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Abstract

This thesis develops a method of reduced control systems and applies it to quantum control
theory. Control systems subject to fast control on certain degrees of freedom admit a reduction to
the remaining degrees of freedom without loss of information. A rigorous treatment of reduced
control systems is made possible by generalizing methods from the perturbation theory of linear
operators to symmetric Lie algebras. The method can be applied to great effect in quantum control
theory and we study two instances in detail.

First, we address open Markovian quantum systems with fast unitary control. Such systems
model noise and dissipation, present in all quantum systems, and which pose one of the main obsta-
cles to the realization of fault-tolerant quantum computation. The reduced control system describes
the evolution of the eigenvalues of the mixed quantum state, and hence also of the purity of the state.
The results presented here have implications for the study of quantum thermodynamics and optimal
cooling procedures.

Second, we study closed bipartite quantum systems with fast local unitary control. These sys-
tems allow for the study of entanglement between two quantum mechanical systems, one of the
distinguishing features of quantum mechanics, and one of the core resources in emerging quantum
technologies. In this case, the reduced control system describes the evolution of the singular val-
ues associated with the bipartite quantum state. As an application, we study optimal entanglement
generation and quantum speed limits on the evolution of entanglement.

Resümmee

Dës Thees developpéiert eng Method vu reduzéierte Kontrollsystemer, a went se op d’Quante-
kontrolltheorie un. Kontrollsystemer bei deene gewësse Fräiheetsgrader séier gesteiert kënne ginn,
erlaben et, se op déi reschtlech Fräiheetsgrader ze reduzéieren. Eng riguréis Behandlung vu re-
duzéierte Kontrollsystemer gëtt erméiglecht duerch eng Generaliséierung vu Methoden aus der
Stéirungstheorie vu linearen Operatoren op symmetresch Lie Algebren. Dës Method ka mat grou-
sser Wierkung op d’Quantekontrolltheorie applizéiert ginn, a mär studéieren zwee Beispiller am
Detail.

Fir d’éischt behandele mer oppe Markovianesch Systemer déi séier, unitär kontrolléiert kënne
ginn. Esou Systemer modelléieren d’Gedauschs an d’Dissipatioun, déi an alle Quantesystemer ex-
istéieren, an déi d’Haaptbarriär zur Realiséierung vu feelertolerante Quantecomputer poséieren. De
reduzéierte Kontrollsystem beschreift d’Entwécklung vun den Eegewäerter vum gemëschte quan-
temechaneschen Zoustand, an domadden och vun der Rengheet vum Zoustand. D’Resultater, déi
hei presentéiert ginn, si vu Bedeitung fir d’Etüd vun der Quantenthermodynamik a fir optimal Kill-
prozesser.

Duerno widme mer eis zouene bipartite Quantesystemer déi séier lokalunitär kontrolléiert kënne
ginn. Dës Systemer erlaben eis, quantemechanesch Verwuerelung tëscht zwee Systemer z’ënner-
sichen. Dës Verwuerelung ass eng vun deene charakteristesche Proprietéite vun der Quanteme-
chanik, an eng vun deenen Haaptresource vun emergente Quantentechnologien. An dësem Fall
beschreift de reduzéierte Kontrollsystem d’Evolutioun vun de Singulärwäerter déi zum bipartite
Quantenzoustand gehéieren. Als Applikatioun ënnersiche mer, wéi een optimal Verwuerelung gen-
eréiert, a wéienge Vitesslimitatiounen d’Entwécklung vun der Verwuerelung ënnerläit.
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Introduction

“This proposal, like all proposals for quantum computation, relies on speculative
technology, does not in its current form take into account all possible sources of noise,

unreliability and manufacturing error, and probably will not work.”
— Rolf Landauer, see [Llo99]

Quantum Information Technology

The idea of a quantum computer has captivated the interest of both experts and laypeople alike. However,
the public’s understanding of this area of research is fraught with misconceptions and hype. They will
not magically solve all of humanity’s problems — even if they existed. Therefore, the purpose of this
section is to help the reader, as well as the author, to navigate the rapidly developing field of quantum
information technology, and to motivate the study of quantum control theory, which is the subject of
this thesis.

Brief History

The early 1980s saw the first attempts at formulating the idea of quantum computation. In 1980, Be-
nioff [Ben80] introduced a quantum mechanical model of a Turing machine. In 1982, Feynman, mo-
tivated by the observation that classical computers could not efficiently simulate quantum mechanical
systems, proposed the idea of a quantum computer [Fey82] for this purpose. In 1985, Deutsch further
developed the idea and formally defined the universal quantum computer [Deu85].

Deutsch–Jozsa [Deu85, DJ92], Bernstein–Vazirani [BV97], and Simon [Sim94] showed that, in
principle, quantum computers could achieve better computational complexities than their classical coun-
terparts for certain problems, which were, however, not of great practical importance. Lloyd showed
that quantum computers can efficiently simulate quantum systems whose dynamics are determined by
local interactions [Llo96].

In 1984, Bennet and Brassard introduced quantum key distribution [BB14]. The idea of quantum
computation gained traction with the discovery of quantum algorithms by Shor [Sho94, Sho97] and
Grover [Gro96, Gro97] which could threaten current cryptographic schemes.

The first realizations of small-scale noisy quantum computers happened around the turn of the cen-
tury using NMR, e.g., [JM98, CGK98], although this technology might not be capable of genuine quan-
tum computation [SC99, Bra+99]. Recently, claims of quantum supremacy or quantum advantage have
been made for the tasks of Boson sampling [Zho+20, Mad+22] and evaluating random quantum cir-
cuits [Aru+19]. However, the results for random quantum circuits were beaten by improved classical
algorithms [PCZ22], and there is no guarantee that the Boson sampling results will not be beaten in the
future. Although achieving supremacy in the near future for certain tasks is realistic, this should be re-
garded as a scientific achievement rather than an indication of imminent commercialization of quantum
computers, similarly to recent advances in nuclear fusion [US 22]. In fact, so far there are no practical

xiii



xiv INTRODUCTION

applications of quantum computers [Bro23]. Indeed, a more useful measure is quantum practicality,
which is likely still decades away, and only achievable for large enough problems with significant quan-
tum speedups [HHT23].

At the moment of writing, massive public and private investment is driving research into quantum
technology [Gib19]. Many quantum computing businesses have sprung up, although few of them are
profitable, and revenues come mostly from consulting other companies about quantum technologies and
licensing access to their machines to universities and businesses curious about near-term applications —
which, however, seem elusive. In the, not unlikely, event that quantum computers do not materialize in
the near future, this might lead to a so-called quantum winter, similar to the AI winters, in which interest
and funding suddenly reduce dramatically [HG22]. Some people even warn that quantum computing is
impossible altogether [Dya19, Dya20].

Quantum information technology can be broadly classified into quantum sensing, quantum com-
munication, and quantum computing. We will discuss the state and the prospects of each below. A
comprehensive analysis can be found in [HG22], see also the European roadmap [Ací+18].

Quantum Sensing and Metrology

Quantum sensing is the most promising near-term application of quantum information technology, and
in fact it is a necessary ingredient for quantum communication and computation. Quantum sensors rely
on the delicateness of quantum systems, which is a major problem for other applications, and uses it to its
advantage to measure very faint signals. It is the most mature quantum technology, and some quantum
sensors are already commercialized. Their applications lie, among others, in medical imaging [TB16],
targeted mining, and military intelligence gathering [HG22]. They can measure physical quantities like
magnetic and electric fields, time and frequency, rotations, temperature and pressure [DRC17].

Atomic clocks, nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), and posi-
tron emission tomography (PET) belong to the “first generation” of quantum technologies. Their func-
tioning is based on quantum mechanics, but they do not directly use quantum mechanical effects like
entanglement or coherence. The “second generation” quantum sensors will use coherence (and must
therefore be protected from noise) and some use entanglement to achieve sensitivity or precision be-
yond what is possible classically [DRC17]. Such devices include superconducting quantum interfer-
ence devices (SQUIDs) for measuring magnetic fields [HN19], atomic vapor for measuring electric and
magnetic fields, nitrogen-vacancy (NV) centers for measuring magnetic fields at room temperature, and
quantum dots for chemical detection [Li+19].

Improvements in atomic clocks will not only allow for a more precise measurement of time, but also
for position measurement, as in global navigation satellite systems (GNSSs), as well as for measurements
of the strength of the gravitational field [Cho+10]1. Another application is to use cold atom gyrometers
to measure acceleration and rotation [Gar19]. Quantum sonar uses SQUID-based magnetometers to
look for underground deposits, submarines [Ham17] or land mines [Gar+01]. A speculative technology
called quantum radar might improve radar using entangled photons [Sha20, Ass+23].

Quantum Communication and Cryptography

The seminal papers by Shor [Sho94, Sho97] and Grover [Gro96, Gro97] showed that many of the stan-
dard cryptographic schemes are vulnerable to attacks by a quantum computer. There are two ways
to counter this threat. Either use different classical cryptographic schemes that are thought to be re-
silient against quantum computers, so-called post-quantum cryptography, or use quantum cryptographic

1This uses gravitational time dilation, whereby a clock in a strong gravitational field runs more slowly compared to one
in a weak gravitational field.
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schemes. For most applications the natural choice will be to use post-quantum cryptography [NW17].
Such schemes are known and it is just a matter of implementing appropriate standards, see for in-
stance [ETS20, NIS23].

The most popular method of quantum cryptography is quantum key distribution (QKD), which was
initiated with the invention of conjugate coding by Wiesner [Wie83] and the BB84 protocol [BB14].
Roughly speaking, it relies on the fact that when an eavesdropper measures the transmitted quantum
mechanical information, this will change the information in a detectable manner. This has led to the
often-repeated misunderstanding that the security of quantum cryptography is guaranteed by the laws
of physics. In reality, the security still strongly depends on the quality of the physical implementation,
both at the preparation and at the detection [SK14].

Now for some caveats. It should be noted that we are still very far from successfully implement-
ing Shor’s algorithm to decrypt a message encrypted today using modern cryptography. An estimate
puts the number of physical qubits required for factoring a 2048-bit RSA integer at about twenty mil-
lion [GE21]. The largest number factorized to date using Shor’s algorithm is 21 [Mar+12], and all such
implementations make use of some prior knowledge of the solution [SSV13]. On the other hand, even if
implementing Shor’s algorithm was impossible, quantum cryptography might still be useful since it does
not rely on our inability to efficiently solve a mathematical problem. There always remains a possibility
that someone will find an efficient way (classical or quantum) of cracking post-quantum cryptography
— it may even hold that P = NP.

Quantum Simulation and Computing

Currently, the most discussed quantum technology is quantum computing. Only small noisy quantum
computers have been built so far, but there is hope that quantum error correction will be able to deal with
the noise and make quantum computers scalable. It is important to remember that quantum computers
are special-purpose devices. Quite a few algorithms are known, but often the speedup is only poly-
nomial, like for Grover’s algorithm, and the exponential speedup for code-breaking will be rendered
useless by switching to already existing post-quantum cryptography. Many people hope for speedups of
optimization algorithms, but instances of provable exponential speedup are scarce. The most promising
applications for quantum computing are small-data problems with exponential speedup, in particular in
chemistry and materials science [HHT23].

Analog Quantum Simulation

One of the most promising applications is that of quantum simulation [GAN14, Dal+22]. Potential
applications include quantum chemistry and materials science. The basic idea is that simulating quan-
tum systems on a classical computer is exponentially difficult, but a quantum computer should have no
problem with such simulations. In fact, this was Feynman’s original motivation for building a quan-
tum computer [Fey82]. One should mention that powerful methods for classically simulating quantum
many body systems exist. Tensor network methods, such as matrix product states (MPS) and projected
entangled pair states (PEPS), achieve polynomial scaling for interesting families of quantum states that
appear in practice [VMC08].

Broadly speaking, quantum simulators come in two varieties, which one might call digital and ana-
log quantum simulators. A large-scale general-purpose quantum computer would be considered digital,
and through appropriate programming it could efficiently simulate a variety of different quantum sys-
tems. Since such quantum computers still seem far away, a more practical approach is to build a quantum
system that has approximately the same Hamiltonian as the system we wish to study. This analog ap-



xvi INTRODUCTION

proach is less flexible, but significantly more realistic, and in fact it can already be applied, see for
instance [Cho+16, Sch+21].

Models of Quantum Computation

The notion of computation can be mathematically formalized in different ways. The most well-known
method is using Turing machines [Tur37]. Many different models have been devised, and many have the
same computing power as Turing machines. Indeed, the Church–Turing thesis states, roughly speaking,
that Turing machines fully capture the idea of computability. In order to define a precise notion of
quantum computation, several models have been invented so far. We give a concise overview of the
most important models to date. Many of them turn out to be equivalent in the sense that they can
simulate each other with only polynomial overhead.

The first attempts at formalizing quantum computation used quantum Turing machines [Ben80,
Deu85] as a direct generalization of classical Turing machines. This model turned out to be rather
cumbersome, and was soon replaced by the equivalent quantum circuit model [DP89, Chi93],2,3 in
which a quantum computation is represented by a sequence of elementary quantum operations, called
quantum gates, applied to an initial state and with measurements.

The one-way quantum computer [RB01, RB02] applies single qubit measurements to a certain class
of highly entangled multi-qubit states, called cluster states [BR01], and it turns out to be equivalent to
the circuit model.

The final two models are adiabatic quantum computation and quantum annealing. In both cases the
solution to the computational problem is encoded in the ground state of a Hamiltonian, and the machine
will physically prepare this ground state, which can finally be measured to obtain the result.

We start with adiabatic quantum computation, see [AL18] for a recent review. A precise defini-
tion of adiabatic quantum computation is given in [AL18, Def. 1].4 The idea was proposed by Farhi et
al. in [Far+00], and they showed that the quantum circuit model can simulate adiabatic quantum com-
putation with polynomial overhead. The reverse direction was shown by Aharonov et al. [Aha+07].
Adiabatic quantum computation rests on “the” Adiabatic Theorem, which roughly speaking states that
a system with time-dependent Hamiltonian initially in the ground state will remain in the ground state if
the Hamiltonian changes sufficiently slowly. The cost of such an algorithm is given by the time required
for the evolution. Although the roots of the adiabatic theorem go back to the early days of quantum
mechanics [Ein14], the first rigorous proof was given by Kato in [Kat50]. More precise estimates were
given later. If ∆ = E1 − E0 denotes the energy gap, then the runtime can be bounded by O(∆−3) or
Õ(∆−2), see [JRS07] and [EH12] respectively. Unfortunately, computing ∆ itself is a hard problem
(in general it is even undecidable [CPW15]), which makes it difficult to prove speedups compared to
classical algorithms.

The idea of quantum annealing is to implement a Hamiltonian whose ground state solves the given
problem, and to obtain the ground state by cooling the system [RCC89, KN98]. The hope is that the
phenomenon of quantum tunneling might lead to a quantum advantage for computational optimization
methods. Quantum annealers have been built [Joh+11, Boo+20], but so far they don’t seem to have
achieved quantum advantage [Alb+15].

Some concrete algorithms for adiabatic quantum computation and quantum annealing are presented
in the following section.

2Initially quantum circuits were not required to be acyclic, but nowadays this is usually assumed.
3The quantum circuit only has to simulate a given finite number of steps of the quantum Turing machine, which of course

might not terminate.
4In particular one requires the ground state of the initial Hamiltonian to be a product state and both Hamiltonians must

satisfy some locality conditions.
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Quantum Algorithms

Although a large number of quantum algorithms has been discovered, the applications are more limited
than what is often portrayed. A detailed list can be found on the “Quantum Algorithm Zoo”5 website,
see also the survey [Mon16].

Quantum Fourier transform and the hidden subgroup problem. One class of quantum algorithms
deals with the hidden subgroup problem (HSP) for finitely generated Abelian groups. The key ingredient
in these algorithms is the quantum Fourier transform, a direct analog of the discrete Fourier transform.
Special cases of this algorithm were discovered by different people, see [NC10], but the first full for-
mulation was given in [BL95]. It subsumes Shor’s algorithms for factoring primes (breaking RSA),
the discrete logarithm problem [Sho94, Sho97] (breaking DH and DSA), Simon’s algorithm [Sim94],
and the idea can be applied to the discrete logarithm in elliptic curves (breaking ECC). Together, these
algorithms break many of the most important currently used cryptographic methods. Current hardware
is, however, nowhere near implementing these algorithms on realistic problems [GE21].

Search algorithms. Another class of quantum algorithms deals with unstructured search. This in-
cludes Grover’s algorithm and amplitude amplification, both yielding a quadratic speedup. Although
the speedup is modest, it could still be of practical interest, especially because it can be applied to any
NP-problem simply by searching the space of all potential solutions. Contrary to popular belief, Grover
is not likely to be useful for searching databases, since the time to load the entire database into some
form of quantum storage would still be linear. The algorithm can be generalized to perform Monte Carlo
integration, again yielding a quadratic speedup [Mon15]. This has applications in mathematical finance
for derivative pricing [Gla03].

Digital quantum simulation. The most promising application of general-purpose quantum comput-
ers is most likely digital quantum simulation. A prime application would be in simulating quantum
chemistry [Cao+19]. Instead of going through the laborious process of synthesizing and characterizing
thousands of molecules in the lab, one could off-load the work to a quantum computer and only use
the most promising candidates in the experiment. This has the potential to significantly speed up drug
discovery. There are several approaches: Using quantum phase estimation (QPE) [Kit96, AL99] one
can compute the eigenvalues of a unitary, and hence determine the lowest energy levels of the chemical
Hamiltonian. Since this method requires a fault-tolerant quantum computer, the variational quantum
eigensolver (VQE) [Per+14] has been proposed to determine eigenvalues on noisy near-term devices.
So far only very small molecules have been simulated using this method, and it seems very challenging
to achieve the accuracy needed for quantum chemistry applications. The standard approach for simu-
lating dynamics is Trotterization [Chi+21]. A more recent approach for simulating time evolution is
called qubitization [LC19], which uses an oracle and requires ancillary qubits. Just like for molecules,
the properties of materials are also determined by quantum mechanics. On classical devices, ab initio
computations typically have exponential or even factorial complexity. Approximation techniques also
quickly become intractable, and fail for highly correlated materials [Ale+24b]. As in the chemistry case,
QPE, VQE, Trotterization and qubitization can be used for materials.

Variational Algorithms. The computational models of quantum annealing and adiabatic quantum
computation require the implementation of a Hamiltonian whose ground state encodes the solution to
some problem. A large class of problems can be formulated via quadratic unconstrained binary opti-
mization (QUBO), as surveyed in [Koc+14]. In particular, mathematical finance applications such as
portfolio optimization [Ros+16] and optimal currency arbitrage [Ros16] have recently garnered atten-
tion [Her+22]. Indeed QUBO is equivalent to the Ising model, which gives a concrete way of imple-
menting the corresponding Hamiltonian.

5quantumalgorithmzoo.org

quantumalgorithmzoo.org
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The quantum approximate optimization algorithm (QAOA) [FGG14] is an algorithm that tries to
find the ground state of a Hamiltonian. QAOA is conjectured to yield exponential speedups, but so far
no such example is known, and its power is an area of research [WHT16]. In this sense it is often used
as a heuristic algorithm. More generally, QAOA can be seen as an ansatz for a variational quantum
algorithm (VQA) [Cer+21].

Quantum Machine Learning. With the promise to combine two exciting areas of research, quantum
machine learning has recently attracted a lot of attention [SP18]. Depending on whether the data or the
processor is quantum or classical, one obtains different types of quantum machine learning. Typically
one refers to a quantum processor handling classical data. Quantum speedups for computational com-
plexity are usually quadratic, deriving from Grover’s algorithm, but often no speedup can be proven
mathematically. It was shown that quantum and classical sample complexity are polynomially equiv-
alent [SG04]. As for variational methods, one hopes that quantum machine learning might lead to
practical speedups, even without theoretical guarantees.

Topological Data Analysis. Using persistent homology one can extract topological information
from data sets which is hoped to improve resilience to noise. It was shown that using quantum machine
learning algorithms6 one can achieve exponential speedups over the best known classical algorithms for
the computation of Betti numbers, which count the numbers of connected components, holes and voids
in the topological structure of the data [LGZ16].

It is worth noting that research into quantum algorithms can lead to interesting results in classical
computer science. Claims of quantum speedup sometimes motivate improvements in classical algo-
rithms. In some instances the quantum algorithm can be “dequantized” [Tan19].

Fault Tolerance

The quantum algorithms presented above, as well as their computational complexity, tacitly assume
perfectly isolated quantum systems which do not suffer from decoherence. In reality this is never the
case, not only because it is difficult to perfectly isolate a quantum system from the environment, but
also because it is undesirable. Indeed, applying a quantum gate, and even more so measuring the state,
inherently requires coupling to the environment, and hence will always induce some noise. Moreover,
in order to implement fast quantum operations — which is necessary to outpace the natural relaxation
time of the system — one requires strong coupling to the environment, which increases the induced
noise. Furthermore, achieving quantum advantage will likely require computations that take weeks
to complete [HHT23], although provable quantum advantage exists even for constant-depth quantum
circuits [BGK18].

One way to combat decoherence is to improve the precision of our quantum devices and in many
cases cool them to extremely low temperatures. However, it is probably impossible to completely elim-
inate noise through engineering alone. For this reason, quantum error correction, which accepts the
occurrence of errors and corrects them on the fly, was introduced. Since error correction schemes re-
quire us to encode one logical qubit into several physical qubits, and since they introduce additional
operations to detect and correct errors when they happen, error correction somewhat paradoxically in-
creases the amount of noise in the system. Hence the entire idea can only work if we can correct errors
more rapidly than they occur. That this is indeed possible — at least under certain assumptions — is
proven by the Threshold Theorem, which states roughly that errors can be corrected successfully if the
error rate of the hardware is below some threshold.

6The buzzwords “quantum” and “topological” mix very well with most other buzzwords like “machine learning”. Indeed
one can combine all of them and study topological quantum machine learning [HMR21, KC23] on a topological quantum
computer [Kit03] to simulate and detect topological quantum phase transitions [TC21], ... avis aux amateurs!
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A classical version of the Threshold Theorem was proven by von Neumann [Neu56]. The first proofs
in the quantum case were given in [Sho96, KLZ98, AB08]. Due to the Threshold Theorem, research
into quantum error correction is very active [Lid13], and recent experimental progress yields a first step
towards validating the theorem [Ach+23]. Unfortunately, the nature of the noise is not well understood
and our models remain simplistic. Moreover, the existing proofs of the Threshold Theorem make strong
assumptions that are probably not satisfied in real experiments [Lid13, Ch. 26].

Quantum Hardware

Currently a large number of disparate physical systems are being considered as potential hardware for
quantum technologies. Each has its own advantages and drawbacks, but none of them has yet emerged
as a clear favorite for quantum computing, or at least people cannot seem to agree on which one it is.
It is likely that several of these technologies will have their own specialized applications in quantum
computing, communication and metrology.

Below we will briefly discuss some popular choices, namely trapped atoms [HR06], superconduct-
ing circuits [Bla+21], nuclear magnetic resonance [Lev08], and optical systems [KL10]. Many more
systems exist and are being explored, and it is possible that the architecture of future quantum computers
has not been discovered yet.

Atoms

A popular way of implementing a qubit is using two electronic states of an individual atom. Atoms can
be trapped in relatively large arrays, and as all atoms of the same species are identical, these qubits do
not suffer from manufacturing errors. The two main approaches use either neutral atoms or ions, and
we will briefly discuss them below. We note that both trapped ions and neutral atoms can also be used
to build optical atomic clocks [Lud+15].

Ions Trapped ions are one of the most promising avenues for quantum computing [Bru+19]. In 1995
Cirac and Zoller [CZ95] proposed the trapped-ion quantum computer, which uses the internal states of
an ion as a qubit. Several ions are confined in radiofrequency traps which provide long lifetimes on
the order of hours and even up to months. Similarly, the coherence times are also very long relative to
gate times, although the gate times on the order of microseconds make large computations rather slow.
Moreover, single and two-qubit gates, as well as state preparation and measurements, can be imple-
mented with very high fidelity. Depending on the electronic transition used for the qubit, single qubit
operations are implemented using lasers, microwaves, or Raman transitions. Multi-qubit gates, such
as the Cirac–Zoller gate [CZ95] or the Mølmer–Sørensen gate [SM99], use the Coulomb interaction,
turning the shared motional modes of the ions into a “quantum bus”. Traps with about 20–50 qubits are
possible, but scaling up has proven difficult. Since ions can be moved around in the trap, and by cre-
ating two-dimensional arrays, one obtains a more scalable architecture, called quantum charge-coupled
device (QCCD), which was introduced in [KMW02].

Cold Neutral Atoms A more recent approach is to use neutral atoms [Hen+20, Win+23] that are
trapped in a two dimensional periodic optical lattice via the Stark effect. To prepare the system, a
dilute gas is cooled using Doppler cooling (the apparatus itself typically works at room temperature).
Optical tweezers or an optical lattice then allow to trap a small number of atoms, typically in a 2D
lattice, although complex geometries in 3D are possible. Since not all traps will contain an atom, the
trapped atoms are rearranged to form a contiguous array. It is possible to trap hundreds of atoms, and
it is expected that this can be scaled to thousands, the main limit being available laser power, but also
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the time it takes to rearrange the atoms. Trap lifetimes are on the order of tens of seconds, but may
be significantly extended using a cryostat. The qubit is usually encoded via electronic spin states of
the atoms. Single qubit gates are performed using laser or microwave pulses, and the same gate can
be applied to several qubits simultaneously. Two qubit gates are implemented using Rydberg states,
which are highly excited electronic states. The spatial range of the Rydberg blockade determines the
connectivity of the qubits.

Aside from digital quantum computation using gates, trapped neutral atoms also lend themselves to
analog quantum simulation, e.g., by simulating the Bose–Hubbard model which is a popular model for
studying superconductivity.

Circuits

Another popular approach to quantum computation is using superconducting electronic circuits [Wen17].
In contrast to atoms, they are engineered devices, and they can be designed to have specific properties,
but one also has to contend with manufacturing errors. They have to be cooled in a helium dilution
refrigerator (to about 0.02K). Due to their macroscopic size they couple strongly to electromagnetic
fields which allows for fast control but also limits their coherence times.

Just like a classical LC circuit, composed of an inductor and a capacitor, is described by a harmonic
oscillator, a superconducting LC circuit behaves like a quantum harmonic oscillator. Since, in this case,
the energy levels are equally spaced, one has to add a non-linearity to the circuit to be able to address
individual transitions. This is done using a Josephson junction [Jos62, Jos74], which is composed of
two superconductors separated by a thin insulating barrier.

Phase, Flux and Charge qubit Generally, a superconducting circuit is made up of a capacitor, an
inductor and a Josephson junction (although the real circuits are more complicated). They are char-
acterized by the charging energy EC , the inductive energy EI , and the Josephson energy EJ . More
precisely, for different ratiosEJ/EC andEL/EJ one obtains a number of different qubits, cf. [Wen17].

The macroscopic state of the system is defined by the phase ϕ across the Josephson junction. The
dynamics of ϕ are determined by its potential whose shape is typically described as resembling a tilted
washboard. Quantized energy levels of ϕ in the local minima of this potential were first observed
in [MDC85]. This forms the basis of the implementation of a so-called phase qubit [Mar09]. Here
one works in the regime EJ/EC ≫ 1. Using the two lowest energy levels of such a local minimum,
one can implement a qubit. By changing the slope of the washboard potential one can make sure that
the two lowest levels are protected from tunnelling, while the third level is likely to tunnel, which makes
it possible to measure the qubit.

Another approach is that of the flux qubit [Orl+99], which works in the regime EJ/EC ≪ 1.
The qubit states are given by currents in a superconducting loop intersected by Josephson junctions
circulating in opposite directions. The readout can be performed using a SQUID. A main limitation of
flux qubits is their shorter coherence times.

Charge qubits, also known as Cooper-pair boxes, represent the qubit states using charge states, i.e.
the number of excess Cooper pairs on an island. At low temperature and gate voltage, one can consider
only the two lowest energy states, with 0 or 1 excess Cooper pair. In this case one works in the regime
EJ < EC . Quantum coherence in such systems was first observed in [NPT99].

Transmon Today, the most used qubit is the transmon qubit, which is a type of charge qubit insensitive
to charge noise [Koc+07]. The transmon regime is EJ ≫ EC , since the charge noise is exponentially
suppressed in EJ/EC , at the cost of a modest reduction in the relative anharmonicity, making control
somewhat more difficult.
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The circuit quantum electrodynamics (QED) architecture [Bla+21, Bla+04] places a superconduct-
ing qubit (usually a transmon), which can be thought of as an artificial atom, inside of a transmission
line resonator that forms a microwave cavity. A key advantage of this approach is the ability to suppress
radiative decay, and it can be used to measure and couple superconducting qubits. Today, circuit QED
is one of the leading architectures for quantum computing, used to implement the GKP code [Cam+20]
and even making claims of quantum supremacy [Aru+19].

Spins

Spin is an intrinsic, quantized property of all particles, such as electrons and atomic nuclei, behaving like
a “tiny magnet”. Spins can be controlled using magnetic fields and they interact with each other [Lev08,
Kup23].

Nuclear Magnetic Resonance NMR is a comparatively old and well-established technology [Hah50].
MRI machines are commonplace today, used for imaging soft body tissues and organs, and NMR is
being used daily for determining the structure of molecules and proteins. It is thus no surprise that
the earliest quantum computing experiments were performed using NMR machines [JM98, CGK98].
Currently, NMR is not a leading candidate for general-purpose quantum computation [SC99, Bra+99],
but its usefulness for imaging and sensing is clear. Optimal control is used to design pulse sequences
that optimize sensitivity, selectivity, as well as resilience to instrumental imperfections, and it is central
to the improvement of magnetic resonance technologies [Gla+15]. Moreover, NMR has long been used
as a test bed for quantum control and quantum information processing tasks, and it has motivated the
development of sophisticated quantum control methods.

Nitrogen-Vacancy Centers A perfect diamond lattice only contains carbon atoms. A nitrogen-vacancy
(NV) center in a diamond is a defect, consisting of a nitrogen atom substituting for a carbon atom, next
to a vacancy. One of the outstanding properties of NV centers is the long spin coherence time at room
temperature. NV centers are a promising platform for nanoscale MRI [Bor+19], a technique that would
enable the measurement of an individual biomolecule. Moreover, the robustness of NV centers makes
them attractive for quantum computation [Web+10, CH13], and similarly tin vacancies can be used to
build scalable architectures [Li+24].

Photons

Photons can encode quantum information, for instance in their polarization. They are the natural sys-
tem used for quantum communication, where photons are transmitted through fiber optic cables or free
space. Although single qubit rotations can be implemented using simple linear optical elements (polar-
izing beam splitters and birefringent waveplates), two qubit gates seem to require strongly non-linear
elements, which have not been discovered so far. This makes it all the more surprising that quantum
computation is possible using linear optical quantum computing [KLM01, Kok+07], which uses pho-
tons and only linear optical elements to process quantum information. This comes at the cost of making
the CNOT gates non-deterministic, with a certain success probability, which can, however, be made very
large. In this scheme, the overhead of making CNOT gates highly successful is prohibitive [OBr07]. The
resolution to this obstacle is the use of one-way computation and cluster states [RB01, Nie04]. Another
advantage of the photonic approach is that the components can be manufactured at scale [Ale+24a].
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Quantum Control Theory

After this leisurely stroll through the world of quantum technology, what follows is a gentle introduction
to quantum control theory. All of the quantum technology applications listed above need to be carefully
controlled in order to achieve their goals. This is true for any technology, but quantum mechanical
properties like coherence and entanglement are especially fragile and ephemeral, and need to be handled
with utmost precision. Typically, quantum systems are controlled using lasers or magnetic fields that
have to be modulated in time. Quantum control theory provides tools to efficiently compute the control
inputs which transform a given initial state into a desired final state, and do so with some degree of
optimality. Indeed, optimal control theory aims to minimize the resources, such as time or energy,
needed to perform a given task. Robustness to noise is another important consideration.

This section gives a very brief introduction to the quantum mechanical setting of the thesis, in
particular dissipative quantum dynamics, as described by the Lindblad master equation, and quantum
entanglement are discussed. It then introduces the basic notions of control theory, and most importantly
for us, bilinear control systems. Finally, these two topics are combined, yielding the mathematical
framework which will be explored in this thesis.

Quantum Mechanics

Quantum mechanics is the physical theory underlying all of the technologies presented above. Not only
does it yield extremely precise predictions of physical phenomena, but it is also fundamentally distinct
from classical physics, because it is inherently probabilistic. Quantum theory has its own logic, making
it at times counterintuitive, but also enabling fundamentally new paradigms such as quantum computing
and quantum cryptography.

As the topic is too vast for us to introduce here, we refer to the many great books on quantum
mechanics for background. For instance there exist introductions for physicists [SN21] and for mathe-
maticians [Hal13]. The information theoretic approach, most relevant for us, is taken in [NC10, Aar13].

This thesis addresses two important quantum mechanical phenomena: dissipation and entangle-
ment. Briefly, dissipation stems from interactions of the system with its environment and is one of the
main obstacles towards realizing scalable quantum computers. Entanglement is a fundamental quantum
mechanical property that is exploited in quantum devices to obtain advantages over classical ones. Being
able to control these two effects is of paramount importance for the realization of quantum technologies.

Basic Formalism

In quantum mechanics, states are described using unit vectors in a (complex) Hilbert space. Working
only in finite dimensional spaces, this means that the state is a unit vector |ψ⟩ in Cn. The evolution
of the system is determined by the system’s Hamiltonian H , which is a Hermitian matrix (H = H∗)
representing the energy of the state, via the Schrödinger equation7

|ψ̇(t)⟩ = −iH |ψ(t)⟩ .

Since −iH is skew-Hermitian, it is an element of the unitary Lie algebra u(n) and thus the evolution is
unitary and preserves the norm of the state. In principle the equation can be solved easily as |ψ(t)⟩ =
exp(−iHt) |ψ(0)⟩, where exp(−iHt) ∈ U(n) is the corresponding unitary propagator. However, once
the Hamiltonian depends on time, which is always the case in quantum control theory, it becomes much
more difficult to determine analytical solutions.

7We set the reduced Planck constant to ℏ = 1.
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Dissipation

So far we have talked about closed systems, that is, those which do not interact with their environment.
In practice, all quantum systems are open since it is all but impossible to perfectly isolate a system
from its environment [BP02]. For instance, an atom in a cavity will always interact with the cavity
in some way. Moreover, a perfectly isolated system would be useless for any information processing
task. For these reasons it is necessary to consider systems that are coupled to some, typically large,
environment. If the systems are left to equilibrate, one enters the realm of quantum thermodynamics,
where the environment is often called a (heat) bath. Describing the coupled system is usually infeasible,
and so approximations have to be made. We will focus on the simplest one, which assumes that the
system follows a “Markovian” evolution.

Open quantum systems cannot be described using pure states and unitary evolution. Rather, we have
to use mixed states, which represent a statistical mixture of pure states. Such a mixture may arise by
considering a large ensemble of systems, as happens in NMR, or by “tracing out” an environment corre-
lated with the state. Mathematically, a mixed state is described by a density matrix ρ, that is, a positive
semidefinite matrix of unit trace. The set of all density matrices is denoted pos1(n). Equivalently, it is
a Hermitian matrix whose eigenvalues are non-negative and add up to 1. As such, they form a discrete
probability distribution. A pure state |ψ⟩ is represented by the density matrix |ψ⟩⟨ψ| (that is, the rank
one projector onto the state |ψ⟩), while the density matrix 1/n is called the maximally mixed state. The
evolution of an open system is described using quantum channels (also called quantum maps), which
are completely positive trace preserving (CPTP) maps. This condition ensures that quantum states are
mapped to quantum states, even if the system is part of a larger system.

The set of quantum channels forms a semigroup (in contrast to the unitary group) since channels
can be composed, but in general the inverse (which might not even exist) fails to be a quantum channel.
Just like Lie groups have a corresponding set of generators given by their Lie algebra, the semigroup
of quantum channels has a set of generators forming a so-called Lie wedge [Dir+09]. This is called the
Kossakowski–Lindblad Lie wedge wKL, and its elements −L ∈ wKL are called Lindblad generators.
They give rise to the Lindblad equation [GKS76, Lin76]:

ρ̇ = −L(ρ) = −i[H0, ρ]−
r∑

k=1

ΓVk(ρ), where − ΓV (ρ) = V ρV ∗ − 1
2(V

∗V ρ+ ρV ∗V ),

whereH0 is a Hermitian matrix, representing the coherent part of the evolution, and the Vk are arbitrary
complex matrices, called Lindblad terms, representing the dissipative part of the evolution.

Physically, the Lindblad equation is obtained by making certain assumptions about the interaction
between the system and the environment. Typically one uses the Born approximation (or weak-coupling
limit), which assumes that the interaction is relatively weak, the Markov approximation, which assumes
that the environment equilibrates quickly, and the rotating wave approximation, which allows to ignore
certain fast oscillating terms. For complicated systems it is a major challenge to derive accurate noise
models, and often the noise will not be Markovian in the first place. An important approach in this
context is to measure the noise present in a system and to find the best Markovian approximation.

Entanglement

Quantum entanglement is a kind of correlation between quantum mechanical systems which goes be-
yond classical correlation. Entanglement is an important resource in pure-state quantum computa-
tion [JL03, Vid03, DV07], quantum cryptography [BB14, Gis+02], and quantum sensing [DRC17].
For the realization of such technologies, it is necessary to be able to control the entanglement within
a quantum system. In particular, the generation of sufficient entanglement, as well as the stabilization
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of entangled states, is essential. At the same time many fundamental questions about entanglement
remain unanswered, and our theoretical understanding of multipartite and mixed state entanglement is
limited [BŻ17]. Indeed, quantifying the amount of entanglement in a given system is challenging and
a large number of distinct entanglement measures are used for this purpose.

In this thesis we focus on a simple case, namely that of a closed, bipartite quantum system, meaning
a system composed of two subsystems. Given two quantum systems with corresponding Hilbert spaces
Cd1 and Cd2 , the Hilbert space corresponding to the composite system is given by the tensor product
Cd1 ⊗ Cd2 ∼= Cd1d2 . Concretely, if |i⟩ for i = 1, . . . , d1 is an orthonormal basis of Cd1 and |j⟩
for j = 1, . . . , d2 is an orthonormal basis of Cd2 , then the set of all |i⟩ ⊗ |j⟩ forms an orthonormal
basis of the composite system. States of the form |ψ⟩ ⊗ |ϕ⟩ are called product states, and they are not
entangled at all. A bipartite pure state which is not a product state is always entangled. The amount of
entanglement in such a system can be quantified using the Schmidt decomposition (which is equivalent
to the complex singular value decomposition (SVD)). This result states that for any given bipartite pure
state |ψ⟩ ∈ Cd1 ⊗Cd2 there exists a local unitary transformation U = V ⊗W ∈ Uloc(d1, d2) such that

U |ψ⟩ =
dmin∑
i=1

σi |i⟩ ⊗ |i⟩ ,

where the σi ∈ R are uniquely defined up to order and sign and they are called the singular values
of |ψ⟩. (Their squares are often called Schmidt values.) Clearly then the singular values are invariant
under local unitary transformations and hence they may be used to quantify entanglement.

If the bipartite system is symmetric (or anti-symmetric) under exchange of the two subsystems,
we say that it is bosonic (or fermionic). Interestingly, in these cases, results analogous to the Schmidt
decomposition exist. They rely on less well-known matrix decompositions, called the Autonne–Takagi
factorization and the Hua factorization respectively.

Control Theory

Control theory is a vast field, spanning from applied control engineering to highly abstract mathematics.
In practice, a control system might be, for instance, an electrical, mechanical, chemical or biological
system with certain controls or inputs (e.g., voltages, forces, steam flow rates, sweating) and outputs
(e.g., current, velocity, chemical product, body temperature). The goal is to choose the inputs such that
the system is steered into a desired state, or stabilized in such a state, and usually to do so in some kind
of optimal way. For us, the control systems will be quantum mechanical in nature, such as nuclear spins
or electronic states of an atom, and they can be steered using, for instance, magnetic fields or lasers.

Mathematically, control systems are generally8 described using a first order differential equation of
the form [Son98, CK00, Zab20]

ẋ(t) = f(x(t), u(t)), x(0) = x0 ∈ Rn,

where x(t) ∈ Rn and u(t) ∈ U ⊆ Rm. Here x is the state of the system and u is the control function.
This setting is extremely general as f can be an almost arbitrary function. In fact, this mathematical
formulation is also appropriate to study perturbations, uncertainty and stochastic noise, cf. [CK00].

Control systems can also be formulated in a more geometric way using differential inclusions [AC84,
Smi02] of the form

ẋ(t) ∈ derv(x(t)), x(0) = x0 ∈ Rn,
8This assumes that we use continuous representations of time and the state space. Sometimes it is useful to discretize

one or both of these variables, leading for instance to quantum circuit synthesis. More generally, one could also add some
stochasticity to this equation.
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where derv is now the set-valued function of achievable derivatives. Indeed, these two approaches can
be related by setting derv(x) = {f(x, u) : u ∈ U}. Then, under certain assumptions, Filippov’s
Theorem [Smi02, Thm. 2.3] shows that these two systems are indeed equivalent.

Bilinear Control Systems

In practice one often studies linear control systems, obtained by locally linearizing a complicated system,
since the theory is well understood and mature [Zab20]. Non-linear control systems on the other hand
are often hopelessly complex. Quantum control systems are naturally modeled using bilinear control
systems [Jur97, Ell09], which lie somewhere in the middle. They are not as simple as linear control
systems, but still present a beautiful mathematical structure, which can be exploited to derive powerful
results. Whereas linear control systems are of the form ẋ = Ax+ ub with u(t) ∈ R and x, b ∈ Rn and
A ∈ Rn,n, bilinear control systems, on the other hand, are of the form

ẋ(t) =
(
A+

m∑
j=1

uj(t)Bj

)
x(t), x(0) = x0 ∈ Rn,

where A,Bj ∈ Rn,n. Now one can define the operator lift of this system as

Ẋ(t) =
(
A+

m∑
j=1

uj(t)Bj

)
X(t), X(0) = 1 ∈ Rn,n.

This creates the bridge to Lie group [Kna02] and Lie semigroup [HHL89, HN93] theory, see [Law99].
Indeed, if all matricesA,Bj belong to some matrix Lie algebra, the solutions of the operator lift belong
to the corresponding matrix Lie group. This connection is extremely powerful as it brings a wealth of
tools to control theory. Conversely, tools from control theory were also instrumental in the development
of Lie semigroup theory [HHL89].

Optimal Control

In applications one is usually not only interested in how one can achieve a given task, but also in im-
plementing the task in an optimal way, typically in the least amount of time possible. There are two
main ways to do this. The Hamilton–Jacobi–Bellman (HJB) equation, which is a partial differential
equation (PDE), yields a sufficient condition for optimality [Zab20, Thm. 9.1]. Another approach is the
Pontryagin Maximum Principle (PMP), which yields a necessary condition for optimality, cf. [Zab20,
Thm. 12.1]. Indeed, the two approaches are closely related [BDZ21].

Quantum Control

Whether or not general-purpose quantum computing is a realistic goal for the next few decades, tech-
nologies like quantum sensing, quantum simulation and quantum communication are likely to remain
active and fruitful areas of research. In each case, one of the main challenges is to control extremely
delicate quantum mechanical systems such that they perform the desired information processing tasks
with the required accuracy. Quantum control theory provides us with the apposite toolbox for this chal-
lenge. In this section, we give a brief introduction to the theory and the problems it presents [DH08].
See also the roadmaps [Gla+15, Koc+22] and the book by d’Alessandro [DAl21].

Using bilinear control theory we may formulate control systems modeling quantum mechanical
experiments. Most commonly one studies the controlled Schrödinger equation

|ψ̇(t)⟩ = −i
(
H0 +

m∑
j=1

uj(t)Hj

)
|ψ(t)⟩ .
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Here H0 is the (uncontrolled) drift Hamiltonian, representing the natural evolution of the system, and
the other Hj are the control Hamiltonians representing the possible controls that can be applied to the
system. The functions uj : [0, T ] → R are the control functions (or amplitudes) which modulate the
control Hamiltonians. Depending on the experimental setup, there might be bounds on the maximal
control amplitudes, or on their rate of change. Often one assumes that they are piecewise constant, but
this is not a serious restriction.

Analogously one defines the controlled Lindblad equation

ρ̇ = −L(ρ)− i
m∑
j=1

uj(t)[Hj , ρ],

where −L is the drift Lindblad generator representing the uncontrolled evolution of a Markovian quan-
tum system and the Hj and uj are as above. Sometimes the noise is switchable, i.e. it can be turned on
and off at will, but we will not make this assumption.

There are two general kinds of questions one can ask about a control system. First, what can we
do with it, and second, how do we do it in the best possible way? More concretely, the first question is
about concepts like controllability, reachability, accessibility, and so on, meaning which states can be
reached from a given initial state. The second question is about finding explicit solutions to the control
system connecting initial and target state, and typically doing so in an optimal way.

As discussed above, optimal control synthesis can be performed analytically for small systems using
the Pontryagin Maximum Principle (PMP) or the Hamilton–Jacobi–Bellmann (HJB) equation. When-
ever such solutions can be obtained, one also gains a deep understanding of the problem at hand. In most
practical cases however numerical methods are necessary. This is because the analytic approach only
works for simple systems, which must be quite small and idealized. For larger systems with experimental
imperfections and constraints, numerical methods are indispensable.

Two well-known methods are called GRAPE (gradient ascent pulse engineering) [Kha+05] and
Krotov’s method [RNK12], see [Mac+11] for a systematic comparison. An alternative approach is
CRAB (chopped random-basis quantum optimization) [DCM11, CCM11], which expands the pulses in
a functional basis and considers only a small subset of basis functions.

What Is This Thesis About?

This thesis develops a method of reduced control systems and applies it to quantum control theory. In
particular we study two fundamental properties of quantum systems: decoherence and entanglement.

Reduced control systems The reduced control system is derived in full generality in Part I. We con-
sider bilinear (or control-affine) control systems which admit fast control on a Lie group action. This
assumption implies that two states in the same orbit can be considered equivalent. Hence the Lie group
action can be factored out to obtain a new control system defined on the quotient space. The main result
is that this reduced control system is, in a precise sense, equivalent to the original, full control system.
Importantly, we present a constructive method for lifting solutions from the reduced system to the full
system. To prove this result we need to generalize results from the perturbation theory of linear opera-
tors to the setting of symmetric Lie algebras. The remainder of the thesis then focuses on applying these
abstract mathematical tools to more concrete physical systems.

Markovian systems with unitary control The current NISQ era of quantum computation is charac-
terized by noisy systems, which severely limit the coherence time of the qubits and hence the number
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of gates that can be applied in a quantum circuit while still achieving reasonable fidelity. The noise
stems from unwanted interactions of the system with its environment. This interaction can be modeled
in many different ways. One common approach is to assume that the interaction is Markovian, and to
model it using a Lindblad equation. Additionally, we assume that we have fast control over the unitary
group, that is, that we can implement arbitrary unitary transformations in an arbitrarily short amount of
time. This assumption is justified if the unitary control is much faster than the dissipation of the system.
Now the idea is the following. Since we can almost instantaneously apply any unitary transformation to
the state ρ of the system, all states in the unitary orbit of ρ are effectively equivalent. Since the unitary
orbit of ρ is exactly the set of all density matrices with the same eigenvalues as ρ, which we denote by
λ, it should be possible to define an equivalent reduced control system on the set of eigenvalue vectors.
Since the eigenvalues are non-negative and add up to unity, this set is the standard simplex, denoted
∆n−1. This reduced control system does indeed exist, and it has the form

λ̇(t) = −LU(t)λ(t), λ(0) = λ0 ∈ ∆n−1,

where −LU(t) is a stochastic generator matrix depending on the Lindblad generator −L and the uni-
tary U(t), which is the new control function of the reduced control system. Part II is dedicated to the
derivation and the study of this system.

Bipartite systems with local unitary control The main interest in quantum information technology
stems from the fact that it yields (or at least promises to yield) quantum advantages in various fields,
such as increased computational efficiency, cryptographic security or enhanced sensitivity. In many
cases quantum entanglement is necessary to obtain such an advantage, and hence being able to control
entanglement is essential. We will consider closed bipartite quantum systems, since in this case entan-
glement is well-understood. The two subsystems interact via some given coupling Hamiltonian, and we
assume that we can implement arbitrary local unitary transformations in an arbitrarily short amount of
time. Again this means that all states in the local unitary orbit of the initial state |ψ⟩ ∈ Cd1 ⊗ Cd2 may
be considered equivalent. In this case the states are characterized by their singular values σ (due to the
Schmidt decomposition), and hence there exists an equivalent reduced control system on the singular
values. Due to the normalization of the state, the singular values lie on the hypersphere Sdmin−1, where
dmin = min(d1, d2), and the reduced control system takes the form

σ̇(t) = −HV (t)⊗W (t)σ(t), σ(0) = σ0 ∈ Sdmin−1,

where −HV (t)⊗W (t) is a rotation generator matrix depending on the coupling Hamiltonian H0, and the
local unitary V (t) ⊗W (t) is the new control function. Analogous results are obtained in the bosonic
and fermionic cases. Part III explores these systems in detail.

Roadmap

The thesis is based on the works by the author listed on p. ix. More precisely, the thesis is based on
the works [1–9], with each chapter corresponding (roughly) to one paper. The papers [10, 11] are only
tangentially related to the main theme, and hence only touched upon briefly in the appendix.

To conclude the introduction, a concise outline is given here, with more detailed outlines given at
the beginning of each part and each chapter.

Part I lays the mathematical foundation of the thesis. Chapter 1 is based on [1] and generalizes
important results from the perturbation theory of linear operators to various matrix diagonalizations
using the formalism of symmetric Lie algebras. Chapter 2, based on [2], introduces the method of
reduced control systems which is the central tool in this work.
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Part II applies these tools to dissipative quantum systems. Chapter 3, based on parts of [4], considers
open Markovian quantum systems subject to fast unitary control and defines the reduced control system
on the eigenvalues of the density matrix. Chapter 4, based on [4], parts of parts of [3], and [9], uses the
reduced control system to draw first consequences for reachability, coolability and stabilizability in such
systems. Chapter 5 is based on [5] and focuses on the case of a single qubit where explicit solutions and
optimal controls can be obtained. Chapter 6 is based on [6] and considers the task of optimal cooling
of Markovian quantum systems.

Part III applies the reduced control system to study entanglement in bipartite quantum systems.
Chapter 7, based on parts of [7], considers closed bipartite quantum systems subject to fast local unitary
control and defines the equivalent reduced control system on the singular values of the bipartite pure
state. Chapter 8, based on parts of [7], uses the reduced control system to obtain some results on control-
lability, stabilizability and speed limits. Chapter 9, based on [8], applies the theory to low dimensional
systems and obtains explicit solutions for optimal controls for tasks such as entanglement generation.

Part IV concludes the thesis while giving an outlook on outstanding problems and ongoing work.
Appendices A and B briefly touch upon related work [10, 11].

Lists of figures, tables and theorems, as well as abbreviations and symbols, and an index are provided
at the end for easy lookup.



Part I

Reduced Control Systems
„Die Mathematiker sind eine Art Franzosen: redet man zu ihnen, so übersetzen sie es in ihre

Sprache, und dann ist es alsobald ganz etwas anders.“
— Johann Wolfgang von Goethe, Maximen und Reflexionen (1907)

« La géométrie est l’art du raisonnement correct à partir de figures mal dessinées. »
— Henri Poincaré, see [Let19]

This first part lays the mathematical and control theoretic foundation of the entire thesis. It develops the
tools used in subsequent parts to study concrete applications in quantum control theory.
The main goal is to introduce a method of reduced control systems, and to do so in a mathematically
rigorous way. The idea is that a bilinear (or, more generally, control affine) control system subject to
fast control over a linear Lie group action can be reduced to the corresponding quotient space under
certain conditions. To make this idea rigorous, we work in the setting of symmetric Lie algebras. This
might sound restrictive, but we will show that this setting is rather general, corresponding to convenient
geometric properties of the Lie group action. It turns out that these symmetric Lie algebras gener-
alize and unify several matrix diagonalizations, such as the eigenvalue decomposition of Hermitian
matrices and the complex singular value decomposition, but also some less well-known ones such as
the Autonne–Takagi factorization and the Hua factorization. As mentioned in the introduction, these
matrix decompositions occur in some relevant quantum mechanical systems, and for this reason it is
worthwhile to establish a general theory using symmetric Lie algebras.

Outline Chapter 1 generalizes results from the perturbation theory of linear operators in the setting of
symmetric Lie algebras. Chapter 2 defines the reduced control system, the central object of this thesis,
and proves the important Equivalence Theorem.

Acknowledgments Part I is based on [1, 2], which are joint works with Gunther Dirr, Frederik vom
Ende and Thomas Schulte-Herbrüggen. In [1], the original version of the proof of the analytic diago-
nalization is due to Gunther Dirr, and the appendix on orbifolds was carefully proofread and partially
rewritten by Frederik vom Ende.
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CHAPTER 1
Diagonalization in

Symmetric Lie Algebras

1.1 Introduction

As outlined in the introduction of the thesis, we want to define reduced control systems, where the dy-
namics of the density matrix of an open system are reduced to those of its eigenvalues, and the dynamics
of a bipartite pure state are reduced to those of its singular values. To do this, we have to be able to an-
swer the following kind of questions. Given a path of Hermitian matrices ρ(t), we might ask if it is
possible to diagonalize all ρ(t) in a consistent way. More precisely, if ρ is continuous, measurable, real
analytic or k times differentiable, can we choose eigenvalue functions λi(t) with the same properties?
Similarly, can we choose a function U(t) of diagonalizing unitaries with nice properties? Many of these
questions have been answered for the eigenvalue decompositions of real symmetric and complex Her-
mitian matrices, as well as for singular value decompositions. However the treatment is not uniform,
and several other diagonalizations have not been studied in the same detail. In particular we need to
answer these questions also for the Autonne–Takagi factorization and the Hua factorization. For this
reason, we consider symmetric Lie algebras, which provide a unifying framework for many notions of
diagonalization, see Table 1.3 for some examples. We will answer the questions posed above and several
more in this general setting.

We start by recalling some known results in this direction, which we will then generalize to sym-
metric Lie algebras. For the symmetric or Hermitian eigenvalue decomposition, many results can be
found in [Rel69, Kat80, Bau85]. For instance, if a path of Hermitian matrices is continuous or continu-
ously differentiable, then one can choose the eigenvalues to be continuous or continuously differentiable
respectively. Furthermore [Kat80] shows that a real analytic path of Hermitian matrices can be diago-
nalized in a real analytic way. The real singular value decomposition (SVD) is considered in [Bun+91];
there it is shown that a real analytic path has a real analytic SVD, and that a smooth path of full-rank
matrices with distinct singular values has a smooth SVD. In [QR14] it is shown that a measurable func-
tion of positive definite matrices can be measurably diagonalized. There are further results which may
generalize to symmetric Lie algebras, but we will not do so here. For example, many results for Her-
mitian matrices have been extended to the infinite dimensional setting, again see [Kat80]. In [Rai11]
improved results on differentiability are shown for normal and Hermitian matrices, see in particular
Table 1 therein. In [MKS05] the behaviour of eigenvalues of matrices depending on several variables
is studied.
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Symmetric Lie Algebras

Now let us briefly introduce the notion of a symmetric Lie algebra,1 which will provide a unifying frame-
work for many diagonalizations. All necessary details are given in Appendix 1.A. This connection is
explored in [Kle06] where algorithms for computing such diagonalizations are proposed. A symmetric
Lie algebra is a (real, finite dimensional) Lie algebra g together with an involutive Lie algebra automor-
phism s. This yields a vector space decomposition g = k ⊕ p into +1 and −1 eigenspaces of s which
we call Cartan-like decomposition since it generalizes the usual Cartan decomposition. Importantly we
have the following commutator relations: [k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k. This means that the adjoint
action adk(·) = [k, ·] of k leaves p invariant. Given a connected Lie group G with Lie algebra g, and
a Lie subgroup K ⊆ G with Lie algebra k, we say that the pair (G,K) is associated to the symmetric
Lie algebra (g, s). One can show that the adjoint action Ad of K on g leaves p invariant, an in fact
the orbits of K in p do not depend on the choice of K. For this reason we can assume without loss of
generality that K is connected. We will only consider symmetric Lie algebras which are semisimple
and orthogonal, which implies that the group AdK is compact. If a ⊆ p is a maximal Abelian subspace,
then every point x ∈ p can be mapped to a by some K ∈ K, that is AdK(x) ∈ a. This generalizes the
idea of diagonalization. However the resulting element AdK(x) ∈ a is not unique, since the elements
of K which leave a invariant can act non-trivially on a. The resulting group of transformations of a is
called the Weyl group, denoted W, and it is a finite group generated by reflections. A convenient fact
about Weyl groups is that they admit a (closed) Weyl chamber w ⊆ a, such that each orbit AdK(x)
intersects w in exactly one point. If this point lies in the interior of w, then x is called regular. Note
that even if we fix AdK(x) ∈ a, the element K ∈ K need still not be unique.

We can now formulate more precisely the questions that we will answer in this chapter. Given a path
p : I → p with certain nice properties, can we choose a corresponding path a : I → a with similarly
nice properties? How do we deal with the non-uniqueness of a caused by the Weyl group? What about
a corresponding path K : I → K?

Outline and Main Results

The previous section set the stage by giving a quick introduction to the relevant concepts of symmetric
Lie algebras. To make the exposition self-contained and to fix terminology, we give a rigorous treatment
of symmetric Lie algebras in Appendix 1.A. We also list several examples in Section 1.2 which make
the setting much more concrete.

In Section 1.3 we consider functions p : X → p that are continuous and we show that by diagonal-
izing them in a given Weyl chamber, the result is also continuous. Indeed the same argument extends
to stronger forms of continuity, like uniform, Hölder, Lipschitz and absolute continuity, cf. Proposi-
tion 1.3.1.

In Section 1.4 we consider paths p : I → p that are differentiable. In Proposition 1.4.5 we show
that if p is differentiable at a point t ∈ I , then a : I → a can be chosen to be differentiable at t, and
we can give an explicit formula for this derivative. Furthermore, if p is (continuously) differentiable on
I , then a can be chosen to be (continuously) differentiable on I , see Theorem 1.4.9. To prove this, we
study (continuously) differentiable paths in orbifolds in Appendix 1.B. Moreover we show that if the
path p only contains regular elements and is Ck, then one can find Ck paths K and a diagonalizing p,
see Proposition 1.4.12.

In Section 1.5 we consider paths p : I → p that are real analytic. In this case one can find K and a
real analytic, and moreover a is determined uniquely up to a global Weyl group action. This is in stark

1For background on Lie algebras see, e.g., [Kna02].
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contrast to the differentiable case. In the analytic case we can also give a useful differential equation
defining K. This is done in Theorem 1.5.7. Some tedious calculations are relegated to Appendix 1.C.

In Section 1.6 we consider paths p : Ω → p that are measurable, where Ω can be any measurable
space. Then we can find K and a measurable, see Theorem 1.6.6. In fact we can generalize this result
to a finite family of commuting pi : Ω → p which we can then simultaneously measurably diagonalize,
see Theorem 1.6.12. For absolutely continuous paths, this allows us to simultaneously measurably
diagonalize the path and a certain projection of the derivative, see Proposition 1.6.13.

In Section 1.7 we show how the classification of simple Lie algebras over C and R translates to a
classification of diagonalizations, and we explain in what sense all semisimple, orthogonal, symmetric
Lie algebras are composed of these irreducible ones appearing in the classification, see Theorem 1.7.10.

1.2 Examples and Counterexamples

In order to warm up to our setting, let us revisit the eigenvalue decomposition of Hermitian matrices
with the above Lie algebraic setting in mind. This example is crucial, as Part II is based on it. Moreover,
it is useful in understanding the results presented in this chapter as it is, kind of by construction, a well-
explored special case. Therefore we will use it as a running example throughout the chapter.

Example 1.2.1 (Hermitian EVD). The semisimple Lie algebra sl(n,C) admits the Cartan decompo-
sition sl(n,C) = su(n) ⊕ herm0(n,C) by means of the automorphism s(X) = −X∗. This gives it
the structure of a semisimple, orthogonal, symmetric Lie algebra, and a possible pair associated to it
is given by (SL(n,C), SU(n)). Keeping the idea of diagonalization in mind, a convenient choice of a
maximal Abelian subspace of herm0(n,C) (i.e. the traceless Hermitian n×n matrices) is the subset of
all diagonal matrices. These will automatically be real and traceless; we denote this set by d0(n,R).
The corresponding Weyl group — which captures the non-uniqueness of the diagonalized element from
d0(n,R) — is isomorphic to the symmetric group Sn acting on n elements. The action on d0(n,R) is
given by permutation of the diagonal elements of the matrix. Then, a natural choice of Weyl chamber
is the subset of d0(n,R) with the diagonal elements in non-increasing order. The adjoint action of
X ∈ SL(n,C) on Y ∈ sl(n,C) is given by conjugation, that is, AdX(Y ) = XYX−1 and similarly,
forX,Y ∈ sl(n,C), it holds that adX(Y ) = [X,Y ] := XY −Y X . This holds for matrix Lie algebras
in general.

The real SVD also corresponds to a symmetric Lie algebra, although the connection is less obvious than
in Example 1.2.1.

Example 1.2.2 (Real SVD). The pair (SO(p, q),SO(p) × SO(q)) is associated to the semisimple
orthogonal symmetric Lie algebra so(p, q) with k = so(p) ⊕ so(q) and p equal to the set of ma-
trices of the form

(
0 B
B⊤ 0

)
where B ∈ Rp,q. A maximal Abelian subspace is given by such ma-

trices with B ∈ d(p, q,R) diagonal, and the Weyl group acts by permutations and sign flips, so it
is isomorphic to the signed symmetric group Z2 ≀ Sp∧q (here ≀ denotes the wreath product and ∧
the minimum). The Weyl chamber consists of all diagonal matrices with non-negative diagonal el-
ements in non-increasing order. The connection to the SVD stems from the adjoint action which is
Ad(V,W )

(
0 B
B⊤ 0

)
=
(

0 V BW⊤

(V BW⊤)⊤ 0

)
.

As a special case we obtain the following:

Example 1.2.3 (Polar decomposition of Rn). Choosing p = n and q = 1 in Example 1.2.2 yields the
polar decomposition of Rn, meaning that p ∼= Rn and k ∼= so(n). The maximal Abelian subspaces are
exactly the lines through the origin, with the Weyl group being isomorphic to Z2.
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Some further examples, namely the complex SVD, the Autonne–Takagi factorization and the Hua
factorization, are discussed in great detail in Appendix 7.A. These are the diagonalizations on which
Part III is based.

Now let us explore the most elementary example, the orthogonal diagonalization of (traceless) real
symmetric 2× 2 matrices, in a bit more detail. In particular this turns out to be equivalent to the polar
decomposition of C. As such, this is a special case of Example 1.2.3, but using a different symmetric
Lie algebra.

Example 1.2.4 (Polar decomposition). Consider the semisimple Lie algebra sl(2,R). Similarly to Ex-
ample 1.2.1, the automorphism s(X) = −X⊤ yields the Cartan decomposition sl(2,R) = so(2,R)⊕
sym0(2,R) into the orthogonal Lie algebra and the space of symmetric traceless matrices, and this
yields the structure of a semisimple, orthogonal, symmetric Lie algebra. A choice of associated pair is
given by (SL(2,R),SO(2,R)). Again we choose the diagonal matrices as our maximal Abelian sub-
space. Consider the identifications

ı : sym0(2,R) → C,
(
a b
b −a

)
7→ a+ ib,

ȷ : SO(2,R) → U(1),

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
7→ ei2ϕ,

where the first is an R-linear isomorphism and the second is a double cover. Note that ȷ induces an
isomorphism on the quotient SO(2,R)/{±1} → U(1).

Either way, the chosen maximal Abelian subspace of sym0(2,R) corresponds (w.r.t. ı) to the real
numbers, with the non-negative numbers as an obvious choice of a Weyl chamber. One readily verifies
ı(OAO⊤) = ȷ(O)ı(A), which shows that the eigenvalue decomposition of real symmetric traceless 2
by 2 matrices is equivalent to the polar decomposition of complex numbers.

Interestingly, already in this simple setting many counterexamples can be found. The nature of these
examples is that they violate regularity, that is, problems may occur as soon as the diagonalization does
not live only in the interior of a Weyl chamber.

Example 1.2.5 (Differentiability of eigenvalues). In [KM03, Example p. 2] it is shown that there
exists a path ρ : R → sym0(2,R) ∼= C which is C∞, but the eigenvalues cannot be chosen as C2 func-
tions. This can only happen because the eigenvalues coincide at some point; such degeneracies corre-
spond precisely to the boundary of the Weyl chamber of non-increasingly sorted eigenvalues. However,
by [KM03, Thm. (C) p. 1] the eigenvalues can still be chosen twice differentiable.

Example 1.2.6 (Continuity of diagonalization). The following is Example 5.3 in [Kat80], originally
due to Rellich. Consider the path ρ : R → sym0(2,R) ∼= C given by

ρ(x) = e−1/x2
(
cos(2/x) sin(2/x)
sin(2/x) − cos(2/x)

)
, ρ(0) = 0.

This path is C∞ on R, and so are the eigenvalues λ± = ±e−1/x2 . However, there does not exist a
continuous path of orthogonal matrices diagonalizing ρ.

Finally, semisimple, orthogonal, symmetric Lie algebras are closely related to the classification
of simple Lie algebras over C and R. Indeed, this connection allows for a classification of different
diagonalizations in a certain irreducible case, and we will show that all diagonalizations considered
here are in some sense composed of these irreducible diagonalizations, see Section 1.7.
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Setting Throughout Sections 1.3–1.6 we consider a semisimple, orthogonal, symmetric Lie algebra
(g, s) with Cartan-like decomposition g = k ⊕ p and with an associated pair (G,K) as defined in the
introduction, where we assume that K is connected. We fix a choice of maximal Abelian subspace
a ⊆ p and a (closed) Weyl chamber w ⊆ a. The corresponding Weyl group is denoted by W. A key
geometric fact is that since (g, s) is orthogonal, there exists an inner product on g, and hence also on p
and a, which is invariant under the action of K and W respectively. In particular AdK is a compact Lie
group and it acts isometrically on p. For precise definitions we refer to Appendix 1.A.

1.3 Continuous Diagonalization

We start with a natural way to make the diagonalization unique. Indeed, a basic fact about Weyl group
actions is that they admit a Weyl chamber which intersects everyW-orbit, and everyK-orbit2, in exactly
one point, see Lemma 1.A.54. We denote by π : p → p/K and πa : a → a/W the respective quotient
maps. They are continuous and open. Consider the following diagram.3

w a p

a/W p/K

ι

ψ

ι

πa π

ϕ

(1.1)

The maps ψ(x) = Wx and ϕ(Wx) = Kx are the unique maps which make the diagram commute.
Furthermore one can show that ψ and ϕ are in fact isometries, where the quotients a/W and p/K
are endowed with their quotient metric. This is shown in Lemma 1.A.55. This crucially uses that all
K-orbits in p intersect a orthogonally. These facts already suffice to prove some interesting results:

Proposition 1.3.1. For a given function p with values in p we denote by a↓ = ψ−1 ◦ ϕ−1 ◦ π ◦ p the
corresponding function with values in w. Then it holds that π ◦ a↓ = π ◦ p and

(i) if p : X → p is continuous, then so is a↓ : X → w;

(ii) if p : Y → p is uniformly continuous, then so is a↓ : Y → w;

(iii) if p : Y → p is α-Hölder continuous, then so is a↓ : Y → w, with the same constant 0 < α ≤ 1;

(iv) if p : Y → p is L-Lipschitz continuous, then so is a↓ : Y → w, with the same constant L > 0;

(v) if p : I → p is absolutely continuous, then so is a↓ : I → w.

Here X denotes any topological space, Y any metric space, and I an interval.

Proof. From the commutativity of Diagram (1.1) it follows that π ◦ a↓ = ϕ ◦ ψ ◦ a↓ = π ◦ p. The
remaining statements follow immediately from the fact that π is non-expansive (by definition of the
quotient metric, see Lemma 1.A.53) and the fact that ϕ ◦ ψ is an isometry (Lemma 1.A.55).

Remark 1.3.2. In the setting of Example 1.2.1, this result generalizes the idea of [Kat80, p. 109] of
choosing the eigenvalues continuously by ordering them in non-increasing order.

Now one might wonder about the existence of a continuous function in K diagonalizing p, how-
ever, Example 1.2.6 shows that, even under stronger assumptions, continuity of the diagonalizing group
elements cannot be guaranteed.

2We always consider the adjoint action of K on p, and so we will often shorten AdK(x) to Kx.
3Here ↪→ denotes an injection and↠ denotes a surjection. By ι we denote the inclusion.
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1.4 Differentiable Diagonalization

In this section we are interested in differentiable paths p : I → p. We already know from Proposi-
tion 1.3.1 (v) that if p is absolutely continuous, then a can also be chosen absolutely continuous, and
hence almost everywhere differentiable, simply by choosing a = a↓ to take values in the Weyl chamber
w. However it is clear that this cannot work to give us a everywhere differentiable, as can be seen by
choosing p : I → a differentiable and crossing several distinct Weyl chambers. Forcing a to take values
in w would introduce “kinks” in the path when p passes from one Weyl chamber to a different one.
In this section we show that if p : I → p is (continuously) differentiable, then one can also choose
a : I → a (continuously) differentiable, see Theorem 1.4.9. Then Example 1.2.5 shows that the anal-
ogous result for C2 paths does not hold, and by Example 1.2.6 there might not even exist a continuous
choice of K : I → K diagonalizing p. Moreover we show that problems with the differentiability of
a only occur at non-regular points. Indeed, Proposition 1.4.12 proves that if p is Ck and takes regular
values, then we can find Ck paths K and a diagonalizing p.

Preliminaries

We start with an important geometric fact about the K-orbits in p. For this we define the commutant of
x in p by px = {y ∈ p : [x, y] = 0}. Note that if x ∈ a then a ⊆ px with equality if and only if x is
regular. It turns out that every K-orbit in p intersects the maximal Abelian subspace a orthogonally, see
Lemma 1.A.25. More precisely, for x ∈ a, the tangent space Txp splits into an orthogonal vector space
sum of the tangent space to the orbit and px:

Txp = Tx(Kx)⊕ px = adk(x)⊕ px,

where we make liberal use of the canonical identification Txp ∼= p. We denote the orthogonal projection
onto px by Πx : p → px. Its kernel is then exactly adk(x). Similarly we denote by Π⊥

x = 1 − Πx the
orthogonal projection onto adk(x) and with kernel px.

To gain some intuition let us consider a path p : I → pwhich admits a differentiable diagonalization,
meaning that there exist differentiable a : I → a and K : I → K such that p = AdK(a).

Lemma 1.4.1. Let a : I → a and K : I → K be differentiable and let p = AdK(a). Then4

p′ = AdK(a′)− adp(K
′K−1).

In particular it must hold that

adp(K
′K−1) = −Π⊥

p p
′ (1.2)

a′ = Ad−1
K (Πpp

′) = Πa(Ad
−1
K (p′)). (1.3)

Proof. The first statement follows from a simple computation. Recall that (K−1)′ = −K−1K ′K−1.
Then

p′ = (KaK−1)′ = Ka′K−1 +K ′aK−1 −KaK−1K ′K−1 = Ka′K−1 + [K ′K−1, p].

Conveniently, the two terms on the right hand side respect the orthogonal splitting of p into kernel and
image of adp, since [p,AdK(a′)] = AdK([a, a′]) = 0, which proves the second statement. For the last
equality we used Lemma 1.A.24 (iii).

4We use a simplified notation in this lemma and its proof. For instance we use K′K−1 as a shorthand for r⋆K(K′), the
pull back along the right multiplication rK by K. If K is a matrix Lie group then both of these expressions are well defined
and equal.
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Lemma 1.4.1 already tells us much about the structure of differentiable paths p : I → p, however
it has some problems. It might seem that given p, we can find K by solving a differential equation
obtained from (1.2), and then we can determine a by solving (1.3). Unfortunately, even if p isC∞, there
might not exist a diagonalizing function K which is continuous, see Example 1.2.6. Another problem
is that in general the right hand side of (1.3) need not lie in a. Nevertheless, in Proposition 1.4.5 we
will show that if p is differentiable at a point, then a can also be chosen differentiable at that point, and
Formula (1.3) will return in a slightly modified form. Formula (1.2) will return in Section 1.5 where
the much stronger condition of p being real analytic will guarantee that the solution K exists (and is
itself real analytic). Similarly in Proposition 1.4.12 we will use Formula (1.2) to show that for regular
Ck paths we can find a Ck diagonalization.

Before we can prove the main results of this section, we need to introduce some technical tools. For
a point x ∈ p we denote by Kx the stabilizer (also called isotropy subgroup) of x in K. Similarly, for
y ∈ a we write Wy for the stabilizer of y in W. With this we can define a number of quotient spaces.
The details of the following facts can be found in Appendix 1.A.

For x ∈ a, there exists a homeomorphism ϕx : a/Wx → px/Kx, given by Wxz 7→ Kxz, which
is induced by the inclusion of a in px.5 Furthermore, it holds that if y ∈ AdK(x) then there is a
well-defined homeomorphism ϕx,y : px/Kx → py/Ky induced by any K ∈ K with AdK(x) = y.
Summarizing, one can say that the diagram

a px py

a/Wx px/Kx py/Ky

ι

πa,x

AdK

πx πy

ϕx ϕx,y

(1.4)

commutes.
Although the quotients encountered here have singularities and hence are not manifolds, they can

still be given the structure of an orbifold. In fact, the orbifolds that we deal with will have a single
linear chart. The relevant facts about such orbifolds are proven in Appendix 1.B. In order to find a
differentiable path a : I → a, we need to be able to make sense of differentiable paths in such orbifolds.
We start by defining the tangent bundle T (a/W) := (Ta)/W, where the action of W on Ta is given
by w · (x, v) = (w · x,w · v). We denote the corresponding quotient map by

Dπa : Ta → T (a/W) (1.5)

If x ∈ a, then the tangent space in a/W at the point πa(x) is denoted by Tπa(x)(a/W) and it turns
out to be homeomorphic to (Txa)/Wx. Since one can canonically identify Txa and a, the commutative
Diagram (1.4) shows that we have the homeomorphisms

Tπa(x)(a/W) ∼= a/Wx
∼= px/Kx.

Hence we can define the differential of the quotient map πa at a point x as the map

Dπa(x) : Txa → Tπa(x)(a/W), v 7→ πa,x(v).

Let us briefly recall what it means for a path ξ : I → a/W to be differentiable in the orbifold sense,
as defined in Definition 1.B.3. We say that ξ is differentiable at t ∈ I if there exists a function a : I → a
satisfying πa ◦ a = ξ, called a lift of ξ, which is differentiable at t. The derivative of ξ at t is given

5In particular, setting x = 0 one gets the homeomorphism ϕ : a/W → p/K which we used in Section 1.3.
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by Dξ(t) := Dπa(a(t), a′(t)) and it is well-defined. If ξ is differentiable at every t ∈ I , then we say
that ξ is differentiable and if additionally Dξ : I → T (a/W) is continuous, then ξ is continuously
differentiable or C1. In the following proofs we will show that if p is (continuously) differentiable,
then so is ξ := ϕ−1 ◦ π ◦ p. Then we use Proposition 1.B.8 to show that there exists a (continuously)
differentiable lift a : I → a of ξ.

Differentiable Diagonalization at a Point

First we consider differentiability at a single point. The following results will be quite useful. For the
proof of the first lemma we use the concept of a “slice” for the action of K on p. A slice at a point x is
an embedded submanifold containing x and intersecting the orbit through x in a complementary way,
see Definition 1.A.50. Such slices exist in very general settings, but in our case we can even choose a
slice in px intersecting the orbit orthogonally. The main idea is then to “project” the path p onto the
slice while keeping each point in its original orbit.

Lemma 1.4.2. Let I be an open interval and let p : I → p be differentiable at t0 ∈ I . Then there exists
K ∈ K such that x := Ad−1

K (p(t0)) ∈ a and such that v := Ad−1
K (Πp(t0)(p

′(t0))) ∈ a. Moreover,
there is a subinterval I ′ ⊆ I containing t0 and a function p̃ : I ′ → px satisfying p̃(t0) = x and
p̃′(t0) = v and π ◦ p̃ = π ◦ p on I ′.

Proof. By definition of the projection, p(t0) and Πp(t0)(p
′(t0)) commute, and hence by Lemma 1.A.26

there is some K ∈ K such that x = Ad−1
K (p(t0)) ∈ a and v = Ad−1

K (Πp(t0)(p
′(t0))) ∈ a. By

the chain rule Ad−1
K (p) is differentiable at t0 and by linearity of AdK it holds that (Ad−1

K ◦p)′(t0) =
Ad−1

K (p′(t0)).
By Lemma 1.A.51 there exists a slice Sx at x for the action of K on p, which is contained in px. Let

kx := k ∩ ker adx and let k⊥x be the orthogonal complement of kx in k. Let O be an open neighborhood
of the origin in k⊥x and consider the map σ : O × Sx → p : (k, y) 7→ Adek(y). Since

Dσ(0, x) : k⊥x ⊕ px → p, (l, z) 7→ [l, x] + z, (1.6)

Lemma 1.A.16 shows that Dσ(0, x) is bijective and by the inverse function theorem, and potentially
by shrinking O and Sx, we may assume that σ is a diffeomorphism onto its image, denoted V . Hence
x ∈ V and σ can be seen as a chart for V . On V we define the smooth map κ = σ ◦ pr2 ◦σ−1, where
pr2 sets the first coordinate to 0. Then κ(x) = x and (1.6) shows that Dκ(x) = Πx. By continuity of
p at t0, there is an open interval I ′ ⊆ I containing t0 such that the image of Ad−1

K (p) on I ′ lies in V .
Set p̃ = κ ◦Ad−1

K ◦p|I′ , then π ◦ p̃ = π ◦ p on I ′, and p̃(t0) = x, and p̃′(t0) = Dκ(x)(Ad−1
K (p′(t0)) =

Ad−1
K (Πp(t0)(p

′(t0))) = v by Lemma 1.A.24 (iii).

For the next lemma we use Diagram (1.4) as well as the fact that the stabilizer subgroup Wx still
has the properties of a Weyl group and hence admits a (closed) Weyl chamber, which we denote w̃. In
this step we go from the commutant px to a by diagonalizing in the appropriate Weyl chamber of Wx.
This makes sure that the path remains differentiable.

Lemma 1.4.3. Let x ∈ a be given and let w̃ ⊆ a be a Weyl chamber for the action of Wx on a. Then

(i) there is a continuous map ω : px → w̃ satisfying πx ◦ ω = πx,

(ii) for any sequence yn in px converging to some y ∈ w̃ there is a subsequence y′n and a sequence
K ′
n ∈ Kx such that Ad−1

K′
n
(y′n) ∈ w̃ converge to y and there is some K ∈ Kx ∩ Ky such that

AdK′
n
→ AdK .
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Proof. Recall from Corollary 1.A.57 that we have a homeomorphism ϕx : a/Wx → px/Kx induced
by the inclusion a ↪→ px. By Lemma 1.A.59 the action of Wx on a admits a (closed) Weyl chamber w̃.
The proof of Lemma 1.A.55 also yields a homeomorphism ψx : w̃ → a/Wx induced by the inclusion
w̃ ↪→ a. Combining this we define

ω = ψ−1
x ◦ ϕ−1

x ◦ πx.

Since ψx = πa,x on w̃ and ϕx ◦ πa,x = πx on a, it holds that πx ◦ ω = πx. This proves (i).
This shows that for every element yn ∈ px there is someKn ∈ Kx with Ad−1

Kn
(yn) ∈ w̃. The same

point in w̃ can be obtained using the continuous map ω applied to yn. Since y ∈ w̃ it holds that

Ad−1
Kn

(yn) = ω(yn) → ω(y) = y.

The existence of a subsequence K ′
n with the desired properties follows from the compactness of AdK.

This proves (ii).

Corollary 1.4.4. Let x ∈ a be given and let p̃ : I ′ → px be differentiable at t0 ∈ I ′ satisfying x = p̃(t0)
and v := p̃′(t0) ∈ a. Then

(i) there exists a : I ′ → a differentiable at t0 with a(t0) = x and a′(t0) = v and π ◦ a = π ◦ p̃, and

(ii) for any sequence tn → t0 in I ′ there is a subsequence t′n and elements K ′
n ∈ Kx and K ∈

Kx ∩Kv such that Ad−1
K′
n
(p̃(t′n)) = a(t′n) and such that AdK′

n
→ AdK .

Proof. Let w̃ be a Weyl chamber for Wx containing v and let ω : px → w̃ denote the map from
Lemma 1.4.3 (i). Define the path

a : I ′ → a, t 7→

{
ω
(
p̃(t)−x
t−t0

)
(t− t0) + x if t ̸= t0

x if t = t0.

Note that for t > t0, a lies in w̃, and for t < t0, a lies in −w̃. Then by continuity of ω it holds that

a(t)− x

t− t0
= ω

( p̃(t)− x

t− t0

)
→ ω(v) = v,

as t→ t0. By Lemma 1.4.3 (i) there exists for every t ∈ I ′ \ {t0} some element Kt ∈ Kx such that

a(t)− x

t− t0
= Ad−1

Kt

( p̃(t)− x

t− t0

)
, (1.7)

and hence a(t) = Ad−1
Kt

(p̃(t))which shows that π◦a = π◦p̃. Hence a satisfies all the desired properties
and this proves (i). Now let any sequence tn → t0 in I ′ be given and set Kn = Ktn . Then Kn ∈ Kx

and Ad−1
Kn

(p̃(tn)) = a(tn). By Eq. (1.7) and the compactness of AdK, there is a subsequence of AdKn
converging to some AdK with K ∈ Kx ∩Kv. This proves (ii).

Now we are ready to prove the first main result of this section, which shows that if p is differentiable
at some point, then one can also choose a to be differentiable at that point. Moreover the derivative of
a is then unique up to some Weyl group action.
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Proposition 1.4.5. Let I be an open interval and let p : I → p be differentiable at some t0 ∈ I . Then
there is a : I → a which is differentiable at t0 and satisfies π ◦ p = π ◦ a. Moreover there is some
K ∈ K such that

a(t0) = Ad−1
K (p(t0)) and a′(t0) = Ad−1

K (Πp(t0)(p
′(t0))),

and any other path b : I → a which is differentiable at t0 and satisfies π ◦ p = π ◦ b also satisfies that
b(t0) = w · a(t0) and b′(t0) = w · a′(t0) for some w ∈ W.

Remark 1.4.6. If we write ξ = ϕ−1 ◦ π ◦ p, then this proposition shows that ξ is differentiable at t0 in
the orbifold sense, as defined in Definition 1.B.3. The derivative of ξ is then

Dξ(t0) = Dπa(Ad
−1
K (p(t0)),Ad

−1
K (Πp(t0)(p

′(t0)))),

for any K ∈ K such that Ad−1
K (p(t0)) ∈ a and Ad−1

K (Πp(t0)(p
′(t0))) ∈ a.

Proof. By Lemma 1.4.2 we find some K ∈ K such that x := Ad−1
K (p(t0)) ∈ a and at the same

time v := Ad−1
K (Πp(t0)(p

′(t0))) ∈ a, as well as some open interval I ′ ⊆ I containing t0 and a path
p̃ : I ′ → px with p̃(t0) = x and p̃′(t0) = v satisfying π ◦ p̃ = π ◦ p on I ′. Then by Corollary 1.4.4 (i)
we obtain a : I ′ → a satisfying the desired properties. The uniqueness of (a(t0), a′(t0)) up to Weyl
group action follows immediately from Lemma 1.B.5 (i).

Example 1.4.7. Let us illustrate this result in the setting of Example 1.2.1. Let ρ : I → herm0(n,C) be
a path of traceless Hermitian matrices which is differentiable at some t0 ∈ I . Let ρ(t0) =

∑m
j=1 µjPj

be the eigendecomposition of ρ(t0). Then it holds that Πρ(t0)(ρ′(t0)) =
∑m

j=1 Pjρ
′(t0)Pj . Using a

unitary change of basis, we can assume that both ρ(t0) and Πρ(t0)(ρ
′(t0)) are diagonal. Then, by

Proposition 1.4.5 there exist eigenvalue functions λi : I → R which are differentiable at t0 and satisfy
λi(t0) = ρi,i(t0) and λ′i(t0) = ρ′i,i(t0). The formula for λ′i(t0) coincides with that of [Kat80, Ch. II,
Thm. 5.4] and [Rel69, Ch. I.§5, Thm. 1].

Continuously Differentiable Diagonalization

After considering differentiability at a single point, we want to extend the result to the entire path, both
in the differentiable and in the continuously differentiable case. Most of the heavy lifting will be done in
Appendix 1.B. We have shown that if p is differentiable at a point, then so is ξ in the sense of orbifolds,
see Remark 1.4.6. By definition, this means that if p is everywhere differentiable, then so is ξ. The
following technical lemma extends this to continuous differentiability.

Lemma 1.4.8. Let p : I → p be continuously differentiable. Then ξ : I → a/W given by ξ = ϕ−1◦π◦p
is continuously differentiable in the sense of orbifolds.

Proof. By Proposition 1.4.5 we know that ξ is differentiable on I in the sense of orbifolds, and its
derivative is denoted by Dξ : I → T (a/W). Let t0 ∈ I be arbitrary. We want to show that Dξ is
continuous at t0. By Lemma 1.4.2 we obtain a path p̃ on an open interval I ′ ⊆ I containing t0 which
satisfies π ◦ p̃ = π ◦ p. From the definition of p̃ it is clear that it is C1. Hence in the following we
will work with p̃ instead of p. Note that by Remark 1.4.6 we know that Dξ(t0) = Dπa(x, v) where
x = p̃(t0) and v = p̃′(t0).

First we show that Πp̃(t)(p̃′(t)) is continuous at t0. Let a : I ′ → a be the function given by Corol-
lary 1.4.4 (i). Let tn be any sequence in I ′ converging to t0. Then by Corollary 1.4.4 (ii) there is a
subsequence t′n and a sequence of elements K ′

n ∈ Kx such that Ad−1
K′
n
(p̃(t′n)) = a(t′n) as well as some
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K ∈ Kx ∩ Kv such that AdK′
n

→ AdK . To simplify notation we write xn = Ad−1
K′
n
(p̃(t′n)) and

vn = Ad−1
K′
n
(p̃′(t′n)). Since a is continuous at t0 it holds that xn → x, and since p̃′(t′n) → v it holds

that vn → v. If Πa : p → a denotes the orthogonal projection onto a, then for any z ∈ a it holds that
Π⊥
z ◦Πa = 0 since a ⊆ pz . Since v ∈ a and since Πxn is an orthogonal projection, it holds that

Πxnvn = vn −Π⊥
xnvn = vn −Π⊥

xnΠ
⊥
a vn → v.

Hence by Lemma 1.A.24 (iii) it holds that

Πp̃(t′n)(p̃
′(t′n)) = AdK′

n
(Πxn(vn)) → v,

as desired. Since for every sequence tn we have found a subsequence t′n, this shows that Πp̃(t)(p̃′(t)) is
continuous at t0.

Now we show that Dξ is also continuous at t0. This is done using a similar method. Again let
tn → t0 be given. Consider the sequence Πp̃(tn)(p̃

′(tn)) which converges to v as shown above and
note that by Lemma 1.A.52 the sequence lies in px. Then by Lemma 1.4.3 (ii) applied to this sequence,
there exists a subsequence t′n and elements K ′

n ∈ Kx satisfying vn := Ad−1
K′
n
(Πp̃(t′n)(p̃

′(t′n))) ∈ w̃ and
vn → v, as well as some K ∈ Kx ∩ Kv such that AdK′

n
→ AdK . For each n, by Corollary 1.A.49,

we find some Ln ∈ Kx ∩Kvn such that xn := Ad−1
Ln

Ad−1
K′
n
(p̃(t′n)) ∈ a. By Remark 1.4.6 it holds that

Dξ(t′n) = Dπa(xn, vn). Moreover it holds that xn → x. Hence

Dξ(t′n) = Dπa(xn, vn) → Dπa(x, v) = Dξ(t0)

by continuity of the quotient map Dπa. This concludes the proof.

So far we have shown that if p : I → p is (continuously) differentiable, then ξ : I → a/W is (con-
tinuously) differentiable in the sense of orbifolds. At this point it is not at all clear that a corresponding
(continuously) differentiable path a : I → a must also exist. That this is the case is shown in detail in
Appendix 1.B in the more general setting of orbifolds.

Theorem 1.4.9 (Differentiable Diagonalization). Let p : I → p be (continuously) differentiable,
then there exists a (continuously) differentiable path a : I → a satisfying π ◦ p = π ◦ a. Moreover,
for every t ∈ I , there is some K ∈ K such that Ad−1

K (p(t)) ∈ a and Ad−1
K (Πp(t)(p

′(t))) ∈ a, and
for any such K it holds that

(a(t), a′(t)) = w ·Ad−1
K (p(t),Πp(t)(p

′(t)))

for some Weyl group element w ∈ W.

Proof. The differentiable case follows from Proposition 1.4.5 combined with Proposition 1.B.8 (ii). The
continuously differentiable case follows from Lemma 1.4.8 combined with Proposition 1.B.8 (iii).

Remark 1.4.10. Considering the Cartan decomposition sl(n,C) = su(n)⊕ herm0(n), Theorem 1.4.9
generalizes a well-known result by Rellich (see [Rel69, Ch. I.§5, Thm. 1], as well as [Rel69, Ch. I.§5,
Theorem, pp. 44-45], or, for a simpler proof, [Kat80, Ch. II, Thm. 6.8]) showing that for a C1 path of
Hermitian matrices, the eigenvalues can be chosen as C1 functions.

Remark 1.4.11. Let us mention some counterexamples to different generalizations of this result. [Kat80,
Example 5.9] shows that for a C1 path of diagonalizable (but not symmetric) matrices, the eigenvalues
need not beC1 (but they are differentiable). Due to Example 1.2.5, even if p isC∞ we cannot guarantee
that a can be chosenC2. Note also that the diagonalizing unitary may have to be discontinuous, see Ex-
ample 1.2.6. On the other hand, slight improvements of Theorem 1.4.9 might be possible by generalizing
results from [Rai11].
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Higher Derivatives in the Regular Case

The following result shows that as long as we don’t run into non-regular points, i.e., points with non-
trivial stabilizer in the Weyl group, aCk path can always be diagonalized in aCk fashion. In Section 1.5
we will show that real analytic paths always have a real analytic diagonalization, even without the ex-
clusion of non-regular points. First we need to define an inverse of adx by restricting the domain and
codomain. Indeed we get a well-defined inverse ad−1

x : p⊥x → k⊥x , since p⊥x = p ∩ im adx. Note
that this is essentially a restriction of the Moore–Penrose pseudo-inverse of adx. Recall that Π⊥

x is the
orthogonal projection onto p⊥x .

Proposition 1.4.12. Let I be an open interval and let p : I → p be regular and Ck for 0 ≤ k ≤ ∞.
Then there exists a Ck path K : I → K such that a(t) := Ad−1

K (t)(p(t)) ∈ a for all t ∈ I . Moreover,
for k ≥ 1 we can choose K to satisfy

K ′(t) = h(t)K(t), h(t) = − ad−1
p(t)(Π

⊥
p(t)(p

′(t))), Ad−1
K(t0)

(p(t0)) ∈ a, t0 ∈ I. (1.8)

Furthermore, any continuous path b : I → a satisfying π ◦ b = π ◦ p satisfies b = w · a for some fixed
Weyl group element w ∈ W.

Proof. First we consider the continuous case k = 0. Let p0 denote the set of all regular points of p. By
Lemma 1.6.4 (proven later) this is a trivial smooth fiber bundle over the open Weyl chamber w0 with
fiber K/ZK(a), where ZK(a) = Ka is the centralizer (stabilizer) of a in K. Hence we can project p
to give continuous paths in w0 and K/ZK(a). It remains to continuously lift the path in K/ZK(a) to
K. For any t ∈ I one can find a local continuous lift in a neighborhood of t by working in any local
trivialization of the bundle πK : K → K/ZK(a). Then such local lifts can be glued together to a global
continuous lift, analogously to the proof of Lemma 1.B.7.

Now consider k ≥ 1. By the above, there is some continuousL : I → K such thatAd−1
L(t)(p(t)) ∈ a.

Define h as in (1.8). Then by Lemma 1.A.24 (ii) and (iv) it holds that

h = −(AdL ◦ ad−1

Ad−1
L (p)

◦Π⊥
a ◦Ad−1

L )(p′). (1.9)

This shows that h is continuous. Define K as in (1.8). In order to verify that Ad−1
K (p) lies in a, we

compute

(Ad−1
K (p))′ = Ad−1

K (p′) + [Ad−1
K (p),K−1K ′] = Ad−1

K (p′) + Ad−1
K ([p, h]) = ΠAd−1

K (p)(Ad
−1
K (p′)),

and hence the part of the derivative tangent to the fibers is always zero. Together with the assumption
Ad−1

K(t0)
(p(t0)) ∈ a, this shows that Ad−1

K (p) remains in a at all times. It remains to show that we
indeed have the desired level of differentiability. Note that if h ∈ Cj−1, this implies that K ∈ Cj , and
by replacing L by K in (1.9), we see that K ∈ Cj implies that h ∈ Cmin(j,k−1), which by induction
implies that K ∈ Ck. Finally, the uniqueness claim is clear, since a continuous lift of π ◦ p in a must
lie in a single open Weyl chamber and is uniquely defined within this Weyl chamber.

Remark 1.4.13. The homogeneous space K/ZK(a) is reductive with k = zk(a)⊕ zk(a)
⊥, since ZK(a)

is compact. This induces a connection of the principal bundle π : K → K/ZK(a), called the canonical
connection, cf. [KN96, Ch. II, Thm 11.1]. In Proposition 1.4.12 we implicitly used this connection to
lift differentiable paths from K/ZK(a) to K.

Remark 1.4.14. Proposition 1.4.12 generalizes [Bun+91, Thm. 2] which shows that a C1 path of real
m by n matrices of full-rank and with distinct singular values has a C1 singular value decomposition.
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1.5 Analytic Diagonalization

In this section we show that for a real analytic path p : I → p there exists a real analytic pathK : I → K
such that Ad−1

K (p) lies in a. Clearly the path Ad−1
K (p) is real analytic, and in fact it is the unique real

analytic path in a which is a lift of π ◦ p, up to a global Weyl group action. This is the content of
Theorem 1.5.7. This result stands in stark contrast to the previous section since even a C∞ path p
cannot guarantee the existence of a continuous diagonalizing K, see Example 1.2.6, or a C2 choice of
diagonal a, see Example 1.2.5.

Preliminaries

We will start with the well-known matrix case, and then lift the diagonalization to the symmetric Lie
algebra via the adjoint representation. Consider a finite dimensional real inner product space V and its
complexification V C. For an operator A ∈ gl(V ) we call Ac ∈ gl(V C) ∼= gl(V )C its complexification.
To avoid confusion, we use âd to denote the adjoint maps on gl(V ) and gl(V C). We endow gl(V ) and
gl(V C) with the Hilbert-Schmidt inner product ⟨A,B⟩ = tr(A∗B).

Lemma 1.5.1. Let V be a real inner product space and A ∈ gl(V ). If A is semisimple,6 then so are
Ac, and âdA, and âdAc . Similarly, if A is normal, then so are Ac, and âdA, and âdAc .

Proof. LetA be semisimple. Recall that an operator is semisimple if and only if its minimal polynomial
is square free. This shows that Ac is semisimple if and only if A is. Then it is easy to see that diago-
nalizability of Ac implies diagonalizability of âdAc . But since âdAc is the complexification of âdA, the
above shows that âdA is semisimple.

If A is normal, then clearly Ac is too. An elementary computation shows that tr
(
(âdA(B))∗C

)
=

tr
(
B∗ âdA∗(C)

)
, which implies that (âdA)∗ = âdA∗ for A ∈ gl(V ) and thus[

(âdA)
∗, âdA

]
= âd[A∗,A] = 0,

and so âdA is also normal. The proof for Ac is identical.

Lemma 1.5.2. Let V be a finite dimensional real inner product space and let V C be its complexification.
Let A ∈ gl(V ) be semisimple and let Ac denote the complexification. Then it holds that

gl(V ) = im âdA ⊕ ker âdA, gl(V C) = im âdAc ⊕ ker âdAc ,

and
im âdA = gl(V ) ∩ im âdAc , ker âdA = gl(V ) ∩ ker âdAc .

Moreover, if A is normal, then the decompositions are orthogonal.

Proof. The decomposition into kernel and image holds for every semisimple operator. It is clear that if
X ∈ gl(V ) then [Ac, Xc] = 0 if and only if [A,X] = 0. Let Z ∈ gl(V C) and assume that âdAc(Z) ∈
gl(V ). Then [A,Z+Z]/2 = [Ac, Z]. IfA is normal, then clearly the decomposition gl(V ) = im âdA⊕
ker âdA is orthogonal. Using Lemma 1.5.1 the same is true for the complexification.

6Recall that a linear operator is semisimple if each invariant subspace has an invariant complement. Over C this is
equivalent to being diagonalizable.
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Hence, for semisimpleA ∈ gl(V ), we can define the projection Π̂A onto ker âdA and along im âdA,
and its complement Π̂−

A = 1 − Π̂A. If A is normal, then the projection is orthogonal and we write
Π̂⊥
A = 1 − Π̂A. We use the same notation for the complexification Ac. Lemma 1.5.2 also shows that

for A semisimple, the maps âdA|im âdA
and âdAc |im âdAc

are bijective. We will write the inverse maps

as âd
−1

A and âd
−1

Ac and leave the restriction implicit.
More explicitly, for semisimple Ac with eigenvalues λi and eigenprojections Pi for i = 1, . . . , n,

we can express the inverse of âdAc on the image of Π̂−
Ac

by

(
âd

−1

Ac ◦ Π̂
−
Ac

)
(B) =

n∑
k=1

n∑
l=1
l ̸=k

PkBPl
λk − λl

. (1.10)

Corollary 1.5.3. ForA,B ∈ gl(V ) andC ∈ im âdA it holds thatΠ⊥
Ac
(Bc) = Π⊥

A(B) and âd
−1

Ac (Cc) =

âd
−1

A (C).

Proof. This follows from Lemma 1.5.2.

Now we consider a real analytic path of operators A : I → gl(V ). We can always find a simply
connected open set G ⊆ C containing I and such that there is an analytic continuation Ac of A on G.
Outside of a discrete set of exceptional points7 in G, the number of eigenvalues λi and the dimensions
of the corresponding eigenprojectors Pi are constant. In fact, by [Kat80, Thm. 1.8], the eigenvalues λi,
eigenprojectors Pi, and the eigennilpotents Di are branches of analytic functions with only algebraic
singularities at some of the exeptional points. If A(t) is semisimple for all t ∈ I , then Ac is also
semisimple on G, since its eigen-nilpotents must vanish identically.

Lemma 1.5.4. Let V be a finite dimensional complex Hilbert space and A : I → gl(V ) be a real
analytic curve of normal operators. Moreover, let t0 ∈ I be an exceptional point and let Ac(z) denote
the analytic extension of A(t) to an open disk Dr of radius r about t0 such that no other exceptional
points are contained in Dr. Then, on the punctured disc Ḋr the following identity holds:

−
(
âd

−1

Ac(z) ◦ Π̂
−
Ac(z)

)
(A′

c(z)) =
1

2

n∑
k=1

[P ′
k(z), Pk(z)] , (1.11)

where Pk(z) are the corresponding eigenprojections of Ac(z). In particular, (1.11) shows that the
expression can be continued analytically to z = t0.

Proof. This follows from a long but straightforward computation involving resolvents given in Ap-
pendix 1.C.

The motivation for (1.11) comes from Lemma 1.4.1 and Proposition 1.4.12. The right hand side is
the formula derived in [Kat80, p. 105], whereas the left hand side is written in terms of Lie algebraic
quantities. A priori it is not even clear that the left hand side should be continuous.

Corollary 1.5.5. Let V be a real inner product space, and let I be an open interval containing 0. Let
A : I → gl(V ) be a real analytic curve of normal operators, and let U : I → GL(V ) be the solution
of the ordinary differential equation

U ′(t) = −
(
âd

−1

A(t) ◦ Π̂⊥
A(t)

)
(A′(t)) · U(t), U(0) = 1 ∈ GL(V ). (1.12)

7An exceptional point in I is a point at which two eigenvalues meet, without being permanently degenerate. Any compact
set in C contains only finitely many exceptional points.
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Then it holds for all t, s ∈ I that

[Ad−1
U(t)(A(t)),Ad

−1
U(s)(A(s))] = 0.

Proof. We start by complexifying. Let G ⊆ C be a simply connected open set containing I such that
there is an analytic continuation Ac of A on G. Let Uc : G → GL(V C) be the solution of the ordinary
differential equation8

U ′
c(z) = −

(
âd

−1

Ac(z) ◦ Π̂
−
Ac(z)

)
(A′

c(z)) · Uc(z), Uc(0) = 1 ∈ GL(V C).

By Lemma 1.5.4 the solution Uc satisfies

U ′
c(z) =

1

2

n∑
k=1

[P ′
k(z), Pk(z)] · Uc(z)

where the Pk are the eigenprojections of Ac. By [Kat80, Ch. II §4.5] this implies that Pk(z) =
AdUc(z)(Pk(0)). Hence all Ad−1

Uc(z)
(A(z)) for z ∈ G commute. Now we define by restriction U :=

Uc|I . By Corollary 1.5.3 it is clear thatU satisfies (1.12) and of course [Ad−1
U(t)(A(t)),Ad

−1
U(s)(A(s))] =

0 still holds.

Real Analytic Diagonalization

The main idea is to go from a semisimple, orthogonal, symmetric Lie algebra to concrete matrices via
the adjoint representation and to then use the previous result. The following elementary properties of
Lie algebra homomorphisms will be useful for this transition step. We use an arbitrary homomorphism
ϕ here instead of ad to avoid confusion with the other uses of ad.

Lemma 1.5.6. Let ϕ : g → h be a Lie algebra homomorphism and let ad and âd denote the respective
adjoint maps. Then for x, y ∈ g it holds that

ϕ(adx(y)) = âdϕ(x)(ϕ(y)), (1.13)

and hence ϕ maps im adx to im âdϕ(x) and ker adx to ker âdϕ(x). Now assume that x and ϕ(x) are
semisimple9. Let Π−

x : g → g denote the projection onto im adx along ker adx and analogously for
Π̂−
ϕ(x) : h → h. Then

ϕ(Π−
x (y)) = Π̂−

ϕ(x)(ϕ(y)). (1.14)

Proof. Eq. (1.13) holds by definition, and it immediately implies that ϕ maps im adx to im âdϕ(x) and
ker adx to ker âdϕ(x). Now assume that x and ϕ(x) are semisimple. If y ∈ im adx and z ∈ ker adx we
see that ϕ(Π−

x (y + z)) = ϕ(y) and Π̂−
ϕ(x)(ϕ(y + z)) = ϕ(y) by the previous observation.

Theorem 1.5.7 (Real Analytic Diagonalization). Let I be an open interval containing 0 and let
p : I → p be a real analytic path. Then there exists a real analytic path K : I → K such that
a(t) := Ad−1

K(t)(p(t)) ∈ a for all t ∈ I . Moreover, such K can be obtained as the solution to

K ′(t) = k(t)K(t), k(t) = − ad−1
p(t)(Π

⊥
p(t)(p

′(t))), Ad−1
K(0)(p(0)) ∈ a.

8The solution exists and is unique and holomorphic. See for instance [Kat80, p. 100].
9An element of a Lie algebra is semisimple if its ad-representation is a semisimple operator.
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Furthermore, any real analytic path b : I → a satisfying π ◦ b = π ◦ ρ satisfies b = w · λ for some
fixed Weyl group element w ∈ W.

Proof. Let p̂(t) = adp(t). This is a real analytic path in gl(g). By the proof of Lemma 1.A.29 p̂ is
normal on I . By Corollary 1.5.5 the function K̂ : I → GL(g) solving the differential equation

K̂ ′(t) = −
(
âd

−1

p̂(t) ◦ Π̂⊥
p̂(t)

)
(p̂′(t)) · K̂(t), K̂(0) = 1 ∈ GL(g)

diagonalizes p̂ in the sense that

[Ad−1

K̂(t)
(p̂(t)),Ad−1

K̂(s)
(p̂(s))] = 0 (1.15)

for all t, s ∈ I . Now we need to translate this back to g. First we define the function k : I → k by

k(t) = − ad−1
p(t)(Π

⊥
p(t)(p

′(t))), (1.16)

and we claim that

adk(t) = −âd
−1

p̂(t)(Π̂
⊥
p̂(t)(p̂

′(t))). (1.17)

Indeed, this follows from Lemma 1.5.6 with ad : g → gl(g) as ϕ. To apply the lemma we need to verify
that both p(t) and p̂(t) are semisimple as Lie algebra elements, which follows in both cases from the
above observation that p̂(t) is a normal operator. So we may compute:

âdp̂(t)(adk(t))
(1.13)
= adadp(t)(k(t))

(1.16)
= − adΠ⊥

p(t)
(p′(t))

(1.14)
= −Π̂⊥

p̂(t)(p̂
′(t)).

Now we define K : I → K by

K ′(t) = k(t)K(t), K(0) = 1,

and we claim that
K̂(t) = AdK(t) .

Indeed, both K̂(t) and AdK(t) lie in GL(g), they satisfy K̂(0) = AdK(0), and since

(AdK(t))
′ = adk(t)AdK(t),

they satisfy the same differential equation by (1.17).10 This implies that Ad−1

K̂
(adp) = adAd−1

K (p), and
hence

0
(1.15)
= [Ad−1

K̂(t)
(p̂(t)),Ad−1

K̂(s)
(p̂(s))] = [adAd−1

K(t)
(p(t)), adAd−1

K(s)
(p(s))] = ad[Ad−1

K(t)
(p(t)),Ad−1

K(s)
(p(s))],

and by semisimplicity of g this means that [Ad−1
K(t)(p(t)),Ad

−1
K(s)(p(s))] = 0. Since Ad : G → GL(g)

has discrete kernel, K is real analytic as continuous lift of K̂. Since all Ad−1
K(t)(p(t)) commute, by

Lemma 1.A.26 there exists L ∈ K such that Ad−1
K(t)L(p(t)) ∈ a for all t ∈ I . Then K̃(t) = K(t)L

also satisfies K̃ ′(t) = k(t)K̃(t). Finally, uniqueness of the diagonalized path up to global Weyl group
action follows from Lemma 1.B.11.

Remark 1.5.8. This theorem generalizes the well-known analytic diagonalization of Hermitian matri-
ces, see [Kat80, Thm. 6.1], and also [Bun+91, Thm. 1] which is the special case for the real singular
value decomposition.

10Note that in the case where K = Intk(g), it even holds that K = K̂.
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1.6 Measurable Diagonalization

The main result of this section is Theorem 1.6.6, which shows that any measurable11 function p : Ω → p,
where Ω is any measurable space, can be diagonalized as p(ω) = AdK(ω) ◦a(ω) with measurable
functions K : Ω → K and a : Ω → a. This generalizes the analogous result [QR14, Thm. 2.1]
for the unitary diagonalization of positive definite matrices. We then further generalize this result in
Theorem 1.6.12 to show that a finite family of commuting measurable functions can be simultaneously
measurably diagonalized.

In order to show that a single measurable function p : Ω → p can be measurably diagonalized, we
will describe a stratification of p into embedded submanifolds with a simple structure. This stratification
originates from an intuitive partition of the Weyl chamber w.

Remark 1.6.1. Let w ⊆ a be a closed Weyl chamber. Then w is a polyhedral cone, that is, it is defined
by a finite set of linear homogeneous inequalities on a. Indeed one can choose these inequalities such
that each corresponds to a reflection in W whose hyperplane defines a facet of w. Let ws, with s ∈ S
some index set, denote the finitely many open faces of w, that is, the relative interiors12 of the closed
faces. Then the ws form a partition of w.

Lemma 1.6.2. Let w ⊆ a be a closed Weyl chamber and x, y ∈ w. Then x and y belong the the same
open face of w if and only if Kx = Ky, or equivalently, Wx = Wy.

Proof. First we argue that if x, y ∈ w have the same stabilizer in W, then they belong to the same
open face of w. Indeed, if they have the same stabilizer, then by Remark 1.6.1, they satisfy the same
equalities in the inequality description of w and hence they belong to the same open face. Next we show
that if x, y ∈ ws for some open face ws, then they have the same stabilizer in K. By Kleiner’s Lemma,
see [AB15, Lemma 3.70], if p : [0, 1] → p is a geodesic segment realizing the distance between the
orbits AdK(p(0)) and AdK(p(1)), then all points p(t) for t ∈ (0, 1) have the same stabilizer in K. By
Corollary 1.A.56, every line segment in w is of this type. Since the ws are convex and relatively open,
this shows that all points belonging to the same ws have the same stabilizer in K. Finally it is clear that
if x, y have the same stabilizers in K, then the same is true in W. This concludes the proof.

Corollary 1.6.3. Let w ⊆ a be a closed Weyl chamber and let ws be an open face of w. If x, y ∈ ws,
then px = py.

Proof. For z ∈ a, Corollary 1.A.47 with A = {z} shows that pz = AdKz(a). For x, y ∈ ws, by
Lemma 1.6.2 it holds that Kx = Ky and hence px = py.

Lemma 1.6.4. Let w ⊆ a be a closed Weyl chamber and denote ps = AdK(ws) and let Ks denote
the stabilizer in K of the points in ws. Then the map K/Ks × ws → ps, (KKs, x) 7→ AdK(x) is a
K-equivariant diffeomorphism and ps is an embedded submanifold.

Proof. First note that the Ks are well-defined due to Lemma 1.6.2. Clearly the map ϕ : K/Ks×ws →
ps, (KKs, x) 7→ AdK(x) is well-defined, smooth and K-equivariant and surjective. To see that it is
injective, consider two points (K1Ks, x) and (K2Ks, y) mapped to the same point. Then x = y since
each orbit intersects w in exactly one point by Corollary 1.A.39, and K−1

1 K2 ∈ Kx = Ks. Hence
K1Ks = K2Ks. We show that the differentialDϕ(KKs, x) is injective. By equivariance, it suffices to

11In this section, all topological spaces will be endowed with their Borelσ-algebra, that is, the smallestσ-algebra containing
all open sets, except for Prop. 1.6.13 where we use the Lebesgue measure.

12The relative interior of a subset S of a vector space V is the topological interior of S seen as a subset of the affine hull
of S, that is, the smallest affine subspace containing S, see [Zăl02, pp. 2–3].
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consider K = 1. Then for v ∈ Txws we obtain Dϕ(1Ks, x)(0, v) = v ∈ a and for w ∈ k/ks ∼= k⊥x we
obtain Dϕ(1Ks, x)(w, 0) = [w, x] ∈ a⊥ by Lemma 1.A.16. Hence Dϕ(1Ks, x)(w, v) only if v = 0
and w = 0. Hence ϕ is an immersion. To see that ps is embedded, let x ∈ ws. Consider a sequence of
points xi ∈ ws andKi ∈ K such that AdKi(xi) → x. Then, since the quotient map πa is open, xi → x
and since the action is proper, a subsequence of Ki converges to some K ∈ Ks. This shows that ϕ is
an embedding.

Lemma 1.6.5. Let G be a Lie group, H a closed subgroup of G, and Ω a measurable space. If γ :
Ω → G/H is measurable, then there exists a measurable lift γ̃ : Ω → G.

Proof. Since the quotient map π : G → G/H, g 7→ gH is a smooth submersion (cf. [Lee13,
Thm. 21.17]), there is an open neighborhood U of e in G and there are charts σ : Rn → U and
τ : Rn−k → π(U) ⊆ G/H such that τ−1 ◦ π ◦ σ : Rn → Rn−k is simply the projection onto the first
n − k coordinates. The sets of the form π(gU) form an open cover of G/H and hence there exists a
countable subcover whose open sets are Wi := π(giU) with gi ∈ G for i ∈ N. Then define the sets
A1 =W1 and Ai =Wi \

⋃i−1
m=1Am for i ≥ 2, which form a countable partition of G/H consisting of

measurable sets. Let Ωi = {γ ∈ Ai} be the preimages, which form a countable measurable partition of
Ω. Then it suffices to find measurable lifts γ̃i : Ωi → G/H of each restriction γi := γ|Ωi . By definition,
g−1
i γi takes image in g−1

i Ai ⊆ π(U). Using the chart τ this path can be seen as a measurable path in
Rn−k, which can be lifted to Rn using the inclusion ι : Rn−k → Rn : x → (x, 0, . . . , 0). That is, we
define γ̃i = gi ◦ σ ◦ ι ◦ τ−1 ◦ g−1

i ◦ γi and this concludes the proof.

Putting everything together we can now prove the first main result of this section.

Theorem 1.6.6 (Measurable Diagonalization). Let Ω be a measurable space and let p : Ω → p
be measurable. Then there exist measurable functions K : Ω → K and a : Ω → a such that
p(ω) = AdK(ω)(a(ω)) for all ω ∈ Ω.

Proof. Let the ws and ps be as in Lemma 1.6.4. Then the ps yield a finite partition of p into measurable
subsets, and the sets Ωs := {p ∈ ps} ⊆ Ω yield a finite partition of Ω into measurable subsets, and it
suffices to find measurable functions Ks : Ωs → K and as : Ωs → a satisfying AdKs(ω)(as(ω)) =
p(ω) for all ω ∈ Ωs. Let ps = p|Ωs , then by Lemma 1.6.4 one can consider ps as a measurable map
Ωs → K/Ks × ws. Then we define the measurable maps as : Ωs → a by as = pr2 ◦ ps and
K̃s : Ωs → K/Ks by K̃s = pr1 ◦ ps, and using Lemma 1.6.5 we obtain a corresponding measurable
map Ks : Ωs → K.

Remark 1.6.7. This generalizes [QR14, Thm. 2.1] which shows that a measurable function of positive
definite matrices can be unitarily diagonalized in a measurable way.

We can further strengthen this result by showing that finitely many commuting measurable functions
pi : Ω → p for i = 1, . . . , n can be simultaneously measurably diagonalized. The proof will be based
on induction on i. The idea will be to diagonalize pi+1 using group elements which stabilize all the
previously diagonalized paths. To do this we need to work with symmetric Lie subalgebras of g, which
will in general not be semisimple, but still reductive.

First we will need two simple lemmas about Lie subgroups and restrictions of Lie group homomor-
phisms:

Lemma 1.6.8. Let G be a Lie group with Lie subgroups H and K satisfying the inclusion K ⊆ H.
Then K is a Lie subgroup of H.
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Proof. The identity onG descends to the inclusionK ↪→ H, and by Lemma 1.A.21 the latter is smooth,
so its image is a Lie subgroup in H by [Lee13, Thm. 7.17].

Lemma 1.6.9. Let X be a real, finite dimensional vector space and let Y ⊆ X be a subspace. Let
G ⊆ GL(X) be a Lie subgroup containing only elements which leave Y invariant. Let H ⊆ GL(Y )
be any Lie subgroup such that for g ∈ G the restriction g|Y lies in H. Then the restriction G → H
which maps g → g|Y is a Lie group homomorphism.

Proof. Let GL(X,Y ) ⊆ GL(X) be the subgroup of elements which leave Y invariant. If PY is any
idempotent linear map on X with image Y , then GL(X,Y ) = {g ∈ GL(X) : gPY = PY gPY }; hence
it is a closed subgroup and thus an embedded Lie subgroup, see [Lee13, Thm. 7.21]. Clearly G is a
subgroup of GL(X,Y ), and by Lemma 1.6.8 and the above, it is a Lie subgroup. Let r : GL(X,Y ) →
GL(Y ) be the restriction map g 7→ g|Y , which is a Lie group homomorphism. By Lemma 1.A.21 it
descends to a Lie group homomorphism G → H, which concludes the proof.

Now we can give the promised induction argument which will be the key ingredient for the following
theorem.

Lemma 1.6.10. LetΩ be a measurable space and letA ⊆ p be any subset. If p : Ω → pA is measurable,
then there exists a measurable function K : Ω → KA such that Ad−1

K(ω)(p(ω)) ∈ a for all ω ∈ Ω.

Proof. By Lemma 1.A.43 and Lemma 1.A.44 the commutant gA is reductive and can be written as
gA = h ⊕ z where h = [gA, gA] is the semisimple part and z is the center of gA. Moreover (h, s|h)
is a semisimple, symmetric Lie subalgebra of g, and by Lemma 1.A.7 it is orthogonal. Its Cartan-like
decomposition is h = l ⊕ q, where l = h ∩ k and q = h ∩ p. It holds that pA = q ⊕ (z ∩ p) since
h and z are invariant under s. Let p̃ : Ω → q be the component of p in q. Let b denote a maximal
Abelian subspace of q and note that without loss of generality b ⊆ a. The first step is to diagonalize
p̃ using the previous theorem. Let (H = Int(h),L = Intl(h)) be the canonical pair associated with
(h, s|h) as in Lemma 1.A.20. By Theorem 1.6.6 there exists a measurable path K̃ : Ω → L such that
Ad−1

K̃(ω)
(p̃(ω)) ∈ b for all ω ∈ Ω. The next step is to lift the path K̃ toKA. Since l ⊆ kA, Lemma 1.6.8

shows that L = Intl(h) is a Lie subgroup of IntkA(h), and so we can consider the path K̃ to take values
in IntkA(h). Consider the adjoint representation of (KA)0 on h, denoted by Ad |h : (KA)0 → IntkA(h),
which is surjective. We need to show that this is a Lie group homomorphism. Indeed, we can write
this as a composition (KA)0 → IntkA(gA) → IntkA(h). By Lemma 1.A.22 the first map is a Lie
group homomorphism. Since the adjoint representation of kA preserves h and by Lemma 1.6.9 the
second one is also a Lie group homomorphism. Hence by the Lie group Isomorphism Theorem [Lee13,
Theorem 21.27], we can consider the path K̃ to take values in (KA)0/ ker(Ad |h), and by Lemma 1.6.5
we obtain a measurable path K : Ω → (KA)0 satisfying Ad−1

K(ω)(p̃(ω)) ∈ b for all ω ∈ Ω. Finally we
show that K is the desired path. But this follows from the fact that KA leaves h and z invariant, and
hence also q and z ∩ p, and from the fact that z ∩ p ⊆ a.

Now let us describe a partition of a which extends the decomposition of w of Remark 1.6.1. In fact
we may simply take all relatively open faces of all Weyl chambers, removing duplicates of course. This
yields a partition of a into finitely many subsets ar with r ∈ R for some index setR. We generalize this
partition of a to the n-fold Cartesian product an. Consider some tuple r = (ri)

n
i=1 ∈ Rn of indices in

R. We write ar = ar1 × . . . × arn and note that there are finitely many such sets and they are disjoint
and cover an.

Corollary 1.6.11. Let r ∈ Rn and x, y ∈ ar. Then x and y have the same stabilizer in K and the same
commutant in p, i.e., K{x1,...,xn} = K{y1,...,yn} and p{x1,...,xn} = p{y1,...,yn}.
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Proof. This follows from Lemma 1.6.2 and Lemma 1.6.3.

The corollary shows that we may define the simultaneous stabilizer Kr := K{x1,...,xn} and the
simultaneous commutant pr := p{x1,...,xn}. With this we can prove the second main result of this
section.

Theorem 1.6.12 (Simultaneous Measurable Diagonalization). LetΩ be a measurable space and
let pi : Ω → p be measurable for i = 1, . . . , n. Assume that [pi(ω), pj(ω)] = 0 for all ω ∈ Ω
and for all i, j ∈ {1, . . . , n}. Then there exists a measurable function K : Ω → K such that
Ad−1

K(ω)(pi(ω)) ∈ a for all i = 1, . . . , n and for all ω ∈ Ω.

Proof. We proceed by induction on i by showing that if there exists a measurable K : Ω → K such
that Ad−1

K(ω)(pj(ω)) ∈ a for all j ≤ i and for all ω ∈ Ω, then there exists a measurable K̃ : Ω → K

such that Ad−1
K̃(ω)

(pj(ω)) ∈ a for all j ≤ i + 1 and for all ω ∈ Ω. The base case i = 1 is exactly
Theorem 1.6.6. Assume now that 1 ≤ i < n and let K be such that Ad−1

K ◦ pj ∈ a for all ω ∈ Ω
and j ≤ i. Now consider any subset ar with r ∈ Si of the partition of ai defined above. Then the
set Ωr = {Ad−1

K (p1, . . . , pi) ∈ ar} is measurable and it suffices to show that we can diagonalize
pi+1|Ωr . By Corollary 1.6.11, for all ω ∈ Ωr, the set {Ad−1

K(ω)(pj(ω)) : j = 1, . . . , i} will have
the same stabilizer Kr in K and the same commutant pr in p. Hence for all ω ∈ Ωr it holds that
Ad−1

K(ω)(pi+1(ω)) ∈ pr and by Lemma 1.6.10 there exists a measurable path K̃ : Ωr → Kr which
diagonalizes Ad−1

K(ω)(pi+1(ω)) on Ωr. This proves the induction step and concludes the proof.

For our final result we specialize to the case where our measurable space is an interval I with the
Lebesgue measure and where p : I → p is absolutely continuous.

Proposition 1.6.13. Let I ⊆ R be an interval. Let p : I → p be absolutely continuous. Then there
exists K : I → K measurable such that a(t) = Ad−1

K(t)(p(t)) and b(t) = Ad−1
K(t)(Πp(t)(p

′(t))) lie in a

and b(t) = a′(t) for almost every t ∈ I . In fact we can ensure that a = a↓.

Proof. First we show that Πp(t)(p′(t)) is measurable. By Theorem 1.6.6 there is a measurableK : I →
K such that a(t) := Ad−1

K(t)(p(t)) ∈ a. By Lemma 1.A.24 (iii) it suffices to show that Πa(t) is measur-
able, and in fact we may show this on each Is = {a ∈ ws}with the partition from Remark 1.6.1. Indeed,
on these sets, Πa(t) is a constant linear projection, so it is clearly measurable. Since p and Πp(t)(p

′(t))
are measurable and commute almost everywhere by construction, there is, by Theorem 1.6.12, some
measurable K̃ : I → K such that ã(t) = Ad−1

K̃(t)
(p(t)) and b̃ = Ad−1

K̃(t)
(Πp(t)(p

′(t))) are measurable
and lie in a almost everywhere. Now consider the path a↓ as defined in Proposition 1.3.1, which is ab-
solutely continuous by item (v) of the same proposition. Then the path (a↓, (a↓)′) in Ta is measurable
almost everywhere. By Proposition 1.4.5 there exists for almost every t0 ∈ I some w̃ ∈ W such that
(a↓(t0), (a↓)′(t0)) = w̃ · (ã(t0), b̃(t0)). By Lemma 1.B.10 there is some measurable w : I → W such
that (a↓, (a↓)′) = w · (ã, b̃) almost everywhere. Let L : I → K be a measurable lift of w, and define
K : I → K as K̃L−1. Then K satisfies the desired properties and this concludes the proof.

1.7 Classification of Diagonalizations

As illustrated in Section 1.2, the semisimple, orthogonal, symmetric Lie algebras correspond to various
notions of diagonalization. In this section we first recall the classification of irreducible orthogonal
symmetric Lie algebras and prove that every semisimple, orthogonal, symmetric Lie algebra is orbit
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equivalent to a direct sum of irreducible orthogonal symmetric Lie algebras (and a trivial part). This is
the content of Theorem 1.7.10. Then, in Table 1.3, we give a list of diagonalizations corresponding to
the irreducible orthogonal symmetric Lie algebras, as described in [Kle06].

An orthogonal symmetric Lie algebra g = k ⊕ p is called irreducible if it is semisimple, strongly
effective and irreducible, as defined in Appendix 1.A. Then [Hel78, Ch. VIII, Thms. 5.3, 5.4] shows
that there are exactly four types of irreducible orthogonal symmetric Lie algebras (g, s):

I g is a compact, simple Lie algebra over R and s is any involutive automorphism of g;

II g is a compact Lie algebra, and it is the Lie algebra direct sum g = g1 ⊕ g2 of simple ideals,
where s interchanges g1 and g2;

III g is a non-compact, simple Lie algebra over R, its complexification gC is a simple Lie algebra
over C, and k is compactly embedded in g;

IV g is a complex simple Lie algebra considered as a real Lie algebra and s is the conjugation with
respect to a maximal compactly embedded subalgebra.

Moreover there is a duality between types I and III and between types II and IV, given in Lemma 1.A.9.
This shows that the problem of classifying all irreducible orthogonal symmetric Lie algebras is equiva-
lent to the classification of all simple Lie algebras overR andC. We have summarized these well-known
results in Tables 1.1 and 1.2, where we omitted the exceptional Lie algebras for simplicity. For expla-
nations of the notation see Remarks 1.7.2 and 1.7.11.

Label g k p a

A sl(n+ 1,C) su(n+ 1) herm0(n+ 1,C) d0(n+ 1,R)

B so(2n+ 1,C) so(2n+ 1) i asym(2n+ 1,R) qd(2n+ 1, iR)

C sp(n,C) sp(n)
(
X Ȳ
Y −X̄

)
,
X∈herm(n,C)
Y ∈sym(n,C) X ∈ d(n,R), Y = 0

D so(2n,C) so(2n) i asym(2n,R) qd(2n, iR)

Table 1.1: Irreducible orthogonal symmetric Lie algebras (types II and IV). We list the simple
Lie algebras g over C and a maximal compactly embedded subalgebra k. Then s(X) = −X∗ is the
corresponding Cartan involution and p = ik is the −1 eigenspace. Moreover, a is a maximal Abelian
subspace of p, and its complexification is a Cartan subalgebra of g. These are the irreducible orthogonal
symmetric Lie algebras of type IV. The corresponding compact irreducible orthogonal symmetric Lie
algebras of type II are then k ⊕ k and s simply interchanges the terms. See also [Hel78, Ch. III §8,
Ch. X]. For explanations of the notation see Remarks 1.7.2 and 1.7.11.

Remark 1.7.1. The Lie algebras in Tables 1.1 and 1.2 can be represented in different but equivalent
ways. We use the definitions given in [Hel78, p. 446]. Hence they are all real or complex matrix Lie
algebras.

13The name comes from the fact that the dual symmetric Lie algebra is su(2n). Note that su∗(2n) is isomorphic to sl(n,H)
via the standard embedding ȷ. Similarly the corresponding p part equals ȷ(herm0(n,H)).

14Again the name stems from the dual symmetric Lie algebra so(2n).
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Label g k p a

AI sl(n,R) so(n) sym0(n,R) d0(n,R)

AII su∗(2n)13 sp(n)
(
X −Ȳ
Y X̄

)
,
X∈herm0(n,C)
Y ∈asym(n,C) X ∈ d0(n,R), Y = 0

AIII su(p, q) s(u(p)⊕ u(q))
(

0 Y
Y ∗ 0

)
, Y ∈ Cp,q Y ∈ d(p, q,R)

BDI so(p, q) so(p)⊕ so(q)
(

0 Y
Y ⊤ 0

)
, Y ∈ Rp,q Y ∈ d(p, q,R)

CI sp(n,R) ı(u(n))
(
X Y
Y −X

)
, X, Y ∈ sym(n,R) X ∈ d(n,R), Y = 0

CII sp(p, q) sp(p)⊕ sp(q) ȷ(
(

0 Y
Y ∗ 0

)
), Y ∈ Hp,q Y ∈ d(p, q,R)

DIII so∗(2n)14 ı(u(n))
(
X Y
Y −X

)
, X, Y ∈ iasym(n,R) X ∈ qd(n, iR), Y = 0

Table 1.2: Irreducible orthogonal symmetric Lie algebras (types I and III). We list the simple Lie
algebras g overRwith a Cartan involution s(X) = −X∗, the corresponding Cartan decomposition k⊕p,
and a Cartan subalgebra a. These are the irreducible orthogonal symmetric Lie algebras of type III. The
corresponding compact irreducible orthogonal symmetric Lie algebras of type I are easily obtained via
duality. See also [Hel78, Ch. X §2.3]. For explanations of the notation see Remarks 1.7.2 and 1.7.11.

Remark 1.7.2. Let K = R, C, or H. For x ∈ K, x denotes the (complex or quaternionic) conjugate.
For a matrixX ∈ Km,n,X denotes the elementwise conjugate,X⊤ denotes the transposed matrix, and
X∗ = X

⊤ denotes the Hermitian conjugate. Then sym(n,K) = {X ∈ Kn,n : X = X⊤} denotes the
set of all symmetric matrices. Similarly asym(n,K) = {X ∈ Kn,n : X = −X⊤} denotes the set of
all skew-symmetric matrices. Moreover herm(n,K) = {X ∈ Kn,n : X = X∗} denotes the set of all
Hermitian matrices. If we additionally assume that the matrices are traceless, we write sym0(n,K) and
herm0(n,K). Finally, diagonal matrices are denoted by d(m,n,K), or d(n,K), and with subscript 0
if the diagonal elements add up to 0. Furthermore we define some useful matrices:

In,m =

(
In 0
0 −Im

)
, Jn =

(
0 In

−In 0

)
,

where In denotes the identity matrix of sizen. Similarly we will write 0 for the zero matrix (where the size
is clear from context). With this we can define the quasi-diagonal matrices qd(n,K) as d(n/2,K)⊗ J1
for n even and with an additional row and column of zeros if n is odd. We will also use the standard
embeddings

ı : C → R2,2, x+ iy 7→
(
x −y
y x

)
(1.18)

and

ȷ : H → C2,2, a+ ib+ jc+ kd = α+ jβ 7→
(
α −β
β α

)
(1.19)

where α = a+ ib and β = c− id, which can analogously be defined to act on matrices.

Since the irreducible orthogonal symmetric Lie algebras can be fully classified, it is natural to ask
under which conditions an orthogonal, symmetric Lie algebra can be decomposed in some sense into
such irreducible pieces. We have seen that an effective, orthogonal, symmetric Lie algebra can be
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decomposed into a Euclidean, a compact, and a non-compact part, cf. Lemma 1.A.10. Similarly, a
semisimple, strongly effective, orthogonal, symmetric Lie algebra can be decomposed into a Euclidean
part and a direct sum of irreducible orthogonal symmetric Lie algebras, see [Hel78, Ch. VIII, Prop. 5.2].
The case we are mostly interested in, semisimple, orthogonal, symmetric Lie algebras, lies between these
two cases. In the following we will show that a semisimple, orthogonal, symmetric Lie algebra is still
orbit equivalent to a direct sum of irreducible orthogonal symmetric Lie algebras (and a trivial part).
This is the content of Theorem 1.7.10.

First we make the concept of orbit equivalence precise.

Definition 1.7.3. Let X be a set and let G,H be groups acting on X . We say that the actions are orbit
equivalent if they have the same set of orbits, that is X/G = X/H.

By Corollary 1.A.48 it holds for semisimple, orthogonal, symmetric Lie algebras that the orbits in
p do not depend on the choice of associated pair. Thus we will often simply choose to work with the
canonical associated pair. This also allows us to define orbit equivalence for symmetric Lie algebras
with the same p:

Definition 1.7.4. Let gi = ki ⊕ p for i = 1, 2 be symmetric Lie algebras. They are orbit equivalent if
the representations of Ki = Intki(gi) on p are orbit equivalent.

Now we show how p splits into irreducible representations and that the maximal Abelian subspace
a as well as the tangent space to the orbit adk(x) for x regular respect this decomposition.

Lemma 1.7.5. Let (g, s) be a semisimple, symmetric Lie algebra and let V,W ⊆ p be adk-invariant
and orthogonal with respect to the Killing form B of g. Then they commute.

Proof. Let v ∈ V and w ∈W . Then B([v, w], [v, w]) = B(v, [w, [v, w]]) = 0 and so [v, w] = 0.

Lemma 1.7.6. Let (g, s) be a semisimple, orthogonal, symmetric Lie algebra with Cartan-like de-
composition g = k ⊕ p. Then there is an orthogonal decomposition p =

⊕n
i=1 pi into irreducible

components for the action of adk such that pi ⊆ p± for each i = 1, . . . , n. If ai = pi ∩ a, then it holds
that a =

⊕n
i=1 ai.

Proof. We use the inner product from Lemma 1.A.15, in which all adk for k ∈ k are skew-symmetric.
First, using Corollary 1.A.13, p splits into p− ⊕ p+, the compact and non-compact parts, which are
invariant under the action of k. Hence there exists an orthogonal decomposition p =

⊕n
i=1 pi into

irreducible components for the action of k such that each pi is contained in p− or p+. Then the pi are
also orthogonal with respect to the Killing form B of g since for xi ∈ pi and xj ∈ pj it holds that
B(xi, xj) = ±⟨xi, xj⟩. Hence, by Lemma 1.7.5, the pi commute. Now let x ∈ a, and x =

∑n
i=1 xi

for xi ∈ pi. We show that all xi ∈ ai ⊆ a. Let K = Intk(g) as in Lemma 1.A.20. Since all xi
commute with each other, there is K ∈ K such that Kxi ∈ a and hence Kx =

∑n
i=1Kxi ∈ a. By left

multiplying K with an appropriate element from the normalizer NK(a) we may assume without loss
of generality that Kx = x and still Kxi ∈ a. Hence by the invariance of the pi under K it holds that
Kxi ∈ pi and so xi = Kxi and hence xi ∈ ai, as desired.

Corollary 1.7.7. We use the same notation as in Lemma 1.7.6. Let x =
∑n

i=1 xi ∈ a be regular. Then
it holds that adk(x) =

⊕n
i=1 adk(xi).

Proof. Regular elements exist by Lemma 1.A.18. By Lemma 1.A.16 it holds that a⊥ = adk(x), and
by Lemma 1.7.6 we have the orthogonal decomposition p =

⊕n
i=1 pi. Then for y ∈ pi it holds that

⟨y, adk(x)⟩ = ⟨y, adk(xi)⟩. Hence y is orthogonal to adk(xi) if and only if y ∈ ai, that is, we have
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the orthogonal decomposition pi = ai ⊕ adk(xi). This shows that adk(x) = a⊥ =
⊕n

i=1 adk(xi), as
desired.

This local result on the splitting of the tangent space of an orbit can be generalized to the entire orbit,
showing that the semisimple, orthogonal, symmetric Lie algebra is orbit equivalent to a direct sum of
reductive ones with irreducible isotropy representations.

Lemma 1.7.8. We use the same notation as in Lemma 1.7.6. For each i, gi = k ⊕ pi ⊆ g is a reduc-
tive, orthogonal, symmetric Lie subalgebra, and so is (g′, s′) =

⊕n
i=1(gi, s|gi). Since p =

⊕n
i=1 pi

the isotropy representations of (g, s) and of (g′, s′) act on the same space, and in fact they are orbit
equivalent.

Proof. It is clear that (gi, s|gi) is a symmetric Lie subalgebra and by Lemma 1.7.6 it holds that pi ⊆ p±.
Hence it is reductive and orthogonal by Lemma 1.A.43. By Lemma 1.A.40, also (g′, s′) is a reductive,
orthogonal, symmetric Lie algebra. Let K = Intk(g) and K′ = Intk′(g

′) be the respective compact
Lie groups acting on p. Note that on each pi, K and K′ generate the same orbits since K and K′ are
connected and adk |pi = adk′ |pi . Hence, in p, eachK-orbit lies in someK′-orbit. Let x ∈ a be regular in
(g, s), then Corollary 1.7.7 shows that the tangent space at x of theK andK′ orbits through x is the same
for both isotropy representations. Since the orbits Kx and K′x though x satisfy Kx ⊆ K′x, and since
they are connected and by the previous argument have the same dimension, they must coincide. This
shows that the orbits of regular points of (g, s) coincide. It remains to show the same for singular orbits.
Since the regular points are Zariski open in p, they are dense in the standard topology. Now let y, z ∈ p
be non-regular for (g, s) with distinct K-orbits. Let Ny and Nz be disjoint tubular neighborhoods in p
for the action of K, see [AB15, Thm. 3.57]. If there is K ∈ K′ such that Ky = z then K also maps
some regular points in Ny to Nz which gives a contradiction. This concludes the proof.

Lemma 1.7.9. Let (g, s) be a reductive, orthogonal, symmetric Lie algebra with ad : k → gl(p)
irreducible. Then g is a direct sum of symmetric Lie subalgebras g′, g′′ ⊆ g where (g′, s|g′) is an
irreducible orthogonal symmetric Lie algebra and (g′′, s|g′′) has trivial isotropy representation.

Proof. Since g is reductive, by Lemma 1.A.42 it can be written as a direct sum of Lie subalgebras [g, g]
and z where the former is semisimple and the latter is the center of g. Clearly they are symmetric Lie
subalgebras of g, and by Lemma 1.A.7, or by Lemma 1.A.40, [g, g] is orthogonal. Since ad : k → gl(p)
is irreducible there are two possibilities: Either [g, g] ∩ p is zero, in which case we can set g′ = 0
and g′′ = g. Otherwise, z ∩ p is zero. Then since [g, g] is semisimple it is the direct sum of simple
ideals gi for i = 1, . . . ,m. For each i there is some j such that s(gi) = gj . Consider the semisimple,
orthogonal, symmetric Lie subalgebras hi = gi ⊕ s(gi) (without repetitions). Denote their Cartan-like
decomposition by hi = li ⊕ qi. Then, by irreducibility of g, all but one qi is zero. Without loss of
generality we say that q1 is non-zero. Then the adjoint action of l1 on q1 is irreducible and effective.
Hence h1 is an irreducible orthogonal symmetric Lie algebra so we set g′ = h1, and the remaining
hi = li and z together yield g′′.

Putting it all together, we obtain the main theorem of this section. This result is similar to [Dad85,
Thm. 4], which considers more general polar actions.

Theorem 1.7.10 (Classification of Diagonalizations). Let (g, s) be a semisimple, orthogonal,
symmetric Lie algebra. Then there are irreducible orthogonal symmetric Lie subalgebras (gi, s|gi)
for i = 1, . . . , n and a symmetric Lie subalgebra (g′, sg) with trivial isotropy representation such
that p =

⊕n
i=1 pi ⊕ p′ and such that the isotropy representation of (g, s) is orbit equivalent to the
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isotropy representation of
⊕n

i=1(gi, si)⊕ (g′, s′).

Proof. First let p =
⊕n

i=1 pi be an orthogonal decomposition into irreducible subrepresentations for
the action of adk on p. Then by Lemma 1.7.8, each gi = k⊕pi ⊆ g is a reductive, orthogonal, symmetric
Lie subalgebra of (g, s) and their direct sum (g′, s′) =

⊕n
i=1(gi, s|gi) has isotropy representation orbit

equivalent to that of (g, s). By Lemma 1.7.9 each gi is a direct sum of two symmetric Lie subalgebras
g′i, and g′′i , where the first is an irreducible orthogonal symmetric Lie algebra and the second has a trivial
isotropy representation. Hence (g′, s′) =

⊕n
i=1(g

′
i, s|g′i)⊕(g′′i , s|g′i). This is the desired decomposition.

Now that we understand in which sense an arbitrary semisimple, orthogonal, symmetric Lie algebra
can be decomposed into irreducible parts, we have a look at these irreducible cases and their relation
to diagonalizations. In Table 1.3 we give a list of diagonalizations corresponding to the irreducible
orthogonal symmetric Lie algebras. Recall Section 1.2 for some detailed examples. Theorem 1.7.10
shows that the diagonalizations shown in Table 1.3 are essentially the only possibilities (omitting diag-
onalizations stemming from exceptional Lie algebras). This means that if we are given a semisimple,
orthogonal, symmetric Lie algebra, we may think of it as a direct sum of irreducible parts. In particular
we have a decomposition p =

⊕n
i=1 pi, and similarly a =

⊕n
i=1 ai. If p : I → p is a path, we can

compute the diagonalization in each pi individually, that is we consider the paths pi(t) ∈ pi and com-
pute their diagonalizations ai(t) ∈ ai, which can be done in practice using algorithms for the various
diagonalizations in Table 1.3. Note however that it is not straightforward to find a diagonalizingK ∈ K
form the individual Ki.

Remark 1.7.11. The Hamiltonian matrices are defined as ham(n,K) = {X ∈ K2n,2n : JnA =
−A⊤Jn}. Note that u(n) = i herm(n,C), and su(n) = i herm0(n,C), and so(n,K) = asym(n,K),
and for K = R,C, we have sp(n,K) = ham(n,K). Moreover let us define the ∗-Hamiltonian matrices
ham∗(n,K) = {X ∈ K2n,2n : JnA = −A∗Jn}.

1.A Symmetric Lie Algebras

In this appendix we give a rigorous introduction to symmetric Lie algebras and prove a number of
auxiliary results which are used repeatedly in the main text. Our definitions follow the standard reference
of Helgason [Hel78].

Basic Definitions

We start by considering symmetric Lie algebras, as defined in [Hel78, p. 229].

Definition 1.A.1 (Effective orthogonal symmetric Lie algebra). Let g be a real finite-dimensional Lie
algebra and s an involutive15 Lie algebra automorphism of g. Then the pair (g, s) is called a symmetric
Lie algebra. Now if k ⊆ g denotes the fixed point set of s, we define the following:

(i) If k is a compactly embedded16 subalgebra of g, then (g, s) is orthogonal.

(ii) If k ∩ z = {0}, where z denotes the center of g, then (g, s) is effective.
15A map f is involutive if f ◦ f is the identity.
16This means that the analytic subgroup of GL(g) with Lie algebra adk, denoted by Intk(g), is compact, see [Hel78,

p. 130]. More details on this group will be given later in this section.
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(iii) If k does not contain a non-trivial ideal of g, then (g, s) is strongly effective.

Remark 1.A.2. Note that if g is semisimple, then the center of g is trivial, i.e., z = {0}, and hence (g, s)
is automatically effective.

A key feature of symmetric Lie algebras is that they admit a Cartan-like decomposition g = k ⊕ p
with special commutator relations given in (1.20) below. In fact such a decomposition automatically
yields the structure of a symmetric Lie algebra:

Lemma 1.A.3. Let g be a real Lie algebra. The following statements hold:

(i) If s is an involutive Lie algebra automorphism of g (i.e. (g, s) is a symmetric Lie algebra) then
g = k ⊕ p (as a direct sum of subspaces) where k and p are the +1 and −1 eigenspaces of s,
respectively. It holds that

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k. (1.20)

(ii) If g admits a vector space decomposition g = k ⊕ p satisfying (1.20), then the linear map s
defined as +1 on k and −1 on p is a Lie algebra automorphism, and hence (g, s) is a symmetric
Lie algebra.

Proof. (i): Since s is a linear involution on g it satisfies s2 − 1 = 0. The minimal polynomial of s
divides (x+ 1)(x− 1) and hence it splits into distinct linear factors, showing that s is diagonalizable.
Thus g = k⊕p where k, p are the corresponding ±1 eigenspaces. Since s is a Lie algebra automorphism
it satisfies the relations (1.20).

(ii): By definition s is a linear involution. Now given k, l ∈ k and x, y ∈ p

s([k + x, l + y]) = s([k, l]) + s([k, y]) + s([x, l]) + s([x, y]) = [k, l]− [k, y]− [x, l] + [x, y]

= [k, l] + [k,−y] + [−x, l] + [−x,−y] = [k − x, l − y] = [s(k + x), s(l + y)] ,

showing that s is a Lie algebra endomorphism. Since it is bijective, it is in fact an automorphism.

Due to this result, we will often specify a symmetric Lie algebra by its Cartan-like decomposition,
instead of by the corresponding automorphism.

Next let us clarify the different notions of effectivity:

Lemma 1.A.4. Given a symmetric Lie algebra (g, s) the following statements hold.

(i) (g, s) is effective if and only if the adjoint representation of k on g is faithful.

(ii) (g, s) is strongly effective if and only if the adjoint representation of k on p is faithful.

Furthermore if (g, s) is strongly effective then it is effective.

Proof. Let z denote the center of g. (i): This is clear since k ∩ z is exactly the kernel of the adjoint
representation of k on g. (ii): If k contains a non-trivial ideal of g, then this ideal lies in the kernel of
the adjoint representation of k on p, as can be seen from (1.20). Conversely, the kernel of the adjoint
representation of k on p is an ideal of g.

Remark 1.A.5. There are slightly different definitions used in the literature. For instance, Kobayashi
& Nomizu [KN96, Ch. XI Sec. 2] call effective what we call strongly effective. Our terminology is
consistent with Helgason [Hel78] who, however, does not give a name to what we call strongly effective.
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Next let us have a look at orthogonality. This condition guarantees the existence of an adapted inner
product on g.

Lemma 1.A.6. Let (g, s) be an orthogonal, symmetric Lie algebra. Then there exists an s-invariant
inner product for which all of adk is skew-symmetric.

Proof. Start with any inner product (·, ·) on g. Let K = Intk(g), which is compact by assumption and
hence admits a Haar measure denoted dµ. Now define the averaged inner product

⟨x, y⟩ =
1∑

m=0

∫
K
(sm(Kx), sm(Ky)) dµ(K) . (1.21)

SinceK preserves the decomposition g = k⊕p due to the commutator relations (1.20), s commutes with
the action of K ∈ K. Thus (1.21) is invariant under s and under K. This shows that K is a subgroup
of the orthogonal group of (g, ⟨·, ·⟩), and hence its Lie algebra adk is a subalgebra of the orthogonal Lie
algebra, so each adk for k ∈ k is skew-symmetric with respect to ⟨·, ·⟩.

We have the following converse result in the semisimple case. First recall that a Lie algebra g over
a field of characteristic 0 is semisimple if and only if the Killing form B(x, y) = tr(adx ◦ ady) is
non-degenerate, or, if and only if g contains no proper non-trivial Abelian ideals.

Lemma 1.A.7. Let (g, s) be a semisimple, symmetric Lie algebra and let ⟨·, ·⟩ be an inner product on
g for which all of adk is skew-symmetric. Then (g, s) is orthogonal.

Proof. Let G be “the” simply connected Lie group with Lie algebra g, see [Lee13, Thm. 20.21], and let
K be the connected Lie subgroup with Lie algebra k. By [Lee13, Thm. 20.19] there is a unique Lie group
automorphism σ : G → G with Dσ(e) = s. As k is the fixed point set of s, K equals the identity
component of the fixed point set of σ. In particular, K is closed in G, and hence an embedded Lie
subgroup. Since g is semisimple, ad : g → gl(g) is faithful, and hence the adjoint representation Ad :
G → Int(g) is a covering homomorphism by [Lee13, Thm. 21.31]. The image ofK underAd is exactly
Intk(g). Now let K ∈ K be arbitrary. There is a neighborhood W of AdK in Int(g) diffeomorphic
to some neighborhood W ′ of K in G. Since K is embedded, and by shrinking the neighborhoods, we
can assume that W ′ is a slice chart for K, and hence the same is true for W and Intk(g). By [Lee13,
Thm. 5.8] this shows that Intk(g) is embedded in Int(g) and hence closed. By [Hel78, Ch. II Coro. 6.5]
Int(g) is closed in GL(g). By assumption, Intk(g) ⊆ SO(g) with respect to the given inner product.
Since SO(g) is closed in GL(g), by Lemma 1.6.8 Intk(g) is closed in SO(g), and hence compact. This
concludes the proof.

One calls a Lie algebra g compact if its Killing form is negative definite17. These notions lead to
different classes of symmetric Lie algebras:

Definition 1.A.8. Let (g, s) be a symmetric Lie algebra.

(i) If [p, p] = 0, then (g, s) is called of Euclidean type.

(ii) If g is semisimple, it is called of compact type if g is compact. Otherwise it is called of of non-
compact type.

(iii) If the adjoint representation of k on p is irreducible, then (g, s) is called irreducible.
17This definition excludes for instance Abelian Lie algebras which have trivial Killing form.
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There exists an important duality between symmetric Lie algebras of compact and of non-compact
type. For a symmetric Lie algebra (g, s) with Cartan-like decomposition g = k ⊕ p we can define its
dual by g = k⊕ ip as a subspace of the complexification of g. We denote the dual by (g∗, s∗). For the
following result see [Hel78, Ch. V, Prop. 2.1].

Lemma 1.A.9. If (g, s) is a semisimple, orthogonal, symmetric Lie algebra of compact type, then
(g∗, s∗) is of non-compact type, and vice-versa.

With these definitions in place one can understand the structure of effective, orthogonal, symmetric
Lie algebras. Most importantly one gets a decomposition of the Lie algebra into a Euclidean, a compact,
and a non-compact subalgebra:

Lemma 1.A.10. Let (g, s) be an effective, orthogonal, symmetric Lie algebra and let ⟨·, ·⟩ be an s-
invariant inner product on g such that all adk for k ∈ k are skew-symmetric. Then there exists a
decomposition of g into s-invariant ideals

g = g0 ⊕ g− ⊕ g+,

which are orthogonal with respect to the Killing form. Denoting the restrictions of s by s0,s−, and
s+, the pairs (g0, s0), (g−, s−), and (g+, s+) are effective, orthogonal, symmetric Lie algebras of Eu-
clidean, compact, and non-compact type, respectively. Moreover, there exists a vector space decompo-
sition

p− ⊕ p+ =

m⊕
i=1

pi,

such that ⟨·, ·⟩ = λiB on pi with λi ̸= 0. It holds that pi ⊆ p− if λi < 0, and pi ⊆ p+ if λi > 0.
Moreover the pi are orthogonal to each other with respect to the inner product and the Killing form,
and [pi, pj ] = 0.

For a proof we refer to [Hel78, Ch. V, Thm. 1.1] and its proof.

Remark 1.A.11. Using strong effectivity, one even obtains a decomposition into irreducible ideals,
see [Hel78, Ch. VIII, Prop. 5.2].

Corollary 1.A.12. If in addition to the assumptions from Lemma 1.A.10 g is semisimple, then p0 = {0}
where g0 = k0 ⊕ p0.

Proof. Since [p0, p0] = 0, it holds that p0 is an Abelian subalgebra of g. Furthermore we have that
[k0, p0] ⊆ p0 and hence p0 is an ideal in g. By semisimplicity of g we get that p0 = {0}.

Combining some of the results above we find the following structure for semisimple, orthogonal,
symmetric Lie algebras:

Corollary 1.A.13. Let (g, s) be a semisimple, orthogonal, symmetric Lie algebra. Then we have the
following decomposition into ideals

g = k0 ⊕ g− ⊕ g+,

where g− and g+ are of compact and of non-compact type respectively.

Proof. This follows immediately from Remark 1.A.2, Lemma 1.A.10, and Corollary 1.A.12.
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Before using this decomposition of effective, orthogonal, symmetric Lie algebras to connect the
s-invariant inner product to the Killing form in the semisimple case, we need the following simple
lemma.

Lemma 1.A.14. Let (g, s) be an effective, orthogonal, symmetric Lie algebra and let B denote the
Killing form on g. Then B is negative definite on k.

Proof. By Lemma 1.A.6 there exists an inner product on g such that all adk for k ∈ k are skew-
symmetric. Note that the trace and hence the Killing form are independent of the inner product on
g. Hence B(k, k) = − tr(ad⊤k ◦ adk) ≤ 0 with equality only if adk = 0, that is k ∈ z, and hence by
effectivity k = 0.

Now for the result in question:

Lemma 1.A.15. Let a semisimple, orthogonal, symmetric Lie algebra (g, s) be given. Define ⟨·, ·⟩ :
g × g → R as follows: Given any x, y ∈ g there exist by the previous results unique xk, yk ∈ k,
x+, y+ ∈ p+, and x−, y− ∈ p− such that x = xk + x+ + x−, y = yk + y+ + y−. Then

⟨x, y⟩ := −B(xk, yk) +B(x+, y+)−B(x−, y−)

is an s-invariant inner product on g such that adk is skew-symmetric for all k ∈ k.

Proof. First it is easy to see that the definition yields a bilinear, symmetric form on g. Then consider
the group K = Intk(g). Since s and all K ∈ K define automorphisms of g, they leave the Killing
form B invariant, and they clearly respect the decomposition g = k⊕ p− ⊕ p+. Hence, they leave ⟨·, ·⟩
invariant, and all adk for k ∈ k are skew-symmetric. It remains to show that ⟨·, ·⟩ is positive definite.
For this consider another inner product (·, ·) as guaranteed by Lemma 1.A.6. Now Lemma 1.A.10 and
Corollary 1.A.12 guarantee the existence of a decomposition p = p+ ⊕ p− =

⊕m
i=1 pi, such that

(·, ·) = λiB on pi with λi ̸= 0. Moreover pi ⊆ p− if λi < 0, and pi ⊆ p+ if λi > 0. Let us denote the
corresponding index sets by I− and I+, respectively. Now given arbitrary k ∈ k and xi ∈ pi, using that
the pi are orthogonal to each other with respect to the Killing form we compute

⟨k +
m∑
i=1

xi, k +
m∑
j=1

xj⟩ = −B(k, k) +B
(∑
i∈I+

xi,
∑
j∈I+

xj

)
−B

(∑
i∈I−

xi,
∑
j∈I−

xj

)
= −B(k, k) +

∑
i∈I+

B(xi, xi)−
∑
i∈I−

B(xi, xi)

= −B(k, k) +
m∑
i=1

1

|λi|
(xi, xi),

so Lemma 1.A.14 shows that ⟨·, ·⟩ is positive definite, as claimed.

Unless otherwise noted, we will always assume that we are using this inner product. The following
result is the reason why we will mostly focus on semisimple Lie algebras, and it will be used several
times in the main text.

Lemma 1.A.16. Let (g, s) be a semisimple, orthogonal, symmetric Lie algebra and let x, y ∈ p. Then
the following are equivalent:

[x, y] = 0 ⇐⇒ ⟨[k, x], y⟩ = 0 for all k ∈ k,
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where the inner product on g is as in Lemma 1.A.6. Differently put, for every x ∈ p we have an
orthogonal vector space decomposition

p = (p ∩ ker adx)⊕ (p ∩ im adx).

Proof. Let k ∈ k and x, y ∈ p. Using Lemma 1.A.10 we can write p = ⊕m
i=1pi. Note that due to

semisimplicity and Corollary 1.A.12 it holds that p0 = {0} and hence it is omitted from the decompo-
sition. Furthermore, we know that the pi are mutually orthogonal and invariant under adk for all k ∈ k.
Writing x =

∑m
i=1 xi and y =

∑m
i=1 yi we compute

⟨[k, x], y⟩ =
m∑
i=1

⟨[k, xi], yi⟩ =
m∑
i=1

λiB([k, xi], yi) =
m∑
i=1

λiB(k, [xi, yi])

If [x, y] = 0 then [xi, yi] = 0 for i = 1, . . . ,m and hence ⟨[k, x], y⟩ = 0 for all k ∈ k. Conversely we
can choose kj = [xj , yj ]/λj ∈ k for j = 1, . . . ,m. Then

0 = ⟨[kj , x], y⟩ =
m∑
i=1

B([xj , yj ], [xi, yi]) = B([xj , yj ], [xj , yj ])

implies that [xj , yj ] = 0 by Lemma 1.A.14. Hence [x, y] = 0.

The following example shows that the presence of a Euclidean part causes problems in the preceding
lemma.

Example 1.A.17. This is [Hel78, Example (c) p. 230]. Let p ̸= {0} be any real vector space and let k
be the Lie algebra of any compact subgroup of GL(p). For x, y ∈ p and k ∈ k we set [x, y] = 0 and
[k, x] = −[x, k] = k ·x. Then k⊕p defines an effective, orthogonal, symmetric Lie algebra of Euclidean
type. This violates Lemma 1.A.16 since there is always some x ∈ p and k ∈ k such that [k, x] ̸= 0.

It turns out that maximal Abelian subspaces a ⊆ p play an important role in understanding the
structure of symmetric Lie algebras. A useful notation for x ∈ p is

px = {y ∈ p : [x, y] = 0},

which denotes the centralizer (or commutant) of x in p. Clearly, for x ∈ a it holds that a ⊆ px. If
equality holds, then we call x regular. Hence, a regular element is contained in a unique maximal
Abelian subspace.

Lemma 1.A.18. Let (g, s) be an effective, orthogonal, symmetric Lie algebra and let a ⊆ p be a
maximal Abelian subspace. Then there exists x ∈ a such that px = a.

Proof. First we show that we can reduce the problem to (g, s) being of compact type. Let g = g0 ⊕
g− ⊕ g+ be the decomposition of Result 1.A.10. Then we can write a = a0 ⊕ a− ⊕ a+ where a0 = p0
and a± is a maximal Abelian subspace of p±. If x, y ∈ p then [x, y] = [x0, y0] + [x−, y−] + [x+, y+]
and hence x and y commute if and only if [xi, yi] = 0 for all i ∈ {0,−,+}. Assume that we have found
xi ∈ pi satisfying (pi)xi = ai for all i. Then setting x =

∑
i xi we get that px = a. Hence it suffices

to consider the Euclidean, compact and non-compact types separately. However the Euclidean case is
trivial, since a0 = p0 so any element of p0 does the job. Using the duality described in Lemma 1.A.9 it
suffices to consider the compact case, since x, y ∈ p commute if and only if ix and iy commute in the
dual. Hence for the remainder of the proof we assume that (g, s) is of compact type.

Let G be a compact Lie group with Lie algebra g and consider the torus A = exp(a). Let x ∈ a
be the generator of a dense winding of A. If y ∈ p satisfies [x, y] = 0, then exp(ty) commutes with all
elements of A for all t ∈ R. This implies that [y, a] = 0, and since a is maximal Abelian, y ∈ a. Thus
px = a, as desired.
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We have previously used the Lie group action of Intk(g) on g. Let us make this a bit more precise.18

By definition, Int(g) is the connected Lie subgroup of GL(g) with Lie algebra adg. In fact this is
the group of inner automorphisms of g. Furthermore Intk(g) is the connected Lie subgroup of Int(g)
with Lie algebra adk. We slightly generalize this idea by defining associated pairs following [Hel78,
Def. p. 213].

Definition 1.A.19. Consider a symmetric Lie algebra g = k⊕ p. Let G be a connected Lie group with
a Lie algebra isomorphism19 ϕ : g → Lie(G) and let K ⊆ G be a Lie subgroup with ϕ(k) = Lie(K).
Then we say that (G,K) is a pair associated to g.

Lemma 1.A.20. For any semisimple, symmetric Lie algebra (g, s) there exists an associated pair
(G,K) with G and K connected. In fact we can choose G = Int(g) and K = Intk(g), in which
case the Lie algebra isomorphism is ϕ = ad.

Proof. This follows from the definitions, and the fact that g is semisimple, and thus ad : g → gl(g) is
a Lie algebra isomorphism.

We call the pair described in 1.A.20 the canonical pair associated to (g, s).

Lemma 1.A.21. Let ϕ : G → H be a Lie group homomorphism, and let G̃ ⊆ G and H̃ ⊆ H be
Lie subgroups. Assume that ϕ(G̃) ⊆ H̃. Then the restriction ϕ ◦ ι : G̃ → H̃ is also a Lie group
homomorphism, where ι : G̃ → G is the inclusion.

Proof. Since ι is a smooth immersion, ϕ ◦ ι is smooth as a map from G̃ to H. The fact that it is still
smooth as a map from G̃ to H̃ holds because all Lie subgroups are weakly embedded, see [Lee13,
Thm. 19.25].

Lemma 1.A.22. Consider any symmetric Lie algebra (g, s) and any associated pair (G,K) with G
and K connected and corresponding Lie algebra isomorphism ϕ : g → Lie(G). Then the maps ψ :
G → Int(g), g 7→ ϕ−1 ◦Adg ◦ϕ and ψ|K : K → Intk(g) are surjective Lie group homomorphisms.

Proof. The maps are well-defined and surjective due to the connectedness of G and K. By [Hel78,
p. 127] the maps G → Int(Lie(G)) and Int(Lie(G)) → Int(g) are Lie group homomorphisms, and
hence also ψ. By 1.A.21 then also ψ|K : K → Intk(g) is a Lie group homomorphism.

In the following we suppress the Lie algebra isomorphism ϕ from the notation. Then ψ becomes
Ad, the adjoint representation. Note that for the canonical associated pair, the adjoint representation is
essentially the identity map.

Lemma 1.A.23. Let (g, s) be a semisimple, symmetric Lie algebra and let (G,K) be an associated
pair with G and K connected. Then the adjoint representation of K on g, written Ad : K → Intk(g)
is a covering homomorphism.

Proof. By Lemma 1.A.22, Ad : K → Intk(g) is a surjective Lie group homomorphism, and by
semisimplicity it induces a Lie algebra isomorphism. Hence it is a covering map.

In the next lemma we collect some equivariance properties of the adjoint action of K, but first we
introduce some notation. By Lemma 1.A.16 there is, for each x ∈ p, an orthogonal decomposition of
p into kernel and image of adx. By Πx : p → p we denote the orthogonal projection onto px, and by

18For more details we refer to [Hel78, Ch. II §5].
19Here Lie(G) denotes the Lie algebra of G.
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Π⊥
x = 1−Πx the complementary projection. Moreover we can define an inverse of adx by restricting

the domain and codomain. Then we get a well-defined inverse ad−1
x : p⊥x → k⊥x . This is nothing but a

restriction of the Moore-Penrose pseudo-inverse.

Lemma 1.A.24 (Equivariance properties). Let (g, s) be a semisimple, orthogonal, symmetric Lie
algebra with associated pair (G,K) with K connected. For K ∈ K and x ∈ p, it holds that:

(i) AdK ◦ adx = adAdK(x) ◦AdK on p;

(ii) AdK ◦ ad−1
x = ad−1

AdK(x) ◦AdK on p ∩ im adx;

(iii) AdK ◦Πx = ΠAdK(x) ◦AdK on p;

(iv) AdK ◦Π⊥
x = Π⊥

AdK(x) ◦AdK on p.

Proof. (i): Clear since AdK([g, h]) = [AdK(g),AdK(h)] for all g, h ∈ g. Moreover this implies
AdK(px) = pAdK(x) and using orthogonalityAdK(k⊥x ) = k⊥AdK(x). (ii): Consider y = adx(k) for some
k ∈ k⊥x , then clearly AdK(ad−1

x (y)) = AdK(k). By the previous point AdK(y) = adAdK(x)(AdK(k))

and AdK(k) ∈ k⊥AdK(x) and hence ad−1
AdK(x)(AdK(y)) = AdK(k). (iii): Let z ∈ p and consider the

orthogonal decomposition z = [k, x] + y where k ∈ k⊥x and y ∈ px. Then, for any K ∈ K, it holds
that AdK ◦Πx(z) = AdK(y). On the other hand, using the first point again, ΠAdK(x) ◦ AdK(z) =
ΠAdK(x)([AdK(k),AdK(x)] + AdK(y)) = AdK(y). (iv): Analogous to (iii).

Lemma 1.A.25. Let g = k ⊕ p be a semisimple, orthogonal, symmetric Lie algebra with associated
pair (G,K). Let x ∈ p, and let O = AdK(x) denote the K-orbit containing x. Then, using the
canonical identification Txp ∼= p it holds that adk(x) is the tangent space TxO and px is its orthogonal
complement.

Proof. This follows immediately from Lemma 1.A.16.

Lemma 1.A.26. Let g = k ⊕ p be a semisimple, orthogonal, symmetric Lie algebra with associated
pair (G,K). Let a ⊆ p be some maximal Abelian subspace. Then every K-orbit in p intersects a and
all maximal Abelian subspaces of p are conjugate by some element in K.

Proof. Without loss of generality we assume that we are using the canonical associated pair (G,K) =
(Int(g), Intk(g)). Then Lemma 1.A.22 guarantees the existence of the desired group element in any
pair.

Let x ∈ a be regular, which exists by Lemma 1.A.18, and let y ∈ p. Consider the smooth function

f : K → R, K 7→ B(Ky, x).

Let K ∈ K be a critical point of f , which exists since K is compact. Then for any k ∈ k it holds that

0 =
d

dt

∣∣∣
t=0

(f(etkK)) = B([k,Ky], x) = B(k, [Ky, x]).

Since this holds for all k ∈ k, Lemma 1.A.14 shows that [Ky, x] = 0 and since x is regular, Ky ∈ a.
This shows that every K-orbit in p intersects a.

For anyK ∈ K it holds thatK ·a is maximal Abelian with regular elementKx by Lemma 1.A.24 (i).
If a′ is any other maximal Abelian subspace, we can chooseK such thatKx ∈ a′, and thus a′ = pKx =
K · px = K · a. Hence all maximally Abelian subspaces are conjugate by some element in K.
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Definition 1.A.27. Let g = k⊕ p be a semisimple, orthogonal, symmetric Lie algebra with associated
pair (G,K), and let a ⊂ p be a maximal Abelian subspace. Then we define the normalizer of a in K

NK(a) = {K ∈ K : AdK(a) = a},

and the centralizer of a in K

ZK(a) = {K ∈ K : AdK(x) = x for all x ∈ a}.

Since ZK(a) is clearly normal in NK(a) we can define the Weyl group W = Wa = NK(a)/ZK(a)
which acts on a.

Note that since all maximal Abelian subspaces are conjugate by Lemma 1.A.26, different choices
of a lead to isomorphic Weyl groups. We will see later that the Weyl group also does not depend on the
choice of associated pair (G,K).

Root Space Decomposition

In order to understand the Weyl group action on a defined above we need to understand the root space
decomposition of a semisimple, orthogonal, symmetric Lie algebra. This is the goal of the present
section. By gC we denote the complexification of g.

Definition 1.A.28. Let a symmetric Lie algebra (g, s) and a maximal Abelian subspace a ⊆ p be given.
For any linear functional α ∈ HomR(a,C) we define

gαC = {x ∈ gC : ady(x) = α(y)x for all y ∈ a}.

If gαC is non-trivial we call α a root and gαC the corresponding root space. The non-zero elements of a
root space are called root vectors. We denote by ∆ the set of all non-zero roots and by ∆0 the set of all
roots including zero.20

Lemma 1.A.29. Let (g, s) be a semisimple, orthogonal, symmetric Lie algebra. Then

gC =
⊕
α∈∆0

gαC ,

and every non-zero root is either imaginary or real and supported on the compact or non-compact part
of a respectively. We write ∆− for the compact roots and ∆+ for the non-compact ones.

Proof. We use the inner product of Lemma 1.A.15. By Corollary 1.A.13 we have that g = k0⊕g−⊕g+,
and each adx for x = x− + x+ ∈ p preserves this decomposition. It acts trivially on k0 and as adx± on
g±. Furthermore adx− is skew-symmetric and adx+ is symmetric21 since

⟨adx(y), k⟩ = −B([x, y], k) = B(y, [x, k]) = ±⟨y, adx(k)⟩ ,

for x, y ∈ p± and k ∈ k±. If x, y ∈ p commute, then also adx and ady since, by the Jacobi identity,

adx ◦ ady(z) = [x, [y, z]] = [[x, y], z] + [y, [x, z]] = ady ◦ adx(z).

20Some authors don’t consider 0 a root at all.
21These (skew-)symmetric operators on g are of course still real and (skew-)symmetric on gC, and hence (skew-)Hermitian.

In particular the eigenvalues are imaginary in the compact case and real in the non-compact case.
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Hence all adx for x ∈ a can be simultaneously (unitarily) diagonalized and we obtain a complete root
space decomposition of gC. Now every root vector of g+ relative to a+ is a root vector of g and similarly
for g−. Conversely, let α be a non-zero root and x ∈ gαC. Then for y ∈ a we have that

ady(x) = [y−, x−] + [y+, x+] = α(y)x.

If x− ̸= 0 and x+ ̸= 0 then [y−, x−] = α(y)x− and [y+, x+] = α(y)x+ and so α(y) would have to
be purely imaginary and real, leading to a contradiction. This shows that either α only takes imaginary
values, and its root space lies in the compact part, or it only takes real values, and its root space lies in
the non-compact part

Corollary 1.A.30. Let (g, s) be a semisimple, orthogonal, symmetric Lie algebra. Then, in some basis,
the Lie algebra adg = {adz : z ∈ g} is a Lie algebra of real matrices closed under transposition on the
vector space g with inner product as in Lemma 1.A.15.

Proof. By construction, all adk for k ∈ k are skew-symmetric in the given inner product. The proof
of Lemma 1.A.29 shows that adx is skew-symmetric or symmetric for x ∈ p− or x ∈ p+ respectively.
Hence for any z ∈ g, the transposed of adz with respect to the given inner product is also in adg. Now
any orthonormal basis on g will do.

We now have two involutions on gC, namely (the complexification of) s and complex conjugation.
The next two lemmas show how they act on the root spaces.

Lemma 1.A.31. Let (g, s) be a semisimple, orthogonal, symmetric Lie algebra. Then s(gαC) = g−αC .

Proof. Let x ∈ gαC then for all y ∈ a it holds that [y, s(x)] = s([s(y), x]) = s([−y, x]) = −s([y, x]) =
−α(y)s(x). Hence s(x) ∈ g−αC . This shows that s(gαC) ⊆ g−αC . But then g−αC = s(s(g−αC )) ⊆ s(gαC),
as desired.

This shows that gα = (gαC ⊕ g−αC ) ∩ g is invariant under s and hence decomposes as gα = kα ⊕ pα

where kα = gα ∩ k and pα = gα ∩ p.

Lemma 1.A.32. Let (g, s) be a semisimple, orthogonal, symmetric Lie algebra and let α ∈ ∆± be a
non-zero root. Then gαC = g±αC .

Proof. Let x ∈ gαC then for all y ∈ a it holds that [y, x] = [y, x] = [y, x] = α(y)x = ±α(y)x.

Using Lemmas 1.A.31 and 1.A.32 we can find for each root a corresponding root vector which is
composed of an element of kα and an element of pα.

Lemma 1.A.33. Let α ∈ ∆± be a non-zero root. Then there exist x ∈ kα and y ∈ pα such that
x+

√
±1y ∈ gαC.22 We call such x and y related. For any a ∈ a they satisfy

[a, x] =
√
±1α(a)y, [a, y] = ±

√
±1α(a)x.

Proof. First consider α ∈ ∆+. Since gαC is invariant under complex conjugation, it contains a real
root vector. More explicitly, if z ∈ gαC, then z + z ∈ gα. Hence there are x ∈ kα and y ∈ pα

such that z + z = x + y. Now consider α ∈ ∆− and let u ∈ gαC. We know that s(u) ∈ gαC. Let
v, w ∈ g such that u = v + iw, then u + s(u) = v + iw + s(v) − is(w). Let z = (u + s(u))/2
then z ∈ gαC and z = x + iy where x = (v + s(v))/2 ∈ k and y = w − s(w) ∈ p. Moreover
x = (z + z)/2 ∈ gα and y = i(−z + z)/2 ∈ gα. In both cases, the claimed equations follow from
the fact that [a, x +

√
±1y] = α(a)(x +

√
±1y) by equating the kC and pC parts. This concludes the

proof.
22Here we use

√
±1 as a shorthand for 1 or i depending on the sign.
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Lemma 1.A.34. Let α ∈ ∆± be a non-zero root and let x ∈ kα and y ∈ pα be related. Then [x, y] ∈ a
and if ∥y∥ = 1, then ⟨[x, y], a⟩ =

√
±1α(a), and hence [x, y] only depends on α. In particular

∥[x, y]∥2 =
√
±1α([x, y]).

Proof. First it is clear that [x, y] ∈ p. Let a ∈ a be arbitrary, then [a, [x, y]] = [[a, x], y]+[x, [a, y]] = 0
by Lemma 1.A.33. In particular, if a is regular this shows that [x, y] ∈ a. Now we find

⟨[x, y], a⟩ = ±B([x, y], a) = ±B(y, [a, x]) = ±
√
±1α(a)B(y, y) =

√
±1α(a),

as desired.

Lemma 1.A.35. Let (g, s) be a semisimple, orthogonal, symmetric Lie algebra. Let α ∈ ∆± be a
non-zero root. Let x ∈ kα and y ∈ pα be related unit vectors. Then, if z = [x, y], it holds that

ad2n−1
x (z) = (−∥z∥2)ny, ad2nx (z) = (−∥z∥2)nz.

Proof. The case n = 1 follows immediately from Lemma 1.A.33 and Lemma 1.A.34. Then induction
yields the result.

Note that the resulting expressions are the same for the compact and non-compact case.
So far we have made no reference to an associated pair. In the next lemma we use an associated pair

to relate the Weyl group action with the roots, but we note that the choice is arbitrary.

Lemma 1.A.36. Let g = k⊕ p be a semisimple, orthogonal, symmetric Lie algebra, and let (G,K) be
an associated pair. Let α ∈ ∆ be a non-zero root. Then there exists K ∈ NK(a) ∩ K0 such that K
acts on a as orthogonal reflection with respect to the kernel of α.

Proof. Let x ∈ kα and y ∈ pα be related unit vectors and let z = [x, y] ∈ a. Then using Lemma 1.A.35
we compute

Adetx(z) = eadtx(z) =
∑
n≥0

ad2ntx
(2n)!

z +
∑
n≥1

ad2n−1
tx

(2n− 1)!
y = cos(t∥z∥)z − ∥z∥ sin(t∥z∥)y

Setting t = π/∥z∥ we get Adetx z = −z and for u ∈ a satisfying ⟨z, u⟩ = 0 it holds that [x, u] =
−
√
±1α(u)y = −⟨z, u⟩ y = 0. Hence Adetx u = u. This concludes the proof.

In fact these reflections generate the entire Weyl group. First we need an alternative characterization
of regular elements.

Lemma 1.A.37. The commutant of an element x ∈ a in gC is given by

(gC)x =
∑
α∈∆0
α(x)=0

gαC.

In particular, x is regular if and only if α(x) ̸= 0 for all α ∈ ∆.

Proof. First note that 0 is a root and p0 = a. Let y ∈ gC. Then due to the rootspace decomposition
y =

∑
α∈∆0

yα it holds that
[x, y] =

∑
α∈∆

α(x)yα.
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This proves the form of the commutant (gC)x. In particular

px =
⊕
α∈∆′

0
α(x)=0

pα,

where ∆′
0 contains 0 and exactly one root of each pair α and −α. Hence px = a = p0 if and only if

α(x) ̸= 0 for all α ∈ ∆.

The kernels of the non-zero roots define root hyperplanes in a. The complement of the union of all
root hyperplanes is a disjoint union of open connected components, called (open) Weyl chambers (we
denote the closure of a Weyl chamber by w). Lemma 1.A.37 then shows that the regular elements in a
are exactly the ones that lie in an open Weyl chamber.

Lemma 1.A.38. Let g = k⊕ p be a semisimple, orthogonal, symmetric Lie algebra, and let (G,K) be
an associated pair. The Weyl group is finite and generated by the orthogonal reflections about the root
hyperplanes. Furthermore it acts simply transitively on the Weyl chambers.

Proof. Let n be the Lie algebra of NK(a). Then for any k ∈ n and x ∈ a it holds that [k, x] ∈ a. By
Lemma 1.A.16 it holds that adk(x) ⊂ a⊥, and thus [k, x] = 0. HenceNK(a) and ZK(a) have the same
Lie algebra and the Weyl group must be discrete, and by compactness it must be finite.

We will only sketch the remainder of the proof, see [Hel78, Ch. VII, Thm. 2.12] for details. The plan
is to show that the subgroup of the Weyl group generated by the root reflections (recall Lemma 1.A.36)
acts transitively on the Weyl chambers, and moreover the Weyl group acts simply transitively on the
Weyl chambers. This then shows that the Weyl group is generated by the reflections. For transitivity, let
W′ denote the subgroup generated by the reflections, then for x, y ∈ a we can find w ∈ W′ such that
|x−w ·y| is minimal. Then x andw ·y lie in the same Weyl chamber, since otherwise there is a reflection
which reduces the distance. For simple transitivity, assume that w ∈ W maps some Weyl chamber w
into itself. Then by averaging one finds a regular fixed point x ∈ w, i.e., w · x = x. Using the duality
of Lemma 1.A.9 we may assume that (g, s) is of compact type and G is compact. Hence the closure of
the one-parameter group generated by x is a torus T. If AdK represents w, then K commutes with T
and hence one can show that K = ek for some k ∈ k and [k, x] = 0. Since x is regular, [k, a] = 0 and
hence w = 1.

Corollary 1.A.39. Each W-orbit intersects the closed Weyl chamber w exactly once.

Proof. By Lemma 1.A.38 each Weyl group orbit intersects w, and for x ∈ a regular, this intersection
is unique. Now consider y ∈ a singular and let x ∈ w be a regular point in some slice U about y (i.e.,
U has the property that, for all w ∈ W, if w ∈ Wy, then wU = U , otherwise (wU) ∩ U = ∅, see
Def. 1.A.50 for the general definition). Now assume that y, wy ∈ w for some w ∈ W and consider
wx which lies in wU . One can show that there is an element in w′ ∈ Wwy such that w′wx ∈ w. By
uniqueness, w′wx = x and w′ = w−1 and hence w ∈ Wy. Thus wy = y as desired.

Subalgebras and Quotients

In this section we will look at some further properties of symmetric Lie algebras. In particular, we are
interested in subalgebras that appear as commutants and related quotient spaces. We start with a useful
property of direct sums of symmetric Lie algebras.
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Lemma 1.A.40. Let gi = ki ⊕ pi be symmetric Lie algebras for i = 1, 2. Then g1 ⊕ g2 = (k1 ⊕ k2)⊕
(p1 ⊕ p2) is a symmetric Lie algebra. Moreover, g1 ⊕ g2 is orthogonal if and only if both g1 and g2 are
orthogonal.

Proof. See [Hel78, Ch. V, Lem. 1.6].

Next we consider symmetric subalgebras of a symmetric Lie algebra (g, s), and we will see how
certain properties are inherited. In general we say that a subset of g is symmetric, if it is left invariant
by s.

Definition 1.A.41. Let (g, s) be a symmetric Lie algebra and let h ⊆ g be a Lie subalgebra invariant
under s. Then we say that h, or more precisely (h, s|h), is a symmetric Lie subalgebra of (g, s).

The Cartan-like decomposition of the symmetric Lie subalgebra h ⊆ g is given by h = (h∩k)⊕(h∩
p). The following results show that orthogonality is inherited, but semisimplicity has to be replaced by
the slightly weaker condition of reductivity23. Let us first recall a basic fact about reductive Lie algebras.

Lemma 1.A.42. Let g be a reductive Lie algebra, then g = [g, g]⊕ z where z is the center of g and [g, g]
is semisimple, and this decomposition of g into a direct sum of a semisimple and an Abelian subalgebra
is unique.

Proof. Let g = s ⊕ a where s and a are semisimple and Abelian ideals in g. First we note that a must
equal the center of g. Indeed, it is clear that a ⊆ z. Conversely, let s + a ∈ z where s ∈ s and a ∈ a,
then 0 = [s+ a, s] = [s, s] and so s = 0. Finally [g, g] = [s, s] = s since s is semisimple.

Lemma 1.A.43. Let (g, s) be a semisimple, orthogonal, symmetric Lie algebra and let h ⊆ g be a
symmetric Lie subalgebra. Moreover assume that h ∩ p = (h ∩ p−) ⊕ (h ∩ p+), where p± denote
the non-compact and compact parts. Then (h, s|h) is a reductive, orthogonal, symmetric Lie algebra.
Moreover setting h′ = [h, h], it holds that (h′, s|h′) is a semisimple, orthogonal, symmetric Lie algebra.

Proof. This result generalizes [Kna02, Cor. 6.29]. We will work with the inner product on g defined
in Lemma 1.A.15. Consider the adjoint representation of h on g. By semisimplicity this is a faith-
ful representation, and the assumption on h ∩ p implies that adh |g is closed under transposition, c.f.
Corollary 1.A.30. By [Kna02, Prop. 1.56] a Lie algebra of real matrices closed under transposition is
reductive, and so h is reductive. By Lemma 1.A.42 h′ is semisimple. Clearly h′ is also invariant under s,
and so by Lemma 1.A.7 it holds that (h′, s|h′) is orthogonal. Let z denote the center of h. For h ∈ h and
z ∈ z we see by [s(z), h] = s([z, s(h)]) that z is a symmetric subalgebra, and it is trivially orthogonal.
Hence also h = h′ ⊕ z is orthogonal by Lemma 1.A.40.

Centralizers (commutants) are a common source of symmetric Lie subalgebras, so we briefly give
a more general definition and notation. Let g be a Lie algebra and let A,B ⊆ g be arbitrary subsets.
Then the centralizer of A in B is defined as BA := {b ∈ B : [b, a] = 0 for all a ∈ A}. Of course these
subsets have related stabilizer subgroups GA and KA.

Lemma 1.A.44. Let (g, s) be a semisimple, orthogonal, symmetric Lie algebra with associated pair
(G,K). Let A ⊂ p be any subset and let gA be its commutant. Then gA is a reductive, orthogonal,
symmetric Lie subalgebra with Cartan-like decomposition gA = kA ⊕ pA, and gA is invariant under
the action of the stabilizer GA. Moreover pA = (pA ∩ p−)⊕ (pA ∩ p+) and for every x ∈ pA, we get
the orthogonal decomposition pA = pA,x ⊕ [kA, x].

23Recall that a Lie algebra (over a field of characteristic 0) is reductive if and only if it can be written as a direct sum of a
semisimple and an Abelian Lie algebra.
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Proof. That gA is a Lie subalgebra follows from the Jacobi identity. Let x ∈ gA, since [s(x), z] =
−s([x, z]) = 0 for z ∈ A, we see that gA is invariant under s. Similarly, ifG ∈ GA then [AdG(x), z] =
AdG([x,Ad

−1
G (z)]) = 0. Finally consider x = x− + x+ ∈ pA. Then, for any z ∈ A it holds that

[x−, z]+[x+, z] = 0, and since k− and k+ have zero intersection, this means that [x−, z] = [x+, z] = 0.
By Lemma 1.A.43 this shows that (gA, s) is reductive and orthogonal. Let x = x− + x+ ∈ pA and
y = y− + y+ ∈ pA and k ∈ kA. Then, using the inner product and the Killing form on g, we compute
⟨[k, x], y⟩ = B(k, [x+, y+]− [x−, y−]). Hence pA,x ⊆ pA ∩ [kA, x]

⊥. Since [x+, y+]− [x−, y−] ∈ kA,
the converse is true by Lemma 1.A.14.

In order to better understand the action of KA on g we give the following powerful generalization
of Lemma 1.A.26.

Lemma 1.A.45. Let g = k⊕ p be a semisimple, orthogonal, symmetric Lie algebra, and let (G,K) be
an associated pair. Let a ⊆ p be some maximal Abelian subspace. Let A ⊂ a be any subset. For any
y ∈ pA, there is some K ∈ KA such that AdK(y) ∈ a.

Proof. As in the proof of Lemma 1.A.26 we may assume that we are working with the canonical pair
(G,K) = (Int(g), Intk(g)), and in particular K is compact. Now let x ∈ a be regular, and let y ∈ pA.
Consider the smooth function

f : KA → R, f(K) = B(Ky, x)

If K is a critical point for f , which exists since KA is compact, then for every k ∈ kA it holds that

0 = B([k,Ky], x) = B(k, [Ky, x])

and since [Ky, x] ∈ kA this means that [Ky, x] = 0 by Lemma 1.A.14. Since x is regular,Ky ∈ a.

Lemma 1.A.46. Let g = k ⊕ p be a semisimple, orthogonal, symmetric Lie algebra, and let (G,K)
be an associated pair. Let a ⊆ p be some maximal Abelian subspace. Let A ⊂ a be any subset and
let K ∈ K be such that AdK(A) ⊆ a. Then there is some w ∈ W such that w · x = AdK(x) for all
x ∈ A.

Proof. Let K ∈ K be as in the statement, and let x ∈ a be regular. Then Ad−1
K (x) ∈ pA and by

Lemma 1.A.45 there exists L ∈ KA such that AdLK−1(x) ∈ a. Hence KL−1 ∈ NK(a) (note we took
the inverse) and AdKL−1 = AdK on A and hence the Weyl group element corresponding to KL−1

does the job.

We immediately get some useful corollaries.

Corollary 1.A.47. Let A ⊆ a be any subset. Let pA be the centralizer of A in p and KA the stabilizer
of A in K. Then pA = AdKA

(a).

Proof. First let K ∈ KA, and x ∈ A, and y ∈ a. Then [x,AdK(y)] = AdK([x, y]) = 0. Hence
AdKA

(a) ⊆ pA. For the reverse inclusion let x ∈ pA. Then by Lemma 1.A.45 there is K ∈ KA such
that AdK(x) ∈ a. Hence x ∈ Ad−1

K (a) ⊆ AdKA
(a).

Corollary 1.A.48. For any x ∈ a it holds that Wx = Kx ∩ a. In particular the choice of K, even if
K is disconnected, does not affect the K-orbits in p.

Corollary 1.A.49. Let A ⊂ a and B ⊂ p such that A ∪ B is Abelian. Then there is some K ∈ KA

such that AdK(B) ⊆ a.
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We have encountered several Lie group actions, such as the action of K on p or that of W on a. In
the following we want to understand the structure of the corresponding quotient spaces p/K and a/W.
For this the concept of a slice is crucial. We recall the definition here, see [AB15, Def. 3.47].

Definition 1.A.50. Let G be a Lie group, M a smooth manifold, and µ : G × M → M a smooth
action. A slice at x ∈M for the action µ of G is an embedded submanifold Sx of M containing x and
satisfying the following properties:

(i) TxM = Dµx(g)⊕ TxSx and TyM = Dµy(g) + TySx for y ∈ Sx and where µx(g) = g · x.

(ii) Sx is invariant under the stabilizer Gx = {g ∈ G : g · x = x}.

(iii) if y ∈ Sx and g ∈ G such that g · y ∈ Sx, then g ∈ Gx.

By [AB15, Thm. 3.49], proper Lie group actions on manifolds admit slices at every point of the
manifold. The next result is an immediate consequence of Lemma 1.A.25 and links slices at x to the
commutant px.

Lemma 1.A.51. Let g = k⊕ p be a semisimple, orthogonal, symmetric Lie algebra, and let (G,K) be
an associated pair. Let x ∈ p and let Sx = px ∩ Bε(x) where Bε(x) is an ε-ball around x in g. Then
for ε > 0 small enough, Sx is a slice at x for the adjoint action of K on p.

Proof. This follows from the proof of the slice theorem, see [AB15, Thm. 3.49]. In that proof, for
an isometric action of K on M , a slice about x ∈ M is constructed by taking the exponential of an
ε-ball around the origin in the subspace of TxM orthogonal to the tangent space of the orbit Tx(Kx).
By Lemma 1.A.25 we have the orthogonal decomposition Txp = Tx(Kx) ⊕ px. Since p is a vector
space we can canonically identify the tangent space Txp with p and the exponential function is simply
expx(v) = x+ v. This concludes the proof.

Corollary 1.A.52. Let x ∈ p and let Sx be a slice, then for all y ∈ Sx it holds that py ⊆ px.

Proof. Without loss of generality x, y ∈ a. By Corollary 1.A.47 it holds that px = AdKx(a) and
analogously for y. But if y ∈ Sx then Ky ⊆ Kx by the definition of a slice.

The next results relate the quotients a/W and p/K, showing that they are isometric. But first let us
clarify what metric each space is endowed with. As usual, all subspaces of g are given the K invariant
inner product of Lemma 1.A.15, which induces a norm and a metric. Hence the actions of K on p and
of W on a are isometric. The closed Weyl chamber w ⊂ a inherits the metric on a. We will consider
quotient spaces such as p/K, and px/Kx, and a/W. Then the following lemma describes the relevant
metric properties.

Lemma 1.A.53. Let M be a complete Riemannian manifold and G a compact Lie group acting iso-
metrically onM . Then the quotientM/G with the distance d(Gx,Gy) := d(x,Gy) becomes a metric
space and the quotient map π :M →M/G is non-expansive.

Proof. Since G acts by isometries, the distance is well defined. The axioms of a metric are easily
verified. It is clear that d(Gx,Gy) ≤ d(x, y), showing that the quotient map π is non-expansive.

Lemma 1.A.54. The maps ψ : w → a/W, x 7→ Wx and ϕ : a/W → p/K, Wx 7→ Kx are
bijections.
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Proof. The map ψ is bijective since by Corollary 1.A.39 every W orbit in a intersects w in exactly
one point. The map ϕ : Wx 7→ Kx is well defined since for any y ∈ Wx there exists by definition
of the Weyl group some element K ∈ NK(a) such that y = AdK(x). Injectivity of ϕ follows from
Corollary 1.A.48 and surjectivity follows from Lemma 1.A.26.

Lemma 1.A.55. The maps ψ : w → a/W and ϕ : a/W → p/K of the previous lemma are isometries
with respect to any K-invariant inner product on p and its restriction to a and w.

Proof. We start by showing that ψ is an isometry. Let ∥ · ∥ denote any norm induced by a K-invariant
inner product on p. This norm also induces the metric on w and a. Since the action of W on a is
isometric, it holds that d(Wx,Wy) = minw∈W ∥x − wy∥ where x, y can always be chosen in w.
However the minimum must be achieved by the identity in W, since otherwise the segment connecting
x and wy lies in more than one Weyl chamber. Reflecting this segment into w yields a continuous,
piecewise linear path in w connecting x to y which must be longer than the line segment connecting x
to y. Hence d(Wx,Wy) = ∥x− y∥.

Next we want to show that ϕ is an isometry. Consider any x, y ∈ a with x regular. First note
that d(AdK(x),AdK(y)) ≤ d(Wx,Wy). Moreover, since K acts isometrically on p, it clearly holds
that d(AdK(x),AdK(y)) = d(AdK(x), y). But any geodesic in p realizing the distance d(AdK(x), y)
must be a line segment starting at x and orthogonal to AdK(x), see [Car92, Ch. 9, Example 1]. Hence
it is contained in a and so d(Kx,Ky) ≥ d(Wx,Wy) and hence they are equal. The proof for x non-
regular is similar: again we may assume that x ∈ a, and we know that the segment realizing the distance
d(AdK(x), y) is orthogonal to AdK(x), and hence contained in px, and so is y. By Lemma 1.A.45,
there is some K ∈ Kx such that AdK(y) ∈ a. This concludes the proof.

Corollary 1.A.56. Let x, y ∈ w be distinct. Then the line segment connecting x to y is a geodesic
segment in p realizing the distance between the orbits AdK(x) and AdK(y).

Proof. By Lemma 1.A.55 the distance in w between x and y is the same as the distance in p between
the orbits AdK(x) and AdK(y). Since the straight line segment in w realizes the distance between x
and y in w, the same line segment considered in p realizes the distance between the orbits.

Similarly we can relate the quotients a/Wx and px/Kx for x ∈ p. In this case we just need a
homeomorphism.

Corollary 1.A.57. Let x ∈ a. The inclusion ι : a ↪→ px descends to a homeomorphism ϕx : a/Wx →
px/Kx, Wxy 7→ Kxy.

Proof. First we show that ϕx is a well defined bijection. Let y, z ∈ a and let w ∈ Wx. By definition
of Wx there is some K ∈ Kx with AdK(y) = w · y. Hence ϕx is well-defined. If Kxy = Kxz, that is
y = AdK(z) for some K ∈ Kx, then by Lemma 1.A.46 there is some w ∈ Wx with y = w · z, so ϕx
is injective. Surjectivity follows from Lemma 1.A.45. By the definition of the quotient topology, ϕx is
continuous, and it remains to show that the inverse is too.

We show that ϕx is open. Let y ∈ a. By Lemma 1.A.44, the centralizer of y in px is the orthogonal
complement of the tangent space at y of AdKx(y) in px. SettingA = {x, y}, this centralizer is denoted
by pA and for ε small enough Sy = pA ∩ Bε(y) is a slice at y for the action of Kx on px, similarly
to Lemma 1.A.51. Now let O be an open neighborhood of y in a. Then, if ε is chosen small enough,
Sy ⊆ AdKA

(O) and by the tubular neighborhood theorem, see [AB15, Thm. 3.57], AdKx(Sy) contains
y in its interior. Hence the image of O in px/Kx contains the image of y in its interior.

Moreover we can show that whenever y = AdK(x), the quotients px/Kx and py/Ky are isomorphic
in a unique way.
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Lemma 1.A.58. Let x ∈ p and let y = AdK(x) for some K ∈ K. Then AdK : px → py is a linear
Kx-Ky-equivariant isomorphism. Hence it descends to a homeomorphsim ϕx,y : px/Kx → py/Ky

which does not depend on the choice of K. Furthermore if z ∈ p belongs to the same K-orbit as x and
y, then ϕyz ◦ ϕxy = ϕxz , or equivalently ϕxx is the identity.

Proof. First we show that AdK : px → py is a linear isomorphism. Linearity and invertibility are
clear, we just need to show that AdK(z) ∈ py for z ∈ px. But this follows from [y,AdK(z)] =
AdK([Ad−1

K (y), z]) = AdK([x, z]) = 0. Let L ∈ Kx, then clearly AdK ◦AdL = AdKLK−1 ◦AdK ,
that is, AdK is equivariant. In particular, it maps orbits to orbits bijectively, and hence AdK induces
a well-defined bijection ϕx,y : px/Kx → py/Ky. Note that ϕx,y does not depend on the choice of K,
since any other choice differs fromK by multiplication with a stabilizer element, which leaves the orbits
unchanged. Continuity of ϕx,y follows from the definition of the quotient topology, and continuity of
the inverse follows analogously.

Lemma 1.A.59. Let x ∈ a. Then the stabilizer subgroup Wx is generated by the reflections sα corre-
sponding to the roots ∆x = {α ∈ ∆ : α(x) = 0}. Hence ∆x is a (possibly non-reduced) root system
on its span and Wx is its Weyl group. In particular Wx acts simply transitively on its Weyl chambers.

Proof. By [Hel78, Ch. VII, Thm. 2.16] ∆ is a (generally non-reduced) root system and W is the corre-
sponding Weyl group. By [Hel78, Ch. X Lem. 3.2] ∆ contains a reduced root system ∆′ ⊆ ∆ with the
same Weyl group. By [Hum72, Sec. 10.3 Lemma B] it holds that Wx is generated by reflections with
respect to elements α ∈ ∆′

x ⊆ ∆x. Since for α, β ∈ ∆x it holds that ssα(β)(x) = sα◦sβ ◦s−1
α we know

that ∆x is invariant under its own reflections. Since ∆x ⊆ ∆, the integrality condition is inherited and
hence ∆x is a possibly non-reduced root system on its span.

Remark 1.A.60. Corollary 1.A.57 and Lemma 1.A.58 show that for x ∈ a we can identify a/Wx and
px/Kx and py/Ky for all y ∈ AdK(x). By Lemma 1.A.59, Wx is itself a Weyl group. Furthermore
one can identify a/Wx with the orbifold tangent space Tπ(x)(a/W), see Definition 1.B.1.

1.B Orbifolds

In this appendix we give the necessary background on orbifolds and prove some technical results which
are used in the main text. For a general introduction to orbifolds see [ALJ07]. We only consider the
local theory, that is, we work in a single linear orbifold structure chart. This section does not presuppose
any knowledge of orbifolds. We note that the orbifolds encountered in the main text are of a special kind
due to the Weyl group structure, but we will not make use of this assumption in this appendix.

To kick things off we recall a basic topological concept in the context of group actions: given a finite
dimensional real vector space V , and a finite group Γ acting linearly (and thus continuously) on V , we
denote by V/Γ the usual quotient space endowed with its quotient topology. Moreover, π : V → V/Γ,
x 7→ [x] denotes the quotient map which is continuous by definition of the quotient topology and one
can easily show that it is open.24 With this we can define tangent spaces of points in V/Γ by “pulling
over” the well-known concept of tangent spaces of manifolds:

Definition 1.B.1. Let V be a finite dimensional real vector space, and Γ a finite group acting linearly
on V . We define the tangent bundle of V/Γ to be T (V/Γ) := (TV )/Γ where, when identifying TxV

24Let G be any group acting on a topological space X by homeomorphisms, then π : X → X/G is open. Indeed let
U ⊆ X be any open subset. By definition of the quotient topology it holds that π(U) is open if and only if π−1(π(U)) is
open. But π−1(π(U)) =

⋃
g∈G gU is clearly open.
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with V as usual, the action of Γ on TV is given by g · (x, v) = (g · x, g · v). One can illustrate this with
the following commutative diagram:

TV T (V/Γ)

V V/Γ

Dπ

p p̃

π

or, respectively,
(x, v) [(x, v)]

x [x]

Dπ

p p̃

π

for all x ∈ V , v ∈ TxV , where π and Dπ are the respective quotient maps and p, p̃ are the respective
footpoint maps.

One readily verifies that p̃ is well-defined. Moreover, one can show that for all x ∈ V the tangent
space (also called tangent cone) of [x], that is, p̃−1([x]), is homeomorphic25 to (TxV )/Γx by means
of the map p̃−1([x]) → (TxV )/Γx, [(x, v)] 7→ {g · v : g ∈ Γx}. We denote the tangent space
p̃−1([x]) ≃ (TxV )/Γx by Tπ(x)(V/Γ) or T[x](V/Γ).

Example 1.B.2. Consider the manifold R with the group action of Z2 whose non identity element acts
by x 7→ −x. The quotient map is the absolute value: π(x) = |x|. Then the action on the tangent bundle
TR is given by (x, v) 7→ (−x,−v) (which is not a reflection anymore). Note that the only fixed point of
this action is (0, 0). Then for x ̸= 0 it holds that T|x|(R/Z2) ∼= R and T|0|(R/Z2) ∼= R/Z2.

After establishing the basic setting we can make sense of differentiating within the quotient:

Definition 1.B.3. Let V be a finite dimensional real vector space, and Γ a finite group acting linearly
on V . Let I be an open interval and let ξ : I → V/Γ be a continuous function. Given t ∈ I we say that
ξ is differentiable at t if there exists λ : I → V such that ξ ≡ π ◦ λ (such λ is called a “lift”) and such
that λ is differentiable at t. We then call26

Dξ(t) := {g · (λ(t), λ′(t)) : g ∈ Γ} ∈ T (V/Γ)

the derivative of ξ at t. We say that ξ is differentiable if it is differentiable at every t ∈ I , and we denote
the derivative by Dξ : I → T (V/Γ). If additionally the derivative Dξ is continuous, then we say that ξ
is C1.

Using the previously discussed homeomorphism one could equivalently define Dξ(t) as the col-
lection {gλ′(t) : g ∈ Γλ(t)} ∈ (Tλ(t)V )/Γλ(t). Our definition however has the advantage that all
derivatives live in the same space T (V/Γ).

Remark 1.B.4. Properly defining derivatives of maps between orbifolds is notoriously difficult. The
situation is easier for us, since we only deal with paths. Our definition is quite general, as it is “point-
wise”. In Proposition 1.B.8 we show that it is equivalent to a seemingly stronger definition, which in
turn is similar to the original definition given in [Sat56].

Of course, we first have to make sure that the derivative of ξ is well-defined in the first place, that
is, it does not dependent on the chosen lift λ:

Lemma 1.B.5. Let a finite dimensional real vector space V as well as a finite group Γ acting linearly on
V be given. Moreover, let I be an open interval and let ξ : I → V/Γ be continuous. Now for arbitrary
t ∈ I the following statements hold:

25See for instance [ALJ07, p. 11]. As usual, Γx := {g ∈ Γ : gx = x} denotes the stabilizer of x in Γ.
26Another way to write this would be Dξ(t) = Dπ((λ(t), λ′(t))).
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(i) If ξ is differentiable at t, then the derivative Dξ(t) is a well-defined element of T (V/Γ).

(ii) Given any two lifts λ, µ of ξ which are continuous at t, there exists a neighborhood I ′ of t in I
such that the following hold: if µ(s) = gλ(s) for some s ∈ I ′ and some g ∈ Γ, then µ(t) = gλ(t),
and if µ(t) = hλ(t), then for each s ∈ I ′ there is some g ∈ Γµ(t) such that gµ(s) = hλ(s).

(iii) Assume that ξ is differentiable at t. If λ is any lift of ξ which is continuous on (t − ε, t + ε) for
some ε > 0, then λ admits a left and a right derivative at t which are both elements of Dξ(t).

Proof. (i): Let λ1 and λ2 be lifts of ξ that are differentiable at t. What we have to show now is that

{g · (λ1(t), λ′1(t)) : g ∈ Γ} = {g̃ · (λ2(t), λ′2(t)) : g̃ ∈ Γ} .

For this let g ∈ Γ as well as any sequence (tn)n∈N in I which converges to t be given. By the lift
property of λ1, λ2 there exists for all n ∈ N some gn ∈ Γ such that gλ1(tn) = gnλ2(tn).

Now because Γ is finite there exists a subsequence (gnk)k∈N of (gn)n∈N which is constant, that is,
equal to some g̃ ∈ Γ. Using continuity of λ1, λ2, and the group action we compute

gλ1(t) = lim
k→∞

gλ1(tnk) = lim
k→∞

gnkλ2(tnk) = g̃λ2(t) .

For all k ∈ N this yields

g · λ1(tnk)− λ1(t)

tnk − t
=
gλ1(tnk)− gλ1(t)

tnk − t
=
gnkλ2(tnk)− g̃λ2(t)

tnk − t

=
g̃λ2(tnk)− g̃λ2(t)

tnk − t
= g̃ · λ2(tnk)− λ2(t)

tnk − t

so taking the limit k → ∞ shows gλ′1(t) = g̃λ′2(t) meaning g̃ is the group element we were looking
for.

(ii): First of all, the lift property guarantees that one finds h ∈ Γ which satisfies µ(t) = hλ(t). Now
because Γ is finite there exists an open set U containing µ(t) (called “slice”) with the property that, for
all g ∈ Γ, if gµ(t) = µ(t), then gU = U , and if gµ(t) ̸= µ(t) then (gU) ∩ U = ∅27. Combining this
with the lift property we get λ(t) = h−1µ(t) ∈ h−1U . Therefore continuity yields I ′ ⊆ I such that on
all of I ′, µ lies in U and λ lies in h−1U .

For the first part we have to show that, given any s ∈ I ′ and any g ∈ Γ such that µ(s) = gλ(s),
one also has µ(t) = gλ(t). But by our previous continuity argument we know that µ(s) ∈ U as well as
µ(s) = gλ(s) ∈ g(h−1U) = gh−1U . Therefore U ∩ (gh−1U) ̸= ∅ which by the slice property implies
µ(t) = gh−1µ(t) = g(h−1µ(t)) = gλ(t), as desired.

For the second part note that since hλ(s) ∈ U for all s ∈ I ′, any g ∈ Γ satisfying gµ(s) = hλ(s)
must lie in Γµ(t).

(iii): Now let λ, µ be lifts of ξ where λ is arbitrary but continuous on (t−ε, t+ε) for some ε > 0, and
µ is differentiable at t (such µ exists because ξ is assumed to be differentiable). Again we start by using
the lift property, that is, for all s ∈ (t−ε, t+ε) there exists gs ∈ Γ such that µ(s) = gsλ(s). On the other
hand λ, µ are both continuous at t, so (ii) yields δ > 0 such that for all s ∈ (t−min{δ, ε}, t+min{δ, ε})
one has µ(t) = gsλ(t). With this in mind let us look at the map

Λ : (t, t+min{δ, ε}) → V × V, s 7→
(
λ(s),

λ(s)− λ(t)

s− t

)
.

27This is indeed a special case of Definition 1.A.50.
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Given s arbitrary from the domain of Λ we compute

Λ(s) =
(
λ(s),

λ(s)− λ(t)

s− t

)
= g−1

s

(
µ(s),

µ(s)− µ(t)

s− t

)
︸ ︷︷ ︸
→(µ(t),µ′(t)) as s→t+

. (1.22)

As Γ is finite the set of possible accumulation points {g · (µ(t), µ′(t)) : g ∈ Γ} = Dξ(t) of Λ(s) (as
s → t+) is finite. But because Λ is bounded by (1.22) and continuous, its cluster set at any (locally
connected) boundary point of its domain is either a point, or a continuum [CL66, p. 2], meaning it has
exactly one accumulation point, denoted by g+ · (µ(t), µ′(t)). Similarly one obtains some g−, and this
concludes the proof.

Remark 1.B.6. Note that:

(i) In general g+ ̸= g− so the left and right derivative of λ at t need not coincide.

(ii) In Lemma 1.B.5 (iii) it does not suffice for λ to be continuous only at the point of interest t. For
this consider R/Z2 (cf. Example 1.B.2) and the function ξ : (−1, 1) → R/Z2, t 7→ [t] = |t|, so
ξ effectively describes a reflection of a 1D motion at the origin. Obviously, µ : (−1, 1) → R,
t 7→ t is a lift of ξ which is differentiable (at the origin). Now an example of a lift of ξ which is
continuous at 0 but does not admit a left- or right-derivative is given by

λ : (−1, 1) → R/Z2, t 7→

{
t t ∈ Q
−t t ∈ R \Q .

Continuity in t = 0 is as evident as the fact that neither limt→0+
λ(t)−λ(0)

t nor limt→0−
λ(t)−λ(0)

t
exist because they both have the accumulation points 1 and −1.

The following result shows that if a path ξ : I → V/Γ admits local C1-lifts, then these lifts can be
stitched together to form a global C1-lift. Note that this lift need not be unique, not even up to global
group action. (e.g. ξ : (−1, 1) → R/Z2, x 7→ [x2] has four C1-lifts).

Lemma 1.B.7. Let V be a finite dimensional real vector space, and Γ a finite group acting linearly on
V . Let I be an open interval and (Ij)j∈J be an arbitrary family of open intervals whose union is I .
Given ξ : I → V/Γ the following statements hold:

(i) If ξ admits a continuous lift on each interval Ij , then ξ has a continuous lift λ : I → V .

(ii) If ξ admits a differentiable lift on each interval Ij , then ξ has a differentiable lift λ : I → V .

(iii) If ξ admits a C1-lift on each interval Ij , then ξ has a C1-lift λ : I → V .

Proof. We will only prove (iii), as the simpler cases (i) and (ii) can be shown analogously. First we will
show that for every two open intervals with non-empty intersection we can “glue” the corresponding
lifts together to a lift on their union. Let j1, j2 ∈ J such that Ij1 ∩ Ij2 ̸= ∅ and neither interval fully
contains the other. Then (w.l.o.g.) Ij1 ∪ Ij2 = {t ∈ Ij1 : t ≤ t0} ∪ {t ∈ Ij2 : t ≥ t0} for an arbitrary
but fixed t0 ∈ Ij1 ∩ Ij2 . Let λ1 and λ2 be C1-lifts of ξ on Ij1 , Ij2 , respectively. Since their projections
coincide on the open neighborhood Ij1 ∩ Ij2 of t0, by well-definedness of the derivative we have

Dπ(λ1(t0), λ
′
1(t0)) = Dξ(t0) = Dπ(λ2(t0), λ

′
2(t0)) ∈ T (V/Γ) .
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Thus one finds g ∈ Γ such that λ1(t0) = (g · λ2)(t0) and λ′1(t0) = (g · λ2)′(t0) = g · λ′2(t0). Then the
new path

λ0 : Ij1 ∪ Ij2 → V, t 7→

{
λ1(t) t ≤ t0,

g · λ2(t) t > t0,

is C1 and hence λ0 is a C1-lift of ξ|Ij1∪Ij2 .
Now consider a finite subset J ′ ⊆ J such that I ′ :=

⋃
j∈J ′ Ij is connected. Then we can construct a

C1 lift on I ′ as follows. Choose two elements j1, j2 of J ′ such that Ij1 ∩ Ij2 ̸= ∅, which exist since I ′ is
connected. If one interval contains the other, discard the smaller one, otherwise replace both intervals
with their union, on which we can construct a C1 list by gluing as above. We continue doing this until
only one interval is left, namely I ′. This also implies that we can construct a C1 lift on any compact set
in I .

To construct a C1 lift on the entire open interval I , consider first two non-empty closed intervals
K1,K2 such that K1 lies in the interior of K2. Given a C1 lift λ1 on K1, we want to find a C1 lift
λ2 on K2 which is an extension of the former. For this let D1, D2 be the connected components of
K2 \ int(K1). As above we can find C1 lifts on the closed intervalsD1 andD2 and glue them as above
to the given lift λ1 onK1, without modifying λ1. Finally we extend this idea to a compact exhaustion of
I by closed intervalsKi for i ∈ N using induction. This yieldsC1 lifts λi onKi satisfying λi+1|Ki = λi.
Hence we may define a lift λ : I → V by λ|Ki := λi. Then λ is clearly C1, as desired.

The previous result can be further strengthened by only assuming that ξ has the corresponding
property in each point. This will be the main result of this section. Given ξ ∈ V/Γ, we define the
degeneracy of ξ as the size of the stabilizer of any lift of ξ, that is, as the number degξ := |Γ|/|ξ| where
|ξ| is the cardinality of ξ when taken as a subset of V .

Proposition 1.B.8. Let V be a finite dimensional real vector space, Γ a finite group acting linearly on
V , and I an open interval. Given ξ : I → V/Γ the following statements hold:

(i) If ξ is continuous, then ξ has a continuous lift λ : I → V .

(ii) If ξ is differentiable, then ξ has a differentiable lift λ : I → V .

(iii) If ξ is C1, then ξ has a C1-lift λ : I → V .

Proof. By Lemma 1.B.7 it suffices to show that for every point t0 ∈ I there exists an open interval
I ′ ⊆ I containing t0 on which a lift with the corresponding property exists.

(i) & (ii): We proceed by induction on the degeneracy degξ(t0) of ξ(t0). First assume that degξ(t0) =
1. Let λ̃ be any lift of ξ(t0) and consider a slice U about λ̃. Then the restriction π|U of the quotient
map is a homeomorphism and hence, for an open interval I ′ containing t0 and such that ξ(t) ∈ π(U)
for t ∈ I ′, the function λ := (π|U )−1 ◦ ξ|I′ is a continuous lift of ξ|I′ . For (ii) we additionally need
to show that at every t ∈ I ′ the lift is differentiable. For this consider any other lift µ : I ′ → V with
µ(t) ∈ U which is differentiable at t. In a small enough neighborhood of t, µ takes values in U and
hence coincides with λ, which is therefore differentiable at t.

Now assume that degξ(t0) > 1 and that for any t with degξ(t) < degξ(t0) there exists a continuous
resp. differentiable lift in a neighborhood of t. We will now show that there is a continuous resp.
differentiable lift in a neighborhood of t0. Again let λ̃ be any lift of ξ(t0) and let U be a slice about
λ̃. Let I ′ ⊆ I be an open interval containing t0 such that ξ(t) ∈ π(U) for all t ∈ I ′. Let J ⊂ I ′ be
the open subset on which degξ(t) < degξ(t0) for all t ∈ J . Hence J is an at most countable union of
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open intervals Jk, and by the induction hypothesis and using Lemma 1.B.7 (i) resp. (ii) there exists a
continuous resp. differentiable lift on each Jk taking values in U , which we denote by λk : Jk → U .
Clearly gkλk is also a differentiable lift for all gk ∈ Γλ and still lies in U . Note that for all t ∈ I ′ \ J
there exists a unique lift µt in U . Hence we can define the function

λ : I ′ → U, λ(t) =

{
gkλk(t) t ∈ Jk

µt t ∈ I ′ \ J,

where the gk will be determined later. First we show continuity. For t ∈ J this is clear by construction,
hence we consider t ∈ I ′ \ J . Let tn → t be a sequence in I ′ and let U ′ ⊆ U be any slice about t. Note
that if gU ′ ⊆ U , the gU ′ = U ′. Since the quotient map π is open, π(U ′) is an open neighborhood of
ξ(t). By continuity of ξ this means that for n large enough, ξ(tn) ∈ π(U ′) and hence λ(tn) ∈ U ′. Note
that this argument only uses that λ is a lift contained in U .

Next we show differentiability. By Lemma 1.B.5 (iii) λ admits left and right derivatives at each
point and it remains to show that they agree. For t ∈ J this is clear, hence consider t ∈ I ′ \ J . If t is
an isolated point of I ′ \ J connecting two intervals Jk1 and Jk2 , then one can choose gk1 and gk2 such
that λ will be differentiable at t. Let P be the set of all isolated points of I ′ \ J and let consider the
open set J ∪ P . This is again an at most countable union of open intervals J ′

k and each J ′
k contains at

most countably many intervals Jk joint at their boundary points which lie in P . On each J ′
k we can then

define λ such that it is differentiable. If t is not an isolated point of I ′ \J then there exists a sequence tn
in I ′ \J converging to t such that tn ≤ t for all n or tn ≥ t for all n. Without loss of generality, assume
that tn ≥ t for all n. Hence the right derivative at t is invariant under the stabilizer Γλ(t) and thus it is
uniquely determined. This implies that it coincides with the left derivative and λ is differentiable at t.

(iii): By (ii) there exists a differentiable lift λ : I → V of ξ. We claim that λ must be C1. Let ϕi
be a basis of the dual space V ∗. We show that each ϕi ◦ λ is C1 on I . Certainly ϕi ◦ λ is differentiable
on I . Assume that ϕi ◦ λ′ is discontinuous at t0 ∈ I . Thus there is some ε > 0 such that for every
neighborhood I ′ of t0 there are t1, t2 ∈ I ′ such that |ϕi ◦ λ′(t1) − ϕi ◦ λ′(t2)| > ε and one can show
that all values between ϕi ◦ λ′(t1) and ϕi ◦ λ′(t2) are taken, see [Kat80, p. 114]. Now let Dδ be a disk
in V of radius δ > 0 centred at λ′(t0). Then, since ξ′ is continuous, there is a neighborhood Jδ of t0
such that λ′(t) ∈ ΓDδ for all t ∈ Jδ. Choosing δ small enough we can ensure that ϕi(ΓDδ) does not
contain an interval of length ε, which yields the desired contradiction.

Remark 1.B.9. Due to this result one could equivalently define a path ξ : I → V/Γ to beC1 if it admits
local C1 lifts, which is more in line with the original definition of smooth functions on orbifolds.

Finally we give two simple results that are used in the measurable and analytic diagonalizations
respectively.

Lemma 1.B.10. Let Ω be a measurable space, and let λ, µ : Ω → V be measurable (where V is
endowed with its Borel σ-algebra). Assume that π ◦λ = π ◦µ. Then there is some measurable function
γ : Ω → Γ such that λ = γ · µ.

Proof. Let γi for i = 1, . . . ,m be an enumeration of Γ. Define the sets Ω1 = {ω ∈ Ω : λ(ω) =
γ1 · µ(ω)} and iteratively Ωi = {ω ∈ Ω : λ(ω) = γi · µ(ω)} \

⋃i−1
j=1Ωj for i > 1. These sets are

measurable and form a partition of Ω. Now define γ(ω) = γi for ω ∈ Ωi. This γ is measurable and
satisfies the desired condition by construction.

Lemma 1.B.11. Let λ : I → V be real analytic. Then any real analytic path µ satisfying π ◦µ = π ◦λ
satisfies µ = g · λ for some g ∈ Γ.
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Proof. Consider the size of the stabilizer |Γµ(t)| as a function of t. Let t0 ∈ I be a point where this
value is minimal. Then there is an open interval J ⊆ I containing t0 on which the stabilizer of µ(t) is
constant. Hence if µ(t0) = g · λ(t0), then in a neighborhood J ′ of t0 it holds by Lemma 1.B.5 (ii) that
h(t) ·µ(t) = g · λ(t) for some h(t) ∈ Γµ(t0). Hence on J ∩ J ′ it holds that µ(t) = h(t)µ(t) = g · λ(t).
Since both paths are real analytic, they coincide by the identity theorem.

1.C Resolvent Computations

Lemma 1.C.1. LetV be a finite dimensional complex vector space and letA ∈ gl(V ) be diagonalizable.
Moreover, let Dε be a small open disc around the eigenvalue λk of A which does not contain any other
eigenvalue λl, l ̸= k. Then the identity

1

2πi

∫
∂Dε

(λ− µ)−1R(λ,A)dλ =


(λk − µ)−1Pk for µ ̸∈ Dε ,∑n

l=1
l ̸=k

(µ− λl)
−1Pl for µ ∈ Dε ,

(1.23)

is fulfilled, whereR(λ,A) = (λ−A)−1 denotes the resolvent ofA and Pk, Pl stand for the correspond-
ing eigenprojections.

Proof. The equality can easily be obtained via the representation A =
∑n

l=1 λlPl. Indeed, it follows
easily from

1

2πi

∫
∂Dε

(λ− µ)−1R(λ,A)dλ =

n∑
l=1

( 1

2πi

∫
∂Dε

(λ− µ)−1(λ− λl)
−1dλ

)
Pl

as desired.

With this we can give the proof promised in the main text:

Proof of Lemma 1.5.4. Let us consider the right-hand side of (1.11). By Kato [Kat80, Ch. II, Sec. §1.4
& Thm. 1.10] we know that the corresponding eigenprojections Pk(z) can be chosen analytically on Ḋr
with analytic extension to t0. Moreover, Pk(z) has the well-known integral representation28

Pk(z) =
1

2πi

∫
∂Dεk

R(λ,Ac(z))dλ ,

where εk > 0 has to be chosen such that Dεk contains only the k-th29 eigenvalue of Ac(z). Hence we
obtain[

Ṗk(z), Pk(z)
]
=

1

(2πi)2

∫
∂Dε′

k

∫
∂Dεk

[
R
(
λ,Ac(z)

)
Ȧc(z)R

(
λ,Ac(z)

)
, R
(
µ,Ac(z)

)]
dλdµ ,

with ε′k > 0 slightly larger than εk > 0. One could also choose ε′k > 0 slightly smaller than εk > 0.
Now the standard resolvent identity

R(λ,A)R(µ,A) = (µ− λ)−1
(
R(λ,A)−R(µ,A)

)
28See for instance [Kat80, p. 67], but be aware that Kato defines the resolvent to beR(λ,A) = (A−λ)−1 which explains

the additional minus sign in his integral representation of the eigenprojection.
29Note that the numbering of the eigenvalues does not matter due to the summation on the right-hand side of (1.11).
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yields [
Ṗk(z), Pk(z)

]
=

1

(2πi)2

∫
∂Dε′

k

∫
∂Dεk

(λ− µ)−1R(λ,Ac(z))Ȧc(z)R(µ,Ac(z))dλdµ

− 1

(2πi)2

∫
∂Dε′

k

∫
∂Dεk

(λ− µ)−1R(µ,Ac(z))Ȧc(z)R(λ,Ac(z))dλdµ .

First we investigate the second last term of the above identity, and using Lemma 1.C.1 we conclude

1

(2πi)2

∫
∂Dε′

k

∫
∂Dεk
(λ− µ)−1R(λ,Ac(z))Ȧc(z)R(µ,Ac(z))dλdµ =

n∑
l=1
l ̸=k

(λl − λk)
−1Pk(z)Ȧc(z)Pl(z).

Similarly, we conclude for the last term

1

(2πi)2

∫
∂Dε′

k

∫
∂Dεk
(λ− µ)−1R(µ,Ac(z))Ȧc(z)R(λ,Ac(z))dλdµ =

n∑
l=1
l ̸=k

(λl − λk)
−1Pl(z)Ȧc(z)Pk(z).

Summing up, we obtain

1

2

n∑
k=1

[Ṗk(z), Pk(z)] =
n∑
k=1

n∑
l=1
l ̸=k

(λl − λk)
−1Pk(z)Ȧc(z)Pl(z).

Using (1.10) this concludes the proof.





CHAPTER 2
Reduced Control Systems

2.1 Introduction

This chapter introduces the main concept of Part I, namely the reduced control system, and proves
the central Equivalence Theorem. We study control systems that admit fast controllability on certain
degrees of freedom, represented by a Lie group action. Intuitively, one should be able to factor out these
directions, and so our goal is to define an associated reduced control system on the remaining degrees of
freedom, and to show that the two systems are essentially equivalent, in a sense which will be specified
later. As a consequence, no loss of information is incurred by switching to the reduced control system.

In this chapter we continue working in the setting of symmetric Lie algebras, and so we will make
ample use of the tools provided by Chapter 1. Due to the relation of symmetric Lie algebras to matrix di-
agonalizations (recall Section 1.2), the results from this chapter can then be applied directly to important
examples of control systems from quantum control theory. This will be done in Parts II and III.

A similar idea has been considered in [AS04, Ch. 22] for commuting controls under the assumption
that the reduced state space is again a manifold. In our setting the controls do not commute and the
reduced state space has singularities, which are the source of most complications. The idea of con-
sidering a reduced state space, even if the reduced control system is not defined explicitly, has come
up several times in quantum control theory. This chapter generalizes the ideas presented in [STK04,
RBR18, Yua10] in a mathematically rigorous manner. If the reduced state space is a Riemannian sym-
metric space, strong results can be derived [KBG01, JLB23]. Unfortunately such systems are rare in
practice [KBG01, KGB02, ZYK08]. Often the quotient spaces are rather complicated, and one contents
oneself with finding diameters of such spaces to derive speed limits [JLB23, GR21].

Motivational Example

We give a simple example to motivate our work. Consider the closed unit diskD ⊂ R2 in the plane and
let X be some complete and sufficiently smooth vector field on D, such that D is invariant under the
flow of X . The compact Lie group SO(2) acts on the disk by rotations. The connection to symmetric
Lie algebras and matrix diagonalizations is elaborated in Example 1.2.4. Now consider a control system
on D with constant drift X and fast control on the action of SO(2). Without the drift term, this means
that we can move arbitrarily quickly within the orbits of the group action, which in this case are simply
the concentric circles about the origin. Including the drift term, this is still approximately true. Hence,
points on the same orbit may be considered equivalent, and the question becomes how one can move

53



54 CHAPTER 2. REDUCED CONTROL SYSTEMS

between orbits. This suggests that there should be a natural way to define a corresponding control system
on the quotient space D/SO(2) ∼= [0, 1], which in our example is the set of all radii1. Moreover, we
want this reduced control system to be equivalent to the original system in some precise sense, so that
no information is lost.

Let us see what this reduced control system should look like in our simple example. Instead of
working on the quotient space, which in general is not a manifold, we will look at a subspace of our
state space which intersects all orbits a finite number of times, and does so orthogonally. Here we choose
the intersection of the horizontal axis with the disk, i.e. the line segment A = [−1, 1] · e1 ⊂ R2 where
e1 = (1, 0). This will be our new reduced state space. If we restrict the drift vector field X to the axis
A and project the vector field orthogonally onto the axis, this yields some possible dynamics on the
reduced space. Using the fast control we can rotate our horizontal axis A to any other axis, and obtain
a different vector field on the reduced space. Collecting all of these vector fields defines the reduced
control system.

We can plot these vector fields all together in a single graph, where the abscissa is the reduced state
space, see Figure 2.1. In the exampleX is affine linear, and so are the restricted vector fields and hence
the graph is a collection of lines. This can be seen as a set-valued function of achievable derivatives,
denoted derv, and the reduced control system can be seen as the corresponding differential inclusion,
as we will show below.

-1.0 -0.5 0.5 1.0
a

-3

-2

-1

1

2

3

derv(a)

Figure 2.1: Left: A drift vector field X on the disk D. Right: A plot of the corresponding differential
inclusion as a collection of affine linear vector fields defined on the interval [−1, 1] ∼= A.

We will come back to this example in Section 2.6 where we use it to illustrate how the method of
reduced control systems can be used in practice.

Outline and Main Results

In Section 2.2 we introduce the control systems studied in this chapter, in particular we define the reduced
control system, and we briefly address the operator lift of the original and reduced control systems. Some
basic properties of the reduced control system are collected in Appendix 2.A.

We then go on to prove our main results in Section 2.3, establishing the equivalence of the reduced
control system and the full one. We start out with a local equivalence result in Proposition 2.3.6, followed

1Note that the two boundary points of the quotient space have different meanings. Here 1 comes from the boundary
of the disk, whereas 0 originates from the singular SO(2)-orbit. This is important for defining the appropriate notion of
differentiability in the quotient space, see Appendix 1.B.
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by the global equivalence result, which will be separated into a projection, see Theorem 2.3.8, and a
lift, see Theorem 2.3.14. The results are combined and slightly generalized in Theorem 2.3.16.

In Section 2.4 we explore how statements about important control theoretic concepts such as reach-
ability, viability, controllability and accessibility can be determined using the reduced control system
and lifted to the original one.

As an application, in Section 2.5 we give a majorization result which establishes the preorder induced
by the Weyl group action as a kind of resource, see Theorem 2.5.3. For certain cost functions, this allows
one to reduce the set of achievable derivatives to a significantly smaller set of optimal derivatives. This
will be very useful when studying the problem of optimal cooling in Chapter 6.

Finally, the motivational example given above is worked out in detail in Section 2.6.

2.2 Full and Reduced Control Systems

For the remainder of the chapter we will be working with a semisimple orthogonal symmetric Lie algebra
(g, s) with Cartan-like decomposition g = k ⊕ p and an associated pair (G,K) with K compact and
connected2. Moreover a ⊆ p denotes some choice of a maximal Abelian subspace, with Weyl group
W and a closed Weyl chamber w. For a concise summary of symmetric Lie algebras, see Section 1.1.
A detailed introduction is given in Appendix 1.A.

We start by defining the class of control-affine systems on p that we want to study in the sequel. We
are given a vector fieldX on p, called the drift vector field, and a set of control directions k1, . . . , km ∈ k.
The full control system we wish to study in this work is the following:

p′(t) = X(p(t)) +

m∑
j=1

uj(t) adkj (p(t)), p(0) = p0 ∈ p (F)

where adx denotes the adjoint operator of x, that is, adx(y) := [x, y]. We will always consider solutions
on an interval I of the form [0, T ] with T ≥ 0, or of the form [0,∞). The control functions uj : I → R
are required to be locally integrable, cf. [Son98, App. C]. A solution p : I → p is an absolutely
continuous function satisfying (F) almost everywhere for some choice of control functions. Of course,
when X is linear then (F) is in fact a bilinear control system [Jur97, Ell09].
The two key assumptions made throughout this chapter are:

(I) The control directions generate the full Lie algebra: ⟨k1, . . . , km⟩Lie = k.

(II) No bounds are assumed on the control functions uj : I → R, as they are only required to be
locally integrable.

Under these assumptions, and if we neglect the driftX , we can move between any two points of a given
K-orbit in p arbitrarily quickly, cf. [Ell09, Prop. 2.7]. We say that we have fast and full control on the
Lie group K — and thus on its orbits in p. Some results will use the following strengthened version of
Assumption (I):

(I’) The control directions span the full Lie algebra: span(k1, . . . , km) = k.

Using this assumption makes it easier to compute the control functions in the full control system when
one tries to lift a solution from the reduced to the full system, but it is not necessary.

2This is always possible, for instance by choosing G = Int(g) and K = Intk(g), see Lemma 1.A.20.
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Reduced Control System

Assumptions (I) & (II) imply that we can move into the maximal Abelian subspace a at any time. This
motivates us to define a reduced control system on a. First we introduce some concepts. For every
K ∈ K, we define its induced vector field on a

XK := Πa ◦Ad⋆K(X) ◦ ι , X := {XK : K ∈ K}

where Πa : p → a is the orthogonal projection on a, and ι : a ↪→ p is the inclusion3. By AdK we denote
the adjoint action ofK on p and Ad⋆K denotes the pullback action, that is, Ad⋆K(X) = Ad−1

K ◦X ◦AdK .
If X is linear, then so are all XK .

Now we can define the reduced control system by

a′(t) = XK(t)(a(t)), a(0) = a0 ∈ a , (R)

where the control functionK : I → K is required to be measurable4. Again, a solution is an absolutely
continuous function a : I → a which satisfies (R) almost everywhere.

Moreover, we define the set of achievable derivatives at a ∈ a by

derv(a) := {XK(a) : K ∈ K} := X(a) ⊂ Taa ∼= a .

Then we can also define a differential inclusion corresponding to (R) by

a′(t) ∈ derv(a(t)), a(0) = a0 ∈ a , (R′)

where a : I → a needs to be absolutely continuous and satisfy (R′) almost everywhere. In fact (R)
and (R′) are equivalent, i.e. they have the same solutions. This follows from Filippov’s theorem, see
for instance [Smi02, Thm. 2.3], using only that X is continuous and that K is compact. The difference
between (R) and (R′) is that the latter “forgets” about the controls, and leads to a more internal, geometric
picture. We will switch between both viewpoints whenever it simplifies things.

Often it will be convenient to consider a relaxed version of the differential inclusion above given by

a′(t) ∈ conv(derv(a(t))), a(0) = a0 ∈ a , (R̄)

where conv denotes the convex hull. This will slightly enlarge the set of solutions, however, if X
is Lipschitz, every solution to (R̄) can still be approximated uniformly on compact time intervals by
solutions to (R′), see [AC84, Ch. 2.4, Thm. 2]. The relationship between the full and reduced control
systems is depicted in Figure 2.2.

Operator Lifts

Both the original and the reduced control system can be lifted to the operator level. For this section
we use Assumption (II), but we drop Assumption (I). Let X ∈ gl(p) be a linear5 vector field on p and
consider the operator lift of (F) on GL(p) given by the following bilinear system:

L′ =
(
X +

m∑
j=1

uj(t) adkj

)
L , L(0) = 1 ∈ GL(p) . (FL)

3In the following we will usually suppress the inclusion ι from the notation.
4With respect to the Lebesgue σ-algebra on I and the Borel σ-algebra on K.
5For more general vector fields X , the operator lift of the control-affine system is typically defined on an (in general

infinite dimensional) subgroup of the diffeomorphism group of p.
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Figure 2.2: Relationship between the time evolution p(t) of the full control system (F) on p, and the time
evolution a(t) of the reduced control system (R) on a. The solutions are related by p(t) = AdK(t)(a(t))
for some K(t) in K. The derivative p′(t) can always be split into a part orthogonal to the K-orbit,
using the orthogonal projection Πp(t) onto the commutant of p(t), and a part tangent to the orbit, using
the complementary projection Π⊥

p(t). A central result in this work is the Equivalence Theorem 2.3.16,
which details the relation between the two control systems. Note that here we depict only the regular
case.

Such right-invariant control systems defined on Lie groups are highly structured and allow for the
application of Lie semigroup theory, see [Law99] for a concise introduction. This system is character-
ized by the set Ω := {X + adk : k ∈ span(k1, . . . , km)}. The fact that Ω is not bounded causes some
problems but will be remedied by passing to the reduced control system below.

For a rigorous formulation of the subsequent statements, we cannot avoid some further terminology
and notation, see [Law99]6 for details: A wedge w is a closed, convex cone, and its edge E(w) is the
largest subspace contained in the wedge. A Lie wedge is a wedge w in a Lie algebra closed under
the adjoint action of its edge. A Lie semigroup is a closed, infinitesimally generated subsemigroup of
a Lie group, cf. [Law99, Def. 4.7] and [HN93, p. 20]. The tangent cone at the identity of a closed
subsemigroup is always a Lie wedge, and in this case the Lie wedge is called global or a Lie saturate,
cf. [Law99, Prop. 6.2] and [HN93, Sec. 1.6].

Proposition 2.2.1. Let h = ⟨k1, . . . , km⟩Lie and let H ⊆ K be the corresponding analytic subgroup.
The following statements hold.

(i) ⟨Ω⟩wedge = R+X + span(adk1 , . . . , adkm) and ⟨Ω⟩LW ⊇ ⟨adh,Ad⋆H(X)⟩wedge.

(ii) Assume that there is a Lie wedge v such that adh ⊆ E(v) and such that X ∈ v \ E(v). Then
⟨Ω⟩LW = ⟨adh,Ad⋆H(X)⟩wedge.

(iii) If, in addition, adh and v are global 7, then ⟨Ω⟩LS = ⟨adh,Ad⋆H(X)⟩wedge.

(iv) If X, adhi ⊆ l for some compact Lie algebra8 l, then ⟨Ω⟩LS = ⟨X, adh⟩Lie and, in particular,
reachFL(1) is a Lie subgroup.

6For a more detailed treatment see also [HHL89, HN93], but beware of slight differences in terminology.
7Recall that this means that the Lie algebra adh generates a closed Lie subgroup in GL(p).
8By this we mean that the Lie group generated by l in GL(p) is compact.
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Proof. (i): The first part is clear since wedges are closed by definition. Since ⟨Ω⟩LW is a wedge, it
contains the linear span of all adki , which must be contained in the edge E(⟨Ω⟩LW). The latter is
a Lie algebra, hence E(⟨Ω⟩LW) ⊇ adh. Since ⟨Ω⟩LW is a Lie wedge, for any h ∈ h it contains
eadadhX = Adeh X Ade−h . (ii): The inclusion ⊇ was shown in (i). As for the converse: let w =
⟨adh,Ad⋆H(X)⟩wedge. It is enough to show that w is a Lie wedge. First we show that w ∩E(v) = adh:
If w ∈ w \ adh, then w = adh+λY where h ∈ h, λ > 0 and Y ∈ conv(Ad⋆H(X)). But since v is a
Lie wedge, Y ∈ v \ E(v), and w /∈ E(v). This proves the claim. Finally we can show that w is a Lie
wedge. Clearly w ⊆ v, and so E(w) ⊆ E(v). Hence, by the above claim, E(w) = adh, and since w
is invariant under the action of adh, it is a Lie wedge. (iii): It suffices to show that w is global. For this
we will use [HN93, Prop. 1.37]. Since v and E(w) = adh (by (ii)) are global by assumption, we only
need to show that E(v) ∩w ⊆ E(w). But this follows immediately from the claim above. (iv): This is
a consequence of [Law99, Prop. 6.3].

The operator lift of (R), still assuming thatX is linear and again using Assumption (I) (full control),
is defined by

L′(t) = XK(t)L(t), L(0) = 1 ∈ GL(a) . (RL)

Remark 2.2.2. Although the control systems on p and a are equivalent, the same is not true for the
operator lifts onGL(p) andGL(a). More precisely, a reachable transformation inGL(a)will in general
not correspond to the restriction of some reachable transformation in GL(p). In this sense the operator
lift (RL) is a somewhat artificial construction which, however, turns out to be useful in practice, see for
instance Chapter 8.

Lemma 2.2.3. Let X ∈ gl(p) be a linear vector field on p. Then it holds that

⟨X⟩wedge := ⟨Πa ◦Ad⋆K(X) ◦ ιa⟩wedge = Πa ◦ ⟨adk,Ad⋆K(X)⟩wedge ◦ ι.

Proof. This follows immediately from the definition of the induced vector fields.

This result relates the operator lifts (FL) and (RL) via the wedges they generate since the wedge
⟨adk,Ad⋆K(X)⟩wedge on the right-hand side is related to ⟨Ω⟩LW and ⟨Ω⟩LS in the proposition above.
Whether similar relations exist for ⟨X⟩LW and ⟨X⟩LS is an open question.

2.3 The Equivalence Theorem

The main goal of this chapter is to prove that the reduced control system (R) on a is in some sense
equivalent to the full control-affine system (F) on p. Instead of giving a general definition of equivalence
in advance, each of our main results will contain the precise sense in which the equivalence in question
is to be understood. First we will give a local equivalence result in Proposition 2.3.6, before proving
the global case. This will be separated into a projection, see Theorem 2.3.8, and an approximate lift,
see Theorem 2.3.14. The results are combined and slightly generalized to obtain the final Equivalence
Theorem 2.3.16.

Before we begin, let us state the following important geometric consequences of the orthogonality
of the symmetric Lie algebra. Let x ∈ p and consider px := {y ∈ p : [x, y] = 0}, i.e. the commutant of
x in p. A key fact is that the orbit of K through x, denoted by Kx, is orthogonal to px at x. Since the
tangent space of the orbit at x can be identified with adk(x), we can define the orthogonal projection
Πx : p → p with image px and kernel adk(x), yielding the useful equation

Πx(adk(x)) = 0 for all x ∈ p, k ∈ k. (2.1)
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Local Equivalence

Here we show a local equivalence result which illustrates why the definition of the reduced control
system is natural. Note that the global equivalence result proven later does not make use of this local
result.

Unless stated otherwise, we make no assumption on the smoothness or boundedness of the drift X .
We start with a simple but quite useful consequence of the orthogonality relation (2.1).

Lemma 2.3.1. Let p : [0, T ] → p be any path satisfying (F) at some t0 ∈ [0, T ] and let K ∈ K be
arbitrary. Then it holds that

Ad−1
K ◦Πp(t0)(p

′(t0)) = ΠAd−1
K (p(t0))

◦Ad⋆K(X) ◦Ad−1
K (p(t0)) .

Proof. This is a simple computation:

Ad−1
K ◦Πp(t0)(p

′(t0)) = Ad−1
K ◦Πp(t0) ◦X(p(t0))

= ΠAd−1
K (p(t0))

◦Ad−1
K ◦X(p(t0))

= ΠAd−1
K (p(t0))

◦Ad⋆K(X) ◦Ad−1
K (p(t0)) ,

where the first equality uses (F) & (2.1), the second one uses Lemma 1.A.24 (iii), and the third one uses
the definition of the pullback.

The following lemma is mostly a convenient restatement of Proposition 1.4.5 applied to solutions
of (F).

Lemma 2.3.2. Let p : [0, T ] → p be any path satisfying (F) at some t0 ∈ [0, T ]. Then the following
statements hold.

(i) There is a : [0, T ] → a differentiable at t0 which satisfies π ◦ p = π ◦ a.

Now fix any a as in (i).

(ii) For any b : [0, T ] → a differentiable at t0 satisfying π ◦ p = π ◦ b there is some w ∈ W such
that 9 (b(t0), b

′(t0)) = w · (a(t0), a′(t0)).

(iii) For any b : [0, T ] → a differentiable at t0 satisfying π ◦ p = π ◦ b there is someK ∈ K such that

b(t0) = Ad−1
K (p(t0)) and b′(t0) = Ad−1

K ◦Πp(t0)(p
′(t0)) = XK(b(t0)) .

(iv) For any K ∈ K such that Ad−1
K (p(t0)) ∈ a and Ad−1

K ◦Πp(t0)(p′(t0)) ∈ a it holds that

(Ad−1
K (p(t0)),Ad

−1
K ◦Πp(t0)(p

′(t0))) = w · (a(t0), a′(t0))

for some w ∈ W. Moreover, it holds that

Ad−1
K ◦Πp(t0)(p

′(t0)) = XK ◦Ad−1
K (p(t0)) .

Proof. (i) and (ii) follow immediately from Proposition 1.4.5. For (iii) we use the same proposition,
together with Lemma 2.3.1, to obtain b′(t0) = Πb(t0)Ad

⋆
K(X)(b(t0)). Since b′(t0) is diagonal by

assumption, this implies that b′(t0) = XK(b(t0)). Finally, the first part of (iv) is a direct consequence
of (ii), (iii), and Corollary 1.A.49. The second part follows from Lemma 2.3.1 as before.

9We define w · (a(t), a′(t)) = (w · a(t), w · a′(t)), which naturally extends the action of W to the tangent bundle Ta.
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As a converse we have the following lifting result:

Lemma 2.3.3. Let a0 ∈ a and K ∈ K as well as t0 ∈ [0, T ] be given. Assume that X is continuous on
a neighborhood of AdK(a0). Then there exists p : [0, T ] → p which satisfies (F) on a neighborhood of
t0 and satisfies p(t0) = AdK(a0).

Proof. By continuity ofX on a neighborhood of AdK(a0), Peano’s Theorem [Tes12, Thm. 2.19], guar-
antees the existence of a solution p : (t0−ε, t0+ε) → p to p′(t) = X(p(t)) satisfying p(0) = AdK(a0).
This is clearly a solution to (F) at t0 with all controls set to zero.

These results motivate the following definition:

d̃erv(a0) = {a′(t0) :
a:[0,T ]→a differentiable at some t0∈[0,T ], a(t0)=a0, and π◦a=π◦p,

where p:[0,T ]→p satisfies (F) on a neighborhood of t0 } , (2.2)

which is the set of all possible derivatives at a0 ∈ a of solutions to (F). Now our previous results allow
us to describe d̃erv(a0) explicitly.

Lemma 2.3.4. Assume that X is continuous. Then it holds for every a0 ∈ a that

d̃erv(a0) = {XK(a0) : K ∈ K such that Πa0 ◦Ad⋆K(X)(a0) ∈ a}.

Proof. “⊆”: Let a, p and t0 be as in (2.2). Lemma 2.3.2 (iii) and its proof show that there is some
K ∈ K such that a′(t0) = Πa0 ◦Ad⋆K(X)(a0). So Πa0 ◦Ad⋆K(X)(a0) ∈ a as desired.

“⊇”: By Lemma 2.3.3 there exists p : [0, T ] → p solving (F) in a neighborhood of t0 such that
p(t0) = AdK(a0). Lemma 2.3.1 shows that Ad−1

K ◦Πp(t0)(p′(t0)) = Πa0 ◦ Ad⋆K(X)(a0). Hence by
Lemma 2.3.2 (i) and (iv) there is some a : [0, T ] → a satisfying π ◦ a = π ◦ p with a(t0) = a0 and
a′(t0) = Πa0 ◦Ad⋆K(X)(a0), as desired.

For the next result we will make use of Kostant’s famous convexity theorem [Kos73]. Recall that
Ka0 and Wa0 denote the stabilizers of a0 in K and W, respectively.

Lemma 2.3.5. Let a0 ∈ a and K ∈ K be given. Then there exists K̃ ∈ K which satisfies KKa0 =
K̃Ka0 such thatXK̃(a0) = Πa0◦Ad⋆K̃(X)(a0) ∈ a. Moreover, for any such K̃ it holds that {XKL(a0) :
L ∈ Ka0} = conv(Wa0 ·XK̃(a0)).

Proof. For the existence of K̃ let us write K̃ = KLwith corresponding element L ∈ Ka0 . Then, using
Lemma 1.A.24 (iii) we compute

Πa0 ◦Ad⋆KL(X)(a0) = Πa0 ◦Ad−1
L ◦Ad⋆K(X)(a0) = Ad−1

L ◦Πa0 ◦Ad⋆K(X)(a0) ,

and hence by Lemma 1.A.45 there is someL ∈ Ka0 such that this expression lies in a. Next we compute,
with K̃ as above, for arbitrary M ∈ Ka0

XK̃M (a0) = Πa ◦Ad⋆K̃M (X)(a0) = Πa ◦Ad−1
M ◦Ad⋆

K̃
(X)(a0)

= Πa ◦Ad−1
M ◦Πa0 ◦Ad⋆K̃(X)(a0) = Πa ◦Ad−1

M ◦XK̃(a0) .

The result now follows from Lemma 1.A.44 and Kostant’s convexity theorem.

Now we are ready to prove a local equivalence result relating d̃erv and derv, showing that they are
“almost the same”.
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Proposition 2.3.6. Let a0 ∈ a and K ∈ K be arbitrary and assume that X is continuous on a neigh-
borhood of AdK(a0). It holds that

d̃erv(a0) ⊆ derv(a0) =
⋃

v∈d̃erv(a0)

conv(Wa0v) ⊆ conv(d̃erv(a0))

so, in particular, conv(derv(a0)) = conv(d̃erv(a0)), and if a0 is regular, then it holds that derv(a0) =
d̃erv(a0). Moreover, assuming that X(0) ∈ a, it holds at the origin of a that WX(0) = d̃erv(0) ⊆
derv(0) = conv(WX(0)).

Proof. The first inclusion is due to Lemma 2.3.4, the first equality follows from Lemma 2.3.5 together
with Lemma 2.3.4, and the rest is straightforward.

Proposition 2.3.6 tells us that the definition of the set of achievable derivatives derv(a) is “too large”
whenever a is non-regular, but only in a negligible way since the convex hulls coincide (recall the
relaxation result [AC84, Ch. 2.4 Thm. 2]). See Example 2.3.12 for a consequence of this fact.

Projection

Our main results describe the equivalence of the control-affine system (F) on p and the reduced control
system (R) on a. The first direction is projecting from p to a. This means that given a solution p :
[0, T ] → p we are looking for a solution a : [0, T ] → a satisfying π ◦ a = π ◦ p. Since semisimple
orthogonal symmetric Lie algebras generally correspond to some kind of matrix diagonalization, this
step could also be called diagonalization.

We start with a special case in which we are given a diagonalization of p.

Lemma 2.3.7. Let p : [0, T ] → p satisfy (F) such that there exist differentiable functions a : [0, T ] → a
and K : [0, T ] → K with p(t) = Ad−1

K(t)(a(t)). Then a′(t) = XK(t)(a(t)) for all t ∈ [0, T ]; in
particular, a satisfies (R) everywhere.

Proof. By differentiating the solution p and considering the part orthogonal to the orbit we obtain
a′(t) = Ad−1

K(t) ◦Πp(t)(p
′(t)), see Lemma 1.4.1. Then the result follows from Lemma 2.3.2 (iv).

Now let us consider the general case. The first difficulty is that a is not uniquely determined. This
will be remedied by choosing a (closed) Weyl chamber w ⊂ a and requiring that a take values in
w. A consequence of this is that we may introduce kinks where the solution hits the boundary of
w. Fortunately, this still leaves a absolutely continuous which allows us to show that a satisfies the
differential inclusion almost everywhere.

Theorem 2.3.8 (Equivalence Theorem: Projection). Let p : [0, T ] → p be a solution to the
control system (F) and let a↓ : [0, T ] → w be the unique path which satisfies π ◦ a↓ = π ◦ p. Then
a↓ is a solution to the reduced control system (R) (and hence also to (R̄)).

Proof. By Proposition 1.3.1 (v) the path a↓ is absolutely continuous. Let J ⊆ [0, T ] be the subset
on which both p and a↓ are differentiable. This set still has full (Lebesgue) measure. For t0 ∈ J , by
Lemma 2.3.2 (iii) it holds that (a↓)′(t0) = XK(a↓(t0)) for someK ∈ K, which proves that a↓ satisfies
the differential inclusion (R′) almost everywhere. By Filippov’s theorem, see [Smi02, Thm. 2.3], a↓ is
a solution to (R).
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Alternatively, one can prove Theorem 2.3.8 without making use of Filippov’s theorem as follows:
By Proposition 1.6.13 there exists a (Lebesgue) measurable function K : [0, T ] → K such that

a↓(t) = AdK(t)(p(t)) ∈ a and (a↓(t))′ = AdK(t)(Πp(t)(p
′(t))) ∈ a almost everywhere. Hence by the

proof of Lemma 2.3.7 it holds almost everywhere that (a↓)′(t) = XK(t)(a
↓(t)) and so a↓ solves (R).

In Chapter 1 we proved several results which show that if p : [0, T ] → p has a certain smoothness,
then, in certain cases one can choose a : [0, T ] → a satisfying π ◦ a = π ◦ p with the same smoothness.
This allows us to strengthen the result above in some instances.

Proposition 2.3.9. Let p : [0, T ] → p be a solution to the control system (F). Then there exists a :
[0, T ] → a satisfying π ◦ a = π ◦ p and solving (R) such that:

(i) if p is (continuously) differentiable, then a can be chosen (continuously) differentiable;

(ii) if p is Cℓ, for ℓ = 2, . . . ,∞, and regular, then a can be chosen Cℓ;

(iii) if p is real analytic (denoted Cω), then a can be chosen real analytic.

Moreover, in (ii) and (iii) we can choose a as before and K : [0, T ] → K such that a = Ad−1
K(t)(p(t))

and such that K is Cℓ (resp. real analytic). Then it holds that a′(t) = XK(t)(a(t)), i.e. a solves (R)
with control function K.

Proof. Item (ii) follows from Proposition 1.4.12, (iii) follows from Theorem 1.5.7, and (i) follows from
Theorem 1.4.9, in each case using Lemma 2.3.7. In the cases (ii) and (iii), the same results provide
K : [0, T ] → K, and again Lemma 2.3.7 shows that a′(t) = XK(t)(a(t)).

Approximate Lift

The task of this section is the following: given a solution to the reduced control system (R), construct a
solution to the full control system (F) which is, at least approximately, a lift of the former.

For regular solutions to the reduced control system we can construct an exact lift as well as a corre-
sponding control function k : [0, T ] → k. In particular, if the control directions k1, . . . , km ∈ k of (F)
span k (which we called Assumption (I’)), then one easily finds the corresponding control functions uj .

To properly state the result, we have to define an appropriate inverse of adx : k → p for x ∈ p. Note
that the kernel of this map is exactly the commutant kx, and due to orthogonality the image is p⊥x . Hence
there is a unique inverse ad−1

x : p⊥x → k⊥x . Indeed, this is nothing but a restriction of the Moore–Penrose
pseudoinverse of adx.

Proposition 2.3.10. Let X be Cℓ and let a : [0, T ] → a be a solution to the reduced control system (R)
with Cr (r ≥ 1) control function K : [0, T ] → K such that a takes only regular values. If we set
p(t) = AdK(t)(a(t)) and define k : [0, T ] → k by

k(t) = K ′(t)K−1(t) + ad−1
p(t) ◦Π

⊥
p(t) ◦X(p(t)) ,

then k is of class Cmin(ℓ,r−1), and p satisfies p′(t) = (adk(t)+X)(p(t)).

Proof. By differentiating10 we get that

p′(t) = adK′(t)K−1(t)(p(t)) + AdK(t)(a
′(t)) = adK′(t)K−1(t)(p(t)) + Πp(t) ◦X(p(t)) ,

10If K : I → K is differentiable at some t ∈ I , then d
dt

AdK(t) = adK′(t)K(t)−1 ◦AdK(t) = AdK(t) ◦ adK(t)−1K′(t) .
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since AdK(t)(a
′(t)) = AdK(t) ◦Πa ◦Ad−1

K(t) ◦X ◦AdK(t)(a(t)) = Πp(t) ◦X(p(t)), where we used that
p(t) is regular to introduce Πp(t). Hence

(adk(t)+X)(p(t)) = adK′(t)K−1(t)(p(t))−Π⊥
p(t)(X(p(t))) +X(p(t))

= adK′(t)K−1(t)(p(t)) + Πp(t)(X(p(t))) = p′(t) ,

as desired.

The control Hamiltonian in Proposition 2.3.10 has two components. To the direct controlK ′(t)K−1(t),
which one might naively expect to do the job, one has to add the compensating control ad−1

p(t) ◦Π
⊥
p(t) ◦

X(p(t)) which deals with the orbital component of X(p(t)), cp. Lemma 1.4.1.
In practice one might find the lift p of a without knowing a corresponding control functionK for (R).

In this case any K diagonalizing p and Πp ◦X(p) will do:

Lemma 2.3.11. Let a : [0, T ] → a be a regular solution to (R). Assume that p : [0, T ] → p and
K : [0, T ] → K satisfy p(t) = AdK(t)(a(t)) and a′(t) = Ad−1

K(t) ◦Πp(t) ◦ X(p(t)). Then a′(t) =

XK(t)(a(t)).

Proof. This is straightforward using the definition of XK and regularity of a: XK(t)(a(t)) = Πa ◦
Ad−1

K(t) ◦X ◦AdK(t)(a(t)) = Ad−1
K(t) ◦Πp(t) ◦X(p(t)) = a′(t).

If we allow for non-regular solutions, an exact lift might not even exist, as shown in the following
example.

Example 2.3.12. To see that approximating solutions cannot be avoided in general, consider a system
where X(0) ̸= 0. Then p ≡ 0 is not a solution of (F), but a ≡ 0 is a solution of (R). Indeed, by
Kostant’s convexity theorem, and assuming that X(0) ∈ a, it follows from Proposition 2.3.6 that

derv(0) = {Πa ◦AdK(X(0)) : K ∈ K} = conv(WX(0)) ,

and hence derv(0) contains the convex combination 1
|W|

∑
w∈W w ·X(0), which equals 0, the unique

fixed point of a Weyl group action. Thus a ≡ 0 is a solution to (R). Note also that d̃erv(0) contains
exactly the vertices of derv(0).

For this reason, we have to look for an approximate lift in general. Before we prove the existence of
such a lift, we need the following technical result.

Lemma 2.3.13. LetG be a Lie group andK be a compact subgroup such that the norm on g is invariant
under the adjoint action of K. If δ : [0, T ] → g is differentiable, then for every integrable h : [0, T ] → k
it holds that

∥δ(t)∥ ≤ ∥δ(0)∥+
∫ t

0
∥ adh(s)(δ(s)) + δ′(s)∥ ds,

for all t ∈ [0, T ].

Proof. Let ϕ : [0, T ] → K satisfy ϕ′(t) = ϕ(t)h(t). We compute (cf. Footnote 10)

∥δ(t)∥ = ∥Adϕ(t)(δ(t))∥ =
∥∥∥Adϕ(0)(δ(0)) + ∫ t

0

d

ds
(Adϕ(s)(δ(s))) ds

∥∥∥
=
∥∥∥Adϕ(0)(δ(0)) + ∫ t

0
Adϕ(s) ◦ adh(s)(δ(s)) + Adϕ(s)(δ

′(s)) ds
∥∥∥

≤ ∥δ(0)∥+
∫ t

0
∥ adh(s)(δ(s)) + δ′(s)∥ ds .
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This concludes the proof.

Finally we can prove:

Theorem 2.3.14 (Equivalence Theorem: Approximate Lift). Assume thatX is locally Lipschitz
and linearly boundeda and let a : [0, T ] → a be any solution to the reduced control system (R) with
control functionK : [0, T ] → K. Then p := AdK(a), which is a lift of a to p, can be approximated
by solutions to the original control system (F) to arbitrary precision. More precisely, for every
ε > 0 there exists a solution pε : [0, T ] → p to (F) such that ∥AdK(a)− pε∥∞ ≤ ε.

aBy this we mean that ∥X(v)∥ ≤ C1∥v∥+ C2 for some C1, C2 ≥ 0.

Proof. We start by proving the result under stronger assumptions, and then show that we can weaken
the assumptions while maintaining uniform convergence on [0, T ].

First we assume that X and K are real analytic and that a(0) is regular. Moreover, we invoke
Assumption (I’), meaning that the control directions k1, . . . , km span k. Then the solution a is also real
analytic since it satisfies a′(t) = XK(t)(a(t)) and the map (a,K) 7→ XK(a) is real analytic. Since
the non-regular points in a are formed by a finite union of hyperplanes, a will be regular with finitely
many exceptions t1, . . . , tn in [0, T ]. We define the set Jε := [0, T ] \

⋃n
i=1(ti − ε, ti + ε), as well as

p(t) = AdK(t)(a(t)) and the control function kε(t) = K ′(t)K−1(t) + 1Jε(t) ad
−1
p(t)Π

⊥
p(t)(X(p(t))).

Note that kε is (piecewise, in time) real-analytic and bounded. Hence we can define pε as the solution
of p′ε(t) = (adkε(t)+X)(pε(t)), with pε(0) = p(0).

By Lemma 2.3.13 we find that ∥pε(t)∥ ≤
∫ t
0 ∥X(pε(s))∥ds+∥pε(0)∥. SinceX is linearly bounded

and using Grönwall’s inequality11 we obtain ∥pε(t)∥ ≤ (∥a(0)∥+ tC2)e
tC1 . In particular there is some

R > 0 independent of ε such that ∥p(t)∥ ≤ R and ∥pε(t)∥ ≤ R for all t ∈ [0, T ]. Restricting to this
compact domain, we may assume that X is in fact globally Lipschitz with constant L.

Setting δ = p− pε we obtain δ′(t) = adkε(t)(δ(t))−X(pε(t))− adkε(t)(p(t)) + p′(t) and using
Lemma 2.3.13 we get ∥δ(t)∥ ≤

∫ t
0 ∥ −X(pε(s))− adkε(s)(p(s)) + p′(s)∥ds. Using that

p′(t)− adkε(t)(p(t)) = adK′(t)K−1(t) p(t) + ΠAdK(t)(a) ◦X(p(t))

− adK′(t)K−1(t) p(t) + 1Jε(t)Π
⊥
p(t) ◦X(p(t))

= 1Jε(t)X(p(t)) + 1Jcε (t)ΠAdK(t)(a) ◦X(p(t)) ,

where 1 denotes the indicator function. We obtain

∥δ(t)∥ ≤
∫ t

0
∥1Jε(s)X(p(s))−X(pε(s)) + 1Jcε (s)(ΠAdK(s)(a)X(p(s))−X(pε(s)))∥ds

≤
∫ t

0
L∥δ(s)∥ds+ 2µ(Jcε )(C1R+ C2)

where ∥ ·∥∞ denotes the supremum norm and µ denotes the Lebesgue measure. Finally, we again apply
Grönwall’s inequality to obtain ∥δ(t)∥ ≤ 2µ(Jcε )(C1R+C2)e

Lt for all t ∈ [0, T ]. Since µ(Jcε ) → 0 as
ε→ 0, this shows that pε converges uniformly to p on [0, T ].

Now we show that the result also holds under the more general assumptions. This will follow from
a sequence of standard approximations. Let X , a, and K be as in the statement and use Assump-
tions (I) & (II). Let some ε > 0 be given. Again we define p(t) = AdK(t)(a(t)). Now let K(m) be

11Recall that Grönwall’s inequality states that if α ≥ 0 is non-decreasing, β, u are continuous on [0, T ], and u(t) ≤
α(t) +

∫ t
0
β(s)u(s)ds for all t ∈ [0, T ], then u(t) ≤ α(t) exp(

∫ t
0
β(s)ds) for all t ∈ [0, T ].
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a sequence of real analytic controls converging uniformly to K and let a(m)
0 be a sequence of regular

points converging to a(0). Let a(m) be the solution to (R) with initial point a(m)
0 and control function

K(m). Then by [Son98, Thm. 1] the a(m) converge uniformly to a, and setting p(m) = AdK(m)(a(m))
we find that the p(m) converge uniformly to p. In particular there is m such that ∥p − p(m)∥∞ ≤ ε

4 .
Now let X(n) be a sequence of real analytic and linearly bounded vector fields converging uniformly
on compact subsets to X . Let a(m,n) be the corresponding solutions and p(m,n) = AdK(m)(a(m,n)).
Then by [Kha02, Thm. 3.5] p(m,n) → p(m) and there is some n such that ∥p(m) − p(m,n)∥∞ ≤ ε

4 .
Now we can use the result proven above to find a solution p(m,n)ε to (F) using Assumption (I’) such
that ∥p(m,n) − p

(m,n)
ε ∥∞ ≤ ε

4 . Finally due to [Liu97] we can drop Assumption (I’) and obtain solu-
tions p(m,n,k)ε to (F) such that for some k we have ∥p(m,n)ε − p

(m,n,k)
ε ∥∞ ≤ ε

4 . Combining all these
approximations then yields the result.

Remark 2.3.15. In general the control kε obtained by setting ε = 0 need not be integrable since the
expression ad−1

p(t) typically leads to singularities of order t−1 as p passes through a non-regular point.
Nevertheless, in can happen that the controls do not explode even as we pass through a non-regular
point, cf., e.g, the worked example in Section 2.6.

Global Equivalence

Theorems 2.3.8 and 2.3.14 together prove the global equivalence of the full and reduced control systems.
Since in applications the control system is typically not directly formulated on symmetric Lie algebras,
but in some isomorphic manner, the following slight generalization of the complete equivalence result
is very useful, see also Section 7.A.

Theorem 2.3.16 (Equivalence Theorem). Let V be an n-dimensional real inner product space,
let L be a compact Lie group with Lie algebra l acting on V , and let Y be a linear vector field on
V . Consider the following control system with controls lj ∈ l:

v′ =
(
Y +

m∑
i=j

uj(t)lj

)
v (2.3)

with fast and full control on L. Moreover assume that we have a semisimple orthogonal symmetric
Lie algebra g = k⊕pwith associated pair (G,K) and maximal Abelian subspace a. Let ı : V → p
be a linear isometric isomorphism and ȷ : L → AdK a surjective Lie group homomorphism such
that

ȷ(L)ı(v) = ı(Lv). (2.4)

Then the control system is equivalent in the sense of Theorems 2.3.8 and 2.3.14 to the following
reduced control system on W := ı−1(a):

w′(t) = YL(t)(w(t)) (2.5)

where YL = ΠW ◦L⋆(Y ) ◦ ι, with ΠW : V →W the orthogonal projection onto W , ι :W → V
the inclusion, and (·)⋆ the pullback.

Proof. Let ȷ⋆ := Dȷ(e) is the surjective Lie algebra homomorphism l → adk corresponding to ȷ. By
surjectivity there are ki ∈ k such that ȷ⋆(li) = adki for all i = 1, . . . ,m. By differentiating (2.4) we get
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ȷ⋆(li)ı(v) = ı(li(v)). Let X := ı⋆(Y ), where ı⋆ denotes the pushforward, be the drift vector field on p.
If ȷ(L) = AdK , then

ı⋆(XK) = ı−1XK ı = ı−1ΠaAd
−1
K X AdK ı = ΠW ı

−1Ad−1
K X AdK ı = ΠW (ıL)−1XıL = YL.

The remainder of the proof is split into two parts, the projection and the lift.
We begin with the projection. Let v : [0, T ] → V be a solution to (2.3). We want to show that

v↓ : [0, T ] →W , defined by ı(v↓) = ı(v)↓, is a solution to (2.5). We get that

d

dt
ı(v) = ı(v′) = ı

((
Y +

m∑
i=1

uili

)
v
)
=
(
X +

m∑
i=1

adki

)
ı(v)

almost everywhere. Hence ı(v) is a solution of the corresponding control system on p, and we may apply
Theorem 2.3.8 to obtain that ı(v)↓ is a solution of the reduced control system on a, more explicitly, for
almost every t ∈ [0, T ] there is some K ∈ K such that d

dt ı(v
↓(t)) = XK(ı(v↓(t))). Next we show that

v↓ solves (2.5). Indeed for the same t we obtain by linearity of ı that (v↓)′ = ı⋆(XK)(v↓) = YLv
↓ for

some L ∈ L. This concludes the projection part of the proof.
Conversely, assume that we have a solution w : [0, T ] → W to the reduced system (2.5). Again

we find for almost all t ∈ [0, T ] some K ∈ K such that d
dt ı(w(t)) = ı(w′(t)) = XK(ı(w(t))), and

so a := ı(w) solves the corresponding control system on a. Hence there exists a corresponding control
function K : [0, T ] → K which is measurable. Using Theorem 2.3.14 we find approximate lifted
solutions pε : [0, T ] → p with ∥pε −AdK(a)∥∞ ≤ ∞. As above we can compute with vε := ı−1(pε)

d

dt
vε = ı−1(p′ε) = ı−1

((
X +

m∑
i=1

ui adki

)
pε

)
=
(
ı⋆(X) +

m∑
i=1

uili

)
vε

and see that vε is a solution to (2.3). Since ı is an isometry, for any measurable lift L of AdK along ȷ
(which exists due to Lemma 1.6.5) we get

∥vε − Lw∥∞ = ∥ı(vε − Lw)∥∞ = ∥ı(vε)− ȷ(L)ı(w)∥∞ = ∥pε −AdK(a)∥∞ ≤ ε,

so vε is also an ε-approximation. This concludes the proof.

2.4 Reachability, Stabilizability and Much More

The equivalence results proven above allow us to easily deduce several useful consequences on important
control theoretic notions like reachability, stabilizability, controllability, and accessibility. In each case
we describe how the notions in the full and reduced control systems are related. Some additional basic
properties are collected in Appendix 2.A for reference.

Speed Limit

One of the reasons why the original control system (F) is difficult to work with is the presence of
unbounded controls, and the resulting fact that there are points in the state space which are far apart
but can be joined in an arbitrarily short amount of time. Since these are exactly the points which are
identified in the reduced control system, this cannot occur anymore. Indeed, we can define the speed
limit c : a → R≥0 by

c(a) = max
K∈K

∥XK(a)∥.

Then we have the following result:
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Proposition 2.4.1. If the drift X is continuous, then the speed limit c is well-defined and continuous.
In particular, c is bounded on bounded subsets of a. Given any solution a : [0, T ] → a to (R̄) such that
c(a(t)) ̸= 0, it holds that

T ≥
∫ a(T )

a(0)

∥da∥
c(a)

≥ ℓ(a)

maxt∈[0,T ] c(a(t))
≥ ∥a(T )− a(0)∥

maxt∈[0,T ] c(a(t))
,

where ℓ(a) denotes the length of a.

Proof. As K is compact andK 7→ XK(a) is continuous, the image is also compact and hence c is well
defined. Since all the vector fields XK are continuous, so is the map f : K × (Bε(a0) ∩ a) → R,
(K, a) 7→ ∥XK(a)∥ for all a0 ∈ a, ε > 0. In particular f is uniformly continuous which readily implies
continuity of a 7→ maxK∈K ∥XK(a)∥ = c(a). The lower bound on T follows immediately.

Reachability

We start with the reachable set of a0 at time T for (R). We denote

reachR(a0, T ) := {a(T ) : a : [0, T ] → a solves (R), a(0) = a0}

for any T ≥ 0. By reachR(a0) :=
⋃
T≥0 reachR(a0, T ) we denote the (all-time) reachable set of a0,

and we define the reachable set of a0 up to time T by reachR(a0, [0, T ]) :=
⋃
t∈[0,T ] reachR(a0, t) for

any T ≥ 0. The definitions for the control systems (F), (R′), (R̄), (FL), and (RL) are analogous.

Remark 2.4.2. Note that, although the reduced control system (R) is symmetric under the Weyl group
action, the reachable set in general does not have the same symmetry as it depends on the initial state.
However, due to Proposition 2.A.4, if the solution starts in the Weyl chamber w, then it holds that
π(reachR(a0, T )) = π(reachR(a0, T ) ∩ w). Together with Proposition 2.4.3 below this shows that
all relevant information concerning reachability is held in the Weyl chamber which contains the initial
state.

The equivalence results of Section 2.3 are formulated at the level of solutions, and they immediately
imply the equivalence of reachable sets up to closure and K-orbits.

Proposition 2.4.3. Assume that X is locally Lipschitz and linearly bounded. Let T > 0 and p0 ∈ p,
a0 ∈ a with π(p0) = π(a0) be given. Then it holds that

reachF(p0, T ) ⊆ AdK(reachR̄(a0, T )) ⊆ reachF(p0, T ),

where the reachable sets refer the the control-affine system (F) on p and the relaxed control system (R̄)
on a. In particular the closures coincide:

reachF(p0, T ) = AdK(reachR̄(a0, T )) .

Finally, all statements remain true if we substitute (R̄) with (R).

Proof. We prove the result only for (R) since the proof for (R̄) is analogous. First let p : [0, T ] → p be a
solution to (F). By Theorem 2.3.8 we obtain a solution a↓ : [0, T ] → wwith π(a(T )) = π(p(T )) to (R).
This proves the first inclusion. Conversely, let a : [0, T ] → a be a solution to (R) and let p1, p2 ∈ p be
such that π(p1) = π(a(0)) and π(p2) = π(a(T )). Due to Theorem 2.3.14 there exists for every ε > 0
a solution p : [0, T ] → p to (F) such that d(π(a(t)), π(p(t))) ≤ ε where d refers to the quotient metric
induced by π. Now let some ε > 0 be given and let K1,K2 ∈ K be such that AdK1(p(0)) is ε-close
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to p1 and such that AdK2(p(T )) is ε-close to p2. By approximately implementing Ad−1
K1

on [0, ε] and
AdK2 on [T − ε, T ] we can find a solution to (F) which equals p on [ε, T − ε] and approximately starts
at p1 and approximately ends at p2. Using [Son98, Thm. 1] as in the proof of Theorem 2.3.14 one can
deduce that p2 ∈ reachF(p1, T ).

Note that the analogous result is true for the all-time reachable sets.

Now consider X linear. We can also use the operator lift (RL) to understand reachability in the re-
duced system (R). Indeed, it is clear that b ∈ reachR(a, T ) if and only if there is someL ∈ reachRL(1, T )
such that La = b. In fact it holds that reachRL(1) is the Lie subsemigroup of GL(a) generated by X,
see [Law99, Prop. 6.2]. Proposition 2.4.1 shows that reachR(a0, [0, T ]) is bounded. If X is Lipschitz,
then Proposition 2.A.6 (ii) guarantees compactness of reachR̄(a0, [0, T ]), cp. [BP04, Thm. 3].

Stabilizability

In practice one often wants to keep the system close to a certain state, i.e. one wants to stabilize the state.
We define the set of stabilizable states with respect to (R), denoted stabR, as follows: a point a0 ∈ a
is in stabR if for all T > 0 and all ε > 0 there is a solution a : [0, T ] → a to (R) with a(0) = a0 and
which takes values in Bε(a0). Moreover, we say that a point a0 is strongly stabilizable12 if the constant
path a ≡ a0 is a solution to (R). The definition for the other control systems is analogous. Note that we
only consider open-loop controls here and that we are not using feedback.

Lemma 2.4.4. Assume that X is Lipschitz. Given any point a0 ∈ a the following statements hold:

(i) a0 is strongly stabilizable w.r.t (R) if and only if 0 ∈ derv(a0);

(ii) a0 is stabilizable w.r.t (R) if and only if 0 ∈ conv(derv(a0)).

In fact these statements hold true for all continuous differential inclusions with closed values.

Proof. (i): If a ≡ a0 is a solution to (R), then 0 = a′(t) ∈ derv(a0) for almost all t ∈ [0, T ]. Conversely,
if 0 ∈ derv(a0), then a ≡ a0 is a solution to (R). (ii): If 0 ∈ conv(derv(a0)) then a ≡ a0 is a solution
to (R̄). By the Relaxation Theorem [AC84, Ch. 2.4, Thm. 2] (which requires the Lipschitz property)
the constant solution can be approximated in (R) and hence a0 is stabilizable. If 0 /∈ conv(derv(a0))
there is a linear functional α on a such that α ≤ −δ on derv(a0) for some δ > 0. By continuity we
may assume that this is true for all b ∈ a in some neighborhoodBε(a0) of a0. Hence there is some time
T > 0 such that every solution to (R) and starting at a0 must leave Bε(a0) until time T .

In particular a point is stabilizable for (R) if and only if it is strongly stabilizable for (R̄), and for (R̄)
both notions coincide.

We have the following specialization of Proposition 2.3.10 for strongly stabilizable states.

Proposition 2.4.5. The following statements hold.

(i) If there exists p0 = AdK(a0) ∈ p as well as k ∈ k such that (X + adk)(p0) = 0, then a0 is
strongly stabilizable. In fact it holds that XK(a0) = 0.

(ii) Conversely, assume that a0 is regular and strongly stabilizable with XK(a0) = 0. Then setting
kc = ad−1

p0 ◦Π⊥
p0 ◦X(p0) it holds that (X + adkc)(p0) = 0, where p0 = AdK(a0). We call kc

the compensating control.
12Strongly stabilizable states are also called equilibrium states, see [Son98, p. 124].
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Proof. (i): Using (2.1) and Lemma 1.A.24 (i), the assumption (X + adk)(p0) = 0 yields XK(a0) = 0
after a short computation. (ii): First note that for a0 regular and p0 = AdK(a0) it holds thatXK(a0) =
Ad−1

K ◦Πp0 ◦X(p0), and in particularXK(a0) = 0 if and only if Πp0 ◦X(p0) = 0. Then it just remains
to plug in and compute: (X + adkc)(p0) = (X −Π⊥

p0 ◦X)(p0) = Πp0 ◦X(p0) = 0.

Suppose that the control directions k1, . . . , km in (F) span the entire Lie algebra k (Assumption (I’)).
Then we can rephrase the proposition above as follows: If p0 is strongly stabilizable, then so is a0.
Conversely, if a0 is strongly stabilizable and regular, then there is a corresponding strongly stabilizable
p0 in the K-orbit of a0.

Viability

LetR be a subset of a. We callR viable for (R) if for every a0 ∈ R, there exists a solution a : [0,∞) → a
to (R) with a(0) = a0 which takes values only in R. For differential inclusions, and hence also for the
corresponding control systems, viability of closed subsets can be restated more geometrically using
tangent cones, see [Smi02, Thm. 5.2] as well as [CNV07, Thm. 6.5.5] for the time-dependent version.
Note that a point a0 is strongly stabilizable if and only if {a0} is viable for (R).

First some notation: for a set S ⊆ p we denote by S♭ ⊆ a the set of all a ∈ a with π(a) ∈ π(S).
For a set R ⊆ a we denote by R♯ ⊆ p the set of all p ∈ p with π(p) ∈ π(R). Note that S♭ is always
W-invariant and R♯ is always K-invariant.

Lemma 2.4.6. Let S ⊂ p be viable for (F), then S♭ is viable for (R).

Proof. Let a0 ∈ S♭ and let p0 ∈ S be any lift of a0. By viability of S there is a solution p : [0,∞) → S
and by Theorem 2.3.8 there is a corresponding solution a↓ : [0,∞) → a with values in S♭.

Due to Example 2.3.12 the converse cannot hold exactly. However, we have the following approx-
imate result. We say that S ⊆ p is approximately viable for (F) if for every p0 ∈ S, every T > 0 and
every ε-neighborhood U of S there is a solution p : [0, T ] → p with p(0) = p0 and taking values only
in U .

Proposition 2.4.7. Let R ⊂ a be viable for (R̄). Then R♯ is approximately viable for (F).

Proof. Let p0 ∈ R♯, some T > 0, and an ε-neighborhood U of R♯ be given. Let a0 ∈ R be such that
π(a0) = π(p0). Since R is viable, there exists some solution a : [0, T ] → R. By Theorem 2.3.14 there
is some ε-approximate lift p of a. As in the proof of Proposition 2.4.3 we may assume that p(0) = p0.
Hence p remains in U and R♯ is approximately viable.

Note that even if R consists of regular points, R♯ need not be (exactly) viable.

Invariant Subsets

A subset is called invariant if no solution can leave it. As above, for differential inclusions invariance
of closed subsets can be characterized using a tangent cone condition, cf. [Smi02, Thm. 5.6].

Proposition 2.4.8. Let S ⊆ p be a closed, K-invariant subset. Then S is invariant with respect to (F)
if and only if S♭ is invariant with respect to (R) (equivalently (R̄)).

Proof. Note thatS is invariant if and only if for every p0 ∈ S and T > 0 it holds that reachF(p0, T ) ⊆ S.
Hence the result follows immediately from Proposition 2.4.3.
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Accessibility

Let ⟨X⟩Lie denote the Lie algebra generated by the induced vector fields, and (⟨X⟩Lie)a0 = {Y (a0) :
Y ∈ ⟨X⟩Lie} the evaluation at a0 ∈ a. Let a closed embedded submanifold R ⊆ a be invariant for (R).
If (⟨X⟩Lie)a0 = Ta0R for all a0 ∈ R, we say that X satisfies the accessibility rank condition [Son98,
Def. 4.3.2]. Note that if X is linear, then X ⊂ gl(a). In particular ⟨X⟩Lie is finite dimensional. The
system (R) is accessible at a0 onR if reachR(a0, [0, T ]) has non-empty interior inR for all T > 0. The
accessibility rank condition implies accessibility, see [Son98, Thm. 9].

In the differential inclusion picture we can define a stronger notion. We say that (R) is directly
accessible at a0 on R if span(XK(a0) : K ∈ K) = Ta0R. This means linear combinations suffice to
generate the entire tangent space without the use of Lie brackets. Conveniently, this property is relatively
easy to check by considering the differential inclusion. Note that direct accessibility in (R) is equivalent
to direct accessibility in (R̄).

Proposition 2.4.9. LetX be real analytic and assume that there is some a0 ∈ a such that (R) is directly
accessible at a0. Then (R) is directly accessible on an open dense subset of a whose complement has
measure zero. In particular this happens if g = k⊕ p is simple and X(0) ̸= 0.

Proof. Choose a set of induced vector fields XKi ∈ X for i = 1, . . . , n such that the XKi(a0) form a
basis of Ta0a. Now consider the determinant of these vector fields a0 7→ det(XK1(a0), . . . , XKn(a0))
as a function on a. By assumption this is a real analytic function on a which does not vanish at a0.
Hence it is non-zero on an open dense set whose complement has measure zero, and clearly (R) is
directly accessible whenever the function is non-zero.

Now assume that g = k ⊕ p is simple and X(0) ̸= 0. Let K ∈ K be such that Ad⋆K(X)(0) ∈ a
and so XK(0) ̸= 0. Since the Weyl group acts irreducibly on a, and since, as in Example 2.3.12, it
holds that derv(0) = conv(WXK(0)), we see that 0 ∈ int(derv(0)) and so (R) is directly accessible at
0.

Proposition 2.4.10. Let R ⊆ a be a W-invariant closed embedded submanifold and assume that the
reduced system (R) is directly accessible at some regular a0 onR. Then (F) is accessible onR♯ at every
p0 with π(p0) = π(a0).

Proof. The Lie algebra corresponding to (F) is ⟨X + adk⟩Lie = ⟨X, adk⟩Lie. Since every Lie algebra
is invariant under its adjoint action, it holds that Ad−1

K ◦X ◦ AdK ∈ ⟨X, adk⟩Lie for all K ∈ K. For
the same reason we can also assume that p0 = a0. The tangent space at p0 takes the form Tp0R

♯ =
Tp0R ⊕ adk(p0). The assumption means that span(XK(a0) : K ∈ K) = Ta0R, and so every element
in Tp0R♯ is a linear combination of some Ad−1

K ◦X ◦ AdK(p0) with K ∈ K and some adk(p0) with
k ∈ k. This concludes the proof.

Controllability

Let R be an invariant subset for (R). Then we say that (R) is controllable on R if for every a0 ∈ R it
holds that reachR(a0) = R. We say that (R) is controllable on R in time T if for every a0 ∈ R it holds
that reachR(a0, [0, T ]) = R, see [Son98, Ch. 3]. We define approximate controllablility analogously
except that we consider the closure of the reachable set. Then the following is an immediate consequence
of Proposition 2.4.3.

Proposition 2.4.11. Assume thatX is locally Lipschitz and linearly bounded. LetS ⊆ p beK-invariant
and invariant for (F). Then the following statements hold.

(i) If (F) is (approximately) controllable on S, then (R) is (approximately) controllable on S♭.
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(ii) If (R) is approximately controllable on S♭, then (F) is approximately controllable on S.

All statements remain true if we consider (approximate) controllability in time T .

Let a0 ∈ R. We say that (R) is locally controllable at a0 on R if reachR(a0, [0, T ]) contains an
open neighborhood of a0 (in the subspace topology of R) for all T > 0. Moreover we say that (R) is
locally directly controllable at a0 on R if 0 ∈ int(derv(a0)) (where the interior is taken in the topology
of Ta0R).

The Weyl group acts on the Lie algebra gl(a) by Lie algebra automorphisms and, by Lemma 2.A.2,
the set X of induced vector fields is invariant under this action.

Proposition 2.4.12. Assume that X is linear. Let T ⊆ GL(a;R) be a connected Lie subgroup with
Lie algebra t and assume that {0} ̸= X ⊆ t. If T acts transitively on R, and W acts irreducibly on t,
then (R) is controllable on R.

Proof. Due to irreducibility, it holds that span(X) = t. In particular reachRL(1) = T which implies
the result.

2.5 The Majorization Theorem

In this section we assume that X is an affine linear vector field on p. Using the Weyl group action we
obtain a preorder on a which acts as a kind of resource, allowing one system to simulate another.

Let a ∈ a. We define the Weyl polytope of a via P (a) := conv(Wa), that is, P (a) is the convex
hull of the Weyl group orbit of a. Since W ⊆ gl(a), we can consider the convex hull of W in gl(a).
For a, b ∈ a, it is clear that a ∈ P (b) if and only if there is some w ∈ conv(W) such that a = wb. It is
easy to show that conv(W) is a semigroup. Hence we can define a preorder, called majorization, on a
by declaring for a, b ∈ a that a ⪯ b : ⇐⇒ a ∈ P (b). Indeed, reflexivity is clear and transitivity follows
immediately from the fact that conv(W) is a semigroup.

Lemma 2.5.1. The set of vertices of P (a) is exactly Wa. In particular if P (a) = P (b), then Wa =
Wb.

Proof. By definition the set of vertices is a subset of the Weyl group orbit of a. However, since P (a)
is invariant under W, and since W acts transitively on the orbit, all elements of the orbit must be
vertices.

Note that if a ⪯ b and b ⪯ a, then P (a) = P (b). Hence a and b belong to the same Weyl group orbit
so ⪯ induces a partial order on the orbits (or, equivalently, in a closed Weyl chamber).

The following continuity property will be useful later.

Lemma 2.5.2. The set-valued map P : a → P(a) (where P(·) denotes the power set) defined by
a 7→ conv(Wa) is Lipschitz continuous with Lipschitz constant 1.

Proof. Let W = {wi : i = 1, . . .m} with m the order of the Weyl group and let ∆m−1 denote the
standard simplex. Consider the map f : a×∆m−1 → a given by (a, λ) 7→

∑m
i=1 λiwi · a. This map is

clearly 1-Lipschitz in a, and by [Smi02, Prop. 2.4] it holds that a 7→ P (a) = f(a,∆m−1) is 1-Lipschitz
as well.

The main result of this section is the following:
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Theorem 2.5.3 (Majorization Theorem). Assume that X is affine linear. Let a : [0,∞) → a be
a solution to the relaxed control system (R̄) and let b0 ∈ a such that a(0) = a0 ⪯ b0. Then there
exists a solution b : [0,∞) → a to (R̄) with b(0) = b0 such that a(t) ⪯ b(t) for all t ∈ [0,∞).

Proof. First we prove the result with the additional assumption that a is differentiable. Then by Propo-
sition 2.A.4, a↓ is also a solution. Since it is continuous, Lemma 1.B.5 (iii) shows that a↓ is right-
differentiable.

Consider the set-valued maps A,C : [0,∞) → P(a) defined by A(t) = {x ∈ a : x ⪰ a(t)}
and C(t) = A(t) ∩ w. The main idea is to show that for each t ∈ [0,∞) and x ∈ C(t) there is
some v ∈ derv(x) such that v ∈ Txw and v − a′(t) ∈ TxA(t). Intuitively this means that for every
point majorizing a(t), there exists a derivative preserving majorization and the Weyl chamber for an
infinitesimal amount of time.

By assumption, a(t) ∈ relint(F ) for some face F of conv(Wx). By Result 2.B.10 there is some
Ω ⊂ w such that F = conv(WΩx) For some enumeration wi, with i = 1, . . . , k, of WΩ and some
λ ∈ ∆k−1 it holds that a(t) =

∑k
i=1 λiwi · x. Hence using affine linearity of X and Lemma 2.A.2 we

compute

a′(t) =
∑
j

µjXKj

(∑
i

λiwix
)
=
∑
i,j

λiµjwiXKjNi(x) =
∑
i

wi
∑
j

λiµjXKjNi(x)

where Ni ∈ K is any representative of wi. Now consider the achievable derivative

v =
∑
i,j

λiµjXKjNi(x) ∈ conv(derv(x)) ,

then
v − a′(t) =

∑
i

(1− wi)
∑
j

λiµjXKjNix,

which lies in the tangent space Ta(t)F . This shows that v−a′(t) ∈ TxA(t). Moreover there exists some
w ∈ Wx such that v = w·v ∈ Txw. But then we still have v−a′(t) = (w·v−v)+(v−a′(t)) ∈ TxA(t).

To show that existence of v̄ implies existence of the desired solution b, we employ a sequence of
rather technical results detailed in Appendix 2.B. It follows from Corollary 2.B.11 that Ta(t)A(t) is
the negative dual of w. Thus we can in fact apply Lemma 2.B.8 and Proposition 2.B.9, showing that
v ∈ D−C(t, c)(1), and together with Result 2.B.5 this tells us that there exists a solution b to the
relaxed control system (R̄) such that b(0) = b0 and such that b(t) ∈ C(t) for all t ≥ 0, or equivalently,
b(t) ⪯ a(t) and b(t) ∈ w. This concludes the proof in the differentiable case.

Now we drop the assumption that a is differentiable. By [Son98, Thm. 1] and [AC84, Ch. 2.4
Thm. 2] there exists a sequence an of differentiable solutions to the relaxed control system converging
uniformly to a on compact time intervals. By the above, there exist solutions bn satisfying an(t) ⪯ bn(t)
for all t. By compactness of solution set on compact time interval, cf. Proposition 2.A.6 (ii), there is
a uniformly converging subsequence bkn with limit b. Since an(t) → a(t) it holds that a(t) ⪯ b(t)
by [Smi02, Prop. 2.1] since b 7→ conv(Wb) is upper semi-continuous, see Lemma 2.5.2, with closed
values.

Theorem 2.5.3 leads to a powerful maximum principle used in Chapter 6, see [2, 6] for precise
statements and proofs.
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2.6 Worked Example

We now revisit the motivating example given in the introduction in order to apply to it the theory we have
developed. We will consider the following vector field X on R2, which leaves the disk D = {(y, z) ∈
R2 : y2 + z2 ≤ 1} invariant:

X(y, z) = (−Γy,−γ(z − 1))

where Γ, γ > 0. This system is ubiquitous in quantum mechanics since it describes the relaxation
of a two-level system under the Bloch equations. The corresponding control system has been studied
in [Lap+10] using the Pontryagin Maximum Principle (PMP). In this example we will show how the
same control system can be studied using our reduction method.

By rescaling, it suffices to consider γ = 1. Moreover, to ensure that the flow does not leave the
disk we have to require Γ ≥ γ

2 = 1
2 . In fact we will consider Γ ≥ 3

2 in the following to simplify the
exposition. (All figures use the value Γ = 3.)

We already stated that this problem can be described using the symmetric Lie algebra given in
Example 1.2.4. The reduced control system is defined on the set [−1, 1], which can be seen as the
intersection of the disk with x-axis13. Since the map (a, ϕ) 7→ Xϕ(a), where the angle ϕ parametrizes
SO(2), is continuous, the values of the set-valued map derv are compact intervals, see Figure 2.1. In
order to understand derv, it suffices to find the upper bound µ(a) := max(derv(a)), which we will call
the optimal derivative function. One can show that (see Lemma 5.A.8)

µ(a) =

{
−
(

1
4(Γ−1)a + Γa

)
a ≤ a0 :=

−1
2(Γ−1)

1− a a ≥ a0 .
(2.6)

We consider the optimal control problems of moving from the boundary of the disk to the center and
vice-versa. In the reduced control system this is equivalent to moving from −1 to 1. The form of (2.6)
shows that this is indeed possible, but it takes infinite time to reach 1. The optimal solution is then
defined by the differential equation a′(t) = µ(a(t)) with a(0) = −1, which can be solved explicitly,
and one obtains

a⋆(t) =

−
√

−1+(1−2Γ)2e−2Γt

2
√

Γ(Γ−1)
t ≤ t0 :=

log((Γ−1)(2Γ−1))
2Γ

1− 2Γ−1
2(Γ−1)((Γ− 1)(2Γ− 1))

1
2Γ e−t t ≥ t0 .

The next step is to lift the optimal solution a⋆ to the original control system to obtain a solution p⋆ on
the disk. This solution will start on the boundary of the disk, pass through the center, and again approach
the boundary of the disk. Once this optimal solution is found, we will determine the corresponding
control function ω⋆.

Above we have determined the upper boundary µ(a) of derv(a). More precisely, one can show that
µ(a) = Xϕ⋆(a) where

ϕ⋆(a) =

{
arccos

( −1
2(Γ−1)a

)
+ π

2 a ≤ a0
π
2 a ≥ a0 .

Thus the optimal path p⋆(t) in the disk (in polar coordinates) is (a⋆(t), ϕ⋆(a⋆(t))), cf. Figure 2.3.
Finally, it remains to calculate the control function ω⋆ which generates the optimal solution p⋆.

There are two components, the direct term ω0 and the compensation term ωc, cf. Proposition 2.3.10:

ω⋆ = ω0 + ωc =
d

dt
ϕ⋆(a⋆(t)) + ad−1

p⋆(t) ◦Π
⊥
p⋆(t) ◦X(p⋆(t)) .

13Any axis would do as they are equivalent under rotation.
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Figure 2.3: (Left) Optimal path p⋆(t) on the unit disk. The horizontal part satisfies z = a0 = −1
2(Γ−1) .

(Right) Optimal angle ϕ⋆ as a function of time.

Explicitly we obtain for t < t0:

ω0(t) = −Γ
δ(t) + 1

δ(t)

√
η

δ(t)− η
, ωc(t) = − Γ

δ(t)

√
δ(t)− η

δ(t)

where η = Γ
Γ−1 and δ(t) = (1 − 2Γ)2e−2Γt − 1. For t ≥ t0 it holds that ω0(t) = ωc(t) = 0. The

optimal controls are plotted in Figure 2.4.
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Figure 2.4: Optimal control ω⋆ of the full system for the worked example. The compensating term ωc
and the direct term ω0 are shown separately.

Since δ(t0) = η, we see that limt→t0 ω0(t) = −∞ and limt→t0 ωc(t) = 0. In particularω0 explodes
at t0 whereasωc is continuous. Note also that the controls are smooth when a⋆(t) = 0, so in this example
the orbifold singularity does not pose any problems.

2.A Some Basic Properties of the Reduced Control Systems

Here we give some basic properties of the control systems defined in Section 2.2.
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Weyl Symmetry

We start with some symmetry considerations.14

Lemma 2.A.1. If w = NZK(a) ∈ W with N ∈ NK(a), then Πa ◦AdN = w ◦Πa.

Proof. First note that for x ∈ p and K ∈ K it holds that ΠAdK(a) ◦ AdK(x) = AdK ◦Πa(x), see
for instance Lemma 1.A.24 (iii). Since N ∈ NK(a) we have that w · Πa(x) = AdN ◦Πa(x) =
Πa ◦AdN (x), as desired.

Lemma 2.A.2. Let N ∈ NK(a) and w = NZK(a) ∈ W and K ∈ K, then XKN = w−1 ◦XK ◦ w,
and hence for all a ∈ a we get derv(w · a) = w · derv(a).

Proof. We compute using Lemma 2.A.1: XKN = Πa ◦ Ad⋆KN (X) ◦ ι = Πa ◦ Ad⋆N (Ad⋆K(X)) ◦ ι =
Πa ◦ Ad−1

N ◦Ad⋆K(X) ◦ AdN ◦ ι = w−1 ◦ Πa ◦ Ad⋆K(X) ◦ ι ◦ w = w−1 ◦ XK ◦ w. In particular
XK ◦ w = w ◦XNK , which shows the second claim.

Lemma 2.A.3. Let KX = {K ∈ K : Ad⋆K X = X}. Then XSK = XK for all S ∈ KX and K ∈ K.

Proof. As Ad⋆SK = (AdS ◦AdK)⋆ = Ad⋆K ◦Ad⋆S , we have XSK = Πa ◦ Ad⋆SK(X) ◦ ι = Πa ◦
Ad⋆K(X) ◦ ι = XK .

Proposition 2.A.4. If a : [0,∞) → a is a solution to (R′) or (R̄), then the unique a↓ : [0,∞) → w
satisfying π ◦ a = π ◦ a↓ is also a solution.

Proof. By Proposition 1.3.1 (v), a↓ is still absolutely continuous. Assume that a and a↓ are both differen-
tiable at t. By Lemma 1.B.5 (i) there is somew ∈ W such that a↓(t) = w ·a(t) and (a↓)′(t) = w ·a′(t).
By Lemma 2.A.2 we get, using N ∈ NK(a) with w = NZK(a): (a↓)′(t) = w · a′(t) = wXKa(t) =
XKN−1wa(t) = XKN−1a↓(t) and so a↓ satisfies the differential inclusion at t, and hence almost ev-
erywhere.

Continuity and Compactness

Lemma 2.A.5. IfX is Lipschitz, then the set-valued function derv is also Lipschitz. This means that for
all x, y ∈ a, derv(x) ⊆ derv(y) + L∥x− y∥B1 for some (global) Lipschitz constant L > 0 and where
B1 denotes the closed unit ball in a.

This implies some convenient properties of the relaxed control system (R̄), see [Smi02, Ch. 4]. Here
we denote the set of solutions a : [0, T ] → a to (R̄) with a(0) = a0 by solsR̄(a0, [0, T ]).

Proposition 2.A.6. Let X be Lipschitz and let a0 ∈ a. The following hold:

(i) The set of solutions solsR̄(a0, [0, T ]) is path-connected in the AC-topology15.

(ii) If derv is bounded, then solsR̄(a0, [0, T ]) is compact in the topology of uniform convergence.

(iii) If a ∈ solsR̄(a0, [0, T ]) is a solution to (R̄) with a(T ) ∈ ∂reachR̄(a0, [0, T ]), then for all t ∈ [0, T ]
we have a(t) ∈ ∂reachR̄(a0, [0, t]).

14Recall that the Weyl group is defined as W = NK(a)/ZK(a) where NK(a) denotes the normalizer of a in K and
ZK(a) the centralizer.

15By AC([0, T ], a) we denote the Banach space of absolutely continuous functions a : [0, T ] → a equipped with the
norm ∥a∥AC = |a(0)|+

∫ T
0

|a′(t)|dt.



76 CHAPTER 2. REDUCED CONTROL SYSTEMS

(iv) If derv is bounded, then there exist time-optimal solutions to (R̄) starting in a given compact set
and ending in a given closed set, assuming any such solution exists in the first place.

(v) If X is Lipschitz with Lipschitz constant L, then the map a → P(AC([0, T ], a)) given by a0 7→
solsR̄(a0, [0, T ]) is Lipschitz with Lipschitz constant 1 + TLeTL.

2.B Some Technical Results for the Majorization Theorem

We recall some basic facts from convex analysis and prove some technical results needed for the proof
of Theorem 2.5.3. Our main reference is [Smi02]. We start with the concept of a tangent cone to a
convex set at a certain point.

Definition 2.B.1 (Tangent cone). Let X be a normed space and let C ⊆ X be a convex subset. Given
any x ∈ C, the tangent cone to C at x is defined by

TxC =
⋃
λ>0

C − x

λ
= {v ∈ X : lim

λ→0+
d(x+ λv,A)/λ = 0}.

Intuitively, TxC is the closure of the set of all directions which lie in C for some small enough
distance. As soon as non-convex sets come into play, the situation becomes more complicated.

Definition 2.B.2 (Bouligand contingent cone). LetX be a normed space and letA ⊆ X be any subset.
Given any x ∈ A, the contingent cone to A at x is defined by

T−
x A = {v ∈ X : lim inf

λ→0+
d(x+ λv,A)/λ = 0}.

The contingent cone is indeed a closed cone and for convex sets it coincides with the tangent cone,
cf. [Smi02, p. 38].

A common geometric way to think of the derivative of a function f in standard calculus is as a
tangent space to the graph Γf of the function at a given point. Using the Bouligand contingent cone we
can define a derivative for set-valued function in much the same way, cf. [Smi02, p. 41].

Definition 2.B.3 (Contingent derivative). Let normed spacesX,Y and a set-valued functionF : X →
P(Y ) be given. For (x0, y0) ∈ ΓF , the set-valued map D−F (x0, y0) : X → P(Y ) defined by

ΓD−F (x0,y0) = T−
(x0,y0)

ΓF

is called the contingent derivative of F at (x0, y0).

Example 2.B.4. Let f(x) = x sin(1/x) (with f(0) = 0). Then f is continuous, but not differentiable
at 0. The contingent derivative is D−F (0, 0)(x) = [−|x|, |x|]. In particular D−F (0, 0)(1) = [−1, 1].

Result 2.B.5 (Thm. 6.5.5 in [CNV07]). Assume that the set-valued map C : R → P(Rn) has a closed
graph and the set-valued map F : ΓC → P(Rn) is upper semi-continuous and has closed, convex
values. Then the following statements are equivalent.

(i) For any point (t0, x0) ∈ ΓC there is a solution x on [t0,∞) to the differential inclusion x(t) ∈
F (t, x(t)) with x(t0) = x0.
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(ii) For any (t, x) ∈ ΓC it holds that F (t, x) ∩D−C(t, x)(1) ̸= ∅.

Lemma 2.B.6. Let X be a metric space and consider P(X) with the Hausdorff distance d. Then it
holds that d(x,A) ≤ d(x,B) + d(B,A).

Recall that for a cone C ⊆ Rn, the dual cone of C is defined as C∗ = {x′ ∈ Rn : ⟨x′, x⟩ ≥ 0∀x ∈
C}. Note that if C ⊆ D for two cones, then C∗ ⊇ D∗. Moreover, for a convex set A and some x ∈ A,
the normal cone of A at x is defined by NxA := −(TxA)

∗, i.e. the negative of the dual of the tangent
cone. The next result follows for instance from [Cla13, Sec. 11.2].

Lemma 2.B.7. Let a closed convex set A ⊆ Rn and a point x ∈ Rn be given. If x̄ ∈ A denotes the
closest point in A to x, then x− x̄ ∈ Nx̄A.

Lemma 2.B.8. Let C ⊆ Rn be a closed convex cone and let x ∈ C. Then for any y ∈ C it holds that
d(y, C∗ + x) = d(y, (C∗ + x) ∩ C).

Proof. SinceC∗ is closed and convex, there exists unique y ∈ C∗+x such that d(y, C∗+x) = d(y, y).
We will show that y ∈ C. Let v = y − y. By Lemma 2.B.7 it holds that v ∈ Ny(C

∗ + x). Since for
any closed convex set A and a ∈ A we have TaA ⊇ A, we compute

v ∈ Ny(C
∗ + x) = Ny−x(C

∗) = −(Ty−x(C
∗))∗ ⊆ −(C∗)∗ = −C,

so −v ∈ C and hence y = y − v ∈ C, as desired.

Proposition 2.B.9. Let I ⊆ R be an open interval and let Ã, B̃ ⊆ Rn be subsets. Assume that B̃ is
a closed, convex, polyhedral cone. Let a : I → B̃ be right differentiable and define the set-valued
functions A(t) = Ã + a(t), and C(t) = A(t) ∩ B̃. Assume that for all b ∈ B̃ and t ∈ I it holds that
d(b, A(t)) = d(b, C(t)). Let t ∈ I and c ∈ C(t), and assume that there is v such that v ∈ TcB̃ and
v − a′+(t) ∈ TcA(t). Then v ∈ D−C(t, c)(1).

Proof. We assume that t = 0. By definition, v ∈ D−C(0, c)(1) if and only if (1, v) ∈ ΓD−C(0,c) =

T−
(0,c)ΓC . So we have to show that

lim inf
ε→0+

1

ε
d((ε, c+ εv),ΓC) = 0 .

In fact it is easy to see that d((ε, c+ εv),ΓC) ≤ d(c+ εv, C(ε)). For ε small enough, c+ εv ∈ B̃ since
B̃ is a convex polyhedron and v ∈ TcB̃. So, for any x ∈ B̃ we have by assumption d(c+ εv, C(ε)) =
d(c+ εv,A(ε)). Moreover using Lemma 2.B.6 we find

d(c+ εv,A(ε)) = d(c+ εv,A(0) + a(ε)− a(0))

≤ d(c+ εv,A(0) + εa′+(0)) + d(A(0) + a(ε)− a(0), A(0) + εa′+(0))

≤ d(c+ εv,A(0) + εa′+(0)) + |a(ε)− a(0)− εa′+(0)| .

Combining the results above and the assumption that v − a′+(0) ∈ TcA(0) we see that

lim inf
ε→0+

1

ε
d((ε, c+ εv),ΓC) ≤ lim inf

ε→0+

1

ε
d(c+ εv,A(0) + εa′+(0)) +

∣∣∣a(ε)− a(0)

ε
− a′+(0)

∣∣∣ = 0

which concludes the proof.
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Note that although Tx(A ∩ B) ⊆ TxA ∩ TxB, the converse need not hold, which complicates the
proof above.

The following result is a restatement of [McC+03, Thm. 4.1].

Result 2.B.10. Let W be a Coxeter group acting on a real, n-dimensional vector space V , and let w be
a (closed) Weyl chamber. Let F be a codimension-k face of the orbitope conv(Wx) for some x ∈ w.
Then there exists a set Ω of k fundamental weights belonging to the same Weyl chamber w such that
F = conv(WΩx).

Corollary 2.B.11. Fix a Weyl chamber w, and let x ∈ w be a regular point. Then Tx(conv(Wx)) =
−w∗, i.e. the negative dual cone of w.

Proof. Applying Result 2.B.10 with k = 1 we see that the fundamental weights ωi of w are exactly the
outward normals of the facets of Tx(conv(Wx)). Hence v ∈ Tx(conv(Wx)) if and only if ⟨ω, v⟩ ≤
0, and since the fundamental weights generate the Weyl chamber w, it holds that Tx(conv(Wx)) =
−w∗.



Part II

Markovian Systems with Unitary Control
« La lutte elle-même vers les sommets suffit à remplir un cœur d’homme; il faut imaginer

Sisyphe heureux. »
— Albert Camus, Le Mythe de Sisyphe (1942)

“If you optimize everything, you will always be unhappy.”
— Donald Knuth, on X (2016)

One of the main obstacles towards realizing quantum technologies is uncontrolled or unmitigated noise
leading to the loss of quantum coherence. Every quantum system that can be externally controlled
and measured must interact with its environment and hence is also subject to decoherence. Control is
necessary for reducing deleterious effects of noise and to cool systems into a ground state useful for
information processing tasks. Moreover, it is possible to modulate noise in order to exploit it as an
additional control resource beyond coherent controls.
In this work, we assume the noise to be Markovian and time-independent in the sense that it is described
by a master equation of Lindblad form. Furthermore, in the systems of concern, we assume that unitary
control is fast compared to dissipation. Corresponding results can be obtained assuming that the noise
itself is switchable. This allows us to define an equivalent reduced control system on the eigenvalues
of the quantum state, which quantify the purity of the system. We study general properties such as
reachability and stabilizability and algebraically characterize coolable quantum systems. We obtain
a thorough understanding of the problem in the qubit case, leading to a general method for deriving
optimal controls. Finally we consider the task of optimal cooling where we introduce a powerful method
based on majorization which significantly simplifies the search for optimal solution.

Outline Chapter 3 applies the methods of Part I to the setting of Markovian quantum systems sub-
ject to fast unitary control in order to obtain a reduced control system on the eigenvalues. Chapter 4
studies general finite dimensional systems and characterizes important control theoretic notions such as
reachability and stabilizability using the reduced control system as an essential tool. Chapter 5 gives a
thorough treatment of the single qubit case. Chapter 6 addresses the task of cooling quantum mechanical
systems in a time-optimal way.

Acknowledgements Part II is based on [3–6, 9]. The works [3, 4] are joint work with Frederik vom
Ende, Thomas Schulte-Herbrüggen and Gunther Dirr. The paper [9] has profited from feedback from
Robert Zeier and Thomas Schulte-Herbrüggen. Frederik vom Ende and Gunther Dirr have given feed-
back on [5] and [6] respectively.
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CHAPTER 3
Reduction to the Eigenvalues

Introduction

In this chapter we apply the methods developed in Chapter 2 to open Markovian quantum systems
subject to fast unitary control. The connection to symmetric Lie algebras is made via the Hermitian
EVD, recall Example 1.2.1. We derive the corresponding equivalent reduced control system defined on
the eigenvalues of the state density matrix. Its state space is the standard simplex, and its dynamics are
given by stochastic transformations. This reduced control system is the main tool used in the subsequent
chapters of Part II.

The reduced control system in the present Lindbladian setting has, to the best of my knowledge, first
been formulated in [STK04, Yua10] (see also [TM92]), and it has been studied in [RBR18], without
however giving a full proof of the equivalence. Our treatment in Chapter 2 removes those assumptions
made in [RBR18] whereby certain singularities are essentially ignored. Indeed, these singularities are
an inherent feature and present the main complication of the reduction.

A natural way to simplify the reduced control system is to restrict its controls to values in a finite set
(in our case the permutations of the eigenvalues of the state). This is also considered in [RBR18], and
explored more thoroughly in [3, DES19, End20, SED22] in the context of quantum thermodynamics:
there, “thermal operations” come with separate time evolutions for diagonal and off-diagonal elements
in the density matrix, which naturally inspires the reduction to “toy models” of diagonal states. Appli-
cations to unital systems were already given in [Yua10, SAZ19] and the results will be recovered in the
subsequent chapters as special cases.

Full Control System

Throughout Part II, we use n-dimensional Hilbert spaces (2 ≤ n < ∞) represented by Cn. A mixed
state ρ is a density matrix, i.e. a positive semi-definite operator with unit trace. The set of all states is
denoted pos1(n). The Markovian evolution of a state is described by the Lindblad equation [GKS76,
Lin76], which has the form

ρ̇ = −L(ρ) = −
(
i adH0 +

r∑
k=1

ΓVk

)
(ρ), (3.1)

where adH0(ρ) := [H0, ρ] and ΓV (ρ) :=
1
2(V

∗V ρ + ρV ∗V ) − V ρV ∗. The Hamiltonian H0 ∈ iu(n)
is a Hermitian matrix and the Lindblad terms {Vk}rk=1 ⊂ Cn×n are arbitrary matrices. We call −L
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a Kossakowski–Lindblad generator,1 and we denote the set of all Kossakowski–Lindblad generators in
n-dimensions by wKL(n), called the Kossakowski–Lindblad Lie wedge, cf. [Dir+09].

The following definition encapsulates what we mean by an open Markovian quantum system with
fast unitary control. Let {Hj}mj=1 be a set of Hermitian matrices, called control Hamiltonians, −L ∈
wKL(n) a Kossakowski–Lindblad generator representing the uncontrolled drift of the system, and I an
interval of the form [0, T ] or [0,∞). A path ρ : I → pos1(n) of density matrices is a solution to the
bilinear control system

ρ̇(t) = −
(
i

m∑
j=1

uj(t) adHj +L
)
(ρ(t)), ρ(0) = ρ0 ∈ pos1(n), (D)

with locally integrable control functions uj : I → R if ρ is absolutely continuous and satisfies (D)
almost everywhere. We will always assume that the control Hamiltonians generate at least the special
unitary Lie algebra: ⟨iHj : j = 1, . . . ,m⟩Lie ⊇ su(n).

Reduced Control System

Our main focus is the reduced control system obtained from the full system (D) using the fast control-
lability over the unitary group. The definitions in this section specialize those of Section 2.2, and the
results of Chapter 2 then establish equivalence of these systems in a certain sense. An overview of the
notation is given in Table 1.

Since the bilinear control system (D) allows for unbounded control functions, and since the control
Hamiltonians generate the entire special unitary Lie algebra — meaning that we have fast unitary control
— we can quickly move within the unitary orbits. Thus we may concentrate on the dynamics of the
eigenvalues of the state (as two density matrices have the same spectrum if and only if they lie on the
same unitary orbit).2

The reduced state space will be the standard simplex

∆n−1 =
{
(x1, . . . , xn) ∈ Rn :

∑n
i=1 xi = 1, xi ≥ 0 ∀i

}
,

representing the subset of diagonal density matrices. The standard simplex ∆n−1 is a convex polytope
of dimension n − 1, and its faces are lower dimensional simplices. An important group action on the
simplex, stemming from the action of SU(n) on pos1(n), is that of the symmetric group Sn acting by
coordinate permutations. Indeed, every unitary orbit in pos1(n) intersects ∆n−1 a finite number of
times and the intersections form a permutation group orbit (this is just the unitary diagonalization of
Hermitian matrices). Two faces of the same dimension can always be mapped to each other and can thus
be considered equivalent. The points in the (relative) interior of a (d− 1)-dimensional face correspond
to quantum states of rank d. In particular the vertices e1, . . . , en correspond to the pure states and the
barycenter e/nwhere, here and henceforth, e := (1, . . . , 1)⊤ corresponds to the maximally mixed state
1/n. Moreover we use the notation ∆n−1

↓ := {x ∈ ∆n−1 : x1 ≥ . . . ≥ xn}, which we also call the
ordered Weyl chamber, as well as spec↓ : pos1(n) → ∆n−1

↓ for the map which arranges the eigenvalues
of the input into a vector in non-increasing order. Conversely, diag : ∆n−1 → pos1(n) maps a vector to
the corresponding diagonal matrix. Finally, for λ ∈ ∆n−1 we write λ↓ for the non-increasingly ordered
version in ∆n−1

↓ .
1The signs are chosen such that the real parts of the eigenvalues of −L are non-positive.
2As mentioned in the introduction, if the noise term is switchable, then one can effectively emulate (D) even if the unitary

control is not fast, at the expense of working on slower time scales.
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The next step is to define the appropriate control system on the standard simplex. To motivate the
definition, consider any solution ρ : I → pos1(n) to the bilinear control system (D) and assume that
ρ is regular3 on I . Moreover let ρ = AdU (diag(λ)) := U diag(λ)U∗ be a differentiable (in time)
diagonalization of ρ. Then by differentiating (cf. Lemma 1.4.1) one can show that λ̇ = −LUλ, where

−LU := −Πdiag ◦Ad−1
U ◦L ◦AdU ◦diag(·) , (3.2)

and where Πdiag : pos1(n) → ∆n−1 maps a matrix to the vector of its diagonal elements. The −LU
are clearly linear and we call them induced vector fields on Rn. Note that, by definition, the LU are
independent of the choice of Lindblad terms Vk. A more explicit form of the induced vector fields is
given by

−LU = J(U)− diag(J(U)⊤e), J(U) :=
r∑

k=1

U∗VkU ◦ U∗VkU (3.3)

with ◦ the Hadamard product, i.e. Jij(U) =
∑r

k=1 |⟨i|U∗VkU |j⟩|2 for all i, j. Indeed this follows from
the following computation:

−(LU )ij = ⟨i|(Ad−1
U ◦L ◦AdU )(|j⟩⟨j|)|i⟩ =

r∑
k=1

|(U∗VkU)ij |2 − δij

r∑
k=1

(U∗V ∗
k VkU)ii

=
r∑

k=1

|(U∗VkU)ij |2 − δij

r∑
k=1

n∑
ℓ=1

|(U∗VkU)ℓi|2 = Jij(U)− δij

n∑
ℓ=1

Jℓi(U) , (3.4)

where δij is the Kronecker symbol. We denote the set of induced vector fields as

L := {−LU : U ∈ SU(n)} .

Note that L is the image of a compact set under the continuous function U 7→ −LU , hence compact
itself. Also, the elements of L are generators of stochastic matrices, i.e. e⊤LU = 0 and the off-diagonal
elements are non-negative. We write this as L ⊆ stoch(n), where stoch(n) denotes the Lie wedge
corresponding to Stoch(n) which is the closed subsemigroup of GL(n,R) consisting of all invertible
stochastic matrices. Now L ⊆ stoch(n) in particular means that the standard simplex ∆n−1 is (forward)
invariant under the flow of the induced vector fields −LU .

We define on ∆n−1 the set-valued function derv of achievable derivatives by

derv(λ) := {−LUλ : U ∈ SU(n)} = Lλ ⊂ Tλ∆
n−1

where Tλ∆n−1 denotes the tangent cone at λ, which can always be identified with a subset of Rn0 :=
{x ∈ Rn : x1 + · · · + xn = 0}. With this we are ready to define the reduced control system (in two
equivalent ways):

Definition 3.0.1. A function λ : I → ∆n−1 is a solution to the control system

λ̇(t) = −LU(t)λ(t) , λ(0) = λ0 ∈ ∆n−1 (Λ)

with measurable control function U : I → SU(n), if λ is absolutely continuous and satisfies (Λ) almost
everywhere. Equivalently4, a solution λ : I → ∆n−1 is an absolutely continuous function which
satisfies the differential inclusion

λ̇(t) ∈ derv(λ(t)), λ(0) = λ0 ∈ ∆n−1

almost everywhere.
3A state ρ is called regular if its eigenvalues are all distinct.
4This is due to Filippov’s Theorem, cf. [Smi02, Thm. 2.3]. Here by “equivalent” we mean that the two systems have

exactly the same set of solutions.
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A convenient relaxation of the reduced control system can be obtained by allowing convex combinations
of achievable derivatives.

Definition 3.0.2. A function λ : I → ∆n−1 is a solution of the control system

λ̇(t) ∈ conv(derv(λ(t))), λ(0) = λ0, (Λ̄)

if it is absolutely continuous and satisfies the differential inclusion (Λ̄) almost everywhere.

The relaxation to the convex hull will slightly enlarge the set of solutions; however, every solution of (Λ̄)
can still be approximated uniformly (on compact time intervals) by solutions to (Λ), see [AC84, Ch. 2.4,
Thm. 2].

Remark 3.0.3. Again due to Filippov’s Theorem, a solution λ to (Λ) (resp. (Λ̄)) is an absolutely con-
tinuous function for which there exists (−Mτ )τ∈I ⊂ L (resp. convL) measurable such that λ(t) =
λ0 +

∫ t
0 (−Mτ )λ(τ) dτ holds for all t ∈ I .

The main results of Chapter 2, namely Theorems 2.3.8 and 2.3.14, pertain to this setting as follows.

Theorem 3.0.4 (Equivalence Theorem). Let ρ : [0, T ] → pos1(n) be a solution to the bilinear
control system (D) and let λ↓ : [0, T ] → ∆n−1

↓ be the unique path which satisfies λ↓ = spec↓(ρ).
Then λ↓ is a solution to the reduced control system (Λ). Conversely, let λ : [0, T ] → ∆n−1 be a
solution to the reduced control system (Λ) with control function U : [0, T ] → SU(n). Then for
every ε > 0 there exists a solution ρε : [0, T ] → pos1(n) to the bilinear control system (D) such
that

∥AdU (diag(λ))− ρε∥∞ ≤ ε .

Proof. We only show how the bilinear control system (D) can be reinterpreted in the setting of semisim-
ple orthogonal symmetric Lie algebras. The Lie algebra in question is sl(n,C) = su(n)⊕herm0(n,C),
where herm0(n,C) denotes the traceless Hermitian matrices, see Example 1.2.1. Since for density ma-
trices ρ it holds that tr(ρ) = 1, we will consider the shifted operator ρ̃ := ρ − 1/n which satisfies
ρ̃ ∈ herm0(n,C). The corresponding shifted Kossakowski–Lindblad generator has the form L̃(ρ̄) :=

L(ρ) = L(ρ̃) + L(1)/n, which is affine linear. Since AdU (ρ̃) = ÃdU (ρ) and adH(ρ) = adH(ρ̃), the
“shifted” control system ˙̃ρ = −(adH +L̃)(ρ̃) and (D) are state space equivalent5. After this transfor-
mation, the new system is in the form considered in Chapter 2, and hence we can define the equivalent
reduced control system. The reduced state space is diag0(n,R) ∼= Rn0 , and the induced vector fields are
−L̃U λ̃ = −Πdiag ◦ Ad−1

U ◦L̃ ◦ AdU ◦ diag(λ̃). Applying the definitions one finds that LUλ = L̃U λ̃.
This shows that the “shifted” reduced control system is state space equivalent to the reduced control
system (Λ). This (linear) state space equivalence shows that show that Theorems 2.3.8 and 2.3.14 imply
the desired result. More generally, all results from Chapter 2 presupposing an affine linear drift term
can be applied to our system.

Corollary 3.0.5. Let H : [0, T ] → isu(n) be an integrable Hamiltonian. Consider a solution ρ :
[0, T ] → pos1(n) to ρ̇(t) = −(i adH(t)+L)ρ(t). Then spec↓(ρ(t)) is a solution to (Λ) and a fortiori
to (Λ̄).

5Two control systems are state space equivalent if there is a smooth diffeomorphism between their state spaces which also
maps the drift and control vector fields of one system to the other.
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Proof. Choose any control Hamiltonians {Hj}mj=1 which linearly span isu(n). Then we may write
H(t) =

∑m
j=1 uj(t)Hj with integrable control functions uj . Hence ρ can be seen as a solution to (D)

(with the chosen controls) and so we may apply Theorem 3.0.4 to obtain that spec↓(ρ(t)) is a solution
of (Λ).

The proof above uses the fact that while “the” bilinear control system (D) requires a choice of control
Hamiltonians to be fully defined, the reduced control system (Λ) is independent of this choice so long
as the control Hamiltonians generate the entire special unitary Lie algebra.

We emphasize that although the “lifting” part in Theorem 3.0.4 is only approximate in general, in
many relevant cases one can obtain stronger results. When the path is regular (recall footnote 3), then
the lift can be performed exactly and explicitly using Proposition 2.3.10. Moreover, due to the structure
theory of Kossakowski–Lindblad generators, it is often the case that one can choose time-independent
Hamiltonians to achieve practical tasks. This is summarized in Appendix 4.A.

To close out we briefly give two useful properties of the matrices J(U) and LU .

Lemma 3.0.6. Given arbitrary {Vk}rk=1 ⊂ Cn×n as well as any i, j ∈ {1, . . . , n} with i ̸= j, the
following statements hold.

(i) Given α1, . . . , αm > 0 with
∑m

k=1 αk = 1 as well as U1, . . . , Um ∈ SU(n) define M :=∑
k=1 αkLUk . If Mij = 0, then (LUk)ij = 0 for all k = 1, . . . ,m.

(ii) If (LU )ij = 0 for some U ∈ SU(n), then (U∗VkU)ij = 0 for all k = 1, . . . , r.

Proof. (i): As −LUk is the generator of a stochastic matrix we know (−LUk)ij ≥ 0 because i ̸= j.
Thus (−M)ij = 0 implies (−αkLUk)ij = 0 for all k, hence (LUk)ij = 0. (ii): Because i ̸= j we know
that (−LU )ij = (J(U))ij so the former being zero forces (U∗VkU)ij = 0 for all k.

Lemma 3.0.7. Let {Vk}rk=1 be a family ofn-dimensional Lindblad terms and letU ∈ U(n) be arbitrary.
The row and column sums of J(U) (as defined in (3.3)) are

(J(U)e)i =
r∑

k=1

⟨ui|VkV ∗
k |ui⟩, (J(U)⊤e)j =

r∑
k=1

⟨uj |V ∗
k Vk|uj⟩

respectively, where |ui⟩ = U |i⟩. In particular if ⪯ denotes standard majorization, then J(U)e ⪯
spec↓(

∑r
k=1 VkV

∗
k ) and J(U)⊤e ⪯ spec↓(

∑r
k=1 V

∗
k Vk). It follows that

((J(U)− J(U)⊤)e)i =

r∑
k=1

⟨ui|[Vk, V ∗
k ]|ui⟩ , ((J(U) + J(U)⊤)e)i =

r∑
k=1

⟨ui|{Vk, V ∗
k }|ui⟩ ,

where {·, ·} denotes the anti-commutator. So (J(U)−J(U)⊤)e ⪯ spec↓(
∑r

k=1[Vk, V
∗
k ]) and (J(U)+

J(U)⊤)e ⪯ spec↓(
∑r

k=1{Vk, V ∗
k }).

Proof. We compute the i-th row sum

(J(U)e)i =

n∑
j=1

⟨i|J(U)|j⟩ =
n,r∑
j,k=1

|⟨ui|Vk|uj⟩|2 =
r∑

k=1

⟨ui|VkV ∗
k |ui⟩.

The computation for the j-th column is analogous, and the other claims follow immediately using the
Schur–Horn Theorem [Sch23, Hor54].
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Operator Lifts and Lie Wedges

For completeness, we briefly discuss the operator lifts of the full bilinear system (D) and of the reduced
system (Λ). The definitions, in a more general context, are recalled in Section 2.2. Considering the
operator lifts immediately leads to the study of Lie semigroups and Lie wedges, cf. [Dir+09, HHL89,
Law99]. In particular, the reachable sets of the operator lifts are determined by the Lie saturate ⟨·⟩LS of
their respective generators, see [Law99, Sec. 6]. The generators of (D) are given by Ω = {X+i adHj :
j = 1, . . . ,m}, and the generators of (Λ) are exactly the induced vector fields L.

Proposition 3.0.8. The Lie saturate of the full control system (D) is given by

⟨Ω⟩LS = adsu(n)⊕⟨Ad−1
U ◦L ◦AdU : U ∈ SU(n)⟩wedge.

Proof. If −L = i adH for some iH ∈ su(n), then it is clear that the Lie wedge is adsu(n) since it is a
compact Lie algebra. Hence we can focus on the case where−L /∈ adsu(n). SincewKL(n) is a global Lie
wedge (cf. [Dir+09, Thm. 3.3]) and since the edge of wKL(n) equals adsu(n) (e.g. by Lemma 4.4.8 (ii)),
the result follows from Proposition 2.2.1 (iii) (which itself is based on [HN12, Prop. 1.37]).

Furthermore, the Lie saturate of the reduced control system (Λ) is ⟨L⟩LS = ⟨L⟩wedge. This fol-
lows immediately from the fact that stoch(n) is a pointed (hence global) Lie wedge by use of [HN12,
Prop. 1.37]. As a consequence we obtain that the Lie saturates are related by Πdiag ◦ ⟨Ω⟩LS ◦ diag =
⟨L⟩LS, see also Lemma 2.2.3.



CHAPTER 4
Reachability and Stabilizability

4.1 Introduction

Before one can find optimal controls for concrete problems, it is important to understand some fun-
damental properties of the control system in question. For example: Which states and subspaces can
be stabilized? Which states can be reached from a given initial state? Is the system coolable, con-
trollable, or accessible? We will give quite general answers to these questions for Markovian systems
with fast unitary control using the reduced control system of Chapter 3. We emphasize that certain
stabilization and reachability tasks of interest can be implemented using only time-independent control
Hamiltonians. Moreover, in a toy-model setting, we obtain some explicit reachable and stabilizable sets
exhibiting non-trivial geometries. The results of this chapter will prove to be very useful in studying
concrete systems in Chapters 5 and 6.

Previous results for time-independent Hamiltonian control are given in [Kra+08, TV09, SW10], and
our results show what improvements can (and cannot) be obtained from using time-dependent Hamilto-
nian control. The toy model for quantum thermodynamics was thoroughly explored in [DES19, End20,
SED22], see also [RBR18], and we will improve on these results by deriving explicit solutions. A par-
ticular section is devoted to the unital case, where our general answers can be further specialized, and
where we recover and generalize a number of known results [Yua10, SAZ19].

Outline and Main Results

At the end of Section 4.1 we introduce two matrix algebras whose invariant subspaces are important in
the structure theory of Kossakowski–Lindblad generators, as well as in the study of time-independent
Hamiltonian control and of the reduced control system. When proceeding to study the control-theoretic
properties of our open Markovian quantum system, we use (i) the reduced control system to find al-
gebraic characterizations and (ii) the Equivalence Theorem 3.0.4 to lift the results to the full control
system. A compact overview of the main results is provided in Table 4.1.

In Section 4.2 we establish stabilizability of individual points and the entire system (Thm. 4.2.7),
the viability of faces of the simplex, and the accessibility of the system (Prop. 4.2.12, and for unital
systems Prop. 4.4.11).

Section 4.3 is devoted to reachability, in particular (asymptotic) coolability (Thm. 4.3.7), reverse
coolability, and the reachability of faces, with the conditions for (approximate) controllability of the
system settled by Prop. 4.3.20.

87
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Section 4.4 treats the special case of unital quantum systems, where the algebraic structure simplifies
considerably and allows to derive stronger results on stabilizability and reachability (Thm. 4.4.9).

In Appendix 4.A we explore the structure of Kossakowski–Lindblad generators via associated matrix
algebras. In Appendix 4.B we compute explicit stabilizable and reachable sets in a simplified toy model
setting. Appendix 4.C shows how common eigenvectors and simultaneous triangulations of matrices
can be efficiently computed, thus giving a method for checking coolability and stabilizability of systems.

Kossakowski–Lindblad Generators and Their Relaxation Algebras

Throughout the chapter we assume that −L ∈ wKL(n) is a Kossakowski–Lindblad generator on the
n-dimensional Hilbert space Cn, given by Lindblad terms {Vk}rk=1 and Hamiltonian H0. We say that
a given set {V ′

k}sk=1 ⊂ Cn,n is a choice of Lindblad terms of −L if there exists a HermitianH ′
0 ∈ Cn,n

such that −L = −(i adH′
0
+
∑s

k=1 ΓV ′
k
). The freedom of representation of −L is summarized in

Lemma 4.A.3. Recall that −L is called unital if L(1) = 0 and purely Hamiltonian if −L = −i adH0 .
We will briefly introduce the main concepts here, referring to Appendix 4.A for precise statements.

To the generator −L we define an associated (complex) matrix algebra V , called its relaxation algebra,
generated by “the” Lindblad terms {Vk}rk=1 and the identity matrix, as well as its extended relaxation
algebra V+ additionally generated byK = iH0+

1
2

∑r
k=1 V

∗
k Vk. Importantly, these matrix algebras are

well-defined and their invariant subspaces encode important information about the generator −L. In-
deed, many results about the structure of Kossakowski–Lindblad generators presented in [BN08] can be
formulated succinctly using the algebras V and V+. Moreover, V was used to give a sufficient condition
for the evolution to be relaxing in the sense of having a unique attractive fixed point, cf. [Dav70, Spo77].
The invariant subspaces of V are called lazy subspaces, and invariant subspaces of V+ are called col-
lecting subspaces. Under the evolution of −L, a state supported on a lazy subspace will only leave the
subspace “slowly”, whereas a state supported on a collecting subspace will not leave the subspace at all.
Importantly, using time-independent controls, any lazy subspace can be turned into a collecting one. A
collecting subspace whose orthocomplement is also collecting is called an enclosure, and it corresponds
to a symmetry of the generator −L, cf. [BN08, AJ14]. Interestingly, in the unital case, V and V+ turn
out to be ∗-algebras, which are highly structured. This allows us to derive strong results, beyond the
known fact that a unital system is relaxing if and only if V = {Vk : k = 1, . . . , r}′′ = Cn,n (with {·}′′
denoting the double-commutant in Cn,n), which is similar to the result in [Spo77].

These relaxation algebras are useful in understanding what can be achieved using time-independent
Hamiltonian control, cf. [Kra+08, TV09, SW10] as well as Appendix 4.A, and they also turn out to be
crucial in the study of the reduced control system.

4.2 Stabilizability, Viability and Accessibility

An important task in control theory is that of keeping the state in a certain region of the state space, called
viability, or close to some desired state, called stabilizability. In this section, we characterize viability
and stabilizability in the reduced control system and deduce the implications for the full bilinear system.
Moreover, we study accessibility in the reduced system and show that non-unital systems are generically
directly accessible.

Stabilizable and Strongly Stabilizable Points

We begin with stabilizable points, emphasizing that our systems do not have feedback, hence why we
talk about open-loop stabilizability only.
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Definition 4.2.1. A point λ ∈ ∆n−1 is called stabilizable for (Λ) if it holds that 0 ∈ conv(derv(λ)).
The set of all stabilizable points is denoted stabΛ. We say that λ is strongly stabilizable for (Λ) if
0 ∈ derv(λ).

Using previously established notation, λ is strongly stabilizable if and only if 0 ∈ Lλ, and λ is
stabilizable if and only if 0 ∈ conv(Lλ) = (convL)λ.

It is clear that strong stabilizability implies stabilizability. Intuitively, λ is stabilizable if any solution
to (Λ) starting at λ can remain close to λ for an arbitrarily long amount of time, and λ is strongly
stabilizable if the constant path at λ is a solution to (Λ). For a more precise statement, see Section 2.4.
The following result is a direct specialization of Proposition 2.4.5.

Proposition 4.2.2. Let −L ∈ wKL(n) be any Kossakowski–Lindblad generator, and let ρ0 ∈ pos1(n),
λ0 ∈ ∆n−1 and U ∈ SU(n) be given such that ρ0 = AdU (diag(λ0)). Then the following hold:

(i) If there is some HamiltonianH such that −(i adH +L)(ρ0) = 0, then −LUλ0 = 0 and hence λ0
is strongly stabilizable for (Λ).

(ii) Conversely, if λ0 is regular and strongly stabilizable for (Λ) with −LUλ0 = 0, then the compen-
sating Hamiltonian Hc := ad−1

ρ0 ◦Π⊥
ρ0 ◦ L(ρ0) satisfies

−(i adHc +L)(ρ0) = 0 .

Note that the assumption on regularity is generally necessary, as exemplified in Example 2.3.12.
Denoting Ṽk = U∗VkU , and analogously H̃c and H̃0, the compensating Hamiltonian Hc for a

regular, strongly stabilizable state ρ = AdU (diag(λ)) can be written more explicitly as follows. Us-
ing equivariance and the fact that, by regularity of ρ, we have Πdiag(λ) = Πdiag, we find −iHc =

AdU ◦ ad−1
λ ◦Π⊥

diag◦Ad
−1
U ◦L◦AdU (diag(λ)). Hence−i⟨i|H̃c+H̃0|j⟩ =

∑r
k=1 ⟨i|ΓṼk(λ)|j⟩/(λi − λj)

which expands to

−i⟨i|H̃c|j⟩ = i⟨i|H̃0|j⟩+
r∑

k=1

λi+λj
2 ⟨i|Ṽ ∗

k Ṽk|j⟩ −
∑n

ℓ=1 λℓ⟨i|Ṽk|ℓ⟩⟨ℓ|Ṽ ∗
k |j⟩

λi − λj
,

as desired.
Note that more generally, for regular ρ0 = AdU (diag(λ0)) the compensating Hamiltonian Hc exactly
cancels out the part of −L(ρ0) which is tangent to the orbit.

Computing the set of all (strongly) stabilizable states is difficult in general. Even in the three-
dimensional toy model case considered in Appendix 4.B this is non-trivial, see also [RBR18, Sec. IV].

Viable Faces

Viable subsets of the state space are those in which one can remain for an arbitrary amount of time.
Note that the singleton set {λ} is viable for (Λ̄) if and only if λ is stabilizable for (Λ), cf. Section 2.4.

We are primarily interested in the case where the subset in question is a face of the simplex ∆n−1.
Due to the permutation symmetry of the reduced system, as well as the geometry of the simplex ∆n−1,
all (d − 1)-dimensional faces of the simplex are equivalent. The main result of this section will relate
viable faces of dimension d − 1 to lazy subspaces (i.e. common invariant subspaces of the relaxation
algebra V , or equivalently, of any choice of Lindblad terms Vk which define −L, cf. Appendix 4.A) of
dimension d. We begin with a simple lemma:
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Lemma 4.2.3. Let F be a face of ∆n−1 of dimension d − 1 with 1 ≤ d ≤ n. Let λ be a point in the
relative interior1 of F and let −M ∈ conv(L) be such that −Mλ is tangent to F . Then there exists a
lazy subspace of dimension d.

Proof. Using permutations we can assume that F consist of all vectors in ∆n−1 whose last n − d
entries are zero. Since λ lies in the relative interior of F , its first d entries must be strictly positive. By
assumption, the last n−d entries ofMλmust be zero. But this can only be if the block (d+1, . . . , n)×
(1, . . . , d) of M is identically 0. By Lemma 3.0.6 there exists U ∈ U(n) such that all U∗VkU have this
property, hence the first d columns of any such U∗ span the desired lazy subspace.

Proposition 4.2.4. Let F be a face of ∆n−1 of dimension d − 1 (where 1 ≤ d ≤ n). Given any
Kossakowski–Lindblad generator −L ∈ wKL(n), the following are equivalent:

(i) F is viable for (Λ̄).

(ii) There exists some −M ∈ conv(L) whose flow leaves F invariant.

(iii) There exists a lazy subspace of dimension d.

(iv) There exists a stabilizable point for (Λ) in the relative interior of F .

(v) There exists a strongly stabilizable point for (Λ) in the relative interior of F .

(vi) There exists some −M ∈ conv(L) and some λ in the relative interior of F such that −Mλ is
tangent to F .

(vii) There exists some U ∈ U(n) and some λ in the relative interior of F such that −LUλ is tangent
to F .

(viii) There exists a stabilizing Hamiltonian HS and a state ρ of rank d such that ρ is the unique fixed
point of −(i adHS +L) restricted to the support of ρ (which is automatically a collecting sub-
space).

Proof. The implications (iii) ⇒ (ii) ⇒ (i) ⇒ (vi) are easy. By Lemma 4.2.3 and its proof it holds that
(vi) ⇒ (vii) ⇒ (iii). That (iii) ⇒ (viii) follows from Lemma 4.A.19. Finally, (viii) ⇒ (v) follows from
Proposition 4.2.2, and (v) ⇒ (iv) ⇒ (vi) are clear.

Recall from Corollary 4.A.11 that for a lazy subspaceS, anyHS satisfyingP⊥
S HSPS = −P⊥

S

(
H0+

1
2i

∑r
k=1 V

∗
k Vk

)
PS is a stabilizing Hamiltonian, where PS is the orthogonal projection onto S. This is a

well-known result, cf. [BN08, LCW98], and Proposition 4.2.4 shows that such time-independent control
is always sufficient for making a face viable.

For the vertices ei of∆n−1, which correspond to pure states, Proposition 4.2.4 specializes as follows:

Corollary 4.2.5. Given any Kossakowski–Lindblad generator −L ∈ wKL(n), the following are equiv-
alent:

(i) Some (equivalently: each) ei is stabilizable for (Λ).

(ii) Some (equivalently: each) ei is strongly stabilizable for (Λ).
1The relative interior of a set S, denoted relint(S), is the interior of S within its affine hull. Note that for a singleton set

{s} the relative interior is {s} itself.
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(iii) For some (equivalently: each) choice of Lindblad terms {Vk}rk=1 of −L, the Vk have a common
eigenvector.

(iv) There is a stabilizing Hamiltonian Hψ for a pure state2, that is, there exists ∥ψ∥ = 1 such that
−(i adHψ +L)|(|ψ⟩⟨ψ|) = 0.

Moreover, if |ψ⟩ is a common eigenvector of the Vk with Vk|ψ⟩ = λk|ψ⟩, then any Hermitian Hψ

satisfying Hψ |ψ⟩ = −
(
H0 + (λ − 1

2i

∑r
k=1 |λk|2)1 + 1

2i

∑r
k=1 V

∗
k Vk

)
|ψ⟩ where λ ∈ R is arbitrary

is an admissible choice for the stabilizing Hamiltonian.

Later we will see how certain systems can be asymptotically cooled into a pure state. The corollary
above then shows how such a pure state can be stabilized.

Remark 4.2.6. The permutation symmetry of the reduced control system (cf. Lemma 2.A.2) yields some
further viable subsets. Indeed every degeneracy plane (i.e. the fixed point set of some permutation
group) is viable. Similarly one can show that the ordered Weyl chamber ∆n−1

↓ as well as each of its
permutations are viable, see Proposition 2.A.4.

Stabilizable Systems

If every point in ∆n−1 is stabilizable for (Λ), we say that the system is stabilizable for (Λ). It turns out
that stabilizable systems can be characterized in simple algebraic terms.

Theorem 4.2.7 (Stabilizable Systems). Given any −L ∈ wKL(n), the following are equivalent:

(i) The system is stabilizable for (Λ).

(ii) For some (equivalently: each) choice of Lindblad terms {Vk}rk=1 of −L, all Vk are simulta-
neously triangulable.

(iii) For some (equivalently: each) choice of Lindblad terms {Vk}rk=1 of −L, the Vk generate a
solvable Lie algebra.

In particular if all Lindblad terms Vk commute (e.g., if there is only one Vk), then the system is stabi-
lizable for (Λ). If the system is stabilizable for (Λ), then one can show that in the full system (D), every
SU(n)-orbit is approximately viable, i.e. one can stay arbitrarily close to any orbit, see Proposition 2.4.7.

We will prove the theorem as a sequence of lemmas:

Lemma 4.2.8. Let A ∈ Rn,n be a matrix with non-positive values on the diagonal and non-negative
values on the off-diagonal. Let v ∈ Rn be a vector with non-negative elements such that Av = 0. For
all i ̸= j we have that Aij vj ≤ ∥A∥max vi, where ∥A∥max := maxi,j |Aij |.

Proof. Note that (Av)i = 0 is equivalent to
∑

k ̸=iAikvk = −Aiivi = |Aii|vi. This yields Aijvj ≤∑
k ̸=iAikvk = |Aii|vi ≤ ∥A∥maxvi, for all i ̸= j as desired.

Lemma 4.2.9. If the system is stabilizable, then the Lindblad terms {Vk}rk=1 are simultaneously trian-
gulable.

2Note that this does not follow from Proposition 4.2.2 since ei is not regular.
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Proof. For ε > 0 small enough we consider the curve λ : [0, ε] → ∆n−1 defined as λ(t) = (1 − (t +
t2 + t3 + . . . + tn−1), t, t2, t3, . . . , tn−1). By assumption, for all ε > 0, there exists −Mt ∈ conv(L)
such that −Mtλ(t) = 0. Applying Lemma 4.2.8 to A = −Mt and v = λ(t) we have that if i > j,

|(Mt)ij | ≤ m⋆ λi(t)

λj(t)
→ 0 (4.1)

as t→ 0 wherem⋆ = supt ∥Mt∥max ≤ supU∈SU(n) ∥LU∥max which is finite by compactness of SU(n)
and continuity of −L. Moreover, by compactness of conv(L) we can pass to a subsequence of the −Mt

which converges to some −M ∈ conv(L). Eq. (4.1) then implies thatM is upper triangular. With this,
Lemma 3.0.6 shows that all Lindblad terms can be simultaneously triangulated.

Lemma 4.2.10. If all Lindblad terms are simultaneously triangulable, then the system is stabilizable.

Proof. By assumption there existsU ∈ SU(n) such thatU∗VkU is upper triangular for all k = 1, . . . , r.
Given any m = 1, . . . , n we define J (m)(U) as the m×m block in the lower right corner of J(U), as
well as −L(m)

U := J (m)(U) − diag((J (m)(U))⊤e) (note that −L(m)
U is a stochastic generator, but it is

generally not a submatrix of LU ). This definition yields an inductive structure: because all U∗VkU are
upper triangular, so is J (m)(U), meaning for all m = 1, . . . , n− 1 one has

−L(m+1)
U =


0 (J (m+1)(U))1,2 · · · · · · (J (m+1)(U))1,m
0 −(J (m+1)(U))1,2 0 · · · 0
... . . . . . . . . . ...
... . . . . . . 0

0 · · · · · · 0 −(J (m+1)(U))1,m

+

(
0 0

0 −L(m)
U

)

as is readily verified. Our goal is to show that for every 1 ≤ m ≤ n and for every λ ∈ ∆m−1 there exist
ℓ ∈ N, µ ∈ ∆ℓ−1, and permutation matrices P1, . . . , Pℓ ∈ Rm,m such that −

∑ℓ
i=1 µiP

⊤
i L

(m)
U Piλ = 0.

This would conclude the proof as then −
∑ℓ

i=1 µiP
⊤
i L

(n)
U Pi = −

∑ℓ
i=1 µiLUPi ∈ conv(L) maps λ to

zero.
We proceed by induction on m. The case m = 1 is trivial as −L(1)

U = 0. For the induction
step, let any 1 ≤ m < n and any λ ∈ ∆m be given. We distinguish two cases: if there exists a
permutation matrix P ∈ R(m+1),(m+1) such that Pλ = e1, then −P⊤L

(m+1)
U Pλ = 0 by the triangular

structure of LU . If this is not the case, then the vector λ(q) := (λ1, . . . , λq−1, λq+1, . . . , λm+1)/(1 −
λq) ∈ ∆m−1 is well-defined for all q = 1, . . . ,m + 1. By the induction hypothesis, for all q =
1, . . . ,m + 1 there exist ℓq ∈ N, µq ∈ ∆m−1, as well as permutation matrices Pq,1, . . . , Pq,ℓq ∈
Rm,m such that −

∑ℓq
i=1(µq)iP

⊤
q,iL

(m)
U Pq,iλ

(q) = 0. Defining P ′
q,i := 1 ⊕ Pq,i ∈ R(m+1),(m+1) for

all i = 1, . . . , ℓq, and q = 1, . . . ,m + 1, the block structure of −L(m+1)
U from above readily implies

that −
∑ℓq

i=1(µq)i(P
′
q,i)

⊤L
(m+1)
U P ′

q,i(λq, λ
(q)(1− λq))

⊤ has a non-negative first element and all other
elements are non-positive. Therefore

xq := −
ℓq∑
i=1

(µq)i(P
′
k,iπq)

⊤L
(m+1)
U P ′

q,iπqλ = −πq
( ℓq∑
i=1

(µq)i(P
′
q,i)

⊤L
(m+1)
U P ′

q,i

(
λq

λ(q)(1− λq)

))
for all q = 1, . . . ,m + 1 has a non-negative element in the q-th component while all others are non-
positive; here πq ∈ R(m+1),(m+1) which only swaps the first and the q-th component. It remains to
find ξ ∈ ∆m such that

∑m+1
q=1 ξqxq = 0 as then 0 = −

∑m+1
q=1

∑ℓq
i=1 ξqµiπ

⊤
q (P

′
q,i)

⊤L
(m+1)
U P ′

q,iπqλ so
(ξkµi)q,i and {P ′

q,iπq : q, i} satisfy the property we are aiming to verify.
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For the final step the key is that X :=
(
x1 · · · xm+1

)
∈ R(m+1),(m+1) satisfies e⊤X = 0 and

Xij ≥ 0 for all i ̸= j by construction of the xq. Therefore there exists ε > 0 such that 1 + εX is
a stochastic matrix (if X = 0 this is trivial, else choose ε := (maxj |Xjj |)−1). In particular (1 +
εX)∆m ⊆ ∆m so by the Brouwer fixed-point theorem [Bro11] this matrix has a fixed point ξ ∈ ∆m.
But this means ξ + εXξ = ξ which, due to ε > 0, is equivalent to Xξ = 0, as desired.

Note that if the Vk are upper triangular in the standard basis, only permutations are used in the proof
of Lemma 4.2.10 to stabilize a given state. Hence the proof also works for the toy model discussed in
Appendix 4.B.

Lemma 4.2.11. A set of matrices in Cn,n is simultaneously triangulable if and only if they generate a
solvable Lie algebra g.

Proof. By Lie’s Theorem [Kna02, Thm. 1.25], if g is solvable, then it is triangulable. Conversely, it is
clear that a Lie algebra generated by simultaneously triangulable matrices is solvable.

This completes the proof of Theorem 4.2.7.

The theorem shows that determining whether a collection of square matrices over C is simultane-
ously (unitarily)3 triangulable is a relevant task for studying our (reduced) control system. Simultaneous
triangulation is certainly possible if all matrices commute, but we can say more. Many equivalent condi-
tions are listed in [RR00, Ch. 1]. Also recall that for a Lie algebra g ⊆ gl(n,C) it holds that g is strictly
triangulable if and only if every element of g is nilpotent (Engel’s Theorem [Kna02, Thm. 1.35]). An
efficient algorithm for deciding if a set of matrices is simultaneously triangulable and for finding a cor-
responding basis is presented in Appendix 4.C.

An interesting follow-up question would be to understand when every state in λ ∈ ∆n−1 is strongly
stabilizable and how to find U such that −LUλ = 0.

Accessibility

As we will see below, the systems we consider are never (exactly) controllable. This is due to the
dissipative nature of the dynamics. In this case, relevant notions are approximate controllability or
accessibility. Indeed, we will show that our systems are almost everywhere directly accessible. The
reduced system (Λ) is directly accessible at some λ ∈ ∆n−1 if span(derv(λ)) = Rn0 . Intuitively
this means that one can move directly in all directions of some cone with non-empty interior. Using
Propositions 2.4.9 and 2.4.10, we immediately obtain:

Proposition 4.2.12. If −L is non-unital, then the reduced control system (Λ) is generically 4 directly
accessible, and hence the full bilinear system (D) is generically accessible.

Direct accessibility in the unital case will be considered in Section 4.4. The accessibility of the full
system (D) and its operator lift have been addressed in greater generality in [KDH12] using Lie-theoretic
methods.

3A family of complex matrices is triangulable if and only if it is unitarily triangulable. This can be seen, for instance,
using the QR decomposition.

4We say that a property holds generically on the state space if it holds on an open, dense subset which has full measure.
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4.3 Reachability, Coolability and Controllability

One of the main questions in control theory is that of reachability, i.e. given an initial state, what is the
set of all states that can be generated within the control system? Reaching pure states is of particular
importance since it corresponds to coolability of the system.5 Furthermore, we will characterize which
faces of the simplex ∆n−1 can be reached and when the system is controllable. The reachability of faces
of the simplex is related to the reachability of subspaces and to the cooling of subsystems.

First we define some important notions. The reachable set of λ0 at time T ≥ 0 of the reduced control
system (Λ), denoted reachΛ(λ0, T ), is the set of all λ(T ) where λ : [0, T ] → ∆n−1 is a solution to (Λ)
with λ(0) = λ0. The (all-time) reachable set is reachΛ(λ0) =

⋃
T≥0 reachΛ(λ0, T ). Moreover we say

that λf is approximately reachable from λ0 if λf ∈ reachΛ(λ0) and it is asymptotically reachable if
there is a solution λ : [0,∞) → ∆n−1 with λ(0) = λ0 and λ(t) → λf as t → ∞. The definitions for
other control systems are entirely analogous.

The Equivalence Theorem 3.0.4 implies that the reachable sets of (Λ) and (D) are closely related,
see Proposition 2.4.3 for a proof.

Proposition 4.3.1. Given −L ∈ wKL(n), let ρ0 ∈ pos1(n) and λ0 ∈ ∆n−1 be such that spec↓(ρ0) =
λ↓0. Then it holds that

reachD(ρ0, T ) ⊆ {U diag(λ)U∗ : λ ∈ reachΛ(λ0, T ), U ∈ SU(n)} ⊆ reachD(ρ0, T ).

Let us continue with some general facts about reachable states. The following result extends some
previous results derived in the toy model, see Lemmas 4.B.2 and 4.B.7. We omit the proof, since it is
essentially the same.

Proposition 4.3.2. Let λ ∈ ∆n−1 and assume that −L ∈ wKL(n) is not purely Hamiltonian. Then
reachΛ̄(λ) contains e/n and is contractible.

If a state can be reached asymptotically in the relaxed control system (Λ̄), then it is stabilizable. The
proof is similar to the one of Lemma 2.4.4 (ii), and hence omitted.

Lemma 4.3.3. Let λ : [0,∞) → ∆n−1 be a solution to (Λ̄) such that λ(t) → µ as t → ∞ for some
µ ∈ ∆n−1. Then µ ∈ stabΛ.

A similar result also holds for faces.

Lemma 4.3.4. Let F be a face of ∆n−1 which is not a vertex. Assume that there is some µ ∈ relint(F )
and some λ ̸= µ such that µ ∈ reachΛ̄(λ). Then F is viable for (Λ̄).

Proof. We show the contrapositive, so assume that F is not viable for (Λ̄). By Proposition 4.2.4 it
holds for every µ ∈ relint(F ) that no element of derv(µ) is tangent to F . In particular, if α is any linear
functional on TµRn0 which vanishes on tangent vectors along F and is non-positive on the tangent cone
Tµ∆

n−1 (which is a subset of TµRn0 ), then α(derv(µ)) ⊂ [−∞,−ε] for some ε > 0. By continuity, and
if necessary decreasing ε, we may assume thatα(derv(ν)) ⊂ [−∞,−ε] for every ν in some ballB(R,µ)
about µ with radius R > 0. Moreover, by compactness there is some C > 0 such that derv(ν) ⊆
B(C, 0) for every ν inB(R,µ). Thus there is r > 0 small enough such that any solution to (Λ̄) starting
outside ofB(R,µ) cannot enterB(r, µ). In particular, for any λwe can chooseR < ∥λ−µ∥ and hence
µ is not approximately reachable from λ.

5Due to the assumption of fast unitary control, reaching a pure state, i.e. a vertex of ∆n−1, is sufficient for reaching an
energy minimizing state.
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Note, however, that there are reachable states that are not stabilizable. This property and more can
be shown explicitly in the toy model, see Appendix 4.B, and in particular Figure 4.4. In general it is
very difficult to compute the reachable set, hence why we will focus on the reachability of faces of
the simplex (including coolability), and we will characterize approximate controllability, which is the
situation where all states are approximately reachable from all other states.

Asymptotically Coolable Systems

One of the DiVincenzo criteria [DiV00] necessary for quantum computation requires the ability to
initialize the system in a simple reference state. In practice one often starts in a thermal state and cools
the system to a temperature near absolute zero. Since we assume fast unitary controllability, we will
use the term “cooling” to refer to the preparation of any pure state. In this section we characterize
(asymptotic) coolability and show how it can be implemented in the bilinear control system (D).

We start with some technical results. If we think of the dynamics on the simplex ∆n−1 as a (con-
trolled) Markov chain on n states, the task of cooling corresponds to moving the entire population into
a single state. To achieve this one has to minimize the outflow of this state and maximize the inflow.
The next result yields some bounds on the ratio of inflow to outflow for certain systems.

Lemma 4.3.5. Let {Vk}rk=1 denote a finite set of complex n × n matrices such that every common
eigenvector of all Vk is also a common eigenvector of all V ∗

k . With J(U) as in (3.3), there is a constant
C > 0 depending on the Vk such that the flow ratio satisfies

n∑
i=2

J1i(U)
/ n∑
i=2

Ji1(U) ≤ C (4.2)

for all U where the expression is defined.

Proof. Our key object will be the subspace S ⊆ Cn defined as follows. If there is no eigenvector which
all the Vk have in common set S := {0}. Else let v1 denote such a common (unit) eigenvector of Vk
and set S1 := span(v1). From this we proceed inductively over i = 1, . . . , n: if S⊥

i contains a common
(unit) eigenvector vi+1 we set Si+1 = Si ⊕ span(vi+1). Else S := Si. The advantage of this explicit
construction is that, if S ̸= {0}, we now have an orthonormal basis {vi}si=1 (s ≥ 1) of S consisting of
common eigenvectors of all Vk.

Assume w.l.o.g. that S ̸= Cn (else the Vk are all normal and commute with each other so the flow
ratio equals 1 where it is defined). This assumption is equivalent to S⊥ ̸= {0} which means the domain
of the following map is well defined.

b : SU(n)× {ψ ∈ S⊥ : ∥ψ∥ = 1} → [0,∞), (U,ψ) 7→
r∑

k=1

∥∥(Vk − ⟨e1|U∗VkU |e1⟩1)ψ
∥∥2.

As b is a continuous function on a compact domain it attains its minimum, that is,

CD := min
U∈SU(n),ψ∈S⊥,∥ψ∥=1

b(U,ψ) ≥ 0

exists. Most importantly, CD > 0: if CD were zero, then there exist U ∈ SU(n) and a normalized
vector ψ ∈ S⊥ such that Vkψ = ⟨e1|U∗VkU |e1⟩ψ for all k. Thus ψ is a common eigenvector for all Vk
which contradicts ψ ∈ S⊥.
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With this letU ∈ SU(n) be given such that the flow ratio is well-defined (that is,
∑n

i=2 Ji1(U) > 0).
Our goal is to show that6

R(U) ≤ max
{
1,

4
∑r

k=1 ∥Vk∥2∞
CD

}
(4.3)

which would conclude the proof because the right-hand side of Eq. (4.3) is finite as we just saw. Defining
w := Ue1 and using Lemma 3.0.7, a straightforward computation shows

R(U) =

∑r
k=1⟨w|VkV ∗

k |w⟩ − |⟨w|Vk|w⟩|2∑r
k=1⟨w|V ∗

k Vk|w⟩ − |⟨w|Vk|w⟩|2
=

∑r
k=1 ∥(V ∗

k − ⟨w|V ∗
k |w⟩1)w∥2∑r

k=1 ∥(Vk − ⟨w|Vk|w⟩1)w∥2
.

Next we use the orthogonal projection onto S, denoted ΠS , to split up the above norms via ∥ψ∥2 =
∥ΠSψ∥2+ ∥(1−ΠS)ψ∥2 = ∥ΠSψ∥2+ ∥ΠS⊥ψ∥2. Importantly, by assumption on Vk, both Vk and V ∗

k

commute with ΠS (and thus with ΠS⊥). Thus we find that R(U) is equal to∑r
k=1 ∥ΠS(V ∗

k − ⟨w|V ∗
k |w⟩1)w∥2 + ∥ΠS⊥(V ∗

k − ⟨w|V ∗
k |w⟩1)w∥2∑r

k=1 ∥ΠS(Vk − ⟨w|Vk|w⟩1)w∥2 + ∥ΠS⊥(Vk − ⟨w|Vk|w⟩1)w∥2

=

∑r
k=1 ∥(V ∗

k − ⟨e1|U∗V ∗
k U |e1⟩1)ΠSUe1∥2 + ∥(V ∗

k − ⟨e1|U∗V ∗
k U |e1⟩1)ΠS⊥Ue1∥2∑r

k=1 ∥(Vk − ⟨e1|U∗VkU |e1⟩1)ΠSUe1∥2 + ∥(Vk − ⟨e1|U∗VkU |e1⟩1)ΠS⊥Ue1∥2
.

Observe that ∥(V ∗
k − ⟨e1|U∗V ∗

k U |e1⟩1)ψ∥2 and ∥(Vk − ⟨e1|U∗VkU |e1⟩1)ψ∥2 are equal for all k, all
U ∈ SU(n), and all ψ ∈ S. This can be seen, e.g., by expanding ∥ · ∥2 into

∑s
i=1 |⟨vi| · ⟩|2 (Parseval’s

identity) and using that if λk,i is the eigenvalue of Vk w.r.t. the eigenvector vi, then7 V ∗
k vi = λk,ivi.

Therefore the first summand of the numerator and the denominator of R(U) coincide. At this point we
have to distinguish two cases: if ΠS⊥Ue1 = 0, thenR(U) = 1. Thus (4.3) holds and we are done. Else
we use the mediant inequality to obtain the (well-defined) expression

R(U) ≤ max
{
1,

∑r
k=1 ∥(V ∗

k − ⟨e1|U∗V ∗
k U |e1⟩1)ΠS⊥Ue1∥2∑r

k=1 ∥(Vk − ⟨e1|U∗VkU |e1⟩1)ΠS⊥Ue1∥2
}
.

Finally we upper bound the second argument of this maximum as follows:∑r
k=1 ∥(V ∗

k − ⟨e1|U∗V ∗
k U |e1⟩1)ΠS⊥Ue1∥2∑r

k=1 ∥(Vk − ⟨e1|U∗VkU |e1⟩1)ΠS⊥Ue1∥2

≤
∑r

k=1maxψ∈Cn,∥ψ∥=1 ∥(V ∗
k − ⟨e1|U∗V ∗

k U |e1⟩1)ψ∥2

minψ∈S⊥,∥ψ∥=1

∑r
k=1 ∥(Vk − ⟨e1|U∗VkU |e1⟩1)ψ∥2

≤
∑r

k=1 ∥(V ∗
k − ⟨e1|U∗V ∗

k U |e1⟩1)∥2∞
minψ∈S⊥,∥ψ∥=1 b(U,ψ)

≤
∑r

k=1(2∥Vk∥∞)2

CD
.

In either case (4.3) holds so we are done.

The lemma above shows that under certain circumstances, the “flow ratio” of a set of matrices, as
defined in (4.2), remains bounded, even if it is undefined at some points. This limits the ability of
solutions to (Λ̄) to converge to a vertex of ∆n−1:

6Here ∥ · ∥∞ denotes the usual operator norm, i.e. the largest singular value of the input.
7By assumption vi is a normalized eigenvector of V ∗

k (to an eigenvalue µk,i) which implies λk,i = ⟨Vkvi|vi⟩ =
⟨vi|V ∗

k vi⟩ = µk,i.
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Corollary 4.3.6. Let λ : [0,∞) → ∆n−1 be a solution to (Λ̄). If every common eigenvector of the
Lindblad terms {Vk}k is also a common eigenvector of {V ∗

k }k, then the first component λ1(t) ≤
max{λ1(0), C

1+C } for all t ≥ 0, where C is as in (4.2). Therefore, if λ(0) ̸= e1 and if there is a
sequence tn → ∞ with λ(tn) converging to e1, then there exists a common eigenvector of all Lindblad
terms which is not a common left eigenvector.

Proof. It suffices to prove the first statement as the second one is an immediate consequence. For
this assume that every common eigenvector is also a left eigenvector. Indeed, a direct consequence
of Lemma 4.3.5 and the mediant inequality is that

∑n
i=2(−M1i) ≤ C

∑n
i=2(−Mi1) for all −M ∈

conv(L). Note that this also holds when
∑n

i=2(−Mi1) = 0. Now let λ̃ ∈ ∆n−1 and −M ∈ conv(L)
be given such that (−Mλ̃)1 > 0. Then, because (−Mi1) ≥ 0 for all i ̸= 1 we compute

0 < (−M11)λ̃1 +

n∑
i=2

(−M1i)λ̃i = −λ̃1
n∑
i=2

(−Mi1) +

n∑
i=2

(−M1i)λ̃i

≤ −λ̃1
n∑
i=2

(−Mi1) + (1− λ̃1)C

n∑
i=2

(−Mi1) =
( n∑
i=2

(−Mi1)
)
(C − λ̃1(1 + C)) .

Rearranging this inequality yields λ̃1 < C
1+C . Now let λ be any solution to (Λ̄) and denote C ′ :=

max{λ1(0), C
1+C }. Towards a contradiction assume that there is some t1 > 0 such thatλ1(t1) > C ′. Let

t0 = max({t ∈ [0, t1] : λ1(t) = C ′}). Then t0 < t1 and λ1(t) ≥ C ′ for all t ∈ [t0, t1], and by the above
(−Mλ(t))1 ≤ 0 for every −M ∈ conv(L) on the same interval. By Remark 3.0.3 there is (Mt)t∈[t0,t1]
corresponding to λ. Then it holds that λ1(t1) = λ1(t0) +

∫ t1
t0
(−Mtλ(t))1 dt ≤ λ1(t0) = C ′, which

yields the desired contradiction.

This shows that determining upper bounds for the flow ratio (4.2) of a system allows to find bounds on
the purest reachable state.

Now we are ready to characterize asymptotically coolable systems.

Theorem 4.3.7 (Asymptotically Coolable Systems). Given any −L ∈ wKL(n), the following are
equivalent.

(i) For each choice of Lindblad terms {Vk}rk=1 of −L, there exists a common eigenvector of all
Vk which is not a common left eigenvector.

(ii) There exists a (time-independent) Hamiltonian H such that −(i adH +L) has a (unique)
attractive fixed pointa, and this fixed point is pure.

(iii) For every initial state, there exists some solution λ converging to e1.

(iv) e1 ∈ reach(λ) for some λ ∈ ∆n−1 \ {e1}.
aWe say that ρ is an attractive fixed point if every solution converges to ρ. If such an attractive fixed point exists, it

is clearly unique.

Proof. (i) ⇒ (ii) follows from Lemma 4.A.19, (ii) ⇒ (iii) follows from Corollary 3.0.5, and (iii) ⇒ (iv)
is trivial. Finally (iv) ⇒ (i) is Corollary 4.3.6.

Most of our effort went into proving that if the system is coolable, then the Lindblad terms must
have a common eigenvector which is not a common left eigenvector. The other implications are mostly
known and have been rediscovered several times, see for instance [Kra+08, TV09, BN08]. The task of
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efficiently determining if a common eigenvector exists, and of computing such a common eigenvector,
is not trivial. In Appendix 4.C we present an efficient algorithm for this problem.

Theorem 4.3.7 shows that for the purpose of cooling, time-independent controls are sufficient. In the
following section we will consider the reachability of faces, where time-dependent controls will offer
new possibilities.

Directly and Indirectly Reachable Faces

In the previous section we characterized coolability by studying reachability of vertices of ∆n−1 in the
reduced system. One consequence of Theorem 4.3.7 is that for vertices, asymptotic and approximate
reachability coincide. For interior points of higher-dimensional faces of ∆n−1 this need not hold any-
more. The reachability of faces of the simplex corresponds to the reachability of certain subspaces of
Hilbert space. Of particular interest might be the reachability of decoherence free subspaces [LCW98].
Moreover, the reachability of certain faces of low enough dimension corresponds to the cooling of sub-
systems.

Faces of ∆n−1 whose interior is reachable in an approximate sense satisfy the following dichotomy:
Either the interior can be reached directly, or one first has to approach the boundary and then move
parallel to the face, which we call indirect reachability. The precise result is given in Proposition 4.3.19
at the end of the section. Note that indirectly reachable faces provide a concrete problem for which
time-independent controls are insufficient.

We start by characterizing direct reachability of faces. Like in the previous section, flow ratios play
an important role here, so we begin by formalizing the concept.

Definition 4.3.8. Let J be an n × n matrix with non-negative off-diagonal entries. Given any d ∈
{1, . . . , n − 1}, the d-dimensional inflow fdin, the d-dimensional outflow fdout, and the d-dimensional
flow ratio Rd of J are defined by

fdin :=
d∑
i=1

n∑
j=d+1

Jij , fdout :=
n∑

i=d+1

d∑
j=1

Jij , Rd :=
fdin
fdout

,

respectively. If the matrix J is of the form J(U) as in (3.3), then we denote the objects above by fdin(U),
fdout(U) and Rd(U)8. We allow Rd(U) to take values in [0,+∞], where expressions of the form c

0 with
c > 0 are interpreted as +∞. Only expressions of the form 0

0 are considered undefined. We will say
that the system has bounded d-dimensional flow ratio if sup{Rd(U) : U ∈ SU(n)} < ∞ , otherwise
we say it is unbounded. Here and henceforth, suprema and infima of this form always implicitly ignore
undefined values.

Note that the flow ratio Rd(U) is infinite or undefined whenever the first d columns of U∗ span a
lazy subspace, cf. Lemma 4.A.8 (v). Outside of these points, however,Rd is a continuous function. The
behavior ofRd(U) near these singularities has important consequences for the reachability of faces, see
Remark 4.3.14.

In the proof of Corollary 4.3.6 we showed that if the 1-dimensional flow ratio of the system is
bounded, then it is impossible to reach a vertex of ∆n−1. In higher dimensions the situation becomes
more nuanced, as a bounded flow ratio only prohibits approaching the interior of a face directly, but it
does not prohibit approaching the boundary of the face:

Lemma 4.3.9. Let 1 ≤ d ≤ n−1 and set pd : ∆n−1 → R, pd(λ) :=
∑d

i=1 λi. Given λ ∈ ∆n−1, ε > 0
assume that λi ≥ εpd(λ) for all i = 1, . . . , d, and that the system has bounded flow ratioRd(U) withR

8Since −LU is well-defined, so are the off diagonal elements of J(U), and hence also all the quantities defined here.
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denoting the supremum. Then if pd(λ) ≥ R
R+ε , it holds that pd(derv(λ)) ⊆ (−∞, 0]. In particular, no

solution to (Λ̄) can converge to the interior of a (d− 1)-dimensional face if it starts outside of the face.

Proof. Using (3.4) we for any U ∈ SU(n) compute

pd(−LUλ) =
d∑
i=1

n∑
j=d+1

Jij(U)λj −
n∑

i=d+1

d∑
j=1

Jij(U)λj ≤ (1− pd(λ))f
d
in(U)− εpd(λ)f

d
out(U) ,

where we used Jij(U) ≥ 0 for all i ̸= j, as well as λi ≥ εpd(λ) for all i = 1, . . . , d. We distinguish
two cases: If fdout(U) = 0, then fdin(U) = 0. The reason for this is that R is a continuous, and by
assumption bounded, function whose zero set is either all of U(n) or nowhere dense (as in the proof of
Lemma 4.A.17) so if fdin(U) were not zero for some U (while fdout(U) is), then R cannot be bounded.
Thus pd(derv(λ)) ⊆ (−∞, 0] either way. Now if fdout(U) ̸= 0, then the above estimate is non-positive
if and only if pd(λ) ≥ 1 − ε

Rd(U)+ε . Hence if pd(λ) ≥ R
R+ε = 1 − ε

R+ε , then −pd(LUλ) ≤ 0 for all
U ∈ SU(n). Now consider any solution λ : [0,∞) → ∆n−1 to (Λ̄) and let F be the convex hull of the
d first standard basis vectors. If λ converges to some µ ∈ relint(F ), then for t large enough and some
ε > 0 it holds that λi(t) ≥ εpd(λ(t)) for all i = 1, . . . , d. At the same time pd(λ(t)) converges to 1.
However, this contradicts the first part of this lemma as in the proof of Corollary 4.3.6.

Remark 4.3.10. We have shown that if pd(λ) ≥ R
R+ε then pd(λ′) ≤ 0. This however does not neces-

sarily imply that for pd(λ) > R
R+ε we have pd(λ′) < 0. For instance one might consider a system with

a single normal V which is not a multiple of the identity (see Corollary 4.4.7). In this case every state
is stabilizable but the one-dimensional flow ratio is equal to 1 whenever it is defined.

With this result at our disposal, we can start characterizing the direct reachability of faces in the
simplex. We begin by considering a stronger notion, i.e. which faces of ∆n−1 can be reached using a
time-independent Hamiltonian, as shown in [TV09].

Lemma 4.3.11. The following statements are equivalent.

(i) There exists a d-dimensional lazy subspace which is not an enclosure (recall Lemma 4.A.16).

(ii) There exists a state ρ of rank d and a Hamiltonian H such that ρ is the unique fixed point of
−(i adH +L) ∈ wKL(n), so in particular ρ is attractive.

Proof. (i) ⇒ (ii): Follows from Lemma 4.A.19. (ii) ⇒ (i): Let S = supp(ρ). Since ρ is a fixed point, S
is collecting by Lemma 4.A.10, and hence lazy. If S was an enclosure, there would be at least two fixed
points (one supported on S, and one on S⊥). Since −(i adH +L) has a unique fixed point ρ, by [BN08,
Thm. 18] the generator has only one eigenvalue equal to 0 corresponding to the fixed point, and all other
eigenvalues have strictly negative real part. This shows that ρ is attractive.

Finally we can give the proper notion of directly reachable faces and characterize them via un-
bounded flow ratios:

Proposition 4.3.12. Let 1 ≤ d ≤ n − 1 and let F be a (d − 1)-dimensional face of ∆n−1. Then the
following are equivalent:

(i) The d-dimensional flow ratios Rd(U) are unbounded.

(ii) There exists a solution λ : [0,∞) → ∆n−1 to (Λ̄) with initial state λ(0) ̸∈ F such that
limt→∞ λ(t) =: λF ∈ relint(F ).
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In this case we say that F is directly reachable.

Proof. (ii) ⇒ (i): Immediate from Lemma 4.3.9. (i) ⇒ (ii): Due to the permutation symmetry of (Λ̄)
we may assume that F = conv(e1, . . . , ed). By assumption there is a sequence (Ui)

∞
i=1 such that

Rd(Ui) → ∞ as i → ∞. Let SFn be the subgroup of permutation matrices which map F to itself
and let A ⊆ ∆n−1 be the line segment consisting of all points fixed by SFn . We can parametrize A
via ι : [0, 1] → A, a 7→ ι(a) := (ad , . . . ,

a
d ,

1−a
n−d , . . .

1−a
n−d). Note that Rd(Ui) = Rd(UiP ) for all

P ∈ SFn . If we set Mi =
1

|SFn |
∑

P∈SFn P
⊤LUiP = 1

|SFn |
∑

P∈SFn LUiP , then all −Mi ∈ conv(L) and
they leave A invariant. Using pd : ∆n−1 → R : λ 7→

∑d
i=1 λi we compute the derivative along A as

−pd(Miι(a)) = −pd(LUiι(a)) = −a
df

d
out(Ui)+

1−a
n−df

d
in(Ui). Hence the unique (attractive) fixed point

on A is located at a = dRd(Ui)
dRd(Ui)+n−d which can be made arbitrarily close to 1 for i large enough. This

shows that there exists a solution to (Λ̄) converging to µ := ι(1) ∈ A ∩ F .

As a consequence of Lemma 4.3.11 together with Corollary 3.0.5 we obtain the following:

Corollary 4.3.13. Let F be a face of ∆n−1 of dimension d − 1. If there exists a lazy subspace of
dimension d which is not an enclosure, then F is directly reachable.

Remark 4.3.14. Currently, we do not know whether the converse to Corollary 4.3.13 also holds. A
possible generalization of Lemma 4.3.5 to invariant subspaces of dimension higher than d = 1 could be
used to prove this, but the proof of said lemma does not seem to generalize in a straightforward manner.
If the converse does not hold, this would imply that time-dependent Hamiltonians allow one to directly
reach faces not directly reachable using time-independent Hamiltonians.

The following corollaries yield special cases where the converse of Corollary 4.3.13 does hold.

Corollary 4.3.15. Let F be a face of ∆n−1 of dimension d− 1. If the commutant of {H0, V1, . . . , Vr}
contains only multiples of the identity and F is directly reachable, then there exists a lazy subspace of
dimension d which is not an enclosure.

Proof. By Lemma 4.A.16 (iii) there are no proper non-trivial enclosures, and since F is directly reach-
able, by Lemma 4.3.3 and Proposition 4.2.4 there is a lazy subspace of dimension d.

For the second corollary we observe the following duality relations for flow ratios:

Lemma 4.3.16. Let −L ∈ wKL(n) and some choice of Lindblad terms {Vk}rk=1 of −L be given,
and let −L′ ∈ wKL(n) be the Kossakowski–Lindblad generator represented by the Lindblad terms
{V ∗

k }rk=1. Then the following hold (here we use 1/0 = +∞ and the suprema and infima are defined as
in Definition 4.3.8):

(i) supU∈SU(n)Rn−d(U) = (infU∈SU(n)Rd(U))−1

(ii) supU∈SU(n)R
′
d(U) = (infU∈SU(n)Rd(U))−1,

where Rd(U) is the flow ratio of −L and R′
d(U) is the flow ratio of −L′.

Proof. (i): Follows directly from the observation that fdin(U) = fn−dout (πUπ⊤) and vice-versa where
π =

∑n
i=1 en+1−ie

⊤
i . (ii): Replacing all Vk by V ∗

k transforms the d-dimensional inflow into the d-
dimensional outflow.
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Corollary 4.3.17. If F is a facet9 of ∆n−1 and if F is directly reachable, then exists a lazy subspace of
dimension n− 1 which is not an enclosure.

Proof. Proposition 4.3.12 shows that the (n− 1)-dimensional flow ratio is unbounded. Towards a con-
tradiction assume that all n − 1 dimensional lazy subspaces are enclosures. Consider the system −L′

with Lindblad terms {V ∗
k }rk=1. Then all common eigenvectors of the V ∗

k are also common eigenvec-
tors of all Vk. By Lemma 4.3.5 it holds that supU∈SU(n)R

′
1(U) < C for some C < ∞. Then by

Lemma 4.3.16 (i) and (ii) (with d = 1) we have supU∈SU(n)Rn−1(U) = supU∈SU(n)R
′
1(U), i.e. the

(n− 1)-dimensional flow ratio is bounded, yielding the desired contradiction.

Corollary 4.3.18. If n = 3, then the converse of Corollary 4.3.13 holds for all faces.

Finally we can prove the promised dichotomy alluded to in the beginning. We say that a face F of
∆n−1 is approximately reachable if there exists λ /∈ F such that reach(λ)∩ relint(F ) ̸= ∅. A face that
is approximately reachable but not directly reachable is called indirectly reachable face.

Proposition 4.3.19. Let F be a face of ∆n−1. Consider the following statements:

(i) F is directly reachable, otherwise F is viable but not purely Hamiltonian10 and some lower di-
mensional face is approximately reachable.

(ii) F is approximately reachable.

(iii) F is directly reachable, otherwise F is viable and some lower dimensional face is approximately
reachable.

Then we have the implications: (i) ⇒ (ii) ⇒ (iii).

Proof. (i) ⇒ (ii): If F is directly reachable then (ii) is clearly true. Otherwise, some point on the
boundary is asymptotically reachable, and since the face is viable and not purely Hamiltonian we can
reach, for instance, the center of F as in Proposition 4.3.2. (ii) ⇒ (iii): If F is not directly reachable,
then the flow ratio is bounded by Proposition 4.3.12. So in order to approach an interior point of F ,
one must increase the value of ps(λ) (as defined in Lemma 4.3.9), which implies by compactness that
some point on the boundary of F is approximately reachable, and hence some face of lower dimension
is approximately reachable. If F is not viable, then no interior point of F is approximately reachable
from any other point, cf. Lemma 4.3.4.

The reason we do not obtain equivalence is that even if every lazy subspace of appropriate dimension
has purely Hamiltonian dynamics, it might still be possible to move along the face with arbitrarily small
outflow. This can be made rigorous using flow ratio arguments as above, but we will not do so here.

Reverse Coolable and Controllable Systems

So far we have studied under which conditions faces of the simplex can be reached, with special emphasis
on reachability of vertices. In this section we try to understand under which conditions all states in∆n−1

can be reached. More precisely, if for all λ, µ ∈ ∆n−1 it holds that µ ∈ reachΛ(λ), then we say that the
system (Λ) is approximately controllable. (Recall that (Λ) and (Λ̄) have the same reachable sets after

9A facet of ∆n−1 is a face of dimension n− 2.
10 For a viable face F there exists at least some −LU ∈ L whose restriction to F is tangent to F . If every such vector field

vanishes on F , we say that F is purely Hamiltonian.
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taking the closure.) Note that since one can never exactly reach the boundary of the simplex from the
interior in finite time, the system is never controllable in the usual sense [DH08, Thm. 3.10].

It turns out to be useful to consider time-reversed dynamics on the simplex. Note that under such dy-
namics ∆n−1 ceases to be forward invariant. We say that the reduced control system is reverse coolable
if reachΛ(e1) ⊇ ∆n−1

↓ . The reason for introducing this artificial concept is that asymptotic coolability
together with reverse coolability characterizes controllable systems. The results of this section gener-
alize results on approximate controllability of a quantum system coupled to a heat bath of temperature
zero, cf. [DES19, Thm. 1 & 2] and [BWS16].

Proposition 4.3.20. The following are equivalent:

(i) The system (Λ) is approximately controllable.

(ii) The system (Λ) is asymptotically coolable and reverse coolable.

(iii) The system (D) is approximately controllable.

Proof. Consider the reachability relation defined by λ ⇝ µ if µ ∈ reachΛ(λ). One can show that this
is a preorder, in particular, that it is transitive. (i) ⇒ (ii): Clearly λ ⇝ e1 for all λ ∈ ∆n−1 and hence
by Theorem 4.3.7 the system is asymptotically coolable. Reverse coolability is clear. (ii) ⇒ (i): Again
by Theorem 4.3.7 λ ⇝ ei for all λ ∈ ∆n−1 and i = 1, . . . , n. By reverse coolability e1 ⇝ λ for
all λ ∈ ∆n−1

↓ . By permutation symmetry of the system every point in ∆n−1 is reachable from some
vertex and by transitivity the system is approximately controllable. (i) ⇔ (iii): Direct consequence of
Proposition 2.4.11.

This result motivates us to characterize reverse coolability, generalizing a toy model result [DES19,
Lem. 3]:

Proposition 4.3.21. Consider the following statements:

(i) All faces (except possibly vertices) of∆n−1 are viable for (Λ̄) but not purely Hamiltonian (cf. foot-
note 10).

(ii) The system (Λ) is reverse coolable.

(iii) All faces (except possibly vertices) of ∆n−1 are viable for (Λ̄).

Then we have the following implications: (i) ⇒ (ii) ⇒ (iii).

Proof. (i) ⇒ (ii): Let F be any face of dimension d − 1 of the simplex ∆n−1 which is not a vertex
(d > 1), and let λd ∈ F be arbitrary. First we show that there is some λd−1 ∈ ∂F on the boundary such
that λd−1 ⇝ λd. If λd ∈ ∂F we set λd−1 = λd.

By assumption there is someLU such thatF is invariant but not fixed. IfSFn denotes the permutation
subgroup which leaves F invariant, thenM = 1

|SFn |
∑

P∈SFn LUP still leaves F invariant with the center
being the unique attractive fixed point (cf. Lemma 4.B.7). Since the entire boundary of F converges to
its center, it passes through every point11 of F , and hence every point is approximately reachable from
the boundary. To be precise we have proven the claim in (Λ̄), but by the Relaxation Theorem (cf. [AC84,
Ch. 2.4, Thm. 2]), it still holds in (Λ). Putting everything together, if we start with any λ ∈ ∆n−1

↓ , we set
λn = λ and find a sequence of λd for d = n−1, . . . , 1where necessarily λ1 = ei for some i = 1, . . . , n.

11This can be shown rigorously using the fact that πn(Sn) = Z, where πn denotes the n-th homotopy group [Hat02,
Sec. 4.1].
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By transitivity we get that ei ⇝ . . .⇝ λ. Using the permutation symmetry (Lemma 2.A.2) and forcing
the solution to stay in the ordered Weyl chamber (Proposition 2.A.4) we find that λ = λ↓ ∈ reachΛ(e1).

(ii) ⇒ (iii): Let λ ∈ relint(F ) and assume that F is not viable. Then by Lemma 4.3.4, λ is not
approximately reachable from any other point.

For stabilizable systems we can strengthen the result above:

Corollary 4.3.22. If (Λ) is stabilizable and has a two-dimensional lazy subspace which is not purely
Hamiltonian, then it is reverse coolable.

Proof. By Theorem 4.2.7 the Lindblad terms are simultaneously triangulable. From the assumption
and [RR00, Lem. 1.5.2] it follows that we can choose a triangulation such that the two-dimensional
subspace in the chain is not purely Hamiltonian. Hence we satisfy Proposition 4.3.21 (i).

4.4 Special Structure for Unital Systems

In this section we focus on unital systems, which are precisely those systems for which the identity is a
fixed point or, equivalently, on the level of generators, those which satisfyL(1) = 0. Such systems stand
in contrast to coolable and controllable systems studied above, since all reachable states are majorized
by the initial state. In particular the purity of a state can never increase.

Lemma 4.4.1. Given any −L ∈ wKL(n), the following statements are equivalent.

(i) −L is unital, i.e. L(1) = 0.

(ii)
∑r

k=1[Vk, V
∗
k ] = 0 for some (equivalently: each) choice of Lindblad terms {Vk}rk=1 of −L.

(iii) LUe = 0 for all U ∈ SU(n).

(iv) JUe = J⊤
U e for all U ∈ SU(n).

(v) derv(e/n) = {0}.

(vi) reachΛ̄(λ) ⊆ {µ : µ ⪯ λ} for all λ ∈ ∆n−1.

Proof. Direct computation shows−L(1) = 1
2

∑r
k=1[Vk, V

∗
k ] for any choice of Lindblad terms {Vk}rk=1

of −L; hence (i) ⇔ (ii). For (iii) ⇔ (iv) ⇔ (v) note that by definition −LU = J(U)− diag(J(U)⊤e),
which shows that LUe = J(U)e− J(U)⊤e. Next, Lemma 3.0.7 together with the Schur–Horn Theo-
rem [Sch23, Hor54] shows that derv(e/n) is equal to the majorization polytope spanned by the vector
of eigenvalues of

∑r
k=1[Vk, V

∗
k ]; this shows the equivalence of (ii) and (v). Condition (iii) shows that

the time evolution of a unital system is doubly stochastic, which implies (vi) see [MOA11, Thm. A.4].
Conversely, (vi) directly implies (v). (The equivalence of (i) and (vi) was also shown in [Yua10].)

Importantly, unitality is independent of the Hamiltonian part of the generator, and hence of the con-
trol. Note also that property (vi) continues to hold in the infinite-dimensional setting under appropriate
assumptions [End+19].

Recall that V = ⟨1, V1, . . . , Vr⟩alg, i.e. the complex matrix algebra generated by the Lindblad terms
and the identity, is called the relaxation algebra of −L, and it is independent of the choice of Lindblad
terms (Lemma 4.A.6). Moreover, we write Lat(V) for the lattice of invariant subspaces for V (i.e. its
lazy subspaces), cf. Appendix 4.A. For unital systems, stabilizability and reachability are to a large
extent characterized by the structure of the relaxation algebra, which turns out to be particularly nice as
the following result shows:



104 CHAPTER 4. REACHABILITY AND STABILIZABILITY

Lemma 4.4.2. If −L is unital, then the corresponding lattice Lat(V) of lazy subspaces is orthocom-
plemented12 and V is a ∗-algebra13.

Proof. Let S ⊆ Cn be any lazy subspace of −L; without loss of generality S ̸= {0}, and S ̸= Cn.
Choose a unitary U such that the first k columns of U∗ span S. Then by Lemma 4.A.8 (v) the matrix
−LU (and thus JU ) is block triangular. Using Lemma 4.4.1 (iv) we compute

0 =

dimS∑
j=1

(
(JUe)j − (J⊤

U e)j
)
=

dimS∑
j=1

n∑
k=dimS+1

Jjk(U)−
dimS∑
j=1

n∑
k=dimS+1

Jkj(U) ;

but the second term vanishes due to JU being block triangular. Thus, because Jjk(U) ≥ 0 for all j, k,
Jjk(U) = 0 for all 1 ≤ j ≤ dimS < k ≤ n, as well. Thus JU must be block diagonal, hence
the orthogonal complement of S is also invariant. This in turn implies that V is a ∗-algebra [GLR06,
Thm. 11.5.1], as claimed. Note that this uses that V contains the identity.

Note that the converse is not true, as can be seen by considering the following example of the Bloch
equations in Lindblad form: Choosing the Lindblad terms σ+, 2σ−, and σz , the system is clearly not
unital but as the operators do not have a common eigenvector, the lattice of lazy subspaces is trivial and
hence orthocomplemented.

The structure theorem for ∗-algebras [Far01, Thm. 5.6] shows that up to a change of orthonormal
basis, ∗-algebras have a particularly simple form: Let A ⊆ Cn,n be a ∗-algebra and let m be the
dimension of the center of A. Then there exists U ∈ U(n) as well as positive integers {qi}mi=1 and
{ki}mi=1 such that

UAU∗ =

m⊕
i=1

Cqi,qi ⊗ 1ki . (4.4)

Clearly it holds that
∑m

i=1 qiki = n. The vector of block-sizes in (4.4)

τ = (q1, . . . , q1︸ ︷︷ ︸
k1

, . . . , qm, . . . , qm︸ ︷︷ ︸
km

)

is of special importance as shown in the following lemma. Either way in this case we say that A is of
type τ ; moreover, given −L ∈ wKL(n) unital we say that −L is of type τ if the relaxation algebra V is
of type τ . To properly state the results in this section it is convenient to define the notion of refinement:

Definition 4.4.3 (Refinement). Let n, k, l be positive integers and let v ∈ Nk and w ∈ Nl be vectors
of positive integers such that their elements sum to n respectively. We say that v is a refinement of w if
Av = w for some A ∈ {0, 1}l×k with e⊤A = e⊤.

Such matricesA form a finite semigroup, and hence refinement is a preorder. Vectors differing only
up to permutation are equivalent and we will not distinguish between them. Hence, in the following, we
will think of τ as a multiset, usually represented in non-increasing order.

The following result is a direct consequence of the Krull–Schmidt Theorem [HGK04, Prop. 3.2.5].

Lemma 4.4.4. Let A be a ∗-algebra of type τ . Then for any block diagonalization of A the vector of
block sizes is refined by the vector τ .

We will see below that the type of a unital system determines many of its control-theoretic properties.
12This means that for every invariant subspace S ∈ Lat(V), the orthocomplement S⊥ is also invariant.
13V is a ∗-algebra if for every V ∈ V it holds that V ∗ ∈ V .
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Stabilizability

In contrast to general systems, where the exact shape of the stabilizable set stabΛ is very difficult to
describe, unital systems allow for a complete characterization in algebraic terms using the relaxation
algebra V , as we will show in Theorem 4.4.6. We begin with a simple result about stabilizable states in
unital systems:

Lemma 4.4.5. For unital systems, the set of stabilizable states equals the set of strongly stabilizable
states.

Proof. Let λ ∈ ∆n−1 be stabilizable, i.e. there exist ℓ ∈ N, µ1, . . . , µℓ > 0, and U1, . . . , Uℓ ∈ SU(n)
such that −

∑ℓ
k=1 µkLUkλ = 0 and

∑ℓ
k=1 µk = 1. W.l.o.g. there exists k such that LUk ̸= 0. Then

ε := (maxj,k |(LUk)jj |)−1 > 0 is well-defined and, similar to the proof of Lemma 4.2.10, the matrix1−
εLUk is doubly stochastic for all k; here we used unitality of the system together with Lemma 4.4.1 (iii).
This lets us compute λ = λ − ε(

∑ℓ
k=1 µkLUkλ) =

∑ℓ
k=1 µk(1 − εLUk)λ, meaning we expressed λ,

which is an extreme point of the majorization polytope {λ′ ∈ ∆n−1 : λ′ ⪯ λ} [Dah10, Thm. 1], as a
non-trivial convex combination of elements of {λ′ ∈ ∆n−1 : λ′ ⪯ λ} [MOA11, Ch. 2, Thm. B.2]. By
definition of an extreme point this is only possible if (1− εLUk)λ = λ for all k; hence −LUkλ = 0 so
λ is strongly stabilizable.

Theorem 4.4.6 (Stabilizable Set for Unital Systems). Assume that −L ∈ wKL(n) is unital and
let λ ∈ ∆n−1. Then λ ∈ stabΛ if and only if the type of −L is a refinement of the vector of
multiplicities of λ.

Proof. “⇐”: First assume that all Lindblad terms are in block-diagonal form such that the block sizes
give a refinement of the multiplicities of λ. In particular LU will have the same block structure. Then
there exists a permutation λ′ of λ such that in the expression LUλ′, all elements of λ′ which are multi-
plied with a given block of LU must have the same value. Thus Lemma 4.4.1 (iii) shows LUλ′ = 0 and
hence λ ∈ stabΛ.

“⇒”: Assume that no such block diagonal structure is achievable. Then the product LUλ will
always have at least two distinct elements of λ multiplied with a single block of LU . Now consider
a block where this happens. Then we argue that (at least one copy of) the smallest value of λ falling
into this block must have a strictly positive derivative. Without loss of generality we assume that LU
consists of a single block, and all copies of the smallest element of λ are exactly the first s elements of λ.
Towards a contradiction assume that λ′i = 0 for all 1 ≤ i ≤ s (note that by unitality the smallest element
of λ cannot strictly decrease). This means that (LU )ij = 0 for all i ≤ s < j. By Lemma 4.4.1 (v) this
implies that (LU )ji = 0, contradicting the assumption that LU consists of a single block. Hence λ is
not strongly stabilizable and by Lemma 4.4.5 it is not stabilizable at all.

As a special case we can characterize unital systems which are stabilizable (that is, every state is
stabilizable).

Corollary 4.4.7. The following statements are equivalent.

(i) −L is unital and stabΛ = ∆n−1.

(ii) TheU∗VkU are simultaneously diagonal for someU ∈ SU(n) and for some (equivalently: every)
choice of {Vk}rk=1.

(iii) The Vk are normal and commute for some (equivalently: every) choice of {Vk}rk=1.
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(iv) J(U) is diagonal (equivalently: LU = 0) for some U ∈ SU(n).

If −L satisfies any, and hence all, of the above, we call it unital stabilizable.

Proof. (i) ⇔ (ii) is a consequence of Theorem 4.4.6. (ii) ⇔ (iii): [HJ87, Thm. 2.5.5]. (ii) ⇔ (iv) is
trivial.

Note that one could also use Theorem 4.2.7 instead of Theorem 4.4.6 in the proof above.
Due to Lemma 4.4.5, in a unital stabilizable system every state is also strongly stabilizable, and

any unitary U which diagonalizes all Lindblad operators satisfies LUλ = 0 due to property (iv) above.
Hence using Proposition 4.2.2 one can find a corresponding compensating Hamiltonian for each regular
λ ∈ ∆n−1. Finally let us characterize the following (trivial) case:

Lemma 4.4.8. The following are equivalent.

(i) L = i adH for some Hermitian matrix H .

(ii) All eigenvalues of −L are on the imaginary axis.

(iii) For some (equivalently: each) choice of Lindblad terms {Vk}rk=1 of −L, all Vk are multiples of
the identity.

(iv) Every subspace is lazy for −L.

(v) J(U) is diagonal (equivalently: LU = 0) for all U ∈ SU(n).

We call such systems purely Hamiltonian.

Proof. (i) ⇒ (ii) is obvious and the converse follows from [BN08, Thm. 18]. (i) ⇔ (iii): This is clear
from the fact that the relaxation algebra is well-defined, cf. Lemma 4.A.6. (iii) ⇔ (iv): Elementary.
(iii) ⇒ (v): Immediate from the definitions. (v) ⇒ (iv): Follows from Lemma 3.0.6.

It is clear that purely Hamiltonian systems are always unital stabilizable, which in turn are always
unital. Moreover, these inclusions are strict.

Reachability

Similar to stabilizability, reachability properties are also highly dependent on the structure of the relax-
ation algebra V . From Lemma 4.4.1 (vi) we know that the reachable set is contained in the majorization
polytope of the initial state. Hence it is natural to ask when the reachable set is as large as it could be.
Due to the continuity of solutions, it is clear that in the reduced control system not every point in the
majorization polytope can be reached. This however is an artifact of the Weyl symmetry, and one should
really ask which states in the Weyl chamber of the initial state can be reached.

Theorem 4.4.9 (Reachable Set for Unital Systems). Assume that −L ∈ wKL(n) is unital and
consider an initial state λ ∈ ∆n−1

↓ in the ordered Weyl chamber. Then exactly one of the following
is the case:

(i) If −L is purely Hamiltonian, then reachΛ̄(λ) = {λ}.

(ii) If −L is of type (2, 1, . . . , 1) or type (1, . . . , 1) (i.e. unital stabilizable) but not purely Hamil-
tonian, then reachΛ̄(λ) ∩∆n−1

↓ = {µ ∈ ∆n−1
↓ : µ ⪯ λ}.



4.4. SPECIAL STRUCTURE FOR UNITAL SYSTEMS 107

(iii) If −L is of type greater than (2, 1, . . . , 1), then

reachΛ̄(λ) ∩∆n−1
↓

{
= {e/n} if λ = e/n

⊊ {µ ∈ ∆n−1
↓ : µ ⪯ λ} else .

Proof. It is clear that the three cases are mutually exclusive and cover all possible −L. (i): This follows
most easily from Lemma 4.4.8 (v). (ii): Let U be a unitary such that LU is block diagonal with blocks
of sizes (2, 1, 1, . . . , 1) (this includes the (1, 1, . . . , 1) case). Because L is not purely Hamiltonian, we
can choose LU such that it is not diagonal, and thus the off-diagonal elements in the block of size 2
are non-zero. In addition, we have access to all LUP = P⊤LUP where P is any permutation matrix
meaning we have (approximate) access to arbitrary two-level weight shifts (also called “T-transforms”).
By [MOA11, Ch. 2, Thm. B.6] this implies the claim.

(iii): Without loss of generality λ ̸= e/n. By assumption, MU must always have either one block
of size at least 3 or at least two blocks of size at least 2. This means that at least 3 elements of λ will be
acted on byMU . In particular, as in the proof of Theorem 4.4.6, the largest (smallest) of these elements
will have a strictly negative (positive) derivative. Since the edges of the majorization polytope incident
to λ correspond to the mixing of two neighboring elements in λ, no derivative pointing along an edge
can be achieved. Let v be a unit vector pointing along one of the edges. Let α be a linear functional
with α(v) = 0 such that α is strictly positive on any point in the majorization polytope that does not lie
on the edge defined by v. Consider the function fU,α(λ) = −α(LUλ) on a compact neighborhood V
of λ which is disjoint from stabΛ. One can show that f−(λ) = minU fU,α(λ) is continuous on V . By
shrinking V (while keeping λ inside) we can assume that f−(λ) ≥ ε on V for some ε > 0. Let µ(t) be
any solution to (Λ̄) starting at λ, and let T > 0 be such that µ(t) ∈ V for all t ∈ [0, T ]. Then

α(µ(T )) =

∫ T

0
∂tα(µ(t))dt =

∫ T

0
α(∂tµ(t))dt ≥ Tε > 0 .

Thus no point on an edge incident to λ which is not in V can be in reachΛ̄(λ).

This recovers the main result of [SAZ19] where it was shown, using similar arguments, and based
on [RBR18], that a generator −L can effect all state transfers respecting majorization if and only if we
are in case (ii). Moreover, the case of a single Lindblad term Vk which is not a multiple of the identity
(again covered by case (ii)) continues to hold in the infinite dimensional case [End+19].

Note that the results of Theorem 4.4.9 immediately lift to the full control system (D) via Proposi-
tion 4.3.1 and using the fact that ρ ⪯ σ if and only if spec↓(ρ) ⪯ spec↓(σ).

Corollary 4.4.10. For −L unital, the reduced control system is reverse coolable if and only if case (ii)
of Theorem 4.4.9 is satisfied.

Accessibility

In our discussion of accessibility in Section 4.2 we forwent the unital case, which we will treat now.

Proposition 4.4.11. Let −L ∈ wKL(n) unital be given. If n = 2, the reduced control system (Λ) is
generically (cf. footnote 4) directly accessible if and only if −L is not purely Hamiltonian. If n > 2,
then exactly one of the following holds.

(i) The reduced control system (Λ) is generically directly accessible.

(ii) The reduced control system (Λ) is nowhere directly accessible and each J(U) has identical off-
diagonal elements.
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Proof. If n = 2 and −L is not purely Hamiltonian, then by Lemma 4.4.8 there is some U ∈ SU(2)
such that LU is not identically 0. But then LU vanishes at only one point on ∆1, and hence reduced
control system is generically directly accessible.

Now let n > 2. We consider accessibility at the vertices ei of the simplex. If there is some i ∈
{1, . . . , n} and some U ∈ SU(n) such that −LUei is not invariant under all permutations stabilizing ei,
then the system is accessible at ei and hence, using Proposition 2.4.9, it is generically directly accessible.
If no such ei and U exist, then all columns of all J(U) are constant on their off-diagonal elements. It
is easy to see that this implies that all off-diagonal elements of all J(U) are the same. In this case L is
one dimensional, and hence the system is nowhere directly accessible.

As in the non-unital case, if the reduced system (Λ) is generically directly accessible, then by Proposi-
tion 2.4.10, the full bilinear system (D) is generically accessible.

A sufficient condition for being nowhere directly accessible is the following:

Corollary 4.4.12. If the non-Hamiltonian part of −L is unitarily invariant, then L contains a single
vector field, which is necessarily permutation invariant. If, in addition, n > 2, then the system is
nowhere directly accessible.

4.A Relaxation Algebras

In this section we recall some results pertaining to the structure theory of the Lindblad equation based
primarily on [BN08], taking care to present them in their proper mathematical context. Since many of
these results can also be found in other sources, such as [Kra+08, TV09, SW10], often with significantly
differing terminology, we give precise definitions of all concepts used in this chapter. See also [Des+16]
and references therein for related results (obtained in the Heisenberg picture) which extend into the
infinite-dimensional setting. We introduce several matrix algebras generated by the Lindblad terms and
consider their invariant subspace lattices. Once this structure is understood, we can modify the Lindblad
equation to achieve certain dynamical properties.

The celebrated result by Gorini, Kossakowski, Sudarshan [GKS76] and Lindblad [Lin76] establishes
the form of the generators of so-called quantum-dynamical semigroups (i.e. of continuous maps t 7→ Φt
on R+ into the completely positive trace-preserving linear maps, which satisfy Φ0 = 1 and Φt ◦ Φs =
Φt+s for all t, s ≥ 0).

Remark 4.A.1. For our purposes completely positive dynamical semigroups (i.e. quantum-dynamical
semigroups without the trace preservation condition) and their generators turn out to be more conve-
nient. Hence we will formulate many results for these more general objects.

First, generators of completely positive dynamical semigroups can be characterized as follows,
cf. [Lin76, Thm. 3]:

Lemma 4.A.2. A linear map −L ∈ L(Cn,n) is the generator of a completely positive dynamical semi-
group if and only if there is some completely positive14 linear map ϕ =

∑r
k=1 Vk(·)V ∗

k and some
K ∈ Cn,n such that

−L(ρ) = ϕ(ρ)−Kρ− ρK∗. (4.5)

14Recall that a map ϕ is completely positive if and only if it can be written in the form
∑r
k=1 Vk(·)V

∗
k , and any such

operators Vk are called Kraus operators.
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Moreover, t 7→ e−tL is a quantum-dynamical semigroup if and only if −L is also trace-annihilating,
that is, (4.5) holds and there exists H0 ∈ Cn,n Hermitian such that

K = iH0 +
1

2

r∑
k=1

V ∗
k Vk . (4.6)

Note that condition (4.5) is also known as conditional complete positivity of −L [EL77, Thm. 14.7].
Plugging (4.6) into (4.5) recovers the Lindblad equation given in (3.1).

It is important to note that the choice of Hamiltonian H0 and of Lindblad terms Vk is not unique.
The following well-known result characterizes the freedom of representation of a given Kossakowski–
Lindblad generator, cf. [BP02, Eq. (3.72) & (3.73)].

Lemma 4.A.3. Let {K,Vk : k = 1, . . . , r} be a representation of some generator of a dynamical
semigroup of completely positive maps. Given {V ′

k}sk=1, if it holds that

V ′
k =

r∑
j=1

ukjVj for all k = 1, . . . , s (4.7)

for some U := (ukj)
s,r
k,j=1 ∈ Cs,r which satisfies either UU∗ = 1s (if r ≥ s) or U∗U = 1r (if r ≤ s),

then {K,Vk : k = 1, . . . , r} and {K,V ′
k : k = 1, . . . , s} are equivalent. Similarly, if {V ′

k}rk=1 and K ′

satisfy, for some ck ∈ C and λ ∈ R, that

V ′
k = Vk + ck1

K ′ = K +

r∑
k=1

ckVk +
(
iλ+

1

2

r∑
k=1

|ck|2
)
1 ,

(4.8)

then {K,Vk : k = 1, . . . , r} and {K ′, V ′
k : k = 1, . . . , r} are equivalent. Conversely, if two represen-

tations {K,Vk : k = 1, . . . Vr} and {K ′, V ′
k : k = 1, . . . Vs} define the same generator, then they are

related by some sequence of the transformations above.

Proof. For the reader’s convenience we provide a short proof. The first statement follows from (4.5)
together with the characterization of “uniqueness” of Kraus operators [Wat18, Coro. 2.23]. Next, (4.8)
is a straightforward computation. Finally, if {K,Vk : k = 1, . . . Vr} and {K ′, V ′

k : k = 1, . . . Vs}
define the same generator, then shifting Vk → Vk − tr(Vk)

n 1, V ′
k → V ′

k − tr(V ′
k)

n 1 turns K,K ′ into
K1,K

′
1 (according to (4.8)), respectively. Thus we may assume that all Vk, V ′

k are traceless. In this case,
vectorizing [MN07, Ch. 2.4]

∑r
k=1 Vk(·)V ∗

k −K1(·)− (·)K∗
1 =

∑s
k=1 V

′
k(·)(V ′

k)
∗−K ′

1(·)− (·)(K ′
1)

∗

yields
∑r

k=1 Vk ⊗ Vk − 1 ⊗K1 −K1 ⊗ 1 =
∑s

k=1 V
′
k ⊗ V ′

k − 1 ⊗K ′
1 −K ′

1 ⊗ 1 . Using tr(Vk) =

tr(V ′
k) = 0 for all k, taking the partial trace over the first system shows tr(K1 −K ′

1)
1
n = −(K1 −

K ′
1). Taking the trace again yields tr(K1 −K ′

1) ∈ iR, meaning there exists λ ∈ R such that K ′
1 =

K1 + iλ1 (in accordance with (4.8)). This also means that the shifted Vk, V ′
k satisfy

∑r
k=1 Vk(·)V ∗

k =∑s
k=1 V

′
k(·)(V ′

k)
∗ which, again by [Wat18, Coro. 2.23], shows that there exists an isometry U relating

the two sets via (4.7). This concludes the proof.

In particular, this result shows that the Lindblad terms can always be chosen traceless. Indeed, this is
one way to ensure that Kossakowski–Lindblad generators decompose uniquely: if tr(Vj) = 0 for all j,
then there exists a unique H0 ∈ isu(n) such that −L = −i adH0 −

∑r
k=1 ΓVk , cf. [GKS76, Thm. 2.2],

[Dav80].
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Remark 4.A.4. For the Lindblad equation, the transformation of H0 resulting from the shift (4.8) is
given by H ′ = H0 +

i
2

∑r
k=1(c

∗
kVk − ckV

∗
k ) + λ1.

The central objects considered in studying the structure of the Lindblad equation are the following
matrix algebras:

Definition 4.A.5. Let −L ∈ L(Cn,n) be the generator of a completely positive dynamical semigroup
represented by {K,Vk : k = 1, . . . , r}. We define the following unital subalgebras15 of Cn,n:

V = ⟨1, Vk : k = 1, . . . , r⟩alg, V+ = ⟨1,K, Vk : k = 1, . . . , r⟩alg,

called the relaxation algebra and extended relaxation algebra, respectively.

Crucially, as a direct consequence of Lemma 4.A.3, these algebras are well-defined:

Lemma 4.A.6. The algebras V and V+ are well-defined, meaning that they only depend on −L, and
not on the chosen representation.

Proof. Let {K,V ′
k : k = 1, . . . , s} be another representation of L satisfying (4.7) and let Ṽ and Ṽ+

denote the corresponding algebras. Clearly each V ′
k is a complex linear combination of the Vk and hence

contained in V and V+. Trivially it holds that K ∈ V+. This shows that Ṽ ⊆ V and Ṽ+ ⊆ V+. The
reversed inclusions are analogous. Now consider another representation {K ′, V ′

k : k = 1, . . . , s} of L
satisfying (4.8). Each V ′

k is a linear combination of Vk and 1 and K ′ is a linear combination of K, all
Vk, and 1. Hence again Ṽ ⊆ V and Ṽ+ ⊆ V+, and again the reverse inclusion is analogous. Since
by Lemma 4.A.3 any two equivalent representations of L can be transformed into each other using
a composition of these transformation, they must generate the same algebras by the above argument.
Hence the algebras only depend on L, and so they are well defined.

Note, however, that

• the algebras are not sufficient to determine the generator;

• for Lemma 4.A.6 to hold it is necessary to include the identity in the definition of the (extended)
relaxation algebra.

Below we will be interested in invariant subspaces of the matrix algebras defined above, so let us
take a brief moment to recall some basic facts. A subspace S ⊆ Cn is invariant for a set of matrices
A if AS ⊆ S for all A ∈ A. If PS is a projection onto S, then S is invariant for A if and only if
(1 − PS)APS = 0 for all A ∈ A. Moreover, the set of all invariant subspaces of A forms a lattice,
meaning that if S and T are invariant, then so are S ∩T and S+T . Since the invariant subspaces of A
and ⟨A⟩alg coincide, we will work with the (well-defined) algebras V and V+. For some mathematical
background we refer to [RR00, Far01] for matrix algebras, to [GLR06] for invariant subspaces, and
to [Bir67] for lattice theory.

The following lemma, which is an immediate consequence of (4.5), is quite useful in relating the
algebras defined above to the structure of dynamical semigroups.

Lemma 4.A.7. Let −L ∈ L(Cn,n) be the generator of a completely positive dynamical semigroup
represented by {K,Vk : k = 1, . . . r}. Let O,P,Q,R ∈ Cn,n be orthogonal projections. Then for all
A ∈ Cn,n it holds that

O L(PAR) Q =

r∑
k=1

(OVkP )A(QVkR)
∗ − (OKP )A(RQ)− (OP )A(QKR)∗.

15A unital matrix algebra is one which contains the identity matrix. Since all our matrix algebras will be unital, we will
omit this term in the following to avoid confusion.
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Lemma 4.A.8. Let −L ∈ L(Cn,n) be the generator of a completely positive dynamical semigroup
represented by {K,Vk : k = 1, . . . , r}. Given any U ∈ U(n) and any subspace {0} ≠ S ⊆ Cn, where
PS denotes the orthogonal projection onto S, the following are equivalent:

(i) S is a common invariant subspace of all Vk.

(ii) S is an invariant subspace of V .

(iii) P⊥
S L(PSAPS)P

⊥
S = 0 for all A ∈ Cn,n.

(iv) P⊥
S L(ρ)P

⊥
S = 0 for some state ρ with supp(ρ) = S.

(v) If the first dimS columns of U∗ span S, then −LU is block triangular, i.e. for all 1 ≤ j ≤
dimS < i ≤ n one has (−LU )ij = 0.

If one and thus all of these conditions hold, we say that S is a lazy subspace of −L.

Proof. (i) ⇔ (ii): Note that by Lemma 4.A.6 the invariant subspaces of the Vk are well-defined and
exactly the invariant subspaces of V . (i) ⇒ (iii): By Lemma 4.A.7,

P⊥
S L(PSAPS)P

⊥
S =

r∑
k=1

(P⊥
S VkPS)A(P

⊥
S VkPS)

∗.

(iii) ⇒ (iv): Trivial. (iv) ⇒ (i): By 0 = P⊥
S L(PSρPS)P

⊥
S =

∑r
k=1(P

⊥
S VkPS

√
ρ)(P⊥

S VkPS
√
ρ)∗, we

have P⊥
S VkPS

√
ρ = 0 for all k. Since supp(ρ) = supp(

√
ρ) = S, this forces P⊥

S VkPS = 0 for all k.
(i) ⇔ (v): This is due to (−LU )ij =

∑r
k=1 |⟨i|U∗VkU |j⟩|2 as follows from (3.4).

Intuitively, a lazy subspace is one which is invariant under −L to first order, hence the name. Im-
portantly, they do not depend on K (or H0), and thus they are independent of the control. A stronger
notion of invariance is the following (cf. [BN08, SL05]), which is an immediate consequence of [BN08,
Lem. 11]:

Lemma 4.A.9. Let −L ∈ L(Cn,n) be the generator of a completely positive dynamical semigroup
represented by {K,Vk : k = 1, . . . , r}. Given any subspace {0} ≠ S ⊆ Cn, where PS denotes the
orthogonal projection onto S, the following are equivalent:

(i) PS pos1(n)PS is invariant under e−tL for all t ≥ 0, that is, for all ρ ∈ pos1(n) it holds that
PSe

−tL(PSρPS)PS = e−tL(PSρPS).

(ii) PSL(PSρPS)PS = L(PSρPS).

(iii) S is an invariant subspace for V+.

If one and thus all of these conditions hold, we say that S is a collecting subspace.

Collecting subspaces are closely related to fixed points, see [BN08, Prop. 5 & Lem. 12].

Lemma 4.A.10. The following hold:

(i) If ρ ∈ pos1(n) is a fixed point, then supp(ρ) is collecting.

(ii) If S ⊆ Cn is collecting, then there is a fixed point ρ with supp(ρ) ⊆ S.
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Lemmas 4.A.8 and 4.A.9, together with the preceding discussion, show that the lazy subspaces form
a lattice of invariant subspaces, and that the collecting subspaces form a sublattice thereof.16 A simple
but important consequence is that lazy subspaces are exactly those which can be made collecting using
a time-independent Hamiltonian:

Corollary 4.A.11. Let −L ∈ wKL(n) be a Kossakowski–Lindblad generator. If S ⊆ Cn is a lazy
subspace, then there exists a Hamiltonian HS such that S is collecting for −L − i adHS . Indeed, any
Hamiltonian satisfying

P⊥
S HSPS = −P⊥

S

(
H0 +

1
2i

r∑
k=1

V ∗
k Vk

)
PS

will do the job. We call HS a stabilizing Hamiltonian for S.

It is clear that suchHS always exists since, in an appropriate basis, the condition only determines matrix
elements below the diagonal.

As a consequence of Corollary 4.A.11 and [BN08, Thm. 13] we have the following relation between
minimal collecting subspaces and extremal fixed points.

Lemma 4.A.12. Let −L ∈ wKL(n) be a Kossakowski–Lindblad generator and let S ⊆ H be a sub-
space. The following are equivalent:

(i) S is a minimal 17 collecting subspace of S.

(ii) There is an extremal 18 fixed point with support equal to S.

(iii) −L has a unique fixed point on S, and it has full rank (on S).

This result recovers [Kra+08, Thm. 2] and [SW10, Prop. 2].
We say that a subspace S is decaying if tr(PSe−Ltρ) → 0 as t→ ∞ for all states ρ ∈ pos1(n). The

orthocomplement of a decaying subspace is called an asymptotic subspace. Note that the property of
being decaying is preserved under taking sums19 and subspaces. Hence there exists a unique maximal
decaying subspace, and the decaying subspaces are exactly all of its subspaces. Its complement is
then the unique minimal asymptotic subspace. Note that this coincides with the so-called “four-corners
decomposition” introduced in [Alb+16].

Lemma 4.A.13. Let S ⊆ Cn be a subspace. The following are equivalent:

(i) S is the minimal asymptotic subspace.

(ii) S is the smallest subspace containing the support of all fixed points ρ ∈ kerL.

(iii) S is the span of all minimal invariant subspaces.

Proof. The equivalence of (ii) and (iii) follows from Lemma 4.A.12. It is easy to see that the support
of a fixed point is contained in the minimal asymptotic subspace. The converse is shown in [BN08,
Prop. 15]. This proves the result.

16To be precise, we only obtain lattices after including the trivial subspace {0} which we excluded from both definitions.
17A minimal collecting subspace is one which does not contain a smaller collecting subspace. It is an atom in the lattice

of collecting subspaces.
18An extremal fixed point is one which is not a non-trivial convex combination of two distinct fixed points, that is, it is an

extreme point of the convex set of fixed points.
19This follows from the fact that if tr(PSρ) = 0 and tr(PT ρ) = 0, then supp(ρ) ⊆ S⊥ ∩ T⊥ = (S + T )⊥ and hence

tr(PS+T ρ) = 0.
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An algebra of complex matrices which is closed under taking the adjoint is called a ∗-algebra. If A
is a ∗-algebra, then S is invariant under A if and only if PSA = APS for all A ∈ A, where PS is the
orthogonal projection onto S.

Definition 4.A.14. We define the relaxation ∗-algebra V∗ and the extended relaxation ∗-algebra V+
∗ as

V∗ = ⟨1, Vk, V ∗
k : k = 1, . . . , r⟩alg , V+

∗ = ⟨1, H, Vk, V ∗
k : k = 1, . . . , r⟩alg .

Clearly, V∗ and V+
∗ are the ∗-algebras generated by V and V+ respectively, and hence they are well-

defined.

Lemma 4.A.15. The following are equivalent:

(i) There is no decay, i.e. Cn is the minimal asymptotic subspace.

(ii) The lattice of collecting subspaces is orthocomplemented (cf. footnote 12) and so V+ is a ∗-
algebra.

Proof. The proof of [BN08, Prop. 14] shows that if there is no decay, the lattice of collecting subspaces
is orthocomplemented. Thus, by [GLR06, Thm. 11.5.1] V+ is a ∗-algebra. Conversely, if the lattice of
collecting subspaces is orthocomplemented, it is atomistic20, and hence by Lemma 4.A.13 there is no
decay.

Lemma 4.A.16. Let S ⊆ Cn be a subset, and PS the orthogonal projection onto S. Then the following
are equivalent:

(i) Both S and S⊥ are collecting.

(ii) S is an invariant subspace of V+
∗ .

(iii) [PS , Vk] = [PS , H] = 0 for k = 1, . . . , r.

We call such subspaces enclosing or simply enclosures.

Proof. (i) ⇔ (ii): This is clear since V+
∗ is the ∗-algebra generated by V+. (ii) ⇔ (iii): Elementary.

The existence of enclosures implies the existence of conserved quantities and (dynamical) symmetries
of the Kossakowski–Lindblad generator, but they are not necessary [BN08, AJ14].

Lemma 4.A.17. Assume that A ∈ Cn,n is not a scalar multiple of the identity. Then there exists a
Hermitian matrixB ∈ Cn,n such that they generate the entire matrix algebra, that is, ⟨A,B⟩alg = Cn,n.

Proof. Let B ∈ Rn,n be any diagonal matrix with distinct non-zero diagonal elements. If we can find
U ∈ U(n) unitary such that (U∗AU)jk ̸= 0 for all j ̸= k, then [Laf92, Lem. 2] implies that the algebra
generated by {U∗AU,B} is all of Cn,n; in particular ⟨A,UBU∗⟩alg = Cn,n which would conclude
the proof. Consider the function U 7→ (U∗AU)ij defined on the unitary group and let Zij denote the
corresponding zero set. Since the unitary group is a real analytic manifold and since the function is real
analytic, Zij is either all of U(n) or it has open dense complement in U(n), cf. [KP02, Thm. 6.3.3].
If A is not a multiple of the identity, none of the Zij equal U(n). Hence the union of all Zij has open
dense complement, and hence there is U such that (U∗AU)jk ̸= 0 for all j ̸= k, as desired.

20A lattice with least element 0 is atomistic if every element is a least upper bound of a set of atoms, which are the minimal
non-zero elements.
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Corollary 4.A.18. Let A,C ∈ Cn,n such that A is not a multiple of the identity. Then there exists
B ∈ Cn,n Hermitian such that ⟨A,B + C⟩alg = Cn,n.

Proof. LetB,U be as in the proof of Lemma 4.A.17. By [Kat80, Ch. 2 §1], for all ε > 0 small enough,
there exist analytic curves S(ε) and B(ε) such that B + εU∗CU = S(ε)B(ε)S(ε)−1, with S(0) = 1

and B(ε) diagonal with distinct non-zero diagonal elements. Then

⟨A, UBU∗

ε + C⟩alg = U⟨U∗AU, S(ε)B(ε)S(ε)−1⟩algU∗ = US(ε) ⟨S(ε)−1AS(ε), B(ε)⟩alg S(ε)−1U∗.

Since for ε small enough it still holds that (S(ε)−1U∗AUS(ε))jk ̸= 0 for all j ̸= k, the result follows
again from [Laf92, Lem. 2].

Using Corollary 4.A.18 together with [TV09, Thm. 12] we obtain a useful extension of Corol-
lary 4.A.11.

Lemma 4.A.19. Let S ⊆ Cn be a lazy subspace for −L. Then there exists a Hamiltonian H such that
−(i adH +L) has a unique (attractive) fixed point with support S if and only if S is not an enclosure.

Proof. In [TV09, Thm. 12] it is shown how to choose H such that S is attractive. We are still free to
choose H on S itself. So using Corollary 4.A.18 we can make sure that S is minimal collecting and
hence by Lemma 4.A.12 it supports a unique fixed point.

4.B Toy Model

In [DES19] the authors introduced a toy model for studying control systems with switchable21 Marko-
vian noise and unitary control. In this toy model, the states remain at all times diagonal in the energy
eigenbasis and the controls are restricted to level permutations. These stipulations suggest the following
hybrid (or impulsive) scenario to define the toy model on ∆n−1 ⊂ Rn by

ẋ(t) = −Bx(t) , x(tk) = πkxk , t ∈ [tk, tk+1) ,

x0 ∈ ∆n−1 , xk+1 = e−(tk+1−tk)Bx(tk) , k ≥ 0 ,
(T′)

where −B is a stochastic generator matrix.22 Furthermore, 0 = t0 ≤ t1 ≤ t2 ≤ . . . is an arbitrary
switching sequence and πk ∈ Sn are arbitrary permutation matrices. Both the switching points and the
permutation matrices are regarded as controls for (T′). For simplicity, we assume that the switching
points do not accumulate on finite intervals. For more details on hybrid (or impulsive) control systems
see, e.g., [LBS89, LMS93, AHS96].

In this section we specify control problems (T′) “compatible with quantum thermodynamics”. Given
a Hamiltonian H0 ∈ iu(n), by unitary controllability it may be chosen diagonal with increasing eigen-
values Ek without loss of generality. The corresponding equilibrium state resulting from coupling to a
bath of temperature T is the Gibbs vector

d =
(e−Ek/T )nk=1∑n
k=1 e

−Ek/T
∈ ∆n−1 (4.9)

21This is motivated by recent experimental progress [Hof+09, Yin+13, Che+14, Won+19].
22Meaning that {e−Bt}t≥0 is a one-parameter semigroup of stochastic matrices. Such matrices define continuous time

Markov chains, and are also called transition rate matrices or intensity matrices [Nor97].
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with ρGibbs = diag(d) ∈ pos1(n). As shown in [DES19], diag(d) can then be obtained as the unique
fixed point of the Lindblad equation when choosing two Lindblad terms as

V1 = σd+ :=
n−1∑
k=1

√
k(n− k) cos(θk) |k⟩⟨k + 1| (4.10)

V2 = σd− :=

n−1∑
k=1

√
k(n− k) sin(θk) |k + 1⟩⟨k| , (4.11)

where
θk := arccos

((
1 +

dk+1

dk

)− 1
2

)
∈ (0, π4 ]. (4.12)

Confining ourselves to σd+ and σd− with their non-zero entries on the first off-diagonals is in accor-
dance with the common dipolar selection rules allowing for “one-quantum transitions” (as governed by
Wigner’s 3j-symbol) [Zar88, p. 185 ff.].

In [DES19] it was shown that in the T = 0 case it holds that reachT′(x) = ∆n−1 and that for
equidistant energies the majorization polytopeMe(d) is invariant. A generalization of this result can be
found in [3] and it is based on the concept of d-majorization, which has been explored in [10, ED22],
see also Appendix A.

Analytic Results for Qutrits

In this section we will explicitly determine the shape of the reachable set and of the set of stabilizable
states for the three-dimensional case d ∈ R3, d > 0. For this we first introduce some general notions.

It pays off to approach the toy model (T′) from a different, but equivalent,23 perspective: instead of
letting the permutations act on the states, leading to discontinuous paths, we let the permutations act on
the drift vector field, leading to the following differential inclusion, where, in analogy to reachT′(x), we
write derv(x) for the set of achievable derivatives at x:

ẋ(t) ∈ conv(derv(x(t))), derv(x) := {−πBπ−1x : π ∈ Sn}, (T)

cf. [Smi02].24 Many ideas work for any matrix −B which generates a one-parameter semigroup of
stochastic matrices and has unique fixed point d, but for some results we will restrict to the following:

(A) −B is of the form resulting from Eqs. (4.10) & (4.11) and the corresponding Hamiltonian has
equidistant energies.

Assumption (A) ensures that we obtain sensible formulas, and it is physically motivated, see [3, Re-
mark 5].

Stabilizable States

As before, the set of stabilizable states stabT is defined to be all x ∈ ∆n−1 such that 0 ∈ conv(derv(x)).
Intuitively, these are the points in ∆n−1 that, when taken as starting point, one can remain arbitrarily
close to. More precisely we have the following result:

23The systems are equivalent in the sense that every solution of one system has a corresponding solution in the other system
differing only by some (time-dependent) permutation. Note however that we allow more general controls in the differential
inclusion, so that this equivalence is only approximate in general.

24In particular Thm. 2.3 therein shows the equivalence of control systems and the corresponding differential inclusions.
Note that taking the convex hull leads to a relaxation of the differential inclusion, which is still approximately equivalent to
the original control system, see [AC84, Ch. 2.4, Thm. 2].
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Lemma 4.B.1. A state x0 ∈ ∆n−1 is stabilizable if and only if for every ε > 0 and τ > 0 there is a
solution x : [0, τ ] → ∆n−1 to (T) with x(0) = x0 which remains inside of the ε-ball Bε(x0) ∩∆n−1.

Proof. If x0 is stabilizable, then the constant path x ≡ x0 is a solution to (T). Conversely, assume that
x0 is not stabilizable. Then, by continuity, there is some δ > 0 and some linear functional β on Rn such
that β is less than −δ on derv(y) for all y in some neighborhood of x0. Hence there is some time τ > 0
where any solution must leave Bε(x0) for some ε small enough.

If 0 is not contained in the convex hull of the achievable derivatives at x, then there must exist
some linear functional α on Rn which is negative on derv(x). Note that while α lives on Rn, only
the part parallel to the simplex ∆n−1 matters. Based on this observation, the idea is to consider the
“permuted” functionals απ(x) := −α(πBπ−1x) because, given any x ∈ ∆n−1, if there exists α such
that απ(x) < 0 for all π ∈ Sn, then x cannot be stabilisable. Conversely, if x is not stabilisable, then
there exists some α for which απ(x) < 0 for all π ∈ Sn. Obviously, d as well as all permutations of d
are stabilizable.
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Figure 4.1: Illustration of how to construct the boundary curves of the set of stabilisable points in the
case of a = 0.3. Left: The shaded regions comprise the points where the functionals απ are negative;
highlighted is the intersection of all the negative regions with the simplex. The points in this region
are certainly not stabilizable. In particular the intersection point of ker(αid) and ker(ατ23) is marked in
red. Right: For three different values of α, parts of ker(αid) and ker(ατ23) and their intersections are
shown. Taken together, these intersections form the curve given in red, which constitutes a part of the
boundary of the set of stabilizable points.

Let us now focus on the three-dimensional case. We will compute a closed curve connecting all these
points, which will turn out to be the boundary of the set of stabilizable states: everything (on or) inside
the curve will be stabilizable and everything outside will be non-stabilizable, refer to Figure 4.2 below for
two examples. Let us, e.g., focus on the part of the boundary curve between d and τ23 d, where τ23 is the
transposition acting on the second and third element. Note that d and τ23 d are located in neighbouring
Weyl chambers since the elements in d are always increasing or decreasing. The idea for determining its
shape is: for every functional α (in a certain range) one can compute a point ker(αid)∩ ker(ατ23)∩∆2

with the property that all points in the simplex “above” it cannot be stabilizable as shown in Figure 4.1.
Moreover, due to Assumption (A), the curve will always be part of a conic section. To motivate this
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approach, note that any point x with απ(x) < 0 for some α and for all π ∈ Sn in contained in an open
neighborhood of non-stabilizable points and hence cannot lie on the boundary. Thus we are looking for
points lying in the kernel of at least one of the απ(x). Moreover, we really need to find points lying in
the intersection of two such kernels, since otherwise a small perturbation applied to α shows that the
point has a non-stabilizable neighborhood.

Let us now invoke Assumption (A) so, without loss of generality, H0 := diag(−1, 0, 1) · ∆E for
some ∆E ∈ R, and thus d = (1, a, a2)/(1 + a + a2) with a = e−∆E/T . The generators of our
dissipative dynamics (4.10) & (4.11) are fully characterized by the (constant) angle θ = arccos( 1√

1+a
)

in (4.12). With this, the generator of the toy model takes the form (cf. also [DES19])

−B =
2

1 + a

−a 1 0
a −1− a 1
0 a −1

 .

Let us go through the construction of the curve for the special (parabolic) case25 where a = 1
4 . It will

turn out that the boundary curve between d and τ23d is fully determined by the family of functionals26

αλ, λ ∈ [−1
7 ,

1
7 ] where

αλ := −(12 + λ)
(
0 0 1

)
− (12 − λ)

(
0 1 0

)
, (4.13)

so αλ(x) = λ(x2 − x3)− 1
2(x2 + x3) for all x ∈ R3. In order to compute ker(αλid) ∩ ker(αλτ23) ∩∆2

we find that αλid = αλ ◦ (−B) (up to a global factor, which we may omit because we have to normalise
later on anyway) equals

−(12 + λ)
(
0 1

2 −2
)
− (12 − λ)

(
1
2 −5

2 2
)
=
(
λ
2 − 1

4 1− 3λ 4λ
)
.

Also αλτ23 = α−λ
id ◦ τ23 is generated by

(
−λ

2 − 1
4 −4λ 3λ+ 1

)
. With this we compute ker(αλid) ∩

ker(αλτ23) to be spanned by “the” vector which is orthogonal to the normal vector of both αλid and αλτ23 ,
that is,  λ

2 − 1
4

1− 3λ
4λ

×

−λ
2 − 1

4
−4λ
3λ+ 1

 =

 1 + 7λ2

−7
2λ

2 − 3
4λ+ 1

4
−7

2λ
2 + 3

4λ+ 1
4


Intersecting the line generated by this vector with the standard simplex only introduces a normalising
factor since we have: ker(αλid)∩ ker(αλτ23)∩∆2 = 1

6(4 + 28λ2,−14λ2 − 3λ+ 1,−14λ2 + 3λ+ 1)⊤.
Finally, we reduce the dimensionality of the problem by isometrically embedding27 the simplex ∆2 in
R2; this leads to the (parabolic) boundary curve ( λ√

2
, 1+14λ2√

6
) where λ ∈ [−1

7 ,
1
7 ].

If a ̸= 1
4 we modify the family of functionals αλ introduced previously by multiplying λ in (4.13)

by 1
2

√
1 + 2a|(3 + 2a)(1 − 4a)|−1/2; however, the idea and the calculations are analogous. In the

hyperbolic28 case a > 1
4 the boundary curve can be parametrized via(

w
−2λ

λ2 − 1
, u
λ2 + 1

λ2 − 1
+ v

)
25This is the case where the energy gap |∆E| = ln(4)kBT , where we explicitly write the Boltzmann constant kB .
26Since we only care about the component of the functional parallel to the simplex and since the normalisation does not

matter, it suffices to consider a one-parameter family of functionals. The exact parametrisation and parameter range are chosen
for ease of computation.

27This is done using the partial isometry P =

(
0 −1√

2

1√
2√

2
3

−1√
6

−1√
6

)
.

28The unital scenario a = 1 is a special case because then d = e
3
, so the set of stabilizable points collapses to { e

3
}.
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where

v − u =

√
2

3

1− a

1 + 2a
, u+ v =

√
2

3

1− a

1− 4a
, w =

√
2(1− a)a√

|(1 + 2a)(3 + 2a)(1− 4a)|
.

For the elliptic case a ∈ (0, 14) one finds(
w

2λ

λ2 + 1
, u
λ2 − 1

λ2 + 1
+ v
)
.

This covers the segment of the curve which connects d and τ23d. For the rest of the boundary curve note
that, due to the permutation symmetry, there are only two different curve segments, cf. Figure 4.2. We
have just computed one of them. The other one is obtained by re-arranging the elements of d in reverse
order and repeating the calculation. One obtains the same formulas with a replaced by a−1.
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Figure 4.2: Left: The set of stabilisable states for the equidistant energy case with a = 1
5 . The set

is bounded by six conics and contains the permutations of d. This is the elliptic case, and part of the
ellipse is drawn in red, together with its permuted copies. The blue curve is obtained analogously by
taking the hyperbolic case a = 5 whose fixed point we denote d′. Right: The same approach gives the
boundary of the set of stabilisable states for a random generatorB numerically. Note that in general the
bounding curves need not be conic sections, and one may obtain a convex shape.

We have seen that for each α we obtain an open (convex) region which is certainly not stabilizable.
Parametrizing α in a circular fashion, i.e. α ∈ S2 ∩ {e}⊥ in accordance with footnote 26, shows that
this region moves continuously around the simplex, and its closure always touches our closed curve in
such a way that each point outside of the curve is part of this region at some point, implying that all
these points outside are non-stabilizable.

It remains to be shown that every point on the boundary or enclosed within the boundary curve
we just computed can in fact be stabilized. We will only give a hand-wavy explanation; again, each α
yields a convex region which is not stabilizable, and which touches our curve in some point. Two cases
may occur: Either one of the halfplanes on which some απ is negative lies outside of the majorization
polytope of d, in which case no point inside our curve is in this halfplane. Otherwise, we are in the case
illustrated in Figure 4.1. Here the convex region of non-stabilisable points given by α, when intersected
with the majorisation polytope of d, is a triangle with vertices given by two permutations of d and some
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point on our curve. Since the curve is always concave, again no point enclosed by the curve lies in the
triangle of non-stabilisable points. The case for arbitrary admissible generators B in the qutrit case is
analogous, but the large number of parameters makes the formulas unwieldy. In higher dimensions, the
idea of using the functionals απ to determine non-stabilisable points still applies, but it is unclear how
to analytically compute the resulting shapes of the stabilisable set.

Reachable States

Let us now turn towards the set of reachable states (or, more precisely, its closure) for some given initial
state and any stochastic generator matrix −B with unique fixed point d ∈ ∆n−1, d > 0. Let us use the
notation y ⇝x to denote that y ∈ reachT(x). Then ⇝is a preorder and so it induces an equivalence
relation ∼ on which it becomes a partial order. In other words, x ∼ y if and only if x ∈ reachT(y) and
y ∈ reachT(x) meaning there exists an approximately periodic solution through x and y. Note that up
to a viability condition, the equivalence classes [x] of this equivalence relation correspond to control
sets as defined in [CK00, Def. 3.1.2], and the induced partial order corresponds to the reachability
order [CK00, Def. 3.1.7].

First we observe that the maximally mixed state can always be reached:

Lemma 4.B.2. For all x ∈ ∆n−1, the vectors d and 1
ne are in reachT(x).

Proof. Since d is the unique fixed point of e−tB for t > 0, and since it is attractive,29 d ⇝x for all
x ∈ ∆n−1. Similarly, consider B̂ = 1

n!

∑
π∈Sn πBπ

−1. Then B̂ is invariant under permutations, which
implies that B̂e = 0. Moreover 1

ne is the unique fixed point in ∆n−1 since otherwise, by permutation
symmetry there would be an open set of fixed points in ∆n−1, and hence B̂ ≡ 0. This would imply that
B ≡ 0 as one can check by considering the value of B̂ at the vertices of ∆n−1. As before, the fixed
point 1

ne of B̂ is attractive.

This lemma shows d ∼ 1
ne, and that the equivalence class [d] = [ 1ne] is an invariant control set as

defined in [CK00, Def. 3.1.3].
Let us now, again, restrict to the three-dimensional case. It turns out that this equivalence class is

the only one that contains more than a single point: the idea is that equivalence classes with at least two
points lead to (approximately) periodic solutions which must enclose a stabilisable point. Since the set
of non-stabilsable points is simply connected, when restricting to a Weyl chamber the periodic solution
intersects the set of stabilisable states, which are all equivalent to 1

3e. We start with an abstract result
about differential inclusions.

Lemma 4.B.3. Let x : S1 → ∆2 be a smooth, periodic, injective solution of the differential inclu-
sion (T) with non-vanishing derivative. Then the region enclosed by x contains a stabilisable point.

Proof. This is a direct generalisation of [AC84, Ch. 5.2, Thm. 1] which states that if an upper semi-
continuous differential inclusion with non-empty, closed, convex values is defined on a compact convex
set and satisfies a viability condition, then it has a stabilisable point. By the Schoenfliess Theorem,
see [Moi77, Ch. 9, Thm. 6], the interior region of x(S1) is homeomorphic to an open disk, and hence
by the Riemann Mapping Theorem, there is even a biholomorphism. Now note that since x is an injec-
tive immersion and S1 is compact, it is an embedding, and hence the image is a smooth curve. Thus,
by [Bel90, Thm. 3.1], the Riemann mapping extends to a diffeomorphism of the closure of the interior

29This follows from a basic result on continuous-time Markov chains. Here−B is the transition rate matrix. It is irreducible
(in the sense of [Nor97, p. 111]) since d > 0 is the unique fixed point. Then [Nor97, Thm. 3.6.2] shows that the corresponding
Markov chain is ergodic, i.e. the unique fixed point is attractive.
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region to the closed disk. Finally we can pull back the differential inclusion to the disk and apply the
aforementioned theorem to find a stabilisable point.

The idea of the result we want to prove is that if two points are equivalent but distinct, then they must
be equivalent to some stabilizable point. To prove this in general we need the following approximation
result.

Lemma 4.B.4. Let x ̸= y and y ⇝x, and assume that y is not stabilizable. Let a solution ỹ starting
at y be given. Then for every ε > 0 small enough we can modify the differential inclusion in the region
Bε(y) without creating new stabilizable points and such that there is a smooth solution x̃ starting at x
and ending at y such that the concatenation of x̃ and ỹ is smooth.

Sketch of proof. Using translations and rotations we may assume that y = (0, 0) and the cone generated
by derv(y) is contained in the upper halfplane and symmetric about the vertical axis. By continuity
and assuming that δ is small enough, there are inner and outer approximations of this cone in Bδ(y)
which are both pointed. We may assume (e.g., by extending x backwards) that x′(0) lies in the inner
approximating cone. We will only modify the differential inclusion within the lower half of this disk.
Now assume that for some small enough 0 < ε ≪ 1 we have a smooth solution x̃ starting at x that
ends ε-close to y. Then by slightly enlarging the outer cone we may assume that x̃ enters the unit disk
within the negative of the outer cone. One can see that it is possible to modify the differential inclusion
inside BR \Br for some 0 < r < R < 1 such that there is a smooth solution entering Br inside of the
inner approximating cone, while making sure that the cone always lies in the upper halfplane, so that
no stabilisable points are created.

Proposition 4.B.5. If x ̸= y and x ∼ y, then x ∼ 1
3e ∼ d.

Proof. If x or y is stabilisable, then by Cor. 4.B.10 it is equivalent to d and we are done. Hence we
assume that neither x nor y is stabilisable. Let ε > 0 small enough be given. Since x ∼ y, we may apply
Lemma 4.B.4 twice to obtain a smooth, periodic solution passing through x and y for a slightly modified
differential inclusion, which does not introduce new stabilisable points. Without loss of generality
we may assume that this solution is injective and has non-vanishing derivative. By Lemma 4.B.3 it
encloses a stabilisable point. However, if we work in a Weyl chamber, the non-stabilisable set is simply-
connected, and so the periodic solution intersects the stabilisable region in some point s. Hence there
is a point ε-close to x which is reachable from s (and by Cor. 4.B.10 also from 1

3e). Letting ε go to 0
this shows that x ⇝13e.

For any non-stabilizable state x, it holds that the convex cone generated by derv(x) is pointed (i.e. its
edge is a point). Hence there are two extremal derivatives at the boundary of the cone, which we will call
the left and right extremal derivatives, as seen from x. The resulting extremal vector fields are depicted
in Figure 4.3. More precisely we have the following result.

Lemma 4.B.6. On the set ∆2 \ int(stabT) there exist left and right extremal vector fields. The norm of
these vector fields might not be continuous, but the direction field is locally Lipschitz continuous, except
possibly at d (and its permutations).

Proof. As already mentioned, for any non-stabilisable point x, the convex cone generated by derv(x)
is pointed. On the other hand, if for some x the convex cone is the plane, then x is in the interior of the
stabilisable set. Hence on the boundary of the stabilisable set, the convex cone is either pointed or a half
space. Either way there is a well defined left and right extremal derivative, and so the corresponding
vector fields are well-defined. Locally, for x ̸= πd the direction field can be seen as a maximum of
finitely many smooth functions, and hence it is locally Lipschitz continuous.
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Figure 4.3: Left: The left extremal vector field in the case a = 0.3 depicted in the indicated Weyl
chamber. The vector field is undefined on the stabilizable set, and hence this yields another way to
compute the set of stabilizable points. We plotted again the bounding conics of the stabilizable set
and the trajectories bounding the reachable set reachT(d). In this case, the boundary trajectories are
obtained by starting at d and permutingB such that one of the neighbours of d is the unique fixed point.
The background colors show the norm of the left extremal vector field, and its discontinuities are clearly
visible. Right: A zoomed-in picture of the “D”-shaped region considered in the proof of Lemma 4.B.8
again with parameter a = 0.3.

The discontinuities in the norm are important, as they tell us when the control permutation has to
be applied. The shapes of these discontinuities are non-trivial, and we show an example in Figure 4.3.

Now the boundary of the reachable set can be computed using solutions following the left and right
extremal derivatives. By the previous lemma these solutions exist and are unique. See again Figure 4.3
as well as Figure 4.4. Note that the extremal vector fields never vanish where they are defined, and since
they are defined on a contractible domain (if restricted to a Weyl chamber) there are no periodic solu-
tions. This relies on the fact that the state space is two dimensional, see for instance [Str15, Thm. 6.8.2].
Moreover, given a left (right) extremal solution, another solution can only cross it from left to right
(right to left); this can be shown as in the proof of [Smi02, Thm. 5.6].

Before we can prove this section’s main result, we need the following topological result about reach-
able sets:

Lemma 4.B.7. Let any x ∈ ∆2 be given. Then reachT(x) is contractible.

Proof. Consider the map F : reachT(x)× [0, 1] → reachT(x) defined by

F (y, t) =

{
e−B̂f(t)y if t < 1
1
3e else,

where B̂ is defined as in the proof of Lemma 4.B.2 and f : [0, 1) → [0,∞) is any homeomorphism. It
follows from the same lemma that F is continuous, and hence a (strong) deformation retraction.
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Figure 4.4: The boundary of the reachable set reachT(d) in the case a = 0.5 is shown with solid lines,
and the boundary of the stabilizable set stabT is shown using dotted lines. Note the curve segments of
the boundary of the reachable set are not straight, though the curvatures are hardly visible.

Lemma 4.B.8. Invoke Assumption (A) and further assume that d ∈ ∆2
↓ where ∆2

↓ denotes the ordered
Weyl chamber of the simplex. The left extremal solution starting from d lies in the complement of the
interior of the stabilizable region and terminates in the boundary of the Weyl chamber in finite time,
without leaving the (classical) majorization polytope of d. The analogous result holds for the right
extremal solution.

Proof. From [3, Coro. 5] we know that the left extremal solution remains in the majorisation polytope
of d. Let us sketch why this solution cannot enter the set of stabilisable points in ∆2

↓. Consider the
connected region containing d and τ23d which is bounded by the majorisation polytope and the set
of stabilisable points, and is shaped like a “D” lying on its belly, so let’s call it D, see right panel of
Figure 4.3.

First note that since there are no fixed points in D, every solution reaches the boundary of D in
finite time, and by the above it reaches the curved part of the boundary of D. Now consider the straight
part of the boundary, between d and τ23d. The solutions starting from points close to τ23d will reach
the curved boundary of D on the right side. Hence by continuity all points on the straight part of
the boundary have solutions ending up on a connected part of the curved boundary. However, as we
have seen before, on the boundary of the set of stabilisable points, the cone generated by the achievable
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derivatives is a half plane, and hence the left and right extremal vector fields point in opposite directions.
Therefore in general only one kind of solution can terminate in each point. By symmetry and the above
connectedness, all left extremal solutions must terminate on the right side of D, and analogously for
the right extremal solution. As noted above, no solution can leave the region delimited by the extremal
solutions.

Theorem 4.B.9 (Reachable Set Qutrit). The left and right extremal solutions starting at d sepa-
rate the Weyl chamber into two parts, and the inner part containing 1

3e equals the intersection of
reachT(d) = [d] with ∆2

↓.

Proof. Taking the extremal solutions in the ordered Weyl chamber and all of the permuted copies yields
a closed curve surrounding and contained in reachT(d), i.e. they form the “outer boundary” of the
reachable set. By Lemma 4.B.7 reachT(d) is contractible, hence it is equal to the region enclosed by
this curve.

Corollary 4.B.10. For every x ∈ stabT it holds that x ∼ d.

Proof. By Lemma 4.B.2 it holds that d ⇝x. Theorem 4.B.9 shows that reachT(d) is the set enclosed by
the left and right extremal solutions (and their permuted copies) starting at d and ending in the boundary
of the Weyl chamber. Moreover Lemma 4.B.8 shows that this set contains stabT and hence x ⇝d.

For starting points other than d, a similar result holds.

Corollary 4.B.11. For any point x outside of [d], we can compute the boundary of reachT(x) in ∆2
↓ by

following the left and right extremal solutions until we hit either the boundary of the Weyl chamber or
[d]. Moreover, the left extremal solution can only terminate in the right boundary of the Weyl chamber
or in the left boundary of [d] and vice-versa.

Proof. Since d > 0, no solution tends to the boundary of the simplex. Hence the left and right extremal
solutions must terminate in the boundary of the Weyl chamber or of [d]. The fact that the left extremal
solution can only terminate in the right boundary of the Weyl chamber or in the left boundary of [d]
follows from the fact that integral curves do not intersect and the fact that on the symmetry lines of the
simplex, the cone of achievable derivatives opens towards 1

3e.

The more general case of B not satisfying Assumption (A) can be treated with similar methods.
Note, however, that many of our arguments rely on the fact that the state space is two dimensional, and
hence it is not clear how to analytically determine stabilisable and reachable sets in higher dimensions.

4.C Simultaneous Triangulation

Given a finite set of matrices of size n × n with entries in an algebraically closed field (such as the
complex numbers), our goal is to find (i) common eigenvectors and (ii) a basis in which all matrices
take on an (upper) triangular shape, or to conclude that no such eigenvectors or basis exist. This then
allows us to determine if a system is coolable (Theorem 4.3.7) or stabilizable (Theorem 4.2.7).
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Preliminaries

Many mathematical characterizations of the simultaneous triangulability of sets of matrices are col-
lected in [RR00], and of course the famous theorems of Lie and Engel give further conditions [Kna02].
It is beneficial to take a more abstract point of view. The given matrices are simultaneously triangu-
lable if and only if they admit a complete flag30 of common invariant subspaces. An important result
states that if a complete flag of common invariant subspaces exists, then every flag of common invariant
subspaces is contained in a complete one, cf. [RR00, Lem. 1.5.2]. This is, in fact, a special case of the
Jordan–Hölder Theorem, which holds for arbitrary modules and groups [HGK04, Isa09]. Consequently,
in order to find a simultaneous triangulation, it suffices to repeatedly compute (proper, non-trivial) com-
mon invariant subspaces. In fact it suffices to be able to compute one-dimensional invariant subspaces,
which of course correspond to (the span of) a common eigenvector. This will be the main focus of this
appendix.

Surprisingly the literature on finding common eigenvectors is rather slim. Often only a “brute-
force” algorithm is provided [Dub09, Al-+23], which however suffers from combinatorial explosion. A
seminal result is given by Shemesh [She84] yielding a way to determine the existence of and compute
a common eigenvector of two matrices. An extension to an arbitrary number of matrices is presented
in [JP15], which is however rather inefficient. Our aim is to provide an efficient algorithm for computing
a simultaneous eigenvector of an arbitrary family of matrices, and as a result we obtain an efficient algo-
rithm to compute a simultaneous triangulation, (or to conclude that no such eigenvector or triangulation
exists).

A Note on Computational Complexity

We formulate most results for an arbitrary field K, when necessary restricting to algebraically closed
fields. When it comes to determining the (worst-case) time-complexity of our algorithms, we assume
that all field operations take constant time. When performing exact arithmetic, this is an accurate as-
sumption for finite fields, but when working over the rationals Q this might break down. For infinite
fields like the reals R or complex numbers C, it is often sufficient to implement the algorithms nu-
merically, i.e. using floating point arithmetic. In particular when determining eigenvalues, numerical
algorithms are preferable, and for most linear algebra tasks numerical algorithms perform well and are
stable [DDH07]. Again, it is accurate to assume that all field operations take constant time. Note also
that for the multiplication of n × n matrices we use the standard algorithm with complexity O(n3),
although better complexities can be achieved.

Computing a Common Eigenvector

Consider a listA1, . . . , Ak of n×nmatrices over an algebraically closed fieldK. Our goal is to compute
a simultaneous eigenvector of these matrices, if it exists. More precisely, we are looking for a vector
v ∈ Kn such that there are scalars λi ∈ K satisfyingAiv = λiv for all i ∈ {1, . . . , k}. Of course, if such
numbers λi are known, it is easy to find v as the solution of a linear system of equations. However, even
if we know all eigenvalues of all Ai, there are up to nk combinations to try. This brute-force algorithm,
given in [Dub09, Al-+23], becomes very inefficient when k is large. We are looking for an algorithm
that has polynomial runtime in n and k.

30A flag in a finite-dimensional vector space is a nested sequence of strict subspaces, and it is complete if it contains a
subspace of each dimension.
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Algorithm for the Commuting Case

Let us first consider the special case of commuting matrices A1, . . . , Ak, that is, [Ai, Aj ] := AiAj −
AjAi = 0 for all i, j ∈ {1, . . . , k}. To find a common eigenvector, we first compute the eigenspaces
of A1 and denote the smallest of them by S1. Note that since K is algebraically closed, there always
exists a non-trivial eigenspace. Moreover, as all Ai commute, S1 is a common invariant subspace.31

Hence all matrices Ai can be restricted to S1, and the restrictions still commute. Now consider the
restriction A2|S1 and let S2 be its smallest eigenspace. Then S2 is again a common invariant subspace
of all Ai. Continuing in this fashion we obtain a nested sequence Kn ⊇ S1 ⊇ S2 ⊇ . . . ⊇ Sk of
common invariant subspaces. If some Sj is one dimensional, then any non-zero vector in this Sj is a
common eigenvector of all Ai, otherwise any non-zero vector in Sk is a common eigenvector of all Ai.

Assuming K = C, an approximate numerical algorithm for this task can be implemented with
time-complexity O(n3), since the Schur decomposition can be performed in O(n3) (e.g. using the QR
algorithm, cf. [Fra62, Arb16]), and in each iteration the size of the subspace is at least halved (unless
some restricted matrix is a multiple of the identity, but this can be checked quickly without affecting the
runtime). Over general fields one would first find a root of the characteristic polynomial (possibly over
a field extension if the field is not algebraically closed) and then compute the corresponding eigenspace.
Such algorithms exist for many different kinds of fields, see for instance [Bos+21, Sec. 24.8.1].

With this special case solved, we can consider the general case of arbitrary matrices Ai. Here the
idea is to find a common invariant subspace on which all Ai commute.

Lemma 4.C.1. Let A1, . . . , Ak of be a list of n× n matrices over any field K and let

T =
k⋂

i,j=1

ker[Ai, Aj ].

Then it holds that

(i) every common eigenvector of all Ai lies in T , and

(ii) if the Ai span a Lie algebra32, then T is a common invariant subspace of all Ai.

Proof. (i): Let v be a common eigenvector of allAi withAiv = λiv, then [Ai, Aj ]v = (λiλj−λjλi)v =
0, and hence v ∈ T . (ii): Now assume that the Ai span a Lie algebra, meaning that there are constants
clij ∈ K such that [Ai, Aj ] =

∑k
l=1 c

l
ijAl. It is clear that T is a subspace, hence it remains to show that

it is invariant under all As. But this holds since for v ∈ T , the computation

[Ai, Aj ]Asv =

k∑
l=1

clijAlAsv = As

k∑
l=1

clijAlv = As[Ai, Aj ]v = 0

shows that Asv ∈ T . This concludes the proof.

The Lemma is similar to the well-known Shemesh criterion for the existence of a common eigen-
vector of two (complex) matrices, see [She84, Thm. 3.1], and in general it is more efficient than the
extension provided in [JP15, Thm. 1.2], which has time-complexity exponential in k.

31Indeed, if [A,B] = 0 and Av = λv, then A(Bv) = BAv = λ(Bv).
32Concretely this means that every commutator can be written as a linear combination: [Ai, Aj ] =

∑k
l=1 c

l
ijAl.
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Algorithm for the General Case

Using this result we can formulate an algorithm for the common eigenvector problem. We will assume
that the matrices A1, . . . , Ak are linearly independent, since otherwise we can simply remove the of-
fending elements. Now extend the list A1, . . . , Ak by appending matrices Ak+1, . . . , Ad such that the
full list forms a basis of the d-dimensional Lie algebra generated by A1, . . . , Ak. Importantly removing
linearly dependent elements does not change the generated Lie algebra, and the common eigenvectors
of the matrices A1, . . . , Ak are exactly the same as those of the enlarged set A1, . . . , Ad. Now compute
the space T =

⋂d
i,j=1 ker[Ai, Aj ]. Since, by part (ii) of the Lemma, T is invariant under all Ai with

i ∈ {1, . . . , d}, we can restrict them to T , and it holds that [Ai|T , Aj |T ] = 0 for all i, j ∈ {1, . . . , d}.
Then using the algorithm for the commutative case, we can find a common eigenvector of all Ai|T for
i ∈ {1, . . . , k} on T , and this will be the desired eigenvector. Note that this fails if and only if T is
trivial, which happens only if there is no common eigenvector by part (i) of the Lemma.

Computing of order d2 commutators takes time O(d2n3). Similarly, the subspace T can be found
by determining the kernel of the corresponding matrix of size nd(d−1)

2 × n, (here we used the anti-
symmetry of the commutator) which can be done in the same time-complexity. The time-complexity
of generating the Lie algebra is given in App. 4.C, and that of finding a common eigenvector on T was
given above (and doesn’t influence the overall result). Thus, the total complexity is O(dn3(kn + d)),
which in terms of n can be bounded by O(n8) since k, d ≤ n2.

Algorithm for Simultaneous Triangulation

As an application we will consider the problem of simultaneously triangulating an arbitrary set of n×n
matricesA1, . . . , Ak. We consider the following naive algorithm. First compute a common eigenvector
of all Ai, and call it v1. Change to a basis whose first vector is v1 and restrict to the (n − 1) × (n −
1) block in the lower right. Iterate the procedure until the matrices are in triangular form. It turns
out that this algorithm actually works whenever the Ai are simultaneously triangulable. This follows
from [RR00, Lem. 1.5.2] which states that if a collection of matrices is triangulable, then every flag of
invariant subspaces is contained in a complete flag of invariant subspaces. More generally, this is a direct
consequence of the Jordan–Hölder Theorem for modules, cf. [HGK04, Thm. 3.2.1]. See also [Dub09].
It is clear from the above that the total time-complexity of the algorithm lies in O(n7(k + n)).

Generating a Lie Algebra

A key step in our algorithm for computing a common eigenvector of a given set of matrices is that
of determining a basis for the Lie algebra generated by the matrices. Algorithms for this task have
been presented in [Ell09, BW79, Isi05, SFS01] in the context of control theory, but unfortunately no
complexity analysis is provided. Here we give a simple meta-algorithm which includes the standard
approach and we analyze its complexity.

In this section K denotes any field. If K is R or C, the algorithm can also be implemented numer-
ically, i.e. using floating point arithmetic. However, care has to be taken here, since, for instance, two
generic real matrices will generate all of Rn,n, see [BW79, Sec. 1].

Meta-algorithm for Generating a Lie Algebra

Given a linearly independent set of matrices A = {A1, . . . , Ak} in Kn,n, we denote the Lie algebra
generated by A with ⟨A⟩Lie and its dimension with d. The meta-algorithm proceeds as follows:

Set A1 = A and i = 1. Pick two elements Bi, B′
i ∈ Ai and compute the commutator [Bi, B′

i]. If
the commutator does not lie in span(Ai), then set Ai+1 = Ai ∪ {[Bi, B′

i]}, otherwise set Ai+1 = Ai.
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Increment i and repeat. Terminate the algorithm when all commutators are guaranteed to lie in the span
of Ai.

To turn this into a concrete algorithm, a procedure for choosing Bi, B′
i and a termination criterion

have to be provided. Below we will show how to check for linear independence such that that each
iteration can be implemented with time-complexityO(n4). The time-complexity of the entire algorithm
is hence determined by the number of iterations. Clearly the algorithm needs at least d − k iterations,
but it might take much longer. Note that of course d ≤ n2.

The most naive algorithm would try all commutators in Ai, and terminate if none of them yield a
new dimension. This leads to a bound of O(d3) on the number of iterations and a total time-complexity
of O(d3n4). By simply not computing commutators which have been computed before, and using the
anti-symmetry of the commutator, one can bound the number of iterations by d(d−1)

2 , and hence the total
time-complexity is then O(d2n4), and thus O(n8) in term of n. Note that this recovers the complexity
given in [ZS11], although the algorithm is slightly different. The algorithm presented in [Ell09], based
on the realization that one only needs to commute new elements with the initial matrices in A, yields
a bound of O(dk) on the number of iterations and a total time-complexity of O(dkn4). In terms of n
alone we again get a bound of O(n8).

Update Algorithm for Linear Independence

Consider a matrix M ∈ Kr,s with s ≤ r. Determining if the columns of this matrix are linearly
independent can be done using Gaussian elimination in time-complexity O(rs2). In our Lie algebra
generation algorithm above however we find ourselves in the following scenario. We obtain one vector
in Kr after another. We keep the first non-zero vector and discard any zero vectors. Then for every
following vector we keep it only if it is independent from all previously kept ones, otherwise we discard
it. Using again Gaussian elimination, this can be implemented in O(r2) for each vector. The total
runtime for s vectors will be slightly worse with O(r2s), but now we can give a result after each vector.

The algorithm proceeds as follows: For the first non-zero vector perform Gaussian elimination to
obtain the first standard basis vector and store the row operations performed in a matrix R1. For every
following vector, continue the Gaussian elimination, while updating also the matrix Ri storing the row
operations. If we detect linear dependence, discard the vector and revert the matrix Ri to its previous
state.



CHAPTER 5
Working the Qubit

5.1 Introduction

Controlling individual qubits is a fundamental task in quantum information technologies, especially in
the presence of noise and decoherence. For instance, cooling qubits to their ground state is essential
for quantum computation [DiV00]. In this chapter we exploit the reduced control system defined in
Chapter 3, and results from Chapter 4, to derive time-optimal controls for a single qubit following a
Markovian time evolution and subject to fast unitary control. Chapter 6 will then generalize these ideas
to higher dimensional systems.

The special case of the Bloch equations (corresponding exactly to the Lindblad equation with rota-
tional invariance around the z-axis) was studied in [Lap+10, Lap+11, Lap+13], introducing the so-called
magic plane and steady state ellipsoid. A special case of the Lindblad equations with bounded controls
was studied using geometric methods in [BS09, BCS09]. Another special case of the Bloch equations
with incomplete control was addressed in [LPZ24]. The relaxation of certain unital channels and a
special case of the Bloch equations was studied in [Muk+13] with bounded and unbounded controls.
Some properties of unital systems (also beyond qubits) were found in [Yua10] using the reduced control
system. The general Lindblad case was treated in [RBR12, RBR16, Cla+20] using mostly numerical
methods.

Our approach uses a different method based on analyzing the generators of the reduced control sys-
tem and yields a more comprehensive solution to the problem of finding time-optimal controls. The
solution is almost completely analytical, except that as a final step one generally needs to use numerical
integration, hinting at the fact that in the general case the solution does not admit an analytical expres-
sion. Moreover, our approach is very visual and geometric, giving an intuitive understanding of certain
features of the obtained solutions. A drawback of our approach is, however, that it does not easily extend
to the case of bounded controls.

Outline

Section 5.2 introduces the setting and recalls the reduced control system. Section 5.3 highlights the main
tools and methods used in this chapter and contains some preliminary results. The main tasks addressed
in this chapter, namely optimal control and stabilization, are introduced and treated in a general fashion
in Section 5.4. The remainder of the main part focuses on deriving concrete solutions, starting with
the completely general case in Section 5.5. The treatment of the general case leads to the definition of
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so-called integral systems for which the solution simplifies considerably. These systems are addressed
in Section 5.6, and they include important special cases such as real and coolable systems. The latter
are considered in Section 5.6. The study of some special systems (namely unital systems and the Bloch
equations) is relegated to Appendix 5.A. Finally, Appendix 5.B contains some technical computations.

5.2 Preliminaries

In this chapter we consider an open two-level quantum system, henceforth called a qubit. Again, the un-
controlled Markovian evolution is described by the (time-independent) Lindblad equation. Introducing
fast unitary control to the system we obtain a bilinear control system. The assumptions on the controls
lead to the reduced control system as defined in Chapter 3.

Bloch Ball and Lindblad Equation

We start by recalling the basic formalism in more detail. The set of all possible mixed states of a qubit is
given by the set of density matrices of size 2× 2, which are exactly the positive semi-definite matrices
of trace one, denoted pos1(2) = {ρ ∈ C2,2 : ρ ≥ 0, tr(ρ) = 1}. Using the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

which form an orthonormal basis of the set isu(2) of traceless Hermitian matrices of size 2 × 2 with
respect to the (rescaled) Hilbert-Schmidt inner product ⟨A,B⟩ := tr(A∗B)/2, we obtain the affine-
linear isometryB(1/2) → pos1(2) defined by (x, y, z) 7→ 1

21+xσx+yσy+zσz , whereB(1/2) ⊆ R3

denotes the ball of radius 1/2, called the Bloch ball,1 cf. [BŻ17, Section 5.2]. Its surface, representing
the pure states, is called the Bloch sphere

The special unitary transformations U ∈ SU(2) act on the density matrices by conjugation ρ 7→
UρU∗. Note that the kernel of this action is {1,−1}. In the Bloch ball picture, these transformations
are rotations, belonging to the special orthogonal group SO(3). The SU(2) orbits in pos1(2) are exactly
the sets of density matrices sharing the same eigenvalues, and they correspond to the concentric spheres
of the Bloch ball. This illustrates the fact that the radius of a point in the Bloch ball only depends on the
eigenvalues λ, 1−λ ∈ [0, 1] of the corresponding density matrix, and in fact determines the eigenvalues
up to their order. Indeed, if λ ≥ 1/2 is the larger eigenvalue, the radius is given by r = λ − 1/2 ∈
[0, 1/2]. Conversely, given radius r, the eigenvalues are 1/2 ± r. We see that a state is pure, meaning
ρ = |ψ⟩⟨ψ|, if and only if it corresponds to a point on the surface of the Bloch ball, and the interior of
the Bloch ball consists of all mixed states. The center corresponds to the maximally mixed state 1/2.

To make this correspondence more precise we consider the isometric embedding ι : [0, 1] →
pos1(2) given by λ 7→ 1

2 +
(
λ− 1

2

)
σz which maps [0, 1] to the subset of pos1(2) consisting of diagonal

density matrices corresponding exactly to the z-axis of the Bloch ball. Note that if we endow [0, 1] with
the metric induced by the absolute value, then ι is isometric since

√
tr((ι(λ)− ι(λ′))2)/2 = |λ−λ′|. A

nice property of the set ι([0, 1]) is that it intersects all orbits orthogonally and the unitaries which leave
ι([0, 1]) invariant act on it either trivially or by reflection about the origin. In [0, 1] this corresponds to
the reflection λ 7→ 1−λ. To get rid of this final ambiguity one may work on the halved interval [1/2, 1].
Note that there is nothing special about the z-axis, except that it corresponds to the diagonal matrices
in the standard basis. Any other axis would work for our purposes, since in fact all such axes are related
by rotations of the Bloch ball. When defining the reduced control system in the next section we will use
[0, 1] as the reduced state space.

1Sometimes the Bloch ball is defined such that is has radius 1.
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Full and Reduced Control Systems

We recall the definition of the full control system (D), now specialized to a qubit. Let I be an interval
of the form [0, T ] or [0,∞). We say that ρ : I → pos1(2) is a solution to the bilinear control system

ρ̇(t) = −
(
i

m∑
j=1

uj(t)[Hj , ρ(t)] + L(ρ(t))
)
, ρ(0) = ρ0 ∈ pos1(2), (B)

if it is absolutely continuous and satisfies the equation almost everywhere. Here −L ∈ wKL(2) denotes
the drift Lindblad generator (with Lindblad terms Vk and including a possible Hamiltonian part H0)
describing the uncontrolled evolution of the system, the Hj ∈ iu(2) for j = 1, . . . ,m denote the
control Hamiltonians, and the functions uj : I → R are the control functions. Throughout we make the
following two crucial assumptions: First we only require the control functions to be locally integrable,
meaning that we do not assume any bounds. Second we assume that the control Hamiltonians generate
the full special unitary Lie algebra ⟨iHj : j = 1, . . . ,m⟩Lie ⊇ su(2). Taken together this means that
we have fast unitary control over the system.

Under these assumptions, an equivalent reduced control system can be defined, cf. Chapter 3, by
focussing on the evolution of the eigenvalues of ρ. More precisely, the reduced state will be λ ∈ [0, 1].
First we define the matrices Jij(U) =

∑r
k=1 |(U∗VkU)ij |2. For eachU ∈ SU(2), we obtain an induced

vector field on [0, 1] defined by

λ 7→ −QU (λ) = J12(U)− λ(J12(U) + J21(U)). (5.1)

Concretely each −QU is an affine linear function on [0, 1]. This allows us to define the set-valued
function

derv : [0, 1] → P(R), derv(λ) = {−QU (λ) : U ∈ SU(2)},

of achievable derivatives (where P(·) denotes the power set). For an example of derv see Figure 5.1.
Then the reduced control system on [0, 1] is defined by the differential inclusion2

λ̇(t) ∈ derv(λ(t)), λ(0) = λ0 ∈ [0, 1]. (∆)

The Equivalence Theorem 3.0.4 shows that under the present assumption of fast unitary control, the
bilinear control system (B) is equivalent to the reduced control system (∆) in a precise sense. Impor-
tantly, no loss of information is incurred by switching to the reduced control system.

Remark 5.2.1. In Chapter 3 the reduced control system is defined on the standard simplex ∆n−1 in Rn.
Using the embedding [0, 1] → ∆1 ⊂ R2, given by λ 7→ (λ, 1− λ)⊤ we pulled back the control system
to the interval [0, 1]. This turns the (stochastic) linear dynamics on R2 into affine linear dynamics on
[0, 1].

5.3 Space of Generators and Optimal Derivatives

The induced vector fields −QU generate the dynamics of the reduced control system (∆). Due to the
present low-dimensional setting, it turns out that these generators sit in a two-dimensional vector space

2There are some slightly different ways to define the reduced control system, see Chapter 3, but the distinction is not
relevant for us.
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and hence they can easily be visualized. Understanding the exact shape of the set of generators is non-
trivial, but it can be done analytically, and this ultimately leads to solutions for the optimal control
problem of (B). Furthermore it yields a parametrization of the stabilizable states in the Bloch ball.

Since each derv(λ) is the image of a continuous function on the compact connected set SU(2), the
set derv(λ) must be a closed bounded interval in R. Hence we can define the optimal derivative function

µ : [0, 1] → R, λ 7→ max derv(λ).

To fully understand the graph associated to derv (when seen as a set-valued function) it suffices to
study the function µ, since λ 7→ −µ(1 − λ) is the corresponding lower boundary due to the reflection
symmetry on [0, 1] shown in Lemma 5.3.2 below. The optimal derivative function µ enjoys some nice
properties:

Lemma 5.3.1. The function µ : [0, 1] → R is continuous, convex and non-increasing. Furthermore,
µ(1/2) is equal to the larger (non-negative) eigenvalue of

∑r
k=1[Vk, V

∗
k ]/2. In particular, µ is non-

negative on [0, 1/2] and non-positive at 1.

Proof. By definition, the function µ can be seen as the pointwise maximum of the decreasing affine
linear functions−QU parametrized byU ∈ SU(2). From this it follows thatµ is continuous, convex, and
non-increasing. The last fact follows from µ(1/2) = maxU

1
2(J12(U)− J21(U)) = maxU

1
2((J(U)−

J(U)T )e)1 = maxU
1
2

∑r
k=1(U

∗[Vk, V
∗
k ]U)11, where the maximization is over SU(2) and where e =

(1, 1)/2 and we used Lemma 3.0.7.

Each induced vector field −QU is defined by the values taken at the endpoints, namely J12(U) ≥ 0
at λ = 0 and −J21(U) ≤ 0 at λ = 1. This motivates the definition of the space of generators as

Q = {(J12(U)− J21(U), J12(U) + J21(U)) : U ∈ SU(2)} ⊂ R2.

This set is clearly linearly isomorphic to the set {−QU : U ∈ SU(2)} but has the advantage of being
easy to visualize. For an example see Figure 5.1. Understanding the space of generators Q, and more
specifically its boundary, allows us to describe the function µ, which in turn allows us to find solutions
to the optimal control problem.

Lemma 5.3.2. The setQ is compact, path-connected, and satisfies b ≥ |a| for all (a, b) ∈ Q. Moreover,
Q is symmetric with respect to the reflection (a, b) 7→ (−a, b).

Proof. The setQ is the image of a continuous function on SU(2), and thus compact and path-connected.
By definition J12(U), J21(U) ≥ 0, and so J12(U) + J21(U) ≥ |J12(U)− J21(U)|. For any U it holds
that J12(Uσx) = J21(U) and J21(Uσx) = J12(U), proving the symmetry.

When (0, 0) ∈ Q the system is of a special type (called unital stabilizable) which we will explore
in Appendix 5.A. In the main part we mostly focus on the case (0, 0) /∈ Q. A first relation between the
objects Q and µ is given by the following result:

Lemma 5.3.3. If (0, 0) /∈ Q then µ is strictly decreasing.

Proof. By contraposition, if µ is not strictly decreasing, there are two points, λ1 < λ2 in [0, 1] such
that µ(λ1) = µ(λ2) and µ will be constant on [λ1, λ2]. Then there must be some horizontal line of the
form (5.1) passing through (λ, µ(λ)) for λ ∈ (λ1, λ2). Let U ∈ SU(2) be a corresponding unitary.
Then the slope of the line is −(J12(U) + J21(U)) and equals 0, and so J12(U) = J21(U) = 0, as
desired.
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Figure 5.1: We consider a generic Lindblad generator −L ∈ wKL. Left: The space of generators Q
plotted using randomly sampled points. Clearly Q has some intriguing structure, and hence it is the
first object we wish to understand. Right: Graph of the set-valued function derv generated by plotting
the affine linear functions −QU associated to randomly selected unitaries U . The functions µ(λ) and
−µ(1 − λ) are the upper and lower boundaries of the set of all such lines. The Lindblad terms Vk are(
0.0−0.9i −0.6+0.6i
0.+0.8i 0.9−i

)
,
(−0.1+0.8i 0.3−0.3i
−0.8+0.6i 0.3+0.1i

)
, and

(−0.2+0.4i 0.6−0.2i
0.6−0.7i 0.2+0.8i

)
.

The space of generators Q and the optimal derivative function µ are linked by the following key result:

Proposition 5.3.4. Let λ ∈ [0, 1]. Then there is some line of the form (5.1) passing through (λ, µ(λ)),
and a point in Q corresponds to such a line if and only if it solves the linear optimization problem

µ(λ) = max
(a,b)∈Q

1
2(a+ (1− 2λ)b).

Proof. The optimization problem follows immediately from the definition of µ. The existence of a
solution follows from the fact that Q is compact.

Remark 5.3.5. Note that the relation between the function µ : [0, 1] → R and the set Q ⊆ R2 is similar
to the Legendre–Fenchel transform of a function and the polar dual of a polytope. In particular, corners
of Q yield affine linear parts of µ as can be seen for instance in Appendix 5.A. Note also that Q need
not be convex, as can be seen in Figure 5.1, and µ only depends on the convex hull of Q.

The space of generators Q fully describes the reduced control system (∆), and thus allows us to
compute for instance reachable and stabilizable sets. In order to compute the fastest path in the Bloch
ball, along with the optimal controls, as well as the stabilizable states in the Bloch ball, we need to
parametrize Q in terms of the corresponding unitaries. More precisely, it suffices to consider a subset
of SU(2) which can map the north pole of the Bloch sphere to any other point on the Bloch sphere.
We will give this parametrization in full generality in Section 5.5, and show how it simplifies in special
cases of interest. Using the unitaries Ux,z = exp(iπzσz) exp(iπxσx), the parametrization will be of
the form

(x, z) 7→ (J12(Ux,z)− J21(Ux,z), J12(Ux,z) + J21(Ux,z)) (5.2)

for x ∈ [0, 1/2] and z ∈ [0, 1). Hence 2πx corresponds to the polar angle and 2πz to the azimuthal
angle on the Bloch sphere.

5.4 Stabilizable States and Optimal Control

The optimal derivative function µ : [0, 1] → R discussed in the previous section gives the fastest
increase (or slowest decrease if it is negative) of λ which can be achieved in the reduced control system.
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It allows us to directly read off relevant information such as the reachable and stabilizable sets from its
graph. Knowledge of the function µ also allows us to determine optimal controls for the full control
system, as we will show in this section.

Stabilizable Set

A relevant task in applications is that of stabilizing the system in a certain desired state. We will explicitly
determine which states are stabilizable in the full and in the reduced control system. Moreover we will
show concretely how such states can be stabilized.

We begin with the reduced control system. For λ ∈ [0, 1] we say that λ is stabilizable3 if 0 ∈
derv(λ). Concretely this means that in the reduced control system, the constant path at λ is a solution.

Lemma 5.4.1. Assume that (0, 0) /∈ Q. Then the set of stabilizable states is the non-empty closed
interval [1 − λ⋆, λ⋆] where λ⋆ ≥ 1/2 is the unique root of µ. If (0, 0) ∈ Q, then all states λ ∈ [0, 1]
are stabilizable.

Proof. The case of (0, 0) ∈ Q is clear, so assume that (0, 0) /∈ Q. By Lemma 5.3.3 it holds that µ has
at most one root. By Lemma 5.3.1 there must be at least one root in the interval [1/2, 1]. Denote this
root by λ⋆. The lower bound of derv is given by λ 7→ −µ(1 − λ) which has a unique root at 1 − λ⋆.
Since both µ and the corresponding lower boundary are strictly decreasing, the stabilizable region is
[1− λ⋆, λ⋆].

We call λ⋆ the purest stabilizable state. The stabilizable set can be obtained graphically from the space
of generators as follows.

Lemma 5.4.2. Assume that (0, 0) /∈ Q. It holds that λ ∈ [0, 1] is stabilizable if and only if λ = 1
2(1+

a
b )

for some (a, b) ∈ Q, and hence λ⋆ = max(a,b)∈Q
1
2(1 +

a
b ).

Proof. Since (0, 0) /∈ Q the value a
b is well defined for every point (a, b) ∈ Q, and every line of the

form (5.1) intersects the abscissa in a unique point, namely λ = 1
2(1 +

a
b ). By Lemma 5.3.2 the value

a
b is always contained in [−1, 1], and the set of all possible a

b is a non-empty closed interval symmetric
about 0. In particular, it has a greatest element.

In practice for general systems, after parametrizing the set Q as discussed in the previous section, it is
necessary to use a root-finding algorithm (such as the bisection method) to find λ⋆, cf. [Epp13].

The following result presents a class of systems for which the purest stabilizable state λ⋆ can be
found analytically.

Lemma 5.4.3. Let V be an arbitrary Lindblad term and consider the system defined by the Lindblad
terms V and √

γV ∗ with γ ∈ [0, 1]. Then the purest stabilizable state is λ⋆ = 1
1+γ , unless V is normal,

in which case it is λ⋆ = 1.

Proof. By Lemma 5.A.2 (i), if V is normal, then the system is unital stabilizable, and so the stabilizable
region is [0, 1]. Now assume that V is not normal, then, by the same lemma, (0, 0) /∈ Q. First we con-
sider the case γ = 0. Then, as shown in Section 6.3, the system is coolable, and again the stabilizable
region is [0, 1]. Now let γ ∈ (0, 1]. Note that for any U ∈ SU(2), if we denote t(U) = J21(U)

J12(U) , the inter-

section of the corresponding line with the abscissa is J12(U)
J12(U)+J21(U) =

1
1+t(U) by Lemma 5.4.2. Hence

it suffices to find the minimal value of the ratio t(U). If we denote by J ′(U) the matrix corresponding
3In Chapters 2 and 4 we distinguish between stabilizable and strongly stabilizable states, but in the present setting the two

notions coincide.
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to V then t(U) = J21(U)
J12(U) =

J ′
21(U)+γJ ′

12(U)
J ′
12(U)+γJ ′

21(U)
. Since all quantities are non-negative, and γ ≤ 1, it follows

from the mediant inequality that γ ≤ t(U) ≤ 1
γ . Moreover t(U) = γ is achieved when V is in upper

triangular form, which is always possible.

Note that when γ = 1 the system is unital (cf. Appendix 5.A), and if γ = 0 we obtain a rank one system,
see Section 6.3.

In Lemma 5.4.2 we have described the stabilizable spectra in the reduced control system, that is, in
[0, 1]. However we can also explicitly describe the set of stabilizable density matrices. In [Lap+13] this
was done for the special case of the Bloch equations obtaining an ellipsoid, which we will also recover
in Appendix 5.A.

A state ρ ∈ pos1(2) is called stabilizable if there exists a control Hamiltonian Hc turning ρ into a
fixed point, that is, if −L(ρ)− i[Hc, ρ] = 0. The following result connects the two notions of stability
and is a restatement of Proposition 4.2.2.

Proposition 5.4.4. Assume that −L is a non-unital Lindblad generator and let λ ̸= 1
2 . Then the follow-

ing are equivalent:

(i) There is some U such that −QU (λ) = 0, that is, λ is stabilizable for the reduced control sys-
tem (∆).

(ii) There is some U and Hc such that for ρ = Uι(λ)U∗ we have −L(ρ)− i[Hc, ρ] = 0, that is, ρ is
stabilizable for the full control system (B).

Moreover, any unitary satisfying one of the above also satisfies the other, and given λ and U one can
compute a corresponding compensating Hamiltonian iHc = ad+ρ (L(ρ)), where adρ(·) = [ρ, ·] and (·)+
denotes the Moore–Penrose pseudoinverse.

Remark 5.4.5. Whenever λ = 1/2, it is clear that λ is stabilizable in the reduced system, but in general
it is not (exactly) stabilizable in the full system. Indeed, in this case the formula for the compensating
Hamiltonian might diverge. The only exception is the case of unital −L, where the maximally mixed
state is always a fixed point independent of the applied controls.

The set of stabilizable states in the Bloch ball can be nicely parametrized using a parametrization
of Q. Assume that (0, 0) /∈ Q and let (x, z) 7→ F (x, z) be the parametrization of Q as in (5.2). By
construction, the line represented by F (x, z) corresponds to the affine linear vector field obtained from
−Lwhen restricting to and projecting onto the axis passing through the point with polar angle θ = 2πx
and azimuthal angle ϕ = 2πz. A stabilizable point on the axis is exactly a zero of this vector field.
Together with Lemma 5.4.2 this shows the following result:

Lemma 5.4.6. The stabilizable set can be parametrized as r(θ, ϕ) = 1
2
J12(Ux,z)−J21(Ux,z)
J12(Ux,z)+J21(Ux,z)

in spherical
coordinates (r, θ, ϕ), where 2πx = θ and 2πz = ϕ.

In the Bloch ball, the shape of the set of stabilizable states is some kind of ovoid, and in some special
cases it is an ellipsoid. Moreover, the intersection of this set with any plane containing the z-axis (after
an appropriate change of basis) is in fact an ellipse, cf. Proposition 5.5.3.
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Optimal Controls

The main task of interest is to determine which states are reachable from a given initial state, and to
compute the fastest path to reach such a state, together with the corresponding controls. The Equivalence
Theorem 3.0.4, allows us to work on the level of the reduced control system (∆) and then to lift the
obtained result to the full control system (B).

Indeed, since the reduced state space [0, 1] is one-dimensional, the shortest path is always uniquely
defined up to the speed at which the path is traversed. Clearly the maximal (positive) velocity a solution
can achieve at λ is the optimal derivative µ(λ), and hence the optimal solution λ(t) is obtained by
integrating along µ. Since there are only two directions in the one-dimensional reduced state space,
there are only two tasks to consider, namely optimal heating (mixing) and optimal cooling (purifying).
These problems can be solved together by determining the fastest path from 0 to the purest stabilizable
state λ⋆ in the reduced state space [0, 1].

In this section we outline the general approach we will take to solve this problem, and the con-
crete results will be presented in the subsequent sections. As stated at the end of Section 5.3, we will
parametrize the space of generators Q using the unitaries Ux,z = exp(iπzσz) exp(iπxσx) where the
parameter ranges are x ∈ [0, 12 ] and z ∈ [0, 1). Then, due to Proposition 5.3.4 we are mainly interested
in the boundary of Q. In general we will parametrize the boundary using the curves

J+ → R2, α 7→ (a+(α), b+(α)) J− → R2, α 7→ (a−(α), b−(α))

defined on some intervals J+ and J− for the upper (corresponding to heating) and lower (corresponding
to cooling) part of the boundary respectively. It is important to also determine the unitaries, or more
precisely the values of the parameters x, z, which achieve the boundary points of Q. For this we will
determine parametrizations x± : J± → R2 and z± : J± → R2.

Lemma 5.4.7. Given parametrizations a±, b±, x±, z± as above, and assuming that (a±, b±) is differ-
entiable with non-zero derivative, one can find parametrizations λ±(α), µ±(α) and ρ±(α) such that
(λ±, µ±) parametrizes the graph of µ : [0, 1] → R and such that ρ±(α) parametrizes the optimal path
through the Bloch ball. Indeed we have the following expressions:

λ±(α) = 1
2

(
1 + a′(α)

b′(α)

)
, µ±(α) = 1

2(a
±(α) + b±(α))− b±(α)λ±(α),

ρ±(α) = Ux±(α),z±(α)ι(λ
±(α))U∗

x±(α),z±(α).

Proof. By Proposition 5.3.4 the value µ(λ) is obtained by maximizing a linear functional over Q. This
maximum must be achieved on the boundary and hence there is some α such that (a±(α), b±(α))
achieves the maximum. In this case it holds that the derivative of the parametrization is orthogonal to the
direction of maximization, which immediately yields the expression for λ±(α) and the expression for
µ±(α) follows at once. Then, by construction ρ±(α) achieves the maximal eigenvalue derivative.

The parametrizations of the previous lemma are completely analytic and allow to solve a significant
part of the general problem. The final goal is to determine the corresponding control functions for
the full control system (B). Since these are functions of time all of the above quantities must also be
expressed as a function of time. To find the time parametrization α(t) one has to solve the following
ordinary differential equation, where we omit the ± superscript for readability.

α′ =
µ(α)

λ′(α)
=
a(α)b′(α)2 − a′(α)b′(α)b(α)

b′(α)a′′(α)− a′(α)b′′(α)
. (5.3)

Unfortunately it seems that in general the real time parametrizationα(t) cannot be found analytically
since the differential equation (5.3) is too complicated. Notable exceptions to this are however the Bloch
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equations (cf. Appendix 5.A) and rank one systems (cf. Section 6.3). For this reason numerical methods
are indispensible. Indeed, for computational efficiency it can be beneficial to switch to a numerical
representation of the functions right away instead of working with the analytical expressions which tend
to become extremely convoluted.

Finally, the corresponding control Hamiltonian can be found using the following result which is a
simplified special case of Proposition 2.3.10, but it can also easily be verified via direct computation.
See also [RBR12, Lem. 3.1].

Proposition 5.4.8. Let λ : [0, T ] → [0, 1] be a solution to (∆) not passing through 1
2 with continuously

differentiable control function U : [0, T ] → SU(2). Define ρ(t) = U(t)ι(λ(t))U∗(t). Then iH(t) =
−U ′(t)U∗(t) + ad+ρ(t)(L(ρ(t)) is a path of skew-Hermitian matrices satisfying ρ̇ = −(i adH +L)(ρ).

Note that the second term in the definition is analogous to the definition of the compensating Hamilto-
nian Hc in Proposition 5.4.4.

For our optimal control task, the solution will cross the maximally mixed state {1/2} at one point in
time. The problem that occurs in trying to apply Proposition 5.4.8 is that the compensation term might
blow up. Luckily, as we will see in the following sections, this does not happen and the control functions
tend to be very well behaved. Nonetheless, diverging controls can and do occur in certain special cases,
such as the Bloch equations and rank one systems mentioned above. In these cases the optimal solution
is not differentiable at one point, where it takes a sharp turn, and the direct term diverges. Still one can
cut off this divergence at the price of an arbitrarily small error.

5.5 General Systems

The goal of this section is to implement the program set out in the previous sections. We consider
a qubit system described by an arbitrary finite set of Lindblad terms Vk for k = 1, . . . , r. The main
result is an analytical parametrization of the space of generators Q, see Figure 5.2 for an example. As
a consequence we can determine the stabilizable states in the Bloch ball and the optimal controls in the
original control system, cf. Figure 5.3. We will assume that −L is not unital, since this special case is
considered in Appendix 5.A.

Parametrization

Let {Vk}rk=1 be a finite set of Lindblad terms. Without loss of generality we assume that all Vk are
traceless and that

∑r
k=1[Vk, V

∗
k ] is diagonal. We define the characteristic values

∆ = J12(1)− J21(1), Σ = J12(1) + J21(1), δ = 2J11(1)− Σ/2.

Furthermore we set

r1e
iϕ1 = i

r∑
k=1

(Vk)12(Vk)21, r2e
iϕ2 = 4

r∑
k=1

(Vk)11(Vk)21, ϕ = ϕ1 − 2ϕ2 + π/2.

By choosing the basis appropriately we can always make sure that additionally ∆ ≥ 0, and in the
following we will always assume that this is the case.4 The first crucial property is that these values are
actually well-defined.

4Since we assume that the system is non-unital it even holds that ∆ > 0.
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Lemma 5.5.1. Assume that −L ∈ wKL is non-unital. Then the values |∆|, Σ, δ, r1, and r2 are well-
defined, and if r1 and r2 are non-zero, then ϕ is also well-defined modulo 2π. More precisely this means
that these values only depend on the generator −L, and not on the choice of Vk or on the basis which
diagonalizes

∑r
k=1[Vk, V

∗
k ].

Proof. We already assumed that the Vk are traceless. This can always be done at the expense of a
constant compensating Hamiltonian, hence we only have to show that the constants are invariant un-
der unitary reshuffling, cf. Lemma 4.A.3, or a change of basis keeping

∑r
k=1[Vk, V

∗
k ] diagonal. It is

easy to see that all quantities are invariant under unitary reshuffling, and the only allowed unitary basis
transformations are those induced by diagonal unitaries, which can change ϕ1 and ϕ2 but not ϕ.

Using these characteristic values we can now give a parametrization of the space of generators Q:

Proposition 5.5.2. The unitary Ux,z = exp(iπzσz) exp(iπxσx) for x ∈ [0, 1/2], and z ∈ [0, 1) yields
the point (J12(Ux,z)− J21(Ux,z), J12(Ux,z) + J21(Ux,z)) = (∆ cos(2πx), F (x, z)), where

F (x, z) = Σ + (δ + r1 sin(4πz + ϕ1)) sin(2πx)
2 − r2 cos(2πx) sin(2πx) sin(2πz + ϕ2) ,

and hence we obtain the following parametrization of the space of generators

Q = {(∆ cos(2πx), F (x, z)) : x ∈ [0, 1/2], z ∈ [0, 1)} .

Proof. The details of this elementary but lengthy computation are given in Appendix 5.B.

Note that for fixed z, the parametrization can be seen as the graph of a function. See Figure 5.2 for an
illustration. The parametrization of Q leads directly to a parametrization of the stabilizable states in the
Bloch ball as shown in Lemma 5.4.6, see Figure 5.3 for an example.

Proposition 5.5.3. The parametrization of the set of stabilizable states in the Bloch ball is given in
spherical coordinates by

r(θ, ϕ) =
∆cos(θ)

2F ( θ2π ,
ϕ
2π )

.

For fixed angle ϕ this is an ellipse in the upper halfplane going through the origin.

Proof. The parametrization follows immediately from Lemma 5.4.6 and it is easy to see that for fixed
angle ϕ the formula takes the form given in Lemma 5.B.4 (due to the definition of the polar angle θ all
occurences of sin and cos in these formulas are swapped). Note also that the shape of the ellipse can
then be computed using Lemma 5.B.5.

Even though the stabilizable set looks somewhat like an ellipsoid, its shape is more complicated.
Nevertheless, in some special cases, such as the Bloch equations treated in [Lap+13], it indeed reduces
to an ellipsoid, cf. Appendix 5.A.

Optimal Solution

In order to find the optimal derivative function µ we first find the boundary of Q by determining the
maximal and minimal values of z 7→ F (x, z) for all x ∈ [0, 1/2], cf. Proposition 5.3.4. We will use the
simplified function

Gϕ(ξ, ζ) = (1− ξ) sin(4πζ + ϕ− π/2)− ξ sin(2πζ), ξ, ζ ∈ [0, 1]. (5.4)

See Appendix 5.B for the relevant properties of this function. In particular see Figure 5.10 for some
plots for different ϕ.
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Figure 5.2: Left: Space of generators Q parametrized as in Proposition 5.5.2. The boundary, as de-
termined in Corollary 5.5.7, is highlighted in red (upper part) and blue (lower part), with the relevant
part solid and the rest dotted. Right: Differential inclusion λ 7→ derv(λ) with the optimal derivatives µ
highlighted in red and blue. They are determined using Lemma 5.4.7. The Lindblad terms used are the
same as in Figure 5.1.

Lemma 5.5.4. Assume that r1, r2 ̸= 0 and let x ∈ (0, 1/4) be given.5 Let ξ = 1
1+

r1
r2

tan(2πx)
∈ (0, 1).

Then it holds for all z ∈ R that

z ∈ argmax
z̃

F (x, z̃) ⇐⇒ ζ ∈ argmax
ζ̃

Gϕ(ξ, ζ̃)

where ζ = z + ϕ2/(2π). The same statement holds after replacing argmax by argmin.

Proof. We compute

argmax
z̃∈[0,1]

F (x, z̃) = argmax
z̃∈[0,1]

r1 sin(2πx) sin(4πz̃ + ϕ1)− r2 cos(2πx) sin(2πz̃ + ϕ2)

= argmax
z̃∈[0,1]

sin(4πz̃ + ϕ1)−
r2
r1

cot(2πx) sin(2πz̃ + ϕ2)

= argmax
z̃∈[0,1]

sin(4πz̃ + ϕ1)−
ξ

1− ξ
sin(2πz̃ + ϕ2)

= argmax
z̃∈[0,1]

(1− ξ) sin(4πz̃ + ϕ1)− ξ sin(2πz̃ + ϕ2)

= argmax
z̃∈[0,1]

Gϕ(ξ, z̃ + ϕ2/(2π)),

and the computation remains valid after replacing argmax by argmin.

Remark 5.5.5. If r1 = 0 or r2 = 0 or both, then the values of z which maximize or minimizeF (x, z) can
be chosen independently of x. We will call such systems degenerate. Note that for the Bloch equations
(Appendix 5.A) it holds that r1 = r2 = 0 and for rank one systems (cf. [6, Sec. V]) it holds that r2 = 0.
For the sake of brevity we will not treat degenerate systems in detail, and leave this as an exercise to the
reader.

Corollary 5.5.6. Assume that ϕ ∈ (−π, 0) ∪ (0, π) and define the function

x⋆(z) =
1

2π
arccot

(
2
r1
r2

cos(4πz + ϕ1)

cos(2πz + ϕ2)

)
,

5By symmetry it suffices to consider the right side of Q.
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and the intervals

I+ =

{
[34 − ϕ

4π − ϕ2
2π ,

3
4 − ϕ2

2π ] if ϕ > 0

[34 − ϕ2
2π ,

3
4 − ϕ

4π − ϕ2
2π ] if ϕ < 0,

I− =

{
[14 − ϕ2

2π ,
1
4 + π−ϕ

4π − ϕ2
2π ] if ϕ > 0

[− ϕ
4π − ϕ2

2π ,
1
4 − ϕ2

2π ] if ϕ < 0 .

Let x+ and x− denote the restrictions of x⋆ to I+ and I− respectively. These functions are bijective
onto [0, 1/4], and it holds that

(x+)−1(x) = argmax
z̃

F (x, z̃), (x−)−1(x) = argmin
z̃

F (x, z̃)

for all x ∈ (0, 1/4). Here the argmax and argmin are unique for all x ∈ (0, 1/4). For x = 1/4 there
is a spurious second solution and for x = 0 we get F (0, z) = (∆,Σ).

Proof. This follows directly from Lemma 5.5.4 and Lemma 5.B.1.

Unfortunately it seems that the inverses of the functions x+ and x− defined in the previous lemma
cannot be computed analytically. However we can obtain analytical expressions parametrized by z.

Corollary 5.5.7. Assume that ϕ ∈ (−π, 0) ∪ (0, π) and define the path

γ(z) = (∆ cos(2πx⋆(z)), F (x⋆(z), z)),

and let γ+ and γ− be the restrictions to I+ and I− respectively. Then γ+ is a parametrization of the
upper boundary of the right half of the space of generators Q, and analogously γ− parametrizes the
lower boundary of the right half. It follows that the boundary point γ(z) for z ∈ I+ ∪ I− can be
obtained using the unitary Ux⋆(z),z .

The intervals I+ and I− are still too large, since on these intervals γ parametrizes part of the bound-
ary of the space of generators which are not relevant for optimal control. Indeed, since λ ∈ [0, 1], we are
only interested in the values of z where γ′1(z)/γ′2(z) ∈ [−1, 1]. This parameter region can be computed
numerically and we will denote the corresponding closed parameter intervals J+ ⊆ I+ and J− ⊆ I−.

With this we can apply the results of Section 5.4 to numerically determine the optimal path through
the Bloch ball and the corresponding control functions of the full control system (B), cf. Figure 5.3.

5.6 Integral Systems

In the previous section we had to exclude the cases where ϕ, as defined in Section 5.5, is an integer
multiple of π. It turns out that in these cases the general parametrization of Q obtained in the previous
section simplifies considerably. We call such systems integral and we explore their properties in this
section.

Definition 5.6.1. A system is integral if it is non-degenerate (cf. Remark 5.5.5) and ϕ = kπ for some
k ∈ Z. We call p = (−1)k the parity of the system, and we say that the system is even or odd if k is
even or odd respectively.

Note that due to Lemma 5.5.1 integral systems and their parity are well-defined.

Example 5.6.2. We say that a Lindblad generator −L ∈ wKL(2) is real if there exists a choice of real
Lindblad terms Vk. If all Lindblad terms are real, and the system is non-degenerate, then the system is
integral. Indeed, since all Vk are real, the sum

∑r
k=1[Vk, V

∗
k ] is real and symmetric and hence can be

orthogonally diagonalized. Hence r1eiϕ1 is imaginary and r2eiϕ2 is real, so that ϕ1+π/2 and 2ϕ2 are
integer multiples of π. Note that both even and odd systems can be obtained in this fashion, and they
are separated in wKL by degenerate systems.

Since they are easy to generate, we will use real systems for the plots shown in this section.
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Figure 5.3: Left: Optimal path for heating (red) and cooling (blue) in the Bloch ball together with the
set of stabilizable states. The light blue part indicates the part of the optimal path which is not reachable
from the interior as it lies beyond the purest stabilizable state. The black dots on the path are equally
spaced in time. Right: Optimal control functions ux, uy and uz for heating (left part) and cooling (right
part) and their contributing direct and compensating terms. The Lindblad terms used are the same as in
Figure 5.1.
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Figure 5.4: Space of generators Q for two randomly chosen real systems. The system on the left
is odd, and the system on the right is even. The boundary, computed using Lemma 5.6.3, features a
parabolic part, located at the top in the odd case and at the bottom in the even case. The Lindblad
terms for the odd case are

(
0.3 −1.0
−0.6 0.9

)
,
(
0.8 0.2
0.8 0.8

)
,
(
0.1 −0.4
0.0 −0.8

)
, and

(−0.3 0.6
0.6 0.4

)
. For the even case they are(

0.5 0.1
−0.4 −0.1

)
,
(

0.0 0.5
−0.9 0.0

)
,
(
0.9 −0.3
0.7 0.6

)
, and

(
0.4 −0.2
−1.0 0.0

)
.

Optimal Solution

Using Lemma 5.B.2 we can give analytic expressions for the boundary of the space of generators Q for
integral systems.
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Lemma 5.6.3. Set x̃ = 1
2π arctan(

r2
4r1

). For ϕ = 0, we obtain for every x ∈ [0, 1/4] that

max
z
F (x, z) = Σ + δ sin(2πx)2 + sin(2πx)(r1 sin(2πx) + r2 cos(2πx))

min
z
F (x, z) =

{
Σ+ δ sin(2πx)2 + sin(2πx)(r1 sin(2πx)− r2 cos(2πx)) if x ∈ [0, x̃]

Σ + sin(2πx)2(δ − r1)− cos(2πx)2
r22
8r1

if x ∈ [x̃, 1/4],

and analogously for ϕ = π we obtain that

max
z
F (x, z) =

{
Σ+ δ sin(2πx)2 + sin(2πx)(−r1 sin(2πx) + r2 cos(2πx)) if x ∈ [0, x̃]

Σ + sin(2πx)2(δ + r1) + cos(2πx)2
r22
8r1

if x ∈ [x̃, 1/4]

min
z
F (x, z) = Σ + δ sin(2πx)2 + sin(2πx)(−r1 sin(2πx)− r2 cos(2πx)).

Furthermore, these values can be obtained using the unitary Ux,z = exp(iπz±(x)σz) exp(iπxσx)
where

z+(x) = 3
4 − ϕ2

2π , z−(x) =

{
1
4 − ϕ2

2π if x ∈ [0, x̃]
1
2π arcsin(

r2
4r1 tan(2πx)

)− ϕ2
2π if x ∈ [x̃, 1/4],

in the even case and

z−(x) = 1
4 − ϕ2

2π , z+(x) =

{
3
4 − ϕ2

2π if x ∈ [0, x̃]
1
2 + 1

2π arcsin(
r2

4r1 tan(2πx)
)− ϕ2

2π if x ∈ [x̃, 1/4],

in the odd case.

Proof. Using Lemma 5.5.4 and Lemma 5.B.2 we immediately find the optimal value of z as a function
of x. Then we find the switching point ξ = 4/5 ⇐⇒ x = 1

2π arctan(
r2
4r1

) and we denote this value
by x̃. For the even case ϕ = 0, or equivalently ϕ1 − 2ϕ2 = −π/2, we compute

sin(4πz+(x) + ϕ1) = sin(3π − 2ϕ2 + ϕ1) = 1 for x ∈ [0, 1/4]

sin(2πz+(x) + ϕ2) = sin(3π/2− ϕ2 + ϕ2) = −1 for x ∈ [0, 1/4]

sin(4πz−(x) + ϕ1) = 1 for x ∈ [0, x̃]

sin(2πz−(x) + ϕ2) = 1 for x ∈ [0, x̃],

and using that 1/(4(1/ξ − 1)) = r2/(4r1) cot(2πx) we get

sin(4πz−(x) + ϕ1) = − cos(2 arcsin(r2/(4r1) cot(2πx)))

= 2(r2/(4r1) cot(2πx))
2 − 1 for x ∈ [x̃, 1/4]

sin(2πz−(x) + ϕ2) = r2/(4r1) cot(2πx) for x ∈ [x̃, 1/4],

and hence we find

F (x, z−(x)) = Σ + sin(2πx)2(δ − r1)− cos(2πx)2
r22
8r1

for x ∈ [x̃, 1/4].

The computations for the odd case ϕ = π are analogous and this yields the result.

The boundary parametrization is shown in Figure 5.4, and the resulting optimal derivative function µ as
well as the optimal path and the set of stabilizable states in the Bloch sphere are presented in Figure 5.5
and Figure 5.6 respectively.
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Figure 5.5: For the same two real systems we plot the set-valued function derv of achievable derivatives
and the optimal derivatives µ, which can be computed using Lemma 5.4.7. The colors used correspond
to those of Figure 5.4.

Figure 5.6: For the same two real systems we plot the optimal path through the Bloch ball and the set of
stabilizable states. Note that the parabolic parts of the boundary of Q correspond to horizontal parts in
the Bloch ball, reminiscent of the magic plane in the Bloch equations case, cf. Appendix 5.A. The rest
of the path lies in the xz-plane. The colors used correspond to those of Figure 5.4.

Coolable Systems

In Theorem 4.3.7 coolability of Markovian quantum systems with fast unitary control was character-
ized. As a consequence, in the qubit case the system is asymptotically coolable if and only if the Lind-
blad terms Vk can be simultaneously unitarily triangulated without being simultaneously diagonal, see
also [RBR12, Thm. 5.2]. For non-unital rank one systems this is always satisfied, and such systems will
be studied in detail in Section 6.3.

Lemma 5.6.4. Coolable systems are either degenerate or odd.

Proof. As usual we choose the Lindblad terms Vk traceless and the basis such that
∑r

k=1[Vk, V
∗
k ] is

diagonal. Then the Vk have the form Vk =
( uk vk
wk −uk

)
, where uk, vk, wk ∈ C for k = 1, . . . , r.

Let u, v, w ∈ Cr be the vectors with coefficients uk, vk and wk respectively. We will use the short-
hand notation (u, v) =

∑r
k=1 ukvk and |v| =

√
(v, v). Diagonality of

∑r
k=1[Vk, V

∗
k ] is equivalent to

(v, u) = (u,w). It is easy to show that one can always modify the basis (while keeping
∑r

k=1[Vk, V
∗
k ]

diagonal) such that (v, w) ≥ 0 and we will make this assumption. If (v, w) = 0 then r1 = 0 and the
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system is degenerate, hence assume that (v, w) > 0 and thus ϕ1 = π
2 . Now consider a common eigen-

vector of all Vk. If it is proportional to (1, 0)⊤ or (0, 1)⊤ it is easy to see that r2 = 0. Hence assume
that the eigenvector is of the form (1, β) with β ̸= 0. We will show that indeed β ∈ R. From the
eigenvalue equation we obtain that 2uk = wk

β − βvk for all k = 1, . . . , r. By taking the inner product
with v and w and using (v, u) = (u,w) we find that β|v|2 + 1

β
|w|2 = ( 1β + β)(v, w). By considering

the complex argument of each side it is clear that β must be real. But then it follows from the above that
2(v, u) = 1

β (v, w)−β|v|
2 and so (v, u) is real as well. Thus ϕ2 = nπ is an integer multiple of π. Thus

ϕ = ϕ1 − 2ϕ2 +
π
2 = (1− 2n)π and the system is odd as desired.

Since non-degenerate coolable systems are integral, the results of the previous section still apply.
However, using the simultaneous triangular form of the Lindblad terms another parametrization can be
obtained, see Figure 5.7. Choosing all Vk traceless and an appropriate basis, we may assume that they
are of the form Vk =

( uk vk
0 −uk

)
, where uk, vk ∈ C are arbitrary for k = 1, . . . , r. Let u, v ∈ Cr be the

vectors with coefficients uk and vk, then we define

c1(x) = |v|2 cos(2πx), c3(x) = 2|u|2 sin2(2πx) + |v|2(cos2(2πx) + 1)/2,

c2(x) = −2|(u, v)| sin(2πx), c4(x) = −|(u, v)| sin(4πx).

where again (u, v) =
∑r

k=1 ukvk and |v| =
√

(v, v).

Lemma 5.6.5. For a coolable system in the form described above, the space of generators can be
parametrized as {(c1(x) + c2(x) sin(2πz), c3(x) + c4(x) sin(2πz)) : x ∈ [0, 1/2], z ∈ [0, 1)}, where
each point is obtained using the unitary Ux,z . The non-parabolic part of the boundary is achieved by
z = 1

4 . Moreover, the parabolic segment lies on a parabola which is tangent to the bisectors and has
the form a 7→ Σ+ δ + r2/2 +

1
4(Σ+δ+r2/2)

a2.

Proof. This follows directly from the computations in Appendix 5.B.
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Figure 5.7: Two different parametrizations of the space of generators for a coolable system. The usual
parametrization is on the left, and the parametrization of Lemma 5.6.5 is on the right. The Lindblad
terms are given by

(
0.7−0.5i 0.6−0.6i

0.0 −0.8+0.9i

)
,
(
0.8−0.3i −1.0

0.0 0.1

)
, and

(
0.3−0.2i −0.2+0.7i

0.0 0.2−0.6i

)
.
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5.A Special Systems

In this section we study some highly structured systems, namely unital systems and the Bloch equations.
The case of rank one systems, i.e. those defined by a single Lindblad term, will be treated in detail in
Section 6.3.

Unital Systems

A simple but broad class of examples is given by unital systems, which are defined by −L(1) =∑r
k=1[Vk, V

∗
k ] = 0. This condition is independent of the Hamiltonian part of −L, and hence also

of the control Hamiltonians. Unital systems in arbitrary (finite) dimension have been addressed in Sec-
tion 4.4. The qubit case presented here allows for even stronger results. Unital channels were also
studied in [Muk+13, Sec. IV, V] and in [Yua10].

Lemma 5.A.1. The following are equivalent:

(i) −L is unital,

(ii) the optimal derivative function satisfies µ(1/2) = 0,

(iii) the space of generators satisfies Q ⊂ {(0, y) : y ≥ 0}.

Proof. By Lemma 5.3.1, µ(1/2) = 0 if and only if
∑r

k=1[Vk, V
∗
k ] = 0. This shows the equivalence

of (i) and (ii). Now assume (ii), then every line inQ passes through (1/2, 0) due to the central symmetry.
This is equivalent to J12(U) = J21(U) for all U ∈ SU(2) and hence to (iii).

Condition (ii) implies that the graph of derv is a cone with origin (1/2, 0), as illustrated in Figure 5.8.
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Figure 5.8: The graph of derv for two unital systems. As shown in Lemma 5.A.1, all lines pass through
(1/2, 0), and this is indeed characteristic of unital systems. The systems used are defined by √

γkσk for
k ∈ x, y, z. Since the Pauli matrices are normal, such systems are always unital. Left: The system is
defined by γx = 1 and γy = γz = 0, so it is of rank one and by Lemma 5.A.2 it is unital stabilizable.
By Lemma 5.A.3 it holds that derv(0) = [0, 1]. Right: The system is defined by γx = 4, γy = 2, and
γz = 1. Hence by Proposition 5.A.5 it holds that derv(0) = [3, 6].

It is clear that for unital systems the stabilizable region is either {1/2} or [0, 1]. Moreover derv, µ, and
Q are completely described by the minimal and maximal values of derv(0).

Lemma 5.A.2. Let −L be an arbitrary Lindblad generator and let Vk be a corresponding family of
Lindblad terms. Then the following are equivalent:

(i) all Vk are normal and commute with each other,
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(ii) the space of generators satisfies (0, 0) ∈ Q,

(iii) the system is unital and the stabilizable region is all of [0, 1].

We call such systems unital stabilizable.

Proof. Since (i) is equivalent to the existence of a unitary U ∈ SU(2) simultaneously diagonalizing
all Vk, it is also equivalent to (ii). Now assume the conditions above. This implies that all of [0, 1] is
stabilizable and that the system is unital. This shows (iii). Finally assume (iii). The system is unital and
so [0, 1] is stabilizable only if (0, 0) ∈ Q. This concludes the proof.

Clearly for a unital stabilizable system, µ is completely characterized by its value at 0. The following
result yields a simple way to determine this value.

Lemma 5.A.3. Consider a unital stabilizable system. Then µ(0) = 1
4

∑r
k=1 |λ1(Vk)−λ2(Vk)|2 where

the λi(Vk) denote the eigenvalues of Vk.

Proof. By Lemma 5.A.2 all Lindblad terms Vk are simultaneously unitarily diagonalizable. Using a
unitary change of basis, we may assume that they are indeed diagonal. Moreover we may assume that
they are traceless. Hence all Lindblad terms are multiples of σz . Applying a unitary reshuffling to the Vk
one may assume that all but one Vk are zero. Performing this calculation yields the desired result.

Now we will completely describe µ and Q for arbitrary unital systems. For this let C ∈ C3,3 denote
the Kossakowski matrix (cf. [BP02, p. 121]) of the system with respect to the Pauli basis {σx, σy, σz}.

Lemma 5.A.4. The system is unital if and only if C is real.

Proof. We will give a sketch of the proof. Using the general “non-diagonal” form of the Lindblad
equation (cf. [BP02, p. 121]) with respect to the Pauli basis one finds by a simple computation that
the generator is unital, i.e. −L(1) = 0, if and only if the Kossakowski matrix C is symmetric, or
equivalently, real.

The following recovers a result from [Yua10].

Proposition 5.A.5. Consider a unital system. Let γ1 ≥ γ2 ≥ γ3 denote the eigenvalues of C. Then
derv(0) = [γ2 + γ3, γ1 + γ2].

Proof. Applying a unitary basis transformation to the qubit system changes the Kossakowski matrix
via a corresponding orthogonal transformation. Since C is real, it can be orthogonally diagonalized
and hence, without loss of generality, we can assume that the Lindblad terms are √

γ1σx, √γ2σy, and√
γ3σz . The result then follows easily from the computation in Appendix 5.B.

Bloch Equations

Another family of simple Lindblad generators for the qubit is given by those which have a rotation
symmetry about some axis, which reduces the dimension of the problem. Without loss of generality
we assume that the symmetry is about the z-axis. Such generators correspond to the well-known Bloch
equations. It turns out that such systems can be solved analytically, and we will do so in detail in this
section. In Lemma 5.A.10 we recover a known result from [Lap+10] about the so-called magic plane for
optimal heating and in Lemma 5.A.12 we recover the steady state ellipsoid from [Lap+13]. The optimal
controls can also be determined, as was done in Section 2.6. A special case of the Bloch equations was
also considered in detail in [Muk+13, Sec. III].
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The Bloch equations are equivalent to the Lindblad generator defined by the Lindblad terms√γ+σ+,√
γ−σ− and √

γzσz where σ± = (σx ± iσy)/2 and γ+, γ−, γz ≥ 0. The case considered in [Muk+13,
Sec. III] corresponds to the case γz = 0. For convenience we introduce the following parameters:

∆ = |γ+ − γ−|, Σ = γ+ + γ−, δ = 2γz − Σ/2 .

Indeed, the values of ∆, Σ, and δ defined here correspond to those defined in the general case in Sec-
tion 5.5 with r1 = r2 = 0. By a change of basis we may and will assume without loss of generality that
γ+ ≥ γ−.

Remark 5.A.6. The Bloch equations for a single qubit are often written in the following form, see for
instance [AM11, Sec. 5.5],

Ṁ = γM×B−R(M−Mβ), R = diag(T−1
2 , T−1

2 , T−1
1 ) ,

where M is the spin magnetization of the system, γ is the gyromagnetic ratio, B = (0, 0, B) is the
magnetic field, andR is the relaxation matrix with T1 the longitudinal and T2 the transversal relaxation
time. Furthermore Mβ = (0, 0,Mβ) is the steady state magnetization and satisfies 2Mβ/(γℏ) ∈
[−1, 1]. Then we have the relations

T−1
1 = γ+ + γ− = Σ, T−1

2 = (γ+ + γ− + 4γz)/2 = Σ + δ

2Mβ/(γℏ) = (γ+ − γ−)/(γ+ + γ−) = ∆/Σ ,

Note that the famous relation 2T1 ≥ T2 is equivalent to the non-negativity of the relaxation rates γ+, γ−
and γz and hence to the complete positivity of the evolution.

The following results analytically parametrize the space of generators Q and deduce the analytical
formula for the optimal derivative function µ. See Figure 5.9 for examples. As a consequence we can
also determine the purest stabilizable state.

Lemma 5.A.7. For the Bloch equations, the space of generatorsQ is the graph of the parabolic segment

f(a) = Σ + δ
(
1− a2

∆2

)
, a ∈ [−∆,∆].

The point (a, f(a)) can be obtained using the unitary exp(iπxσx) satisfying a = ∆cos(2πx).

Proof. Consider an initial density matrix on the z-axis of the Bloch ball. Then every density matrix in
its unitary orbit can be reached by applying an x-rotation followed by a z-rotation. However, since the
Lindblad terms are z-symmetric, it suffices to consider only x-rotations. That is

Q = {(J12(U)− J21(U), J12(U) + J21(U)) : U = exp(iπxσx), x ∈ [0, 1/2]} . (5.5)

Then, evaluating the above expression one obtains the points

((γ+ − γ−) cos(2πx),
3(γ++γ−)

4 + γz +
1
4(γ+ + γ− − 4γz) cos(4πx)), x ∈ [0, 1/2]. (5.6)

Setting a = ∆cos(2πx) and noting that cos(4πx) = 2(a/∆)2 − 1 we obtain the desired points.

Lemma 5.A.8. For the Bloch equations, the upper bound µ : [0, 1] → R takes the form

µ(λ) =

{
∆2

8δ(1−2λ) +
(Σ+δ)(1−2λ)

2 if λ ∈ I
1
2(∆ + (1− 2λ)Σ) if λ ∈ [0, 1] \ I,

where I =


[0, 12 − ∆

4δ ] if δ ≥ ∆
2

[12 − ∆
4δ , 1] if δ ≤ −∆

2

∅ otherwise ,

in particular 1/2 /∈ I .
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Figure 5.9: Several examples of systems defined by Bloch equations. For all cases we chose γ+ = 1
and γ− = 1/2. Hence Σ = 3/2 and ∆ = 1/2. We consider different values of γz , and hence δ. Left:
The space of generators Q for fixed Σ and ∆ and different δ, as described in Lemma 5.A.7. In each
case we get a parabolic segment with endpoints (±∆,Σ) and intersecting the ordinate at Σ + δ. By
definition δ ≥ Σ/2 and hence the parabolas are contained between the lines connecting the endpoints
with the origin (gray dashed). This allows us to find the purest achievable state in Corollary 5.A.9.
Right: The optimal derivative µ for fixed Σ and ∆ and different δ, as described in Lemma 5.A.8. For
δ ∈ [−∆/2,∆/2] the optimal derivative µ is linear (green dashed) and only depends on γ+ and γ−
(or Σ and ∆ equivalently). For other values of δ the upper bound has to be modified on an interval I
defined in the same lemma. Note that this modification does not affect the intersection of µ with the
abscissa, again reflecting Corollary 5.A.9.

Proof. Due to Proposition 5.3.4 we have to solve the linear maximization max(a,b)∈Q
1
2(a+(1−2λ)b).

We see that if λ = 1/2 then the maximum is achieved at (∆,Σ) ∈ Q with value ∆/2. We have to
consider the shape of the parabolic segment depending on δ. It is clear that for δ = 0 this is just a line
segment, for δ < 0 it is convex, and for δ > 0 it is concave. Note also that f ′(∆) = −2δ

∆ . Hence if
−∆/2 < δ < ∆/2 then the maximum will be achieved on (∆,Σ) ∈ Q for all λ ∈ [0, 1] and so µ
will be the affine linear function µ(λ) = 1

2(∆ + (1 − 2λ)Σ). This proves the case I = ∅. Now let
δ ≥ ∆/2 (the case δ ≤ −∆/2 is analogous). Then the parabolic segment is concave. For large λ, the
maximum will still be at (∆,Σ) ∈ Q, but for λ small enough, the maximum will be achieved in the
interior of the parabolic segment. The switching point occurs when the vector (1, 1− 2λ) is orthogonal
to (1, f ′(∆)), that is when 1 + (1 − 2λ)(−2δ/∆) = 0 which is equivalent to λ = 1

2 − ∆
4δ . Hence it

remains to determine µ on I = [0, 12 − ∆
4δ ]. For this we compute

−2δa
∆2 (1− 2λ) = −1 ⇐⇒ a(λ) = ∆2

2δ(1−2λ) , (5.7)

and plugging in we get on I that µ(λ) = 1
2(a(λ) + (1 − 2λ)f(a(λ))), which evaluates to the desired

result.

Corollary 5.A.9. The purest stabilizable state λ⋆, that is, the state satisfying µ(λ⋆) = 0, is given by
λ⋆ = 1

2 + ∆
2Σ and {λ⋆, 1− λ⋆} is the spectrum of the fixed point of the system.

Proof. Since γz ≥ 0 we must have δ ≥ −Σ/2, and hence f ′(∆) = −2δ
∆ ≤ Σ

∆ , which shows that the
line defined by (∆,Σ) ∈ Q is the line giving the purest stabilizable state. Hence 1

2(∆+(1−2λ⋆)Σ) =
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0 ⇐⇒ λ⋆ = 1
2 +

∆
2Σ , as desired. (This also follows from Lemma 5.4.3 and noting that γz can be set to

0 without loss of generality.) By z-symmetry, the diagonal states are invariant, and hence by Brouwer’s
Theorem, there is a fixed point which is diagonal. If this fixed point is pure, then γ− = 0 and we are
done. Otherwise, the fixed point is unique. If we denote the larger eigenvalue of the fixed point by λ we
obtain that −γ−λ+ γ+(1− λ) = 0 which shows that λ = 1

2 + ∆
2Σ , as desired.

From these results one can deduce the optimal path through the Bloch ball and the corresponding
optimal controls in the original control system (B), see Section 2.6 for details. Here we just recover the
so called magic plane and steady state ellipsoid from [Lap+10, Lap+13].

Lemma 5.A.10. If δ ≥ ∆/2, or equivalently, γz ≥ γ+/2, then for λ ∈ I = [0, 12 − ∆
4δ ], the points in

the Bloch ball achieving the optimal derivative µ(λ) are given by the plane perpendicular to the z-axis
and passing through the density matrix diag(λ, 1 − λ) with λ = 1

2 − ∆
4δ . If λ ∈ [12 − ∆

4δ ,
1
2 ], then the

maximal derivative is reached on the z-axis on the same side of the origin as the magic plane.

Proof. If δ ≥ ∆/2, then the interval I = [0, 12 − ∆
4δ ] lies in [0, 12 ]. For λ ∈ I , the upper bound µ(λ)

is non-linear. We want to find, for each λ ∈ I , the density matrices ρ for which the optimal derivative
µ(λ) is achieved. For this we findU such that the optimal derivative is achieved forU diag(λ, 1−λ)U∗.
From (5.7) it follows that for λ ∈ I the optimal point in the space of generators Q has a = ∆2/(2δ(1−
2λ)). From (5.5) and (5.6) it follows that a corresponding unitary is exp(iπxσx) with a = ∆cos(2πx).
Hence the optimal unitary can be found from x = 1

2π arccos
(

∆
2δ(1−2λ)

)
. Using the z-symmetry of the

problem, this shows that for λ ∈ I the optimal derivatives are reached on a plane perpendicular to the
z-axis and passing through the point diag(λ, 1− λ) with λ = 1

2 − ∆
4δ .

Remark 5.A.11. Lemma 5.A.10 recovers a known result from [Lap+10, Lap+13], which was derived
using the PMP. There, the parameters are scaled such that Σ = ∆, or equivalently γ− = 0, and hence
γ+ = T−1

1 and γz = (2T2)
−1 − (4T1)

−1. The condition from Lemma 5.A.10 then becomes T1 ≥ 3
2T2

and the magic plane intersects the z-axis at radius r = T2/(2(T1 − T2)) in the lower half. Recall that
here the radius of the Bloch sphere is 1

2 .

Lemma 5.A.12. The set of stabilizable states in the Bloch disk is an ellipsoid in the upper halfspace
which is rotationally symmetric around the z-axis and has a vertical semiaxis of length ∆

4Σ and hori-
zontal semiaxes of length ∆

4
√

Σ(Σ+δ/2)
.

Proof. By Lemma 5.4.6 we obtain the parametrization in polar coordinates r(θ, ϕ) = ∆
2

cos(θ)
Σ+δ sin(θ)2

.
The result follows from Lemma 5.B.7.

Remark 5.A.13. This recovers another known result from [Lap+13], with parameters rescaled as in
Remark 5.A.11. Then the ellipse has vertical semiaxis length 1/4, i.e. it touches the north pole, and
horizontal semiaxis length

√
T2/(2T1). Again recall that here the radius of the Bloch sphere is 1

2 .

5.B Technical Computations

Detailed Computation for Proposition 5.5.2

The unitary Ux,z = exp(iπzσz) exp(iπxσx) has the form

Ux,z =

(
αc iαs
iα∗s α∗c

)
, and hence U∗

x,z =

(
α∗c −iαs

−iα∗s αc

)
,
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where α = eiπz and s = sin(πx) and c = cos(πx). For a traceless Lindblad term

V =

(
u v
w −u

)
where u, v, w ∈ C are arbitrary we immediately obtain

(U∗
x,zV Ux,z)12 = 2icsu+ (α∗)2c2v + α2s2w

(U∗
x,zV Ux,z)21 = −2icsu+ (α∗)2s2v + α2c2w ,

and thus

J12(Ux,z)− J21(Ux,z) = |2icsu+ (α∗)2c2v + α2s2w|2 − | − 2icsu+ (α∗)2s2v + α2c2w|2

= (c2 − s2)(|v|2 − |w|2) + 2Re(2icsu(α2v∗ + (α∗)2w∗))

= (|v|2 − |w|2) cos(2πx) + 2 sin(2πx) Im(e−2πiz(uv∗ − wu∗))

where the first term stems from the norm squared terms and the rest from the cross terms. Next we find

J12(Ux,z) + J21(Ux,z) = |2icsu+ (α∗)2c2v + α2s2w|2 + | − 2icsu+ (α∗)2s2v + α2c2w|2

= 8c2s2|u|2 + (c4 + s4)(|v|2 + |w|2)
+ 4c2s2Re(α4vw∗)− 4cs(c2 − s2) Im(u(α2v∗ − (α∗)2w∗)),

where the first two terms stem from the norm squared terms and the remaining ones from the cross terms.
Using the trigonometric identities cos(πx)4+sin(πx)4 = 1−sin(2πx)2/2 and cos(πx)2−sin(πx)2 =
cos(2πx) and cos(πx) sin(πx) = sin(2πx)/2 we obtain

J12(Ux,z) + J21(Ux,z) = |v|2 + |w|2 + sin(2πx)2
(
2|u|2 − |v|2+|w|2

2

)
+ sin(2πx)2Re(α4vw∗)− 2 sin(2πx) cos(2πx) Im(α2(uv∗ + u∗w)).

If we now consider a finite family of traceless Lindblad terms

Vk =

(
uk vk
wk −uk

)
,

and define Σ =
∑r

k=1 |vk|2 + |wk|2, and ∆ =
∑r

k=1 |vk|2 − |wk|2, and δ =
∑r

k=1 2|uk|2 − (|vk|2 +
|wk|2)/2, as well as r1eiϕ1 = i

∑r
k=1 vkw

∗
k and r2eiϕ2 = 2

∑r
k=1(ukv

∗
k + u∗kwk) then we obtain

J12(Ux,z)− J21(Ux,z) = ∆cos(2πx) + sin(2πx)
∑r

k=1 Im(e−2πiz(ukv
∗
k − wku

∗
k))

J12(Ux,z) + J21(Ux,z) = Σ + δ sin(2πx)2 + r1 sin(2πx)
2 sin(4πz + ϕ1)

− r2 sin(2πx) cos(2πx) sin(2πz + ϕ2),

since Re(α4vkw
∗
k) = Re(−ir1e

i(4πz+π1)) = r1 sin(4πz + π1) and since 2 Im(α2(ukv
∗
k + u∗kwk)) =

r2 sin(2πz + ϕ2). Finally, since
∑r

k=1[Vk, V
∗
k ] is diagonal if and only if

∑r
k=1 ukv

∗
k =

∑r
k=1wku

∗
k,

we obtain in this case that

J12(Ux,z)− J21(Ux,z) = ∆cos(2πx).
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Figure 5.10: Contour plots of the functionGϕ(ξ, ζ) for different values of ϕ together with the maximiz-
ers (red) and minimizers (blue) as a function of ξ.
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Study of the Function Gϕ

In (5.4) we defined the function

Gϕ(ξ, ζ) = (1− ξ) sin(4πζ + ϕ− π/2)− ξ sin(2πζ),

for ξ, ζ ∈ [0, 1] and ϕ ∈ (−π, π]. See Figure 5.10 for plots of this function for different values of ϕ.

Lemma 5.B.1. Let ϕ ∈ (−π, 0) ∪ (0, π) and define the function

ξ⋆(ζ) =
1

1 + cos(2πζ)
2 cos(4πζ+ϕ−π/2)

,

and the intervals

I+ =

{
[3/4− ϕ/(4π), 3/4] if ϕ > 0

[3/4, 3/4− ϕ/(4π)] if ϕ < 0,
I− =

{
[1/4, 1/4 + (π − ϕ)/(4π))] if ϕ > 0

[−ϕ/(4π), 1/4] if ϕ < 0.

Let ξ+ and ξ− denote the restrictions of ξ⋆ to I+ and I− respectively. These functions are bijective onto
[0, 1], and it holds that

(ξ+)−1(ξ) = argmax
ζ̃∈[0,1]

Gϕ(ξ, ζ̃), (ξ−)−1(ξ) = argmin
ζ̃∈[0,1]

Gϕ(ξ, ζ̃),

for all ξ ∈ [0, 1]. Here the argmax and argmin are unique for all ξ ∈ (0, 1] and for ξ = 0 there is a
spurious second solution which we omit.

The Lemma above runs into problems when ϕ ∈ {0, π}, since in this case the functions ξ+ and ξ−
are not surjective to [0, 1] anymore. However it turns out that in these cases we can compute the desired
maximizers and minimizers explicitly.

Lemma 5.B.2. If ϕ = 0 then we define ζ+(ξ) ≡ 3/4 and

ζ−(ξ) =

{
1
4 ± ( 1

2π arcsin
1

4(1/ξ−1) −
1
4) if ξ ∈ [0, 4/5]

1
4 if ξ ∈ [4/5, 1],

then ζ+(ξ) is the unique maximizer of G0(ξ, ·) for all ξ ∈ [0, 1] and the two possibilities for ζ−(ξ) are
the only minimizers for G0(ξ, ·). Similarly, for ϕ = π we have ζ−(ξ) ≡ 1/4 and

ζ+(ξ) =

{
3
4 ± ( 1

2π arcsin
1

4(1/ξ−1) −
3
4) if ξ ∈ [0, 4/5]

3
4 if ξ ∈ [4/5, 1].

Ellipses

In this section we derive a useful polar coordinate parametrization of ellipses passing through the origin.
For a, b > 0 and ϕ0 ∈ (−π, π] we define the following parametrization of an ellipse:

Ea,b,ϕ0(ϕ) =

(
a(cos(ϕ)− cos(ϕ0))
b(sin(ϕ)− sin(ϕ0))

)
, ϕ ∈ (−π, π].

This is simply an ellipse with semiaxes of length a and b, translated such that it intersect the origin when
ϕ = ϕ0, and the center of the ellipse is given by (x0, y0) = (−a cos(ϕ0),−b sin(ϕ0)).
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Lemma 5.B.3. In polar coordinates (r, ψ), where r is allowed to be negative, we can parametrize the
ellipse Ea,b,ϕ0 as

r(ψ) = −2
cos(ϕ0) cos(ψ)

a + sin(ϕ0) sin(ψ)
b

cos(ψ)2

a2
+ sin(ψ)2

b2

, ψ ∈ (−π/2, π/2]. (5.8)

Proof. Let ψ ∈ (−π/2, π/2) be given. The corresponding slope is m = tan(ψ). We are looking for
the intersections of the line y = mx and the ellipse(

x− x0
a

)2

+

(
y − y0
b

)2

= 1.

Note that the origin is always in this intersection. If the line is tangent to the ellipse, this is the only
intersection, otherwise there exists exactly one more. We plug in and using x ̸= 0 we find(

1

a2
− m2

b2

)
x2 +

(
−2x0
a2

− 2my0
b2

)
x+

(x0
a

)2
+
(y0
b

)2
= 1

and using the definition of (x0, y0) this implies that

x = 2
x0
a2

+ my0
b2

1
a2

+ m2

b2

.

The distance r of the intersection to the origin can be found by computing

r2 = (1 +m2)x2 = 4

(
x0 cos(ψ)

a2
+ y0 sin(ψ)

b2

cos(ψ)2

a2
+ sin(ψ)2

b2

)2

,

and since by the choice of the range of ψ it holds that sign(r) = sign(x), we see that

r = 2

x0 cos(ψ)
a2

+ y0 sin(ψ)
b2

cos(ψ)2

a2
+ sin(ψ)2

b2

,

and by continuity this formula remains true for ψ = ±π/2, and this concludes the proof.

Note that the ellipse can furthermore be rotated around the center by shifting the angular coordinate,
i.e., ψ 7→ r(ψ− θ). In fact there is a unique angle θ⋆ (modulo 2π), such that the ellipse lies in the upper
halfplane, and the parametrization takes on a simplified form.

Lemma 5.B.4. Let a, b > 0 and ϕ ∈ (−π, π] be given and let Ea,b,ϕ be the corresponding ellipse, with
polar parametrization r(ψ) as in (5.8). Then

θ⋆ = arctan(b cos(ϕ), a sin(ϕ)) ∈ (−π, π]

is the unique angle in (−π, π] such that ψ 7→ r(ψ − θ⋆) takes image in the upper halfplane. Moreover
it holds that

r(ψ − θ⋆) =
σ sin(ψ)

α+ β cos(ψ)2 + γ sin(ψ) cos(ψ)
(5.9)

where

α =

(
cos(θ⋆)

b

)2

+

(
sin(θ⋆)

a

)2

β =

(
1

a2
− 1

b2

)
cos(2θ⋆)

γ =

(
1

a2
− 1

b2

)
sin(2θ⋆) σ = −2

(
1

a
cos(ϕ) sin(θ⋆) +

1

b
sin(ϕ) cos(θ⋆)

)
.
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Proof. If we expand the numerator of r(ψ − θ) we obtain a linear combination of cos(ψ) and sin(ψ).
For the ellipse to lie in the upper or lower halfplane, the coefficient of cos(ψ) must be zero. This gives
the condition

tan(θ) =
b cos(ϕ)

a sin(ϕ)
.

This defines θ only modulo π. To make sure that the ellipse is in the upper halfplane, note that the
function which maps (a, b, ϕ) to the function ψ 7→ r(ψ− θ⋆) is continuous, and the parameter space of
(a, b, ϕ) is connected, hence the ellipse will always lie in the same halfspace. Thus it suffices to check
one ellipse, e.g., a = b = 1 and ϕ = 0. The remainder of the proof is a straightforward computation
using elementary trigonometric identities which we will omit.

Next we want to find a, b, and ϕ given a parametrization as in (5.9). We start with a special case.

Lemma 5.B.5. Let α, β, γ, σ ∈ R with α ̸= 0 and consider the parametrization

r(ψ) =
σ sin(ψ)

α+ β cos(ψ)2 + γ sin(ψ) cos(ψ)
.

Without loss of generality we may assume that6 β2+γ2 = 1 and σ > 0. Then, this is the parametrization
of an ellipse if and only if 2α+ β /∈ [−1, 1], which corresponds to the denominator being non-zero for
all ψ. The ellipse lies in the upper halfplane if and only if 2α+β > 1. In this case, the ellipse is exactly
Ea/s,b/s,ϕ where

θ =
1

2
arctan(γ, β), a =

σ√
|α− sin2(θ)|

, b =
σ√

|α+ cos2(θ)|

ϕ = arctan(b cos(θ), a sin(θ)), s =
1

a
cos(ϕ) sin(θ) +

1

b
sin(ϕ) cos(θ).

Proof. This can be verified by plugging the values into Lemma 5.B.4.

Upright Ellipsoids

Next we address the case of ellipsoids in three dimensions. We will only consider ellipsoids in the
upper half space intersecting the origin and whose center lies on the z-axis, and we will say that they
are upright. As a consequence of Lemma 5.B.5 we find the parametrization of ellipses which are upright
in the analogous sense.

Corollary 5.B.6. Let α, β, σ ∈ R with σ > 0 and α ̸= 0 as well as α > max(0,−β). Then the curve
given in polar coordinates by

r(ψ) =
σ sin(ψ)

α+ β cos(ψ)2

parametrizes the upright ellipse Ea,b,0 with

a =
σ

2|α|
, b =

σ

2
√
|α(α+ β)|

.

Lemma 5.B.7. Let α, β, η, σ ∈ R with σ > 0 and α ̸= 0. Then the surface parametrized by

r(θ, ϕ) =
σ cos(θ)

α+ (β + η cos(2ϕ)) sin(θ)2

6If β = γ = 0 then the parametrization is that of a circle of diameter σ/α.
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is an upright ellipsoid with axes

a =
σ

2
√
|α(α+ β + η)|

, b =
σ

2
√

|α(α+ β − η)|
, c =

σ

2|α|
.





CHAPTER 6
Optimal Cooling

6.1 Introduction

Cooling quantum mechanical systems to a well-defined ground state is an essential task in quantum
information technologies such as quantum computing [DiV00]. For trapped ions or cold atoms, the
preferred method is laser cooling, such as Doppler cooling, Sisyphus cooling [WDC92], Raman cool-
ing [Mon+95] and many others, as well as using strong coupling [Mac+10] or aided by optimal con-
trol [Li+21]. Another popular approach is algorithmic cooling [Boy+02, SMW05, PVC06, ALP19].

Building on the methods and results of the previous chapters, in this chapter we use the reduced
control system together with optimal control theory to derive provably time-optimal schemes for cooling
Markovian quantum systems with fast unitary control.

Many results have been derived in the qubit case, see Chapter 5 and references therein. Some results
for qutrits were obtained in [STK04] using the reduced control system. A system of two coupled spins
with control on one of them was considered in [Bas+21].

We recover and generalize the results from [STK04], and we obtain optimal cooling solutions for
a certain four-level system. All solutions are obtained using purely analytical means and in each case
we prove that the given solution is indeed time-optimal. Notably our time-optimal controls are obtained
without invoking the Hamilton–Jacobi–Bellman (HJB) Equation or the Pontryagin Maximum Principle
(PMP) . This is made possible by using a specialization of the Majorization Theorem 2.5.3, which allows
to significantly simplify the search for optimal controls.

Outline

The chapter is organised as follows: Section 6.2 recalls the characterization of coolable systems in
simple algebraic terms. The methods are illustrated in Section 6.3 by solving the rank one qubit case
is detail. Section 6.4 goes on to study achievable derivatives in higher dimensions and introduces two
systems to be solved in the subsequent sections. Section 6.5 presents a method of reducing the achievable
derivatives to a subset of optimal derivatives, and finally Section 6.6 determines optimal solutions to
the higher dimensional systems introduced in Section 6.4.

157
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6.2 Asymptotically Coolable Systems

Since we assume to have fast unitary control over the system, any pure state can be transformed into
any other pure state at no cost. Hence, any pure state can also be transformed into the ground state of
the system Hamiltonian. For this reason we will equate cooling the system with purifying it. Moreover,
due to the exponential nature of the Lindblad equation, pure states can only be reached asymptotically.
Thus one has to clarify what is meant by “cooling the system in the shortest amount of time possible”.
In particular one has to define a cost (resp. reward) function. The task then becomes to minimize (resp.
maximize) this measure in a given time, or to reach a certain value in the shortest possible amount of
time.

Some reasonable examples of such measures include the purity of the state, the von Neumann en-
tropy, the largest eigenvalue (which is the maximum fidelity with a pure state) or the minimum energy
(with respect to some Hamiltonian with non-degenerate ground state). An important property of these
functions is that they are Schur-convex (or concave), i.e. they are monotone with respect to majorization,
which will significantly simplify the search for optimal solutions. The details are given in Section 6.5.

The first question to ask is whether the system under consideration is coolable at all, by which we
mean that a pure quantum state can be reached from every given initial state, at least in an asymptotic
sense. Luckily, we already fully characterized coolability in Theorem 4.3.7. Put simply, the system
is asymptotically coolable if and only if there exists a common eigenvector of all Vk which is not a
common left eigenvector. Recall also from Appendix 4.C that there is an efficient algorithm for finding
such a common eigenvector, if it exists.

In the following we will only deal with asymptotically coolable systems. If the system is not
coolable, one first has to determine which states are reachable, and which of them is the coolest by
some appropriate measure. The question of reachability was discussed in Chapter 4.

6.3 Optimal Cooling of a Qubit

The simplest special case is that of a single qubit. In this section we focus on rank one systems, which are
defined by a single Lindblad term V . These systems are not trivial, but they still allow for a complete
description. The general qubit case (including non-coolable systems) was treated in Chapter 5, with
coolable systems already addressed in Section 5.6. The solution obtained here shares some similarity
with the solution obtained for the special case of the Bloch equations, see Appendix 5.A, which is
however simpler to solve as it has a symmetry which allows to reduce the dimensionality of the problem.
For later use we define the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Let V ∈ C2,2 be an arbitrary Lindblad term. First we have to check whether such a system is
coolable at all. Indeed, it follows immediately from Theorem 4.3.7 that the system is asymptotically
coolable if and only if V is not normal (equivalently if and only if −L is not unital).

At first glance, there are eight real parameters defining the problem but the following result shows
that all but one parameter can be eliminated.

Lemma 6.3.1. Let V ∈ C2,2 be an arbitrary non-normal matrix. Then there exists a (special) unitary
matrix Ũ , a Hermitian matrix H̃ and numbers γ > 0 and ν ∈ [0, 1) with

H̃ = i
4(tr(V

∗)V − tr(V )V ∗), Ṽ =

(
0 1
ν 0

)
,
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such that ΓV = i adH̃ +γΓŨ∗Ṽ Ũ .

Proof. Let Ũ be a unitary such that Ũ [V, V ∗]Ũ∗ is diagonal. Then it is easy to show that Ũ(V −
tr(V )1/2)Ũ∗ is zero on the diagonal. By adjusting Ũ (without renaming) we can additionally make
sure that the off-diagonal elements have the same argument and the top right element has the greater
modulus. Together this gives V − tr(V )1/2 =

√
γeiϕŨ∗Ṽ Ũ∗. The freedom of representation of

the Lindblad equation (Lemma 4.A.3) then implies ΓV = i adH̃ +ΓV−tr(V )1/2 = i adH̃ +γΓŨ∗Ṽ Ũ as
desired.

There are two extremal cases. If ν = 0 we obtain a special case of the Bloch equations, and if ν = 1,
the matrix V is normal and hence the system is not coolable. For this reason we exclude the case ν = 1.

Space of Generators

From now on we assume that we have a single Lindblad term of the form Ṽ as in Lemma 6.3.1 de-
pending only on the parameter ν ∈ [0, 1). The general solution will then be recovered at the end, see
Remark 6.3.8. All figures in this section use the value ν = 1/2.

Recall from Chapter 5 that in the qubit case the generators −LU are defined by two non-negative
real numbers on the off diagonal and hence they can be easily visualized. Indeed, the main tool in the
following will be the space of generators Q which is linearly isomorphic to the set of all −LU :

Q = {(J12(U)− J21(U), J12(U) + J21(U)) : U ∈ SU(2)}.

For rank one systems Q takes on a rather simple form, see Figure 6.1.

-0.5 0.5
a=J12(U)-J21(U)

0.5

1.0

1.5

b=J12(U)+J21(U)

0.2 0.4 0.6 0.8 1.0
λ

-1.0

-0.5

0.5

1.0

μ(λ)

Figure 6.1: Left: The parametrized space of generatorsQ of a rank one system as given in Lemma 6.3.2
and Corollary 6.3.3. The poles of the Bloch sphere are mapped to the corners (±(1− ν2), 1+ ν2). The
latitude lines are vertical, and the equator lies on the b-axis. The longitude lines are parabolas passing
through the poles and intersecting the b-axis between b = 1

2(1± ν)2. Right: Achievable derivatives as
a set-valued function of λ with the upper bound µ, given in Lemma 6.3.5, highlighted.

Lemma 6.3.2. The space of generators can be parametrized as Q = {(a, fz(a)) : a ∈ [−(1− ν2), 1−
ν2], z ∈ [0, 1)}, where

fz(a) = 1 + ν2 − 1 + ν2 − 2 cos(4πz)ν

2

(
1−

( a

1− ν2

)2)
,

In fact, the point (a, fz(a)) can be obtained using the unitary Ux,y = eiπzσzeiπxσx where x satisfies
1− a/(1− ν2) = 2 sin(πx)2. The lower boundary is achieved for z = 1

4 .
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Proof. With Ux,y as above we find (a, b) ∈ Q with a = (1 − 2r)(1 − ν2), and b = 1 + ν2 + 2r(r −
1)|1− e4iπzν|2, where r = sin(πx)2. Hence with some basic trigonometry we get b = 1+ ν2 − 1

2 |1−
e4iπzν|2

(
1− a2

(1−ν2)2
)
.

It is of particular importance to understand the boundary of this set.

Corollary 6.3.3. For V non-normal, the space of generators is the region enclosed between the two
parabolic segments

a 7→ 1 + ν2 − 1
2(1± ν)2

(
1−

(
a

1−ν2
)2)

,

on a ∈ [−1 + ν2, 1− ν2].

Remark 6.3.4. The two extremal parabolas of Corollary 6.3.3 (considered onR) are the unique parabo-
las passing through the points (±(1− ν2), 1 + ν2) which are tangent to the lines a 7→ ±a. The points
of tangency in Q are achieved when U∗Ṽ U is upper or lower triangular. Note that for ν = 0 the two
parabolas coincide (which is consistent with the Bloch case), and as ν → 1 all points tend to the y-axis
which is consistent with unital systems, cf. Appendix 5.A.

Optimal Derivatives and Path

In the qubit case it is convenient to represent the reduced state by the first eigenvalue λ ∈ [0, 1]. The
maximal achievable derivative of λ, denoted by µ : [0, 1] → R, can be obtained from the boundary of
Q via the relation

µ(λ) = max
(a,b)∈Q

1
2(a+ (1− 2λ)b).

Details are given in Chapter 5. A computation then yields the following result, see also Figure 6.1 for
an illustration.

Lemma 6.3.5. Let V be non-normal and λ0 = 1
2(1 +

1−ν
1+ν ), then the optimal derivative µ : [0, 1] → R

takes the form

µ(λ) =

{
1
2(1− ν2 − (1 + ν2)(2λ− 1)) if 0 ≤ λ ≤ λ0

(1−ν2 )2( 1
2λ−1 + 2λ− 1) if λ0 ≤ λ ≤ 1.

The function µ is continuously differentiable.

From this the optimal path through the Bloch ball can be computed.

Lemma 6.3.6. Let t0 = log
(
1− 1+ν2

1+ν

)
/(1 + ν2). The optimal path through the Bloch ball is given by

ρ⋆(t) = AdU⋆(t)(diag(λ
⋆(t))) with U⋆(t) = eiπy

⋆(t)σy and where

λ⋆(t) =

1−e−(1+ν2)t

1+ν2
0 ≤ t ≤ t0

1
2

(
1 +

√
1− ce−(1−ν)2t

)
t ≥ t0

with c = 4ν
(1+ν2)

(
1+ν

ν(1−ν)
) (1−ν)2

(1+ν)2 , is the unique solution to d
dtλ

⋆(t) = µ(λ⋆(t)) with λ⋆(0) = 0 and the
(continuous) function y⋆ is defined by

y⋆(t) =

{
0 0 ≤ t ≤ t0
1
π arcsin

(√
1
2(1 +

1−ν
1+ν

1
1−2λ⋆(t))

)
t ≥ t0.



6.3. OPTIMAL COOLING OF A QUBIT 161

Proof. The function λ⋆ is found by integration and can be checked by differentiating, and y⋆ as a func-
tion of λ⋆ is found by computing the values of x and z (cf. Lemma 6.3.2) which give the boundary point
of Q corresponding to λ.

The optimal path is illustrated in Figure 6.2. Note that the path is much simpler than one might
expect from the formulas.
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����� ����

������ ����

� � � � �
�

���

���

���

���

���

��

Figure 6.2: Left: Time-optimal path from the boundary of the Bloch ball (pure state) to the center
(maximally mixed state) and back. Starting at the south pole, the path follows the z-axis until λ = λ0.
Then the path takes a sharp turn and continues horizontally until it reaches the boundary (which happens
only asymptotically). When projected onto the xy-plane, the horizontal part is a straight line lying on
the negative x-axis (the mirrored path along the positive x-axis is also optimal). The black dots are
equally spaced in time, and accumulate towards the end. The solution shares some similarity with the
so-called magic plane result for the Bloch equations obtained in [Lap+10]. Right: Optimal control
function uy (solid) with direct (dotted) and compensation (dashed) contributions using ν = 1/2. The
control is identically zero on [0, t0] and has a singularity at t0.

Optimal Controls

So far we have found the optimal derivatives of λ and the optimal path of ρ through the Bloch ball. It
remains to determine the corresponding optimal controls of the full control system (D). To simplify the
problem we assume that the control Hamiltonians are the Pauli matrices and the goal is to determine
the corresponding control functions ux, uy and uz .

There are two contributions to the control Hamiltonians. A direct term obtained by differentiating
the optimal control unitary of the reduced system and a compensating term which cancels out the motion
tangent to the unitary orbits induced by the drift −L, see Proposition 2.3.10. This leads to the following
result:

Proposition 6.3.7. A choice of optimal controls is given by ux = uz ≡ 0 on [0,∞). Moreover uy ≡ 0
on [0, t0] and

uy(t) =

1
2λ⋆(t)−1

1−ν
1+ν√

(2λ⋆(t)− 1)2 − (1−ν1+ν )
2
·
(1− ν

2

)2( 1

2λ⋆(t)− 1
− (2λ⋆(t)− 1)

)
+

(1 + ν) sin(2πy⋆(t))

4

( 2(1− ν)

2λ⋆(t)− 1
+ (1 + ν) cos(2πy⋆(t))

)
,
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on t ∈ [t0,∞) and where λ⋆(t) and y⋆(t) are as in Lemma 6.3.6.

Proof. The direct term is
(
d
dtUy⋆(t)

)
U∗
y⋆(t) where Uy = eiπyσy and y⋆(t) is as in Lemma 6.3.6. Using

the chain rule this becomes iπσy
dy⋆

dλ⋆ (λ
⋆(t))µ(λ⋆(t)). The expression follows directly from the eval-

uation of the derivative. The compensation term takes the form ad+ρ (L(ρ)), cf. Proposition 2.3.10,
where adρ(·) = [ρ, ·] and (·)+ is the Moore–Penrose pseudo inverse. The result then follows from an
elementary computation.

The obtained optimal controls are illustrated in Figure 6.2.

Remark 6.3.8. For general non-normal V and with initial state is |0⟩⟨0| the optimal controls are the
following, using the notation from Lemma 6.3.1. First (almost) instantaneously apply the unitary Ũ to
the system. Then apply the control Hamiltonian

H(t) = −H̃ + γuν,y(γt) ŨσyŨ
∗

for t ∈ [0,∞).

6.4 Achievable Derivatives and Speed Limits

Locally the reduced control system can be understood by studying the set of achievable derivatives at
λ, denoted derv(λ) := {−LUλ : U ∈ SU(n)}. Due to continuity of the map U 7→ −LUλ it is clear
that the set is compact and path-connected, but the exact shape is difficult to determine in general.

In the qubit case studied above, derv(λ) was just a closed interval, and we were able to give an
analytical expression. For more general qubit systems this task becomes more difficult, but it still allows
for a partial analytical solution, see Chapter 5. In higher dimensional systems the shape of derv(λ) can
be quite arbitrary, but in some special cases it takes the form of a (convex) polytope, which can be seen
as a generalization of the qubit case. In general however this is not true, although it is still useful to
approximate derv(λ) with polytopes, both from the inside and the outside.

In the remainder of this section we provide some results and examples in this direction. Note that
due to the Relaxation Theorem [AC84, Ch. 2.4, Thm. 2] (cf. the relaxed control system (Λ̄)) we are also
interested in the convex hull of derv(λ).

Examples of Polytopes

We present a few cases where the set of achievable derivatives derv(λ) takes the form of a polytope,
and some examples where derv(λ) is not convex and conv(derv(λ)) is not a polytope.

First, at the maximally mixed state e/n, the set derv(e/n) is always a convex polytope. In fact the
vertices are the vectors containing the eigenvalues of

∑r
k=1[Vk, V

∗
k ] in all possible permutations. This

can be shown using Lemma 3.0.7 together with the Schur–Horn Theorem [Sch23, Hor54].
Another special case occurs at the vertices ei of the simplex ∆n−1 under the assumption that there

is only one Lindblad term V . Indeed, there exists a value 0 < f⋆ ≤ ∥V ∥∞, where ∥ ·∥∞ is the Schatten
∞-norm (i.e. the largest singular value), such that

derv(ei) = f⋆ conv(0, ej − ei : j ̸= i).

Let f(U) be the sum of the squares of the off-diagonal elements in the first column of J(U). Then
f⋆ is the maximal value of f(U), and the value 0 is achievable using the Schur decomposition. Using
unitaries leaving the first basis vector invariant the entire polytope can be obtained.
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It is important to note that generically derv(λ) is not a polytope. For a simple counterexample
consider the Lindblad term V = |1⟩⟨2| +

√
2 |2⟩⟨3| on a qutrit. A numerical computation shows that

for general λ the set derv(λ) is not convex.
In the remainder of this section we introduce two concrete examples where the polytope structure

of derv(λ) occurs, and they will serve as running examples in the following sections.

Qutrit Systems with Spontaneous Emission

Since the qubit case is addressed in detail in Chapter 5, the next logical step is the qutrit. We consider
a special form of system with only spontaneous emissions as described in [STK04] and which includes
the Λ-system. Such systems are defined by Lindblad terms of the form √

ηij |i⟩⟨j| for i, j ∈ {1, . . . , n}.
These systems have the property that J(U) = Θ⊤ΓΘ where Γ = J(1) has entries ηij and Θ is the
unistochastic matrix defined by Θij = |Uij |2. We focus on the following two systems:

ΓΛ =

 0 0 0
γ1 0 0
γ2 0 0

 , ΓV =

0 γ1 γ2
0 0 0
0 0 0

 .

The first one is the Λ-system studied in [STK04] and the second one is an inverted version, which we
call the V-system. We now show that for a V-system derv(λ) is always a convex polytope.

Proposition 6.4.1. For the V-system in three dimensions it holds that derv(λ) = conv({−LPλ : P ∈
S3}), where S3 is the symmetric group represented by permutation matrices.

Proof. We find that the generator−LU equals the convex combination of generators u1Γ1+u2Γ2+u3Γ3

where the Γi are 0 γ̃2 γ̃3
0 −γ̃2 0
0 0 −γ̃3

 ,

−γ̃1 0 0
γ̃1 0 γ̃3
0 0 −γ̃3

 ,

−γ̃1 0 0
0 −γ̃2 0
γ̃1 γ̃2 0


and where (γ̃1, γ̃2, γ̃3) = (γ2, γ1, 0)Θ.

It suffices to show that Γ1λ lies in the desired polytope. Consider the following linear bijection:

(λ̇1, λ̇2, λ̇3) 7→ (x, y) := (−λ̇2/λ2,−λ̇3/λ3).

In these coordinates, the polytope intersected with the first quadrant is defined by

x, y ≤ max(γ1, γ2), x+ y ≤ γ1 + γ2

and clearly Γ1λ satisfies this since (γ̃1, γ̃2, γ̃3) ⪯ (γ2, γ1, 0) as Θ is bistochastic.

One might be tempted to try and generalize this result to all qutrit systems with spontaneous emis-
sion, but unfortunately it fails already for the Λ-system, see Figure 6.3 and the following example.

Example 6.4.2. Consider the Λ-system with γ1 = γ2 = 1 and let λ = (1, 0, 0)⊤. Using only permu-
tations we obtain the derivatives (0, 0, 0)⊤ and (−2, 1, 1)⊤. However, a part of the boundary can be
obtained by computingx y 0

y x 0
0 0 1

0 0 0
1 0 0
1 0 0

x y 0
y x 0
0 0 1

 =

 ∗ y2 0
xy ∗ 0
x y 0

 ,

where x ∈ [0, 1] and y = 1 − x. Clearly the resulting derivatives do not lie in the convex hull of
(0, 0, 0)⊤ and (−2, 1, 1)⊤.
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(1,0,0)

(0,1,0) (0,0,1)

(1,0,0)

(0,1,0) (0,0,1)

Figure 6.3: Left: Achievable derivatives in the V-system with γ1 = 1 and γ2 = 2 at the point λ =
(0.4, 0.35, 0.25). Right: Achievable derivatives in the Λ-system with γ1 = 1 and γ2 = 2 at the point
λ = (0.6, 0.25, 0.15). The corners are achieved by permutations, and there are bulges which leave the
polytope but belong to derv(λ).

It is somewhat unexpected that the Λ-system does not have this polytope property, since the optimal
cooling solution found in [STK04] only requires permutations. This is explained by the fact that the
“non-classical” achievable derivatives are suboptimal for cooling, cf. Section 6.5.

Spin-Spin System

In this section we explore a system composed of two qubits with a single Lindblad term V = σ− ⊗ 1

where σ− = (σx − iσy)/2 is the lowering operator. This can be seen as a first approximation for
the ubiquitous spin-boson system. We will conjecture an exact description of the (convex hull) of the
achievable derivatives and support it with a partial proof and numerical evidence. In Section 6.4 we give
a slightly larger upper bound with full proof and in Section 6.6 we derive an optimal cooling procedure
for the system.

Conjecture 6.4.3. For every λ ∈ ∆3 it holds that

conv(derv(λ)) = conv({−LPλ : P ∈ S4}) =: P(λ).

The ⊇ direction is trivially satisfied, so it remains to show that the right-hand side is an upper
bound of derv(λ). First we need to better understand the polytope P(λ). Indeed we can derive a simple
inequality description of the polytope:

Lemma 6.4.4. For regular λ, the polytope P(λ) has 12 vertices and 8 facets, 4 of which are hexagonal
and the other 4 are triangular. The hexagonal facets are described by λ̇i ≥ −λi. Let a be any of the
four eigenvalues and b ≥ c ≥ d be the remaining ones. Then

ȧ(b+ d)− ḃ(c− b)− b(c+ d) ≤ 0

describes the corresponding triangular facet.

The number of vertices stems from the fact that V is invariant under the permutation (12)(34). The
hexagonal facet inequalities are clearly satisfied, and so it remains to show that all achievable derivatives
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also satisfy the inequalities corresponding to the triangular facets. So far we only have numerical evi-
dence for this claim. Yet a slightly larger provable bound can be obtained by studying the set of matrices
J(U), cf. Section 6.4.

Reduction to Toy Model

We say that−L is quasi-classical if for all λ ∈ ∆n−1 it holds that derv(λ) ⊆ conv({−LPλ : P ∈ Sn}).
Hence, by Proposition 6.4.1, the V-system on the qutrit is quasi-classical, but the qubit system studied in
Section 6.3 is not. Such quasi-classical systems are particularly nice, because the controls in the reduced
control system can be restricted to the permutations (up to convexification).

Recall that in Appendix 4.B we studied the toy model with exactly these controls, see also [3, DES19,
End20, SED22]. Note however that these systems are not quasi-classical, meaning that “non-classical”
controls might improve the results obtained therein.

On the other hand, these systems have the convenient property that diagonal density matrices remain
diagonal, and hence no compensating Hamiltonian is necessary. We will call such systems diagonally
invariant. Indeed this follows from the formula of the compensating Hamiltonian given in Section 4.2.
More generally, a system is diagonally invariant if for all Lindblad terms Vk the associated directed
graph (with arcs corresponding to non-zero matrix entries) are disjoint unions of directed paths and
directed cycles. In particular, systems with spontaneous emission and the spin-spin system introduced
in the previous section have the property that diagonal states remain diagonal.

Upper Bounds and Speed Limits

Working with the toy model, i.e. restricting the controls of the reduced control system to permutations,
is a practical way of simplifying the system and allows for the computation of solutions which are not
necessarily optimal. In effect, this method approximates conv(derv(λ)) from the inside. Conversely,
this section is concerned with approximations from the outside. This is useful as it yields speed limits
and upper bounds to optimal solutions.

First we look at some general results before considering specific systems. Useful bounds can be
obtained on the level of the J(U) matrices. A somewhat trivial bound can be obtained by setting γ =∑r

k=1 ∥Vk∥22. Then all matrices J = J(U) satisfy the inequalities
∑n

i,j=1 Jij ≤ γ and Jij ≥ 0. Using
Lemma 3.0.7 we get the following stronger bound.

Lemma 6.4.5. Let J = J(U), then Jij ≥ 0 as well as Je ⪯ spec(
∑r

k=1 VkV
∗
k ), and J⊤e ⪯

spec(
∑r

k=1 V
∗
k Vk), and

(J + J⊤)e ⪯ spec(
∑r

k=1{Vk, V ∗
k }), (J − J⊤)e ⪯ spec(

∑r
k=1[Vk, V

∗
k ]),

and this defines a polytope bound for the set of all J(U).

Here again, ⪯ denotes majorization, cf. Section 6.5. Note that by linearity these also define corre-
sponding polytope bound for each derv(λ). An important property of these bounds is that they guarantee
that the simplex ∆n−1 is preserved, and hence they don’t lead to unphysical behavior.

For the spin-spin system we have, so far, only conjectured a polytope bound on derv(λ). By studying
the set of matrices J(U), we can prove a slightly larger bound.

Lemma 6.4.6. Consider the spin-spin system. For every matrix J = J(U) it holds that

Jij ≥ 0, (J + J⊤)e = e, Jii ≤ 1
4

for all i, j ∈ {1, . . . , n}.
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Proof. The first two constraints follow immediately from Lemma 6.4.5 and its proof (cf. Lemma 3.0.7),
and the last follows from J(U)ii = |ū1iu3i + ū1iu3i|2 ≤ 1

4 .

Note that by strengthening the latter inequalities to Jii = 0, we indeed obtain an exact description
of conv(J(P ) : P ∈ S4). While the polytope bound from Lemma 6.4.6 is always larger than the
conjectured bound, numerical results indicate that for different values of λ its volume is only 0–10%
larger.

6.5 Optimal Derivatives

In the qubit case the reduced state space [0, 1] ∼= ∆1 is one-dimensional, and hence there is only one
optimal derivative for cooling (resp. heating). In higher dimensions this is not true anymore. In this
section we show that the set of achievable derivatives derv(λ) can be reduced to a subset of optimal
derivatives, which typically still consists of more than one element.

An important way of comparing two mixed quantum states, or rather their eigenvalues, is called
majorization. This approach is frequently used in quantum thermodynamics [BŻ17, HO13]. First one
defines majorization on vectors [MOA11]. Let λ, µ ∈ ∆n−1 be given. Then λ is said to majorize µ,
denoted λ ⪰ µ if ∑k

i=1 λ
↓
i ≥

∑k
i=1 µ

↓
i , k = 1, . . . , n,

where λ↓i is the i-th largest element of λ and analogously for µ. The notion carries over to quantum states
by defining that a state majorizes another if its eigenvalues majorize those of the other state. A function
f is Schur-convex if λ ⪰ µ implies f(λ) ≥ f(µ), and it is Schur-concave if its negative is Schur-
convex. Due to fast unitary control we consider cost functions which depend only on the eigenvalues
of the state. Indeed, all the functions given in Section 6.2 are Schur-convex or Schur-concave functions
of the eigenvalues. This follows from the fact that these functions are convex or concave and invariant
under permutations. The following result, which specializes Theorem 2.5.3, shows that for the purpose
of cooling, a state which majorizes another is always better.

Theorem 6.5.1. Let µ : [0,∞) → ∆n−1 be a solution to the relaxed control system (Λ̄) and let
λ0 ∈ ∆n−1 such that µ(0) = µ0 ⪯ λ0. Then there exists a solution λ : [0,∞) → ∆n−1 to (Λ̄)
with λ(0) = λ0 such that µ(t) ⪯ λ(t) for all t ∈ [0,∞).

Just like states are compared via majorization, two derivatives, at the same state, can be com-
pared using an infinitesimal version of majorization, also called unordered majorization, cf. [MOA11,
Ex. 14.E.6]. Let v, w ∈ R0 be two tangent vectors (derivatives) at λ ∈ ∆n−1. Then we say that v
infinitesimally majorizes w, denoted v ⊵ w if∑k

i=1 vi ≥
∑k

i=1wi, k = 1, . . . , n.

If derv(λ) is a polytope, the subset of optimal derivatives takes a nice form.
As a consequence of Theorem 6.5.1 one can show that derivatives which are not majorized by any

other derivatives are optimal for cooling. If derv(λ) is a polytope, the subset of optimal derivatives
takes a nice form.

Corollary 6.5.2. Let λ ∈ ∆n−1
↓ be regular and assume that derv(λ) is a convex polytope. If at least

one point in the relative interior of a face is optimal, then the entire face is optimal. Moreover, the set
of optimal faces is connected.
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Proof. Let P be the polytope derv(λ) and let C be the cone of vectors infinitesimally majorizing the
origin. Then the optimal elements of P are exactly the bounded faces of P −C, and hence they form a
subcomplex (cf. [Zie07, Section 5.1]), which, by [Jos+01, Lem. 2.1], is connected.

Furthermore, as we will see in the following section, for certain quasi-classical systems the optimal
derivatives are always given by the same controls in the reduced control system, and do not depend on
the state λ.

6.6 Optimal Cooling

Now we have all the tools we need to determine optimal cooling procedures for the V-system and the
spin-spin system (assuming Conjecture 6.4.3). Note that in both cases Theorem 4.3.7 shows immediately
that the system is coolable.

V-System

Using Corollary 6.5.2 one can show that the optimal derivatives are exactly the convex combinations ofγ2b+ γ1c
−γ2b
−γ1c

 and

γ1b+ γ2c
−γ1b
−γ2c

 ,

where λ = (a, b, c) ∈ ∆n−1
↓ . These correspond to the two topmost vertices in Figure 6.3. Note that

the analogous result holds for the Λ-system, and hence our method also recovers the results of [STK04]
using a completely different approach. Note that if γ1 = γ2, the problem becomes trivial, so we assume
that γ1 < γ2. A direct computation shows that the generators for these optimal derivatives commute
and hence they can be applied in any order. Hence, following the first derivative for time t1 and the
second for time t2 the final state is simplya0 + (1− e−(γ2t1+γ1t2))b0 + (1− e−(γ1t1+γ2t2))c0

e−(γ2t1+γ1t2)b0
e−(γ1t1+γ2t2)c0

 .

Note that following these two derivatives it might happen that the second and third eigenvalue cross, but
this does not change anything about the optimality of the derivatives.

In order to go any further we have to clarify the control task, since it necessarily takes infinite time
to reach a pure state. One natural choice is to minimize the time necessary to reach a certain largest
eigenvalue, although other Schur-convex (or concave) functions such as those mentioned in Section 6.2
are also sensible. Concretely the problem becomes, for any 0 < ε < b0 + c0, to minimize T = t1 + t2
under the conditions that t1, t2 ≥ 0 and e−(γ2t1+γ1t2)b0 + e−(γ1t1+γ2t2)c0 = ε. Without the constraint
t1, t2 ≥ 0, an elementary computation shows that the optimal solution is

t1 =
γ2 log(

2b0
ε
)− γ1 log(

2c0
ε
)

γ2
2 − γ2

1

, t2 =
γ1 log(

2b0
ε
)− γ2 log(

2c0
ε
)

γ2
1 − γ2

2

,

and the final state satisfies that b(T ) = c(T ) = ε/2. However, if ε > 2b0(
c0
b0
)γ2/(γ2−γ1), then t2 becomes

negative. In this case the optimal solution has t2 = 0 and t1 can be computed correspondingly.
This allows us to find the time-optimal controls for the task of reaching a largest eigenvalue of

1−ε. We start by applying a (near) instantaneous unitary transformation to bring the state into diagonal
form and with eigenvalues in weakly decreasing order. Then we wait for time t1 without applying any
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controls (recall that the system is diagonally invariant and thus the compensating Hamiltonian vanishes).
If t2 = 0 we are done, otherwise we swap the second and third eigenvalue (near) instantaneously and
wait for time t2.

This solution is quite similar to that of [STK04] for the Λ-system, except that we only switch the
eigenvalues once. Note also that in contrast to the approach of [STK04], we deduced the optimal solution
instead of guessing it and we were able to prove optimality without the application of the Hamilton–
Jacobi–Bellman equation.

Spin-Spin System

Finally we determine an optimal cooling procedure for the spin-spin system. Assuming Conjecture 6.4.3
implies that the system is quasi-classical. Corollary 6.5.2 allows us to determine the optimal derivatives.
It is easy to show that the only optimal derivatives are the convex combinations of

(b,−b, d,−d)⊤, and (c, d,−c,−d)⊤.

Conveniently, the corresponding generators again commute and hence their order of application
is irrelevant. Moreover it is clear that the system is diagonally invariant and hence the compensating
Hamiltonian vanishes again. Hence, similarly to the previous case, one can define a Schur-convex (or
concave) cost function, such as purity, and find optimal times t1 and t2 via direct computation. This
is not much more difficult than in the previous case, but the resulting formulas are lengthy and not
particularly enlightening, and hence omitted.



Part III

Bipartite Systems with Local Unitary
Control

“Long may Louis de Broglie continue to inspire those who suspect that what is proved by
impossibility proofs is lack of imagination.”

— John Stewart Bell, On the Impossible Pilot Wave (1982)

“He had said that the geometry of the dream-place he saw was abnormal, non-Euclidean,
and loathsomely redolent of spheres and dimensions apart from ours.”

— H. P. Lovecraft, The Call of Cthulhu (1926)

Quantum entanglement is one of the primary features of quantum mechanics not present in classical
physics. It can be interpreted as a kind of non-classical correlation, which was used to show that quan-
tum mechanics is incompatible with local realism. Consequently, entanglement was found to be a key
resource for achieving advantage in quantum computation, quantum cryptography, and quantum sens-
ing. Even so, the precise structure of entanglement, especially in the multipartite and open systems
cases, is not well understood. Moreover, entanglement is a fragile property easily destroyed by unde-
sired noise. For the realization of quantum technologies it is therefore essential to be able to precisely
control and protect the entanglement present in a quantum system.
This part deals with closed bipartite quantum systems subject to fast local unitary control. In this set-
ting, one can define an equivalent reduced control system on the singular values, which quantify the
entanglement present in the system. Analogous results are obtained for bosonic and fermionic systems,
where the complex SVD is to be replaced with the Autonne–Takagi factorization and the Hua factor-
ization respectively. With this, we show that such systems are generically controllable and stabilizable,
and we derive a speed limit on the evolution of the singular values. Moreover, we derive time-optimal
solutions for the generation of maximally entangled states. In particular, the case of two coupled qubits
is treated in complete generality, and a more complicated system composed of two qutrits is studied
using the Pontryagin Maximum Principle.

Outline Chapter 7 defines the reduced control system on the singular values of the pure bipartite
quantum state. Chapter 8 proves some general results for such systems, in particular controllability and
stabilizability are shown and a general speed limit is established. Chapter 9 addresses the problem of
optimal control of entanglement using the reduced control system.

Acknowledgments This part is based on [7, 8]. The paper [8] is joint work with Léo Van Damme,
whose expertise on the Pontryagin Maximum Principle was an essential ingredient.
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CHAPTER 7
Reduction to the Singular Values

In this chapter we apply the methods developed in Chapter 2 to closed bipartite quantum systems with
fast local unitary control. The connection to symmetric Lie algebras is made via the complex SVD
for distinguishable subsystems, and via the Autonne–Takagi factorization and the Hua factorization in
the bosonic and fermionic cases. As a consequence we obtain the corresponding equivalent reduced
control system defined on the singular values of the bipartite state. The reduced state space is the unit
hypersphere, and the reduced dynamics are given by rotations. The remaining chapters of Part III are
dedicated to the study of this reduced control system.

While the reduced control system studied in Part II has been formulated previously, the reduced
control system defined below seems to be new. Of course the matrix decompositions used here are
known [Aut15, Tak25, Hua44] and have been studied in the context of quantum entanglement [HKS13].
The closest idea used in quantum control theory appears to be the KAK-decomposition [KBG01], which
can be used to study the operator lift of a two qubit system with fast local unitary control. This method
can of course also be used to study the state-level control system, see for instance [Bas+21].

In Section 7.1 we derive the reduced control systems for distinguishable, bosonic and fermionic
subsystems respectively, and we prove the corresponding equivalence results. Appendix 7.A gives the
detailed relation of the present setting to the symmetric Lie algebra setting of Chapter 2.

7.1 Reduction

First we define what we mean by a closed bipartite quantum system with fast local unitary control,
before we derive the equivalent reduced control system obtained by factoring out the local unitary action.
The reduced control system describes the dynamics of the singular values of the state, and due to the
normalization of the quantum state, the reduced state space turns out to be a hypersphere. The main
result of this section is the equivalence, in a precise sense which will be made clear, of the full bilinear
control system and the reduced one. In particular, there is no loss of information incurred by passing to
the reduced control system. A brief discussion of global phases concludes the section.
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Full Control System

Let two finite dimensional Hilbert spaces Cd1 and Cd2 of dimensions d1, d2 ≥ 2 representing the
subsystems be given. The total Hilbert space of the bipartite system is then Cd1 ⊗ Cd2 .1 We denote
by u(d) the unitary Lie algebra consisting of skew-Hermitian matrices in d dimensions. Our goal is
to study the full bilinear control system defined by the following controlled Schrödinger equation2 on
Cd1 ⊗ Cd2 :

|ψ̇(t)⟩ = −i
(
H0 +

m1∑
i=1

ui(t)Ei ⊗ 1+

m2∑
j=1

vj(t)1⊗ Fj

)
|ψ(t)⟩ , (H)

where H0 ∈ iu(d1) ⊗ iu(d2) ∼= iu(d1d2) is the drift Hamiltonian (or coupling Hamiltonian), Ei ∈
iu(d1) and Fj ∈ iu(d2) are the (local) control Hamiltonians, and ui and vj are the corresponding
control functions. We make the following key assumptions:

(I) The control functions ui and vj are locally integrable, in particular we assume no bounds on the
controls.

(II) The control Hamiltonians generate the full local unitary Lie algebra:

⟨iEi ⊗ 1, 1⊗ iFj : i = 1, . . . ,m1, j = 1, . . . ,m2⟩Lie = uloc(d1, d2),

where uloc(d1, d2) := (u(d1) ⊗ 1) + (1 ⊗ u(d2)) is the Lie algebra of the Lie group Uloc(d1, d2) :=
U(d1)⊗U(d2) of local unitary transformations. Put simply, we have fast control over Uloc(d1, d2).

Remark 7.1.1. One may also define the group SUloc(d1, d2) := S(U(d1) ⊗ U(d2)) of local special
unitary operations. Consider the local unitary U = eiϕ11 ⊗ eiϕ21. Then det(U) = eid1d2(ϕ1+ϕ2) and
hence, ifU ∈ SUloc, the value of the applied phase ei(ϕ1+ϕ2) is restricted to a discrete set. Thus, if we do
not neglect the global phase of the state |ψ⟩, fast control over SUloc(d1, d2) is not sufficient to generate
all local unitary state transfers. To simplify the exposition, we assume fast control over Uloc(d1, d2),
but we will revisit this issue at the end of Section 7.1 to show how this assumption can be weakened.

This covers the case of two distinguishable subsystems. However, we also wish to treat systems
composed of two indistinguishable subsystems. In this case both subsystems have the same dimension
d := d1 = d2. In the bosonic case, the state |ψ⟩ is unchanged by swapping the two subsystems, i.e.,
Uswap |ψ⟩ = |ψ⟩, where Uswap |ψ1⟩ ⊗ |ψ2⟩ = |ψ2⟩ ⊗ |ψ1⟩. These “symmetric” states lie in the space
Sym2(Cd). In the fermionic case, swapping yields a phase factor of −1, i.e., Uswap |ψ⟩ = − |ψ⟩. Such
“skew-symmetric” states are contained in the space

∧2(Cd). In both cases the set of local unitaries
applicable to the system is restricted to symmetric local unitaries Usloc(d) := {V ⊗ V : V ∈ U(d)}.
The corresponding Lie algebra is usloc(d) := {iE ⊗ 1 + 1 ⊗ iE : iE ∈ u(d)} and is isomorphic to
u(d).3 The set of all coupling Hamiltonians applicable to such systems is the set us(d2) = {iH ∈
u(d2) : UswapHU∗

swap = H}. Hence, in the case of two indistinguishable subsystems, the bilinear
control system takes the form:

|ψ̇(t)⟩ = −i
(
H0 +

m∑
i=1

ui(t)(Ei ⊗ 1+ 1⊗ Ei)
)
|ψ(t)⟩ , (Hs)

whereH0 ∈ ius(d2) andE1, . . . , Em ∈ iu(d). Assumption (I) remains unchanged, but Assumption (II)
is slightly modified to state:

1Abstractly the symbol ⊗ denotes the tensor product, but since we always work with concrete vectors and matrices we
interpret ⊗ as the Kronecker product. This identifies the vector spaces Cd1 ⊗ Cd2 and Cd1d2 and similarly for matrices.

2Recall that we set ℏ = 1 and thus write the (uncontrolled) Schrödinger equation as |ψ̇(t)⟩ = −iH0 |ψ(t)⟩.
3Note however that the map U(d) → Usloc(d) given by V 7→ V ⊗ V is a double cover with kernel {1,−1}.
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(III) The local control Hamiltonians iEi ⊗ 1+ 1⊗ iEi for i = 1, . . . ,m generate the full Lie algebra
uloc(d).

Note that the only difference between the bosonic and fermionic case is that the initial state of the control
system (Hs) lies in Sym2(Cd) and

∧2(Cd) respectively.

Remark 7.1.2. Similarly to Remark 7.1.1, one might consider control Hamiltonians of the form E ⊗
1 + 1 ⊗ E with the additional restriction of tr(E) = 0, defining the Lie algebra susloc(d). In this
case we again lose control over the global phase of the state. Thus, for simplicity, we do not make this
assumption here and refer to the end of Section 7.1 for more details.

Related Matrix Decompositions

In order to derive and understand the reduced control system (which we will introduce in the next section)
obtained by factoring out the local unitary action, we must first understand the mathematical structure of
this action. In the case of distinguishable subsystems, the local unitary action corresponds the complex
singular value decomposition, an thus the only invariants of a state under this action are its singular
values, which therefore are the natural choice for the reduced state. The bosonic and fermionic cases
correspond to less well-known matrix decompositions called the Autonne–Takagi and Hua factorization
respectively. Importantly, all of these matrix decompositions also correspond to certain symmetric Lie
algebras, and this is the key to applying the results on reduced control systems from Chapter 2 to the
full bilinear control systems (H) and (Hs).

Let {|i⟩1}
d1
i=1 and {|j⟩2}

d2
j=1 denote the standard orthonormal bases4 of Cd1 and Cd2 respectively,

and let |ψ⟩ ∈ Cd1 ⊗ Cd2 be a state vector. The components (ψij)d1,d2i,j=1 of |ψ⟩ are uniquely given by

|ψ⟩ =
d1,d2∑
i,j=1

ψij |i⟩1 ⊗ |j⟩2 =:

d1,d2∑
i,j=1

ψij |ij⟩ .

Hence, every bipartite state can be uniquely represented by a matrix.5 More precisely, we have used the
canonical isomorphism

Cd1 ⊗ Cd2 → Cd1 ⊗ (Cd2)′ ∼= Cd1,d2 |i⟩1 |j⟩2 7→ |i⟩1⟨j|2 , (7.1)

where (·)′ denotes the dual space. We will use ψ ∈ Cd1,d2 to denote the matrix corresponding to |ψ⟩
under this isomorphism and vice versa. For distinguishable subsystems, the matrix representing ψ is an
arbitrary complex matrix in Cd1,d2 (the constraint induced by the normalization of the state |ψ⟩ will be
discussed in Remark 7.1.3 below). For indistinguishable subsystems, it holds that d := d1 = d2, and
the matrix ψ ∈ sym(d,C) is symmetric in the bosonic case and ψ ∈ asym(d,C) is skew-symmetric in
the fermionic case.

Let V ⊗ W ∈ Uloc(d1, d2) be a local unitary, and set |ϕ⟩ = V ⊗ W |ψ⟩. The elements of
V are then defined by V =

∑d1
k,i=1 Vki |k⟩⟨i|, and similarly W =

∑d2
l,j=1Wlj |l⟩⟨j|. Then ϕkl =∑d1,d2

i,j=1 VkiWljψij . In matrix form this can be rewritten as ϕ = V ψW⊤. Another way to state this is
V ⊗W |ψ⟩ = |V ψW⊤⟩. Note that in the case of indistinguishable subsystems we have V = W . This
suggests a connection to certain matrix diagonalizations, namely:

4In the following we will usually omit the index denoting the subsystem, since it will be clear form the order.
5Our convention is consistent with [BŻ17, Sec. 9.2] and [HKS13]. In other contexts one often defines the vectorization

operation vec(·) which turns a matrix into a vector by stacking its columns and satisfies vec(AXB) = (B⊤ ⊗ A)vec(X).
Our convention is slightly different in that, identifying Cd1 ⊗ Cd2 ∼= Cd1d2 via the Kronecker product, we may write |ψ⟩ =
vec(ψ⊤).
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• The complex singular value decomposition in the distinguishable subsystems case (often referred
to as the Schmidt decomposition in the context of quantum mechanics). It states that for any
complex matrix ψ ∈ Cd1,d2 there exist unitary matrices V ∈ U(d1) and W ∈ U(d2) such that
V ψW ∗ is real and diagonal. The correspondence is established by

|ϕ⟩ = V ⊗W |ψ⟩ ⇐⇒ ϕ = V ψW ∗.

• The Autonne–Takagi factorization in the bosonic case. It states that for any complex symmetric
matrix ψ ∈ sym(d,C), there is a unitary V ∈ U(d) such that V ψV ⊤ is real and diagonal. The
correspondence is then given by

|ϕ⟩ = V ⊗ V |ψ⟩ ⇐⇒ ϕ = V ψV ⊤.

• The Hua factorization in the fermionic case. It states that for any complex skew-symmetric matrix
ψ ∈ asym(d,C), there is a unitary V ∈ U(d) such that V ψV ⊤ is real and quasi-diagonal in the
following sense: if d is even, then V ψV ⊤ is block diagonal with blocks of size 2 × 2, if d is
odd, then there is an additional block of size 1× 1 in the lower right corner. Note that the quasi-
diagonal matrix is still skew-symmetric, and so the diagonal is zero. The correspondence to local
unitary state transformations is as in the bosonic case.

Note that the Autonne–Takagi factorization and the Hua factorization are special cases of singular value
decompositions, and hence the resulting (quasi-)diagonal matrix will have the singular values on its
(quasi-)diagonal. In the first case we denote byΣ ⊂ Cd1⊗Cd2 the subspace of “real diagonal states” cor-
responding to the set of real diagonal matrices diag(d1, d2,R) under the isomorphism (7.1). Clearly Σ
has dimension dmin := min(d1, d2). In the second case we write Σ ⊂ Sym2(Cd) for the d-dimensional
subspace corresponding to the real diagonal matrices diag(d,R). Similarly, in the third case we write
Ξ ⊂

∧2(Cd) for the ⌊d/2⌋-dimensional subspace of states corresponding to the real (skew-symmetric)
quasi-diagonal matrices qdiag(d,R). We will use the following maps to send the singular values to their
corresponding (quasi-)diagonal state:

diag : Rdmin → Σ, (σi)
dmin
i=1 7→

∑dmin
i=1 σi |i⟩ ⊗ |i⟩ ,

qdiag : R⌊d/2⌋ → Ξ, (ξi)
⌊d/2⌋
i=1 7→ 1√

2

∑⌊d/2⌋
i=1 ξi(|2i− 1⟩ ⊗ |2i⟩ − |2i⟩ ⊗ |2i− 1⟩).

A convenient shorthand notation is |σ⟩ = diag(σ) resp. |ξ⟩ = qdiag(ξ). We will always use the
standard Euclidean inner product on Rn, and on Cn we will use the real part Re(⟨·|·⟩) of the standard
inner product. Then, due to the inclusion of the factor 1/

√
2 it holds that the maps above are R-linear

isometric isomorphisms. Furthermore we denote6 by Σ�− ⊂ Σ the cone of states diag(σ) where the
diagonal elements (σi)dmin

i=1 are non-negative and arranged in non-increasing order, and analogously we
write Ξ�− ⊂ Ξ for the quasi-diagonal states qdiag(ξ) where the (ξi)

⌊d/2⌋
i=1 are non-negative and arranged

in non-increasing order. The set Σ�− resp. Ξ�− is called the Weyl chamber.
Conversely to the diagonal embeddings we also define the following orthogonal projections:

ΠΣ :

{
Cd1 ⊗ Cd2 → Rdmin , |ψ⟩ 7→ (Re(⟨ii|ψ⟩))dmin

i=1 for distinguishable subsystems
Sym2(Cd) → Rd, |ψ⟩ 7→ (Re(⟨ii|ψ⟩))di=1 for bosonic subsystems

ΠΞ :
∧2(Cd) → R⌊d/2⌋, |ψ⟩ 7→

√
2(Re(⟨2i|2 ⟨2i− 1|1 |ψ⟩))

⌊d/2⌋
i=1 .

More precisely, these are the orthogonal projections on Σ and Ξ followed by diag−1 and qdiag−1 re-
spectively.

6The symbol �− is a combination of ↓ and +.
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Remark 7.1.3. The normalization of the quantum state entails a normalization of the corresponding
singular values. More precisely, the norm of the quantum state |ψ⟩ equals the Frobenius norm of the
matrix ψ, and hence |ψ⟩ has unit norm if and only if the singular values σ = (σi)

dmin
i=1 of ψ satisfy∑dmin

i=1 σ
2
i = 1. Hence the singular values define a point on the unit sphere of dimension dmin− 1 in the

indistinguishable case, and d− 1 in the bosonic case. In the fermionic case there are again d singular
values and they lie on the unit sphere of dimension d− 1. However there is an additional restriction as
the singular values come in pairs of opposite values. Taking only one singular value of each pair and
multiplying it by

√
2 (and ignoring the additional 0 singular value in the odd dimensional case) we find

that the resulting vector lies on the unit sphere of dimension ⌊d/2⌋ − 1. In all cases will call this the
Schmidt sphere, denoted Sdmin−1 in the distinguishable case, Sd−1 in the bosonic case, and S⌊d/2⌋−1

in the fermionic case. The maps diag and qdiag then yield isometric embeddings of the Schmidt sphere
into Σ and Ξ respectively. The Schmidt sphere will be the state space of our reduced control system,
which we will define in the following section. The Weyl chambers Σ�− and Ξ�− then yield corresponding
Weyl chambers in the Schmidt sphere Sdmin−1

�− , Sd−1
�− , and S⌊d/2⌋−1

�− .

Remark 7.1.4. Often one considers the Schmidt values, which are the squares of the singular values,
within the standard simplex, which is then called the Schmidt simplex [BŻ17, Sec. 16.4]. This is easier
to visualize, but in our case would lead to unnatural dynamics, which is why we will remain on the
sphere. Note also that if one of the systems is a qubit, then the Schmidt sphere is a circle parametrized
by the Schmidt angle [BŻ17, p. 440].

Reduced Control System

Due to Assumptions (I) and (II) (resp. (III)), we can move arbitrarily quickly within the local unitary
orbits of the system if we ignore the drift term [Ell09, Prop. 2.7]. With the drift this is still approximately
true. In the previous section we have shown that using local unitary transformations, we can always
obtain a state of (quasi-)diagonal form which is completely determined by the singular values of the
state. In particular, within the bilinear control systems (H) and (Hs) two states are effectively equivalent
if and only if they have the same singular values (up to order and signs). This strongly suggests that there
should exist a “reduced” control system, defined on the singular values — or rather the Schmidt sphere
(cf. Remark 7.1.3). This is indeed the case. The reduced control system is defined in greater generality
in Section 2.2 using symmetric Lie algebras, which unify many well-known matrix diagonalizations,
such as the ones encountered in the previous section, cf. Chapter 1. No knowledge of symmetric Lie
algebras is presupposed here, but the connections are expounded in Appendix 7.A.

Let us briefly motivate the definition of the reduced control system. Let |ψ⟩ be a solution to the
full control system (H). Assume that the corresponding matrix ψ can be diagonalized in a differen-
tiable way as ψ(t) = V (t)σ̃(t)W⊤(t), and that it is regular7. Here σ̃(t) is the diagonal matrix with
diagonal elements σ(t). Then by differentiating (cf. Lemma 1.4.1) we obtain that σ̇ = −HV⊗Wσ (and
analogously σ̇ = −Hs

V⊗V σ or ξ̇ = −Ha
V⊗V ξ in the bosonic and fermionic cases) where

−HV⊗W := −ΠΣ ◦ (V ⊗W )∗ iH0(V ⊗W ) ◦ diag,
−Hs

V⊗V := −ΠΣ ◦ (V ⊗ V )∗ iH0(V ⊗ V ) ◦ diag,
−Ha

V⊗V := −ΠΞ ◦ (V ⊗ V )∗ iH0(V ⊗ V ) ◦ qdiag .

We call HV⊗W , Hs
V⊗V and Ha

V⊗V the induced vector fields. The collection of induced vector fields is
denoted

H := {−HU : U ∈ Uloc(d1, d2)}, Hs := {−Hs
U : U ∈ Usloc(d)}, Ha := {−Ha

U : U ∈ Usloc(d)}.
7We say that ψ is regular if its singular values are distinct and non-zero.
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Note that these are linear vector fields on Rdmin , Rd and R⌊d/2⌋ respectively, and hence they can be
represented as matrices in the respective standard basis. We will later see that these are indeed skew-
symmetric matrices, and thus the corresponding dynamics preserve the Schmidt sphere. The following
proposition gives the explicit expressions.

Proposition 7.1.5. Let H0 ∈ iu(d1d2) denote an arbitrary coupling Hamiltonian and let Ak ∈ iu(d1)
and Bk ∈ iu(d2) for k = 1, . . . , r be given such that H0 =

∑r
k=1Ak ⊗ Bk. Then the induced vector

field HV⊗W on Rdmin takes the form8

−HV⊗W =
r∑

k=1

Im(V ∗AkV ◦W ∗BkW ).

Now assume additionally that d := d1 = d2 and that H0 ∈ ius(d2) is symmetric. For bosonic systems,
on Rd, we obtain

−Hs
V⊗V =

r∑
k=1

Im(V ∗AkV ◦ V ∗BkV ).

For fermionic systems, on R⌊d/2⌋, we obtain

−(Ha
V⊗V )ij =

r∑
k=1

Im((V ∗AkV )2i−1,2j−1(V
∗BkV )2i,2j − (V ∗AkV )2i−1,2j(V

∗BkV )2i,2j−1).

Proof. To simplify notation we first consider a product Hamiltonian H0 = A ⊗ B. Let σ ∈ Rdmin be
given. Let i, j ∈ {1, . . . , dmin} and compute

−(HV⊗W )ij = (−ΠΣ(iV
∗AV eje

⊤
j W

⊤B⊤(W ∗)⊤))i = Im((V ∗AV )ij(W
∗BW )ij).

The case of general H0 for distinguishable subsystems as well as the bosonic case follow by linearity.
Now let us consider the fermionic case. Again for simplicity we consider a product Hamiltonian

H = A ⊗ B since the general result follows by linearity. Then A and B can be seen as n × n block
matrices with blocks of size 2× 2 denoted A(ij) and B(ij) (and, in the odd-dimensional case, an addi-
tional row and column). Moreover let J =

(
0 1
−1 0

)
denote the standard symplectic form. Then we can

compute in a similar fashion

−(Ha
V⊗V )ij = (−ΠΞ(i(V

∗AV ) qdiag(ej)(V
∗B⊤V )⊤))i = Im(((V ∗AV )(ij)J((V

∗BV )(ij))
⊤)12) .

This concludes the proof.

Remark 7.1.6. The fermionic case can be interpreted as follows. We consider the even dimensional
case for simplicity. First define the matrices Gk obtained from Ak and Bk by choosing all the odd
indexed rows from Ak and all the even indexed rows from Bk. More precisely, (Gk)ij = (Ak)ij if i is
odd and (Gk)ij = (Bk)ij if i is even. Then we divide the Gk into blocks of size 2 × 2 and we define a
new matrix of half the size by replacing each block by the imaginary part of its determinant.

We see immediately that if the drift Hamiltonian is local, then the induced vector fields vanish:

Corollary 7.1.7. If the drift HamiltonianH0 is local, meaning thatH0 ∈ iuloc(d1, d2), thenHV⊗W = 0
for every V ⊗W ∈ Uloc(d1, d2). The same is true for Hs

V⊗V and Ha
V⊗V whenever H0 ∈ iusloc(d) and

V ⊗ V ∈ Usloc(d).
8Here ◦ denotes the Hadamard (elementwise) product of two matrices. If the (square) matrices are of different size the

resulting matrix will have the size of the smaller one. Similarly Im denotes the elementwise imaginary part.
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Finally we can define the reduced control systems:

Definition 7.1.8 (Reduced control systems). Let I ⊂ R be an interval of the form [0, T ] with T ≥ 0
or [0,∞). We define three reduced control systems:

For distinguishable subsystems we set:

σ̇(t) = −HU(t)σ(t), σ(0) = σ0 ∈ Sdmin−1 (Σ)

A solution is an absolutely continuous path σ : I → Sdmin−1 satisfying (Σ) almost everywhere for some
measurable control function U : I → Uloc(d1, d2).

In the bosonic case we set:

σ̇(t) = −Hs
U(t)σ(t), σ(0) = σ0 ∈ Sd−1 (Σs)

A solution is an absolutely continuous path σ : I → Sd−1 satisfying (Σs) almost everywhere for some
measurable control function U : I → Usloc(d).

In the fermionic case we set:

ξ̇(t) = −Ha
U(t)ξ(t), ξ(0) = ξ0 ∈ S⌊d/2⌋−1 (Σa)

A solution is an absolutely continuous path ξ : I → S⌊d/2⌋−1 satisfying (Σa) almost everywhere for
some measurable control function U : I → Usloc(d).

As mentioned previously, and shown in Lemma 7.1.11 below, the induced vector fields preserve the
Schmidt sphere, and hence we may define the reduced control systems directly on the Schmidt sphere.

Remark 7.1.9. There are several slightly different ways of defining the reduced control system which are
given in Section 2.2. The most intuitive definition, given above, is to consider the control system σ̇(t) =
−HU(t)(σ(t)) where the control function U : [0, T ] → Uloc(d1, d2) is measurable and the solution σ :

[0, T ] → Sdmin−1 is absolutely continuous. A more geometric definition uses the differential inclusion
σ̇(t) ∈ derv(σ(t)), where derv(σ) denotes the set of achievable derivatives at σ defined by derv(σ) =
{−HUσ : U ∈ Uloc(d1, d2)}. The differential inclusion is exactly equivalent to our definition by
Filippov’s Theorem, cf. [Smi02, Thm. 2.3]. Often it is convenient to consider a “relaxed” version of the
differential inclusion where also convex combinations of achievable derivatives are allowed: σ̇(t) ∈
conv(derv(σ(t))). This slightly enlarges the set of solutions, but every solution to the relaxed system
can still be approximated uniformly on compact time intervals by solutions to our system, cf. [AC84,
Ch. 2.4, Thm. 2]. Analogous remarks also hold for the symmetric cases (Σs) and (Σa).

The main result of Chapter 2 is the equivalence of the full bilinear control system (H) resp. (Hs)
and the reduced control system (Σ), resp. (Σs) or (Σa), proven in Theorem 2.3.16. In our case this
specializes to the following result.

First we need to define the quotient maps sing�− : Cd1 ⊗ Cd2 → Rdmin and qsing�− :
∧2(Cd) →

R⌊d/2⌋. Given a (possibly not normalized) vector |ψ⟩ ∈ Cd1 ⊗ Cd2 (or Sym2(Cd)), the map sing�−

yields the singular values of the corresponding matrix ψ ∈ Cd1,d2 , chosen non-negative and arranged
in non-increasing order. Similarly, for |ξ⟩ ∈

∧2(Cd), the map qsing�− yields the singular values of
the skew-symmetric matrix ξ, except that we keep only one singular value of each pair and multiply
it by

√
2 to keep the normalization. Note that when restricting the domain of sing�− and qsing�− to

(normalized) quantum states, the image will lie in the respective Schmidt sphere, and even in the Weyl
chamber Sdmin−1

�− resp. Sd−1
�− and S⌊d/2⌋−1

�− .
Recall that here and throughout the chapter we use Assumptions (I) and (II) (resp. (III)), unless

stated otherwise.
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Theorem 7.1.10 (Equivalence Theorem). Let |ψ(t)⟩ be a solution on [0, T ] to the bilinear control
system (H), and let σ�− : [0, T ] → Sdmin−1

�− be defined by σ�− = sing�−(|ψ⟩). Then σ�− is a solution
to the reduced control system (Σ).

Conversely, let σ : [0, T ] → Sdmin−1 be a solution to the reduced control system (Σ) with
control function U : [0, T ] → Uloc(d1, d2) and let |σ⟩ = diag(σ) denote the corresponding state.
Then U(t) |σ(t)⟩ can be approximated by solutions to the full control system (H) arbitrarily well.
More precisely, for every ε > 0 there exists a solution |ψε(t)⟩ to (H) such that ∥U |σ⟩− |ψε⟩∥∞ ≤
ε, where ∥ · ∥∞ denotes the supremum norm.

The analogous results, mutatis mutandis,a also hold in the bosonic and fermionic cases, where
the full control system is (Hs) and the reduced control systems are (Σs) and (Σa) respectively.

aMost results in Part III hold in all three cases with only minimal differences in notation, which are summarized in
Table 1.

Proof. The proof is mostly a technicality, as we simply have to show that the full control systems (H)
and (Hs) and their respective reduced versions (Σ), (Σs) and (Σa) can be interpreted as control systems
on certain symmetric Lie algebras. We focus on the case of distinguishable subsystems. The correspond-
ing symmetric Lie algebra is that of type AIII. The isomorphisms ıd and ȷd defined in Appendix 7.A
translate the quantum setting into the Lie algebra setting. The results of the appendix then show that
all of the conditions of Theorem 2.3.16 are satisfied and that the reduced control system (Σ) indeed
corresponds to the reduced control system in the Lie algebraic setting. Taken together, this proves the
equivalence in the distinguishable case. The other cases are entirely analogous.

The Equivalence Theorem 7.1.10 shows that the full bilinear control system (H) resp. (Hs) and the
reduced control system (Σ), resp. (Σs) or (Σa), contain essentially the same information. Hence for ev-
ery control theoretic notion, such as controllability and stabilizability, there is a specialized equivalence
result, see Section 2.4 for an overview. As a first consequence we obtain:

Lemma 7.1.11. The induced vector fields are skew-symmetric matrices:

H ⊂ so(dmin,R), Hs ⊂ so(d,R), Ha ⊂ so(⌊d/2⌋,R).

In particular the Schmidt sphere is invariant.

Proof. Due to the Equivalence Theorem 7.1.10, this follows from Proposition 2.4.8. Alternatively this
can also be verified by direct computation using the expressions obtained in Proposition 7.1.5.

Let us also recall the equivalence of reachable sets here, which is arguably the most useful conse-
quence. First we give the definitions of reachable sets in the reduced control system (Σ). The definitions
for other control systems are entirely analogous. The reachable set of σ0 at time T is defined as

reachΣ(σ0, T ) = {σ(T ) : σ : [0, T ] → Sdmin−1 solves (Σ), σ(0) = σ0}

for any T ≥ 0. By reachΣ(σ0) :=
⋃
T≥0 reachΣ(σ0, T ) we denote the all time reachable set of σ0, and

by reachΣ(σ0, [0, T ]) :=
⋃
t∈[0,T ] reachΣ(σ0, t) we denote the reachable set of σ0 up to time T .

The following result is an immediate consequence of the Equivalence Theorem 7.1.10 and Propo-
sition 2.4.3.
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Proposition 7.1.12. Let T > 0 be given and assume that |ψ0⟩ ∈ Cd1 ⊗Cd2 and σ0 ∈ Sdmin−1 satisfy9

σ�−
0 = sing�−(ψ0). Then it holds that

reachH(|ψ0⟩ , T ) ⊆ {U |σ⟩ : σ ∈ reachΣ(σ0, T ), U ∈ Uloc(d1, d2)} ⊆ reachH(|ψ0⟩ , T ) .

In particular, the closures coincide:

reachH(|ψ0⟩ , T ) = {U |σ⟩ : σ ∈ reachΣ(σ0, T ), U ∈ Uloc(d1, d2)} .

The analogous result, mutatis mutandis, holds also for the bosonic and the fermionic cases.

The Equivalence Theorem 7.1.10 guarantees the existence of an approximate lift, but its proof also
provides a way to find corresponding control functions. Under some additional assumptions we can give
an explicit formula for the controls of an exact lift, see Proposition 2.3.10. In particular this requires
the solution to be smooth and regular, and the controls of the bilinear system (H) resp. (Hs) to linearly
span the corresponding Lie algebra. Before stating the result we define some notation.

The Lie group of local unitary operations Uloc(d1, d2) and its symmetric counterpart Usloc(d) act
on the state spaces Cd1 ⊗ Cd2 , Sym2(Cd) and

∧2(Cd) respectively. The corresponding infinitesimal
action of the Lie algebras uloc(d1, d2) and usloc(d) can be determined as in the previous section using
the formula (iE⊗1+1⊗ iF ) |ψ⟩ = |i(Eψ + ψF )⟩. In the special case where the state is regular and
diagonal this function (more precisely its negative) gets a special name:

addσ : uloc(d1, d2) → Cd1 ⊗ Cd2 , iE ⊗ 1+ 1⊗ iF 7→ − |i(Eσ̃ + σ̃F )⟩
adsσ : usloc(d) → Sym2(Cd), iE ⊗ 1+ 1⊗ iE 7→ − |i(Eσ̃ + σ̃E)⟩
adaξ : u

s
loc(d) →

∧2(Cd), iE ⊗ 1+ 1⊗ iE 7→ − |i(Eξ̃ + ξ̃E)⟩ ,

where σ̃ ∈ diag(d1, d2,R) and ξ̃ ∈ qdiag(d,R) denote the (quasi-)diagonal matrices corresponding to
σ and ξ. Although these maps are not bijective, by restricting the domain to the orthocomplement of
the kernel and the codomain to the image, inverse maps can be defined. Indeed, this is nothing but the
Moore–Penrose pseudoinverse. Explicit expressions are given in Lemmas 7.A.6, 7.A.9 and 7.A.12.

To use these inverse maps, we have to understand the images of the maps addσ, adsσ, and adaξ . It turns
out that, for regular σ resp. ξ, these images are exactly given by the orthocomplement of the diagonal
subspaces Σ,Ξ. We denote the orthogonal projection on Cd1 ⊗ Cd2 with kernel Σ by Π⊥

Σ , and use
the same notation on Sym2(Cd). In the matrix picture, this map simply removes the real part of the
diagonal elements of ψ. Similarly, on

∧2(Cd), the orthogonal projection with kernel Ξ is denoted Π⊥
Ξ

and it removes the real part of the quasi-diagonal of ψ.
With these definitions Proposition 2.3.10 can be specialized as follows:

Proposition 7.1.13. Let σ : [0, T ] → Sdmin−1 be a solution to the reduced control system (Σ) with
control function U : [0, T ] → Uloc(d1, d2). Assume that σ is regular and that U is continuously
differentiable. Let |ψ(t)⟩ = U(t) |σ(t)⟩ and let H : [0, T ] → iuloc(d1, d2) be given by

−iH(t) = U̇(t)U−1(t)−AdU(t)((ad
d
σ(t))

−1 ◦Π⊥
Σ)
(
U(t)∗(iH0)U(t) |σ(t)⟩

)
.

Then |ψ⟩ satisfies |ψ̇⟩ = −i(H0+H) |ψ⟩. The analogous result also holds mutatis mutandis for bosonic
and fermionic systems.

9Here σ�−
0 denotes the element of Sdmin−1

�− whose elements are the absolute values of the elements of σ0 arranged in
non-increasing order.
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We call the second term in the definition of H in Proposition 7.1.13 the (local) compensating Hamilto-
nian since it compensated for the local Hamiltonian action induced by the drift term H0.

If the control directions linearly span the entire Lie algebra uloc(d1, d2), then it is easy to find the
control functions from Proposition 7.1.13. More generally the problem of finding corresponding con-
trols is studied under the term non-holonomic motion planning, see [Liu97].

Global Phases

Mathematically the quantum state |ψ⟩ ∈ Cd1 ⊗Cd2 has a global phase which is physically undetectable
and hence may be considered irrelevant. We always keep the phase for convenience, noting that the
global phase is removed automatically in the reduced control system. This section briefly discusses
how Assumptions (II) and (III) can be slightly weakened by neglecting the global phase. We denote by
suloc(d1, d2) and susloc(d) the Lie algebras obtained from uloc(d1, d2) and usloc(d) by requiring the trace
to vanish. Consider the following two weakened controllability assumptions:

(II’) The control Hamiltonians generate the local special unitary Lie algebra:

⟨iEi ⊗ 1,1⊗ iFj : i = 1, . . . ,m1, j = 1, . . . ,m2⟩Lie = suloc(d1, d2).

(III’) The control Hamiltonians generate the symmetric local special unitary Lie algebra:

⟨iEi ⊗ 1+ 1⊗ iEi : i = 1, . . . ,m⟩Lie = susloc(d).

In both cases adding the (symmetric) local control Hamiltonian 1⊗1 is sufficient to obtain the stronger
Assumptions (II) and (III) respectively. Since this Hamiltonian commutes with everything, the only
effect of adding or removing the corresponding term from the control system is a change in the global
phase. More concretely, if our control system is (H) (resp. (Hs)) but only satisfies Assumptions (I)
and (II’) (resp. (III’)), then we can add the control Hamiltonian 1⊗1 so that it satisfies Assumption (II)
(resp. (III)). Now we can compute any solution in this extended system and we obtain a corresponding
solution in the actual system by setting the control function of 1 ⊗ 1 to zero. The resulting solution
will, at all times, be equal to the solution of the extended system up to a global phase.

7.A Relation to Symmetric Lie Algebras

In the main text we have shown that the local unitary actions on bipartite quantum states correspond to
certain matrix diagonalizations, and we have stated that they themselves are related to certain symmetric
Lie algebras. In this appendix we make these relations explicit and give all the relevant formulas. For a
compact overview of the relation of symmetric Lie algebras to matrix diagonalizations see Table 1.3.

Since we want to define a reduced control system on the singular values, a key question is how the
singular values change in time. More precisely, given a differentiable path of matrices ψ(t), what can
we say about the derivative of the singular values? This question is made more complicated by the fact
that the order and signs of the singular values are not unique (and if they are chosen in a unique way, they
are not guaranteed to be differentiable). These issues can be resolved, and in fact one can do so in the
more general setting of semisimple orthogonal symmetric Lie algebras, see Chapter 1 and in particular
Section 1.2. We will recall and adapt the pertinent results as necessary.

The reduction of control systems was treated in detail in Chapter 2 in the setting of semisimple
orthogonal symmetric Lie algebras. In order to rigorously prove the Equivalence Theorem 7.1.10, we
need to show how the control systems considered here can be interpreted as control systems in such
symmetric Lie algebras. See Table 1 for an overview of the notation related to the different control
systems.
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Complex Singular Value Decomposition (Type AIII)

The complex singular value decomposition is encoded by the symmetric Lie algebra of type AIII, see
for instance [Kle06, App. A.7] and [Hel78, Ch. X §2.3]. The standard matrix representation of this
Lie algebra is the indefinite special unitary Lie algebra gAIII = su(d1, d2) with Cartan decomposition
gAIII = kAIII ⊕ pAIII where10

kAIII =
{(iE 0

0 iF

)
: iE ∈ u(d1), iF ∈ u(d2), tr(E) = − tr(F )

}
,

pAIII =
{( 0 ψ

ψ∗ 0

)
: ψ ∈ Cd1,d2

}
.

A choice of corresponding compact Lie group is KAIII = S(U(d1)×U(d2)).

Remark 7.A.1. In general we consider (semi)simple orthogonal symmetric Lie algebras g = k ⊕ p
and so we also have to provide a “compatible” inner product on g. The inner product is (up to some
irrelevant scaling) uniquely defined using the Killing form on g, cf. [Hel78, Ch. V, Thm. 1.1]. Due to
simplicity of g the Killing form is (again up to scaling) given by tr(AB). In the following we will set the
inner product on k to −1

2 tr(AB) and on p to +1
2 tr(AB), and we define that k and p are orthogonal to

each other. Furthermore, we always use the real inner product Re(⟨ψ, ϕ⟩) = Re(tr(ψ∗ϕ)) on states in
Cd1 ⊗ Cd2 .

The spaces Cd1 ⊗ Cd2 and pAIII are identified using the map

ıd : Cd1 ⊗ Cd2 → pAIII, |ψ⟩ 7→
(

0 ψ
ψ∗ 0

)
.

Lemma 7.A.2. The map ıd is an R-linear11 isometric isomorphism. The subspace aAIII := ıd(Σ) is
maximal Abelian and ıd ◦ diag ◦ΠΣ = ΠaAIII ◦ ıd. The Weyl group WAIII is isomorphic to the signed
symmetric group Sdmin

≀ Z2 and wAIII := ıd(Σ�−) is a Weyl chamber.

Proof. It is clear that ıd is an R-linear isomorphism. With the inner product on Cd1 ⊗Cd2 and p defined
as in Remark 7.A.1 a simple computation shows that ıd is even an isometry:

1
2 tr(ı

d(|ψ⟩), ıd(|ϕ⟩)) = 1
2 tr(ψϕ

∗ + ψ∗ϕ) = Re(tr(ψ∗ϕ)).

That ıd(Σ) is maximal Abelian is well-known, cf. Table 1.2. The fact that ıd is an isometry also proves
that ıd ◦diag ◦ΠΣ = ΠaAIII ◦ ıd. That the Weyl group acts by generalized permutations follows from the
fact that the singular values are unique up to order and sign and the fact that any generalized permutation
can be implemented by choosing V and W appropriately.

Moreover, we define the following maps:

ȷd : Uloc(d1, d2) → AdKAIII
, V ⊗W 7→ AdV×W

ȷd⋆ : uloc(d1, d2) → adkAIII , iE ⊗ 1+ 1⊗ iF 7→ adiE×iF .

Note that ȷd⋆ is the derivative of ȷd at the identity.
10Often one denotes kAIII = s(u(d1)⊕ u(d2)).
11Note that in the Lie algebraic context we always work with real vector spaces, even if their standard representation

involves complex numbers.
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Lemma 7.A.3. It holds that ȷd is a Lie group isomorphism, and so ȷd⋆ is a Lie algebra isomorphism12.
For U ∈ Uloc(d1, d2), iH ∈ uloc(d1, d2) and |ψ⟩ ∈ Cd1 ⊗ Cd2 , the isomorphisms ıd and ȷd satisfy the
compatibility conditions

ȷd(U)ıd(|ψ⟩) = ıd(U |ψ⟩), ȷd⋆(iH)ıd(|ψ⟩) = ıd(iH |ψ⟩). (7.2)

Similarly we have the correspondence of the infinitesimal action ıd(addσ(iH)) = −ȷd⋆(iH)(ıd(|σ⟩))
and of the induced vector fields where if −X := ıd⋆(iH0) = ıd ◦ (iH0) ◦ (ıd)−1 then −HU = (ıd ◦
diag)⋆Xȷd(U). Moreover the map sing�− corresponds to the quotient map with image in the Weyl chamber
pAIII → aAIII/WAIII

∼= wAIII, see Section 1.3.

Proof. Even though V × W does not always lie in KAIII, we can choose ϕ ∈ R such that eiϕV ×
e−iϕW ∈ KAIII, and this phase disappears in the tensor product and in the adjoint representation. In-
deed, any ϕ satisfying eiϕ(d1+d2) = detW/detV will do. Hence ȷd is well defined, and one easily
verifies that it is an isomorphism. The compatibility condition (7.2) follows from a simple compu-
tation. Similarly, the corresponding Lie algebra isomorphism ȷd⋆ can be written as iE ⊗ 1 + 1 ⊗
iF 7→ ad

i(E+
tr(F )−tr(E)
d1+d2

1)⊕i(−F+
tr(F )−tr(E)
d1+d2

1)
to show explicitly that it is well defined. By definition

addσ(iH) = −iH |σ⟩. Using the compatibility condition (7.2) this immediately yields ıd(addσ(iH)) =
−ȷd⋆(iH)(ıd(|σ⟩)) as desired. Recall that we definedHU = ΠΣ ◦ (U∗(iH0)U)◦diag and in Section 2.2
we definedXK = ΠaAd

⋆
K(X)◦ ι. (We are slightly abusing notation here by writingXAdK .) Using the

compatibility condition (7.2), and Πa ◦ ıd = ıd ◦diag ◦ΠΣ, the claimHU = (ıd ◦diag)⋆Xȷd(U) follows
from a simple computation. The claim about the quotient map is just a restatement of the uniqueness of
the singular values.

Remark 7.A.4. Explicitly (7.2) states that ȷd(V ⊗ W )ıd(|ψ⟩) = ıd(|V ψW ∗⟩). In a semisimple or-
thogonal symmetric Lie algebra, every element in pAIII can be mapped into aAIII using the group ac-
tion of KAIII, cf. Lemma 1.A.26, which one might call “diagonalization”. In our case this means
that ıd(|ψ⟩) can be mapped to some element in ıd(|V ψW ∗⟩) ∈ ıd(Σ). This exactly corresponds
to the complex singular value decomposition. Note however that in the Lie algebra setting we have
V ×W ∈ S(U(d1)×U(d2)) and hence there is an additional restriction on the determinants of V and
W .

Remark 7.A.5. For regular σ ∈ Sdmin−1 we have defined the map addσ in the main text and Lemma 7.A.3
shows that it is related to the adjoint representation adσ : kAIII → pAIII (hence the name). Denoting
by k⊥σ and p⊥σ the orthogonal complement of the commutant of σ in kAIII and pAIII respectively, it turns
out that the restriction adσ : k⊥σ → p⊥σ becomes bijective and hence invertible, see Proposition 1.4.12.
In fact, this inverse is simply the Moore–Penrose pseudoinverse. Moreover it holds that p⊥σ is just the
orthocomplement of a. Hence, the pseudoinverse (addσ)

−1 is defined on Σ⊥ with image in (ȷd⋆)
−1(k⊥σ ).

Note however that ȷd is not an isometry and so the orthocomplement has to be calculated in k. The
precise definition is given in the following lemma.

Lemma 7.A.6. Let σ ∈ Sdmin−1 be regular. Then it holds that Σ⊥ = {|ψ⟩ ∈ Cd1 ⊗ Cd2 : ψii ∈
iR, 1 ≤ i ≤ dmin}, and the map (addσ)

−1 can be described explicitly as

(addσ)
−1 : Σ⊥ → uloc(d1, d2), |A⟩ 7→ iE ⊗ 1+ 1⊗ iF ,

where Eij = 0 and Fij = 0 whenever i > dmin and j > dmin, and for i ≤ dmin and j ≤ dmin we get

iEii = iFii = −Aii
2σi

, iEij =
σjAij + σiAji

σ2i − σ2j
, iFij =

σjAji + σiAij
σ2i − σ2j

. (7.3)

12Contrary to ıd, the map ȷd⋆ is not an isometry with respect to the inner products of Remark 7.A.1.
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If d1 > d2 resp. d1 < d2 we additionally have

iEij =

{
−Aij

σj
if j ≤ d2 < i

0 if j > d2
resp. iFij =

{
−Aji

σj
if i ≤ d1 < j

0 if i > d1.

Proof. We only consider the case d1 ≥ d2 for simplicity. Consider the map iE ⊗ 1+ 1⊗ iF 7→ A :=
−i(Eσ̃ + σ̃F ) where σ̃ is the corresponding diagonal matrix. Then Aii = −i(Eii + Fii)σi ∈ iR.
Hence, when we invert the map above, we will assume that Aii ∈ iR. Moreover we need to find the
kernel of the map, i.e. solve for A = 0 (for all or any regular σ). This happens if Eii + Fii = 0, and
Eij = Fij = 0 for j ≤ d2 and Eij ∈ C for j > d2. The orthocomplement of the kernel is given by
Eii = Fii, and Eij , Fij ∈ C for j ≤ d2 and Eij = 0 for j > d2. Using, for i, j ≤ dmin, that

Aij = −i(Eijσj + Fjiσi), Aji = i(Eijσi + Fjiσj),

we find

σiAij + σjAji = iFji(σ
2
j − σ2i ), and thus iFij =

σjAji + σiAij
σ2i − σ2j

,

σjAij + σiAji = iEij(σ
2
i − σ2j ), and thus iEij =

σjAij + σiAji
σ2i − σ2j

.

Finally for j ≤ d2 < i we find iEij = −Aij/σj and for j > d2 we get iEij = 0.

Note that this lemma uniquely defines iE⊗1+1⊗ iF ∈ uloc(d1, d2), although there is some freedom
in the choice of E and F since we can shift some real multiple of the identity between them.

Autonne–Takagi Factorization (Type CI)

First discovered by Autonne [Aut15] and Takagi [Tak25], the Autonne–Takagi factorization [HJ12,
Sec. 4.4] states that for any complex symmetric matrix A ∈ sym(d,C) there exists a unitary matrix
U ∈ U(d) such that UAU⊤ is real and diagonal. The diagonal elements are uniquely defined up to
order and signs, and they are in fact the singular values of A.

The corresponding symmetric Lie algebra is that of type CI, usually represented by the real sym-
plectic Lie algebra gCI = sp(d,R), see [Kle06, Sec. 4.3] and again [Hel78, Ch. X §2.3]. The Cartan
decomposition gCI = kCI ⊕ pCI is given explicitly by

kCI =

{[
A B
−B A

]
: A = −A⊤, B = B⊤, A,B ∈ Rd,d

}
,

pCI =

{[
C D
D −C

]
: C = C⊤, D = D⊤, C,D ∈ Rd,d

}
.

The corresponding state space isomorphism ıs is given by

ıs : Sym2(Cd) → pCI, |ψ⟩ 7→
(

Reψ − Imψ
− Imψ −Reψ

)
.

Lemma 7.A.7. The map ıs is an R-linear isometric isomorphism. The subspace aCI := ıs(Σ) is max-
imal Abelian and ıs ◦ diag ◦ΠΣ = ΠaCI ◦ ıs. The Weyl group WCI is isomorphic to the generalized
permutations Z2 ≀ Sd and wCI := ıs(Σ�−) is a Weyl chamber.
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Proof. The proof is analogous to that of Lemma 7.A.2 so we just compute the inner product on pCI:

1

2
tr(ıs(|ψ⟩)ıs(|ϕ⟩)) = tr(Re(ψ)Re(ϕ) + Im(ψ) Im(ϕ)) = Re(tr(ψ∗ϕ)).

Hence ıs is an isometry and this concludes the proof.

Now consider the following maps

ȷs : Usloc(d) → AdKCI
, V ⊗ V 7→ Ad( ReV ImV

− ImV ReV

),
ȷs⋆ : u

s
loc(d) → adkCI , iH ⊗ 1+ 1⊗ iH 7→ ad( Re(iH) Im(iH)

− Im(iH) Re(iH)

) .
Lemma 7.A.8. The maps ȷs and ȷs⋆ are Lie isomorphisms satisfying the compatibility conditions

ȷs(U)ıs(|ψ⟩) = ıs(U |ψ⟩), ȷs⋆(iH)ıs(|ψ⟩) = ıs(iH |ψ⟩). (7.4)

As in Lemma 7.A.3 we get the correspondence of infinitesimal action, induced vector fields and quotient
map.

Proof. Since V ⊗V = (−V )⊗ (−V ) we have to check that the map is well defined. But it is clear that
Ad−U = AdU and hence ȷs is well defined. That it is an isomorphism follows from [Kle06, Prop. 4.7].
The remainder of the proof is analogous to that of Lemma 7.A.3.

Just as in Remark 7.A.4, the relation to the Autonne–Takagi factorization can be seen from (7.4), which
explicitly states that ȷs(V ⊗ V )ıs(|ψ⟩) = ıs(|V ψV ⊤⟩), and from the fact that ıs(Σ) = aCI.

As described in Remark 7.A.5 we can explicitly compute the appropriate inverse of the map adsσ.
Note that in this case we have k⊥σ = kCI.

Lemma 7.A.9. Let σ ∈ Sd−1 be regular. Then it holds that Σ⊥ = {|ψ⟩ ∈ Sym2(Cd) : ψii ∈ iR, 1 ≤
i ≤ d}, and the map (adsσ)

−1 can be explicitly described as

(adsσ)
−1 : Σ⊥ → usloc(d), |A⟩ 7→ iE ⊗ 1+ 1⊗ iE,

where
Eii =

iAii
2σi

, Eij = − Im(Aij)

σi + σj
− i

Re(Aij)

σi − σj
.

Proof. Let A = adsσ(iE) = −i(Eσ̃ + σ̃E). Then we have Aii = −2iEiiσi and Aij = −i(Eijσj +
σiEij). Hence Eii = iAii

2σi
. To invert the second equation we compute

Aij = −i(Eijσj + σiEij), Aij = +i(Eijσj + σiEij)

and hence taking sum and difference we get

2Re(Aij) = i(Eij − Eij)(σi − σj) = −2 Im(Eij)(σi − σj) ⇒ Im(Eij) =
Re(Aij)

σj − σi
,

2i Im(Aij) = −i(Eij + Eij)(σi + σj) = −2i Re(Eij)(σi + σj) ⇒ Re(Eij) = − Im(Aij)

σi + σj
.

This concludes the proof.
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Hua Factorization (Type DIII)

A skew-symmetric version of the Autonne–Takagi factorization also exists [HJ12, Coro. 4.4.19]. It is
called the Hua factorization, and was originally proven in [Hua44, Thm. 7]. It states that for every skew-
symmetric complex matrix A ∈ asym(d,C) there exists a unitary U ∈ U(d) such that UAU⊤ is real
and block diagonal with skew-symmetric blocks of size 2 × 2. If d is odd, then there is an additional
1 × 1 block containing a zero. We call such matrices quasi-diagonal. Each 2 × 2 block is determined
by a single real number (and its negative) which taken together yield the singular values of A.

This matrix factorization is related to the symmetric Lie algebra of type DIII, usually represented
by so∗(2d), see [Kle06, App. A.6] and again [Hel78, Ch. X §2.3].13 In this case we have the following
Cartan like decomposition

kDIII =

{(
iH 0

0 −iH

)
: iH ∈ u(d)

}
, pDIII =

{(
0 ψ
ψ∗ 0

)
: ψ = −ψ⊤, ψ ∈ Cd,d

}
.

Clearly the state space isomorphism is

ıa :
∧2(Cd) → pDIII, |ψ⟩ 7→

(
0 ψ
ψ∗ 0

)
.

Lemma 7.A.10. The map ıa is an R-linear isometric isomorphism. The subspace aDIII := ıa(Ξ) is
maximal Abelian and ıa ◦qdiag ◦ΠΞ = Πa ◦ ıa. The Weyl group WDIII is isomorphic to the generalized
permutations Z2 ≀ S⌊d/2⌋ and wDIII := ıa(Ξ�−) is a Weyl chamber.

Proof. The proof is entirely analogous to that of Lemma 7.A.2.

The isomorphisms on the Lie group and algebra level are:

ȷa : Usloc(d) → AdKDIII
, V ⊗ V 7→ Ad(V 0

0 V

)
ȷa⋆ : u

s
loc(d) → adkDIII

, iH ⊗ 1+ 1⊗ iH 7→ ad( iH 0
0 −iH

)
Lemma 7.A.11. The maps ȷa and ȷa⋆ are Lie isomorphisms satisfying the compatibility conditions

ȷa(U)ıa(|ψ⟩) = ıa(U |ψ⟩), ȷa⋆(iH)ıa(|ψ⟩) = ıa(iH |ψ⟩). (7.5)

As in Lemma 7.A.3 we get the correspondence of infinitesimal action, induced vector fields and quotient
map.

Proof. Since Ad−U = AdU the map ȷa is well-defined, and it is clearly a Lie group isomorphism. The
remainder of the proof is analogous to that of Lemma 7.A.3.

The relation to the Hua factorization can be seen form (7.5), which becomes ȷa(V ⊗ V )ıa(|ψ⟩) =
ıa(|V ψV ⊤⟩), and the fact that ıa(Ξ) = aDIII.

Lemma 7.A.12. Let ξ ∈ S⌊d/2⌋−1 be regular. It holds that Ξ⊥ = {|ψ⟩ ∈
∧2(Cd) : ψ2i−1,2i ∈ iR, i =

1, . . . , ⌊d/2⌋}. The map (adaξ )
−1 takes the following form:

(adaξ )
−1 : Ξ⊥ → usloc(d), |A⟩ 7→ iE ⊗ 1+ 1⊗ iE,

13Note that [Hel78] uses a different but isomorphic matrix representation.



186 CHAPTER 7. REDUCTION TO THE SINGULAR VALUES

where for 1 ≤ i, j ≤ ⌊d/2⌋ we get

(iE)(ii) = − ai
2ξi

12, (iE)(ij) =
ξiJA(ij) + ξjA(ij)J

ξ2j − ξ2i
,

where (iE)(ij) andA(ij) indexes the 2×2 blocks of the respective matrices, 12 = ( 1 0
0 1 ) and J =

(
0 1
−1 0

)
.

By ai ∈ iR we denote the value satisfying A(ii) = aiJ . In the case where d is odd we additionally have

iEd,2i−1 = iE2i−1,d =
Ad,2i
ξi

, iEd,2i = iE2i,d = −
Ad,2i−1

ξi
, iEd,d = 0.

Proof. First consider the even-dimensional case. Let A := adaξ (iE ⊗ 1 + 1 ⊗ iE) = −i(Eξ̃ + ξ̃E).
For 1 ≤ i, j ≤ ⌊d/2⌋ we compute the bocks A(ii) = −i(E(ii)ξiJ + ξiJE(ii)) as well as

A(ij) = −i(E(ij)ξjJ + ξiJE(ij)), A(ij) = +i(E(ij)ξiJ + ξjJE(ij)).

It follows that ξiJA(ij) + ξjA(ij)J = i(ξ2j − ξ2i )E(ij), and hence we find that

iE(ii) =
−ai
2ξi

12, iE(ij) =
ξiJA(ij) + ξjA(ij)J

ξ2j − ξ2i
.

Here we used that the for ȷ⋆(iE⊗1+1⊗iE) to lie in k⊥ξ the diagonal blocksE(ii) must be real multiples
of the identity. If d is odd there is an additional column at the bottom and row on the right of iE to be
determined. We find that

Ad,2i−1 = −iEd,2iξi, Ad,2i = +iEd,2i−1ξi.

The claimed results follow immediately.



CHAPTER 8
Controllability and Speed Limits

8.1 Introduction

We start by studying general control theoretic concepts, namely controllability and stabilizability. This
turns out to be much easier than in Part II, as the systems considered here are generally controllable and
stabilizable. Intuitively, this can be attributed to the fact that here we can employ the tools of Lie group
theory, instead of having to deal with the more intricate theory of Lie semigroups. Due to controllability,
it is interesting to study quantum speed limits (QSL) which give upper bounds on the rate of change of
the singular values of the state. The problem of deriving explicit time-optimal controls is addressed in
Chapter 9.

Outline and Main Results

In Section 8.2 we use the reduced control system to prove that the full bilinear control system is always
controllable and stabilizable. In Section 8.3 we derive a general quantum speed limit for the evolution
of the singular values.

8.2 Controllability and Stabilizability

In this section we show that the reduced control system is always controllable and stabilizable. As a
consequence, the full control system is also controllable and all states can be stabilized in a certain sense.
For notational simplicity, we focus on the case of distinguishable subsystems, noting that the bosonic
and fermionic cases are entirely analogous.

First we lift the reduced control system (Σ) to the Lie group SO(dmin). Unless otherwise noted, it
is assumed that the initial state is R(0) = 1. The operator lift can be defined by

Ṙ(t) = −HU(t)R(t), (L)

and analogously with Hs
U and Ha

U in the bosonic and fermionic cases. A solution is absolutely contin-
uous and satisfies (L) almost everywhere for some measurable U .

Remark 8.2.1. Note that the operator lift (L) of the reduced control system is a useful but somewhat
artificial construction. Indeed, even though (H) and (Σ) are equivalent, the operator lift (L) is not
equivalent to the operator lift of (H), cf. Remark 2.2.2.
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The reduced control system is controllable on Sdmin−1 if for every two states σ1, σ2 ∈ Sdmin−1 it
holds that σ2 ∈ reachΣ(σ1) and it is controllable on Sdmin−1 in time T if for every two states σ1, σ2 ∈
Sdmin−1 we have that σ2 ∈ reachΣ(σ1, [0, T ]). Approximate controllability is defined in the same way
except that one considers the closures of the respective reachable sets. The analogous definitions also
hold for all other control systems.

To understand the properties of the operator lift, we study the set of generators H ⊂ so(dmin,R).
A key property of H is that it is invariant under conjugation by the Weyl group W = Sdmin

≀ Z2, see
Lemma 2.A.2 and Appendix 7.A. This fact allows us to prove the following result.

We say that a coupling HamiltonianH0 is effectively local if all induced vector fieldsHU (resp.Hs
U

or Ha
U ) vanish. For distinguishable and bosonic systems this is the same as a local Hamiltonian, but for

fermionic system there are effectively local Hamiltonians which are not local, see Remark 9.2.9.

Proposition 8.2.2. The Weyl group W acts irreducibly on so(dmin,R). In particular, if the coupling
Hamiltonian H0 is not effectively local, then the operator lift (L) is controllable. The analogous result
holds, mutatis mutandis, in the bosonic and fermionic cases.

Proof. To show that the Weyl group acts irreducibly, we start with an arbitrary non-zero element Ω ∈
so(dmin,R) and show that the subrepresentation generated by Ω is all of so(dmin,R). If dmin = 2
this is trivially true since so(2,R) is one-dimensional. So assume that dmin ≥ 3. Consider the basis
{eij = Eij − Eji : 1 ≤ i < j ≤ dmin}, where Eij is the matrix with a 1 in the position (i, j) and
0 elsewhere, and let Ωij be the coefficients of Ω in this basis. Since Ω is non-zero, at least one of the
coefficients is non-zero. Using a permutation in W we may assume that Ω12 ̸= 0. Let Wi ∈ W be the
diagonal matrix whose diagonal equals 1 everywhere except in the i-th position, where it equals −1.
Consider the matrix Ω′ =

Ω+W3ΩW⊤
3

2 . Then Ω′
12 = Ω12 and Ω′

i3 = Ω′
3j = 0. Iterating this procedure

withW4, . . . ,Wdmin
we obtain a multiple of e12, showing that e12 lies in the subrepresentation generated

by Ω. From this, using the permutations in W, all other basis elements eij can be obtained. This
shows that the representation of W is irreducible. Controllability of the operator lift then follows from
Proposition 2.4.12.

This result can now be lifted to the full bilinear system using the equivalence of the systems.

Theorem 8.2.3 (Controllability). If the full control system (H) is controllable in time T , then the
reduced control system (Σ) is controllable in time T on the Weyl chamber Sdmin−1

�− . Conversely, if
the reduced control system (Σ) is controllable in time T on the Weyl chamber Sdmin−1

�− , then the full
control system (H) is controllable in time T +ε for all ε > 0. Moreover, there exists a finite time T
such that both systems are controllable in time T . The analogous result holds, mutatis mutandis,
in the bosonic and fermionic cases.

Proof. Clearly if (H) is controllable in time T , so is (Σ) on the Weyl chamber by Proposition 7.1.12. The
same result shows that if (Σ) is controllable in time T on the Weyl chamber, then (H) is approximately
controllable in time T . Proposition 8.2.2 shows in particular that (Σ) is directly accessible at every
point (see Section 2.4 for the definitions related to accessibility) and hence by Proposition 2.4.10 the
bilinear system (H) is accessible (on the set of normalized states) at every regular state. Then [Jur97,
Ch. 3 Thm. 2] implies that (H) is controllable in time T for regular initial states. Since regular states
are dense and since we can leave the set of non-regular states in an arbitrarily short amount of time ε,
the full control system (H) is controllable in time T + ε. That (Σ) is controllable in finite time follows
from Proposition 8.2.2.
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Now we turn to stabilizability. In accordance with the definitions given in Section 2.4 we say that a
state σ ∈ Sdmin−1 is stabilizable for (Σ) if 0 ∈ conv(Hσ). A direct consequence of Proposition 8.2.2
is that every state is stabilizable.

Corollary 8.2.4. Every state is stabilizable for the reduced control systems.

Proof. If H0 is effectively local, the statement trivially holds. Otherwise choose some non-zero HU .
Consider the uniform combination ĤU = 1

|W|
∑

w∈W wHUw
−1 ∈ conv(H) which is clearly W-

invariant. If dmin = 2, it is clear that ĤU = 0. In higher dimensions W-invariance and irreducibility of
the action of W (Proposition 8.2.2) again show that ĤU = 0. The proof for the bosonic and fermionic
cases is the same.

If a state σ ∈ Sdmin−1 is stabilizable for (Σ), then in the bilinear control system (H), one can stay close
to the local unitary orbit Uloc(d1, d2) |σ⟩ for an arbitrary amount of time, cf. Proposition 2.4.7.

Recall that a point σ ∈ Σ is strongly stabilizable if there is U ∈ Uloc(d1, d2) such that HUσ = 0.
Specializing Proposition 2.4.5 we obtain the following result.

Proposition 8.2.5. Let σ ∈ Sdmin−1 and U ∈ Uloc(d1, d2) and set |ψ⟩ = U |σ⟩. If there is some
H ∈ iuloc(d1, d2) satisfying (H0 +H) |ψ⟩ = 0, then HUσ = 0 and σ is strongly stabilizable.

Conversely, letσ ∈ Sdmin−1 be strongly stabilizable and letU ∈ Uloc(d1, d2) be such thatHUσ = 0.
Moreover assume that σ is regular. Then there is some H ∈ iuloc(d1, d2) such that (H0 +H) |ψ⟩ = 0
where we again set |ψ⟩ = U |σ⟩. In fact one can choose

−iH(t) = −U(t)((addσ(t))
−1 ◦Π⊥

Σ)
(
U(t)∗(iH0)U(t) |σ(t)⟩

)
,

where (addσ)−1 is given explicitly in Lemma 7.A.6. The analogous result holds, mutatis mutandis, in the
bosonic and fermionic cases.

Note that the assumption on regularity is necessary in general, cf. Example 2.3.12.
The local Hamiltonian H in the previous result is called a (local) compensating Hamiltonian, and

indeed this is a special case of Proposition 7.1.13. Note that the expressions in Lemmas 7.A.6, 7.A.9
and 7.A.12, and hence the compensating Hamiltonian, blow up as σ approaches a non-regular state.
The following result yields a simple special case in which strong stabilizability is easy to determine.

Lemma 8.2.6. Let H0 =
∑m

i=1Ai ⊗ Bi and assume that all Ai commute or that all Bi commute.
Then there exists U ∈ Uloc(d1, d2) such that HU ≡ 0. In particular, in this case every state is strongly
stabilizable. The analogous result holds, mutatis mutandis, in the bosonic and fermionic cases.

8.3 Speed Limit and Control Time

By speed limit we simply mean an upper bound on the velocity that any solution to the given control
system can achieve. Note that the full control system (H) (resp. (Hs)) does not have any such speed limit,
since the controls may be unbounded, but, by construction, the reduced control system (Σ) (resp. (Σs)
and (Σa)) always admits a (finite) speed limit, cf. Proposition 2.4.1.

For any matrix Ω ∈ Rn,n, we write ∥Ω∥∞ for the largest singular value of Ω. This is exactly the
operator norm with respect to the usual Euclidean norm, and hence it is clear that for Ω ∈ so(n,R), the
norm ∥Ω∥∞ corresponds to the largest velocity that Ω achieves on the unit sphere. This immediately
yields the following result:



190 CHAPTER 8. CONTROLLABILITY AND SPEED LIMITS

Lemma 8.3.1. Let σ : [0, T ] → Sdmin−1 be any solution to (Σ). Then it holds that ∥σ̇(t)∥ ≤
maxU ∥HU∥∞ almost everywhere.1 The analogous result holds, mutatis mutandis, in the bosonic and
fermionic cases.

Hence we need to find a good upper bound for ∥HU∥∞ over all U ∈ Uloc(d1, d2).

Lemma 8.3.2. Let H0 =
∑r

k=1Ak ⊗Bk. Then

max
U∈Uloc(d1,d2)

∥HU∥∞ ≤

√√√√ r∑
k=1

∥Ak∥22∥Bk∥22,

where ∥A∥2 =
√

tr(A∗A) denotes the Frobenius norm. The same bound holds a fortiori for the bosonic
case maxU∈Usloc(d) ∥H

s
U∥∞ and the fermionic case maxU∈Usloc(d) ∥H

a
U∥∞.

Proof. The Frobenius norm ∥ · ∥2 and the spectral norm ∥ · ∥∞ are related by ∥ · ∥∞ ≤ ∥ ·∥2, see [HJ12,
Prob. 5.6.P23]. Using the Cauchy-Schwarz inequality we compute for any U = V ⊗W ∈ Uloc(d1, d2)
that

∥HU∥2∞ ≤
dmin∑
i,j=1

|(HU )ij |2 ≤
r∑

k=1

dmin∑
i,j=1

|(V ∗AkV )ij |2|(W ∗BkW )ij |2 ≤
r∑

k=1

∥Ak∥22∥Bk∥22.

This concludes the proof in the case of distinguishable subsystems. The bound continues to hold in the
bosonic and fermionic cases since restricting the drift or the controls cannot lead to faster evolution of
the singular values.

To obtain a lower limit on the time needed to reach any target state from any initial state, we also
need to know the largest distance between any pair of points. This is the diameter of the space2, and
due to the Weyl group symmetry every state has an equivalent state in the Weyl chamber. Hence we are
particularly interested in the diameter of the Weyl chamber, which is given in the following result.

Lemma 8.3.3. Consider the unit sphere Sd−1 embedded in Rd and let W = Z2 ≀Sd be the Weyl group
acting by coordinate reflections and permutations. Then the corresponding Weyl chamber has diameter
arccos( 1√

d
) ∈ [π4 ,

π
2 ).

Proof. First recall that the shortest distance on the sphere between two points x, y ∈ Sd−1 is given by
arccos(x⊤y). The maximal distance in the Weyl chamber is achieved by two of its corners. Then it
is clear that these points are x = (1, 0, . . . , 0) and y = ( 1√

d
, . . . , 1√

d
) for the standard Weyl chamber

Sd−1
�− . The result follows immediately.

The control time T ⋆ of a control system is the shortest (infimum) time sufficient to reach any state
from any other state. Using the upper bound on the speed of a solution, the lower bound on the diameter
of the Weyl chamber and Theorem 8.2.3, we can give a lower bound on the control time:

Theorem 8.3.4 (Singular Value Speed Limit). The control time T ⋆ of the full control system (H)

1The maximum exists and is achieved since the map U 7→ ∥HU∥∞ is continuous on a compact domain.
2Note that distances in the reduced state space are computed as the length of the shortest geodesic joining two points

on the sphere. Hence, somewhat unintuitively, the diameter of a unit hypersphere is π, which is the distance between two
antipodal points.
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(resp. (Hs)) is finite and satisfies

T ⋆ ≥ π/4

maxU ∥HU∥∞
≥ π

4
√∑

k ∥Ak∥22∥Bk∥22
.





CHAPTER 9
Optimal Entanglement Generation

9.1 Introduction

In this chapter we apply optimal control theory to the reduced control systems of Chapter 7 in some
low dimensional cases. This allows us, for instance, to find the optimal control sequence to prepare a
maximally entangled state, or conversely to disentangle a given state. Moreover, we address the problem
of stabilizing states with a certain amount of entanglement.

Outline

The following sections use the reduced control system to derive time-optimal controls and stabilizing
controls for the full control system in several concrete settings. In particular, Section 9.2 treats those
cases where the reduced state space is one-dimensional, for instance the case of two distinguishable
qubits. Finally, a higher-dimensional case of two distinguishable qutrits is studied in Section 9.3 using
the Pontryagin Maximum Principle to derive time-optimal solutions for preparing maximally entangled
states.

9.2 Optimal Control of the Schmidt Angle

Let us now turn to the question of optimal control. Given two quantum states, the challenge is to find
a solution connecting them in the least amount of time possible. Additionally we want to be able to
stabilize states with a desired amount of entanglement.

In this section we consider the cases in which the reduced state space is one-dimensional. In these
cases the state can be described by a single value, called the Schmidt angle χ. We will start with the
simplest non-trivial setting of two coupled qubits, before treating the bosonic and the fermionic case.
In each case we first derive a speed limit of the reduced control system, and then turn to the full control
system to compute the corresponding optimal controls and to show how states with a prescribed set of
singular values can be stabilized.

Two Distinguishable Qubits

First we treat the case of two distinguishable qubits with an arbitrary coupling Hamiltonian H0. Using
local unitary control, the state |ψ⟩ ∈ C2⊗C2 can always be brought into diagonal form |ψ⟩ = σ1 |11⟩+

193
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σ2 |22⟩, where σ1, σ2 ∈ R are the singular values of |ψ⟩. Due to the normalization of the state |ψ⟩, it
holds that σ21 + σ22 = 1 and hence there exists an angle χ such that σ1 = cos(χ) and σ2 = sin(χ).
Commonly χ is called the Schmidt angle. Since the singular values are only defined up to signs and
order, it suffices to consider states in the region χ ∈ [0, π4 ] (the Weyl chamber), where 0 represents
product states and π

4 represents maximally entangled states. Since the controls −HU of the reduced
control system (Σ) on this circle are the generators of rotations, i.e. HU ∈ so(2,R), they are described
by their angular velocity ω(−HU ) = (HU )12 ∈ R. One can show that the set of achievable angular
velocities is a closed interval symmetric around 0. Hence the optimal control task boils down to finding
the largest achievable angular velocity of the reduced control system, which we will denote ω⋆(H0) or
simply ω⋆. These results yield quantum speed limits on the evolution of the singular values (and hence
the amount of entanglement) for the corresponding systems.

Using the standard Pauli basis of the 2× 2 Hermitian matrices

P0 =

(
1 0
0 1

)
, Px =

(
0 1
1 0

)
, Py =

(
0 −i
i 0

)
, Pz =

(
1 0
0 −1

)
,

and after removing the local part (cf. Remark 9.A.1) of the coupling HamiltonianH0, by Lemma 9.A.2
it can be uniquely written as

H0 =
∑3

i,j=1Cij Pi ⊗ Pj

where C = C(H0) ∈ R3,3 is the coefficient matrix (with the indices 1, 2, 3 corresponding to x, y, z in
that order).

Lemma 9.2.1. Under a local unitary basis transformationU = V ⊗W the coefficient matrix transforms
as

C(U∗H0U) = R⊤
V C(H0)RW ,

where RV , and RW are the corresponding rotation matrices.

Proof. Recall that applying unitary basis transformations to su(2) corresponds to three-dimensional
rotations. For a given U ∈ SU(2) we write RU for the resulting rotation in SO(3). More explicitly,
for a⃗ ∈ R3 and P⃗ = (Px, Py, Pz), we have the relation AdU (⃗a · P⃗ ) = (RU a⃗)P⃗ where (RU )

3
i,j=1 =

1
2 tr(PiUPjU

−1), see [Cor84, Sec. 3.5, Thm. I]. We see that for U = V ⊗W we obtain U∗H0U =∑3
i,j=1 V

∗PiV ⊗W ∗PjW =
∑3

i,j,k,l=1Cij(R
⊤
V )kiPk⊗ (R⊤

W )ljPl =
∑3

k,l=1(R
⊤
V CRW )klPk⊗Pl, as

desired.

To avoid confusion, note that here we applied local unitary transformations to the physical state space,
whereas in Appendix 9.A we apply basis transformations to the space of Hermitian operators.

With this we can derive the exact quantum speed limit ω⋆ for the evolution of the singular values of
the state.

Proposition 9.2.2. Let si for i = 1, 2, 3 denote the singular values of C in non-increasing order (and
chosen to be non-negative). Then ω⋆ = s1 + s2.

Proof. First note that for U = V ⊗W ∈ Uloc(d) and coupling Hamiltonian H0, if we define H̃0 =
U∗H0U , then HU = H̃1. By Lemma 9.2.1 it holds that the coefficient matrix of H̃0 in the Pauli
basis is C(H̃0) = C(U∗H0U) = R⊤

V CRW . Using Proposition 7.1.5 and Kostant’s convexity the-
orem (cf. [Kos73]) for the real singular value decomposition we find that ω(−HU ) = (H̃1)12 =
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(R⊤
V CRW )12 + (R⊤

V CRW )21 ≤ s1 + s2. Moreover, using the real singular value decomposition it
is clear that there exist unitaries V,W , and hence rotation matrices RV , RW , such that

R⊤
V CRW =

 0 s1 0
s2 0 0
0 0 s3

 ,

and hence the bound is tight.

The next step is to compute time-optimal (and later stabilizing) controls in the full control sys-
tem (H). LetU = V ⊗W be a local unitary achieving the speed limit as in the proof of Proposition 9.2.2.
Then the path

σ : [0, T ] → S1, t 7→ (cos(ω⋆t), sin(ω⋆t))

is a solution to the reduced control system σ̇ = −HUσ with σ(0) = (1, 0) which reaches the quantum
speed-limit of Proposition 9.2.2.

Using Proposition 7.1.13 one can now determine a lifted solution and the corresponding control
functions with possible divergences at the non-regular points 0 and π

4 corresponding to product states
and maximally entangled states respectively. Indeed the (local) control Hamiltonian is1

Hc = E ⊗ 1+ 1⊗ F = −i AdU ◦(addσ(t))
−1 ◦Π⊥

Σ(iH̃0 |σ(t)⟩),

where AdU (·) = U(·)U∗ and H̃0 = U∗H0U . Moreover (addσ)−1 and Π⊥
Σ are given in Lemma 7.A.6.

Explicitly, denoting C ′ = C(H̃0), for χ ̸= k π4 we obtain that2

V ∗EV = −
( 1

2
(C′
zz+(C′

xx−C′
yy) tan(χ)) sec(2χ)(C′

xz−iC′
yz−(C′

zx+iC′
zy) sin(2χ))

sec(2χ)(C′
xz+iC′

yz−(C′
zx−iC′

zy) sin(2χ))
1
2
(C′
zz+(C′

xx−C′
yy) cot(χ))

)
W ∗FW = −

( 1
2
(C′
zz+(C′

xx−C′
yy) tan(χ)) sec(2χ)(C′

zx−iC′
zy−(C′

xz+iC′
yz) sin(2χ))

sec(2χ)(C′
zx+iC′

zy−(C′
xz−iC′

yz) sin(2χ))
1
2
(C′
zz+(C′

xx−C′
yy) cot(χ))

)
.

(9.1)

In our case C ′
xy = s1, C ′

yx = s2 and C ′
zz = s3 and the remaining matrix entries vanish. Hence this

becomes E = F = − s3
2 1, which is independent of the state χ and thus also of time. This proves the

following result, where we assume for simplicity that the control Hamiltonians linearly span uloc(2, 2).

Proposition 9.2.3. Let U be a local unitary achieving the speed limit as in Proposition 9.2.2. For a
system composed of two qubits initially in the state |00⟩, the following sequence yields a maximally
entangled state and does so in minimal time3:

1. Apply the local unitary U (almost) instantaneously.

2. Apply the constant control Hamiltonian Hc = −s31⊗ 1 for time π/4
s1+s2

.

3. (Optionally) apply a local unitary to choose the desired maximally entangled state.

4. (Optionally) stabilize the final state with an appropriate local compensating Hamiltonian.

The reverse direction is analogous.
1The direct term vanishes since the optimal control unitary is constant in time.
2We use the notation sec(χ) = 1

cos(χ)
for the secant and csc(χ) = 1

sin(χ)
for the cosecant.

3Mathematically, even with unbounded controls, the optimal time can only be reached approximately. Hence one should
more accurately speak of infimum time.
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Note that the local controls in Step 2. only apply a global phase, and so they may be omitted if the global
phase is neglected.

Remark 9.2.4. The fact that the time-optimal solutions in the reduced control system (Σ) are given by
rotations of constant speed ±ω⋆ significantly simplifies the problem since integrating the solution is
essentially trivial, and when lifting the control to the full control system (H) the direct term vanishes.
In the setting of Chapter 5 for example this simplification does not occur.

Another important task is that of stabilizing a state such as the maximally entangled state obtained
in the previous section. More precisely, here we want to stabilize a state with a certain set of singular
values. One can show abstractly, cf. Proposition 8.2.5, that for regular states this is always possible with
a fixed control Hamiltonian. It is easy to see that by choosing a local unitary U = V ⊗W such that
C ′ = C(U∗H0U) is diagonal, it holds that HUσ = 0 for any σ ∈ S1. Thus, from (9.1) we find that a
corresponding local compensating Hamiltonian is given by

V ∗EV =W ∗FW = −1
2(C

′
zz + (C ′

xx − C ′
yy) csc(2χ))1+ 1

2(C
′
xx − C ′

yy) cot(2χ)Pz.

Indeed, this also works for a maximally entangled state χ = π/4, but diverges when approaching
product states χ → 0, even if we ignore the global phase. In that case a different control Hamiltonian
does the job. As χ→ 0 the only terms in (9.1) which might blow up are those containing cot(χ). Thus,
if U is chosen such that C ′

xx = C ′
yy, which can always be achieved, this does not happen. The resulting

compensating Hamiltonian Hc = E ⊗ 1+ 1⊗ F is then defined by

V ∗EV = −C′
zz
2 1− sec(2χ)(C ′

yz + C ′
zy sin(2χ))Py,

W ∗FW = −C′
zz
2 1− sec(2χ)(C ′

zy + C ′
yz sin(2χ))Py.

The examples above show that there might exist many local unitaries U = V ⊗W such that HU = 0,
and each choice yields its own compensating Hamiltonian. In particular, by choosing the right U we
were able to prevent the controls from blowing up at product states and maximally entangled states.

Two Bosonic Qubits

In addition to the systems composed of two distinguishable subsystems considered above, one may also
consider indistinguishable subsystems. Such systems are characterized by the fact that swapping the two
subsystems changes the state only up to a global phase. If this phase is +1 the system is called bosonic,
and if it is −1 the system is called fermionic. The theory goes through with only minor adaptations
in this indistinguishable setting, see Chapter 7 for the details. In particular, the coupling and control
Hamiltonians have to be symmetric under swapping as well. Recall that we denote the symmetric local
unitary Lie group and algebra by Usloc(d) and usloc(d) respectively.

Let us now consider the case of two bosonic qubits. Again, the coupling Hamiltonian can be ex-
pressed in the Pauli basis as

H0 =
∑3

i,j=1Cij Pi ⊗ Pj , C ∈ R3,3.

This time the coefficient matrix C is symmetric. Transforming the coupling Hamiltonian using a local
unitary U = V ⊗ V ∈ Usloc(d), it follows from Lemma 9.2.1 that C(U∗H0U) = R⊤

V C(H0)RV .
Here and in the next section we will make use of the following simple lemma about symmetric and

Hermitian matrices of size 2× 2:



9.2. OPTIMAL CONTROL OF THE SCHMIDT ANGLE 197

Lemma 9.2.5. Consider a Hermitian matrix H ∈ iu(2) and let ℓ1 ≥ ℓ2 denote its eigenvalues. Then
it holds that |H12| ≤ ℓ1−ℓ2

2 and there is a unitary U ∈ SU(2) such that |(U∗HU)12| = ℓ1−ℓ2
2 . The

analogous statement for a real symmetric 2× 2 matrix and orthogonal conjugation also holds.

Proof. Due to the unitary invariance of the Frobenius norm it holds that (H11)
2+2|H12|2+(H22)

2 =
ℓ21+ℓ

2
2. SinceH11+H22 = ℓ1+ℓ2 there is some x ∈ R such thatH11 =

ℓ1+ℓ2
2 +x andH22 =

ℓ1+ℓ2
2 −x.

Together this gives

2|H12|2 = ℓ21 + ℓ22 − ( ℓ1+ℓ22 + x)2 − ( ℓ1+ℓ22 − x)2 = (ℓ1−ℓ2)2
2 − 2x2.

This proves the desired bound on |H12|. It remains to show that there is a unitary U such that the
diagonal elements of U∗HU coincide. For this we may assume that H is diagonal. Then we compute

1

2

(
1 1
1 −1

)(
ℓ1 0
0 ℓ2

)(
1 1
1 −1

)
=

1

2

(
ℓ1 + ℓ2 ℓ1 − ℓ2
ℓ1 − ℓ2 ℓ1 + ℓ2

)
,

and this concludes the proof for the Hermitian case. The real symmetric case is almost identical.

This time the exact speed limit is given in terms of the eigenvalues of the coefficient matrix C:

Proposition 9.2.6. Let ℓi(C) for i = 1, 2, 3 denote the eigenvalues of C in non-increasing order. Then
ω⋆ = ℓ1(C)− ℓ3(C).

Proof. The idea is similar to the proof of Proposition 9.2.2. If U = V ⊗ V , then by Lemma 9.2.1
it holds that C(U∗H0U) = R⊤

V CRV . Again it holds that ω(HU ) = (H̃1)12 = C(U∗H0U)12 +
C(U∗H0U)21. Due to Kostant’s Convexity Theorem [Kos73], or more precisely the Schur–Horn The-
orem [Sch23, Hor54], it holds that |C(U∗H0U)11 − C(U∗H0U)22| ≤ ℓ1(C) − ℓ3(C), and hence if
we denote by C̃(U∗H0U) the upper left 2 × 2 block in C(U∗H0U), it holds that |ℓ1(C̃(U∗H0U)) −
ℓ2(C̃(U

∗H0U))| ≤ ℓ1(C)−ℓ3(C). By Lemma 9.2.5,C(U∗H0U)12+C(U
∗H0U)21 ≤ ℓ1(C)−ℓ3(C)

and by the proof of the same lemma this bound is tight. Explicitly, the bound is achieved by choosing
U = V ⊗ V such that

C(U∗H0U) = R⊤
V CRV =

 ℓ1+ℓ3
2

ℓ1−ℓ3
2 0

ℓ1−ℓ3
2

ℓ1+ℓ3
2 0

0 0 ℓ2

 .

This concludes the proof.

DenotingC ′ = C(U∗H0U) = R⊤
V CRV , the compensating Hamiltonian is given byHc = E⊗1+

1⊗ E where

V ∗EV = −
( 1

2 (C
′
zz+(C′

xx−C′
yy) tan(χ)) sec(2χ)(C′

xz−iC′
yz−(C′

xz+iC′
yz) sin(2χ))

sec(2χ)(C′
xz+iC′

yz−(C′
xz−iC′

yz) sin(2χ))
1
2 (C

′
zz+(C′

xx−C′
yy) cot(χ))

)
,

where we used the results of Appendix 7.A.
With these results, the derivation of time-optimal and stabilizing controls is straightforward and

analogous to the previous section.
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Two Fermionic Four-Level Systems

In the fermionic case the space of singular values has dimension ⌊d2⌋. Hence, if we consider two coupled
four-level systems (d = 4), the reduced state space is again a circle. Due to Lemma 9.A.4 we can
always write the coupling Hamiltonian in diagonal form. Here we will focus on the rank one case, i.e.,
H = A⊗A for some Hamiltonian A ∈ iu(4).

Lemma 9.2.7. In the fermionic d = 4 case, the reduced control system can equivalently be formulated
for the Schmidt angle χ as χ̇ = ωaV , where ωaV = Im((V ∗AV )13(V

∗AV )24 − (V ∗AV )14(V
∗AV )23)

with V ∈ U(4).

Proof. This follows immediately from Proposition 7.1.5.

We begin by deriving upper and lower bounds for the speed limits of the Schmidt angle χ.

Proposition 9.2.8. Let ℓi denote the eigenvalues of A in non-increasing order. Then it holds that

1
4(ℓ1 − ℓ3)(ℓ2 − ℓ4) ≤ ω∗ ≤ 1

16(ℓ1 + ℓ2 − ℓ3 − ℓ4)
2,

and the two bounds coincide when ℓ1 + ℓ4 = ℓ2 + ℓ3.

Proof. First we show that we can assume certain elements of A to vanish. Let A(12) denote the 2 × 2
block of A in the upper right corner. Then, by Lemma 9.2.7 it holds that ωaV = Im(det((V ∗AV )(12))).
Using a block diagonal unitary change of basis and the complex singular value decomposition we may
assume that A(12) is diagonal and additionally that ωa1 = |A13A24|. Now let A[ij] denote the 2 × 2
submatrices of A obtained by deleting all but the i-th and j-th row and column. Let a ≥ c denote the
eigenvalues ofA[13] and b ≥ d those ofA[24]. Then by Lemma 9.2.5 it holds that ωaV = 1

4(a−c)(b−d),
and there exists a unitary transformation V such that the diagonal of V ∗AV is (a, b, c, d). Hence we
need to solve the optimization problem

max 1
4(a− c)(b− d) subject to (a, b, c, d) ⪯ (ℓ1, ℓ2, ℓ3, ℓ4).

This can be done using a greedy optimization approach. First we show that the maximum is achieved
when a − c = b − d. Indeed, if a − c > b − d we can smoothly move in the direction (−1, 1, 0, 0),
which preserves majorization and increases the objective value, until equality is achieved. Similarly, if
a− c < b− d we move in the direction (0, 0,−1, 1). Finally, by moving in the direction (−1, 1,−1, 1),
which does not affect the objective value, we may assume that additionally a = b and c = d. Under
these additional constraints the maximum is easily seen to be 1

16(ℓ1 + ℓ2 − ℓ3 − ℓ4)
2, as desired.

By Lemma 9.2.5 the lower bound can be achieved as follows. First diagonalizeA to obtain the form
diag(ℓ1, ℓ2, ℓ3, ℓ4). Then, using a unitary mixing the levels 1 and 3, as well as 2 and 4, as in the proof
of Lemma 9.2.5, we obtain the form

V ∗AV =
1

2


ℓ1 + ℓ3 0 ℓ1 − ℓ3 0

0 ℓ2 + ℓ4 0 ℓ2 − ℓ4
ℓ1 − ℓ3 0 ℓ1 + ℓ3 0

0 ℓ2 − ℓ4 0 ℓ2 + ℓ4

 ,

which achieves the claimed lower bound.

Remark 9.2.9. To see that the upper bound of Proposition 9.2.8 is not tight in general, consider A of
rank one, e.g., A = diag(1, 0, 0, 0). Then it is easy to verify that ωaV ≡ 0 for all V ∈ U(4), that is, it is
effectively local, cf. Proposition 8.2.2.
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In a basis as described by Proposition 9.2.8, the local compensating Hamiltonian takes the form
E ⊗ 1+ 1⊗ E where W ∗EW = −Ẽ − 1

8(ℓ1 + ℓ3)(ℓ2 + ℓ4)1 and

Ẽ =


(ℓ1−ℓ3)(ℓ2−ℓ4) tan(χ)

8 0 (ℓ1−ℓ3)(ℓ2+ℓ4)
4 0

0 (ℓ1−ℓ3)(ℓ2−ℓ4) tan(χ)
8 0 (ℓ1+ℓ3)(ℓ2−ℓ4)

4
(ℓ1−ℓ3)(ℓ2+ℓ4)

4 0 (ℓ1−ℓ3)(ℓ2−ℓ4) cot(χ)
8 0

0 (ℓ1+ℓ3)(ℓ2−ℓ4)
4 0 (ℓ1−ℓ3)(ℓ2−ℓ4) cot(χ)

8

 .

This Hamiltonian blows up near product states as χ→ kπ/2 but not near maximally entangled states.
Let us briefly look at stabilization. By choosing a local basis which diagonalizes A, we obtain the

compensating local Hamiltonian W ∗EW = −diag( ℓ1ℓ22 , ℓ1ℓ22 , ℓ3ℓ42 , ℓ3ℓ42 ), which is independent of χ.

9.3 Optimal Control of Two Qutrits

In this section we consider a higher dimensional system, namely one composed of two distinguishable
three-level systems (qutrits). In this case there are three singular values and hence the state space of
the reduced control system is the usual two-dimensional sphere S2. Compared to the previous section,
it is now not at all obvious which path to take between two points on the Schmidt sphere in order to
minimize the time. To determine such an optimal path we will make use of the Pontryagin Maximum
Principle (PMP) [BSS21].

First we define the reduced control system by characterizing the set of generators H. Then we use
the PMP to find time-optimal solutions to the reduced control system. Finally we (approximately) lift
these solutions to the original control system and derive corresponding control functions.

Reducing the Problem

In this section we assume that the two distinguishable subsystems are qutrits, i.e. d1 = d2 = 3, and
that the coupling Hamiltonian H0 = A ⊗ B has rank one. Moreover, we assume that A and B have
equidistant eigenvalues.4 We start with a simple lemma which bounds the size of the off-diagonal
elements of A and B in terms of their respective eigenvalues.

Lemma 9.3.1. Let A ∈ iu(3) with equidistant eigenvalues be given and let a = (A32, A13, A21) ∈ C3.
Then it holds that ∥a∥2 ≤ 1

2(ℓ1 − ℓ3) where the ℓi denote the eigenvalues of A in non-increasing order.

Proof. Since the expression ∥a∥2 ≤ 1
2(ℓ1 − ℓ3) is invariant under addition of a multiple of the identity

to A, we may assume that A is traceless, and hence the eigenvalues are −ℓ ≤ 0 ≤ ℓ. Now it holds that
2ℓ2 = ∥A∥22 ≥ 2∥a∥22 and hence ∥a∥2 ≤ ℓ as desired.

The first step in solving the optimal control problem is to understand the reduced control system.
We already know that the reduced control system is defined on the sphere S2 and that the controls are
given by the set H ⊂ so(3) consisting of rotation generators. The goal of this section is to understand
the precise shape of this set (or at least its convex hull). It is convenient to represent generators in
so(3) using vectors in R3. Indeed, for every −HU ∈ H there is a unique vector ωU ∈ R3 such that
−HUσ = ωU × σ. Recall that the 1-norm of such a vector is given by ∥ω∥1 := |ω1|+ |ω2|+ |ω3|.

Proposition 9.3.2. Assume that A and B have equidistant eigenvalues. Then, for all U ∈ Uloc(3, 3) it
holds that

∥ωU∥1 ≤ ω⋆(H0) :=
(ℓ1(A)− ℓ3(A))(ℓ1(B)− ℓ3(B))

4
.

4We say that A has equidistant eigenvalues if ℓ1(A)− ℓ2(A) = ℓ2(A)− ℓ3(A).



200 CHAPTER 9. OPTIMAL ENTANGLEMENT GENERATION

Proof. Using Proposition 7.1.5, the Cauchy–Schwarz inequality and Lemma 9.3.1 we compute

∥ωU∥1 =
∑3

i=1 | Im(ãib̃i)| ≤
∑3

i=1 |ãi||b̃i| ≤ ∥ã∥2∥b̃∥2 ≤ ω⋆,

where, denoting U = V ⊗W , we set ã = ((V ∗AV )32, (V
∗AV )13, (V

∗AV )21) and similar for B̃.

Geometrically this has a nice interpretation. LetO3 ⊂ R3 denote the regular octahedron, i.e., the convex
hullO3 = conv((±1, 0, 0), (0,±1, 0), (0, 0,±1)), see Figure 9.1, and recall from Remark 7.1.9 that one
can define a relaxed control system via σ̇(t) ∈ conv(Hσ), which is still approximately equivalent to (Σ).

Corollary 9.3.3. The convex hull of the set of induced vector fields considered in R3 ∼= so(3) is a
regular octahedron:

conv(ωU : U ∈ Uloc(3, 3)) = ω⋆(H0)O3.

Thus, in the relaxed control system, two reduced states σ, τ ∈ S2 can always be joined in time T ∈
ω⋆(H0) arccos(σ · τ)[1/

√
3, 1].

Proof. The inclusion ⊆ follows immediately from Proposition 9.3.2. To get equality one just has to
obtain the vertices of the octahedron, which can be done in a manner similar to the proof of Lemma 9.2.5.
The bounds on T follow immediately from the fact that the spheres of radius 1/

√
3 and 1 are respectively

the inscribed and circumscribed spheres of the regular octahedron. See also Section 8.3.

For this reason we will work with the relaxed system when we derive time-optimal solutions in the
following section. Note also that this bound is stronger than the general bound obtained in Section 8.3.

Solving the Reduced Problem

By rescaling we may assume without loss of generality that ω⋆ = 1 and hence the reduced control
system becomes

σ̇(t) = u(t)× σ(t), σ(0) = σ0 ∈ S2

where the control function u : [0, T ] → R3 is measurable and satisfies

∥u(t)∥1 = |ux(t)|+ |uy(t)|+ |uz(t)| ≤ 1 (9.2)

for almost all t ∈ [0, T ].
The time-optimal control problem can be solved using the Pontryagin Maximum Principle (PMP)

[AS04, Pon+86, Sac22]. An introduction to the PMP in the context of quantum control theory is given
in [BSS21]. The PMP is a first-order necessary condition satisfied by optimal trajectories. We introduce
an adjoint state p ∈ R3 and define the pseudo-Hamiltonian Hp(u, σ, p) = p · (u × σ). The dynamics
of σ and p follow the Hamilton–Jacobi equations, in particular ṗ = −∂Hp/∂σ = u× p. For this kind
of control system on the sphere, we can define the variable5 l = σ × p (note that this implies that l is
orthogonal to σ) that allows us to express the pseudo-Hamiltonian in the convenient form:

H̃p(u, l) = u · l. (9.3)

We can show using the Hamilton–Jacobi equations that the dynamics of l follow:

l̇ = σ̇ × p+ σ × ṗ = (u× σ)× p+ (p× u)× σ = u× l. (9.4)
5Strictly speaking p is a cotangent vector p ∈ T ∗

σS
2. When considered as a vector in R3, it is therefore restricted to be

orthogonal to σ at all times. Thus the relation between p and l is bijective.



9.3. OPTIMAL CONTROL OF TWO QUTRITS 201

The PMP states (see [BSS21, Thm. 5]) that the time-optimal control has to maximize this pseudo-
Hamiltonian under the constraint (9.2). For this we determine which values of u (under the given
constraint) maximize H̃p(u(t), l(t)) for given l:

Lemma 9.3.4. Given l ∈ R3, the vertex u = ±ei of O3 maximizes H̃p(u, l) = u · l if and only if
±li = max(|lx|, |ly|, |lz|). The set of all maximizers is then simply the convex hull of such vertices, and
defines a face of the octahedron.

Proof. Due to the normalization of u it is clear that u · l ≤ max(|lx|, |ly|, |lz|). Moreover, since the
maximization is linear and takes place on the octahedron, which is a convex polytope, the maximum is
achieved exactly on a face (which may be a vertex, an edge, or a facet) of the octahedron, and hence
defined by a subset of vertices. It is easy to see that the vertices which maximize u · l are exactly the
ones given in the statement, and hence the set of maximizers is the convex hull of these vertices.

Remark 9.3.5. This result can be visualized intuitively by considering the polar dual of the octahedron
O3, which is nothing but the cube with vertices (±1,±1,±1) denoted C3. If l lies on a certain face of
the cube, then there is a unique corresponding face of the octahedron containing all u which maximize
Hp = u · l. Additionally it turns out that only the barycenters of the faces of the octahedron yield
relevant values of u. This will become clear later when we describe all possible evolutions of l. The
duality and the barycenters are shown in Figure 9.1.

Figure 9.1: Left: The octahedron O3 and its polar dual, the cube C3, reproduced from [Kep19]. Note
that the d-dimensional faces of O3 correspond one-to-one with (2 − d)-dimensional faces of C3, that
is, vertices correspond to facets and edges to edges. Right: The control u can take values at the black
points which are the barycenters of the faces of the octahedron O3, cf. Remark 9.3.5.

The dynamics of l are given by (9.4) and constrained by Lemma 9.3.4. Since the optimal value of
u is not always uniquely defined, this yields a differential inclusion instead of a differential equation.
Thus the solution is in general not uniquely determined by the initial condition l(0). However, we will
see that unique solutions can still be obtained for the optimal control problem.

To understand the evolution of l, note that it has two constants of motion. The first one is due to the
fact that l moves on a sphere (recall that l̇ = u × l), and the second one, referred to as the Pontryagin
Hamiltonian, is obtained by substituting any optimal u in the pseudo-Hamiltonian (9.3). They are given
by:

L2 = |lx|2 + |ly|2 + |lz|2, H = max{|lx|, |ly|, |lz|}. (9.5)
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The first equation corresponds to a sphere of radius L which can be set to 1 without loss of generality,
and the second to a cube of side length 2H. Any solution of the system must remain on to the intersection
of these two surfaces, illustrated in Figure 9.2.

Figure 9.2: Geometric representation of the two first integrals given in Eq. (9.5). The solution l(t) lies
on the intersection of these two surfaces. We obtain different families shown on the rightmost panel,
namely the constant case (blue dashed lines) for H ∈ ( 1√

2
, 1], the switching case (dotted red lines) for

H ∈ [ 1√
3
, 1√

2
), and the separatrix (black line) for H = 1√

2
.

The general solution l(t) can be decomposed into two main families, namely the switching case
and the constant case, depending on H (which depends on l(0)). In the constant case, one of the
components of l(t) is always dominant. These curves imply constant controls. In the switching case,
l(t) follows a concatenation of three circular arcs. In the positive octant, the control jumps between
ux → uz → uy → ux → · · · , with a duration ∆t = π/2 − 2 arccos(H/

√
1−H2) between two

switches. For H = 1√
3

the switching solution degenerates into a solution with constant controls of the
form u = (±1

3 ,±
1
3 ,±

1
3), corresponding to the barycenters of the facets of the octahedron of Figure 9.1.

A special case is the black curve separating these two families. If l(0) starts somewhere on this curve,
it follows it for a while until it reaches one of the unstable equilibrium points (in black). It can stay on
this point for a certain amount of time and then follow any of the trajectories connected to this point.
These dynamics correspond to a control that is originally such that, for example, u = (1, 0, 0) during a
certain time and then switches to, e.g, u = (12 ,

1
2 , 0) (if the unstable point is in the xy-plane) and stays

for a certain time. It can thus continue with u = (1, 0, 0), or switch to u = (0, 1, 0). The time it stays
on the unstable equilibrium depends on the trajectory σ(t) in the state space that one wants to achieve,
and in particular on the desired final state.

So far we have considered the reduced control system on the entire sphere. However, since the sin-
gular values of the quantum state are only defined up to order and sign, there is an additional symmetry,
and we may focus on the part of the sphere where σz ≥ σx ≥ σy ≥ 0. This is called the Weyl chamber
and illustrated in Figure 9.3. Indeed, for any solution of the reduced control system one can consider
the corresponding path in the Weyl chamber obtained by taking the absolute value of the singular values
and ordering them appropriately, and this is also guaranteed to be a solution, see Proposition 2.A.4.

Consider a solution σ starting at the north pole σ(0) = σ0 := (0, 0, 1) and let τ denote any desired
final state in the Weyl chamber. Then it holds that l(0) lies in the xy-plane. The only possible solution
steering σ to τ which satisfies the PMP and remains within the Weyl chamber is to use u = (−1

2 ,
1
2 , 0)

for time T1 and then to use u = (0, 1, 0) for time T2 where

T1 =
√
2 arccos

(√
1− 2τ2y

)
, T2 = arccos

(τxτy + τz
√
1− 2τ2y

1− τ2y

)
.
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Figure 9.3: The singular values of the quantum state are only defined up to order and signs. On the
Schmidt sphere, coordinate permutations and sign flips act via reflections. These reflections divide
the sphere into small triangular regions, which can be mapped to each other uniquely and are hence
equivalent. We choose one of these triangles (namely the one satisfying σz ≥ σx ≥ σy ≥ 0) as state
space for the reduced control system and call it the Weyl chamber. In red we show the optimal solution
starting from the north pole of the Schmidt sphere and ending at an arbitrary point in the Weyl chamber
as obtained from the PMP.

In particular, if the final state is ( 1√
3
, 1√

3
, 1√

3
) (corresponding to a maximally entangled state), then

T1 =
√
2 arccos( 1√

3
) and T2 = 0. In the following section we will further investigate this solution.

Lifting the Solution

In the final step we derive (approximately) optimal controls for the full control system (H) consisting
of two coupled qutrits. For a regular solution σ : [0, T ] → S2 with continuously differentiable controls,
this can be done exactly (up to some near instantaneous pulses at the beginning and at the end of the
solution) using Proposition 7.1.13. For non-regular solutions the existence of an exact lift is not guar-
anteed. In this section we derive a lifted solution starting at the product state |ψ0⟩ = |33⟩ and finishing
at (or rather arbitrarily close to) the maximally entangled state |ψ1⟩ = 1√

3
(|11⟩+ |22⟩+ |33⟩).

In the previous section we have seen that the optimal solution in the reduced control system starting
at (0, 0, 1) and ending at 1√

3
(1, 1, 1) is simply given by a segment of the corresponding great circle

traversed at angular velocity ω⋆/
√
2, where ω⋆ is given in the beginning of Section 9.3 and depends on

the coupling HamiltonianH0 = A⊗B. To simplify the notation we assume (without loss of generality)
that the eigenvalues ofA andB are 1, 0,−1 and hence ω⋆ = 1. Concretely, the optimal solution is given
by

σ(t) =
(

1√
2
sin( 1√

2
t), 1√

2
sin( 1√

2
t), cos( 1√

2
t)
)
,

and the maximally entangled state is reached at time T ⋆ =
√
2 arccos( 1√

3
). The optimal derivative in

the reduced control system is achieved by the generator −HU using any local unitary U = V ⊗ W
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which satisfies

V ∗AV =
1√
2

0 0 1
0 0 1
1 1 0

 , W ∗BW =
1√
2

0 0 −i
0 0 −i
i i 0

 . (9.6)

Such U exists by assumption on the eigenvalues of A andB. Without applying any controls (other than
instantaneously applying U and U∗ and the beginning and the end respectively) the evolution of the
system is

e−iU∗A⊗BUt |33⟩ = − sin(t)
2 (|11⟩+ |12⟩+ |21⟩+ |22⟩) + cos(t) |33⟩ ,

which, unfortunately, is not a lift of the optimal solution as the singular values are (sin(t), 0, cos(t)).
Indeed, there is no compensating Hamiltonian which yields an exact lift. This is because the local
control Hamiltonian applied to the system cannot directly affect the derivative of the singular values at
time 0 (see Chapter 1). For more background on this issue see Section 2.3. The origin of the problem
is that all states on the solution satisfy σx = σy, and hence the usual formula for the compensating
Hamiltonian does not apply (and might blow-up). This will be made clearer in the following.

One way to fix this problem is to remain on a path which narrowly avoids the degeneracy σx =
σy and to compute the corresponding compensating Hamiltonian. We will consider a solution which
remains on the circular path satisfying σx = σy + ε

√
2 for some small ε > 0. Moreover we use the

same generator −HU with local control unitary U = V ⊗W as above. As in Section 9.2 we can derive
the corresponding local compensating Hamiltonian E ⊗ 1+ 1⊗ F . We obtain

V ∗EV =W ∗FW =
σz

2
√
2ε
P ′
y, where P ′

y =

0 −i 0
i 0 0
0 0 0

 ,

which blows up as ε approaches 0, but is well-behaved for ε ̸= 0. Note also the state dependence via σz .
More precisely, consider the initial state ε√

2
|11⟩− ε√

2
|22⟩+

√
1− ε2 |33⟩. Since the reduced solution

moves on a circle in a plane orthogonal to the (y − x)-axis, the reduced solution is given by(√1−ε2 sin(t/
√
2)+ε√

2
,
√
1−ε2 sin(t/

√
2)−ε√

2
,
√
1− ε2 cos(t/

√
2)
)
.

Hence, the control Hamiltonian can be written in the time-dependent (instead of state-dependent) way
using V ∗EV =W ∗FW =

√
1−ε2 cos(t/

√
2)

2
√
2ε

P ′
y.

It is also interesting to consider what happens if one applies this control to a solution starting at
U |33⟩. To simplify things we get rid of the time dependence and use the control Hamiltonian given by
V ∗EV = W ∗FW = 1

2
√
2ε
P ′
y. Some solutions of this form are shown in Figure 9.4. These solutions

do not exactly reach a maximally entangled state, but for small ε they get very close. Indeed, consider
the cost function

C(ε) = ∥sing(|ψ(T ⋆)⟩)− 1√
3
(1, 1, 1)∥2

measuring the Euclidean distance of the reduced state at the final time to the maximally entangled state.
This function is plotted in Figure 9.5 and has some interesting properties. In particular, by trial and
error one finds that the function becomes almost exactly periodic when transformed as

C̃(x) =
√
3C
(

1
2
√
2x

)
(2
√
2x− 1).

This allows us to derive a simple approximation for the local minima of C(ε). Indeed, the points

εk = (2
√
2(x0 + k∆x))−1, where x0 ∼= 0.0048, ∆x ∼= 2.3252, (9.7)
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Figure 9.4: Three solutions, with different values of ε, to the optimial control problem projected to
the singular values are depicted. In each case the solution (solid) is drawn with the circle satisfying
x − y = ε

√
2 (dashed). In each case the solution starts at |33⟩ and runs for time T ⋆ to approximate

a maximally entangled state. The values for ε chosen are ε1 = 0.12 (orange), ε2 = 0.0506 (purple),
and ε3 = 0.0276 (red). The final distances are C(ε1) = 0.140, C(ε2) = 0.0215, and C(ε3) = 0.0436.
Importantly, even though ε2 > ε3, the former solution achieves a better result, since the value of ε2 is
chosen such that it achieves a local minimum of the final distance function.
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Figure 9.5: Left: Plot of the cost function C(ε). The gray dashed line is ε 7→ ε, and the upper and
lower gray lines are ε 7→ (1 ± 1/

√
3)ε. The (approximate) maxima and minima computed using (9.7)

are highlighted. Thus the cost decreases linearly with ε, but, as also shown in Figure 9.4 the exact choice
of ε can make a significant difference. Right: The transformed cost C̃(x) is almost perfectly periodic
(for x large enough and hence ε small enough). Here we depict a single period of C̃(x) (blue) alongside
a pure sine wave (gray dashed) for comparison.

are close to local minima ofC for integer k and close to local maxima for half-integer k. In practice one
should always choose ε in such a local minimum as it can significantly decrease the final cost. Indeed,
a well chosen ε achieves a cost similar to that of a badly chosen ε which is 1+1/

√
3

1−1/
√
3
∼= 3.7 times smaller.

Finally, once a maximally entangled state is reached, we also wish to stabilize the state. This can
be achieved by switching into the basis where A,B = diag(1, 0,−1). Using the local compensating
Hamiltonian E ⊗ 1 + 1 ⊗ F with V ∗EV = W ∗FW = diag(12 , 0,

1
2) one finds that |ψ1⟩ is indeed

stabilized.
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9.A Decomposition of Drift Hamiltonians

It is most convenient to work with drift Hamiltonians expressed in the formH0 =
∑m

i=1Ai⊗Bi. Given
an arbitrary drift Hamiltonian H0 ∈ iu(d1d2) we want to understand the different ways in which it can
be written as a sum of decomposable elements Ai ⊗Bi.

It is easy to see that any local term of the form E ⊗ 1 or 1⊗ F has no effect in the reduced control
system. Indeed such terms can be determined uniquely:

Remark 9.A.1. Every Hermitian matrix H0 ∈ iu(d) can be written uniquely as H0 = H̃0 +
tr(H0)
d 1

where H̃0 ∈ isu(d) is a traceless Hermitian matrix. Indeed, this decomposition is orthogonal with
respect to the Hilbert–Schmidt inner product. For product Hamiltonians A⊗B we analogously get the
unique decomposition into four terms A⊗B = Ã⊗ B̃+ tr(B)

d2
A⊗1+ tr(A)

d1
1⊗B+ tr(A) tr(B)

d1d2
1⊗1.

Since the three latter terms are local, they can be compensated using local unitary control and hence
one may for simplicity assume that all Hamiltonians are traceless. Indeed, while the statements in this
section are formulated for general Hermitian matrices, analogous results hold for the traceless case.
This is similar to the unique decomposition of Lindblad generators into coherent and dissipative parts,
cf. Lemma 4.A.3 and [End23].

Lemma 9.A.2. LetH0 ∈ iu(d1d2) be an arbitrary Hamiltonian and let Ai for i = 1, . . . , d21 be a basis
of iu(d1) and similarly for Bj for j = 1, . . . , d22. Then there is a unique coefficient matrix C ∈ Rd1,d2
such that

H0 =

d21,d
2
2∑

i,j=1

CijAi ⊗Bj .

If Ai =
∑d21

k=1 SikÃk, Bj =
∑d22

l=1 TjlB̃l is another choice of bases, with S ∈ Rd1,d1 and T ∈ Rd2,d2
invertible, then

H0 =

d21,d
2
2∑

k,l=1

C̃klÃk ⊗ B̃l where C̃ = S⊤C T.

As a consequence the rank r of the coefficient matrix is well-defined, i.e. it depends only on H0. Hence
the bases Ai and Bj can always be chosen such that

H0 =

r∑
i=1

Ai ⊗Bi,

and we will say that this representation is “in diagonal form”.

Proof. This holds for arbitrary tensor products, cf. [Rom05, Thm. 14.7]. Alternatively this easily follows
from the real singular value decomposition and elementary computations.

Corollary 9.A.3. Moreover, there exist orthonormal bases Ai and Bj (with respect to any given inner
product) such that

H0 =
r∑
i=1

ωiAi ⊗Bi,

and we will again say that this representation is “in diagonal form”. The ωi are the singular values of
the coefficient matrix with respect to any orthonormal basis, and hence they are uniquely defined up to
order and sign.

Proof. This follows from Lemma 9.A.2 and the real singular value decomposition.
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Indistinguishable Case

We obtain an analogous result for the case of two indistinguishable subsystems.

Lemma 9.A.4. Let H0 ∈ ius(d2) be an arbitrary coupling Hamiltonian in the indistinguishable case
and let Ai for i = 1, . . . , d2 be an orthonormal basis of iu(d). Then there is a unique coefficient matrix
C ∈ Rd,d such that

H0 =
d2∑

i,j=1

CijAi ⊗Aj .

It holds thatC is symmetric. IfAi =
∑d21

k=1 SikÃk is another choice of basis, with S ∈ Rd1,d1 invertible,
then

H0 =

d21,d
2
2∑

k,l=1

C̃klÃk ⊗ Ãl where C̃ = S⊤C S.

As a consequence the rank r of the coefficient matrix is well-defined, i.e. it depends only on H0. Hence
the basis Ai can always be chosen such that

H0 =
r∑
i=1

Ai ⊗Ai,

and we will say that this representation is “in diagonal form”.

Proof. This follows from the real symmetric eigenvalue decomposition.

Corollary 9.A.5. Moreover, there exists an orthonormal basisAi (with respect to any given inner prod-
uct) such that

H0 =
d2−1∑
i=1

ωiAi ⊗Ai,

and we will say that this representation is “in diagonal form”. The ωi are the eigenvalues of the coeffi-
cient matrix with respect to any orthonormal basis, and hence they are uniquely defined up to order.

Remark 9.A.6. The results of Lemma 9.A.2 and Lemma 9.A.4 are in many ways analogous to the nor-
mal form results for the Lindblad equation. In particular, our coefficient matrix C plays the role of the
Kossakowski matrix, and by diagonalizing it we obtain a particularly nice form. Whereas the eigenval-
ues of the Kossakowski matrix represent exponential decay rates, the singular values and eigenvalues
of our coefficient matrices represent coupling frequencies.





Part IV

Epilogue
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Conclusion

This thesis developed the method of reduced control systems and applied it to quantum control systems
of significant interest. In particular we studied open Markovian quantum systems with fast unitary
control and closed bipartite quantum systems with local unitary control.

In Ch. 1 we studied matrix diagonalizations through the unifying lens of symmetric Lie algebras.
We showed that many results from the perturbation theory of linear operators can be generalized to this
setting. In particular we presented results about continuous (Prop. 1.3.1), differentiable (Thm. 1.4.9),
analytic (Thm. 1.5.7), and measurable (Thm. 1.6.6 and Thm. 1.6.12) diagonalizations. Moreover we
classified the possible diagonalizations arising from this setting (Thm. 1.7.10).

Ch. 2 built upon these results to define the reduced control system (Sec. 2.2) which formed the
main topic of this thesis. Most importantly, we proved the equivalence of the full and reduced control
systems. This was done in two parts, a projection (Thm. 2.3.8) and an approximate lift (Thm. 2.3.14).
A more applicable version of the equivalence results was given as well (Thm. 7.1.10). We showed
how the equivalence manifests for concrete control theoretic properties like reachability (Prop. 2.4.3),
stabilizability (Prop. 2.4.5), viability (Prop. 2.4.7), invariance (Prop. 2.4.7), accessibility (Prop. 2.4.10)
and controllability (Prop. 2.4.11). Moreover we provided a powerful result showing that majorization
can be considered a resource in these systems (Thm. 2.5.3).

In Ch. 3 we applied this theory to Markovian quantum systems with fast unitary control, described
by (D), to derive the corresponding reduced control system on the eigenvalues of the mixed quantum
state (Λ). Of course we immediately obtained the specialized equivalence result (Thm. 3.0.4).

This reduced control system was then exploited in Ch. 4 to derive a number of control theoretic
results. We characterized stabilizable points (Prop. 4.2.2) and showed that all points are stabilizable if
and only if the Lindblad terms are simultaneously triangularizable (Thm. 4.2.7), a condition which can
be checked efficiently (App. 4.C). Moreover we studied the viability of faces of the simplex, and related
the notion to lazy subspaces of a Kossakowski–Lindblad generator (Prop. 4.2.4) and we showed that the
control system is generically accessible (Prop. 4.2.12). Then we considered notions related to reacha-
bility. In particular we characterized asymptotically coolable systems using the existence of a common
right eigenvector of the Lindblad terms which is not a common left eigenvector (Thm. 4.3.7). We stud-
ied the reachability of faces of the simplex, which is related to the cooling of subsystems (Prop. 4.3.19).
Finally we also considered approximate controllability of the system. Specialized results for unital sys-
tems were also provided (Sec. 4.4). We gave some results about what we termed relaxation algebras,
whose algebraic properties characterize many of the previously mentioned control theoretic properties
(Table 4.1). Some concrete reachable and stabilizable sets were computed analytically in App. 4.B
within a toy model with restricted controls.

Ch. 5 treated individual qubits using the reduced control system. The main insight was to study
the set of generators of the reduced control system. We found a general parametrization of this set and,
most importantly, its boundary (Prop. 5.5.2 and Coro. 5.5.7) which allowed us to determine the optimal
derivatives and thus also the optimal path for heating and cooling through the Bloch ball. From this we
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derived the optimal controls in the full system. As an additional consequence of the parametrization,
we immediately obtained a parametrization of the set of stabilizable states 5.5.3. We also specialized
these results to (the newly defined) integral systems (Sec. 5.6) which include real and coolable systems,
and we also recovered many known results about the Bloch equations and unital systems (Sec. 5.A).

In Ch. 6 we focused on the question of optimal cooling. We explicitly solved the case of a single qubit
with a rank one generator using the methods of the previous chapter, and found a solution reminiscent
of the solution found for the Bloch equations (Sec 6.3). Then we looked at some higher dimensional
systems. In particular we considered certain three-level systems and a four-level system consisting
of two qubits. In both cases we were able to determine optimal controls for cooling the system, and
we did so by studying the shape of the set of achievable derivatives (Sec. 6.4) and then employing
a maximum principle based on the Majorization Theorem to find a much smaller subset of optimal
derivatives (Sec 6.5).

In Ch. 7 we switched to closed bipartite quantum systems with fast local unitary control, described
by (H). Again we defined a corresponding reduced control system (Σ), this time defined on the sin-
gular values of the state. Similarly, for bosonic and fermionic systems (Hs) we obtained analogous
reduced control systems (Σs) and (Σa), this time using the Autonne–Takagi factorization and the Hua
factorization respectively. The equivalence for all three cases was shown in Thm. 7.1.10.

The reduced control systems were then applied in Ch. 8 to show that the considered systems are al-
ways controllable (Thm. 8.2.3) and each state of the reduced control system is stabilizable (Coro. 8.2.4).
Moreover, a quantum speed limit for the evolution of the singular values was provided in Thm. 8.3.4.

Finally we considered time-optimal entanglement generation in Ch. 9. In Sec. 9.2 we gave complete
solutions of the problem in the case of two coupled qubits, and also in the bosonic case. We also
provided a partial solution for the case of two fermionic four-level systems. In all these cases the reduced
state space is one-dimensional. Then we studied a system composed of two distinguishable qutrits, in
which case the reduced state space is a two dimensional sphere (Sec. 9.3). Here we used the Pontryagin
Maximum Principle to derive time-optimal solutions in the reduced system, which were then lifted
approximately to the full system.



Outlook

At this point it is hopefully clear that the reduced control system is a valuable and powerful tool in
quantum control theory. It should be equally clear that this thesis can only scratch the surface of this
topic. Many questions about the systems studied here remain open, and further applications remain to
be discovered.

Generalization of the Reduced Control System

One natural question is how far the idea of the reduced control system can be generalized. One obvious
direction, especially for quantum control theory, would be to consider infinite dimensional systems.
Indeed, even though the mathematical machinery gets significantly more involved, quantum control
theory can also be studied in the infinite dimensional setting. Moreover, the perturbation theory for
infinite dimensional linear operators is well-established and would provide the necessary tools for such
a generalization.

Another direction is to generalize the ideas to include non-linear spaces and group actions. Indeed,
although the setting of symmetric Lie algebras might seem highly restrictive, they essentially encompass
all linear group actions with the geometric properties required to define a reduced control system. The
most general mathematical setting in which the ideas still work out is likely the setting of infinitesimally
polar actions on Riemannian manifolds. The reason is that in this setting the quotient space still has the
structure of an orbifold, without which it would be difficult to define a reduced control system.

Numerical Methods for the Reduced Control System

Numerical algorithms play an important role in quantum control theory since analytical solutions are
difficult to obtain except for a handful of low dimensional or highly symmetric systems, and adding real-
istic assumptions to such systems often makes it impossible to find analytical solutions to reachability or
optimal control problems. While the reduced control system makes it possible find previously unknown
analytical solutions for some special systems, again the general case requires numerical methods. A
current work in progress is the development of a numerical algorithm for the discretization of differen-
tial inclusions such as the ones obtained via the reduced control system. A complicating factor is that in
general describing the differential inclusion itself is complicated and has to be done approximately. A
significant advantage of this approach is that globally optimal solutions can be computed whereas most
optimal control algorithms currently in use only converge to local optima.
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Part V

Appendix

In the appendix we briefly outline the works [10] and [11], which are not part of the core theme
of this thesis, but are nevertheless related to quantum control theory. We give a brief overview of the
results and sketch the connections to quantum control, illustrating both how fundamental the questions
posed by control theory, and how far-reaching the tools it provides, are.

Outline Appendix A studies the thermomajorization polytope, a mathematical object appearing in
quantum thermodynamics, and it introduces concepts from transportation theory and connects them
to physical properties of the system. In Appendix B we consider a family of randomized gradient de-
scent algorithms on Riemannian manifolds with Morse–Bott functions, and we sketch the connection
to adaptive variational quantum algorithms.

Acknowledgments The paper [10] is joint work with Frederik vom Ende who spearheaded the project.
The paper [11] is joint work with Christian Arenz, Gunther Dirr and Thomas Schulte-Herbrüggen.
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APPENDIX A
The Thermomajorization Polytope

This chapter studies the so-called thermomajorization polytope, also called the d-majorization polytope
in the mathematical literature, see [ED22]. In the nascent field of quantum thermodynamics it is com-
mon to model state transformations by interactions with an environment system, often called a heat bath,
typically requiring that the bath start out in thermal equilibrium and that the total energy be preserved.
This leads to the concept of thermal operations, which are considered to be free. An important task is
then to determine which states can be obtained from a given initial state using only thermal operations.
In the quasi-classical case, i.e. where the initial state is diagonal, this leads to the concept of thermo-
majorization, a generalization of classical majorization, and it turns out that the states which can be
obtained from a given state are exactly those which belong to the corresponding thermomajorization
polytope.

The relation to quantum control theory stems from the fact that the thermomajorization polytope
can be used to give upper bounds to the set of reachable states in certain systems, as has been done for
the toy model introduced in Chapter 4.B, see [3, DES19].

In [10] the structure of this polytope is studied, especially the conditions under which the vertices
of the polytope become degenerate. Key concepts are obtained by drawing a hitherto largely unnoticed
connection to the theory of transportation polytopes, leading to the definition of “well-structured” and
“stable” Gibbs states. Moreover the paper provides many intuitive graphical constructions for the ab-
stract concepts discussed, such as the vertices of the thermomajorization polytope or a certain important
class of extremal Gibbs-stochastic matrices. Here we give a brief summary of the main results.

Given an n-level quantum system with system Hamiltonian HS and background bath temperature
T > 0, the set TO(HS , T ) of thermal operations contains all quantum channels of the form1

ρ 7→ trB(e
iHtot(ρ⊗ ρB,T )e

−iHtot)

where ρB,T = e−HB/T / tr(e−HB/T ) is the Gibbs state of the bath with bath Hamiltonian HB and
the total Hamiltonian Htot is required to be energy preserving [Htot, HS + HB] = 0. One can show
that in the “quasi-classical” case, where HS is non-degenerate and the initial state is diagonal in the
eigenbasis of ρ, the set of states reachable from ρ using thermal operations is fully described using
thermomajorization, which we briefly introduce now.

Let d ∈ Rn++ be given (this means that all di > 0). We call d the Gibbs vector. A matrix A ∈ Rn,n
is called Gibbs-stochastic (with respect to d), if it is stochastic and preserves the Gibbs vector. Explicitly

1Here we set the Boltzmann constant kB = 1.
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Figure A.1: Illustration of stability and well-structuredness. Consider d ∈ R4
++ where, w.l.o.g., e⊤d =

1. Then d lies in the relative interior of the standard simplex shown on the left. By reordering its entries
in a non-increasing fashion, we can assume that d lies in the ordered Weyl chamber shown in the middle.
The unstable points are composed of the walls of the Weyl chamber as well as five planes intersecting the
Weyl chamber. These planes cut the Weyl chamber into nine subchambers, and the one which includes
the maximally mixed state e⊤/4 (highlighted in red on the right) contains exactly the well-structured
Gibbs vectors.

this means that all Aij ≥ 0, that e⊤A = e⊤ and that Ad = d. Now let y ∈ Rn be given. Then the
thermomajorization polytope of y with respect to d is defined as

Md(y) = {Ay : A is Gibbs-stochastic}.

If x ∈Md(y) we write x ⪯d y and say that x is thermomajorized by y. Note that for d = e we recover
ordinary majorization. The connection to thermal operations for diagonal and non-degenerate HS can
be stated as

{Φ(diag(y)) : Φ ∈ TO(HS , T )} = diag(Md(y)),

where d is now the vector of eigenvalues of the Gibbs state on the system ρS,T . The goal of the paper is
to better understand the thermomajorization polytope Md(y).

A subspace, represented by a subset of indices P ⊆ {1, . . . , n}, is said to be in equilibrium if
yi
di

=
yj
dj

for all i, j ∈ P . If no such subspace exists we say that the system is in total non-equilibrium.
If P = {1, . . . , n} then the system is in equilibrium in the usual sense.

Proposition A.0.1. Let d ∈ Rn++ and y ∈ Rn. Then the following statements are equivalent:

(i) Md(y) consists of more than just y.

(ii) y is not a multiple of d.

(iii) Md(y) has maximal dimension n− 1.

The result can be rephrased in a more physical language to state the following: If the system is not in
equilibrium, it can always be brought into total non-equilibrium using a Gibbs-stochastic matrix.

Consider the map D : I 7→
∑

i∈I di which takes a set I of indices and returns the sum of the
corresponding entries in d. If this map is injective, we say that d is stable.
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Theorem A.0.2 (Cyclic State Transfers). Given d ∈ Rn++, the following are equivalent:

(i) d is stable.

(ii) For all x, y ∈ Rn, if x ⪯d y ⪯d x, then x = y.

Put differently, cyclic state transfers are possible if and only if the Gibbs state is not stable.
Using the same map D we can define another notion. If for all I, J with |I| < |J | it holds that

D(I) < D(J), then we say that d is well-structured. See Figure A.1 for an illustration of stable and
well-structured Gibbs vectors. Note that the well structured states contain an open neighborhood of the
maximally mixed state. This means that for a given system Hamiltonian there is a critical temperature
above which the Gibbs vector becomes well-structured.

An interesting result about the thermomajorization polytope is that there exists a map Ed,y : Sn →
Md(y)which sends permutations to the extreme points ofMd(y). Most importantly, the map reaches all
extreme points. In [10] we describe an intuitive visual construction for computing Ed,y. The following
result tells us about injectivity of this map.

Theorem A.0.3 (Degenerate Extreme Points). Let d ∈ Rn++ and y ∈ Rn. IfEd,y is not injective,
i.e. the number of extreme points ofMd(y) is strictly less than n!, then at least one of the following
holds:

(i) y has a subspace in equilibrium with respect to d.

(ii) d is not well structured, i.e. the temperature is below the critical value.





APPENDIX B
Randomized Gradient Descent

The topic of this chapter is the analysis of a gradient descent algorithm on Riemannian manifolds in
which the gradient is only known up to projection onto randomly chosen directions. Such an algorithm
has recently been proposed as an adaptive variational quantum algorithm (VQA) for the preparation of
the ground state of a given Hamiltonian [MEA23], which has applications for the solution of certain
optimization problems on a quantum computer.

To connect this idea to the main topic of the thesis, note that it can be interpreted as a quantum
control task, where the goal is to steer the system into the ground state from any given initial state. Due
to the use of measured gradients this is a feedback control strategy.

In [11] we describe a gradient descent algorithm where the gradient of a high-dimensional problem
is projected, in each step, onto a randomly chosen direction of the tangent space, considering both con-
tinuous and discrete probability distributions. The main result is that this randomly projected gradient
descent algorithm, applied to a Morse–Bott function with compact sublevel sets on a Riemannian man-
ifold, almost surely escapes saddle points and, as a consequence, it almost surely converges to a local
minimum. Moreover, we study the case of a two-dimensional saddle point using analytical methods and
numerical simulation. We obtain good approximations for the time necessary to pass the saddle point.
Finally, we also show how the previous results can be applied in quantum optimization to the problem
of ground state preparation. In particular, the convergence guarantees still hold when the randomization
is achieved using an approximate unitary 2-design. Here we just provide a brief exposition of the main
result.

The setting is a Riemannian manifold M with a Morse–Bott function f : M → R. The gradient
algorithm is defined by the step rule

xk+1 = expxk(−ηkg(xk, uk)), where g(x, u) = ⟨u, grad f(x)⟩u,

and where η > 0 is the step size and exp denotes the Riemannian exponential function. Moreover, the
uk are randomly chosen unit vectors, where the probability distribution may be uniform (the so-called
Haar measure) or it may be discrete. If it is discrete, we need to assume that the directions span the
entire tangent space, even if all directions collinear with one given direction are removed. Furthermore,
we will assume that the function f is ℓ-smooth, that is, M has an atlas of normal charts in which the
gradient of f is ℓ-Lipschitz.

The main result of the paper is that the proposed algorithm converges almost surely to a local min-
imum, and in the specific application to ground state preparation, it even converges to the global mini-
mum.
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Theorem B.0.1 (Almost Sure Convergence). LetM be a Riemannian manifold and let f :M →
R be an ℓ-smooth Morse–Bott function with compact sublevel sets. Further assume that the initial
state x0 is not a critical point of f . Then, for stepsize η ≤ 1/ℓ, the randomly projected gradient
descent algorithm converges almost surely to a local minimum.

The proof proceeds by first showing that the algorithm does not get stuck at (strict) saddle points,
which uses on the Morse–Bott property, but might also work more generally. This implies that the
algorithm converges to the set of local minima. Again using the Morse–Bott property we show that the
algorithm indeed converges to a single point, which must be a local minimum.

The most important aspect of this algorithm is its behavior in the vicinity of saddle points. To get a
more quantitative understanding, one may consider the simplest case of the Morse function f(x, y) =
x2 − y2 on R2 with the Euclidean metric. For small enough stepsize 0 < η ≪ 1, and using [KP92,
Sec. 6.2] we can approximate this process by the stochastic differential equation (SDE)

dΦt = sin(2Φt)dt+

√
η

2
dWt,

where Φt represents the angular coordinate and Wt is a Brownian motion. In order to understand how
long it takes the algorithm to pass the saddle point, we are interested in computing the hitting time

τ = inf{t > 0 : Φt = ±π
4 }.

Close to the origin, the SDE can be linearized as dΦt = 2Φtdt +
√
η
2 dWt, which is a mean repelling

Ornstein–Uhlenbeck process. Away from the origin, the deterministic part dominates and we can solve
the (deterministic) ODE Φ̇t = sin(2Φt). First we approximate the hitting time distribution of the
repelling Ornstein–Uhlenbeck process.

Lemma B.0.2. Let Xt be the solution of the SDE dXt = κXtdt + σdWt with κ, σ > 0 and X0 = 0.
Setting σ̃(t) = σ

√
e2κt−1

2κ , it holds that Xt ∼ N (0, σ̃(t)2). If we denote by τc the hitting time of ±c
(where c > 0), we find the lower bound Pr[τc ≤ t] ≥ Pr[|Xt| ≥ c] = 1 + erf

( −c
σ̃(t)

√
2

)
where erf

denotes the error function.

Proof. The SDE is linear and hence has the well-known solution

Xt = σ

∫ t

0
eκ(s−t)dWs

∼= N (0, σ̃(t)2),

where σ̃(t) = σ
√

e2κt−1
2κ , see [KP92, Sec. 4.2 & 4.4]. It is clear that if |Xt| ≥ c then τc ≤ t, which

implies the last statement.

The approximation is very accurate with error smaller than ∆t if κ∆t ≥ 1 and c≫ σ/
√
κ, as illustrated

in Figure B.1.
As in the proof of Lemma B.0.2, the solution of the SDE with initial condition X0 = c is given by

Xt = eκtc+ σ

∫ t

0
eκ(s−t)dWs,

and hence

eκtc− nσ̃(t) ≥ c =⇒ c ≥ nσ

√
e2κt − 1

2κ

1

eκt − 1
≥ nσ√

2κ
max

(
1,
√

2
κt

)
.
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Figure B.1: We used the constants κ = 2, σ = 3 and c = 10. Shown are the histograms of the c.d.f.
and p.d.f of τc computed using timesteps of size 0.001 (orange) and the lower bound for the c.d.f. and
the resulting p.d.f. obtained in Lemma B.0.2 (blue).

Thus for the error in τc to be small compared to ∆t, we need c ≫ σ√
κ

if κ∆t is big, and c ≫ σ
κ
√
∆t

if
κ∆t is small.

Now if we choose c small enough that the linearization of sin is accurate but large enough that
the approximation of Lemma B.0.2 is good (which is always possible if η is small enough), then we
can approximate τ as follows. We fix some value c and note that the ODE ϕ̇t = sin(2ϕt) with initial
condition ϕ0 = c has the solution ϕt = arctan(e2t tan(c)), and hence the hitting time of π/4 is
τ̃c = −1

2 ln(tan(c)). Hence we have approximately τ ≃ τc + τ̃c.
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ΠΞ(·) Projects bipartite state to the vector of quasi-diagonal elements. 243
Πx Orthogonal projection on p onto the commutant of x. 8, 34, 58
Π⊥
x Orthogonal projection on p onto the orthocomplement of the commutant of

x. 8, 35

qdiag(·) Maps a vector to its corresponding quasi-diagonal matrix. 174
qdiag(n,K) Quasi-diagonal matrices of size n×nwith values in K, short qd(n,K). 24,

179
qsing�− Singular values chosen non-negative and non-increasing, rescaled and only

one of each pair. 177

Rd Flow ratio of dimension d. 98
reach(·)(x0, T ) Reachable set from x0 in time T . 67, 94, 178
reach(·)(x0) (All-time) reachable set from x0. 67, 94, 178
reach(·)(x0, I) Reachable set from x0 on time interval I = [0, T ]. 67, 178
relint(·) Relative interior of a set. 72, 90, 94
Rn0 Subspace of vectors whose elements add up to 0. 83, 93, 94

s(·) Involutive automorphism of a symmetric Lie algebra. 4
Sn Symmetric group on n elements. 5, 115
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Sx Slice at x. 10, 42
Sd−1
�− Ordered non-negative Weyl chamber in the unit sphere in Rd. 175

sing�− Singular values chosen non-negative and non-increasing. 177
sl(n,K) Special linear Lie algebra of size n× n with values in K. 23
sols(·)(a0, [0, T ]) Set of solutions starting at a0 on time interval [0, T ]. 75
so(n) Special orthogonal Lie algebra of size n× n (with values in R). 23
SO(n) Special orthogonal Lie group of size n× n (with values in R). 28
so(n,C) Special orthogonal Lie algebra of size n× n with values in C. 23
so∗(2n) Symmetric Lie algebra dual to so(2n). 24, 185
so(p, q) Indefinite special orthogonal Lie algebra of signature p, q. 24
sp(n) Unitary symplectic Lie algebra of size n× n. 23
Sp(n) Unitary symplectic Lie group of size n× n. 28
sp(n,K) Symplectic Lie algebra of size n× n with values in K = R,C. 183
sp(p, q) Indefinite symplectic Lie algebra of signature p, q. 24
span(·) Linear span. 127
spec↓(·) Spectrum of a matrix in non-increasing order. 82
stab(·) Set of stabilizable states. 68, 89, 116
stoch(n) Lie wedge of generators of stochastic matrices of size n× n. 83
Stoch(n) Semigroup of stochastic matrices of size n× n. 83
su(n) Special unitary Lie algebra of size n× n. 23
SU(n) Special unitary Lie group of size n× n. 28
su∗(2n) Symmetric Lie algebra dual to su(2n). 24
su(p, q) Indefinite special unitary Lie algebra of signature p, q. 24
supp(·) Support, usually of a Hermitian matrix. 112
Sym2(·) Symmetric tensor algebra. 172, 183
sym(n,K) Symmetric matrices of size n× n with values in K. 24, 173, 183
sym0(n,K) Traceless symmetric matrices of size n× n with values in K. 24
σx, σy, σz Pauli matrices, denoted Px, Py, Pz in Part III. 130, 158
Σ Diagonal bipartite quantum states. 243

TxA Tangent space (of a manifold or orbifold) or tangent cone. 76
T−
x A Bouligand contingent cone. 76

uj , vj Control functions. 55, 82
uloc(d1, d2) Local unitary Lie algebra. 172
Uloc(d1, d2) Local unitary Lie group. xxiv, 172
usloc(d) Symmetric local unitary Lie algebra. 172, 196
Usloc(d) Symmetric local unitary Lie group. 172, 196

V Relaxation algebra. 88, 103
V+ Extended relaxation algebra. 88
V∗ Relaxation ∗-algebra. 114
V+
∗ Extended relaxation ∗-algebra. 114
V C Complexification of real vector space V . 15
Vk Lindblad term. 81

W Weyl group. 4, 36, 188
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w Weyl chamber, also Lie wedge. 4, 39
wKL Kossakowski–Lindblad Lie wedge. xxiii, 82

Ξ Quasi-diagonal bipartite quantum states. 243

ZK(a) Centralizer of a in K. 14, 36, 75
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