
Abstract. Background/Aim: Ewing sarcoma is a highly
malignant tumour predominantly found in children. The
radiological signs of this malignancy can be mistaken for
acute osteomyelitis. These entities require profoundly different
treatments and result in completely different prognoses. The
purpose of this study was to develop an artificial intelligence
algorithm, which can determine imaging features in a common
radiograph to distinguish osteomyelitis from Ewing sarcoma.
Materials and Methods: A total of 182 radiographs from our
Sarcoma Centre (118 healthy, 44 Ewing, 20 osteomyelitis)
from 58 different paediatric (≤18 years) patients were
collected. All localisations were taken into consideration.
Cases of acute, acute on chronic osteomyelitis and
intraosseous Ewing sarcoma were included. Chronic
osteomyelitis, extra-skeletal Ewing sarcoma, malignant small
cell tumour and soft tissue-based primitive neuroectodermal
tumours were excluded. The algorithm development was split
into two phases and two different classifiers were built and

combined with a Transfer Learning approach to cope with the
very limited amount of data. In phase 1, pathological findings
were differentiated from healthy findings. In phase 2,
osteomyelitis was distinguished from Ewing sarcoma. Data
augmentation and median frequency balancing were
implemented. A data split of 70%, 15%, 15% for training,
validation and hold-out testing was applied, respectively.
Results: The algorithm achieved an accuracy of 94.4% on
validation and 90.6% on test data in phase 1. In phase 2, an
accuracy of 90.3% on validation and 86.7% on test data was
achieved. Grad-CAM results revealed regions, which were
significant for the algorithms decision making. Conclusion:
Our AI algorithm can become a valuable support for any
physician involved in treating musculoskeletal lesions to
support the diagnostic process of detection and differentiation
of osteomyelitis from Ewing sarcoma. Through a Transfer
Learning approach, the algorithm was able to cope with very
limited data. However, a systematic and structured data
acquisition is necessary to further develop the algorithm and
increase results to clinical relevance. 

Ewing sarcomas (ES) represent 7-10% of all bone malignancies
and have the second highest incidence after osteosarcomas (1).
The main differential diagnoses of Ewing sarcoma are acute
osteomyelitis (OM) and Langerhans Histiocytosis. Acute
osteomyelitis is a severe bone infection which most often has a
haematogenous origin (2). Other causes can be trauma, surgery,
or contiguously infected soft tissue. It occurs in 8 out of
100,000 children per year in high-income countries, yet it is
extremely common in developing countries as well. Male
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children are affected twice as often as female children (3).
Clinical and laboratory exams might be normal. Blood cultures
and biopsy samples are positive for bacteria in only 32-62% and
40-60%, respectively. Staphylococcus aureus, β-haemolytic
Streptococcus, Streptococcus pneumomiae, Escherichia coli and
Pseudomonas aeruginosa are the most common bacteria
involved in this acute bone infection (4). The symptoms include
pain, ROM (Range of Motion) limitations and fever (5). After
all, with proper treatment, the outcome for OM is usually good.
Conservative treatment with antibiotics is effective in 90% of
the early diagnosed paediatric cases (5, 6).  

However, Ewing sarcoma is a highly malignant blue round
cell tumour, 90% of whose cases occur in patients between
age 5 to 25. Worldwide, 2.9 out of 1,000,000 children per
year are affected by this malignancy, with a slightly higher
incidence in male patients (1.5 male: 1 female) (7). Children
usually present with load-independent local pain and ROM
limitation without a history of trauma, lasting for at least
four to six weeks. Ewing sarcoma treatment begins and ends
with chemotherapy. Surgery to remove the cancer is
normally performed after neoadjuvant chemotherapy.

Taking into consideration the completely contrasting
course of these two diseases, early diagnosis and referral to
a specialised centre is crucial for a successful treatment.
However differential diagnosis is extremely difficult.

Radiographs and MR images have a relatively low
diagnostic value in this crucial differential diagnosis (8, 9), if
not interpreted by a trained and experienced musculoskeletal
radiologist.

In brief summary, the symptoms, blood screening, as well
as the localisation (10) are extremely similar in both diseases.
The first radiological exam to conduct a differential diagnosis
apart from an ultrasound will be an X-ray. Even with this
imaging modality, the diagnosis will not be clear. Although
methods of nuclear medicine such as PET and SPECT are
currently the most accurate techniques, they are too elaborate
to be used in the phase of differential diagnosis and they are
usually not available for outpatient clinics (11, 12). 

In radiographs, both entities can present bone destruction
and periosteal reaction. The typical periosteal reaction
associated with Ewing sarcoma – lamellated, “onion skin” –
or “Codman’s triangle” can also be present in acute
osteomyelitis due to a subperiosteal abscess (4). Instead, MR
T1-weighted images in comparison with short tau inversion
recovery (STIR) showing sharp margins are one of the most
significant signs of Ewing sarcoma for the differentiation from
osteomyelitis (13). Hence, MRI, PET and SPECT are complex
techniques that are indicated when a solid suspicion is
provided or when the diagnosis is to be validated. The
resemblance of the radiological features as well as the clinical
course makes it demanding to distinguish these two entities. 

According to Bacci et al. (14), the overall delay between
initial symptoms and biopsy for Ewing sarcoma is

approximately four months. If we consider that the estimated
five-year survival for Ewing sarcoma patients shifts from 50-
70% in early diagnosed localised cases to 18-30% in
metastatic cases (15) and that unfortunately, 25% of all
Ewing sarcoma patients have a metastatic disease at the time
of diagnosis (16), four months “until” or “since” the first
diagnosis make a huge difference in the prognosis of these
young patients. To shorten the delay of referral to a
specialised centre, it is crucial to improve the ability of
outpatient clinics to address a suspicious case. In this
process, radiographs represent the first obligatory step. In
order to prevent delays and limitation of the prognosis, it is
decisive to develop a new form of assistance which can
support precision and accuracy of the diagnostic process. 

Image interpretation as a part of precision medicine will play
an increasingly important role in the future of orthopaedic
oncology and novel, more comprehensive and specific analysis
tools are urgently needed, especially for outpatient clinics with
limited experience and resources for detection and interpretation
of rare bone malignancies. Deep learning (DL) represents a
subset of Machine Learning and a distinct application of
artificial intelligence (AI), which evolved from pattern
recognition and learning theory. While complex data analysis
of cancerous tissue by AI models and imaging data is already
widely applied in some medical specialties (e.g. lung and breast
cancer), the application of these methods in orthopaedic
oncology is still very limited (17). The fact that globally no far-
reaching structures for systematic data acquisition have yet been
established and that sarcomas are very rare and heterogeneous
entities makes modern AI applications, for which a sufficient
and qualitative amount of data is crucial, considerably more
difficult. While this is a common obstacle – particularly in
medicine – several techniques to cope with limited data have
emerged. One popular technique is called data augmentation
(18), in which new data is created artificially by applying minor
transformations to initial data. Another even more powerful
method is Transfer Learning (19), where a model is developed
for a source task and then reused as a starting point for the
target task (Figure 1). 

The focus of this study was to develop a real-time support
tool for the detection and distinction between Ewing sarcoma
and acute osteomyelitis using a two-phase DL algorithm.

Materials and Methods

Data and ethics approval. The local institutional review and ethics
board (Klinikum rechts der Isar, Technical University of Munich)
approved this retrospective study (N˚48/20S). The study was
performed in accordance with national and international guidelines.
The study is a purely retrospective study in which all data are
already available and are collected in pseudonymised form with the
help of the musculoskeletal tumour database or by studying files.
To increase the quality of the presented observational study and its
prediction model, reporting was derived from the Transparent
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Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) guidelines (20) and the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) statement (21).

Eligibility criteria. All patients from our database with the according
ICD-10 code for OM and ES were selected. For all patients, the
diagnoses were validated through a histopathological examination
as reference standard. The data was retrieved from our hospital
information system (HIS) and the picture archiving and
communications system (PACS).
The following inclusion criteria were applied:
- patients younger than or equal to 18 years;
- intraosseous Ewing sarcoma;
- histopathologically confirmed cases of acute osteomyelitis or acute
on chronic osteomyelitis;
- images prior to treatment.
Patients older than 18 years, chronic osteomyelitis, extraosseous
Ewing sarcoma, malignant small cell tumour, soft tissue-based
primitive neuroectodermal tumours (PNET) cases were excluded.

Statistical analysis. For statistical analysis and evaluation, accuracy,
sensitivity, and specificity were computed for each phase, cross-
validated and interpreted by an orthopaedic surgeon (S.C.) and a
computer scientist (F.H.). The metrics were implemented using the
scikit-learn library (https://scikit-learn.org/stable/modules/model_
evaluation.html).

Considering that the control group was selected, only the patients
with acute osteomyelitis and Ewing sarcoma were included in the
statistical analysis. Nevertheless, a control group was needed to
develop an algorithm for detection of pathological cases in the first
place.

Except for the ‘Localisation’, none of the patient meta data is
normally distributed according to normality test by D’Agostino-
Pearson. Figure 2 shows a correlation matrix according to values of
Spearman’s rank-order correlation coefficient, which is a measure
for linear correlation between two datasets and does not assume that
both datasets are normally distributed. Only ‘Age’/‘Year’ of
diagnosis’ and ‘Sex’/‘Entity’ show a slight indirect correlation (|ρ|
>0.4). It is to be expected with small datasets that no high and stable
correlations can be found.
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Figure 1. Study work flow.

Figure 2. Correlation matrix: a matrix describing the correlation between age, localization, sex, year of diagnosis and entity.



Model training. Model training and inference was conducted on a
DGX Station A100 with four 80GB graphical processing units
(Nvidia Corporation, Santa Clara, CA, USA), 64 2.25 GHz cores
and 512 GB DDR4 system memory running on a Linux/Ubuntu
20.04 distribution (Canonical, London, England). Preprocessing and
model implementation were performed in Python 3.9.6
(https://www.python.org/) using PyTorch 1.9.0 and cuda toolkit 11.1
(https://pytorch.org/).

The source code for this study is provided on GitHub
(https://github.com/FlorianH3000/ewing).

A supervised DL algorithm for image classification in two phases
was developed: phase 1 for detection of pathological cases and
phase 2 for differentiation of ES and OM cases. For both phases, a
ResNet (22) was selected. Beforehand, the model was pretrained on
42.608 sarcoma related X-ray images for Transfer learning. For
phase 1 and 2 a ResNet18 architecture was chosen. To tackle the
overall limited amount of data and integrate regularization,
extensive data augmentation was implemented to artificially create
more input data during training. In order to manage the class
imbalances in both phases, median frequency balancing was utilized
to weight the loss of classes accordingly and support the robustness
of the algorithm (23). A data split of 70%, 15%, 15% was applied
for training, validation, and testing, respectively. Since up to four
images from single patients were collected, the data split was
applied to patients in order to avoid cross-contamination and
therefore provide a higher statistical significance. An additional 6-
fold cross validation supported this task, while random chosen hold-
out test data for final evaluation remained untouched.

Plausibility. To provide plausibility and more insight into the AI model,
Grad-CAMs were implemented in the final inference step (24). Grad-

CAMs utilize the gradient information from the last convolutional layer
of a deep learning network to understand specific neurons and their
impact for decision-making. The result is a coloured heat map, which
is co-registered to the original input image and indicates where the
algorithm found relevant information for the task at hand. This
technique was applied to get a better understanding where the algorithm
detects relevant information. To provide a higher statistical significance,
the Grad-CAM results were averaged from the 6-fold cross validation.

Results

Dataset. A total of 115 patients treated in our institution for
OM or ES between 2000 and 2021 were retrospectively
reviewed. After applying the inclusion criteria, 74 cases were
excluded, and 41 cases remained. After screening the data,
another 14 cases were excluded due to insufficient or invalid
data. Ultimately, 27 cases, 9 with acute osteomyelitis and 18
with Ewing sarcoma were collected.

Additionally, 31 healthy cases were included in order to
balance the dataset and create a “control group”. These
patients were treated in our emergency room with a history
of acute trauma of a joint. The performed X-ray could
exclude any kind of fracture or bone anomalies so that these
cases were diagnosed as bruises or contusions. Consequently,
a “healthy group” without exposing children to X-ray
radiation for our study was obtained. The control group was
chosen with similar localisation to our “pathological group”.
Overall, 182 radiographs (healthy 118, 44 Ewing, 20
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Figure 3. Flow chart: description of patient selection according to eligibility criteria.



osteomyelitis) from 58 patients were collected including data
from external imaging data (Figure 3).

Patient characteristics. The dataset including the healthy
control group, Ewing sarcoma and acute osteomyelitis consists
of 23 females (39.7%) and 35 males (60.3%). While 19 (32.8%)
of the patients were affected at their upper extremities, 35
(60.3%) were affected at their lower extremities and 4 (6.9%)

at other localisations. The average age of patients at the time of
the initial diagnosis resulted in 9.5 years with a variance of 27.6
and a standard deviation of 5.2 (Table I and Table II).

Model performance in phase 1. All results were cross-
validated. The first two-entity classification of the healthy
control group and the pathological group resulted in an
accuracy of 94.4%/90.6%, sensitivity of 90.0%/89.4% and
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Table I. Distribution of Ewing sarcoma (ES) and osteomyelitis (OM) dataset according to patient characteristics (sex and localisation).

                                                                                         Entity                                                              Sex                                            Localisation    

                                                                                                          #              %                                     #                %                                              #
                                                                                                                             
Pathological cases (ES & OM)      Acute osteomyelitis                   9          33.3%          Female              5            18.5%             Upper extr.             2
                                                                                                                                        Male                  4            14.8%             Lower extr.            6
                                                                                                                                                                                                  Other                      1
                                                        Ewing sarcoma                         18         66.7%          Female              3            11.1%             Upper extr.             6
                                                                                                                                        Male                 15           55.6%             Lower extr.            9
                                                                                                                                                                                                  Other                      3
                                                        Total                                          27        100.0%         Female              8            29.6%             Upper extr.             8
                                                                                                                                        Male                 19           70.4%             Lower extr.           15
                                                                                                                                                                                                  Other                      4

Control group (healthy)                  Total                                          31        100.0%         Female             15           48.4%             Upper extr.            11
                                                                                                                                        Male                 16           51.6%             Lower extr.           20
                                                                                                                                                                                                  Other                      0
                                                        
Complete dataset                            Pathological cases                    27         46.6%          Female              8            13.8%             Upper extr.             8
                                                        (relative to whole dataset)                                     Male                 19           32.8%             Lower extr.           15
                                                                                                                                                                                                  Other                      4
                                                        Control group                           31         53.4%          Female             15           25.9%             Upper extr.            11
                                                        (relative to whole dataset)                                     Male                 16           27.6%             Lower extr.           20
                                                                                                                                                                                                  Other                      0
                                                        Total                                          58        100.0%         Female             23           39.7%             Upper extr.            19
                                                                                                                                         Male                 35           60.3%             Lower extr.           35
                                                                                                                                                                                                   Other                      4

Table II. Age distribution of involved patients classified in Ewing sarcoma (ES) group and osteomyelitis (OM) group: pathological cases, control
group and complete dataset.

                                                                                                Entity                                                                             Age

                                                                                                          #                    %                  Average                Variance                Standard deviation

Pathological cases (ES & OM)       Acute osteomyelitis                 9                 33.3%                 13.6                        5.6                                2.4
                                                          Ewing sarcoma                      18                 66.7%                 12.8                      20.5                                4.5
                                                          Total                                        27               100.0%                 13.0                      15.7                                4.0
                                                                                                                                                                                            
Control group (healthy)                   Total                                        31               100.0%                   6.4                      16.6                                4.1
                                                                                                                                                                                            
Complete dataset                              Pathological cases                  27                 46.6%                 13.0                      15.7                                4.0
                                                          Control group                         31                 53.4%                   6.4                      16.6                                4.1
                                                          Total                                        58               100.0%                   9.5                      27.1                                5.2



specificity of 87.2%/91.0% for the validation and test split,
respectively (Figure 4). 

Model performance in phase 2. All results were cross-
validated. The second two-entity classification of OM and
ES cases resulted in an accuracy of 90.3%/86.7%, sensitivity
of 93.0%/100.0% and specificity of 84.4%/76.0% for the
validation and test dataset, respectively (Figure 5).

Grad-CAM results. Figure 6 and Figure 7 display the results
of Grad-CAM visualizations from the test dataset of each

entity. The displayed Figures show that the algorithm did in
fact find relevant information in very similar areas where a
trained radiologist or an orthopaedic surgeon would look at
when diagnosing a patient based on a radiograph.

Discussion

The most important finding of this study is that even with a
very limited amount of data, good results in detecting and
distinguishing Ewing sarcoma from acute osteomyelitis can
be achieved through data augmentation and particularly
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Figure 4. Prediction of performance in Phase 1.

Figure 5. Prediction of performance in Phase 2.



Transfer Learning. Nevertheless, to further increase the
results, a systematic and structured data acquisition is
necessary to gather sufficient data and improve the overall
accuracy.

Limitations. The main limitation of studying these entities is
the extreme rarity of Ewing sarcoma. This makes it very
challenging to acquire sufficient imaging data that could
enhance the accuracy and stability of the algorithm.
Additionally, in most centres data infrastructures are not yet
fully adapted to the needs of modern AI applications. Current
HIS and PACS systems were often initially set up years ago
and were not designed to retrieve data for AI research. Thus,

a considerable amount of data was lost over the years (14
patients excluded due to insufficient data).

While several precautions to provide statistical
significance were applied – such as cross validation, loss
weighting or incorporating Transfer Learning via pretrained
networks - limited amount of data for final validation and
testing might still bias the accuracy of the algorithm
compared to real-world scenarios. However, this issue can
most likely be addressed with further establishment of
collaboration of specialised centres, the according data
infrastructure, and therefore more sufficient datasets.  

Another limitation of this study is that the DL model did not
use demographics or other important patient characteristics as
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Figure 6. Grad-CAM of healthy (a/b) and pathological cases (c/d) in phase 1: Grad-CAM results displaying that the algorithm focused on pixels
similar to the areas a radiologist or orthopaedic surgeon would look at.



input. This study is supposed to be a feasibility study for
radiographs, ES and OM. Nevertheless, integrating meta
information into the algorithm is one of the next steps.

Interpretation of results. From a medical as well as a computer
science point of view, the performances are very promising
considering the complexity of the radiological manifestation
of the diseases and the very limited amount of available data.
Not only the overall accuracy, but the sensitivity and
specificity (also incorporating true positive rate and the true
negative rate), concluded in considerably high results.

The model accuracy obtained in the study of von Schacky
et al. (25) involving all primary bone tumours was comparable

with a musculoskeletal fellowship-trained radiologist (71.2%
and 64.9%, respectively) and even higher than the one
obtained by radiologic residents (83.8% and 82.9%;
respectively). Therefore, we can hypothesize that deep
learning algorithms, such as the one presented in this study,
can potentially become a significant support - particularly for
outpatient clinic doctors who do not have access to expert
orthopaedic tumour radiologists. The algorithm could help to
reduce the delay of referral to a specialised centre and improve
the overall survival of young patients. 

While this study demonstrates the feasibility of interpreting
X-ray images with ES and OM through DL and most likely
also surpasses the accuracy of outpatient clinics (no literature
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Figure 7. Grad-CAMs of an OM patient (a/b) and an ES patient (c/d) in phase 2: Grad-CAM results showing that for ES the algorithm did also
focus on similar areas a radiologist or orthopaedic surgeon would look at, but in the acute osteomyelitis case several areas were in focus of the
algorithm.



was found to underline this statement), however, statistical
robustness must be further investigated before a decision
support tool can be integrated into a clinical environment.

Interpretation of Grad-CAMs. While the significance and
validity of Grad-CAMs is for some tasks also controversially
discussed in the field of computer science, we still believe
that it is worth analysing and interpreting specific Grad-
CAM results. For example, Figure 7 (Grad-CAM c) shows
that the suspect region around the middle phalange of the 4th
finger was detected by the algorithm, but additionally several
other spots in the wrist area affected the algorithm’s
decision. Such findings can help to unravel the “black box”
behind state-of-the-art DL algorithms, might indicate new
ways to evaluate radiographs (and also other imaging
modalities) and on the long run assist the process of making
precise and fast diagnosis.

Future application. The primary application of the developed
algorithm is focused on outpatient clinics. While specialised
centres usually have several sarcoma experts as well as more
sophisticated imaging modalities, an outpatient clinic doctor
has to rely on his/her expertise and radiographic diagnostics
to conclude a first diagnosis and potentially refer a patient
to a specialised centre, while having seen only about three
musculoskeletal malignancies in his/her professional life
(26). In such a case, a support tool to highlight suspect cases
and even identify ES or OM could have a significant impact.

Conclusion

Radiography is a common and largely available imaging
technique that is often used for first clinical assessment.
Although radiographs only consist of two-dimensional
greyscale information, the high resolution and the
considerably standardised technique still make it a very
suitable input for modern algorithms. We believe that AI
algorithms can become a valuable real-time support for any
outpatient clinic involved in the crucial processes of
detecting and differentiating a case of acute osteomyelitis
from a possible case of an Ewing sarcoma. This allows for
a minimal loss of time between diagnosis and specific
treatment, which is crucial for patients with Ewing sarcoma.
While our algorithm was developed for a specific dataset, it
can function as a template for other entities with minor
adjustments, where a radiograph can be utilised for early and
precise detection for various diseases.
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