case of two walkers which move alternately, the walkers meet at node 0 after every 4 steps.
As we will prove, the proportion of the left edge weight at times 4n is a martingale. This motivates
the definition

Malt
n := N4n , ∀n ≥ 0 .

Malt
n is the proportion of the weight of the left edge {−1, 0} at times (4n)n≥0.

Theorem 3.1. Consider the model where the walkers jump alternately with the correspondig se-
quence (Nn)n≥0 of random variables. Then

(i) (Malt
n )n≥0 is a bounded martingale and we define

Malt
∞ := lim

n→∞
Malt

n .

We have that limn→∞ |Nn −Malt
∞ | = 0 almost surely.
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(ii) The following convergence holds in the sense of almost sure conditional convergence w.r.t. the
filtration (Gn)n≥0:

√
n
(
Malt

n −Malt
∞

)
→ N

(
0,

1

2
Malt

∞

(
1−Malt

∞

))
. (3.1)

As a consequence of Lemma 2.3, the following convergence holds in the weak sense:
√
n
(
Nn −Malt

∞

)
→ N

(
0,

1

2
Malt

∞

(
1−Malt

∞

))
.

(iii) P
[
Malt

∞ = a
]
= 0 for any a ∈ [0, 1]. As a consequence, Malt

∞ is not deterministic.

We furthermore believe that the following is true (partly based on simulations).

Conjecture 3.2. Malt
∞ ∈ [0, 1] has a density w.r.t. the Lebesgue measure on [0, 1]. Malt

∞ is not
Beta-distributed.

For the case of two walkers and random walker selection, we define the following sequence of
stopping times: τ0 = 0 and, recursively,

τn = inf
{
m > τn−1 : X

(1)
m = X(2)

m = 0
}
.

Furthermore, we define the sequence (M rd
n )n≥0 as follows:

M rd
n = Nτn , ∀n ≥ 0 .

Theorem 3.3. Consider the model where the walker to move is selected randomly with the corre-
spondig sequence (Nn)n≥0 of random variables. Then

(i) (M rd
n )n≥0 is a bounded martingale and we define

M rd
∞ := lim

n→∞
M rd

n .

(ii) The sequence of stopping times (τn)n≥0 satisfies the following:

P [τn+1 − τn = 2l] = 2−l for all l ≥ 1 ,

E [τn+1 − τn] = 4 .

(iii) limn→∞Nn = M rd
∞ almost surely.

We prove Theorem 3.1 and Theorem 3.3 in Section 3.3 and Section 3.4.

3.3. Proofs: alternating walkers (Theorem 3.1).

Proof of Theorem 3.1 (i): In this section, we write Mn instead of Malt
n . We first prove that (Mn)n≥0

is a martingale. We assume that at time 4n, the edge weights are given by w (4n,−1) = a,w (4n, 0) =
b. Recall that the walkers move alternately and meet at the center node every four steps. Therefore,
on the time interval {4n+ 1, 4n+ 2, 4n+ 3, 4n+ 4}, the following possibilities occur:

• X(1) and X(2) move alternately from 0 to −1 and back with probability
a

a+ b

a+ 1

a+ b+ 1

and the new edge weights are w (4n+ 4,−1) = a+ 4, w (4n+ 4, 0) = b.
• X(1) and X(2) move alternately from 0 to 1 and back with probability

b

a+ b

b+ 1

a+ b+ 1

and the new edge weights are w (4n+ 4,−1) = a,w (4n+ 4, 0) = b+ 4.
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• X(1) moves from 0 to 1 and X(2) moves from 0 to −1. X(1) and X(2) move back to 0 with
probability 1. This event happens with probability

b

a+ b

a

a+ b+ 1

and the new edge weights are w (4n+ 4,−1) = a+ 2, w (4n+ 4, 0) = b+ 2.
• X(1) moves from 0 to −1 and X(2) moves from 0 to 1. After that X(1) and X(2) move back

to 0 with probability 1. This event happens with probability
a

a+ b

b

a+ b+ 1

and the new edge weights are w (4n+ 4,−1) = a+ 2, w (4n+ 4, 0) = b+ 2.
Therefore,

E
[

w (4n+ 4,−1)

w (4n+ 4,−1) + w (4n+ 4, 0)

∣∣∣∣ w (4n,−1) = a,w (4n, 0) = b

]
=

a

a+ b

a+ 1

a+ b+ 1

a+ 4

a+ b+ 4
+

a

a+ b

b

a+ b+ 1

a+ 2

a+ b+ 4

+
b

a+ b

a

a+ b+ 1

a+ 2

a+ b+ 4
+

b

a+ b

b+ 1

a+ b+ 1

a

a+ b+ 4

=
a

a+ b
· (a+ 1) (a+ 4) + 2b (a+ 2) + b (b+ 1)

(a+ b+ 1) (a+ b+ 4)
=:

a

a+ b
Eab .

To see that Eab = 1, it is enough to count how many terms of the form a2 (respectively, b2, b, a,
and ab) appear in the numerator and in the denominator.

The martingale (Mn)n≥0 is bounded and therefore Mn = w(4n,−1)
4n+2 converges a.s. to a random

variable M∞. We claim that Nn = w(n,−1)
n+2 also converges to M∞. Indeed, for i ∈ {1, 2, 3}, we have

lim
n→∞

∣∣∣∣w (4n+ i,−1)

4n+ i+ 2
− w (4n,−1)

4n+ 2

∣∣∣∣ = 0 ,

because |w (4n+ i,−1)− w (4n,−1) | ≤ i . □

Proof of Theorem 3.1 (ii): In this section, we write again Mn instead of Malt
n . The proof of Theo-

rem 3.1 (ii) uses Theorem 2.4. Indeed, we only have to verify the two assumptions of Theorem 2.4,
with V = 1

2M∞(1−M∞).
First step / condition (i): it holds that

E
[
sup
n>1

√
n |Mn−1 −Mn|

]
≤ 1 < ∞ . (3.2)

Since |Nn −Nn−1| is bounded by 1
(n−1)+2 , we get that |Mn−1 −Mn| ≤ 4

4(n−1)+2 . Thus

√
n |Mn−1 −Mn| ≤

4
√
n

4 (n− 1) + 2
< 1

which implies that (3.2) is true.
Second step / condition (ii): the following limit holds almost surely:

n
∑
j≥n

(Mj−1 −Mj)
2 → 1

2
M∞(1−M∞) . (3.3)

To prove (3.3), we use Lemma 2.5 with Xn := n2 (Mn−1 −Mn)
2. Condition (i) of Lemma 2.5 is a

direct consequence of |Mn−1 −Mn| ≤ 4
4(n−1)+2 .
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Our goal (showing condition (ii) of Lemma 2.5): to show that the following holds almost
surely, where Fn := G4n = σ(N0, . . . , N4n):

E
[
n2 (Mn−1 −Mn)

2
∣∣∣ Fn−1

]
→ 1

2
M∞ (1−M∞) .

We claim that

E
[
M2

n

∣∣ Fn−1

]
=

(
1− 1

2n2

)
M2

n−1 +
1

2n2
Mn−1 +∆n with n2∆n

a.s.−→ 0 . (3.4)

Assuming the claim it follows that

E
[
n2 (Mn−1 −Mn)

2
∣∣∣ Fn−1

]
= n2E

[
M2

n

∣∣ Fn−1

]
− n2M2

n−1

=

(
n2 − 1

2

)
M2

n−1 +
1

2
Mn−1 + n2∆n − n2M2

n−1

=
1

2
Mn−1 (1−Mn−1) + n2∆n

a.s.−→ 1

2
M∞ (1−M∞) ,

as we wanted to prove.
We proceed to show (3.4). By definition,

n2∆n = n2

(
E
[
M2

n

∣∣ Fn−1

]
−
(
1− 1

2n2

)
M2

n−1 −
1

2n2
Mn−1

)
.

We condition on w (4 (n− 1) ,−1) = a,w (4 (n− 1) , 0) = b, similarly to the proof of Theorem 3.1 (i),
and get

E
[
M2

n

∣∣ Fn−1

]
=

a

a+ b
· a+ 1

a+ b+ 1
· (a+ 4)2

(a+ b+ 4)2
+ 2 · a

a+ b
· b

a+ b+ 1
· (a+ 2)2

(a+ b+ 4)2

+
b

a+ b
· b+ 1

a+ b+ 1
· a2

(a+ b+ 4)2

=
a

a+ b
·

(
a+ 1

a+ b+ 1
· (a+ 4)2

(a+ b+ 4)2
+

2b

a+ b+ 1
· (a+ 2)2

(a+ b+ 4)2

+
b (b+ 1)

a+ b+ 1
· a

(a+ b+ 4)2

)
.

Furthermore, under the same conditioning, and using that n = a+b+2
4 ,(

1− 1

2n2

)
M2

n−1 =

(
1− 8

(a+ b+ 2)2

)
a2

(a+ b)2

1

2n2
Mn−1 =

8

(a+ b+ 2)2
· a

a+ b
.

Putting this together (see https://bit.ly/3I8rEWL), we arrive at

∆n = − 8

(a+ b+ 2)2︸ ︷︷ ︸
1

2n2

· a

a+ b
· b

a+ b︸ ︷︷ ︸
Mn−1(1−Mn−1)

·3a
2 + 6ab+ 12a+ 3b2 + 12b+ 8

(a+ b+ 1) (a+ b+ 4)2
,

n2∆n = −1

2
Mn−1 (1−Mn−1) ·

3a2 + 6ab+ 12a+ 3b2 + 12b+ 8

(a+ b+ 1) (a+ b+ 4)2
.

https://bit.ly/3I8rEWL
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Using again n = a+b+2
4 , we can rewrite the fraction on the right (see http://bit.ly/3ICUJLz) to get

to the final conclusion

n2∆n = n2

(
E
[
M2

n

∣∣ Fn−1

]
−
(
1− 1

2n2

)
M2

n−1 −
1

2n2
Mn−1

)
= −1

2
Mn−1 (1−Mn−1)

(
7

9
(
n+ 1

2

) − 1

6
(
n+ 1

2

)2 − 1

36
(
n− 1

4

)) n→∞−→ 0 . □

Proof of Theorem 3.1 (iii): In this section, we write again Mn instead of Malt
n . Assuming Theo-

rem 3.1 (ii), we now prove Theorem 3.1 (iii).
We first prove that P(M∞ = a) = 0 if a ∈ (0, 1). Afterwards we prove that P(M∞ = 0) = 0.

The proof of P(M∞ = 1) = 0 follows by symmetry since we can swap the labels of the left and the
right node to see that the law of the proportion of the right edge weight is equal to the law of the
proportion of the left edge weight.

We follow the proof of Crimaldi (2016, Corollary 3). Set A = {M∞ = a} for a ∈ (0, 1). First
observe that, as a consequence of Theorem 3.1 (ii) (recall that Fn := G4n = σ(N0, . . . , N4n)),

E
[
exp

(
it
√
n (Mn −M∞)

) ∣∣ Fn

] a.s.−→ exp

(
−
t2 · 1

2M∞ (1−M∞)

2

)
.

We also have that In := E [1A | Fn] → 1A a.s.. Therefore, for any t ∈ R,

E
[
In exp

(
it
√
n (Mn −M∞)

) ∣∣ Fn

]
= InE

[
exp

(
it
√
n (Mn −M∞)

) ∣∣ Fn

]
a.s.−→ 1A · exp

(
−
t2 · 1

2M∞ (1−M∞)

2

)
.

(3.5)

Since 1A − In → 0 almost surely, it follows from the dominated convergence theorem for condi-
tional expectation (see Crimaldi (2016, Lemma A.1)) that

E
[
(1A − In) exp

(
it
√
n (Mn −M∞)

) ∣∣ Fn

] a.s.−→ 0 . (3.6)

Combining (3.5) and (3.6) yields

E
[
1A exp

(
it
√
n (Mn −M∞)

) ∣∣ Fn

] a.s.−→ 1A · exp

(
−
t2 · 1

2M∞ (1−M∞)

2

)
. (3.7)

Therefore,

1A · exp

(
−
t2 · 1

2a (1− a)

2

)
= 1A · exp

(
−
t2 · 1

2M∞ (1−M∞)

2

)
(using (3.7)) = lim

n
E
[
1A exp

(
it
√
n (Mn −M∞)

) ∣∣ Fn

]
(definition of A) = lim

n
E
[
1A exp

(
it
√
n (Mn − a)

) ∣∣ Fn

]
(measurability of Mn w.r.t. Fn) = lim

n
In exp

(
it
√
n (Mn − a)

)
(using that In → 1A) = lim

n
1A exp

(
it
√
n (Mn − a)

)
.

http://bit.ly/3ICUJLz
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As a consequence,

1A = lim
n
1A

∣∣exp (it√n (Mn − a)
)∣∣

=
∣∣∣lim

n
1A exp

(
it
√
n (Mn − a)

)∣∣∣
= 1A · exp

(
−
t2 · 1

2a (1− a)

2

)
︸ ︷︷ ︸

<1 since a(1−a)>0

.

Therefore, P [A] = 0.
Now, it remains to prove that P(M∞ = 0) = 0. The idea of the proof is to fix ϵ > 0 and to split

the event {M∞ = 0} depending on whether Mn ≤ ϵ
√
n or Mn > ϵ

√
n. When Mn > ϵ

√
n we use the

CLT convergence to prove that the probability goes to zero and when Mn ≤ ϵ
√
n we use explicit

bounds to show that the probability goes to zero.
More specifically, for any ϵ > 0,

P [M∞ = 0] = P
[
M∞ = 0,Mn ≤ ϵ√

n

]
+ P

[
M∞ = 0,Mn >

ϵ√
n

]
(3.8)

By Theorem 3.1 (ii), i.e. (3.1), we know that
√
n (Mn −M∞) converges in law to the Dirac measure

in 0 if we condition on M∞ = 0. As a consequence, P [M∞ = 0,
√
n |Mn −M∞| > ϵ] → 0 for n → ∞.

This implies in particular that the rightmost term in (3.8) converges to 0 for n → ∞. On the other
hand,

P
[
M∞ = 0,Mn ≤ ϵ√

n

]
≤ P

[
Mn ≤ ϵ√

n

]
=: pn,ϵ .

The proof is then finished once we prove the following claim:

lim sup
n→∞

pn,ϵ ≤ 9
√
ϵ . (3.9)

(3.9) implies that the first term in (3.8) is upper bounded by a number arbitrarily close to 0 in the
limit. We dedicate the remaining section to the proof of (3.9).

Notice that

pn,ϵ := P
[
Mn ≤ ϵ√

n

]
= P

[
w(4n,−1)

w(4n,−1) + w(4n, 0)
≤ ϵ√

n

]
= P

[
w(4n,−1) ≤ ϵ (4n+ 2)√

n

]
.

Denote by ln the number of crossings of the left edge in the outwards direction in the first 4n
steps, and by rn the number of crossings of the right edge in the outwards direction. It follows
that ln + rn = 2n, and w(4n,−1) = 1 + 2ln. Observe also that ϵ√

n
≤ 1

2 for n large enough. As a
consequence,

w(4n,−1) ≤ ϵ (4n+ 2)√
n

=⇒ 2ln ≤ ϵ (4n+ 2)√
n

− 1 =⇒ ln ≤ ϵ (2n+ 1)√
n

− 1

2

=⇒ ln ≤
⌊
2ϵ
√
n
⌋
.

Therefore,

pn,ϵ ≤
⌊2ϵ√n⌋∑
j=0

P [ln = j] .

We claim that

P [ln = j] ≤
(
2n

j

)
· 1 · 3 · 5 · . . . · (2j − 1) · 1 · 3 · 5 · . . . · (2(2n− j)− 1)

2 · 3 · 6 · 7 · 10 · 11 · . . . · (4n− 2) · (4n− 1)
(3.10)

The reader is advised to write examples to convince herself/himself that (3.10) holds true. The
binomial coefficient counts the number of possible walker movement sequences of length 4n which
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end with ln = j. The sequence in the denominator of the following fraction is just the sequence of
total edge weights observed at the points in time at which one of the walkers moves from the node
in the center to one of the outer nodes. For the sequence in the numerator, we just take an upper
bound on the possible edge weights of the left and right edges before a walker crosses the respective
edge in outwards direction.

Reordering the terms, and writing out the binomial coefficient, we get

pn,ϵ ≤
⌊2ϵ√n⌋∑
j=0

1 · 2 · 3 · 4 · . . . · 2n
2 · 3 · 6 · 7 · . . . · (4n− 1)

· 1 · 3 · 5 · . . . · (2j − 1)

1 · 2 · 3 · . . . · j
· 1 · 3 · 5 · . . . · (2 (2n− j)− 1)

1 · 2 · 3 · . . . · (2n− j)

= 2−2n ·
n∏

i=1

4i

4i− 1
·
⌊2ϵ√n⌋∑
j=0

j∏
i=1

2i− 1

i
·
2n−j∏
i=1

2i− 1

i

=
n∏

i=1

4i

4i− 1
·
⌊2ϵ√n⌋∑
j=0

j∏
i=1

2i− 1

2i
·
2n−j∏
i=1

2i− 1

2i
.

To bound the products, we do the following: let m ∈ {2, 4} and note that log (1− x) ≥ −x− x2

for x ∈
[
0, 12
]
.

j∏
i=1

m · i
m · i− 1

= exp

(
−

j∑
i=1

log

(
m · i− 1

m · i

))
= exp

(
−

j∑
i=1

log

(
1− 1

m · i

))

≤ exp

(
j∑

i=1

(
1

m · i
+

1

m2 · i2

))
≤ exp

(
1

m
(log (j) + 1) +

π2

6m2

)
≤ 3j

1
m .

Furthermore, using that log (1− x) ≤ −x, we get that
j∏

i=1

m · i
m · i− 1

≥ exp

(
j∑

i=1

1

m · i

)
≥ exp

(
1

m
log (j)

)
= j

1
m

=⇒
j∏

i=1

m · i− 1

m · i
≤ j−

1
m .

Hence (we let again n large enough such that ϵ√
n
≤ 1

2)

pn,ϵ ≤
n∏

i=1

4i

4i− 1
·
⌊2ϵ√n⌋∑
j=0

j∏
i=1

2i− 1

2i
·
2n−j∏
i=1

2i− 1

2i
≤ 3n

1
4 ·

⌊2ϵ√n⌋∑
j=0

1√
j + 1j=0

· 1√
2n− j

≤ 3n
1
4 · 1√

2n− ⌊2ϵ
√
n⌋

1 +

⌊2ϵ√n⌋∑
j=1

1√
j

 ≤ 3n
1
4 · 1√

n

(
1 +

∫ 2ϵ
√
n

0

1√
j
dj

)

= 3n
1
4 · 1√

n

(
1 + 2

√
2ϵ
√
n

)
≤ 3n− 1

4 + 6
√
2
√
ϵ · n

1
4 · n− 1

2 · n
1
4 ≤ 3n− 1

4 + 9
√
ϵ .

Therefore, lim supn→∞ pn,ϵ ≤ 9
√
ϵ. □

3.4. Proofs: random walker selection (Theorem 3.3). Consider next the case with random walker
selection. Lemma 3.5 shows that the expected time to meet again in the middle, if both walkers
start in the center, is 4, just as in the case of alternating walkers. Of course, the difference now is
that the next meeting time is random.
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We want to prove Theorem 3.3 (iii), i.e. that the proportion of the left edge weight, Nn, converges
a.s. for n → ∞, in analogy to the case with alternating walkers, as well as in analogy with the case
of a single walker which corresponds to a standard Pólya urn. The proof is based on the fact that
the proportion of the left edge weight is a martingale at the times τn (recall that τn = inf{m >

τn−1 : X
(1)
m = X

(2)
m = 0}), as we will see in Lemma 3.4 (which also proves Theorem 3.3 (i)).

In order to prove Theorem 3.3 (iii), we need two lemmata. The main reason for convergence is
the martingale property of the Nτn , and the remaining section will mostly be devoted to showing
Lemma 3.4. In order to make the step from the times τn to n, it is enough to see that the probability
of {τn+1 − τn = 2l} decays exponentially in l in Lemma 3.5 (which proves Theorem 3.3 (ii)), which
allows us to conclude with a Borel-Cantelli argument.

In this section, we write Mn instead of M rd
n , i.e.

Mn = M rd
n = Nτn =

w (τn,−1)

w (τn,−1) + w (τn, 0)
.

Lemma 3.4. The sequence of random variables (Mn)n≥0 together with its natural filtration is a
(bounded) martingale.

Lemma 3.5. For any n ≥ 0 and any l ≥ 1, it holds that P [τn+1 − τn = 2l] = 2−l and E [τn+1 − τn] =
4.

Assuming Lemma 3.4 and Lemma 3.5, we can prove Theorem 3.3 (iii):

Proof of Theorem 3.3 (iii): Recall that

Nn :=
w (n,−1)

w (n,−1) + w (n, 0)
, Mn := Nτn =

w (τn,−1)

w (τn,−1) + w (τn, 0)
.

By Lemma 3.4 there exists a random variable M∞ such that

M∞ := lim
n→∞

Mn . (3.11)

Let ε > 0 and consider the events

An := {|Nm −M∞| > ε for some m ∈ [τn, τn+1]}

It is sufficient to show that only finitely many of the events An can occur a.s. Further set

Bn :=
{
|Nm −Mn| >

ε

2
for some m ∈ [τn, τn+1]

}
Since Mn converges a.s. by Lemma 3.4, there is some (random) N ∈ N such that for all n ≥ N , it
holds that |Mn −M∞| < ε

2 . For n ≥ N , the occurrence of An implies that Bn occurs as well, so it
is sufficient to show that only finitely many of the events Bn can occur.

Now, at time τn, the random walkers must have moved at least 2n times, so w (τn,−1)+w (τn, 0) ≥
2n. If |Nm −Mn| = |Nm −Nτn | > ε

2 for some m ∈ [τn, τn+1], it is therefore necessary that at least
εn steps were made by the walkers between time τn and time m, since every step changes the value
of Nm by at most 1

2n . Thus

Bn ⊆ {τn+1 − τn ≥ εn}
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We have

P [τn+1 − τn ≥ εn] =
∑

l≥⌈ εn
2 ⌉

P [τn+1 − τn = 2l]
Lemma 3.5

=
∑

l≥⌈ εn
2 ⌉

2−l

≤ 2−
εn
2

∑
l≥0

2−l = 21−
εn
2

=⇒
∑
n≥1

P [τn+1 − τn ≥ εn] ≤
∑
n≥1

21−
εn
2 = 2 ·

∑
n≥1

(
2−

ε
2

)n
< ∞

By the Borel-Cantelli lemma, it follows that only finitely many of the events {τn+1 − τn ≥ εn} can
occur, and therefore also only finitely many of the events Bn. This concludes the proof. □

We proceed by first showing the exponential decay of P [τn+1 − τn = 2l] in l. This is easy to see
since this probability can be calculated independently of any edge weights.

Proof of Lemma 3.5 and Theorem 3.3 (ii): We consider a Markov chain consisting of three states
and coupled with the edge-reinforced random walk. The Markov chain is in state scenter if both
walkers are in the center, in state smixed if one walker is in the center and the other in either of the
two outer nodes, and in state snone if none of the walkers is in the center. It is easy to verify that
this is indeed a Markov chain with the following transition probabilities:

scenter smixed snone

1

1
2

1
2

1

Let n ≥ 0. At time τn, both walkers are in the center and the Markov chain is therefore in state
scenter. The time τn+1 − τn corresponds to the time needed to return again to the state scenter. At
uneven time steps, the Markov chain will always be in state smixed, so P [τn+1 − τn = 2l] corresponds
to the probability that at every uneven time step, starting with τn+1 and up to τn+1−3, the chain
transitions to the state snone and that the chain will finally go to scenter in step τn+1 − 1. Since the
probabilities of these transitions are 1

2 , we get P [τn+1 − τn = 2l] = 2−l. Consequently,

E [τn+1 − τn] =
∑
l≥1

2−l · 2l =
∑
l≥1

l ·
(
1

2

)l−1

=
1(

1− 1
2

)2 = 4 □

We next want to prove Lemma 3.4, i.e. that the proportion of the left edge weight, that is
w(τn,−1)

w(τn,−1)+w(τn,0)
, is a martingale, as it was in the previous case with alternating walkers and as in

the Pólya urn with the difference that we look at the proportion not at every time step, but at
certain stopping times. The proof is a bit more involved, but relies only on basic calculations. The
main idea is to find a recursive formula for the following quantities:

(1) We look at the expectation of the proportion of the left edge weight multiplied by the
indicator of the event that the walkers need 2l steps to meet again:

Ea,b,l := E
[

w (τn+1,−1)

w (τn+1,−1) + w (τn+1, 0)
· 1{τn+1−τn=2l}

∣∣∣∣ w (τn,−1) = a,w (τn, 0) = b

]
(2) We also consider the probability that the last walker which returns to the center comes from

the left node, again intersected with the event that the walkers need 2l steps to meet again:

Ln := {the walker returning to the center at time τn+1 comes from the left node}
qa,b,l := P [Ln occurs and τn+1 − τn = 2l | w (τn,−1) = a,w (τn, 0) = b]
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Lemma 3.6. We have the following recursive equations:

Ea,b,l+1 =
1

2
Ea,b,l +

1

(a+ b+ 2l − 1) (a+ b+ 2l + 2)
(Ea,b,l − qa,b,l)

qa,b,l+1 =
1

2
qa,b,l +

1

4
· a+ b+ 2l

a+ b+ 2l − 1
(Ea,b,l − qa,b,l)

We will prove Lemma 3.6 later. First, we can complete the proof of Lemma 3.4 as follows:

Corollary 3.7. The expectation of the proportion of the left edge weight and the probability that the
last walker returning to the center comes from the left coincide, and:

Ea,b,l = qa,b,l =
1

2l
· a

a+ b

Proof : We use Lemma 3.6. Let us first calculate Ea,b,1 and qa,b,1. There are four possible paths of
length 2 which end again with both walkers in the center: first, we choose which of the two walker
moves, and this walker can then either move left or right and then back to the center. Since it is
irrelevant which walker we choose in the beginning, we can disregard which walker moves. We thus
get:

• With probability a
a+b · 1

2 the walker which moves in the first step moves left and is then
chosen again to move back to the center in the next step. In this case, Ln occurs and the
resulting edge weight ratio is a+2

a+b+2 .
• With probability b

a+b ·
1
2 the walker which moves in the first step moves right and is then

chosen again to move back to the center in the next step. In this case, Ln does not occur
and the resulting edge weight ratio is a

a+b+2 .

We see directly that qa,b,1 =
1
2 · a

a+b and that

Ea,b,1 =
1

2
·
(

a

a+ b
· a+ 2

a+ b+ 2
+

b

a+ b
· a

a+ b+ 2

)
=

1

2
· a

a+ b

The remaining proof is now a simple induction using Lemma 3.6, where it should be noted that
Ea,b,l − qa,b,l = 0 under the induction assumption. □

Proof of Lemma 3.4 and Theorem 3.3 (i): We have by Corollary 3.7:

E
[

w (τn+1,−1)

w (τn+1,−1) + w (τn+1, 0)
· 1{τn+1−τn=2l}

∣∣∣∣ w (τn,−1) = a,w (τn, 0) = b

]
= 2−l · a

a+ b

=⇒ E
[

w (τn+1,−1)

w (τn+1,−1) + w (τn+1, 0)

∣∣∣∣ w (τn,−1) = a,w (τn, 0) = b

]
=

a

a+ b
·
∑
l≥1

2−l =
a

a+ b

as we wanted to prove. □

This concludes the proof of Theorem 3.3, up to the proof of Lemma 3.6, which follows now. In
order to prove Lemma 3.6, we will use a recursive path construction technique. We define a path of
the two walkers as a sequence of the symbols 1l, 1r, 2l, 2r which correspond to the first (respectively
second) walker moving left and right, where we assume that both walkers start in the center. The
set Path2l contains all the paths of length 2l (a sequence of 2l symbols) such that the first time at
which both walkers are in the center at the same time again is at the end of the path. Note that
any such path must be of even length since each walker can only be in the center after having made
an even number of movements.
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For ρ ∈ Path2l, we set d (ρ) to be the number of traversals of the left edge when the path ρ is
taken and we can now write

Ea,b,l =
∑

ρ∈Path2l

P [the walkers move according to ρ | w (τn,−1) = a,w (τn, 0) = b]︸ ︷︷ ︸
=:Pρ,a,b

· a+ d (ρ)

a+ b+ 2l

Consider ρ ∈ Path2l. If the walkers move according to ρ, then, at any uneven time step, there will
be one walker which is in the center and one which is in one of the outer nodes (this corresponds to
smixed in the proof of Lemma 3.5). In addition, at any even time step, except for the beginning and
end, both walkers have to be in the outer nodes, not necessarily the same one (state snone). The
possible walker locations and edge weights after 2l−1 steps of the path ρ are depicted in Figure 3.2,
where we assume that we start with edge weights a and b. They will be relevant for the recursive
path construction which we present now.

new step: center walker goes left new step: center walker goes right

0−1 1

a+ d (ρ)− 1 b+ 2l − d (ρ)

0−1 1

a+ d (ρ)− 1 b+ 2l − d (ρ)

or or

0−1 1

a+ d (ρ) b+ 2l − d (ρ)− 1

0−1 1

a+ d (ρ) b+ 2l − d (ρ)− 1

Figure 3.2. Possible walker locations after 2l − 1 steps of a path ρ of length 2l

For ρ ∈ Path2l, we define pk (ρ) ∈ Path2(l+1), 1 ≤ k ≤ 4 as follows:

• delete the last symbol from ρ,
• add three new symbols to ρ, using the following rules. After the 2l − 1 steps of ρ which we

did not delete, the walkers are in two possible configurations: there is one walker which is in
the center, and the other walker can be in either of the outer nodes. We now add a symbol
to the path such that the center walker moves either left or right in the next step, and then
we add two more symbols such that both walkers return to the center in either order. This
leaves us a total of 2 × 2 = 4 choices for our new path (2 choices for which way the center
walker moves, and 2 choices for the order in which the walkers return). We can therefore
construct 4 new paths, which we will label as follows:

– p1 (ρ) is the new path where the center walker moves left, and then returns immediately
to the center before the other walker

– p2 (ρ) is the new path where the center walker moves left, and then returns to the center
only after the other walker

– p3 (ρ) is the new path where the center walker moves right, and then returns immedi-
ately to the center before the other walker

– p4 (ρ) is the new path where the center walker moves right, and then returns to the
center only after the other walker

This construction is summarized in Figure 3.2.
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Lemma 3.8. We can write the set Path2(l+1) as a disjoint union over the modifications of the paths
ρ in Path2l:

Path2(l+1) =
⋃
·

ρ∈Path2l

{p1 (ρ) , p2 (ρ) , p3 (ρ) , p4 (ρ)}

Proof : To see that we get indeed all paths of length 2 (l + 1) if we take the given union, note that
the paths in Path2l must fulfil the condition that at any even time step (except for the beginning
and end), both walkers have to be in the outer nodes, not necessarily the same one, and that the
walkers are in the center at the beginning and at the end of the path. This is the only condition,
so we will get all possible prefixes of paths of length 2 (l + 1) by taking all ρ ∈ Path2l and deleting
the last symbol. We then only have to complete the paths by all possible suffixes, but the possible
suffixes are just the 4 given in the construction above by the constraints imposed on the paths. The
union is disjoint because we do not construct any path twice: any two different paths in Path2l

must already differ somewhere in the first 2l − 1 steps. □

The edge weights at time 2l − 1 depend on where the outer walker is at step 2l − 1. Therefore,
we will also use the notation left (ρ) = 1 if the outer walker is on the left after step 2l − 1, and
left (ρ) = 0 otherwise. Finally, in order to state Lemma 3.9, we also need to define fρ,a,b which is
the left edge weight divided by the sum of the edge weights, where we plug in the edge weights
which we get if we start with weights a and b and then execute the path ρ.

Lemma 3.9. The path probabilities and edge weight ratios of the paths pk (ρ) change as follows
compared to ρ:

• if left (ρ) = 1, then:

Pp1(ρ),a,b = Pp2(ρ),a,b = Pρ,a,b ·
1

4
· a+ d (ρ)− 1

a+ b+ 2l − 1

fp1(ρ),a,b = fp2(ρ),a,b =
a+ d (ρ) + 2

a+ b+ 2l + 2

Pp3(ρ),a,b = Pp4(ρ),a,b = Pρ,a,b ·
1

4
· b+ 2l − d (ρ)

a+ b+ 2l − 1

fp3(ρ),a,b = fp4(ρ),a,b =
a+ d (ρ)

a+ b+ 2l + 2

• and if left (ρ) = 0, then:

Pp1(ρ),a,b = Pp2(ρ),a,b = Pρ,a,b ·
1

4
· a+ d (ρ)

a+ b+ 2l − 1

fp1(ρ),a,b = fp2(ρ),a,b =
a+ d (ρ) + 2

a+ b+ 2l + 2

Pp3(ρ),a,b = Pp4(ρ),a,b = Pρ,a,b ·
1

4
· b+ 2l − d (ρ)− 1

a+ b+ 2l − 1

fp3(ρ),a,b = fp4(ρ),a,b =
a+ d (ρ)

a+ b+ 2l + 2

Proof : We look at how following the path pk (ρ) changes the outcome (i.e. the final edge weights)
and the probability of the path, compared to the original path ρ ∈ Path2l.

• If the outer walker is on the left after 2l − 1 steps (this is a condition on ρ: left (ρ) = 1):
– If the center walker should move left in step 2l (this is the choice for creating the new

paths p1 (ρ) , p2 (ρ)): the probability Pρ,a,b of ρ is a product over the probability that
the walker indicated in ρ is chosen at the respective step (which is always 1

2) and the
probability that the walker moves in the direction indicated by ρ (this can either be 1,
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if the walker moves back to the center, or a fraction depending on the edge weights).
In our new modified paths p1 (ρ) , p2 (ρ) of length 2 (l + 1), the first difference is that
we choose a different walker to move in step 2l. This event has probability 1

2 , but this
is the same as chosing the original walker, hence this part is already included in the
product giving the probability Pρ,a,b of ρ.
Next, the probability for the center walker to go left, if he is chosen to move at step 2l,
is given by a+d(ρ)−1

a+b+2l−1 (compare with Figure 3.2). This factor is new and has to be added
to the product. In the next step, one of the two walkers is chosen and will move back to
the center. We get a new factor of 1

2 , since the probability that the walker indicated by
p1 (ρ) (or p2 (ρ) respectively) is chosen is 1

2 . Finally, in step 2 (l + 1), the walker which
is still in an outer node has to be chosen to move back into the center. This happens
with probability 1

2 , and this is the final factor to be added to the product. Our new
paths therefore have probability

Pp1(ρ),a,b = Pp2(ρ),a,b = Pρ,a,b ·
1

2
· 1
2
· a+ d (ρ)− 1

a+ b+ 2l − 1

The new paths will end with the following ratio of the left edge weight divided by the
total edge weights:

fp1(ρ),a,b = fp2(ρ),a,b =
a+ d (ρ) + 2

a+ b+ 2l + 2

since the left edge will be traversed twice more by the center walker.
– If the center walker should move right in step 2l (paths p3 (ρ) , p4 (ρ)):

new probability: Pρ,a,b ·
1

4
· b+ 2l − d (ρ)

a+ b+ 2l − 1
, new outcome:

a+ d (ρ)

a+ b+ 2l + 2

• If the outer walker is on the right after 2l − 1 steps (left (ρ) = 0):
– If the center walker should move left in step 2l (paths p1 (ρ) , p2 (ρ)):

new probability: Pρ,a,b ·
1

4
· a+ d (ρ)

a+ b+ 2l − 1
, new outcome:

a+ d (ρ) + 2

a+ b+ 2l + 2

– If the center walker should move right in step 2l (paths p3 (ρ) , p4 (ρ)):

new probability: Pρ,a,b ·
1

4
· b+ 2l − d (ρ)− 1

a+ b+ 2l − 1
, new outcome:

a+ d (ρ)

a+ b+ 2l + 2
□

Proof of Lemma 3.6: By Lemma 3.8 and Lemma 3.9, we have

Ea,b,l+1 =
∑

ρ∈Path2(l+1)

Pρ,a,b ·
a+ d (ρ)

a+ b+ 2l + 2
=

∑
ρ∈Path2l

4∑
k=1

Ppk(ρ),a,b · fpk(ρ),a,b =

∑
ρ∈Path2l

Pρ,a,b ·
1

2
·
(

left (ρ) ·
(

a+ d (ρ)− 1

a+ b+ 2l − 1
· a+ d (ρ) + 2

a+ b+ 2l + 2
+

b+ 2l − d (ρ)

a+ b+ 2l − 1
· a+ d (ρ)

a+ b+ 2l + 2

)

+(1− left (ρ)) ·
(

a+ d (ρ)

a+ b+ 2l − 1
· a+ d (ρ) + 2

a+ b+ 2l + 2
+

b+ 2l − d (ρ)− 1

a+ b+ 2l − 1
· a+ d (ρ)

a+ b+ 2l + 2

))
Using this expression for Ea,b,l+1, we can calculate (a simple, but longer calculation which we skip
here, see https://bit.ly/3BlMorx and http://bit.ly/3PgLlPq – the calculation is done by expanding

https://www.wolframalpha.com/input?i=%28a%2Bd-1%29%28a%2Bd%2B2%29%28a%2Bb%2B2l%29+%2B+%28b%2B2l-d%29%28a%2Bd%29%28a%2Bb%2B2l%29+-+%28a%2Bd%29%28a%2Bb%2B2l-1%29%28a%2Bb%2B2l%2B2%29
https://www.wolframalpha.com/input?i=%28a%2Bd%29%28a%2Bd%2B2%29%28a%2Bb%2B2l%29+%2B+%28b%2B2l-d-1%29%28a%2Bd%29%28a%2Bb%2B2l%29+-+%28a%2Bd%29%28a%2Bb%2B2l-1%29%28a%2Bb%2B2l%2B2%29
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the involved fractions to the same denominator):

Ea,b,l+1 −
1

2
Ea,b,l = Ea,b,l+1 −

∑
ρ∈Path2l

1

2
· Pρ,a,b ·

a+ d (ρ)

a+ b+ 2l

=
∑

ρ∈Path2l

Pρ,a,b ·
1

(a+ b+ 2l − 1) (a+ b+ 2l + 2)
·

(
left (ρ) · d (ρ)− b− 2l

a+ b+ 2l
+ (1− left (ρ)) · a+ d (ρ)

a+ b+ 2l

)
=

1

(a+ b+ 2l − 1) (a+ b+ 2l + 2)
·∑

ρ∈Path2l

Pρ,a,b ·
(

left (ρ) · −a− b− 2l

a+ b+ 2l
+

a+ d (ρ)

a+ b+ 2l

)

=
1

(a+ b+ 2l − 1) (a+ b+ 2l + 2)
·

Ea,b,l −
∑

ρ∈Path2l

Pρ,a,b · left (ρ)


=

1

(a+ b+ 2l − 1) (a+ b+ 2l + 2)
· (Ea,b,l − qa,b,l)

This proves the first equation in Lemma 3.6. For the second equation, we use the same strategy.
For our newly constructed paths, we already know if Ln occurs or not (whether the last walker to
return to the center comes from the left node):

• if left (ρ) = 1, then: Ln occurs for p1 (ρ) , p2 (ρ) , p4 (ρ), and does not occur for p3 (ρ)
• and if left (ρ) = 0, then: Ln occurs for p2 (ρ), and does not occur for p1 (ρ) , p3 (ρ) , p4 (ρ).

Therefore, again by Lemma 3.8 and Lemma 3.9,

qa,b,l+1 −
1

2
qa,b,l =

∑
ρ∈Path2(l+1)

Pρ,a,b · left (ρ)−
1

2
·
∑

ρ∈Path2l

Pρ,a,b · left (ρ)

=
∑

ρ∈Path2l

(
Pp1(ρ),a,b + Pp2(ρ),a,b + Pp4(ρ),a,b

)
· left (ρ)

+ Pp2(ρ),a,b · (1− left (ρ))− 1

2
· Pρ,a,b · left (ρ)

=
∑

ρ∈Path2l

Pρ,a,b ·
1

2
·

(
a+ d (ρ)− 1

a+ b+ 2l − 1
· left (ρ) + 1

2
· b+ 2l − d (ρ)

a+ b+ 2l − 1
· left (ρ)

+
1

2
· a+ d (ρ)

a+ b+ 2l − 1
· (1− left (ρ))− left (ρ)

)
=

1

2
·
∑

ρ∈Path2l

Pρ,a,b ·(
−1

2
· a+ b+ 2l

a+ b+ 2l − 1
· left (ρ) + 1

2
· a+ d (ρ)

a+ b+ 2l − 1

)
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=
1

4
· a+ b+ 2l

a+ b+ 2l − 1
·
∑

ρ∈Path2l

Pρ,a,b ·
(

a+ d (ρ)

a+ b+ 2l
− left (ρ)

)
=

1

4
· a+ b+ 2l

a+ b+ 2l − 1
· (Ea,b,l − qa,b,l) □

This proof of Lemma 3.6 completes the proof of Theorem 3.3. As a next step, one would analyze
the (random) limit of the fraction w(n,−1)

w(n,−1)+w(n,0) and compare it to the single walker case where the
corresponding limit is Beta-distributed. We believe that the following holds.

Conjecture 3.10. Theorem 3.1 (ii) and (iii) (the CLT and the no atoms property) are also true
for the case where we randomly select the walker which moves.

Conjecture 3.11. M rd
∞ ∈ [0, 1] (the limit of the left edge weight proportion, with random walker

selection) has a density w.r.t. the Lebesgue measure on [0, 1]. M rd
∞ is not Beta-distributed, and its

distribution is different from the distribution of the limit in Conjecture 3.2 (where we considered
alternating walkers).

As in Conjecture 3.2, simulations showed that the distributions of M rd
∞ and Malt

∞ are probably
not identical.

4. A Finite Number of Walkers on Z

So far, we have looked at the linearly edge-reinforced random walk with multiple walkers only on
a very simple graph and only with 2 walkers. We now consider a finite number K of edge-reinforced
random walkers on Z. As before, the transition probabilities depend on the edge weights w (n, z) > 0
for n ≥ 0, z ∈ Z where we will abuse notation and use z to denote the edge from z to z + 1.

0 z − 1 z z + 1

w (n, z − 1) w (n, z)

Figure 4.3. Edge weights on Z at time n

4.1. Model and Results. We have K sequences (for the K walkers)
(
X

(i)
n

)
n≥0

(where 1 ≤ i ≤ K) of
interacting nearest neighbour processes with the following dynamics, adapted from Definition 2.1:

If Gn denotes σ
({

X
(i)
m : 0 ≤ m ≤ n, 1 ≤ i ≤ K

}
∪ {w (m, z) : 0 ≤ m ≤ n, z ∈ Z}

)
i.e. the history

of the random walkers and edge weights up to and including time n, then we define, conditional on
Gn, the following transition probabilities:

• At every time step, the random walker i (1 ≤ i ≤ K) which is going to jump is chosen
uniformly at random (independently of Gn) amongst the K walkers.

• If the chosen random walker is at position z (i.e. X(i)
n = z), then he jumps

– to the right (i.e. X(i)
n+1 = z + 1) with probability w(n,z)

w(n,z−1)+w(n,z) ,

– to the left (i.e. X(i)
n+1 = z − 1) with probability w(n,z−1)

w(n,z−1)+w(n,z) ,

i.e. the jump probabilities are proportional to the corresponding edge weights.
• If z∗ is the traversed edge (z∗ = z if the walker jumps to the right, z∗ = z − 1 if he jumps

to the left), then for y ̸= z∗, w (n+ 1, y) = w (n, y) and w (n+ 1, z∗) ≥ w (n, z∗), i.e. the
weight of the traversed edge may be increased according to some reinforcement scheme.
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We consider schemes where the increment w (n+ 1, z∗) − w (n, z∗) only depends on z∗,
and the number of times the edge was crossed up to time n. In other words, w (n, z) can
still be written in terms of the weight function Wz (k) as in Definition 2.1.

• The initial edge weights can be chosen arbitrarily, but all of them must be strictly positive.
The results given below only apply to the case where all but finitely many initial weights
are 1.

• The initial positions of the K walkers can be chosen arbitrarily.
We call a walker recurrent if he visits all integers infinitely often, and we say that he has finite

range if he only visits finitely many integers. We have the following main result:

Theorem 4.1. Assume the edge-reinforced random walk with K walkers starts with an initial con-
figuration of the weights w (0, z) such that all but finitely many of them are 1. Then, we have the
following:

P
[
∀i : X(i) is recurrent

]
+ P

[
∀i : X(i) has finite range

]
= 1 .

We can further characterize these two possible cases for a particular class of reinforcement
schemes, called “sequence type”, which means that all initial edge weights are 1, and that the
edge weights are then increased by a fixed sequence of increments a = (ak)k≥1 which do not depend
on the location of the edge.

Theorem 4.2. Consider the edge-reinforced random walk with K walkers and a reinforcement
scheme of sequence type. Set

ϕ (a) =
∞∑
k=1

(
1 +

k∑
l=1

al

)−1

.

If ϕ (a) = ∞, then all walkers are recurrent a.s., and if ϕ (a) < ∞, then all walkers have finite range
a.s.

4.2. Recurrence or Finite Range on Z.

Definition 4.3. For each i ∈ {1, . . . ,K}, we say that walker i

• is transient, if he visits every integer only finitely often, that is, every integer appears only
finitely often in the sequence

(
X

(i)
n

)
n≥0

• is recurrent, if he visits every integer infinitely often, that is, every integer appears infinitely
often in the sequence

(
X

(i)
n

)
n≥0

• has finite range, if he only visits finitely many integers, that is, the number of distinct
integers appearing in the sequence

(
X

(i)
n

)
n≥0

is finite

Our main result shows that either all walkers are recurrent or all walkers have finite range (The-
orem 4.1). This was already known for a single walker. The proof for the single walker case has to
be adapted and additional steps are needed to show that all walkers show the same behavior: we
will see that it cannot be the case that one walker has finite range, while another is recurrent. Of
course, this is very plausible.

The proof of Theorem 4.1 follows the same strategy as Davis (1990), with some changes in the
details. More precisely, Lemma 4.4 uses the methods from Davis (1990) and modifies them to fit
the case with multiple walkers. As a result, we see that every walker either reaches 0 or visits only
finitely many nodes which have not been visited before by any other walker. Lemma 4.5 is new for
the case with multiple walkers and shows that any two walkers which meet infinitely often are either
both recurrent or do both have finite range. Combining the lemmas in the proof of Theorem 4.1
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allows us to conclude that the behavior of all walkers is the same: either all of the walkers are
recurrent, or all have finite range.

Lemma 4.4. Assume the edge-reinforced random walk with K walkers starts with an initial config-
uration of the weights w (0, z) such that all but finitely many of them are 1. Then, for every random
walker i (1 ≤ i ≤ K) we have the following:

P
[
X(i)

n = 0 for some n ≥ 0
]

+ P
[
X(i)

n ̸= 0 for all n ≥ 0 and X(i) only visits finitely many nodes

which have not been visited before by any other walker
]
= 1 .

Lemma 4.5. Assume the edge-reinforced random walk with K ≥ 2 walkers starts with an arbitrary
initial configuration of the weights w (0, z). Assume further that X(1) and X(2) meet infinitely often.
Then, almost surely,

(i) if one of the walkers X(1) and X(2) does not have finite range, then both X(1) and X(2) do
not have finite range.

(ii) if some integer z is visited infinitely often by one of the walkers X(1) or X(2), then both X(1)

and X(2) visit z infinitely often.
(iii) if every integer is visited infinitely often by one of the walkers X(1) or X(2), then both X(1)

and X(2) are recurrent.

Proof of Theorem 4.1: We have to show the following: if at least one of the walkers does not have
finite range, then, almost surely, all of them are recurrent. We look at the (random) set

Arec :=
{
i : 1 ≤ i ≤ K and X(i) is recurrent

}
.

The complement can be written as

Ac
rec = {1, . . . ,K} \Arec

=
⋃
z∈Z

{
i : 1 ≤ i ≤ K and X(i) visits z only finitely often

}
=
⋃
z∈Z

⋃
n≥0

{
i : 1 ≤ i ≤ K and X(i) does not visit z at any time m ≥ n

}
.

Since at time n, all but finitely many edge weights are still 1, we can apply Lemma 4.4 to the
random walk from time n onwards. By relabeling, Lemma 4.4 can also be applied to any node z
and not just 0, and with arbitrary initial walker position. Hence, a.s.{

i : 1 ≤ i ≤ K and X(i) does not visit z at any time m ≥ n
}

=
{
i : 1 ≤ i ≤ K, X(i) does not visit z at any time m ≥ n and X(i) only visits

finitely many nodes which have not been visited before by any other walker
}
.

Since Ac
rec is a union of sets of this type, we conclude that, a.s.

Ac
rec ⊆

{
i : 1 ≤ i ≤ K and X(i) only visits finitely many nodes

which have not been visited before by any other walker
}
.

Now, Ac
rec = {1, . . . ,K} implies that only finitely many nodes are visited overall, so the event{

∀i : X(i) has finite range
}

would occur. Hence, it suffices to show that
{
∀i : X(i) is recurrent

}
occurs whenever Ac

rec ̸= {1, . . . ,K} a.s.
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Ac
rec ̸= {1, . . . ,K} implies that there is at least one recurrent walker, say X(i1). Now, take,

for a contradiction, any walker X(i2) with i2 ∈ Ac
rec. If i2 has finite range, then i2 will meet the

recurrent walker i1 infinitely often (recall that only one walker moves in each time step!), but this
is a contradiction to Lemma 4.5 (i). So i2 must have infinite range. Since i2 is not recurrent, there
must be some integer z which is never visited by i2, w.l.o.g. we assume that i2 only visits nodes to
the right of z. The walkers in Ac

rec, including i2, only visit finitely many nodes not visited before by
any other walker, so at least one walker i3 in Arec must be to the right of i2 infinitely often in order
to “free the path” for i2 (recall that we consider the case where i2 has infinite range and must thus
go infinitely far to the right). As the walkers in Arec are all recurrent, and as i2 only visits nodes to
the right of z, this implies that i2 meets this walker i3 infinitely often, which is a contradiction to
Lemma 4.5 (iii). Hence, there is a contradiction if we assume that a walker i2 ∈ Ac

rec exists.

We conclude that Ac
rec = ∅ (which implies that all walkers are recurrent) a.s. if Ac

rec ̸= {1, . . . ,K}.
□

Proof of Lemma 4.4: We follow the proof of Davis (1990, Lemma 3.0). Consider a fixed random
walker i and assume w.l.o.g. X

(i)
0 ≥ 0. We now define:

F (n, z) :=

{∑z−1
y=0

1
w(n,y) if z > 0

0 if z ≤ 0 ,
τ (i) := inf

{
n ≥ 0 : X(i)

n ≤ 0
}
,

M (i)
n := F

(
n ∧ τ (i), X

(i)

n∧τ (i)

)
H(i)

n := M (i)
n +

n∑
m=1

 1

w
(
m− 1, X

(i)
m−1

) − 1

w
(
m,X

(i)
m−1

)
 · 1

X
(i)
m >X

(i)
m−1,m≤τ (i)

,

+
n∑

m=1

K∑
j=1,j ̸=i

∞∑
z=0

(
1

w (m− 1, z)
− 1

w (m, z)

)
· 1{

X
(j)
m−1,X

(j)
m

}
={z,z+1},m≤τ (i),z<X

(i)
m︸ ︷︷ ︸

=1 for at most one pair of j,z

.

M
(i)
n is nonnegative by definition of F , and H

(i)
n ≥ M

(i)
n ≥ 0 since edge weights can only increase

and therefore, all terms in the sums in the definition of H(i)
n are nonnegative. H

(i)
n is a martingale:

setting

d(i)n := H(i)
n −H

(i)
n−1 = M (i)

n −M
(i)
n−1︸ ︷︷ ︸

:=e
(i)
n

+

 1

w
(
n− 1, X

(i)
n−1

) − 1

w
(
n,X

(i)
n−1

)
 · 1

X
(i)
n >X

(i)
n−1,n≤τ (i)︸ ︷︷ ︸

:=f
(i)
n

+

K∑
j=1,j ̸=i

∞∑
z=0

(
1

w (n− 1, z)
− 1

w (n, z)

)
· 1{

X
(j)
n−1,X

(j)
n

}
={z,z+1},n≤τ (i),z<X

(i)
n︸ ︷︷ ︸

:=g
(i)
n

,

we have to show that E
[
d
(i)
n

∣∣∣ Gn−1

]
= 0. We have:

• if n − 1 ≥ τ (i), then d
(i)
n = 0. Hence, it suffices to consider the case X

(i)
n−1 = z > 0 and

τ (i) ≥ n.
• with probability 1

K , the walker i jumps at time n − 1. In this case, g
(i)
n = 0 since no

other walker can jump and the indicator variable in g
(i)
n is therefore 0. If he jumps to
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the right (with probability 1
K · w(n−1,z)

w(n−1,z−1)+w(n−1,z)), then e
(i)
n = w (n, z)−1 and f

(i)
n =

w (n− 1, z)−1 − w (n, z)−1, hence d
(i)
n = w (n− 1, z)−1. If he jumps left (with probabil-

ity 1
K · w(n−1,z−1)

w(n−1,z−1)+w(n−1,z)), then e
(i)
n = −w (n− 1, z − 1)−1 and f

(i)
n = 0, hence d

(i)
n =

−w (n− 1, z − 1)−1.
• with probability K−1

K , the walker i does not jump. In this case, f (i)
n = 0 since the indicator

variable in f
(i)
n is therefore 0. The value of M (i)

n−1 now changes (that is, e(i)n ̸= 0) if one of
the other K − 1 walkers crosses one of the edges between the nodes 0 and z. At the same
time, g(i)n ̸= 0 only in this exact case. Now assume the walker j ̸= i crosses the edge y with
0 ≤ y < z. Then e

(i)
n = 1

w(n,y) −
1

w(n−1,y) and g
(i)
n = 1

w(n−1,y) −
1

w(n,y) , hence d
(i)
n = 0.

• conditioned on X
(i)
n−1 = z > 0 and τ (i) ≥ n (both events measurable w.r.t. Gn−1), we can

therefore conclude

E
[
d(i)n

∣∣∣ Gn−1

]
=

1

K
· 1

w (n− 1, z − 1) + w (n− 1, z)
·
(
w (n− 1, z)

w (n− 1, z)
− w (n− 1, z − 1)

w (n− 1, z − 1)

)
=

1

K
· 1

w (n− 1, z − 1) + w (n− 1, z)
· (1− 1) = 0 .

By the same arguments, but only considering e
(i)
n , we can show that M (i)

n is a supermartin-
gale.

As a nonnegative martingale, H(i)
n converges almost surely.

We just showed this for all walkers i (1 ≤ i ≤ K) with X
(i)
0 ≥ 0. Further observe that for

such a walker i, we have, on the event B
(i)
n =

{
X

(i)
n > X

(i)
n−1, n ≤ τ (i), w

(
n− 1, X

(i)
n−1

)
= 1
}

, that

e
(i)
n = w

(
n,X

(i)
n−1

)−1
, f

(i)
n = w

(
n− 1, X

(i)
n−1

)−1
− w

(
n,X

(i)
n−1

)−1
, g

(i)
n = 0 and hence d

(i)
n = 1.

Thus, by convergence, only a finite number of the events B
(i)
n can occur for every such walker i.

Now define Γ to be the set of edges between two nonnegative integers to the right of the integer
max

{
X

(i)
0 : 1 ≤ i ≤ K

}
for which the initial weight was 1 (all but finitely many edges meet the

latter criterion), and further define the event

Dn =
{
∃j : X(j)

0 ≥ 0, an edge in Γ is crossed between time n− 1 and n for the first time by

any walker, the crossing walker is j and n ≤ τ (j)
}
.

Clearly, Dn ⊆ B
(i)
n for some random walker i with X

(i)
0 ≥ 0, hence only a finite number of the events

Dn can occur.
Now the proof cannot be continued along Davis (1990, Lemma 3.0) since the walkers starting to

the left of 0 and the walkers which reach 0 can later cross edges to the right of 0 without triggering
Dn and the other walkers can then follow them without triggering Dn. So, we only proved that
walkers which never go to 0 and start to the right of 0 cannot visit infinitely many edges which have
not been visited before by any other walker. □

Proof of Lemma 4.5: The proof idea is the following: whenever X(1) and X(2) meet, we can ran-
domly exchange their labels, i.e. we can randomly decide whether we want to rename X(1) to X(2)

and vice versa, and the law of the edge-reinforced random walk with the two walkers is invariant
under such relabelings because the only distinguishing feature of a random walker is his position.
But now, to construct counterexamples to the three statements in Lemma 4.5, we would have to
choose a fixed labeling for infinitely many times at which the walkers meet. But if we randomize
the labeling with a sequence of independent Bernoulli random variables, then the probability of
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choosing a certain fixed labeling at infinitely many points in the sequence is 0, and since the law
was invariant under random relabeling, it follows that the probability of any such counterexample
is 0. We continue with the formal proof.

Set τ1 := inf
{
n ≥ 0 : X

(1)
n = X

(2)
n

}
and τm+1 := inf

{
n > τm : X

(1)
n = X

(2)
n

}
. If X(1), X(2) meet

infinitely often, then ∀n : τn < ∞, but the construction also works if this is not the case. Let
(ωm)m≥1 be a sequence of iid random variables with P [ωm = 1] = 1

2 = P [ωm = 0] (the ωm are also

independent of Gn for all n, i.e. independent of the edge-reinforced random walk). Define X̃
(1)
n and

X̃
(2)
n as follows (with ω0 = 0 and τ0 = −1):

X̃(1)
n := X(1,ω)

n =
∑
m≥0

(
(1− ωm)X(1)

n + ωmX(2)
n

)
· 1τm<n≤τm+1 ,

X̃(2)
n := X(2,ω)

n =
∑
m≥0

(
(1− ωm)X(2)

n + ωmX(1)
n

)
· 1τm<n≤τm+1 .

Note that the sums consist of a single term. ωm = 1 means that we switch the labels of X(1) and
X(2) during the time interval (τm, τm+1].

If we consider
(
X(1), X(2)

)
and

(
X̃(1), X̃(2)

)
as sequences of pairs of integers, then we have(

X̃(i)
n

)
1≤i≤2,n≥0

d
=
(
X(i)

n

)
1≤i≤2,n≥0

. (4.1)

The equality in distribution follows from the above-mentioned invariance of the law of the random
walk under relabelings at meeting times which is quite intuitive, and could be proved formally by
looking at cylinder events, for example.
We now show that any counterexamples to statements (i), (ii) or (iii) have probability 0:

(i) Let A be the event that one of the walkers X(1), X(2) has finite range while the other one
has infinite range, and that they meet infinitely often. It suffices to show that P [A] = 0.
Denote by P the probability measure induced by the edge reinforced random walk alone
and by Q the probability measure induced by the sequence (ωm)m≥1 alone. Then, by (4.1),
we have

P [A] =

∫ ∫
1B dQ dP

where B :=
{

one of X̃(1), X̃(2) has finite range while

the other has infinite range, they meet infinitely often
}
.

We have to show that the inner integral is 0 almost surely with respect to P. Consider fixed
walker sequences X(1) and X(2). If one of X̃(1), X̃(2) should have finite range while the other
has infinite range, then, by definition of X̃(1) and X̃(2), at least one of X(1), X(2) must have
infinite range. Of course, by definition, we also have that X̃(1), X̃(2) meet infinitely often
if, and only if, X(1), X(2) meet infinitely often. Hence, the indicator variable in the integral
above can only be 1 in the case where one of the walkers X(1), X(2) has infinite range and
the two walkers meet infinitely often, so we only need to show that in this particular case,
the inner integral is still 0 almost surely.

Assume X(1) does not have finite range (w.l.o.g.). Then, for every n, one can find m such
that between times τm and τm+1 (all τm are finite if the two walkers meet infinitely often),
X(1) visits a node at distance at least n from the integer 0. Call these times τmn with mn

strictly increasing in n (w.l.o.g.).
Now consider the walkers X̃(1), X̃(2). One of them can have finite range only if the

following holds. The same argument works for both walkers, we do it here for X̃(1) w.l.o.g.
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X̃(1) can only have finite range if there exists N such that for all n ≥ N we have ωmn = 1.
Assume to the contrary that no such N exists. Then we can find arbitrarily large n such
that ωmn = 0 which means that the labels of X(1) and X(2) are not exchanged in the interval
(τmn , τmn+1]. Since X(1) visits a node at distance at least n from 0 in this time interval, the
same holds then for X̃(1), so X̃(1) would not have finite range.

But the probability that the sequence ωmn is 1 for all n ≥ N is 0 for any N (since the
choice of mn only depends on the edge-reinforced random walk, i.e. is independent of the ωm,
and since the probability of ω being constantly 1 on any fixed infinite subset of the integers
is 0 by the choice of ω). Hence, the probability that such N exists is 0, and therefore the
probability that X̃(1) has finite range is 0 as well, and the same arguments give that the
probability for X̃(2) having finite range is 0 as well (both with respect to the measure Q).

So the indicator variable in the integral above is 0 almost surely w.r.t. Q, and hence the
inner integral is always 0, which implies that the outer integral is also 0 and hence P [A] = 0.

(ii) Similar to (i): Let A now be the event that the integer z is visited infinitely often by at least
one of the walkers X(1), X(2), that they meet infinitely often, and that one of them does not
visit z infinitely often. Then, we have again:

P [A] =

∫ ∫
1B dQ dP

where B :=
{
z visited ∞ often by at least one of X̃(1), X̃(2),

they meet ∞ often, one of them visits z only finitely often
}
.

We see that the indicator variable can be 1 only if at least one of X(1), X(2) visits z infinitely
often, and w.l.o.g. assume that this holds for X(1). As before, we can construct a stricly
increasing sequence mn such that in the time interval (τmn , τmn+1], X(1) visits z. Again as
before, one of X̃(1), X̃(2), take X̃(1) w.l.o.g., can visit z only finitely often only if ωmn = 1
for all n ≥ N for some N , an event which has again probability 0 w.r.t. Q.

(iii) Apply (ii) to every integer z. □

4.3. Sequence-Type Reinforcement. We now consider the following class of reinforcement schemes,
called “sequence type” in Davis (1990). Let a = (ak)k≥1 be a sequence of nonnegative numbers.
The reinforcement is of sequence type if Wz (k) = 1 +

∑k
l=1 al (see Definition 2.1) for all edges

z. In words, we require that all initial edge weights are 1 (this is an additional property called
“initially fair” in Davis (1990)), and that the edge weights are then increased by a fixed sequence of
increments which do not depend on the location of the edge.

We want to show Theorem 4.2, i.e. if

ϕ (a) =

∞∑
k=1

(
1 +

k∑
l=1

al

)−1

then all walkers are recurrent a.s. if ϕ (a) = ∞, and all walkers have finite range a.s. otherwise. This
result is not surprising as the case K = 1 is known due to Davis (1990).

Proof of Theorem 4.2: • Case ϕ (a) < ∞: let z0 = max
{
X

(i)
0 : 1 ≤ i ≤ K

}
+ 1. Consider

z ≥ z0. Define a stopping time by Tz := inf
{
n ≥ 0 : X

(i)
n = z for some i

}
. We want to

bound P [Tz+2 < ∞ | Tz < ∞] uniformly away from 1. Once this is proven, we can conclude
that P [∀z ≥ z0 : Tz < ∞] = 0 and therefore, by Theorem 4.1, all walkers must have finite
range.
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Call Ez the event that any walker reaching z at some point in time only traverses the
edge {z, z + 1} forever afterwards. For the uniform upper bound, first note that

P [Tz+2 < ∞ | Tz < ∞] ≤ 1− P [Ez] .

Hence we want to a uniform lower bound for P [Ez]. Consider the following situation. A
given number of walkers are currently located at the two neighboring nodes z and z + 1
which are incident to the edge e = {z, z + 1}, which has been traversed k times so far. Set
αk := 1 +

∑k
l=1 al (this is the weight of edge e). ϕ (a) < ∞ implies

∑
k≥0 α

−1
k < ∞. We do

not assume anything about the weights of the adjacent edges at this point and call them w0

and w1.

z z + 1

w0 αk

edge e

w1

Figure 4.4. Some walkers are located at neighboring nodes

We now give a lower bound for the probability that the edge e will be traversed in the
next step, if one of the walkers at nodes z, z + 1 is chosen to move:

P [e traversed in next step] ≥ min

{
αk

w0 + αk
,

αk

w1 + αk

}
=

αk

wm + αk
=

1

wmα−1
k + 1

where wm = max {w0, w1} .

Using that 1
x ≥ e1−x, we further get

P [e traversed in next step] ≥ exp
(
−wmα−1

k

)
= (em)α

−1
k

where em = exp (−wm) > 0 .

We give a lower bound for P [Ez] as follows. Define E
(n)
z as the event that up to time n,

the behavior of the walkers is consistent with the event Ez, i.e. up to time n, any walker
which reached z only traversed the edge e = {z, z + 1} afterwards. Then Ez =

⋂
n≥1E

(n)
z ,

and the situation looks as follows if E(n)
z occurs:

z z + 1

w0 ≤ αK αk

edge e

1

Figure 4.5. The walkers’ behavior is still consistent with the event Ez

Note:
– z is to the right of the initial walker positions, so the weight of {z + 1, z + 2} must be

1 as long as the walkers’ behavior is consistent with Ez, since they arrive at z from the
left and are trapped in e = {z, z + 1} if Ez occurs.

– The weight w0 of the edge {z − 1, z} is at most αK if the behavior is consistent: the
edge can have been traversed at most K times, since there are only K walkers, and
since a walker can never go back to z − 1 if he reaches z and Ez occurs.

– The weight of e depends on the number of traversals of e, which can be arbitrary. We
assume k traversals, so the edge weight is αk.
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We have wm = max {w0, w1} ≤ max {αK , 1} = αK , so em ≥ exp (−αK) in any such
situation.

P [Ez] =
∏
n≥1

P
[
E(n)

z

∣∣∣ E(n−1)
z

]
since E(n)

z ⊆ E(n−1)
z and where P

[
E(0)

z

]
= 1 .

But P
[
E

(n)
z

∣∣∣ E(n−1)
z

]
is the probability that e is traversed if one of the walkers incident to

e is selected to move. Thus

∏
n≥1

P
[
E(n)

z

∣∣∣ E(n−1)
z

]
≥
∏
k≥0

exp (−αK)α
−1
k = exp (−αK)

∑
k≥0 α

−1
k > 0,

since
∑

k≥0 α
−1
k < ∞. Note that the bound does not depend on z, so this is indeed the

desired uniform lower bound.
• Case ϕ (a) = ∞: we set again αk := 1+

∑k
l=1 al, so we have

∑
k≥0 α

−1
k = ∞ in this case. We

want to prove recurrence. By Theorem 4.1, it suffices to show that there is at least one node
which is visited infinitely often by at least one of the walkers. Assume for a contradiction
that not every node is visited infinitely often and let z be the largest node which is visited
infinitely often. Consider the last time n at which a node to the right of z is occupied
(visited) by any of the walkers. We will now look at the random walk from time n + 1
onwards, and we will show that the probability that z + 1 is never visited again is 0, which
is a contradiction.

z

visited
∞ often

z + 1

never visited
again

αk w0

Figure 4.6. z is visited infinitely often, but not its right neighbor

We assume that {z − 1, z} has been traversed k times and therefore has weight αk, and
we call w0 the arbitrary weight of {z, z + 1} at time n+ 1. Let τ1, τ2, τ3, . . . be the times at
which a walker located at z is selected to move after time n. There will be infinitely many
such times since there are infinitely many visits to z. We call tm the number of traversals
of {z − 1, z} at time τm. Note that tm ≤ k +K − 1 + 2 (m− 1). The reason for this is as
follows: at time n, there was still one walker to the right of z by definition of the time n, and
he must have moved to z at time n+1. Hence, there is at least one walker at z at time n+1.
Before a walker at z is selected to move, the weight of {z − 1, z} could still be increased
by walkers moving to z from the left, but since there are only K walkers, the number of
traversals can increase by at most K−1. At subsequent times τm, the only other possibility
for the weight of {z − 1, z} to increase is that a walker leaves z and then (possibly) returns,
adding an additional two traversals. This leads to the given upper bound. Then, at each
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time τm, we have (recall that at time τm, a walker at z was selected to move)

P [the selected walker moves to z − 1] =
αtm

αtm + w0

≤ αk+K+2m−3

αk+K+2m−3 + w0

=⇒

P [at all times τm, the selected walker moves to z − 1] ≤
∏
m≥1

α(k+K−3)+2m

α(k+K−3)+2m + w0

⊛
≤

l=k+K−3
exp

−
∑
m≥1

w0

αl+2m + w0


where ⊛ holds since ∀x ∈ R : x ≤ exp (x− 1)

Since αk ≥ 1 for all k, we have that αl+2m + w0 ≤ (1 + w0)αl+2m, and we can analyze the
sum as follows:∑

m≥1

w0

αl+2m + w0
≥ w0

1 + w0
·
∑
m≥1

1

αl+2m

αm increasing in m
≥ w0

1 + w0
· 1
2
·
∑
m≥2

1

αl+m

=
w0

2 (1 + w0)
·
∑

m≥l+2

α−1
m = ∞ .

Therefore,

P [at all times τm, the selected walker moves to z − 1] ≤ exp

−
∑
m≥1

w0

αl+2m + w0

 = 0 .

Hence, the probability that z + 1 is never visited again after time n is 0, which concludes
the proof. □
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