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Abstract

Radar technology has seen burgeoning applications across diverse domains, including au-
tomotive industries and surveillance systems, thereby intertwining with everyday life. Con-
currently, the escalating challenge posed by space debris underscores the critical need for
innovative solutions. Ground-based radars have historically addressed aspects of this chal-
lenge; however, airborne platforms are gaining prominence. Yet, the scarcity of publicly
available data impedes rapid advancements in this field. Harnessing the power of deep learn-
ing presents a promising avenue for enhancing radar capabilities, potentially revolutionizing
object recognition and predictive accuracy beyond traditional methodologies. This study
introduces two novel data generation methods aimed at mitigating data scarcity and explores
the transformative potential of deep learning in radar-based object recognition and prediction.
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Kurzfassung

Die Popularität von Radarsystemen in verschiedenen Bereichen nimmt zu. Die breite Anwen-
dung von Radartechnologie in Branchen wie der Automobilindustrie und Überwachungs-
systemen verbindet sie eng mit dem täglichen Leben. Ein weiteres aufkommendes Problem
im Zusammenhang mit Raumfahrttechnologien ist die Bedrohung durch Weltraummüll.
Radarsysteme besitzen das Potenzial, zur Lösung dieses Problems beizutragen. Obwohl
bodengestützte Radarsysteme seit vielen Jahren für diesen Zweck eingesetzt werden, erfreuen
sich luftgestützte Lösungen zunehmender Beliebtheit. Die Knappheit öffentlich zugänglicher
Daten behindert jedoch die Beschleunigung von Fortschritten erheblich. Darüber hinaus
kann Deep Learning Verbesserungen bringen und zu einer besseren Leistung führen. In
dieser Arbeit wird das Ziel verfolgt, zwei verschiedene Methoden zur Datengenerierung
vorzustellen, um der Knappheit an Daten entgegenzuwirken. Dabei wird Deep Learning
genutzt, um das Potenzial zur Erkennung verschiedener Objektformen und deren Vorhersage
im Vergleich zu konventionellen Ansätzen aufzuzeigen.
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1 Introduction

The rapid advancement of space technology has fueled a surge in satellite use, with launches
exhibiting a logarithmic increase [1]. This exponential growth, driven by competition between
nations and private companies, reflects the vital role satellites play in communication, nav-
igation, Earth observation, and scientific research [2]. However, the harsh environment of
space poses significant challenges to these critical devices. Any malfunction or disruption,
internal or external, can render a satellite inoperable. While meticulous design and rigorous
ground-based simulations can minimize internal failures, external threats remain difficult to
predict and mitigate.

Among these external threats, space debris – a growing population of defunct spacecraft
fragments, micrometeoroids, and other orbiting objects – poses a significant and increasing
risk. Collisions with even small debris particles can cause catastrophic damage to opera-
tional satellites, leading to mission loss, cascading effects on dependent infrastructure, and
potentially triggering a runaway debris chain reaction known as Kessler Syndrome [3], [4].

This thesis project proposes a novel approach to space debris mitigation: utilizing constel-
lations of airborne cubesats for active debris detection and tracking. Cubesats, due to their
small size, modularity, and relatively low deployment costs, are well-suited for this task [5],
[swartwout]. By actively surveying orbital space and providing real-time data on debris
location and trajectory, these cubesats can enable evasive maneuvers by operational satellites,
significantly reducing the risk of collisions and protecting critical space infrastructure.

1.1 Problem Definition

Space debris poses a significant and escalating threat to operational spacecraft in Low
Earth Orbit (LEO) [6, 7]. These hazards originate from various sources, including defunct
satellites, spent rocket stages, and even fragments from asteroids [3]. Due to the concentrated
nature of space activity within LEO, the following discussion will focus on debris within
this orbital region. The detection of space debris, particularly smaller objects, presents a
considerable challenge. While ground-based radar systems serve as the primary tool for
debris tracking, their effectiveness can be hampered by several factors. These limitations
include the technological capabilities of the radar itself, such as sensitivity and resolution, as
well as the distance between the radar and the debris object [2]. Despite their relatively low
orbital speeds of under 7.8 kilometers per second (roughly 28.000 kilometers per hour), even
small debris objects pose a significant threat due to the high absolute velocities encountered in
space. Collisions with these objects can inflict catastrophic damage on operational satellites [8].
Therefore, prioritizing the detection of small debris objects is just as crucial, if not more so,
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1 Introduction

than tracking larger, more easily detectable pieces. The subsequent sections will delve deeper
into the specific challenges associated with detecting small space debris objects in LEO.

1.1.1 Scientific Challenges

Detecting space debris, particularly the minuscule objects whizzing through Low Earth Orbit
(LEO), presents a formidable challenge. While airborne surveillance systems like LiDAR
and optical methods offer a glimmer of hope, their effectiveness is hampered by inherent
limitations. Their range is woefully inadequate for vast stretches of space, as acknowledged
in[9]. Additionally, the absence of sunlight in the dark regions that do not get sunlight
further curtails their utility (refer to[2] for a discussion on the limitations of optical systems).
Ground-based radar remains the stalwart of space debris tracking. However, it’s not without
its Achilles’ heel. The very equation governing radar range – the bane of detection specialists
– dictates a trade-off between range and resolution (as elaborated in[10]). High-resolution
radars excel at unearthing even the tiniest debris objects, but their penetration depth is limited.
Conversely, long-range radars struggle to discern smaller objects due to their lower resolution,
akin to trying to identify a distant bird through a blurry lens.

The equation further throws another curveball: the exorbitant power demands for extended
range. Supplying a single, powerful radar system to cover a vast swathe of LEO becomes an
impractical proposition. A potential solution lies in deploying a network of coordinated cube-
sets equipped with radars, acting as a distributed and power-frugal detection system (see[11]
for a detailed analysis of cubesets for space debris detection). However, the challenges don’t
end there. Even with improved detection methods, characterizing the material composition
and shape of debris objects remains a daunting task. The limited data gleaned from current
methods makes it akin to piecing together a puzzle with missing pieces.

1.1.2 Technical Challenges

Beyond the previously discussed physical and logistical constraints, this project encountered
a unique set of technical challenges. The most significant obstacle was the scarcity of publicly
available data. While radar, LiDAR, and optical datasets exist, they are primarily geared
towards the automotive driving industry[12, 13]. These datasets operate at significantly
smaller ranges and prioritize the classification of larger objects like cars and pedestrians, a
stark contrast to the tiny debris objects we’re interested in, where size differences actually
aid classification. Additionally, most driving data exists in two dimensions (2D), whereas
space debris detection necessitates either one-dimensional (1D) or three-dimensional (3D)
data. Although claims of 3D radar datasets from prestigious institutions like ESA and NASA
exist, this data remains frustratingly out of public reach[2, 3].

Another hurdle involves the sheer complexity of radar-based computations. Processing
and handling radar data is computationally demanding, often exceeding the capabilities
of local systems. Even with robust computational resources, data simplification might be
necessary to expedite analysis and reduce computational burden. Furthermore, creating
simulations that accurately replicate the space debris detection scenario requires meticulous
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1 Introduction

modeling expertise, which can only be acquired through collaboration with radar and space
professionals.

1.2 Motivation

The escalating threat posed by space debris demands innovative solutions. This thesis aims
not only to address the existing problem but also to pave the way for future advancements.
While countless approaches exist for solving debris detection challenges, this work proposes
a novel method that leverages airborne radars and deep learning to unravel the characteristics
of space debris. The remarkable progress of deep learning in recent years has opened doors
to exciting possibilities. In certain domains, deep learning models have achieved performance
rivaling human experts (e.g.,[14]). Inspired by this potential, a key aspect of this thesis will
involve evaluating the efficacy of deep learning methods for either bypassing traditional
signal processing techniques or recognizing object characteristics within the space debris
context.

Figure 1.1: Difference between mono-static and multi-static radars.

The scarcity of publicly available datasets for space debris detection presents a significant
challenge. To address this, a central objective of this thesis is the development of a realistic
data generation pipeline 1.2. This pipeline will be instrumental in training and evaluating the
deep learning models employed in this research. Investigating the potential of deep learning
approaches to replace or augment conventional methods with the objective of achieving
superior performance in space debris detection represents the second major goal of this thesis.

For reasons of efficiency and feasibility, the project focuses on mono-static and airborne
radar systems. Difference between mono-static and multi-static radars can be seen in 1.1
.This approach offers a two-fold advantage. Firstly, it prioritizes cost-effectiveness. Instead
of relying on a single, highly complex setup that is only accessible to a limited number of
research institutions, the proposed method emphasizes the creation of multiple, simpler
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1 Introduction

devices. The cubesets that can be send to the LEO are small and considering they can be
attached with other payloads makes it more convenient than building a super strong radar
on ground. Also, the detection setup can be built on an existing other purposed device.
Secondly, within the scope of this project, the mono-static structure simplifies radar operation,
reducing the level of expertise required. This is particularly beneficial considering the project’s
timeframe.

Figure 1.2: Steps of data generation pipeline.

1.3 Radar Principles

Radar, an abbreviation for radio detection and ranging, is a sophisticated detection device
that leverages radio waves and their responses. Since it utilizes electromagnetic radio waves,
it operates independently of visible light, making it exceptionally valuable in conditions
where visible light is unavailable. For instance, radar can function effectively in dark and
foggy environments and can even provide vision behind certain objects.

The working principle of radar involves several steps. Initially, the radar generates a signal
and directs it outward. Various parameters influence this generation process, which in turn
defines the radar’s characteristics and type. The generated wave travels at the speed of light
until it encounters an object. Upon hitting the object, the wave is reflected in a specific manner,
carrying information about the object. The radar’s receiver picks up this returning signal
and converts it into digital readings using an analog-to-digital converter. Through this cycle,
basic information can be derived. By calculating the travel time and dividing it by two, then
multiplying by the speed of light, the distance to the object can be determined. Additionally,
by employing the Doppler effect, shifts in the frequency domain of the echo can be observed
using fast Fourier transformations, which provide the relative speed of the object.

The benefits of radar are evident when considering its resilience to noisy conditions. Unlike
light-based visual systems, radars can operate effectively in adverse weather conditions,
making them particularly suitable for air and maritime surveillance. Especially, the less
effection from the space noise sourced from other objects or space radiation comes in handy
in this scenario. Their long-range capability is another advantage, facilitating more effective
exploration missions and enabling the analysis of distant objects in space. Furthermore,
multiple output multiple input radars can track objects by leveraging Doppler shifts. Given the
initial coordinates of an object, its trajectory and speed can be deduced from the Doppler shift,
allowing for precise predictions of the object’s future position without human intervention.
However, the specific information obtained and its accuracy depend on the radar’s design
and working principle. The two most common radar categories are Mono-static Radar and
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1 Introduction

Bi-static Radar. Mono-static radars use the same antenna for both emitting and receiving radio
waves, whereas Bi-static radars employ separate antennas for transmission and reception.
Also within those systems, by using various modulations and transmitter-receiver setups
obtaining different outputs is possible, such setups and capabilities can be seen at 1.3.

Figure 1.3: Different types of radars and which information can be obtained from them with
conventional methods.

Mono-static radars are predominantly favored for their simple design and cost efficiency.
Their work cycle differs slightly from the general radar principle. Although the overall
concept is similar, Mono-static radars have distinct transmit and listen cycles. This adaptation
is necessary because a single antenna cannot meaningfully transmit and receive signals simul-
taneously. Typically, the received signal is much weaker and undergoes several preprocessing
steps. It is first amplified and then filtered to remove noise, after which the relevant infor-
mation is extracted from the processed signal. Common applications of Mono-static radars
include air traffic control, weather monitoring, speed enforcement by police, and autonomous
driving systems in the automotive industry.

Pt =
PtGtGrλσ

(4π)3R2
t R2

r L
(1.1)

The radar power equation 1.1 provided elucidates several key concepts. Pt represents the
maximum power level of the radar, measured in watts. Gt, the antenna gain for transmission,
indicates the efficiency with which the antenna transmits energy in a specific direction. A
higher gain signifies more concentrated and less scattered energy. Similarly, Gr is the gain
for receiving, following the same principle. Both gains are unitless. The wavelength, λ, is
measured in meters and is essential in defining characteristics such as range. The radar
cross-section, σ, measures how effectively the target reflects the radar signal. This parameter
depends on various attributes of the object, including material, size, and shape, and is
measured in square meters. Within the project, the radar cross-section plays a crucial role as it
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1 Introduction

Figure 1.4: Example work cycle of a pulsed radar: First a pulse is generated according to pulse
width. Then pulse hits the obstacle and returns back. After the pulse generation,
the antenna switches to the listening/receiving time to read received signals.

provides the most relevant information about the object. The distance to the object, Rt, is also
represented in meters. In mono-static radars, Rt and Rr (the distance for reception) are the
same. L accounts for overall system losses that must be considered in real-world applications.

Briefly examining some of the relationships in the equation, a larger radar cross-section (σ)
implies easier detectability due to a larger reflective surface or superior reflective material. The
smoothness of the surface, in addition to the material, is also significant. Non-smooth surfaces
can reflect the wave in various directions, causing natural noise or unrealistic responses
which is an effect intentionally utilized in stealth aircraft design. The equation illustrates
that achieving a greater range necessitates higher transmission power. Similarly, shorter
wavelengths (λ) result in smaller signal loss but require more power. Understanding these
parameters and their relationships is fundamental for optimizing radar performance and
applications in various fields, from aviation to autonomous driving. This whole cycle can be
observed in the Figure 1.4

1.4 Radar Setup

Designing a radar setup from scratch is beyond the scope of this thesis. Therefore, an existing
radar setup specifically designed for space-borne orbital debris detection is adopted. This
radar is optimized for detecting objects smaller than 10 centimeters, making it ideal for our
purposes [15]. A frequency of 94 gigahertz is selected to achieve high antenna gain. This
operating frequency ensures that objects within the 1 to 10 centimeter range remain in the
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optical reflection region, thereby maximizing the Radar Cross Section (RCS) return.
The choice of pulse repetition interval (PRI) and pulse width is critical. A lower PRI

improves coverage by allowing more pulses during the illuminated time. However, it must
also be sufficiently long to define the maximum range effectively. Concurrently, the pulse
width should be narrow enough to maximize coverage. Based on these considerations, a
pulse width between 20 to 30 microseconds and a PRI between 80 to 100 microseconds are
selected. The referenced article provides a detailed explanation of the radar setup, including
all relevant variables. Given the simplified nature of the simulation setup in this project,
not all features of the radar setup are implemented. Nevertheless, this setup can detect the
desired objects within a 15-kilometer range. The chosen parameters are listed in Table 1.1.

Table 1.1: Radar parameters used in the simulation setup obtained from [15].

Parameter Value

Frequency 94e9 Hz
Pulse Bandwidth 50e6 Hz
Pulse Width 30e-6 Seconds
Number of Pulses 300
Pulse Repetition Frequency 1/(80e-6) Hz
Antenna Beamwidth 0.25 degrees
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2 Literature Review

Utilizing airborne radars for detecting space debris is still an evolving field. Despite its
nascent stage, the domain is rich with diverse methodologies aimed at detecting space
debris and classifying objects under various conditions. Scientists have proposed numerous
approaches to space debris detection, acknowledging the significant costs and technical
challenges involved. On the other hand, the application of radar technology in the automotive
industry is well-established, primarily due to its numerous advantages over alternative
sensing methods.

Furthermore, when considering the task as a form of signal processing enhanced by
deep learning, the literature expands significantly. While each specific task may appear
distinct, many methodologies can be adapted and applied to the domain of space debris
detection. By altering the approach and leveraging advances in deep learning, it is feasible
to repurpose existing research and techniques from related fields to enhance space debris
detection capabilities.

This section will explore relevant scientific articles from various perspectives. Initially, it will
review overall methods for space debris detection, both with and without the use of radars.
Subsequently, it will delve into the performance of radar systems in the automotive industry,
examining their effectiveness with different types of input data and drawing parallels to the
space debris detection domain.

2.1 Radar Space Debris Detection

In "Comparison of EISCAT Radar Data on Space Debris with Model Prediction by the
MASTER Model of ESA"[16], the threat posed by objects sized 1 to 10 centimeters was
identified at an early stage. For detection, data was obtained from observations using the
ESA MASTER/PROOF’99 model. This model provides a conventional approach to estimating
the likelihood of a spacecraft colliding with space debris.

Some articles, such as[17], focus on the Kessler Syndrome and classify possible solution
approaches. These approaches are categorized as "mitigation (to limit the creation of more
debris), remediation (to remove debris from orbit), and space situational awareness (to prevent
operational satellite collision)". For mitigation, it is noted that authorized institutes provide
guidelines, but their voluntary nature renders them ineffective. For active debris removal
(ADR), several valuable approaches are proposed, but technical challenges and funding issues
have so far made them inefficient solutions. Regarding detection, ground-based radars can
provide warnings to satellite owners 72 hours in advance[18]. However, this information,
managed by the U.S. military, is not publicly accessible. Additionally, older ground-based

8



2 Literature Review

systems can only detect objects larger than 10 centimeters. Among possible solutions, there
are also airborne optical systems, such as the IDEA satellite from Kyushu University.

Some research has explored the possibility of detecting space debris using cosmic-ray
physics. In one project, researchers employed a telescope called Mini-EUSO, which can
observe light reflected from space debris during the day and laser reflections at night[19].
Around 2019, machine learning approaches began to be applied in this domain. By using
photometric signatures, defined as "time-varying wavelength-dependent apparent magnitude
of energy (e.g., photons) scattered off an object along the line-of-sight to an observer"[20],
researchers tested decision trees, ensemble classifiers, linear discriminants, naive Bayes, k-
nearest neighbors, and support vector machines. For the preprocessed dataset of light curves
(photometric signatures), SVM performed best with an overall accuracy of 98%, demonstrating
the potential of machine learning methods in space debris detection.

A review conducted at the University of Cagliari analyzed various ground-based radar
systems and compared their performance in detecting space debris[21]. The study evaluated
the capabilities of radars from various space agencies. The radar with the maximum range is
Cobra Dane in Shemya Island (USA), with a minimum detection size of 5 centimeters. The
smallest size detection is achieved by the TIRA-Effelsberg radar in Wachtberg, which can
detect objects as small as 0.07 centimeters in diameter at a range of 1000 km. Around the
same time, ATLAS was introduced in Portugal, featuring a more sophisticated, fully digital
signal processing method [22].

Radar signal processing is computationally intensive. Ground-based debris detection
radars, being even more sophisticated, further increase processing complexity. To overcome
difficulties in accessing data due to institutional constraints or sensitivities, simulations can
be introduced. In 2021, Martin et al. developed a simulation environment for testing different
radar setups and generating their signal returns[23]. They enhanced the simulation with
Nvidia CUDA support to utilize GPUs for faster processing. The goal of the article aligns
closely with the latter part of this thesis, which focuses on a complex data generation pipeline.
However, the simulation described in the article is specifically for ground-based radars.

Another approach, which does not involve machine learning, uses the canonical polyadic
tensor decomposition method. By leveraging Terahertz channels with limited scattering,
canonical polyadic tensor decomposition is framed as an optimization problem and solved
using the alternating least squares algorithm. The setup included 64 uniform linear array
antennas in an airborne system. Additionally, the article proposes a straightforward setup
for LEO satellite transmission, allowing the received signal to be converted into a canonical
polyadic tensor[24].

2.2 Automotive Industry Solutions

Radars have diverse applications across various fields, but one area where they are becoming
increasingly prevalent is in the automotive industry. With the advent of advanced driver
assistance systems (ADAS) and autonomous vehicles, radars are utilized to monitor changes
in the external environment and are integrated into land vehicles. These observation modules
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2 Literature Review

enable self-driving autonomous vehicles by providing robust detection capabilities. Radar
technologies have outperformed other observation systems due to their insensitivity to adverse
weather conditions and their ability to detect Doppler shifts. Furthermore, the integration
of machine learning and deep learning approaches with radar technology has enhanced the
functionality and reliability of these systems.

There are multiple approaches to using radars in land vehicles. Some methods rely on
processed data derived from raw radar signals, building recognition systems on top of
this pre-processed information. Others use the raw radar output directly, embedding all
processing steps within the machine learning models. The following sections will explore
these two approaches in detail, highlighting their methodologies and respective advantages.

2.2.1 Raw Signal Solutions

DeepReflecs emerged from the need to enhance the performance of radar-based systems while
maintaining computational efficiency, particularly when integrated with other methodologies
such as cameras. Traditional methods that use features built upon spectrograms often achieve
high performance but are computationally expensive. To address this, DeepReflecs introduced
a novel system combining two core ideas. The first step involves extracting features from
radar reflections, such as range, radial velocity, radar cross-section (RCS), and azimuth angle.
This information is then fed into a neural network designed to classify objects into categories
like pedestrians, cars, and cyclists. This two-step approach enables the system to remain
computationally efficient while maintaining accuracy[25].

Another study addressed the challenge of poor angular resolution in radar systems and
proposed an innovative solution. Traditional methods relying on range-azimuth maps are
critiqued for their high computational cost. Instead, high-definition (HD) radars can be
utilized for the segmentation of free spaces. The proposed solution, FFTRadNet, incorporates
a unique MIMO pre-encoder with specialized convolutions, an FPN encoder that uses residual
connections to convert range-angle representation to range-azimuth representation, and
multitask heads for segmentation and detection. This model performs binary segmentation to
identify free spaces using raw radar data input[26]. Building on this approach, T-FFTRadNet
was introduced, which is based on the Transformer architecture and includes a novel layer
called Fourier-Net. This layer allows the model to learn how to perform transformations,
moving beyond the conventional Fast Fourier Transformation[27].

Another approach involves using radio frequency images to generate heatmaps. Y. Dalbah
et al. developed a network that integrates a Transformer for feature extraction and RODNet
for segmentation tasks. This model performs three-class recognition and segmentation for 2D
radio frequency images, demonstrating significant potential for radar-based object detection
and classification[28]. Furthermore, ADCNet presents a novel method that processes raw
analog-to-digital converted (ADC) data, incorporating traditional signal processing concepts
within a deep learning framework. ADCNet achieved state-of-the-art results, particularly
in categories defined as "easy" in the evaluation criteria, highlighting its effectiveness and
robustness[29].

Research by Major et al. introduced a technique for radar-based road user classification
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using raw radar signal data without intermediate representations. They utilized a neural
network trained on raw radar data to directly classify road users, achieving competitive
accuracy with significantly lower computational costs[30].

Schumann et al. explored the use of raw radar data for vehicle detection and tracking.
They proposed a deep learning architecture that processes raw radar cube data to extract
features for vehicle detection, demonstrating improved performance over traditional radar
processing methods[31].

Additionally, Kim et al. proposed a novel approach using raw radar signals for human
activity recognition. Their method leverages the temporal and spatial information in raw
radar signals to classify different human activities, showing promise for applications in
autonomous driving and smart environments[32].

2.2.2 Complex Data Solutions

Solutions that utilize radar output in more complex and processed ways have gained sig-
nificant popularity. These methods often involve conventional transformation approaches
and require sophisticated setups. Techniques such as range-Doppler, range-azimuth, and
range-azimuth-Doppler segmentation are commonly employed. Decourt et al. introduced a
novel approach by incorporating the segmentation task into a timeline using recurrent convo-
lutional networks. This approach leverages temporal information to improve segmentation
accuracy in dynamic scenarios[33].

With the rise in popularity of Transformer architectures, their application in radar data
processing has also become prominent. TransRSS is a noteworthy example that utilizes
Transformers supported by convolutional layers applied to range-azimuth and range-Doppler
views of radar scenarios. This hybrid approach enhances the model’s ability to capture both
spatial and temporal dependencies in the data, leading to improved performance in various
radar-based tasks[34].

Taking data sophistication a step further involves utilizing multiple views of range-angle-
Doppler to create a data cube. In the "TransRadar" study, a Transformer architecture is
employed to address the challenges posed by radar data, such as noise and sparsity. The
Transformer model in this study achieved state-of-the-art results in segmentation tasks on the
RADIal[26] and CARRADA[35] datasets, demonstrating the effectiveness of this approach[36].

Another innovative method is presented by Kim et al., who utilized a 3D convolutional
neural network (CNN) to process range-Doppler-azimuth data cubes. This model effectively
captures spatial relationships within the radar data, leading to significant improvements in
object detection and classification tasks[37].

Additionally, Li et al. proposed a method that integrates radar and LiDAR data for
enhanced object detection. By fusing the complementary strengths of these two sensor
modalities, the proposed system achieves higher accuracy in detecting and classifying objects,
particularly in challenging environments[38].

Furthermore, the research by Major et al. explored the use of a recurrent neural network
(RNN) combined with radar data to perform sequence prediction and classification tasks.

11



2 Literature Review

This approach leverages the temporal dynamics of radar signals, enhancing the model’s
ability to understand and predict the behavior of detected objects[39].

12



3 Data Generation Pipeline

One of the purposes of the project is to fill the need for annotated radar reading data for
multiple classes of small objects. Within the scope of the project, there will be two types of
data generation pipelines will be used. Both of the approaches use 3D objects and their radar
cross sections. One of them directly utilizes the information within the radar cross section in
a simple way. Another brings a more sophisticated and realistic approach for future uses.

3.1 Shapenet

ShapeNet[40] is a comprehensive dataset widely used in computer graphics, computer vision,
and robotics research[40]. It offers two main categories: ShapeNetCore and ShapeNetSem[40].
The core dataset boasts a larger quantity of objects, featuring around 51,300 objects across 55
categories. However, it offers fewer classes compared to ShapeNetSem[40]. While containing
fewer objects (approximately 12,000), ShapeNetSem provides a wider range of classes (270)[40].
For the purposes of this project, categories will be referred to as classes. Each object within
ShapeNet is unique and possesses an identifier within its respective category. Notably,
ShapeNetCore allows for subcategories within a class. For instance, the "airplane" class might
encompass various subcategories like bombers, fighters, jets, and even fictional spacecraft[41].

Initially, 10 classes were chosen from ShapeNetCore based on their shape relevance to
space debris. However, prioritizing scalability for future research led to a shift towards using
the 10 most populated classes. The IQ output analysis is made on these 10 classes but later
for simplifiying purposes the data amount class number is reduced. Finally, the number of
classes was further reduced to 5 or 6 for the calculation and processing stages to enable a
focused analysis of distinct characteristics. Some samples to chosen ShapeNet classes can be
seen in Figure3.1 . Despite the existence of extensions like ShapeTalk and ShapeGlot aimed
at augmenting ShapeNet, the original dataset remains widely utilized[41]. This popularity
likely stems from the value of its manually verified, annotated data and its ease of use due to
the WordNet hierarchy integration[42].

One point to clarify is that while ShapeNet objects are claimed to be normalized, this
is not entirely accurate. To ensure consistency, all objects are rescaled within this project.
Additionally, the provided .obj format, which can define multiple meshes and materials, is
incompatible with the current processing pipeline. Consequently, the objects are converted to
a new format, resulting in the loss of material information.
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Figure 3.1: 6 Sample objects from Shapenet.
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3.2 Introduction to the Watertight Concept

In the realm of 3D modeling, a watertight object is defined as a closed mesh that is helds
properties such as; each edge connects to two adjacent vertices, each surface encloses the
volume without holes, and no surface without volume exists. This is essential for accurate
physical simulations and real-world applications. 3D objects created in software environments
can often have holes or non-manifold structures, which are impossible in the real world and
can disrupt calculations based on physical laws. For instance, in a software environment,
two planes can overlap perfectly without volume, as they are sets of relative coordinates.
However, such a scenario is impractical in real life. Since calculating the radar cross-section
(RCS) involves the physical properties of real objects, the objects used in these simulations
must also be watertight.

To ensure an object is watertight, three critical conditions must be met. First, all edges
must connect exactly two faces, preventing any overlapping and ensuring structural integrity.
This condition guarantees that every edge serves as a boundary for exactly two adjoining
faces, forming a coherent mesh. Second, there should be no stray vertices or points floating
in space, as a dot without volume cannot exist in the real world. Stray vertices can create
inconsistencies and errors in simulations, as they represent non-physical anomalies. The final
constraint is that each point on a surface must be either inside or outside the surface, with no
ambiguity. This ensures that the object is a solid, enclosed entity with no gaps or undefined
regions.

The concept of watertightness is crucial in various fields. 3D printing is one of the most
prominent applications, as it involves converting artificial objects directly into physical ones.
Non-watertight objects cannot be printed because the printer needs a continuous, enclosed
surface to create a solid structure. In game engines and simulations, watertight objects are
essential for accurate collision detection and lighting calculations. Without watertightness,
objects might not interact correctly, leading to visual and functional errors. Similarly, in
animation and rendering, only a watertight mesh can produce smooth animations and realistic
rendering. Non-watertight objects can cause visual artifacts and inaccuracies in rendered
scenes, diminishing the quality of the final output.

Typically, ensuring an object is watertight is a manual process performed by skilled
designers using specialized software tools. This process involves meticulous inspection and
adjustment of the mesh to meet the watertight criteria. However, manual watertight modeling
is not within the scope of this project, nor do I possess the expertise required for it. Moreover,
relying on manual methods contradicts the goal of scalability, as half-automated systems are
significantly less efficient than fully automated ones. Manually processing a thousand objects
could take weeks, if not months, making it impractical for large-scale projects.

To address this challenge, an additional pipeline has been developed to automate the
process of making objects watertight and converting them to the required file format. This
pipeline uses advanced algorithms to detect and correct non-manifold structures, fill holes,
and ensure all edges connect exactly two faces. It also identifies and removes stray vertices,
ensuring the mesh is a continuous, enclosed surface. The automated approach significantly
reduces the time and effort required to prepare 3D models for simulation and real-world
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applications, making it possible to handle large volumes of objects efficiently. This innovation
not only enhances the accuracy and reliability of simulations but also enables broader
application of 3D modeling techniques in various fields.

3.2.1 Trimesh

Trimesh[43] is a versatile Python library designed for manipulating and creating 3D objects
defined as a set of triangles. It is particularly useful for loading meshes into a Python
environment for analysis and is specifically suited for working with watertight surfaces and
objects, making it highly relevant to the needs of this project. One of Trimesh’s strengths lies
in its compatibility with various 3D object formats, including:

• STL: Stereo Lithography

• OBJ: Wavefront Object

• PLY: Polygon File Format

• GLTF/GLB: GL Transmission Format

• 3MF: 3D Manufacturing Format

• DXF: AutoCAD Drawing Exchange Format

• SVG: Scalable Vector Graphics

The ease of use and versatility of Trimesh make it a popular choice for scientific computing,
which is the focus of this project. Beyond this, Trimesh is also employed in 3D printing
and various computer vision projects. While it does not specifically support radar readings
for objects, Trimesh does provide sensor simulation capabilities for LiDAR systems. This
functionality allows for the creation of LiDAR-required calculations solely with Trimesh,
highlighting its broad applicability and utility in different domains.

Trimesh’s capabilities extend beyond these primary uses. It can perform union and
intersection operations, as well as smoothing or decimation to adjust the quality of the mesh
object. The union operation was particularly useful in this project, as the initial .obj objects
consisted of multiple meshes that needed to be merged. Trimesh can also check the integrity
of meshes and attempt to fix issues, although in practice, a dedicated script using only
Trimesh for fixing and converting objects was found to be inadequate. Objects were either not
properly fixed or lost their essential characteristics during the process.

Within this project, Trimesh is utilized for two main purposes. The first is the conversion
of data formats without compromising the structural integrity of the objects. The second is
the scaling of objects to the required size. Since the .stl data format is unitless and defines
only relative coordinates and scales, specifying the unit is essential each time .stl files are
loaded. During conversion, the unit information is often lost, which can lead to unreliability
or misalignment with the project goals. By using Trimesh, each object is scaled according to
the specified unit, ensuring accurate representation.
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3.2.2 Manifold and ManifoldPlus

Manifold and ManifoldPlus are open-source GitHub projects accompanied by relevant aca-
demic articles[44]. These projects aim to obtain manifold surfaces based on input 3D objects.
The fundamental approach involves utilizing a uniform grid to store relevant distances from
key points of interest within the object. Initially, the objects are normalized into an artificial
cube, with the cube’s center serving as the origin. Since only the outermost surface is of
interest in the process, all sample points within the cube are categorized as either outside
the surface, intersecting the surface, or inside the surface. The surfaces between positive
cubes and occupied cubes represent the manifold. To preserve the smoothness of the original
surface, a non-uniform grid is employed using octree data structures. This enables the grid to
have higher resolution around the surface of interest and lower resolution in regions of less
interest.

Next, the isosurface is extracted as the faces between cubes intersecting the labeled outside
and inside surface points. All boundary cubes are labeled as positive, and if a positive cube
is not occupied by a triangle in the original mesh, it is identified as such. The breadth-first
search algorithm is then applied to expand the positive cubes. Any remaining cubes not
labeled as positive are designated as negative. In cases of ambiguity, such as when a cube
face does not align with the original mesh, vertices are split into three or edges into two to
resolve the ambiguity. However, even after these steps, cube faces may still not fit into the
original mesh. To address this, the projection of cubes onto the original mesh is used to move
all extracted vertices to the nearest triangle along a direction parallel to its normals, with a
small step. After completing these steps, the object is rendered manifold.

Despite the assertion that the application guarantees the "manifoldation" of any ShapeNet
object, there are instances where objects are irreparably broken. To maintain the integrity of
the dataset, broken objects are extracted and excluded.

3.2.3 Alternative Sub-optimal Approaches

During the object fixation process, several automatic algorithms from various applications
were tested. The primary approach was to start with simpler methods and gradually transition
to more complex ones. Unfortunately, all of these attempts proved unsuccessful for fixing
complex objects in the ShapeNet dataset. While these algorithms offer functionalities such
as hole filling, removing non-manifold edges, and making objects watertight, they were not
effective for the specific requirements of this project.

Among the tools tested, Prusa Slicer stood out as the most basic one. Although it lacks
modifiable parameters for fixation and its algorithm is not publicly shared, its simplicity
makes it a useful tool for visualizing 3D objects[45]. Meshmixer, developed by Autodesk,
offers more advanced features and is commonly used in the industry. While it provides
specific fixes like hole filling, recalculating normals, merging vertices, and removing duplicate
faces[46], it was unable to adequately fix complex ShapeNet objects.

Blender, a comprehensive 3D modeling tool with Python integration, offers a 3D printing
add-on that checks the printability of objects. While printable objects must be manifold,
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Blender’s add-on for making objects printable did not yield satisfactory results for this project.
Additionally, Blender provides operations such as "bridge edge loops" and "remesh," but
these options, either individually or in combination, failed to address the issues with the
ShapeNet objects[47].

Windows 3D Builder, built into the Windows operating system, offers a simple fix option
when loading objects. While the algorithm behind it is not shared, it proved to be the closest to
a successful approach until the final solution pipeline was developed. In terms of complexity
for the user, Prusa Slicer and Windows 3D Builder are the simplest options, requiring only a
single button click. Meshmixer offers a slightly more sophisticated approach that allows for
some preferences to be set. Blender, while the most complex tool among the options, offers
the most flexibility but requires a higher level of expertise from the user.

3.3 Radar Cross Section Calculation

As with many phenomena in physics, the response of an object to radar waves is highly
dependent on specific characteristics of the object. The Radar Cross Section (RCS) is a
measure that describes the magnitude of the reflected signal when radar waves hit an object.
Represented by the symbol σ, the RCS quantifies how detectable an object is by the radar
receiver[48]. The unit of RCS is square meters, which indicates the effective surface area that
reflects the radar signal back to the receiver. Additionally, RCS can be expressed in decibel
square meters (dBsm), a logarithmic conversion of the square meter measurement.

The significance of RCS extends to a wide range of applications, particularly in defense
technology. For instance, air defense systems require a high RCS to ensure reliable target
detection, while stealth technology in fighter aircraft aims to minimize RCS to evade detec-
tion[49, 50]. Advances in material science, which focus on reducing radar reflections, often
use RCS as a critical performance metric. Moreover, the environmental impact of high-RCS
objects is notable, as they can increase background noise and clutter in radar systems.

In the context of this thesis, RCS is utilized to extract shape-based features of target objects.
Although this work primarily focuses on the shape, it is theoretically possible to infer material
properties and object size from the RCS[51]. The ability to discern such characteristics from the
reflected radar signal underscores the importance of RCS in various scientific and engineering
domains.

Several factors can influence the RCS output beyond the inherent properties of the object.
Resonance, for example, can amplify the RCS when the frequency of the radar wave matches
the natural frequency of the object. Polarization of radar waves also plays a crucial role, as
horizontal and vertical polarizations can produce different RCS values[52]. Furthermore,
the aspect angle "the angle between the radar and the object" significantly affects the RCS.
Consequently, RCS patterns are often represented in three dimensions to account for variations
at different angles. It is important to note that a single radar system cannot capture the
complete RCS pattern for all angles; instead, it can only observe a subset of the possible
angles[53].
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σ = lim
r→∞

4πr2 Ss

Si
(3.1)

The calculation of RCS depends on several variables, as shown in the fundamental equations
3.1. The distance r from the radar to the object, ideally infinite for far-field calculations, affects
the results. Ss represents the wave’s power emitted from the radar, while Si denotes the power
density in watts per square meter. Calculating Si is complex, particularly for irregularly
shaped objects, requiring intricate linear algebra to model the illuminated region of the
object. Material properties and multiple scattering phenomena add further complexity due to
varying reflection rates and multiple scattering paths.

One effective method for calculating Ss is the Method of Moments (MoM), which segments
the object into smaller parts[54]. By calculating the reflection from these individual segments
and combining the results, a comprehensive value for Ss is obtained. This method considers
object geometry, material properties, and wave characteristics[55].

Physical Optics (PO) is another widely used method for RCS calculation. It employs ray
tracing algorithms to simulate the radar wave’s interaction with the object, treating the wave
like a light beam[48]. This approach accurately models reflection, diffraction, and other
scattering effects, provided the parameters are appropriately set. Like MoM, PO takes into
account the same dependent variables[56].

Additional methods include the Fast Multipole Method (FMM)[57], the Boundary Element
Method (BEM)[58], and the Physical Theory of Diffraction (PTD)[59]. BEM, an alternative to
MoM, solves surface equations using integral techniques [60]. PTD enhances edge scattering
accuracy, while FMM accelerates calculations for large objects[61].

3.3.1 Matlab Approach with Parallel Pool

There are various tools and methods to calculate RCS in a computational environment, with
Matlab[62] being one of the most reliable options. The antenna toolbox in Matlab includes
a function called RCS, which takes various inputs for calculation parameters. The primary
input is the object, which can be either a Matlab-defined geometric shape or a platform
with an .stl type object. This requirement necessitated the conversion of ShapeNet object
data to a compatible format. Frequency is another parameter specified as a scalar number.
The method allows for the specification of azimuth and elevation from the viewing angle
perspective, and either of these spatial parameters can be provided as an array. This results
in an RCS slice, with typical configurations being 0 elevation and [-180,180] azimuth or 90
azimuth and [-90,90] elevation. To obtain a comprehensive RCS matrix, both parameters must
vary, with elevation from [-90,90] and azimuth from [-180,180]. Additionally, polarization
can be defined as "HH", "VV", "HV", or "VH". The function provides three solvers for RCS
calculation: Physical Optics, Method of Moments, and Fast Multipole Method. Of these, only
Physical Optics is compatible with GPU usage and is also the fastest for CPU usage in the
tested environment.

The azimuth and elevation configuration is crucial for comprehensive RCS analysis. For a
full 3D RCS matrix, both elevation and azimuth values need to span their complete ranges.
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This thorough analysis is necessary to capture the target’s RCS from all possible viewing
angles, thereby providing a complete understanding of its reflective properties.

Figure 3.2: Number of calculated Azimuth slices per minute with an increasing number of
cores.

Since the method does not directly provide a 3D matrix of size [181,361], it was necessary
to modify the approach. Two potential solutions were considered: modifying the RCS method
or looping through all the slices and merging them. The latter approach was chosen for faster
development. However, even this method takes considerable time on local computers since
calculating illuminated regions and physical optics for obtaining RCS for any specific angle
involves large matrix multiplications. The looping method involves iterating through azimuth
and elevation angles, computing the RCS for each pair, and then assembling these into a
complete matrix. This approach, while straightforward, is computationally intensive.

The computational intensity is particularly notable when dealing with high-resolution
RCS matrices. The increase in resolution directly correlates with the number of calculations
required, exponentially increasing the computational load. For example, doubling the
resolution in both azimuth and elevation results in four times the number of individual RCS
calculations.

Figure 3.3: Calculation time in minutes per object with increasing number of cores.

To address this issue, a cluster from the chair of scientific computing was requested. The
initial cluster, named "HomeOne" did not have Matlab installed so it is solely used for
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model training. This issue was resolved by gaining access to another cluster, the "Linux
cluster"[63], which already had Matlab installed, obviating the need for further installation.
When assigning jobs to Slurm, the job scheduling system differs from running local or
terminal scripts. An adaptation to the Slurm system is made, and then code is adapted to
it. Typically, 24 cores were utilized for most objects, although memory issues sometimes
necessitated reducing the number of cores to 16 to decrease concurrent memory usage.

Utilizing a high-performance computing device was essential for handling the computa-
tional demands of this project. The ability to distribute different classes or object calculations
across multiple nodes significantly reduced the time required for the generation of the RCS
dataset. Also, splitting all angles to a high number of cores reduced the calculation for
each object’s RCS matrix. As can be seen in figure 3.2 and figure 3.3. This parallel process-
ing capability is particularly beneficial when dealing with large datasets or high-resolution
calculations where single-threaded performance would be insufficient.

The Matlab antenna toolbox and its integration with high-performance computing clusters
exemplify the power of modern computational tools in addressing complex engineering
problems. By leveraging these tools, the project was able to achieve its objectives efficiently
and effectively, demonstrating the value of combining advanced software with powerful
hardware resources.

3.3.2 Optix RCS

OptixRCS[64] stands out as an open-source application hosted on GitHub, boasting itself as
the world’s fastest RCS calculator. Developed on NVIDIA’s OptiX framework, it employs
the method of Shooting and Bouncing Rays (SBR), renowned for its computational efficiency.
The developers claim that OptixRCS outperforms its competitor, RaytrAMP, by a significant
margin, purportedly achieving speeds fifty times faster.

Installation of OptixRCS requires a few prerequisites. Firstly, users must possess an
NVIDIA-compatible GPU, leveraging its parallel processing capabilities for accelerated com-
putations. Additionally, the NVIDIA CUDA toolkit must be installed within the software
environment, along with Optix integration. The project itself is structured as a C project, built
using CMake, allowing for flexible and efficient compilation.

The functionality of OptixRCS is straightforward yet powerful. It accepts .obj files as input,
representing the 3D geometries of objects, and produces the corresponding RCS matrix as
a CSV file. Users can specify various parameters, including frequency, azimuth, elevation
angles, and polarization, tailoring the calculations to their specific needs.

Despite its promising features, OptixRCS faces certain limitations and challenges. The
lack of an official installation guide complicates setup, requiring users to navigate the
compilation and execution process independently. Moreover, the project’s documentation is
sparse, exacerbating difficulties in troubleshooting and resolving bugs. In local environments,
encountered issues and unresolved bugs hindered successful execution, hampering further
exploration of its capabilities.

An additional barrier to adoption arises from the absence of the NVIDIA OptiX framework
in the computing clusters. Without the necessary authorization and infrastructure to install
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and configure OptixRCS, exploring its potential becomes unfeasible. Consequently, OptixRCS
is currently excluded from consideration as an alternative RCS calculation solution.

While OptixRCS presents itself as a promising tool for rapid and efficient RCS computations,
its practical utility is contingent upon overcoming these obstacles and ensuring seamless
integration within the computing environment. Efforts to address documentation gaps,
resolve technical issues, and establish compatibility with existing infrastructure could enhance
its accessibility and appeal to a wider user base.

3.3.3 RaytrAMP: A Powerful RCS Calculation Tool

RaytrAMP[65] stands out as a robust open-source library hosted on GitHub, offering a
sophisticated solution for radar cross-section (RCS) calculations. The core of RaytrAMP’s
functionality lies in its innovative approach, drawing inspiration from the shooting and
bouncing rays method, a widely recognized technique in electromagnetic simulations. This
method enables RaytrAMP to deliver high-fidelity results, particularly well-suited for scenar-
ios involving high-frequency electromagnetic waves and far-field range calculations.

A notable feature of RaytrAMP is its efficient utilization of GPU resources to accelerate
computation. By leveraging advanced GPU techniques such as bounding volume hierarchy
(BVH)[66], RaytrAMP optimizes the processing of electromagnetic interactions, resulting in
significantly reduced computational times compared to traditional CPU-based methods. This
GPU-accelerated approach enhances the scalability and performance of RaytrAMP, making it
a powerful tool for researchers and practitioners in radar technology.

One of RaytrAMP’s key strengths lies in its compatibility with Mono-static radar systems, a
common configuration in radar applications. This compatibility ensures seamless integration
with existing radar setups, allowing for streamlined RCS calculations without the need for
extensive modifications or adjustments.

In terms of development environment, RaytrAMP supports both C++ and Matlab, providing
flexibility for users with different programming preferences. However, one noteworthy aspect
is the specific data input requirements of RaytrAMP. It expects 3D object meshes in .unv
format, which are then processed and converted into .rba and .obs files. While this adds
a layer of complexity to the data generation pipeline, it also enables RaytrAMP to handle
diverse input data formats effectively.

In performance benchmarks, RaytrAMP demonstrates superior efficiency compared to
traditional RCS calculation methods, such as the FEKO toolset. Despite this advantage,
it’s essential to consider certain limitations, particularly regarding computational speed
under certain conditions. While RaytrAMP excels in scenarios with a small number of
directions (looking angles) or low triangle counts in 3D meshes, it may experience performance
bottlenecks in more complex simulations.

Overall, RaytrAMP emerges as a formidable contender in the field of radar technology,
offering unparalleled efficiency and accuracy in RCS calculations. Its sophisticated algorithms,
coupled with GPU acceleration capabilities, make it a valuable asset for researchers, engineers,
and professionals seeking advanced solutions for radar system design and analysis.
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3.3.4 POfacets

POfacets[67] is a software program designed for solving radar cross-section (RCS) calculations
using the Physical Optics method. It operates by computing the response from each triangle
of an object and then summing their reflections. This approach allows for the consideration of
individual surface features such as material properties and thickness. POfacets offers support
for both Mono-static and Bi-static radar configurations, providing users with flexibility in
their simulations.

The software can be integrated into the Matlab environment as an external application.
It comes in two versions: a classic Matlab version and a more user-friendly Python version
developed later. To utilize POfacets in Matlab, it must be installed in the Matlab source
directory, after which users can access its interface through a relevant Matlab script. From
there, users can define radar setups, import objects, and perform RCS calculations.

Despite its functionality, POfacets has several limitations outlined in its documentation.
It struggles with accurately modeling scenarios involving multiple scattering, where radar
waves interact with multiple surfaces of an object. Additionally, while the interface provides
accessibility, it may not be intuitive for beginners. Furthermore, POfacets is computationally
slow compared to other alternatives, with both calculation times and interface responsiveness
being notable issues. As a result, it is not selected for this project due to concerns regarding
speed and usability.

3.3.5 FEKO Altair

FEKO[68], an acronym for field emission and kinetic electron optics, stands as a comprehen-
sive software solution developed by Altair Engineering company. Its capabilities extend to
the analysis and prediction of electromagnetic wave interactions with various objects, making
it a versatile tool across different domains. Among its common uses are antenna design and
optimization, electromagnetic compatibility assessments, wave propagation analyses, and
radar cross-section (RCS) calculations.

Widely embraced for its reliability and diverse solver options, FEKO offers a range of
features that contribute to its widespread use in RCS calculations. Notably, it provides
solvers such as the Method of Moments and Physical Optics, along with hybrid solvers
that combine these methods for optimal accuracy and efficiency. Moreover, FEKO facilitates
material distinction, enabling users to simulate a wide array of scenarios with varying material
properties. Its capability to account for multiple scattering phenomena further enhances its
utility, as many alternatives lack confidence in this aspect. Additionally, FEKO boasts intuitive
3D scenario and object manipulation features, eliminating the need for external applications
in many projects.

However, despite its robust features, FEKO has notable drawbacks that limit its widespread
adoption. Primarily, its complexity poses a barrier to entry for inexperienced users, necessi-
tating a steep learning curve or reliance on tutorials for proficiency. Moreover, the accuracy
of its calculations comes at the cost of extensive computational time, rendering it impractical
for personal hardware setups. In the absence of dedicated tools to run FEKO with a prepared
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environment, it was deemed unsuitable for the project’s requirements, leading to its exclusion
from consideration.

3.3.6 Comparison and Performance

This section aims to assess the performance of the aforementioned alternatives from various
perspectives, with a focus on scalability which can be counted as the most critical metric for
the project’s objectives. The pace of calculations is paramount, particularly given the potential
scale of the project. For instance, a small difference in processing time, such as between sixty
and ninety seconds, can translate into significant differences when dealing with thousands
of objects. To provide context, the fastest solution achieved a runtime of approximately five
minutes per object. Consequently, even with a thousand objects, the computation time would
extend to around 83 hours.

Notably, the comparison of performance is conducted under different hardware conditions,
with priority given to the most feasible option for the project’s execution environment. Among
the alternatives, POfacets and Altair FEKO exhibited the slowest performance. POfacets
encountered frequent crashes and required over 5 hours for calculations, while Altair FEKO
also exceeded the 5-hour mark for a single object, rendering both options impractical.

OptixRCS followed closely as the second slowest, facing challenges such as GPU memory
issues and a lack of documentation, which complicated debugging efforts. Despite these
hurdles, the latest stable version achieved a runtime of approximately 3 hours per object.

In contrast, the two fastest options were Matlab and RaytrAMP. RaytrAMP demonstrated a
processing time of 15 minutes per object, outperforming the base Matlab implementation,
which required around 20 minutes. Notably, RaytrAMP lacks the ability to be parallelized
in the cluster environment. Conversely, Matlab’s RCS calculation, when parallelized with a
parallel pool, yielded the fastest runtime of approximately 5.5 minutes per object, making it
the optimal choice among the alternatives.

Table 3.1: Comparison of used methods for RCS calculation.

Method Advantages Disadvantages Runtime

RaytrAMP Faster than base Matlab .stl to .unv conversion 15 minutes
OptixRCS Can already use .obj GPU memory issues More than 3 hours
Matlab Reliable and Fast Totally Manual 20 mins default, 5.5 parfor
Altair FEKO Industry standart Slower than alternatives More than 3 hours
POFacets Provided Interface Crashes Frequently More than 3 hours

Beyond runtime considerations, each method offers unique advantages and disadvantages.
RaytrAMP, for instance, provides a rapid estimation of RCS and can discern differences in
distinct datasets. OptixRCS presents a promising approach but requires thorough debugging
and documentation to realize its full potential. POfacets may appeal to non-coders with
its user-friendly interface, despite its performance limitations. Altair FEKO stands as an
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industry-standard solution renowned for reliability and professionalism, albeit with a steep
learning curve.

3.4 Analysis of RCS output as slices and 3D

After establishing the pipeline for calculating RCS for a large number of objects, an initial
dataset comprising 1016 objects was processed. This dataset consisted of 100 objects from
10 different classes, with the rocket class comprising 16 objects for experimental purposes.
However, during the calculation process, some data loss occurred due to a calculation resulting
in a division by infinity, resulting in all values in the matrix becoming NaN values. After
cleaning up the matrices, 964 samples remained. The entire calculation process took 39 hours
and 14 minutes in the Linux cluster, according to Slurm, which is 4 times faster than any
closest alternative option.

Upon generating the dataset from relevant radar readings, most of the models produced
nonsensical results. They either failed to learn the patterns during training or, if they did,
they could not generalize. This led to the realization that the dataset’s outcome appeared
to be random, at least for the models that could be trained under these circumstances. To
confirm this hypothesis, several scripts, tools, and analyses were conducted.

The initial comparison and analysis involved observing spherical patterns in the RCS
matrix. A special method for plotting the RCS matrix as a sphere, sourced from Matlab code,
was adapted to accommodate the dataset’s format. Many samples from various classes were
then plotted. While some patterns were distinguishable, others, such as those from cars and
planes, appeared quite similar. Mathematically inspecting these patterns revealed similarities,
with the rocket displaying higher signal magnitude. However, the lack of expertise in radar
systems raised doubts about the dataset’s accuracy, especially as Matlab claimed its RCS
calculation to be insensitive to the distance to the object.

Further inspection involved a Python script to obtain all elements in a class, averaging
their RCS matrices, and plotting them for analysis. Although a clear pattern was expected
due to the consistent object orientation, only vague differences were observed for some
classes. The round plot (figure 3.9) of RCS matrixes among different classes were supporting
this hypothesis. The interference of working models in these classes hinted at the dataset’s
information being excessively noisy, prompting additional studies on RCS outcomes.

In the Matlab platform environment for calculating the RCS, only a few parameters can
be modified. Frequency is already fixed due to radar parameters defined for the specific
task. Polarization is another important parameter, known to influence signal readings.
Therefore, experiments were conducted using Vertical-Vertical and Horizontal-Horizontal
polarization. However, these experiments did not yield the expected outcomes. Subsequently,
an observation of the spherical presentation of the RCS matrix led to the hypothesis that the
problem might be caused by low resolution.

Increasing the resolution comes with a significant increase in computational complexity.
For instance, one-degree resolution results in 6480 different angles (360 azimuth angles and
180 elevation angles). A tenfold increase in resolution translates to 648,000 different angles.
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(a) Unit in meters (b) Unit in feet (c) Unit in inches

Figure 3.4: Cars RCS slice with 0 elevation.

Even the smallest increase, with half a degree resolution, requires four times the computation.
Therefore, trials on resolution were conducted for only one slice of the angles. Specifically,
elevation was kept constant at 0 degrees while azimuth was varied from 0 to 360. Upon
comparison, it was observed that the two results were exactly the same (check figure 3.7),
disproving the hypothesis that the problem or noise stemmed from low resolution.

This elimination draws attention to object-related parameters. Despite applying mani-
foldization operations, the smooth surfaces in the original objects lost their smoothness. Even
with a much higher sampling rate for the manifold algorithm, this issue persisted. In the
last trial, which involved 100,000 samples resulting in approximately 600,000 triangles in the
mesh, only a finer rough surface was achieved. The RCS matrix still exhibited a jumping
behavior, contrary to the expectation that finer rough surfaces would result in smaller jumps.

Although the Matlab environment does not inherently include a parameter for the distance
to the platform object, the object’s size remains a modifiable parameter. In the last trials,
an inspection of the same object with different unit scales was conducted as can be seen in
figures 3.4 and 3.6. Initially represented in meter units, the slice analysis produced the same
output as before. However, when the unit was changed to feet, noticeable changes occurred.
A distinct pattern emerged from the slice plots. To verify the consistency between classes,
different objects underwent the same process and were examined. Similar classes began to
exhibit similar slice characteristics. For instance, cars commonly displayed a low ground
in the top left and right-looking angles, while planes exhibited rich signal readings in their
looking angles. Additionally, planes received lower values when viewed from the front angle.
To further confirm the observations, the unit was changed to inches. With an even smaller
metric, most of the noisy jumps were eliminated, leaving behind a smooth pattern.

With guidance from the supervisor, measurements were conducted on all the ShapeNet
objects. During this process, another problem became apparent. Despite the claim that all
objects were normalized, it was discovered that this assertion was either untrue from the
outset or that consistency was lost during the conversion to watertight. To address this issue,
a Python script was developed with the assistance of the Trimesh library. This script was
utilized to check the size of all objects and rescale them to a standardized measurement of 5
centimeters.
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(a) Unit in meters (b) Unit in feet (c) Unit in inches

Figure 3.5: Different car objects with 0 elevation and 0-360 azimuth, unit as inches.

(a) Unit in meters (b) Unit in feet (c) Unit in inches

Figure 3.6: Planes RCS slice with 0 elevation.

(a) 1 degree resolution (b) 0.5 degree resolution

Figure 3.7: Resolution comparison for Plane.
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(a) Chair average matrix (b) Plane average matrix (c) Rocket average matrix

Figure 3.8: Average RCS Matrixes.

(a) Car sample RCS (b) Plane sample RCS (c) Rocket sample RCS

Figure 3.9: Sample round RCS matrixes.

All of the RCS matrices were recalculated using the newly scaled images, ensuring that they
were standardized to a size of 5 centimeters. This standardization ensured that the longest
diagonal in each object could not exceed 5 centimeters. Following the recalculation of these
RCS matrices, previous trials were conducted to observe the characteristic differences between
classes. The initial trial involved examining individual objects in the round plot of RCS(figure
3.10). The patterns observed were much clearer: samples from rockets exhibited a stronger
signal around the equator, planes displayed a unique cross-like following pattern due to their
large surface wings, and cars showed clear peaks at points that were perpendicular to the
object (figure 3.5).

To generalize the distinction among classes, the average RCS matrix for each class was
computed by averaging all the objects within that class. These average matrices were then
plotted as color images using the same class-average method in Python. The results clearly
showed that the differences between classes were easily observable and distinguishable.
As depicted in Figure 3.8, chairs exhibited a pattern that divided the matrix into square-
like features. The elliptical shape caused by the wings of planes was clearly observable,
distinguishing them from other classes. Additionally, rockets displayed a flat line pattern,
characteristic of their consistent cylinder-like structure.
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(a) Rocket (b) Plane (c) Car

Figure 3.10: Round RCS plot with new units.

3.5 Simulating Radar Return

The simulation of radar return involves more than just calculating the Radar Cross Section
(RCS) of an object. While RCS determines the pattern of reflection, the real signal return is
a multifaceted process that requires consideration of various additional parameters. These
include factors such as signal propagation and the possibility of interceptions occurring in
Low Earth Orbit (LEO). Moving forward, two distinct data generation strategies will be
employed to simulate radar returns.

The first approach, inspired a prior reseach done internally in Actlabs, is a simpler yet
effective method. It focuses on a subset of variables to assess the capability of deep learning
models in object recognition tasks. This approach offers an efficient means of generating data
for training and validation purposes.

The second strategy involves a more comprehensive simulation process, incorporating a
broader range of variables and scenarios. While this approach is more complex and resource-
intensive, it provides a more detailed representation of real-world radar returns. By exploring
both approaches, we aim to gain insights into the performance of deep learning models across
different simulation settings and scenarios.

3.5.1 Slice Approach

The slice approach in radar return simulation introduces a novel concept distinct from
traditional slicing in RCS matrices, which typically involves constant elevation and considers
azimuth as a whole. Here, the concept is derived from potential observation points on the
object, which may follow linear or nonlinear trajectories with some rotation speed.

In this approach, the distance to the object becomes irrelevant, and the rotation speed is
represented solely in degree units. Additionally, the object itself remains stationary. Given that
RCS reflects the magnitude of reflection at a specific point, and assuming other parameters in
the radar equation are fixed, it becomes feasible to replicate a returning signal for a specific
condition.

The methodology involves selecting a random point on the RCS matrix of an object,
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followed by choosing a constant or exponential rotation value. At each timestep, the angle
of observation transitions to the next point in a random direction, with the rotation value
dictating the magnitude of this transition. Here, each element in the matrix can be considered
as cells.

Since rotation is defined in degrees, there is no need for unit conversion. However, there
is a possibility that the next landing point may fall between cells or not precisely on the
cell centers. To address this, the bilinear interpolation approach is employed. While more
complex interpolation solutions could be adapted, it’s essential to note that interpolation
represents the most time-consuming aspect of data generation in this scenario. Therefore,
implementing a more complex interpolation algorithm may significantly increase complexity.

3.5.2 phased.BackscatterRadarTarget Function for Swerling Models

Implementation of the slice approach is made in the Matlab environment as a whole. The
first thing that needs to change is to adapt to the Slurm job assignment environment. Then
rotation possibilities are limited to 1 and 0.5 degrees. In the original version, it goes as low as
0.05. The restriction is because the sample objects in the original GitHub page have much
more resolution regarding the RCS matrix. In this case, it would be like looking at a low-pixel
image with a magnifier.

The function takes two parameters: first, the path of the class that consists of the relevant
objects with IDs, and second, the object’s name for labeling purposes. So that the data labels
can be different from the semantic name of the class for possible future purposes. After
taking the input parameters into account, frequency, and speed of light are defined for the
requirements phased.BackscatterRadarTarget function. Also, the number of samples that
wanted to be generated from one object and how many timesteps each sample would be
defined as well.

The RCS matrix is loaded into the environment for each object under the given folder. Rele-
vant azimuth and elevation arrays are defined. Also, the obtained RCS matrix is transposed
to meet the phased convention.BackscatterRadarTarget function. It returns a system object
that consists of scattering values for given angles. The function doesn’t support polarization
with RCS, but since RCS calculation of complex objects already considers polarization, it is
represented here. This is another deviation from the original GitHub repository. The method
takes a Swerling fluctuation model as well. In the default, no Swerling model is defined. For
this case, the Swerling 2 model is chosen for its suitability for pulsed radar systems. Every
value at each time-step is obtained from the base method of the "simulateTrajectoryPaths"
method. Finally, it is possible to add the Gaussian noise that is wanted to the model in the
base method. But it has not been added to this project. The logic behind the approach is
relevant to the rough surfaces that are supposed to be smooth. They are adding a noise in
their nature, and it is guaranteed no perfect smooth surface exists.
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3.5.3 Prior Actlabs Development

Further details about the project idea and code template for the slicing approach will be
discussed in this subsection. The prior research in Actlabs that I used as inspiration was
conducted by Oscar Breiner. His work was focused on recognising simple shapes such
as cones, cylinders, spheres and circular planes. The work also explored differences in
performance for several DL methods such as MLP, LSTM, ResNet and Transformers as well
as robustness. His work mostly focused on predicting geometric shapes like cones, cylinders,
spheres, and circular plates in a similar environment.

The first approach of data generation in this thesis is inspired by his work and satisfies
the curiosity about whether it is showing a similar behavior with complex objects as well.
His project also covers a robustness analysis for various deep learning models that are not
taken into account for this project. Even though his work is a comprehensive study, only the
alternative data generation approach is used in this project. Hence, his work is more focused
on deep learning performance, and this project is more focused on data generation in a more
realistic way. As foreshadowing a further project that merges both into account can be made
to test if any solutions are promising for more realistic scenarios.
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To see the results of the first data generation approach and use it as proof for further complex
data generation pipeline potential, a set of deep learning models is trained. Since conventional
signal processing relies on statistical approaches, it cannot develop itself further with the data
fed. Even good-performing approaches take external ground-breaking ideas or perspectives
to take it one step further.

Deep Learning can leverage the data and use it to surpass the static nature of the con-
ventional signal processing processes so that it can perform faster and more reliably in low
earth orbit where time and accuracy are most valuable. To mention more specific details,
conventional radar processing approaches apply static mathematical and statistical steps that
treat all of the data equally. On the other hand, fast-response deep learning models can learn
where to look and bring a more sophisticated inspection. In this project, only radar readings
are fed to the network architectures as data for simplicity reasons. However, it is possible to
extract more information due to the nature of the real radars. In addition to readings, all the
information can be fed into the data for further predictions and faster convergence.

4.1 Used Architectures and Training Environment

Figure 4.1: Logic behind ResNet architecture.

In the pursuit of an effective solution, various Deep Learning approaches were selected
according to their popularity, acknowledging the inherent complexity even in simplified
models. The diverse conceptual frameworks underpinning different models can significantly
influence their success or failure. Therefore, a range of models was systematically evaluated,
ordered from simple to complex.

The Multilayer Perceptron (MLP) is the initial and simplest approach. Despite its simplicity,
the MLP provides a foundational understanding of the problem domain and offers a baseline
for performance comparison[69]. MLP is the most basic feed-forward neural network. It
consists of multiple layers; among those layers, there are multiple nodes. There are three types
of layers: Input layer, hidden layer or layers, and output layer. Each node in the previous layer
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is connected to each node in the next layer. Each of the connections involves an activation
function. MLPs are fundamental in supervised learning tasks and can approximate any
continuous function, making them versatile tools in machine learning[48].

Following the MLP, one-dimensional Convolutional Neural Networks (1D-CNNs) were
employed. These networks leverage the local spatial correlation of input features, making
them suitable for tasks with sequential or temporal data[70]. They use convolutional layers
with filters similar to image processing, such as Sobel. However, each of the channels is
the result of a different convolution. Also, convolutions are trainable filters, unlike image
processing filters. With proper training, these operations help to detect patterns from simple
to complex. When this transition to complex patterns happens, the help of the pooling layers
is used. They are mostly used and effective for image classification or recognition tasks[70].

Figure 4.2: Sample Transformer architecture.

Residual Networks (ResNet) are a type of deep neural network architecture introduced
to address the vanishing gradient problem commonly encountered when training very
deep networks. ResNet uses residual blocks, which are designed to allow the model to
learn residual functions with reference to the layer inputs instead of attempting to learn
unreferenced functions (figure 4.1). These residual blocks contain shortcut connections that
skip one or more layers, facilitating the direct flow of gradients through the network. This
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architecture significantly mitigates the degradation problem, where adding more layers to a
plain network leads to higher training error by ensuring that deeper models can be trained
more effectively.

ResNet’s innovative design enables the training of substantially deeper networks, leading
to remarkable improvements in various tasks such as image classification, object detection,
and semantic segmentation. The ability to train networks with hundreds or even thousands
of layers has set new benchmarks in these domains, showcasing ResNet’s robustness and
flexibility in handling complex patterns and features in data[71].

In addition to its widespread use in two-dimensional applications, ResNet’s architecture has
been adapted to one-dimensional (1D-ResNet) scenarios, making it suitable for tasks involving
sequential data such as time-series analysis. The incorporation of residual connections in
1D-ResNet enhances its performance by retaining both small and large patterns within the
sequential data, thus capturing intricate temporal dependencies and improving predictive
accuracy. This dual capability to handle both spatial and temporal data intricacies underscores
ResNet’s versatility and effectiveness in a broad range of deep learning applications[71].

Lastly, various Transformer setups were explored. They are a specific type of neural network
developed for sequential data. It is mostly used for natural language processing tasks. Instead
of processing the data sequentially from left to right or otherwise, they check which elements
in the sequence have more importance simultaneously by using a self-attention mechanism.
The base Transformer model was implemented, followed by versions incorporating locational
encoding, convolutional encoding, and a hybrid of both. Transformers, renowned for their
attention mechanisms, excel in capturing long-range dependencies and have shown remark-
able success in various domains[72]. Incorporating locational and convolutional encodings
aimed to augment the model’s ability to understand positional information and local feature
extraction respectively[73]. A sample Transformer architecture can be observed in Figure 4.5.

Each of these models was meticulously trained and evaluated, contributing to a com-
prehensive understanding of their strengths and limitations in the context of our specific
application.

4.2 Alternative Dataset Trials During the Test of Deep-Learning
Models

The final validity check of dataset generation was conducted using deep learning models,
creating a comparative analysis between various approaches. Initially, the models were
trained on samples with unscaled objects. As detailed in the previous section, the first
dataset generated presented issues with distinctiveness, impacting the models’ ability to learn
effectively. This issue is visualized in Figure 4.3.

During the training phase with this initial dataset, the models exhibited varying behaviors,
yet none surpassed random performance on the validation set. Both the Multilayer Perceptron
(MLP) and Transformer models failed to memorize the data. To diagnose potential implemen-
tation issues, the gradients were inspected and found to be updating correctly. Despite this,
performance improvements were not observed, suggesting the models struggled to learn the
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complex patterns within the data[14].
Conversely, the convolutional and ResNet models managed to overfit the entire training

set, but their validation performance remained at random levels. This indicated that while
these models could capture the training data, they failed to generalize to unseen samples.
Additionally, Long Short-Term Memory (LSTM) networks were evaluated, but their perfor-
mance mirrored that of the other models, failing to memorize the data despite the presence
of sequential information[74].

These results underscored a critical issue with the dataset: its lack of distinctiveness and the
models’ inability to grasp underlying patterns. Consequently, this necessitated the generation
of a new dataset designed to enhance the distinctiveness and complexity of the samples.
This new dataset aimed to provide clearer, more distinguishable patterns that deep learning
models could effectively learn and generalize from.

Moving forward, the new dataset will be rigorously tested across the same range of models,
including MLP, Transformer, Convolutional Neural Networks (CNNs), ResNet, and LSTM, to
validate its effectiveness and improve model performance. This iterative process is crucial for
refining the dataset and ensuring the robustness and reliability of the deep learning models
employed in this research.

Figure 4.3: Sample plots of different classes with respect to dBsm before rescaling.

The data is structured in the format "classname/ObjectID," where each class contains a
minimum of five objects for the initial trial phase. The "ObjectID" files are stored as .mat
files, each with 512 columns and 2000 rows. In this configuration, each column represents a
timestep, while each row corresponds to a sample reading associated with a specific object.

To ensure the samples were not over-representative, a simple mathematical equation was
employed in equation 4.1. Out of a total of 522,728 possibilities, only 2000 were selected,
resulting in a representative rate of 0.0038 (equation 4.2). This low rate alleviates concerns
about over-representation in the dataset, ensuring a diverse and balanced sample selection.
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AllPossiblesamples = Numbero f Directions ∗ Numbero f possiblestartingpoints (4.1)

522.728 = 8 ∗ 65.361 (4.2)

The .mat file format is not natively readable within the base Python environment. To
address this, the external library SciPy was integrated into the project to facilitate the reading
of .mat files. The scipy.io.loadmat method offers various options for converting the content
of these files, with dictionaries and data frames being the most common formats. For this
project, the variable containing radar samples was extracted as a dictionary pair. Subsequently,
this data was assigned to another variable and converted into a PyTorch tensor, ensuring
compatibility with the training loop[75].

This conversion process is crucial for efficient data handling and manipulation within
the deep learning pipeline. By leveraging PyTorch tensors, the data can be seamlessly
integrated into the model training and evaluation phases, facilitating streamlined workflow
and enhancing computational efficiency.

The framework chosen for the implementation is PyTorch Lightning. PyTorch Lightning
is an open-source library that serves as a high-level wrapper around conventional PyTorch,
facilitating a more organized and streamlined coding experience. This framework offers
several advantages, including the elimination of repetitive tasks related to data loading,
logging, and checkpointing. Additionally, PyTorch Lightning is highly compatible with
CUDA and other GPU accelerators, which enhances computational efficiency.

The framework’s popularity can be attributed to its ability to accelerate development,
maintain a cleaner code structure, provide an easy environment for experimentation, and offer
scalability. By increasing reproducibility and flexibility, PyTorch Lightning significantly boosts
research productivity, allowing for more efficient experimentation and implementation[76].

Three main classes play a crucial role in creating the model. The CustomDataset class
accepts a root directory and loads every data file from the specified folder, assigning all
subfolder names as class labels. It then processes the samples by converting their magnitudes
to decibels. This conversion involves squaring all values in the dataset, taking the log10
of these values, and then multiplying by 20. This decibel conversion serves two primary
purposes: it makes the data more interpretable for humans and compresses the values into a
narrower range, aiding the model in pattern recognition. The data and labels are then stored
for further use within the class object.

4.2.1 Implementation of Deep Learning Environment

The CustomDataset class includes two methods adhering to the PyTorch Lightning convention.
The len method returns the length of the dataset, equivalent to the number of data samples.
The getitem method retrieves a data sample from the dataset object and ensures compatibility
by converting the sample to a torch.FloatTensor for both data values and labels.
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The RadarDataModule class manages the operations related to the training and validation
sets, feeding them to the model as required by the PyTorch Lightning module. It comprises
three methods to meet these needs. The setup method splits the initial dataset into training
and validation sets. The train_dataloader and val_dataloader methods return the training
and validation sets, respectively, as defined by the setup method.

The final class is the model itself, which varies according to the chosen architecture. Most
architectures include a forward method that executes a full forward pass through the model.
The training_step method handles the entire training loop, while the validation_step
method assesses the model’s performance on the validation set without updating the weights.
The configure_optimizers method defines the optimizer, typically the Adam optimizer, as
specified[77].

4.3 Obtained Results and Comparison

Previous results with the unscaled dataset primarily yielded random accuracy. After thorough
analysis, a new scaled dataset was developed to address these issues. Instead of using all
the previously tried architectures, only the promising ones that can memorize patterns in the
previous dataset are chosen. To name them, the one-dimensional ResNet and Transformers,
with various setups, were selected for further experimentation.

Initially, both the one-dimensional ResNet and Transformer models managed to memorize
the unscaled dataset but failed to perform better than random. Multiple setups were tested
with the new scaled dataset, particularly focusing on Transformers. The first setup involved a
basic Transformer model with 8 layers and 4 attention heads. Given the input sequence length
of 512 tokens, a Transformer with 8 layers and 4 attention heads is a balanced choice. The
model is not excessively large, which helps in preventing overfitting and aids in generalization.
Additionally, 4 attention heads allow the model to capture various patterns and correlations
within the sequence, though the adequacy of this configuration depends on the specific
task complexity and data characteristics. The rationale behind this configuration was that,
given the time-series nature of the signal readings, Transformers could potentially capture
relationships between previous and subsequent timesteps. This base Transformer achieved an
accuracy of approximately 40%, indicating an improvement over random performance but
still falling short of the desired goal.

Subsequently, a positional encoding approach was employed to provide additional informa-
tion. The data dimensionality was increased from 1 to 8, with the new dimensions populated
using sinusoidal and cosine functions. Despite this enhancement, there were no statistically
significant improvements in accuracy performance.

Another encoding method explored was the use of convolutional layers, inspired by
architectures like U-Nets, which are structured as encoder-decoder systems. In the final
Transformer trials, a similar approach was adopted. Three layers of convolutions were stacked,
incrementally increasing the dimensions to 256 over three steps. This transformed each data
sample into a shape of 256x512. Feeding these new data samples into the same Transformer
architecture resulted in a notable performance boost, with accuracy increasing to 60% (figure
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4.5).
These results underscore the importance of dataset scaling and appropriate model ar-

chitecture selection in enhancing performance. The iterative process of adjusting model
configurations and dataset attributes is crucial for achieving optimal outcomes in deep
learning tasks[72, 71].

Figure 4.4: Loss drop and accuracy increase during the ResNet Training, shows the case of
good generalization.

Another deep learning architecture that received significant focus is the Residual Network
(ResNet). ResNet is characterized by its use of skip connections, a mechanism that feeds
precalculated data into subsequent layers, effectively mitigating the vanishing gradient
problem and allowing the network to learn identity functions. Although ResNet can support
very deep networks, the version utilized in this study was ResNet8, a relatively shallow model.
The choice of ResNet8 was driven by its effectiveness in learning identity mappings and its
ability to handle vanishing gradients, rather than the depth enabled by skip connections.

In adapting ResNet for this study, the number of channels in the 1D convolutions was in-
creased up to 512. While ResNet is typically designed for 2D image processing, modifications
were made to tailor its architecture to 1D data. After extensive tuning, ResNet1D achieved an
impressive accuracy of approximately 97% on the scaled dataset (figure 4.4). This high level
of accuracy demonstrates the efficacy of both the simple data generation pipelines and the
deep learning networks employed.

The success of ResNet1D in this context highlights the potential for applying deep learning
models to more complex and realistic versions of the problem. This realization prompted the
next phase of the thesis, which involves generating data in a manner that more closely reflects
real-world conditions. This progression underscores the continuous evolution and refinement
necessary in deep learning research to tackle increasingly sophisticated challenges[71, 78].
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Figure 4.5: Validation loss drop and validation accuracy in Transformer, shows model learns
but not ideally.
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The absence of a suitable dataset in the literature necessitated the creation of a novel solution
for this project. Ideally, datasets are generated through extensive efforts and meticulous
annotations, requiring a realistic setup to ensure accuracy. However, this process can be
costly and complex. An alternative approach that balances cost reduction and complexity
involves creating middle-ground solutions. This section aims to provide an explanation of
such an approach. By excluding hardware and environmental constraints, we can focus on
the essential aspects and simulate them as realistically as possible. This method allows for
the exploration and testing of potential designs, problems, and solutions before developing a
real prototype.

For the complex approach in this thesis, a simulation environment considering basic radar
parameters realistically was created using Matlab. Additionally, a Python environment was
developed to control the Matlab simulation. This setup allows for the generation of realistic
radar returns rather than relying on hypothetical ones. The simulation environment considers
multiple actors, providing a more comprehensive and realistic scenario.

The simulation begins with the definition of a pulse radar, configured with parameters that
reflect a possible real-world setup. Following this, a three-dimensional object is defined with
a volume specified by a bounding box and a Radar Cross Section (RCS) matrix that accounts
for the object’s material and shape. Although some aspects are not included in the current
setup, the framework is designed to be scalable.

The radar system defined in this scenario is one-dimensional, featuring a single emitter and
receiver. While it is possible to employ more complex radar structures that provide additional
information such as azimuth and elevation angles along with range. This would require the
expertise of radar specialists to configure the simulation environment accurately. Moreover,
incorporating these additional parameters would alter the resulting "data cube," necessitating
adaptations in the analysis tools used for processing the data.

By establishing a robust simulation environment, we can effectively model complex radar
scenarios and generate realistic datasets. This approach not only mitigates the challenges
associated with hardware and environmental constraints but also provides a versatile platform
for testing and validating various designs and algorithms before physical implementation.
This iterative process is crucial for refining the system and ensuring its efficacy in real-world
applications[49].
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5.1 Simulation and Radar Parameters

As mentioned earlier, the simulation was developed within a Matlab environment. However,
the base Matlab environment alone was insufficient to build all the necessary simulations. To
address this, six additional Matlab packages were integrated into the project. These packages
included:

• Antenna Toolbox

• DSP System

• Radar Toolbox

• Signal Processing Toolbox

• Phased Array System Toolbox

• Communications Toolbox

• Parallel Computing Toolbox

The radar system designed for this simulation needed to detect and extract features
from objects over long ranges. Inspired by Mari Ramirez-Torres’s work on "Technological
Developments for a Space-borne Orbital Debris Radar at 94 GHz," the radar frequency was
set at 94 GHz. This frequency ensures that objects ranging from one to ten centimeters remain
within the optical reflection region, maximizing the Radar Cross Section (RCS) values[15].

The simulation process begins by calling the runSimulation method from the Matlab
engine via Python. Since Python handles object labeling and data saving, this method only
requires the RCS matrix and the bounding box dimensions of the object. The setup script
is then executed, defining essential environmental variables such as the speed of light and
radar frequency, along with other interdependent radar variables. An iteration cycle logic
was constructed using each pulse cycle as a unit. Unlike the previous pipeline, pulses and
seconds are interchangeable in this setup, allowing the simulation to run in real-time.

In Matlab, many components are defined as objects, necessitating their prior creation.
Therefore, the scene is initialized as a radar scenario. The radar is instantiated as an object
of radarTransceiver, configured with its maximum range and field of view. Other radar-
dependent variables defined earlier in the script are assigned to this object. The radar’s
waveform is defined as a LinearFMWaveform and linked to the radar object. Notably, there
are two methods for obtaining range-Doppler images: using a Matched Filter or Fast Fourier
Transformations. If the Matched Filter is preferred, the waveform coefficients must be saved
at this stage.

Creating objects in Matlab does not imply their instantiation. They can remain abstract
entities, establishing abstract connections with assigned or unassigned variables. Upon
completion of the setupScene script, control returns to the runSimulation script, where the
flying object and its associated parameters are instantiated.
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At the end of the method, the simulation script that encapsulates the platform envi-
ronment is executed before returning the variables. Initially, two boolean parameters are
defined to control the plotting of IQ signals and range-Doppler images. Subsequently, the
predefined environment variables are iterated for each timestep. To minimize confusion,
all non-calculative parameters are explicitly stated beforehand. These parameters are then
iterated, and the results are computed based on their current states. Each calculation is
appended to a matrix that stores pulse reading values according to the sampling rate. Fi-
nally, a phased.RangeDopplerResponse object is created and executed with the data matrix
to generate the range-Doppler matrix.

The resulting IQ and range-Doppler values are inherently complex. However, plotting
complex values in 2D images is not intuitive, so a conversion to magnitude is performed
before plotting. The saved variables are retained as complex values to prevent data loss. After
executing each script, all variables are cleared except for the final result to conserve memory.
This streamlined approach ensures efficient memory usage while maintaining the integrity of
the simulation data.

5.2 Working Principle of Environment and Radar

For the pulse radar, there are variables or concepts that are highly essential to its working
principle. Some of them are indeed the parameters that are mentioned as variables relevant
to each other. A pulse radar cycle consists of a few components. To mention some of them,
pulse repetition frequency (PRF) and pulse repetition interval (PRI) are two of those. They
are mathematically inverse of each other. Pulse repetition interval represents a whole cycle
as a time unit. Meaning from the start of the creation of the pulse and its return when the
listening phase is over. This whole cycle can be observed in Figure 5.1. Pulse repetition
interval is highly related to the effective range of the radar[79][49][48]. The listening time
where the pulse is off directly defines the radar’s maximum range. When the listening time
is multiplied by the speed of light and divided by two, it will travel forth and back. It gives
the possible maximum range of the radar regarding physical constraints. Most of the time,
due to practical reasons, it is expected to be lower[53].

Pulse width defines how long the pulse emitting process takes as time units. There are
some conventions for the ratio between pulse width and pulse repetition interval such as it
could be 1/8 times or 1/16 times. But this can change according to needs. Pulse width is also
directly correlated to how much information each pulse contains. The wider the pulse, the
longer the collision between the pulse and the object, hence more information it contains. On
the other hand, it also defines the minimum healthy measurement distance from the radar.
Wider pulses reduce the overall observation area by making the minimum range larger. This
comes from the possibility of a reflection while the pulse is still emitted. If there is an object
that is 5 microseconds away with light speed, and our pulse width is 11 microseconds, the
first reflection would reach the receiver at the tenth microsecond. However, since the pulse
width is 11 microseconds, it is still in the emitting process. So the returned reflection is not
visible or readable by the receiver. From this example, the minimum efficient range of a radar
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regarding pulse width can be calculated as half of the pulse width times the speed of light in
microseconds or relevant time units. If a radar operates with a 10-microsecond pulse width,
then its minimum range is 5 times 300 meters (approximate speed of light in microseconds)
1500 meters[10].

Another boundary for the efficient reading distance is the upper limit, the maximum range.
In the simulation, the maximum range is defined as an independent parameter. So even if the
radar is physically capable of detecting an object, if it is further than the max range value, it
will be ignored. Actually, any reading, even noise, will be ignored that is further than the
maximum range. This is made to reduce computation complexity. Normally, as mentioned
before, listening time defines the maximum efficient range. And the combination of pulse
width plus listening time creates a full cycle also known as pulse repetition interval. For the
simulation environment, each iteration is bound to a PRI. This means for each iteration in the
for loop a full cycle happens, the response is read and recorded[53].

Antenna beamwidth is another property of the radar. It represents the angular spread of the
detection area. It creates a cone-like area with the angle and range as the height. The regular
convention is picking the angle that is at least at a point that has half of the peak power. As
can be deduced from the cone metaphor, with a smaller angle comes a narrower cone and a
smaller beamwidth. Two approaches, picking large or small, bring different advantages. A
narrow beam width provides higher resolution and accuracy for the detected object’s location.
But will lose the coverage area for one scan. With a wider beamwidth, it would be possible
to scan a larger area at the same time, but accuracy would drop. Depending on the need,
both approaches are commonly used. If accuracy is the key in the task, like air traffic control
or live missile tracking a narrower beamwidth is more beneficial. For the applications like
weather prediction a broader scan is more beneficial hence wider beamwidth is used. There
are also hybrid approaches, they are first using larger beamwidths to detect the initial objects
then switch to narrower ones to track the object more precisely[53, 10].

Figure 5.1: Example work cycle of a pulse radar.

In the universe, waves are continuous concepts. During the digitization of any continuous
term, discretization is needed. The sampling rate determines how frequently the radar takes
readings from incoming continuous signals. It is an essential concept for capturing the
reflection echo accurately and serves as the endpoint of the physical components of the radar,
thus remaining a critical part of the reading process. According to the bottleneck principle,
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low performance at this stage results in poor readings overall. The information read to
determine the characteristics of the object, such as shape in our case, is hidden within the
signal variations. If the sampling rate is insufficiently high, all of that information will be lost,
and Doppler shift and range information might also be compromised[80].

The Nyquist-Shannon theorem is fundamental for perfectly recovering signals from sampled
data. The theorem states that the sampling frequency must be at least twice the highest
frequency within the signal[81]. In pulse radars, the highest frequency component is related
to the pulse width. Aliasing can occur if the sampling frequency is lower than the Nyquist
rate, meaning the samples do not correspond exactly to one continuous function. As a result,
multiple signals can be reconstructed from the same set of samples, leading to ambiguity. A
similar scenario can be observed with helicopter blades in low-frame-rate cameras. While
selecting a higher sampling rate than the Nyquist rate is not harmful in terms of reconstruction,
it requires more memory to store the additional samples. If the primary task is only detection,
a lower sampling rate may be acceptable. However, in most cases, it is preferable to choose a
sampling rate above the Nyquist rate, even at the cost of increased memory and computation
power[80]. Representation of a signal with various sample rates can be seen in Figure 5.2.

Figure 5.2: Same signal with different sample rates.

The final transmitted wave is a combination of slightly different complex waves. Pulse
bandwidth defines how different those component waves are with respect to frequencies.
Pulse bandwidth and pulse width are correlated with each other. The shorter the pulse
width, the wider bandwidth needs to be used. The time-bandwidth product states that pulse
width and pulse bandwidth are approximately constant for a defined pulse shape. If the
pulse width is shorter, the frequency components need to be wider[53, 10]. Pulse bandwidth
is important for range resolution, which evaluates how distinguishable two objects are at
different ranges. Additionally, pulse bandwidth plays a critical role in pulse compression for
improving the signal-to-noise ratio. A more complex radar setup is required when a wider
bandwidth offers good range resolution, whereas a narrower bandwidth is more common for
simpler applications[53].
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5.3 Variables Defined in Simulation

Besides radar and its bound parameters, the simulation is more about the space scenario
that is defined by the problem. The ultimate goal is to detect and classify debris with the
returned signal. Therefore, the defined radar should be placed in an environment simulating
a possible debris detection scenario. Creating a perfectly realistic simulation is an endless
task, but certain unique features of the debris detection scenario distinguish it from other
possible radar applications. This section discusses four of these characteristics and explains
their relevance in the simulation.

Speed

Speed is the first feature implemented into the simulation. In space, there is no friction,
which means objects maintain their speed constant most of the time. In low Earth orbit
(LEO), orbiting target objects can reach speeds of up to 7.8 kilometers per second. In fact, a
minimum speed is required for orbiting behavior, with each speed value corresponding to
an orbit with a unique distance to the Earth’s center of mass. However, the radar detection
area in this scenario is not a hypothetical point. Various setups with different ranges are
possible to create. Therefore, defining a constant speed would be unrealistic. It is possible
to constrain the speed interval to specific boundaries. This approach is less generalized and
requires calculating boundary speeds by considering possible detection regions of the radar
and determining the maximum and minimum speeds objects can have in those orbits[82].

However, this approach, while complex to implement in a software environment, does not
account for unusual cases such as explosions or objects entering or leaving the atmosphere.
Additionally, from the radar’s perspective, it is impossible to know the exact location of the
radar and the object without using GPS triangulation, which, although feasible, is beyond the
scope of this project. Therefore, if the radar is centered in the 3D simulation environment, the
object’s speed is only the relative speed. This simplification allows the speed to be zero, as
an object and a radar could be in the same orbit moving at the same speed. In this case, the
object would appear to have zero speed relative to the radar[83].

Rotation

Another important aspect of the simulation is the object’s rotation. In space, objects tend to
rotate, and they can rotate at any speed and angle as long as the object is not under the effect of
another constant force. Since there are multiple ways of representing 3D axes or coordinates,
there are also multiple ways to represent rotation. The azimuth-elevation approach is
used to calculate Radar Cross Section (RCS), but for easier explainability and mathematical
calculations, another convention is preferred here: quaternions. Quaternions are a method of
representing 3D rotations and rotations around axes using four components(figure 5.3, which
include a scalar and a three-dimensional vector, offering advantages in avoiding gimbal lock
and providing smooth interpolation[84].

In this scenario, rotation is defined by two different approaches. Since the object’s reflection
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Figure 5.3: Quaternion Axes on a plane.

is derived from RCS and the set of RCS matrices is only 1-degree resolution, the first approach
is to pick a random number from the set of {-1, 0, 1} and assign it to each axis, then multiply
it with another random value in a way that avoids floating-point numbers. This provides a
simple and computationally efficient method. In the more realistic approach, three random
values between 0 and 1 are generated, their signs are assigned randomly, and they are scaled
with another random value. This allows an object to rotate in any possible direction with any
magnitude, increasing the realism of the simulation. However, since floating-point numbers
are used, computation complexity can increase gradually[85].

Trajectories

The radar in this scenario has only one receiver, meaning it cannot directly predict the object’s
trajectory in the universe. However, the input data varies for objects moving closer or farther
and moving towards the sides. Implementing trajectories is important to observe how the
radar input behaves for signals entering or exiting the observation area.

To define the trajectories of objects, a circular area at the maximum range of the observation
area is defined. This circle is described with a radius calculated as follows:

r = tan
(

antenna Beamwidth
2

)
× maxRange (5.1)

With this radius, a circular area with radius r and centered at zero on the Y-axis, with r
perpendicular to the Y-axis, is defined. Using this hypothetical circle, two points within it can
be determined using the following formulas:
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Figure 5.4: Sample trajectories of objects as red lines, blue cone represents radar scan area.
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SampleX = 2r(rand − 0.5) (5.2)

randSampleZ = rand ×

√
r2 − SampleX2

4r2 + 0.5 (5.3)

SampleZ = 2r(randSampleZ − 0.5) (5.4)

A check for the inequality SampleX2 + SampleZ2 ≤ r2 ensures that both points lie within
the circle. This establishes a vector from the radar center to the hypothetical circle representing
the furthest reading range. Not all objects have to be at the furthest point in the reading
region, so this sampled vector is unit-wise multiplied by a value ranging from the minimum
reading range that pulse width allows to 1. Assuming the reading range forms a cone, the
bottom circle represents the hypothetical circle, and the height is the maximum range. The
top of the cone is truncated due to minimum range restrictions, forming a remaining area
used to obtain a sample point.

Converting a sample point to a trajectory involves transitioning from a point to a line that
certainly crosses that sampled point. To achieve this, starting and ending points need to be
defined. A random unit vector is created, and its subtraction from the sampled point provides
the direction from the starting point to the endpoint. The sample point and direction are then
added and multiplied by half of the pulses and the object’s speed relative to the pulses. The
endpoint is calculated by adding the starting point to the pulse repetition interval times the
object’s speed times the number of pulses. This method ensures the object crosses the reading
area, though it doesn’t necessarily start or end within it. Sample trajectories can be seen at
Figure 5.4

The process described here aligns with standard radar trajectory simulation techniques,
ensuring that the object’s path through the radar’s observation area is realistic and provides
meaningful data for subsequent analysis[49].

Swerling

In Matlab, there is a function called RCSSignature; this method allows for defining features
regarding the object, particularly its radar cross-section (RCS) characteristics. The primary
purpose of this function is to assign the RCS matrix to the object, but it can also define the
Swerling model with fluctuation model parameters. There are five different Swerling models
that are commonly used, each covering different fluctuation scenarios.

Swerling 0 assumes perfect reflection, meaning no fluctuation occurs in the object’s reflec-
tion. This model can be used to inspect other parameters in the simulation by bypassing
fluctuation, but it detracts from realism. Swerling 1 varies RCS values with a Rayleigh
distribution, similar to having only rough surfaces instead of smooth ones, thereby disturbing
the reflection’s clarity. Given the 3D object dataset’s inherent lack of smooth surfaces, this
Swerling feature is naturally covered.

Swerling 2 adopts a more realistic approach by using a chi-squared distribution on top of
the RCS values. This behavior mimics reflections from multiple surfaces on the object, akin to
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the reflections from a zig-zagged cardboard, where the return is a combination of multiple
surface reflections. Swerling 2 is chosen for the simulation environment because it provides a
more accurate representation of complex target reflections, which aligns with the nature of
the debris detection scenario. Swerling 3 combines Swerling 1 with a constant component,
and Swerling 4, similar to Swerling 2, emphasizes one main scatterer more than others. For
complex targets, Swerling 2 is generally recommended due to its balance of complexity and
realism.

It is important to note that none of the Swerling models might perfectly represent a
realistic scenario. More sophisticated systems analyze the environment and estimate the
appropriate Swerling model dynamically. This estimated Swerling model is then used to
improve performance by more accurately simulating the object’s reflective characteristics in
varying conditions.

5.4 Assumptions and Constraints

During the simulation development, some goals were set. Creating a totally realistic simu-
lation is not an achievable goal within the time period and limited resources. Therefore, a
balance between detail and feasibility was necessary. After thorough discussions and plan-
ning, certain assumptions were made, and some limitations were left for future research and
development. The first constraint is the developed environment. Matlab provides numerous
frameworks and functions, but it is always possible to write all simulations from scratch,
which could provide a much more detailed and better-represented simulation environment.
Another constraint was the lack of a radar expert. Practical radars can be highly complex
devices that far exceed the scope of a simple project. On top of these overall constraints,
specific assumptions were made to finalize the project within a reasonable timeframe.

The first assumption concerns the radar’s position and speed. As mentioned in the speed
subsection, an assumption that allows ignoring absolute motion parameters was made. In
ideal conditions, the simulation environment could be more dynamic with a freely moving
radar, allowing for a more realistic definition of the object’s speed. Additionally, the simulation
does not consider objects moving in opposite directions in the relative speed calculation.
Another assumption about the radar is that it always tracks the object, even at very high
speeds. In realistic scenarios, the radar might lose track of an object if parameters are not
developed accordingly .

The second set of assumptions relates to the object’s size. Scaling in Trimesh scales the
object into a bounding box with a maximum vertical orientation of 5 centimeters. However,
this does not mean the object’s size is exactly 5 centimeters. The longest line crossing the object
could be longer than 5 centimeters in this scenario. Moreover, using a single scalar might not
be informative enough for further predictions or uses. Volume and diagonal measurements
could provide more detailed information. For instance, a cube with a 5-centimeter edge
length and a stick with a 5-centimeter length are not equivalent in size. Furthermore, the
simulation environment only recognizes the object as a bounding box. Even if reflections are
accurate in practice, there is a possibility that a pulse might not hit the object due to its shape,
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but it might hit the bounding box, causing a reflection. A good example is a cube with an
edge length r and a globe with a radius r that fits within the cube. Not all rays hitting the
cube necessarily hit the globe as well. The final assumption regarding sizes is that the radar
size is neglected and represented as an abstract dot.

The frequency used is 94 gigahertz, as obtained from a radar base paper [15]. This setup
is claimed to detect objects with a diameter of 1-10 centimeters and is designed for a 50-
kilometer range. It is assumed to work within an 8-kilometer range as well, with many
parameters derived from the cited paper. The main assumption about the frequency band is
the difference between the base frequency and the frequency value at the end of the range.
During travel, the pulse loses some of its frequency, so the end frequency value of the pulse
at the end of the range needs to be calculated. All object’s RCS needs to be recalculated with
the obtained frequency. Using mid-frequency values instead of just the end frequency can
increase simulation realism. Matlab interpolates between given RCS patterns if the distance
falls into a space where RCS is not provided as an exact number. As expected, more values
lead to better interpolation. However, to reduce computational complexity, it is assumed that
frequency loss does not occur and that the pulse maintains the same frequency throughout
its travel.

Another constraint arises from storage issues, further discussed in the data output section.
Each receiver produces around 32 megabytes of data. Increasing the number of receivers
would require much higher memory capacity. Since Matlab’s wind turbine example demon-
strated the feasibility of obtaining various signals with a single receiver, this setup was
retained. Regarding the rotation of objects, a uniform distribution among possible angles is
assumed. However, in reality, this is not the case. Due to the minimum energy arrangement,
rotation at certain angles is more likely. This is influenced by two primary forces: gravity,
which always pulls towards the center of mass, and the conservation of angular momentum.

Normally, space movements are ellipsoidal, but since the radius of the ellipsoid in this case
is vast and our detection range is much smaller, all movement is defined linearly. Objects have
predefined starting and ending points and move in a straight line. The radar scope is a cone,
represented by an abstract cone slightly larger than the detection cone to ensure coverage.
By knowing the speed and mass of the object, more realistic trajectories could be calculated.
However, this would constitute a completely different project. Additionally, objects may move
closer than the minimum range of the radar.

5.5 Filtered Matching and FFT Comparison

Fast Fourier Transform (FFT) and Match Filtering are two distinct methods for generating
range-Doppler maps. Range-Doppler maps provide critical information regarding the distance
of an object from the radar and its relative velocity. Both methods fundamentally differ in
their approach and output, leading to various use cases and applications.

FFT is a widely used method for converting a signal from the time domain to the frequency
domain[86]. When applied to the received signal from each pulse, FFT separates the returned
signal based on its travel time. Travel time directly correlates with the object’s range since
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(a) FFT Doppler Image (b) Matched Filter Doppler image

Figure 5.5: Comparison of same object with Matched Filter and FFT.

it takes longer for signals to return from more distant objects. FFT processes the received
signals according to their range, estimating the target’s location. To apply FFT, the raw
signal is captured, and optionally, windowing and zero-padding are applied to the data.
The mathematical application of FFT then shifts the time domain to the frequency domain,
producing a complex spectrum. In this spectrum, higher frequency values indicate shorter
travel times, while lower frequency values signify longer travel times[48, 87].

Match Filtering, on the other hand, requires knowledge of the generated signal’s parameters.
This method maximizes the signal-to-noise ratio by fitting the known signal shape to the
received signal. The shape, in this case, is a replica of the transmitted waveform, also known
as the matched filter[88]. Match Filtering is superior for determining both the range and
velocity of the target compared to FFT. When applying Match Filtering, the transmitted
waveform is used to design a matched filter. The received signal is divided into smaller pieces
based on range resolution and radar characteristics. Correlation is then sought for all range
bins with the matched filter. The obtained signal is fitted to a bin, providing an approximate
range by the fitted bin[10, 89].

In summary, while FFT provides a straightforward method of converting time-domain
signals to the frequency domain to estimate target location based on travel time, Match
Filtering offers a more refined approach by maximizing the signal-to-noise ratio and fitting the
known signal shape to the received signal for precise range and velocity determination. Each
method has its unique advantages and applications depending on the specific requirements
of the radar system. The differences between two method’s output can be seen in Figure 5.5
with same object and parameters.

While FFT separates echoes based on their travel time alone, matched filtering also provides
Doppler shift information, which can determine the relative speed of the object. However,
FFT is faster in terms of calculation, and this speed difference becomes more pronounced as
the waveform length increases. Due to its speed advantage, FFT is often used in real-time
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(a) Empty IQ reading (b) Empty RD reading

Figure 5.6: Empty readings for baseline.

processing applications. On the other hand, matched filtering is preferred in systems that
require more accurate and detailed information. It is possible to combine both methods to
leverage their respective advantages, particularly regarding range resolution. Initially, FFT
was used to generate data in this project, but a switch to matched filtering was later made to
enhance accuracy and detail in the simulation output.

5.6 Output: IQ Signal and Pulse Doppler Image

After the simulation is completed, it returns relevant parameters to the Python environment,
specifically the IQ signal and range-Doppler map of the corresponding scenario. The IQ
signal represents the raw signal data. Initial trials were conducted to observe the features
of the simulation and the object. By not placing an object, the baseline properties of any
returned IQ signal and range-Doppler map were understood. This provided insight into
where the readings are irrelevant and devoid of information. It was observed that values
around -100 decibels in the IQ signal represent empty readings. However, lower points than
-100 dB were also present, indicating that the absence of a signal is not as flat as in ideal
mathematical environments. The empty readings in both IQ signal and range-doppler image
is given in Figure 5.6 for reference.

The two output variables are given as matrices. The dimensions of a matrix are defined
by the number of pulses and the number of samples during the simulation. For the defined
properties of the radar, the matrix size is (7671, 300). Here, 300 is the number of pulses,
and 7671 is the number of samples taken during the work cycle. The number of pulses is
determined by the user’s preferences. This configuration is based on Matlab’s wind turbine
tutorial. The number of samples can be adjusted by changing any parameters relevant to the
radar’s work cycle, such as pulse width, sampling rate, or pulse repetition interval. Reducing
these parameters decreases the matrix size in the number of rows.
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Figure 5.7: IQ signal comparison in between classes.
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Figure 5.8: RD comparison in between various classes.

The matrix content consists of Matlab format complex numbers. Each cell contains both
real and imaginary parts. It is noteworthy that plotting complex numbers can be challenging.
Thus, for plotting, complex numbers are converted to real numbers by taking the squares
of the real and imaginary parts, summing them, and taking their square roots. Each cell is
converted to a scalar and plotted accordingly. However, the saved data retains its original
complex form. Without processing, each data sample occupies approximately 30 megabytes,
which is substantial. This issue will be addressed subsequently.

Before the Radar Cross Section (RCS) analysis, a series of trials were conducted to verify
that different objects under the same conditions generate different signals. Sets of IQ and
range-Doppler images were generated. Significant differences between classes were observed
(figure 5.7 and 5.8). To confirm this, a series of subtractions (figure 5.10) among resulting
output signals were performed. The potential uses of the data do not necessitate the complex
data form, although this does not imply that the information is superfluous. For visual
analysis or deep learning approaches, only the image format is required. For mathematical
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analysis, the real part suffices as long as the value is preserved. Consequently, for convenience,
the imaginary part is removed from the cells but added as a second dimension. Thus, the
new data dimensions for the previous example become (7671, 300, 2). This conversion does
not affect memory efficiency.

Figure 5.9: Histogram analysis of generated range-doppler images.

The challenge of observing the differences between the classes lies in the nature of the
range-Doppler images. Firstly, these images are difficult to interpret, especially for non-radar
experts. Secondly, the proportions of the matrix are not close to a square. The ratio between
the number of rows to columns is 25, which remains substantial even when the plotting is
rectangular. A possible solution to strengthen the hypothesis about the class differences is by
utilizing histograms. From the filtered matched range-Doppler images, each row is obtained
by its means, and a histogram is plotted to observe patterns (figure 5.9). For each plotted
histogram, the majority of the rows had a value of around -50 with a Gaussian distribution.
Given that most of the range-Doppler map consists of empty readings, -50 is assumed to
be the noise value. The difference in patterns in histograms under the same simulation
conditions was convincing enough to indicate that the signal returns for different classes are
distinct.

An attempt was made to reduce the number of samples by changing the radar setup
parameters. The tested parameters were a 9 megahertz pulse width and a 20 milliseconds
pulse repetition interval. With this setup, each pulse had around 100 sample points left after
removing the irrelevant empty readings. The number of pulses was also reduced to 100 for
the same purpose. However, this idea was dropped when guidance from the supervisor
suggested it might be unhealthy to make these changes due to insufficient expertise on radars.
Another idea was to reduce the sampling rate, but it was not attempted since reducing below
the Nyquist rate is highly discouraged.
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Figure 5.10: Substraction of a Car sample from a Plane sample to see if there are paternal
differences.

5.7 Filtration of Output

The radar data being heavy causes many problems. The first of them is storage insufficiency.
The memory amount authorized to use was 100 gigabytes; considering unprocessed data is
30 megabytes, the maximum storage can hold 3,334 samples at a time, which is not enough
for a good sample set. It is important to mention that 30 megabytes is only for IQ signal; if
range-Doppler maps need to be saved as well, the memory requirement would be doubled.
Another problem that correlates to memory issues is calculation complexity. Considering the
data is planned to be used in machine learning and various analyses, the size of the data will
increase the complexity of such applications.

To solve this issue, a few strategies to reduce the memory requirement for each sample
are derived. The data in range-Doppler maps is the most valued one for the case, as can be
seen from the matched filter results; the values above the maximum range do not contain any
information. The obtained complex signal is converted to amplitude to get rid of that part,
and then the mean of the whole matrix is taken. The row’s means are taken and appended to
a list. When a row’s average is lower than the matrix mean, that row is removed. This is the
first filtering step applied to range-Doppler maps.

However, the data size was still not within the expected range, necessitating another
filtering step. The next idea involved discarding the readings that have no object reading
value. The outcome of histogram analysis is used for this purpose, taking -50 dB as the
non-object reading signal value. By adding a margin, rows with average decibel values below
-47 are removed. This reduced the number of rows, resulting in new shapes containing
around 800-1200 rows. However, having different sizes for the dataset is not consistent. One
sample might have a size of (862 300) while another might be (1032 300), which is problematic,
especially for deep learning systems that require a static input size.

To address this inconsistency, a new filtering methodology was employed. Initially, the
plan was to select rows with the highest means, for example, the highest 500 rows. However,
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this approach could compromise data integrity. Instead, the method was adjusted to find the
row with the highest mean and then select a constant number of rows above and below this
peak. This ensured that only the signal-concentrated area was retained. After the second
filtering, the final output had a shape of (600, 300).
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6 Conclusion

This research thesis seeks a solution to the lack of readily available data or a method that can
be used to generate data for space debris detection. It approaches the problem from multiple
angles. Two different data generation techniques with different complexities and a deep
learning solution for the pipeline data generated. Machine Learning is a tool to observe and
mimic patterns in nature; by understanding the behavior set of a physical phenomenon, ML
can suggest more suitable solutions rather than the existing solutions. Considering most of
the current conventional signal processing methods are static and treat all the input equally,
they may lack solutions for unique case scenarios or are sub-optimal in them. Also, extracting
meaningful information from read values either requires high expertise or using stagnant
methods that are hard to change for specific cases. Machine Learning can perform better and
more dynamically with sufficient data and can reduce the need for expertise in domain. The
ultimate goal was to utilize machine learning to bring an alternative to conventional signal
processing methods in a faster and more accurate way. The main focus is given since data
population is the first key aspect of any machine learning approach.

6.1 Findings

The watertight concept and conversion of ShapeNetCore objects became the first step of the
solution. The combination of Trimesh and the Manifold repository led to the fixation of the
objects with around a 96% success rate, which is not ideal, but considering any .obj file can
be used, and ShapeNetCore has 51.300 unique objects, lack of population in any category
won’t occur. For the scenarios that require 100% of the objects, an already fixed set of .stl files
can be used. During the experimentation phase, it was found that ShapeNet objects consist
of multiple meshes for both different components of the object and the parts with different
materials.

The developed RCS calculation method has proven to be faster than all other popular
alternatives. The task requires the calculation of the illuminated region and reflection from
64.800 angles for 1-degree resolution. Written Matlab script achieved a performance of under
7 minutes for RCS calculation time in the "Linux Cluster". Under the same conditions, the
mean RCS calculation time was 5.5 minutes, which is four times faster than another option,
OptixRCS, with a performance of around 20 minutes. Since the result of the Manifold software
causes non-smooth surfaces, it also introduces natural noise for extra realism. Additionally,
utilizing the parallel pool with multiple cores or graphical processing units shows significant
importance for the calculation time. Compared to the default single-core computation, it
speeds up the calculation by four times, even with a 6-core basic local setup. The increase in
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the calculation is a logarithmic function in the beginning, then with an increasing number of
cores, it leans towards a linear function. The reason behind that is the Matlab-Engine starting
time is considerably long, and job assignment to the cores with memory allocation could be
the reason.

The analysis of the RCS results of the object was the most crucial part of the research.
The lack of expertise in RCS initially led to a setback, but the analysis of parameters when
calculating RCS provided a solution. Polarization, frequency, and output unit caused notable
differences, but all the variations still held observable information regarding the nature of the
object. However, the main parameter that provided the solution was the size or unit length of
the object in the Matlab platform object. This means other variables are safe to change for
different setups and experiments, but the size must always be within the desired range.

Another important point is the visualization of the resulting RCS matrix for objects. Since
decibels are a logarithmic scale and the response between an empty signal and any surface is
huge, it is highly important to constrain plotting values to some restriction standard. This
was achieved by analyzing minimum and maximum values in all RCS values among objects.
Using a new color scale made comparing objects and observing patterns among them easier.

With the simple data generation method, 54,000 samples were generated in under 5 minutes.
The obtained data was checked with mean value analysis. There were no useful findings
from this analysis. Even though the mean decibel values for the RCS matrix of the objects
vary among classes, a slice within the matrix is not necessarily representative of the overall
mean. This could be the case for objects that do not change signal reflection drastically on all
surfaces. However, with complex objects, there could be some regions or peak points that are
extreme cases and not representative of the overall mean value.

In addition, some deep learning models were applied to the obtained data. No model
could identify any pattern in the data generated before the analysis. The hypothesis behind
this is that even though Matlab doesn’t provide a distance to the object in the platform but
when calculating RCS when it’s looked very closely at the object, reflections from no points of
interest disrupt the data and introduce a super high noise that hides patterns. To validate this
conclusion about models, gradient changes during training were analyzed, and no problem
was found regarding the training cycle. Various deep-learning models were tried on the data
generated after the analysis. Multi-layer perceptron, transformers, LSTMs, and ResNet are
among the models that were implemented. After RCS analysis, hyperparameter tuning, and
various alternative architectural approaches, Transformer and ResNet achieved the best results.
During this phase, it was observed that the Transformer took more time to converge but
with lower performance. Improving performance using sophisticated embedding approaches,
such as an encoder, is possible. However, it still performed less well than ResNet with
the embedding approach used in this project. On the other hand, ResNet was much more
successful. It had a faster convergence rate and provided better generalization, which is
crucial for accuracy. The overall goal of this phase of the thesis was to prove that deep
learning architectures can classify differences between objects by only using raw signals. With
the success of ResNet, a promising result was achieved, and the thesis leaned towards a more
complex data generation approach.
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Considering realism is one of the key concepts before deployment, especially for scenarios
with very low error margins, space debris detection is one such scenario. All objects fly at very
high speeds, making response time an important parameter. Detecting objects, recognizing,
calculating trajectories, and initiating correction burns are processes that can take time, so
in some of the scenarios, every second spent during the whole maneuver is highly valuable.
Therefore, reducing detection and recognition time in more realistic scenarios without taking
any risks in the simulation environment is a contributor to this domain. For this purpose, the
simulation environment was developed using Python and Matlab. Detailed radar working
principles and possible realistic scenarios were added to the environment. The health of the
data and the coverage of the main components of the realistic scenario are ensured. Besides
obtaining a complex simulation, alternative outputs are generated for different possible uses
and projects. The simulation can generate both raw complex signal output and range-Doppler
images. The memory issue is also pinpointed, and possible solution approaches are generated.
From the simulation environment, observations were made to understand the nature of the
nothingness and the object’s response.

The simulation environment is capable of generating a sample in around 3 seconds if the
relevant RCS matrix is ready. It can save both raw signals and range-Doppler images for the
same simulation. Additionally, the radar setup can be changed and adapted to new scenarios.

6.2 Possible Future Research

In this section, we will discuss potential extensions to this thesis. Chronologically, mentioning
the fixation of the objects to generate complex signal outputs, there are several points that
could benefit from improvements. These extensions were not applied in this project due to
time constraints or feasibility concerns regarding the outcomes.

First of all, a set of objects that are manifold by their nature can be generated. These objects
can be tailored specifically for the project. Tools such as Blender or other 3D manipulation
software can be utilized. Alternatively, 3D scans of the objects could be used to construct
their software equivalents. Another improvement regarding object generation would involve
introducing an alternative approach to the Manifold software. While the rough surfaces
provided by Manifold are useful, they are not ideal for all scenarios, particularly when
observing ideal conditions. An alternative fixation approach could be implemented on top of
ShapeNet to achieve ideal conversion from .obj files to .stl files.

Regarding the RCS calculation, if the objects are fixed, the RCS of the objects can be
measured using real RCS reading devices at different frequencies. These values can then
be converted to the working frequency of the desired application. This approach would
capture all the natural characteristics of the environment, resulting in the most realistic data.
Additionally, material properties can be incorporated into the RCS calculation, considering
that real-life objects are typically composed of multiple materials.

For the applied deep learning models, various enhancements can be made. More models
and specific architectures can be employed to evaluate performance. However, a significant
improvement would involve incorporating sophisticated deep learning models tailored
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for different applications, such as autonomous driving, to adapt to this task. This might
necessitate updates to the model input or the data generation output format. Furthermore, the
robustness of deep learning models should be rigorously assessed. Tests involving random
dropouts, sensor saturation, and data clutters can be conducted. Additionally, evaluating
model performance under conditions of bit loss due to radiation in space can provide valuable
insights. Finally, while the current models utilize raw signal output, further analysis and
development using range-Doppler images can be explored.

The realism of the defined simulation can be further enhanced. By considering the radar’s
range and relevant parameters, the possible speeds of the objects can be restricted to a specific
interval. Incorporating radar rotation to determine the azimuth location of the target object
can further enhance realism, as this working principle is widely used in sonars. Defining
trajectories as ellipsoids will also contribute to a more realistic approach. Additionally,
regarding IQ signal and range-Doppler outputs, an in-depth analysis is needed to identify
where the important data is represented, and more sophisticated filtering of the outputs can
be performed.

Lastly, and more comprehensively, it is possible to generate collision simulations with
objects and relevant materials defined beforehand. The result of the collision can be the
objects that are spread around with a size smaller than 10 centimeters. With this kind of
simulation, the objects would be the closest to the authentic. Then, those objects can be
taken, and the RCS of those can be calculated. This would replace the ShapeNet and its
manifoldization process.

These proposed future research directions hold promise for improving the accuracy, effi-
ciency, and realism of radar signal processing and deep learning model applications, thereby
advancing the field significantly.
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