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Abstract

This thesis addresses the challenge of identifying governing equations that preserve the
symplectic structure for Hamiltonian systems in canonical conjugate coordinates. Employ-
ing the Sparse Identification of Nonlinear Dynamics (SINDy), a data-driven method for
model discovery, our research introduces an extension tailored to Hamiltonian systems.

The methodology encompasses the joint discovery of parsimonious dynamical models
and effective coordinates through the integration of sparse regression and an autoencoder.
The principal outcome of this research is an enhanced iteration of SINDy adept at preserv-
ing symplectic structure while effectively capturing the dynamics inherent to Hamiltonian
systems. Notably, the proposed method demonstrates the capability to concurrently un-
veil canonical coordinates, albeit within explicitly defined limitations. Models from clas-
sical physics, solid-state physics, and fluid mechanics substantiate the effectiveness of the
approach in faithfully capturing Hamiltonian dynamics. However, the method’s applica-
bility encountered limitations in a celestial mechanics model. The methodology simultane-
ously successfully identified canonical conjugate coordinates, albeit within a constrained
context.

This contribution aligns with the evolving landscape of data-driven discovery, offering
a tool for predictive modeling and analysis within a formulation of mechanics. The novel
SINDy extension offers a versatile tool for researchers engaged in data-driven modeling,
scientific computing, and Hamiltonian physics.

Key words: SINDy Symplectic Structure Hamiltonian Dynamics Data-Driven
Modeling
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1 Introduction

In the landscape of scientific computing and physics, where the extraction of meaningful
insights from dynamic processes relies on the interplay of mathematical models and data,
the quest for structure preservation is an ongoing endeavor. At the forefront of this pursuit
are methods that bridge the realms of model reduction and data-driven discovery, focusing
on preserving the inherent structures and symmetries governing complex systems. This
thesis navigates this interdisciplinary terrain, developing a structure-preserving method
to transform data into intrinsic coordinates while extracting sparse governing equations.

Model reduction, a cornerstone in computational physics, endeavors to distill essen-
tial dynamics from intricate mathematical models. Sparse Identification of Nonlinear Dy-
namics (SINDy), an increasingly influential methodology, has proven adept at identify-
ing sparse representations of governing equations from time-series data. However, the
challenge lies in extending its capabilities beyond mere identification to structure preser-
vation—an essential facet in ensuring the fidelity of reduced models to the underlying
physics.

Central to this work is incorporating Hamiltonian system dynamics into the SINDy
framework while concurrently preserving the symplectic structure—an essential attribute
of conservative systems. The challenge is multifaceted, requiring the identification of
sparse dynamical models and preserving symplectic geometry, a task traditionally elusive
in data-driven reduction methods.

The concept of structure preservation is particularly crucial in hyper-reduction, where
the objective is to create compact yet faithful representations of complex systems. Hyper-
reduction techniques aim to distill a system’s essential features and maintaining funda-
mental structures, such as symplectic form there would be crucial. This thesis takes a step
in this direction by addressing the intricate problem of conjugate coordinate transforma-
tion solely through the universal approximation power of neural networks and a structure
preservation SINDy-based model.

Integrating an autoencoder into the SINDy paradigm represents a novel approach to ad-
dressing this challenge. By leveraging an autoencoder, we aim to discover canonical conju-
gate coordinates that not only facilitate the identification of parsimonious dynamical mod-
els but also preserve the symplectic form inherent in Hamiltonian systems. This unique
combination allows data conversion to canonical conjugate coordinates, enabling seamless
integration of data-driven model reduction while preserving Hamiltonian structures. As
we delve deeper into the subsequent chapters, the thesis comprehensively explores this
methodology, elucidating its theoretical underpinnings, algorithmic intricacies, and em-
pirical validations. The ultimate goal is to contribute to advancing structure-preserving
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1 Introduction

hyper-reduction methodologies, enhancing our capacity to distill essential dynamics from
vast datasets while faithfully preserving the symmetries and structures that define the un-
derlying physical systems.
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2 Background

2.1 Hamiltonian Systems

Hamiltonian mechanics provides a theoretical framework for describing dynamic systems,
similar to Newtonian or Lagrangian mechanics. Although Newton’s second law was a rev-
olutionary equation for building mathematical models, it is often hard to solve when the
system is complicated or has many interacting objects. Hamiltonian mechanics strength is
shown when we tackle problems with many degrees of freedom, like in celestial mechan-
ics, where having more than two bodies potentially gives rise to chaotic behavior. Other
areas where this framework shines are condensed matter physics, fluid simulations, and
many-body quantum mechanics [ 17 ]. This section will outline some of the advantages
of the Lagrangian and Hamiltonian approaches over the Newtonian formulation and the
overall advantages of the Hamiltonian framework.

One of the main features of Hamiltonian and Lagrangian mechanics is their conformity
to Hamilton’s Principle of least action, which states:

The path followed by a system that takes it from time t1 to t2 is the one that makes the
action S =

∫ t2
t1
L(qi, q̇i, t) dt, stationary [ 41 ].

Here, S is the action, L is the Lagrangian, and qi and q̇i are the generalized coordinates
and their generalized velocities. This elegant principle reveals that although there could
be infinitely many ways a system can move from one point to another, it always chooses
the path that gives this integral’s minimum, maximum, or saddle point. The solution to
this integral is found through the Euler-Lagrange Equation  2.8 below, for which one can
choose any set of coordinates qi. For example, in a pendulum system, one can choose the
angle with the vertical as the coordinate, or choose polar coordinates for an object moving
on a sphere, or spherical coordinates for systems with central forces [ 41 ]. This freedom to
choose the coordinates while solving equivalent Euler-Lagrange formulations is one of the
advantages of the Lagrangian and Hamiltonian frameworks because, for certain systems,
it is possible to eliminate the explicit appearance of constraint forces by choosing a specific
coordinate system.

Lagrangian and Hamiltonian formulations simplify identifying conserved quantities in
dynamical systems while being equivalent to the Newtonian formulation. Lagrangian me-
chanics is contained in Hamiltonian mechanics as a special case [ 2 ], and we can reach the
Hamiltonian formulation by using the Legendre transform on the Lagrangian formulation.
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2 Background

When the Lagrangian does not explicitly depend on time, i.e., ∂L∂t = 0, as in conservative
systems, we can apply the Legendre transform to it, as below:

H(qi, pi, t) =
∑
i

q̇ipi − L(qi, q̇i, t), (2.1)

The independent variable changes from generalized velocity in the Lagrangian to gen-
eralized momentum in the Hamiltonian, often a conserved quantity. The conjugate mo-
mentum pi corresponding to the generalized coordinate qi is given by pi = ∂L

∂qi
, [ 41 ]. This

formula is used while deriving the Hamiltonian from the Lagrangian in section  2.1.1 be-
low. The Hamiltonian is known to be more physical than the Lagrangian as it constitutes
the system’s total energy, whereas the Lagrangian does not have a clear physical meaning.

Changing to the Hamiltonian formulation allows dynamics to be analyzed in phase
space. The phase space gives a complete description of the system’s state in terms of co-
ordinates and momentum [ 41 ] because the system will follow a determined path in phase
space, where governing equations can yield its phase space location at any given time.
According to Liouville’s theorem, a system’s phase space volume is constant along its tra-
jectory [ 41 ]. Consequently, if a many-particle system is now represented in phase space,
we can see precisely how a change in one particle’s momentum or position will affect the
entire system. The Lagrangian state space (q, q̇) has no theorem corresponding to Liou-
ville’s theorem for Hamiltonian systems [ 41 ]. This is one of the essential advantages the
Hamiltonian approach has over the Lagrangian approach.

The evolutionary behavior of dynamical systems after a long time is a complex problem
in mathematics [  24 ]. Fortunately, one way to predict long-time dynamics is through sym-
plectic integrators applied to Hamiltonian systems. By imposing the symplectic structure
on numerical methods, phase space volume can be preserved, allowing for more accurate
long-time predictions [ 20 ]. Moving in the direction of the symplectic gradient of H keeps
the output exactly constant, compared to the normal gradient, which gives the direction
of the fastest change [ 11 ]. Symplectic structure preservation has also been used to develop
data-driven approaches for model prediction as seen in [ 7 ,  11 ,  24 ] and other works.

Although all three formulations, Newtonian, Lagrangian, and Hamiltonian, have certain
advantages and disadvantages. In the scope of this paper, we will work on predicting
Hamiltonian system dynamics while having symplectic form preservation built into the
method.

2.1.1 Basics of Hamiltonian Mechanics

This section will discuss Hamiltonian mechanics in more detail by deriving the Hamilto-
nian. When introducing the Hamiltonian SINDy method later, it will be essential to un-
derstand the structure and constraints of Hamiltonian systems. It also helps in analyzing
results and proving the accuracy of the algorithm.

As we saw before, Lagrangian mechanics is more closely related to Hamiltonian me-
chanics, leading to it more naturally than Newtonian mechanics through the Euler-Lagrange
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equation and the Legendre transformation. The Hamiltonian will be derived from the La-
grangian viewpoint here. This derivation will explain how the Hamiltonian comes about
and provide insight into how the two frameworks differ.

The Lagrangian is centered on the operator function L, which, for simple cases, is a
function of the difference between the kinetic T and potential energy U . It is a function
of the n generalized coordinates q1...qn and the generalized velocities of these coordinates,
q̇1..., q̇n:

L(q1...qn, q̇1...q̇n) = T − U (2.2)

The q1,...,qn, and q̇1,...,q̇n variables define a coordinate in 2n-dimensional configuration
space. When these n variables are taken together with a set of initial conditions, a unique
orbit through state space can be determined for the system using the second-order Euler-
Lagrange equations. Hence, we want to find a function that tells us how our system will
progress if we start a time t0 from a certain configuration. Taking the extremal principle
from the calculus of variations and applying it to each degree of freedom in the system,
we get the Euler-Lagrange equation [ 2 ], telling us how the system moves in time. We
will derive the Euler-Lagrange equation below because it helps us understand where the
Hamiltonian equations come from.

We start with the general form of the variational problem that represents the action in-
tegral [ 2 ]:

S =

∫ t2

t1

f(q(t), q̇(t), t) dt, (2.3)

We want to find a function f that keeps the action integral stationary to conform to the
least action principle, i.e., dS/df = 0, as seen in the definition of the principle in section  2.1 .
We need the function q for this. Hence, we first assume that we have an approximation of
it, expressed as q(t) = q′(t) + αh(t), where q′(t) is the correct function, h(t) is a function
that is the difference between the correct solution q(t)′ and the approximate solution q(t),
and α is its amplitude. All three functions, q, q′, and h, are assumed to pass through the
time points t1 and t2, the limits of the integration. Since only the correct function q′ will
minimize S, we change the criteria for minimizing S. We need α = 0 because S will be
zero when q = q′. Hence, we want dS/dα = 0. We can then rewrite S:

S(α) =

∫ t2

t1

f(q(t), q̇(t), t) dt =

∫ t2

t1

f(q′ + αh, q̇′ + αḣ, t) dt (2.4)

From fundamental calculus, we know that the function S(α) needs to be minimized at
α = 0. The function’s gradient will be zero at that point, meaning that S will become
stationary, as required. Following this logic, we get the equation here:

dS

dα
=

d

dα

∫ t2

t1

f(q(t), q̇(t), t) dt =
d

dα

∫ t2

t1

f(q′ + αh, q̇′ + αḣ, t) dt = 0 (2.5)
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2 Background

The equation above is true for any path q’(t). Simplifying the derivative, then, we get:

dS

dα
=

∫ t2

t1

∂f

∂α
dt =

∫ t2

t1

(
h
∂f

∂q
+ ḣ

∂f

∂q̇

)
dt = 0 (2.6)

We use integration by parts on the term
∫ t2
t1
ḣ(t)∂f∂q̇ dt. At the boundaries of the integra-

tion i.e. t1 and t2, h(t) = 0 because all three functions q(t), q′(t) and h(t) pass through those
points, which means at t1 and t2, q(t) = q′(t). Hence, h(t) = 0 at those points. Substituting
the integration by parts results back into the equation above we get:

dS

dα
=

∫ t2

t1

h(t)

(
∂f

∂q
− d

dt

∂f

∂q̇

)
dt = 0 (2.7)

As shown before, the condition above is true for any choice of h(x). That means h(x)
is not necessarily equal to zero in the above equation. This statement implies that the
integrand must be zero. If we rewrite f as L in the integrand, we get what is called the
Euler-Lagrange Equation:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 Euler-Lagrange Equation. (2.8)

We can see that the action re-written as S =
∫ t2
t1
L(q, q̇, t)dt is extremised if and only if

the Euler-Lagrange equation is satisfied. In other words, the system’s trajectory q is subject
to the Euler-Lagrange equation. This equation is a system of n second-order equations,
depending on 2n constants. The 2n conditions q(t0) = q0 and q(t1) = q1 are used to
find these constants. The Euler-Lagrange equation is also independent of the coordinate
system.

By substituting the Lagrangian given by L = T − U into Equation  2.8 above, we obtain
the concrete form of the differential equation that can be solved to get the equations of
motion. L is the difference between the kinetic and potential energies, and the proof is as
follows. Since U = U(q), only depends on position, and T =

∑
miq̇

2
i /2, only depends

on velocity, then d/dt(∂L/∂q̇i) = d/dt(∂T/∂q̇i) = miq̈i and ∂L/∂qi = −∂U/∂qi. The first
term is mass times acceleration, and the second is the equivalent force. Thus, the Euler-
Lagrange formula in Equation  2.8 is true [ 2 ]. Next, we discuss the Legendre Transform.

An excellent description of the Legendre Transform can be found here: C. E. Mungan,
”Legendre Transforms for Dummies,” U.S. Naval Academy, Annapolis, MD [ 33 ]. This
transformation converts one set of variables to another conjugate set of variables while
preserving the underlying information. Changing the independent variables from posi-
tion and velocity to position and conjugate momenta reveals more profound insights into
symmetries in the equations of motion. It brings out the conservation of the canonical
momenta [ 33 ].

If we apply the Legendre transform to the Lagrangian L(q, q̇), we obtain the Hamilto-
nian:

6



2.1 Hamiltonian Systems

H(q, p) =
n∑
i=1

piq̇i − L(q, q̇) (2.9)

To show that H is the total energy, we expand Equation  2.9 , for the special case below:

H(q, p) = (mv)(v)− (
1

2
mv2 − U) =

1

2
mv2 + U = T + U (2.10)

We see from this example that the Hamiltonian is the total energy of a system.
The Legendre Transform converted the variables from q and q̇ to q and p, where p is

the conjugate momentum of the generalized velocity q̇. In the Hamiltonian formalism we
obtain 1st order equations of the variables q1, ..., qn, p1, ..., pn, consisting of n generalized
positions and n conjugate momenta. These coordinates define a unique point in a 2n-
dimensional phase space, completely defining a system’s state. Starting the system from
an initial condition in phase space, Hamilton’s equations can determine a unique trajec-
tory for the system’s evolution in this space. The dynamics preserve phase space volume
and other geometric properties [ 2 ]. In numerical applications, it is advantageous to pre-
serve these properties as they will be important when we try to analyze the accuracy of our
Hamiltonian SINDy method. Below, we formulate the dynamic equations of the Hamilto-
nian, which we will use to identify the governing equations of a system through data and
a library of functions in Hamiltonian-SINDy.

2.1.2 Hamiltonian Formalism

We will derive the equations of motion of the Hamiltonian here, i.e., the derivatives of the
Hamiltonian with respect to its arguments q and p. These are equal to dq

dt and dp
dt , which

tell us how the system moves in time, in phase-space. In this formulation, we will assume
that neither the Lagrangian nor the Hamiltonian have an explicit time dependence. Let us
take the derivative of the Hamiltonian in two ways. First, we express the total differential
of the Hamiltonian, the derivative of H with respect to q and p as:

dH =
∂H

∂p
dp+

∂H

∂q
dq (2.11)

From the Legendre transform of the Lagrangian function H = pq̇ −L, we know that the
derivative above equals the total differential of pq̇−L. We set the Lagrangian to L = T−U ,
i.e., the difference between the kinetic and potential energies. Let us define U = U(q), and
the kinetic energy as T =

∑
miq̇

2
i /2, then ∂L/∂q̇i = ∂T/∂q̇i = miq̇i = p. From these

equations, we see that p = ∂L/∂q̇, and if we take the derivative of H(q, p) with respect to
its variables q, p, we can conclude that:

dH = q̇dp− ∂L

∂q
dq (2.12)

Since both equations for dH above must be the same, it can be concluded that:
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2 Background

q̇ =
∂H

∂p
,

∂H

∂q
= −∂L

∂q
= −ṗ (2.13)

We get the second equation from applying Euler-Lagrange’s equations to ∂L/∂q̇ [ 2 ],
which is why it was essential to derive it earlier. Neither the Lagrangian nor the Hamilto-
nian depends explicitly on time in conservative systems, so ∂H

∂t = −∂L
∂t = 0

Putting everything together, we get the Hamiltonian equations of motion for a one-
dimensional system.

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(2.14)

Here, one can see that unlike in the Lagrangian formalism, where we had a single
second-order differential equation with the variable q, in the Hamiltonian method, we
have two first-order differential equations with variables q and p. This separation into two
sets of equations simplifies the analysis of complex systems and makes the representation
of the system’s phase space state easier. Our discussion has so far (implicitly) assumed
that we are considering a one-dimensional system with only one q-component and one p-
component. However, all derivations generalize straightforwardly to the case of arbitrary
dimensions. With all these conditions in place, we can derive the Hamiltonian vector field
equations for n dimensions as

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
for all i = 1, ..., n. (2.15)

In the above derivation, we have also assumed thatH is conserved, i.e., does not change
explicitly with time (t). The total time derivative ofH is the rate of change ofH depending
on the change in the coordinates q1..., qn, p1, ..., pn with time. This total derivative is equal
to zero without H explicitly depending on time because each of the terms ∂H

∂pi
and ∂H

∂qi
would cancel out in the sum [ 2 ], as the total energy H should be constant.

Now that the description and derivation of Hamiltonian Mechanics is complete, we can
describe an important feature that will be used to ensure the SINDy method works for
Hamiltonian systems while retaining its structure. This property is that a Hamiltonian
matrix is symplectic, which will be briefly described below.

2.1.3 Symplectic Form

The Hamiltonian SINDy method uses information about the symplectic form of the Hamil-
tonian to identify the underlying dynamics of the system. A characteristic feature of
Hamiltonian dynamics is that the Hamiltonian flow φt, i.e., the trajectory in phase space,
is symplectic. This means that the derivative φ′

t = ∂φt/∂(q, p) must satisfy the following
property:

φ′
t(q, p)

TJφ′
t(q, p) = J with J =

(
0 Id

−Id 0

)
(2.16)

8



2.2 Sparse identification of nonlinear dynamics (SINDy)

Id is the identity matrix with dimensions equal to d, with the matrix φ′
t(q, p) ∈ R2d×2d.

J is called the canonical skew-symmetric matrix. Preservation of phase space volume is a
consequence of symplecticity, which in turn ensures the Hamiltonian and total energy in a
conserved system are constant, as was pointed out in 1899 by Poincare[ 18 ]. Many Hamil-
tonian systems are not integrable, and numerical methods such as symplectic integrators
are necessary to approximate their trajectories over time. These integrators enforce the
symplectic structure and energy conservation by maintaining the phase space volume. If
we write the Hamiltonian system in a compact form as z = (q, p)T and

J =

(
0 Id

−Id 0

)
Then, the system can be expressed as:

d

dt
z = J∇zH(z) (2.17)

Evaluating the long-time behavior of dynamical systems is a well-known difficulty in
mathematics. Situations where dynamics exhibit chaotic behavior or explode are often
encountered. Fortunately for Hamiltonian systems, imposing the symplectic structure on
numerical methods through Equation  2.16 can alleviate the problem [ 29 ].

In our Hamiltonian-SINDy method, we construct a parametrization of a Hamiltonian
vector field that has the symplectic structure built into it. The structure ensures that the
Hamiltonian properties are conserved no matter which dynamic equations are discovered.
Now, we will discuss the method chosen to solve our problem of dynamics discovery.

2.2 Sparse identification of nonlinear dynamics (SINDy)

Traditionally, deriving governing equations is based on underlying first principles, such
as conservation laws, symmetries, or universal laws. However, in many complex systems,
governing equations are only partially known, and it is impossible or challenging to derive
them from universal laws and first principles. Many systems, such as climate science or
plasma physics, have rich time-series sensor and measurement data. Arising from this is
the trend of data-driven model discovery, to which intense research effort is devoted. A
major conflict in this discovery is the balance between a model’s descriptive capabilities,
complexity, and accuracy [ 6 ].

A parsimonious model is one that achieves the desired prediction accuracy with as few
variables as possible. Parsimonious models are well balanced for accuracy, complexity,
and descriptive power, capturing essential interaction with the fewest terms. Leverag-
ing convex optimization ensures that these methods scale favorably to various large-scale
problems. The SINDy method relies on the assumption that most physical systems have
only a few relevant basis terms that define their dynamics, making the set of equations
sparse in a high-dimensional nonlinear function space [ 5 ].

9



2 Background

Similarly, other methods try to reproduce the dynamics from data. We will discuss some
of them here to show how SINDy stands out. A popular data-driven approach utilizes
Koopman Operator Theory to identify transformations from nonlinear to linear coordi-
nates. If linear dynamics are found, closed-form solutions are acceptable, which allow
for the analysis, prediction, and control of such systems [ 4 ]. However, linear models can-
not capture the complete behavior of many nonlinear systems, limiting their accuracy and
long-term predictive capability. Another method known as Dynamic Mode Decomposi-
tion (DMD) relies only on measurement data, not information about the governing equa-
tions. Even though advances have been made by combining it with Koopman operator
theory, it can still not pinpoint which nonlinear functions are correct, so the form of the
dynamics must be assumed [ 4 ]. Neural network methods can capture complex nonlinear
dynamics and retain specific desirable properties from systems like total energy conserva-
tion and stability. However, these methods cannot guarantee the output of true dynamic
equations. They usually need help retaining all the properties expected from the system,
such as symplectic structure, and typically lead to models that are hard to interpret. They
also require a more significant computational effort to train them than other methods be-
cause of the large data requirements for solutions with small errors [ 5 ,  23 ]. While main-
taining their underlying properties, the SINDy method balances accuracy, effort, and in-
terpretability well to find the correct dynamic equations in Newtonian, Lagrangian, and
Hamiltonian frameworks.

SINDy is a sparse nonlinear regression method that aims for interpretability while find-
ing parsimonious natural laws. It builds on symbolic regression but avoids over-fitting by
adding a Pareto front as a parsimony constraint. A Pareto front is a dramatic change in
the accuracy versus complexity curve parameterized by a variable λ [ 5 ]. SINDy makes it
possible to find a system’s relevant physics by identifying the governing equations using
gradient and state data and some system knowledge in the form of a dictionary of basis
functions. It uses data collected using simulations or experiments, assuming the data is
noisy [ 5 ]. A nonlinear function that can represent the vector field of the system is what the
method is trying to find:

ẋ(t) = fθ(x(t)). (2.18)

The state of the system at a time t is represented by a vector x(t) = [x1(t) x2(t) ...
xn(t)]

T ϵ Rn, with n states. The nonlinear function fθ(x(t)) above represents the vector field
of the dynamic equations of motion of the system. The key point of the SINDy method is
that many systems of interest are sparse and have the function fθ(x(t)) consisting of only
a few terms from the space of possible functions. We will describe below how to set up the
algorithm that learns fθ(x(t)) from data.

Consider gradient measurements at m time-steps for n states yϵ Rm×n, that are linear
combinations of p functions from a feature matrix Θ(X) ∈ Rm×p and entries of the coef-
ficient vector ξ ϵ Rp for each state. Performing a standard linear regression over ξ, the
coefficients’ vector, gives us each element’s non-zero coefficients and bases contributions.

10



2.2 Sparse identification of nonlinear dynamics (SINDy)

However, by adding a regularization term, λ, we can remove terms below a threshold for
sparsity, resulting in the expression:

ξ = argmin
ξ′

||Θξ′ − y||2 + λ||ξ′||1

The setup above is convex [  3 ] and scales well to large-scale problems compared to brute-
force combinatorial attempts. To determine the terms in the function fθ from data, a time
series of the general state x(t) and its time derivative ẋ(t) are sampled. This collected data
is then stored in two matrices, one for the states and the other for their gradients, both of
m time-steps for n states, as shown below.

X =


xT (t1)
xT (t2)

...
xT (tm)

 =


x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

. . .
...

x1(tm) x2(tm) . . . xn(tm)



Ẋ =


ẋT (t1)
ẋT (t2)

...
ẋT (tm)

 =


ẋ1(t1) ẋ2(t1) . . . ẋn(t1)
ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)


Next we build a dictionary matrix of basis Θ(X) ∈ Rm×p consisting of p candidate non-

linear functions for the m states of X as shown below:

Θ(X) =

 | | | | | |
1 X XP2 XP3 . . . sin(X) cos(X) . . .
| | | | | |


The Lorenz system, for example, shown in the Results section later, has very few terms

from the space of polynomial functions. In the Θ(X) matrix above, if we take XP2 as an
example, it would contain all combinations of polynomial state terms such that the sum of
their powers would be quadratic, which can be a considerable subset depending on how
many states we are considering [ 5 ]. As shown below

XP2 =


x21(t1) x1(t1)x2(t1) . . . x22(t1) . . . x2n(t1)
x21(t2) x1(t2)x2(t2) . . . x22(t2) . . . x2n(t2)

...
...

. . .
...

. . .
...

x21(tm) x1(tm)x2(tm) . . . x22(tm) . . . x2n(tm)


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2 Background

Each element of Θ(X) is a candidate for each element of the right-hand side, fθ(x), of
Equation  2.18 . A linear regression problem can be set up to find the sparse matrix of
coefficients Ξ = [ξ1, ξ2 ... ξn] because only a few of the nonlinear functions are active in
each column of fθ, which represent the equation for each state in Ẋ.

Ẋ = Θ(X)Ξ (2.19)

Each column ξk of Ξ is a sparse vector of coefficients that can tell us which terms are
used in the right-hand side of each row of the equation ẋk = fk(x). Once we find Ξ, a
model of each row of the governing equations can be built

ẋk = fk(x) = ΞT (Θ(xT ))T (2.20)

Thus, if we solve for the sparse vector of coefficients ξ for each state, we can find the
dynamics of the equations [ 5 ]. Now that we have explained the method, the last thing to
describe is what can be done if the measured data does not have the correct coordinates to
predict true dynamic equations.

2.3 Intrinsic Coordinate Identification

A coordinate transformation is often necessary in dynamic system discovery to get the
system’s actual dynamics. A simple example is the charged particle Hamiltonian, e.g.,
for an electron. While the measured quantities of such a system are usually position and
velocity, the Hamiltonian is expressed in terms of position and momentum. In a magnetic
field, the conjugate momentum is not just p=mv but it is given by p = mv + eA(q), where e
is the unit charge and A is the vector potential [ 40 ].

Fundamentally, SINDy relies on taking measurements in an effective coordinate system
where the dynamics have a sparse representation [ 6 ]. However, measurements may only
be accessible in a space where the dynamics are not sparse, so transforming to a differ-
ent space is sometimes necessary to find the sparse dynamics. One of the most popular
coordinate discovery methods is principal component analysis (PCA). It represents high-
dimensional data in a low-dimensional linear subspace [ 6 ]. A nonlinear extension of PCA
based on neural networks is the autoencoder.

Autoencoder based neural networks can be used to identify the intrinsic coordinates of
a system. The intrinsic space can be of the same dimension as the measurement space
or smaller dimensions. An autoencoder is a feed-forward neural network. Its innermost
hidden layer represents the intrinsic coordinates that we are searching for. The network
weights are trained to find an approximate input reconstruction for a certain number of
intrinsic coordinates. Restrictions on the network can be of the type, number, and size of
the hidden layers [ 15 ].

On their own, PCA and autoencoders do not take dynamics into account. The hall-
mark cases where neural networks shine through are computer vision and speech recog-
nition, which are interpolatory. Forecasting is an extrapolation property. We seek dynamic
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equations, where neural networks trained on historical data under-perform, especially for
chaotic systems [  6 ]. An additional problem faced by deep learning is the need for inter-
pretability of resulting models. Attempts have been made at interpretation, but the sheer
number of parameters is a hindrance [ 6 ]. Thus, the network must provide additional in-
formation to retain interpretability and retrieve extrapolatory models.

To circumvent this problem, we compose SINDy with an auto-encoder neural network,
amalgamating the parsimony and interpretability of SINDy with the universal approxi-
mation abilities of deep neural networks to produce models useful for prediction. One can
see an equation for neural network SINDy below:

d

dt
z(t) = g(z(t)) (2.21)

Where, the measurement coordinates are x ∈ Rn, and the reduced, learned coordinates
are z(t) = φ(x(t)) ∈ Rd, where d≪ n. g is the dynamic model containing only a few terms
resulting from the transformation of coordinates x using the function φ, the encoder. Re-
turning to the original coordinates is possible by mapping through x ≈ ψ(z), the decoder
[ 6 ]. A sketch of the method can be found in Figure  2.1 

Figure 2.1: Neural SINDy Architecture and SINDy Matrices [ 6 ]

For better visualization, Figure  2.1 part A shows how the network’s encoder-SINDy-
decoder layers are composed. We transform coordinates from the measurement space to
the intrinsic space, perform SINDy in the intrinsic space, and then transform back to the
measurement space. In Figure  2.1 part B we see an example of the SINDy matrices setup,
with the colored dots in the Ξ coefficients’ matrix depicting the active coefficients after
optimization.

Regular Physics informed neural networks (PINNs) employing autoencoder networks
have been used for data-driven system identification, but there is no guarantee that the
intrinsic coordinates will be sparse [ 6 ]. Therefore, constructing a neural network autoen-
coder with an encoder layer, then a SINDy layer, then a decoder layer is vital, where the
SINDy layer works on sparsification, and the autoencoder part focuses on both encoding
and reconstruction. Due to the sparsity and reconstruction requirements, adding terms to
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the loss function that account for both constraints is essential. The loss function will have
four terms, three loss terms, and one regularization term:

L = ∥x− ψ(z)∥22︸ ︷︷ ︸
reconstruction loss

+λ1
∥∥(∇xz) ẋ−Θ

(
zT

)
Ξ
∥∥2
2︸ ︷︷ ︸

SINDy loss in ż

+ λ2
∥∥ẋ− (∇zψ(z))

(
Θ

(
zT

)
Ξ
)∥∥2

2︸ ︷︷ ︸
SINDy loss in ẋ

+ λ3∥Ξ∥1︸ ︷︷ ︸
SINDy

regularization

. (2.22)

The first term allows the autoencoder layers to act independently to convert back and
forth from the intrinsic to the measurement space. It is crucial to have this term indepen-
dent as it affects the functioning of the other loss terms. The second term is for SINDy loss
in ż, i.e., in the intrinsic space. It uses a Jacobian of the encoded variables ( dzdx = ∇xφ(x))
and the measured gradients (ẋ) to find the gradient of the input data in the intrinsic space,
ż = dz

dx ẋ = ∇xφ(x(t))ẋ(t). This term is then compared against the predicted gradient of the
encoded variables from SINDy, Θ(φ(x)T )Ξ. In the third term, the Jacobian of the encoded-
decoded variables is taken with respect to the encoded variables, ∇zψ(φ(x)) = dx

dz . This
term is then multiplied with the predicted intrinsic space SINDy gradient Θ(φ(x)T )Ξ,
which is a prediction for ẋ, comparing the network output with the true values. Finally,
the last term is an L1 regularization term on the coefficients that promotes sparsity. All the
loss terms have associated hyper-parameters λ1, λ2, λ3 that determine their weight relative
to each other. These parameters can control the relative effects of these terms and allow
more accurate prediction. Together, they comprise the loss function in Equation  2.22 .

By constructing a proper loss function and network architecture, Champion et al. [ 6 ]
show that it is possible to transform coordinates and find the dynamics of a Newtonian
system in a reduced space. However, more is needed to guarantee it will also work for
Hamiltonian dynamics.

From Chu and Hayashibe [ 8 ], we know that conducting SINDy model discovery on La-
grangian mechanics is possible. They carry out this task by holding the conservation of
total energy as one of the constraints. By assuming the data on the changes in total energy
with time, dEdt , are available, they used singular value decomposition and least-square re-
gression techniques to solve for the vector of dynamic equations coefficients. However,
Hamiltonian mechanics behave differently.

Constraining the dynamics to hold a symplectic form imposes a more restrictive con-
dition on the possible solutions. Using total energy as the constraint while searching for
Hamiltonian dynamic equations will not guarantee that we obtain suitable basis func-
tions, as the loss function is optimized. Since the symplectic structure, not the total energy,
completely characterizes Hamiltonian systems [ 19 ], we should aim to have the symplectic
structure as a constraint. Due to the nature of neural networks, it is more likely that basis
equations that do not represent actual dynamics but still satisfy the total energy-dependent
loss function are found. A similar occurrence was shown for Newtonian systems by Cham-
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pion et al. [ 6 ]. Therefore, when setting up our Hamiltonian-SINDy problem later, we aim
to maintain the symplectic structure instead of total energy as a tenet of the method.

In the following chapters, we will first show that Hamiltonian-SINDy works while pre-
serving the symplectic structure. Then, we will show an example of a coordinate-transforming,
auto-encoder neural network working on a nonlinear Hamiltonian system to show how
coordinate transformation with Hamiltonian-SINDy can be generalized.
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This section will discuss the code, techniques, and test setups to reach a canonical-conjugate-
coordinate and vector field discovering Hamiltonian-SINDy method.

We chose Julia for the implementation because it is widely used in the scientific com-
munity for its user-friendly syntax and high performance [ 25 ]. It is not subject to the two
language problem like Python [ 36 ] and is known to perform fast linear algebra computa-
tions for various test cases.

First, we will implement the original SINDy algorithm [ 5 ] and reproduce results from
the literature in the Julia programming language. After re-creating the original results,
we will evaluate different optimization strategies to verify if it is possible to formulate
the SINDY problem as an unconstrained optimization problem, as this will be required
for Hamiltonian SINDy. Next, we will apply SINDy to Hamiltonian systems and test the
code on various physics models. After that, a variant of SINDy will be implemented to
discover the governing equations from just the information about the states at different
time steps without using gradients, as the gradient information is often unavailable. In
the next step, we will recreate a variation of classical SINDy, incorporating an autoencoder
that can discover an intrinsic coordinate space to allow for a potentially sparser SINDy
implementation.

Finally, we will attempt to assemble an Autoencoder-Hamiltonian-SINDy method, us-
ing it to reproduce results obtained from the Hamiltonian-SINDy method implemented
before while simultaneously discovering the conjugate coordinates of the Hamiltonian.
The sections below will describe the implementation of the algorithms, data structures,
and some test cases used to implement and validate the methods. We will emphasize the
steps necessary to adapt the classical SINDy code to the Autoencoder-Hamiltonian-SINDy
method.

3.1 SINDy Algorithm

The SINDy algorithm is required to solve a regression problem for optimization. There
are many choices for optimization algorithms available to solve for the matrix of sparse
coefficients, Ξ, from Equation  2.19 . Here, the traditional algorithm will be discussed, how
problems are set up, the optimization techniques that can be used to solve them, and dif-
ferences in the setup from the original implementation.

There is a distinct sparse coefficients’ vector, ξ, for each of the states in Equation  2.19 , and
together they make up the sparse coefficients matrix, Ξ. As seen before, the matrix Θ(X)
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serves as a dictionary of p candidate basis functions, evaluated at m time-steps, making its
dimensions m×p. The time steps are taken to be many more than the candidate functions,
m≫ p, to allow for higher accuracy and to avoid over-fitting to noisy data. As realistically
most measured data is noise-contaminated, independent identically distributed Gaussian
noise with zero mean is added to the gradient to simulate the noisy data. Thus, the gradi-
ent data will be assumed to be:

Ẋ = Θ(X)Ξ + ηZ, (3.1)

where Z is the Gaussian noise matrix, and η is the noise magnitude. In the original
paper [ 5 ], the sequential threshold, least-squares regression algorithm was used to solve
equation  3.1 . The least-squares regression method tries to transform the matrix A in the
equation Ax = b to reduce its size before the inverse is calculated. If one takes the matrix
as Θ(X) = A of size m× p, then ATA is a smaller matrix of size p× p. To simplify solving
for Ξ = x, using A and Ẋ = b, we can then write

Ax = b→ ATAx = AT b→ x = (ATA)−1AT b. (3.2)

This equation is solved using least-squares regression when A is rectangular or by a
linear solver when A is square. The least-squares algorithm is performed on basis values
in Θ and the gradients ẋ, as seen in the SINDy Algorithm in Code  3.1 . After getting an
initial solution for Ξ, using the basis dictionary, coefficients smaller than some threshold
value λ are set to zero, and the corresponding basis functions are removed from the dic-
tionary. The threshold is applied repeatedly until no more coefficients with values below
the threshold parameter exist. The advantage here is the algorithm’s rapid convergence
to a sparse solution and the simplicity of using one parameter λ for sparsification. This
algorithm is robust to noise in the gradient data, as we will see.

In the algorithm  3.1 , we supply the sparsification function with data for gradients, xgrad,
and a dictionary of candidate basis functions Θ, add noise to the gradient data, and com-
pute an initial guess for the coefficients of the basis functions by performing least-squares
regression as in Equation  3.2 . Then, we check if any coefficients are smaller than the thresh-
old sparsification parameter and repeat least-squares regression for several consecutive
loops. The loop breaks if no coefficients smaller than the threshold are found; otherwise,
we set the smaller coefficients to zero. In the subsequent linear regressions, discarding all
basis functions whose coefficients have been set to zero is essential. Θ[:, biginds] indicates,
for all samples, which of the bases are still active for the selected state ”ind .” Only the
corresponding noisy gradients of each state are then chosen to perform the linear regres-
sion ”xgrad noisy[ind,:].” Linear regression has to be performed over the system’s states
one at a time because different coefficients are active for different states. Since the active
terms in each state’s basis vectors are usually not the same, it prevents the action of the
least-squares algorithm on the whole coefficients matrix at once.

The algorithm is efficient while providing high accuracy and robustness, even if the sizes
of the matrices are large. One can see how resistant the algorithm is to noise in Figure  3.1 .
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3.1 SINDy Algorithm

SINDy Algorithm
1 # add noise
2 xgrad_noisy = xgrad .+ method.noise_level .* randn(size(xgrad))
3
4 # initial guess: least-squares
5 Ξ = Θ \ xgrad_noisy'
6
7 for _ in 1:method.nloops
8 # find coefficients below lambda threshold
9 smallinds = abs.(Ξ) .< method.lambda

10
11 # check if there are any small coefficients != 0 left
12 all(Ξ[smallinds] .== 0) && break
13
14 # Set all small coefficients to zero
15 Ξ[smallinds] .= 0
16
17 # Regress dynamics onto remaining terms to find sparse Ξ
18 for ind in axes(xgrad_noisy,1)
19 biginds = .˜(smallinds[:,ind])
20
21 Ξ[biginds,ind] .= Θ[:,biginds]\xgrad_noisy[ind,:]
22 end
23 end

Source Code 3.1: SINDy Algorithm: Uses the backslash operator, which uses either a linear
solver or least-squares regression, depending on the system it is applied
to, i.e., a square or rectangular matrix

We used uniformly sampled data in the range [-20, 20], a default sparsification parame-
ter of 0.05, and just 144 samples for a two-dimensional damped harmonic linear oscillator
system. Then we added random Gaussian noise with a maximum amplitude of 10% of
the sampled range. The algorithm takes just 0.001788 seconds to run, and in one SINDy
cycle, it outputs the results in Figure  3.1 . The original code samples one trajectory over a
specific time period and finds the gradients at those samples with the theoretical reference
equation. We sample uniformly in a range and take gradients. It is faster because we do
not calculate a trajectory, and the sampling can be from a broad controlled sample area,
which can be customized if needed. Despite the high noise added, the discovered coef-
ficient values, selected from 21 possible polynomial basis functions up to the 5th power
for each state, are the correct basis functions with only one extra constant bias coefficient
showing up, as can be seen in Figure  1 in the Appendix. All the correct discovered basis
functions are accurate within one decimal place of their actual value. From plot  3.1 , for
the dynamics of the linear oscillator over a relatively long time period of 25 time units, it
is clear that the SINDy algorithm is highly resistant to noise as it manages to maintain the
correct trajectory quite closely.

The Least squares regression algorithm is reliable but only works for linear relationships
between variables. To allow more flexibility in the variable relationships we can handle,
we test if the SINDy method works with an unconstrained optimization setup in the next
step.
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Figure 3.1: SINDy State Plots with high noise

3.1.1 SINDy with Unconstrained optimization

Least-squares regression can only be employed when the relationship between variables is
linear. However, in our Hamiltonian-SINDy and Autoencoder-Hamiltonian-SINDy meth-
ods, it would be problematic to use the Least-squares algorithm because the relationship
between variables in these methods is usually nonlinear. This chapter discusses alternative
optimizers in the context of classical SINDy, with the goal being to change from the Least-
squares optimization technique to algorithms like Broyden–Fletcher–Goldfarb–Shanno (BFGS)
[ 13 ], [ 39 ], Conjugate Gradient (CG), Gradient Descent (GD) or Newton’s Method [ 35 ]
which can handle a broader class of problems. We will choose a Julia package to call
these solvers.

Before optimizing, we need to construct an appropriate loss function that measures
the error between the model’s prediction and the desired outcome and has to be mini-
mized [ 35 ]. We use the squared L2 norm of the differences of the predicted and reference
vector fields:

m∑
i=1

(Ẋi −Θi(X)Ξ)2. (3.3)

For optimization, we employ the Optim.jl package [ 31 ], which implements a large num-
ber of algorithms. An ideal algorithm combines high accuracy with low memory footprint
and computational cost. From the popular algorithms available on Optim.jl [ 31 ], theo-
retically, Newton has the highest accuracy and cost due to its requirement of the second
derivative of the loss function. However, it is sensitive to the initial guess of the coef-
ficients [ 35 ]. Moving to the Quasi-Newton methods like Gradient Descent (GD), BFGS,
L-BFGS, and the Conjugate Gradient method (CG), these are known to perform well while
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using an approximation of the objective loss function’s hessian or simply its gradient for
calculations. We also want the algorithm to be robust to different initial guesses of the
coefficients. To test the algorithms for accuracy, we will compare the trajectories from the
reference gradients to the ones found by the SINDy optimizers for 25 time units and make
a sum of errors versus the percentage input noise plot. We set up our linear oscillator sys-
tem example from this criteria and plot errors versus noise amplitude, as shown in Figure

 3.2 . The figure shows that BFGS, with coefficients initialized to zero, has the lowest error at
the highest noise input, with most other setups also performing comparatively well. Table

 3.1 below compares optimization metrics between these different algorithms.

Figure 3.2: error Vs. Noise Across Algorithms and Initializations in a Linear Oscillator

Method Computation Time (seconds) Iterations SINDy cycles Coefficients Residual
Least-Squares 0.0024 - 1 0.0003
BFGS-zeros 0.17 65 1 0.0003
BFGS-ones 2.138 507 1 0.0001
Newton-zeros 4.376 105 1 0.0004
Newton-ones 19.296 504 1 0.0003
CG-ones 1.610 514 2 0.0004
LBFGS-ones 2.885 523 2 0.0001
GD-ones 2.658 524 4 0.0002

Table 3.1: Performance Metrics for Optimization Methods with Linear Oscillator

In Table  3.1 , ”Coefficients Residual” is the maximum difference between the predicted
and reference vector field coefficients’ values, which is different from the error amplitude
calculations in Figure  3.2 that implicitly incorporate all the coefficients into the error calcu-
lation. The data is sampled at a noise amplitude of 0.1, with 400 samples, and maximum
iterations set to 500 per optimizer call to limit runtime. The measurements show that the
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BFGS and LBFGS algorithms, with all SINDy coefficients initialized to ones, have the
highest accuracy regarding the maximum coefficient’s residual. BFGS-zero records the
shortest computation time. However, all the algorithms have high accuracy and are com-
parable, as seen from Figure  3.2 and Table  3.1 . Most of the algorithms take many iterations
to converge, which also adds to their run time. However, limiting iterations and perform-
ing more SINDy cycles does not produce a worse final coefficients’ residual in this exam-
ple. All algorithms converged within two SINDy loops, except Gradient Descent (GD),
which might be due to the method’s reliance on just the gradient information and not the
hessian. Relying solely on the gradient could also lead to long runtimes if the problem is
ill-conditioned [ 31 ]. Most of the algorithms outperform Least-Squares regression in terms
of accuracy for high noise input, as seen from Figure  3.2 . We will choose BFGS initialized
to zeros as our optimizer and initialization of choice due to its good accuracy, short run-
time, and few iterations. However, the main reason for not choosing the other algorithms
is that most could not provide usable results for high noise inputs with coefficients initial-
ized to zero. Other than BFGS and Newton, only the Conjugate Gradient could provide
some results with zero initialization but only up to small noise inputs.

An initialization of coefficients set to zero should be able to sparsify quickly and execute
faster because most unnecessary coefficients remain close to zero, and it takes fewer loops
to remove them. This is also seen from the computation time in Table  3.1 .

Lastly, we note that with initialization of all coefficients equal to one, BFGS provides the
worst accuracy with respect to high noise, as seen from Figure  3.2 . However, it is still com-
parable to the accuracy provided by the other algorithms. It also still outputs a very low
maximum coefficients’ residual. From these findings, we focused on the BFGS algorithm
for subsequent experiments with an initialization of coefficients equal to zero. Newton
with zero initial guesses will be used when a higher order method is required, although
this comes with a higher computation time because it needs to calculate the loss function’s
gradient and hessian. An initial guess of ones can also be used later with different algo-
rithms to further study robustness with respect to the initial guess.

Now that we have verified that SINDy can perform well with optimization algorithms
other than Least-Squares, it is time to adapt the SINDy approach towards symplectic
structure-preserving Hamiltonian systems. This method will be described in the next sec-
tion.

3.2 Hamiltonian-SINDy Algorithm

When constructing the Hamiltonian SINDy method, the coefficients cannot be as easily
factorized into a linear system of equations for the coefficients as in traditional SINDy.
In traditional SINDy, the vector field can be written as a matrix-vector product of coeffi-
cients and basis functions in a very immediate way. In Hamiltonian SINDy the vector field
is more complicated as it arises from the gradient of a parameterized Hamiltonian, and
expressing it as a matrix-vector product is not as immediate. Still, the vector field usu-
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ally depends linearly on the coefficients and thus can, in principle, be transformed into a
matrix-vector product. It is just much more involved to do this.

This section will explain how to generate a dictionary of Hamiltonian vector field func-
tions with a symplectic structure for SINDy to optimize. We want the candidate basis
functions to comprise typical functions used for approximation: polynomial, trigonomet-
ric, exponential, logarithmic, and combinations thereof. Moreover, we want the vector
field to maintain its skew-symmetric symplectic structure throughout the optimization.
Subsequently, we would like the SINDy algorithm to be able to function while only hav-
ing data for states at two time steps and no gradient data available. Considering these
criteria, we will discuss how the setup was implemented and the problems encountered.

Let us start by assuming we prepossess an array of basis functions; how should we then
acquire the skew-symmetric Hamiltonian vector field? First, we need to find the number
of coefficients for the basis functions. If there is no repetition in the bases, the number
of coefficients should correspond to the number of basis functions. We then construct an
array of coefficients of the same size, multiply each coefficient with a basis function, collect
the results, and sum them. These steps will give us a Hamiltonian of all the terms from the
basis dictionary.

To support the creation and testing of the Hamiltonian vector field, we use symbolic
math for the new basis assembling technique to convert the symbolic expressions to a
function later. Symbolic math, or algebraic manipulation, involves performing algebraic
operations on symbolic expressions, where the variables and quantities are represented as
symbols rather than numbers held within variables. We use the Symbolics.jl package for
this, since it contains differentiation, simplification, function generation, and much more
in its arsenal [ 16 ]. It is beneficial for prototyping and setup, as the results of the calculations
are readable instead of just outputted numbers, allowing analysis and verification.

Now, we need to differentiate the Hamiltonian with respect to the elements of Array  3.4 

i.e., z = q1, ..., p2. We can use a function of the Symbolics.jl package for differentiation, ob-
taining the derivative of the Hamiltonian. Afterward, we multiply the derivatives with a
skew-symmetric matrix conforming to the symplectic structure of Equation  2.15 to get the
correct Hamiltonian vector field. Finally, we use the RuntimeGeneratedFunctions.jl package
to generate and return a callable Julia function that returns the Hamiltonian vector field.
This generated function takes as arguments a storage variable for the gradients, the sys-
tem’s current state z on which to calculate the gradients, and the Hamiltonian coefficients
to return a vector field with built-in symplectic structure. The steps described above can
be seen in Code  3.2 :

Now that we know how to construct the Hamiltonian vector field from the basis, we will
attempt to construct functions to generate symbolic basis functions. Starting with a simple
example, we define a symbolic variable array holding four symbolic variables to represent
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Hamiltonian Vector-Field Function Generator
1 using Symbolics
2 # returns a function that can build the gradient of the Hamiltonian
3 function ΔH_func_builder(d::Int, z::Vector{Symbolics.Num} = get_z_vector(d),
4 basis::Vector{Symbolics.Num}...)
5 # nd is the total number of dimensions of all the states
6 nd = 2d
7 Dz = Differential.(z)
8 # collects and sums combinations of basis and coefficients."
9 basis = get_basis_set(basis...)

10 # gets the number of terms in the basis
11 @variables a[1:get_numCoeffs(basis)]
12 # collect and sum combinations of basis and coefficients
13 ham = sum(collect(a .* basis))
14 # gives the derivative of the Hamiltonian but not the skew-symmetric true one
15 f = [expand_derivatives(dz(ham)) for dz in Dz]
16 #simplify the expression potentially to make it faster
17 f = simplify(f)
18 # multiplying with the skew-symmetric matrix
19 ΔH = vcat(f[d+1:2d], -f[1:d])
20 # Calculatesgradientt and converts to a native Julia function
21 ΔH_eval = @RuntimeGeneratedFunction(Symbolics.inject_registered
22 _module_functions(build_function(ΔH, z, a)[2]))
23 return ΔH_eval
24 end
25

Source Code 3.2: Hamiltonian Vector-Field Function Generator

a 2-dimensional system: 
q1
q2
p1
p2

 (3.4)

The goal is to set up simple functions that provide an easy interface for the user to get
many different types of symbolic bases of arbitrary dimensions in an array, which can then
be presented as an argument to the Hamiltonian vector field function generator from Code

 3.2 .
The original Matlab implementation of the SINDy algorithm only considered polyno-

mial basis functions up to degree 5 and trigonometric functions with mode numbers up
to 10. In our Julia implementation, we support a larger range of basis functions, including
polynomials of arbitrary degree, trigonometric functions with arbitrary mode numbers, as
well as rational, exponential and logarithmic functions. All of these basis functions can be
applied to the state variables’ individual components or functions thereof, such as arith-
metic combinations. As the basis dictionaries are first created symbolically, they can be
printed in an easily readable form, allowing quick debugging.

Some functions are indeed just identities of others, which is valid for some trigonomet-
ric, exponential, and logarithmic functions. However, we want to provide maximum flex-
ibility to potential users while expecting them to know which functions in the generated
basis dictionary are identical and exclude those themselves. The result of this endeavor can
be found in our GitHub Repository  1 . An example of the range of Hamiltonian functions
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3.2 Hamiltonian-SINDy Algorithm

created just from the variables in Array  3.4 can be seen in Code  3.3 . Using code  3.3 and
parts of code  3.2 without the function generator line, we can see what a potential symbolic
skew-symmetric Hamiltonian vector field would look like in Figure  3.3 .

1 # dimensions of Hamiltonian variables (q,p)
2 d = 2
3 # symbolic array of variables (2D)
4 z = get_z_vector(d)
5 # basis functions
6 trigonometric = trigonometric_basis(z, operator = /, max_coeff=3)
7 logarithmic = logarithmic_basis(z, polyorder = 1, operator = -)
8 exponential_diff = exponential_basis(z, polyorder=1)
9 mixed_basis = mixed_states_basis(logarithmic, trigonometric)

10 mixed_basis = mixed_states_basis(mixed_basis, exponential_diff)
11 basis = get_basis_set(mixed_basis)
12 # coeffcients: (a)
13 @variables a[1:get_numCoeffs(basis[3013:3015])]
14 # collect and sum combinations of basis and coefficients
15 ham = sum(collect(a .* basis[3013:3015]))
16 Dz = Differential.(z)
17 # derivative of the Hamiltonian, but not skew-symmetric
18 f = [expand_derivatives(dz(ham)) for dz in Dz]
19 f = simplify(f)
20 # multiplying with the skew-symmetric matrix
21 ΔH = vcat(f[d+1:2d], - f[1:d])

Source Code 3.3: Symbolic skew-symmetric Hamiltonian vector field code example

Figure 3.3: Skew-Symmetric Hamiltonian SINDy Gradient

So far, setting up the basis and getting a function that outputs its Hamiltonian vector
field has been accomplished. Now, we write a sparsification function to work with these
equations. A problem arises that once coefficients have been removed in the sparsifica-
tion, they should be excluded from the optimization problem in the next sparsification
cycle. However, the whole coefficients’ vector must be input to the vector field generating
function that calculates the predicted gradient. Lets call the function hamsindy grad().
To ensure the discarded coefficients are ignored, we create a bit-vector called biginds, of the
size of the original coefficients vector. This bit vector is true at elements where the coeffi-
cients are greater than the sparsification threshold (λ) and false when coefficients are less
than or equal. During optimization, we create a smaller vector by placing the bit-matrix
at the indices of the coefficients greater than λ, as big coeffs=coeffs[biginds]. Then we pass
the vector big coeffs to a wrapper loss function, called sparse loss(big coeffs). This
way, only the active coefficients will be optimized. Inside sparse loss, we define a zero
vector of the size of the original coefficients vector and set big coeffs to the indices of this
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3 Methodology

new vector corresponding to biginds, as new coeffs[biginds]=big coeffs and pass this vector
to the actual loss function, loss(new coeffs). In this way, only the active, large coefficients
are optimized each time, and the rest are ignored, as required. With this, we finish set-
ting up our Hamiltonian-SINDy method, the code for which can be found in our GitHub
Repository  1 .

Appropriate models were then considered to test the algorithm. To cover a variety of
cases with different properties, we test on examples including a nonlinear oscillator, the
Toda lattice, point-vortices, and a solar system model. These examples incorporate a wide
array of relevant nonlinear models and basis function types, which show the accuracy and
limitations of the technique developed here. The results from these experiments will be
discussed in section  4.2 .

Our next step is to modify the Hamiltonian-SINDy algorithm to operate on just state
data. The Hamiltonian vector field data is often challenging to estimate, noisy, or unavail-
able. For cases like these, it would be conducive if the algorithm could function without
needing reference gradient data.

3.2.1 Hamiltonian-SINDy Without Gradient Data

Developing a method that relies on something other than reference gradient data allows
us to start with even less information that we need to provide the method. Although this
is an engaging test for the algorithm’s robustness, there are also practical reasons why the
method needs to function well enough without vector field data. For example, in complex
many-body systems, the Hamiltonian vector field data is very expensive to compute if all
constituents interact. In other examples, when the SINDy algorithm is applied to identify
dynamical systems from experimental data, vector field data may not be attainable.

We attempt here to get results from the algorithm by only supplying it with state data
at two time points, with a short interval in between, along with a way to interpolate and
estimate the gradient. The technique will then be checked for accuracy and speed against
the original Hamiltonian SINDy algorithm that requires gradient data. We will keep the
implementation simple to have only a proof of concept available for future improvement.
Below, we will discuss implementing such a gradient-free basis discovery technique.

The idea is to replace the L2 norm of the difference in the vector field with some numer-
ical integrator. Noisy experimental data is simulated by taking state values separated by
a short time interval and introducing a noise factor in the second state result. We use an
implicit Runge-Kutta geometric integrator function Gauss(4) from the GeometricIntegra-
tors.jl package [ 27 ] to obtain high-accuracy training data for the state at the second time
point and add noise to it. Modifying the sparsification function, we start by finding the
SINDy-gradient of the state at the first time point, which is our initial guess. Next, we need
to find the solution at the next time point by integration. Within each optimization step,
the implicit midpoint method is solved using Picard’s method [ 38 ] with a fixed number of
iterations. After iteratively improving the guess for the second state, the SINDy prediction
is compared to the reference noisy state solution at the second time point. Then, an opti-
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3.2 Hamiltonian-SINDy Algorithm

mizer such as Newton or BFGS is used to minimize the difference between the prediction
and reference. This way, the training of the method can be performed without the need for
gradient data.

We show comparative results through the nonlinear oscillator example from Section  4.2.1 .
The method is kept simple by using Explicit Euler instead of a higher-order method like
Runge-Kutta method, as the time-step between states is small. The calculation still gives
accurate results up to 2 decimal places for the nonlinear oscillator toy model, even with
some noise added to the input, which is 2.5% of the maximum sample range. Upon start-
ing the SINDy procedure with an initial dictionary of 97 basis functions, the algorithm
identifies four basis functions as sufficient to describe the data within a tolerance of the
coefficient’s residual of 0.05. This shows that the algorithm is robust even when provided
little information about the system (in the form of a more specialized set of basis functions).
BFGS was used as the optimizer with 1000 sample states taken uniformly from the range
(-20,20). The computation time, loss function residual, and other relevant metrics from
running this experiment for both Hamiltonian SINDy methods can be seen in Table  3.2 .

Method Computation Time (sec) Iterations Loss Function Residual
Ham-SINDy 16 83 4.011323e+02
Ham-SINDy no gradient 1124 115 4.081489e+02

Table 3.2: Example Performance Metrics for Hamiltonian SINDy Methods

The loss function residual of the Hamiltonian SINDy method using only state data is
comparable to that of the Hamiltonian SINDy method using vector field data, as seen in
Table  3.2 . The ”Loss Function Residual” records the sum of the loss function values from
all data samples. Ultimately, we get accurate coefficients up to 2 decimal places from this
alternative setup. In contrast, the normal Hamiltonian SINDy gives accurate coefficients to
5 decimal places. It can be seen in Table  3.2 that it takes much more computation time for
the method using Picard iterations to reach a similar level of accuracy. This slowdown is
expected due to the repeated gradient calculations inside the Picard iteration loop and the
extra effort required from the optimizer while calculating the gradient of the loss kernel,
all of which add to the computational effort. The difference in the accuracy of the resultant
coefficients between the version that uses and does not use gradient data reduces when
the noise is removed. This increase in accuracy tells us that the noise introduced plays
some role in the convergence of the loss function in the gradient-less version. Even though
we observe that the errors in the coefficients grow with increasing noise levels, we find
that the SINDy algorithm determines the correct constituents of the Hamiltonian. We also
see that despite running for more iterations, the Picard iteration version cannot reach the
same accuracy, which indicates that the noise introduced and the explicit Euler integrator
limit accuracy. Trying a higher-order integration method in the Picard iteration, more
Picard loop iterations, or just introducing less noise could improve the accuracy but would
probably also increase the runtime of the solver.

From the information gathered, the state data employing version of Hamiltonian SINDy
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3 Methodology

provides a suitable alternative if the gradient information is unavailable. The Hamiltonian-
SINDy method has now been set up to work both with and without the gradient, and its
performance has been tested to be sufficiently accurate and fast. It is time to move to
another implementation that tackles the coordinate transformation problem while simul-
taneously performing SINDy.

3.3 Intrinsic Coordinate Identification with SINDy

Classical SINDy relies entirely on the collected data from an effective coordinate system.
However, data can only sometimes be collected in an effective coordinated system. Exper-
imentally accessible observables might not provide the most compact representation of a
system. Moreover, there can be situations where the system is represented with sufficient
accuracy in a reduced space where calculations are easier to perform. In this case, reduc-
ing to a smaller state space saves computational effort while retaining predictive accuracy.
Even more important is that the measured data for Hamiltonian systems is often not in
the canonical-conjugate coordinates. Converting to these coordinates gives us access to
many interesting features of the Hamiltonian formulation, such as preserving the sym-
plectic structure during canonical transformations that potentially make the Hamiltonian
easier to solve [ 41 ]. Therefore, it is convenient for Hamiltonian systems to have data in
canonical-conjugate coordinates.

In this section, we will couple an autoencoder with SINDy in a ”Neural-SINDy” method,
in the Julia language while discussing important implementation choices that differ from
the Champion et al. [ 6 ] paper where this method was first presented.

The size of the systems we can identify using SINDy is restricted by the computa-
tional resources available. We will mention the changes made to the original network
from Champion et al. [ 6 ] to allow the simulation to run in a feasible time on a typical
development system. We limit the encoder and decoder sizes to work without hidden lay-
ers and without using activation functions. There will be just one intrinsic layer, and the
layer’s size will be the same as the input. In summary, we use a randomized linear trans-
formation on the data. This is to be understood as a first proof-of-principle of intrinsic co-
ordinate identification within the framework of Hamiltonian SINDy. Fully developing this
approach goes beyond this thesis project’s scope but certainly warrants further research.

We will limit the training epochs to 2000 for the initial optimization and 500 for each
SINDy cycle and the final optimization. In contrast, the original paper had 5000 epochs
initially and, subsequently, 1000 epochs for the SINDy and final optimizations. We chose
the Lorenz attractor [  30 ] example from Champion et al. [ 6 ] and aim to re-discover its gov-
erning equations using the current method with sufficient accuracy. Instead of going from
a space of 128 states to 3 states, to keep the example simple, the number of states will be
kept constant, starting from 3 states and having 3 states in the intrinsic layer. All network
parameters will be initialized using Xavier initialization [ 14 ], whereas SINDy coefficients
will be initialized to zeros.
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3.3 Intrinsic Coordinate Identification with SINDy

The Lorenz example from Champion et al. [ 6 ] was trained with 1024 trajectories with
250 points for each trajectory, counting to 256000 sample data points. In contrast, we will
use a uniform sampling from the range (-20,20), picking 3375 samples. In this initial setup,
the Julia package Flux.jl [ 22 ] will be used to create the model architecture with the Zygote
[ 21 ] backend for automatic differentiation. Flux is a popular machine learning package in
Julia known for its simplicity and extendability [ 22 ]. We chose it here to have an easy way
to apply SINDy in conjunction with an encoder-decoder pair.

The strategy employed will be that a tuple of a model with three parametric layers, i.e.,
encoder layer, SINDy layer, and decoder layer, will be built. This model will pass the data
along with a dictionary of 56 basis functions for the Lorenz example to a solver function.
This function will divide the data into batches and shuffle the data points in a batch for
each epoch. This technique is called stochastic mini-batching. It helps the model learn from
different patterns in the system. We will experiment with different batch sizes to compare
convergence against noise. For each batch, the quantities required by the loss function,
such as the gradients of the model layers dz

dx = dφ(x)
dx and dx

dz = dψ(φ(x))
dx as explained in

Equation  2.22 , will be calculated.
As described in [ 6 ], the hyperparameters λ1 and λ2 as they appear in Equation  2.22 will

be slightly smaller than the ratio between the states and the gradients, divided by specific
amplitudes for relative weighting. This ratio ensures that the auto-encoder layers focus
more on reproducing the states, while the SINDy-layer focuses more on the gradient pre-
diction [ 6 ]. The regularization parameter λ3 balances sparsity, overfitting, and prediction
and is the one that typically requires the most tuning. This last parameter λ3, along with
different batch sizes, will be focused on while attempting to improve accuracy by explor-
ing a range of possible values, a common hyperparameter tuning technique.

Lastly, same as the original paper, the Adam optimizer [ 26 ] with default learning rate
and momentum will be used to update the states. It is important to recall that because
Adam uses the previous gradient updates for its momentum calculations, defining the
Flux optimization setup outside any loops is crucial. In our algorithm, we chose to re-
define the Adam optimization state at each SINDy cycle because the coefficients left after
sparsification compromise a new system. Therefore, the remaining coefficients should not
be affected by gradient calculations from the previous optimizations. This setup effectively
removes both the effects on the Adam optimization state from previous iterations and the
coefficients below the sparsification threshold. This step is also what is done by Champion
et al. [ 6 ], and the result can be seen in Figure  3.4 .

Since Zygote is cumbersome to set up, restricting certain functionalities like composing
a gradient function on a jacobian function, which we require, some syntactic workarounds
had to be developed around these limitations. Due to these problems, the Enzyme [ 32 ] and
ForwardDiff [ 37 ] packages were also tested as possible candidates for automatic differen-
tiation rather than Zygote. However, Enzyme proved unfeasible for this study as some
features were incompatible.

The ForwardDiff package was also tested as a replacement for Zygote, and initial proto-
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Figure 3.4: Neural SINDy Prediction versus True Dynamics for the Lorenz System

typing was carried out with it. However, ForwardDiff requires explicitly flattening models
before passing them for gradient and jacobian calculations. Moreover, it did not seem to
provide syntactic or computational advantages over Zygote during setup. It was also ob-
served to have disadvantages when eventually moving to Hamiltonian-SINDy due to the
complexity of the RuntimeGeneratedFunction for the SINDy vector field and the need to
differentiate through it during optimization.

Therefore, it proved more straightforward to use Zygote and work around its limitations
with mutating arrays. In the end, the setup for the algorithm was similar to the classical
SINDy one, where an initial encoding was carried out, followed by a SINDy optimization
and finally a decoding step to reconvert to the measurement state variables. Three opti-
mizations are carried out with these steps according to the Champion et al. [ 6 ] algorithm.
The first is longer with 2000 epochs, an initial optimization without sparsification similar
to the step in classical SINDy. Then, a sparsification loop and an additional last optimiza-
tion are made for 500 epochs each to allow the parameters and loss residual to converge
further.

The results from the Lorenz attractor prediction are shown in Figure  3.4 with 18 coeffi-
cients selected by the algorithm from a basis with 5th order polynomial combinations of 56
candidate basis functions. The original paper [ 6 ] had five models with 15 or more active
terms from the ten models that they tested. Figure  3.4 shows that the prediction repro-
duces the Lorenz attractor dynamics within sufficiently small error bounds. This example
setup will be discussed in more detail in Chapter  4.3.2 . Although the method identifies a
vector field with more terms than the true dynamics, it still gives seemingly good results
for trajectory prediction, which is the main goal of the Neural-SINDy method. Now, we
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can finally move to setting up an Auto-encoder-Hamiltonian-SINDy algorithm.

3.4 Auto-Encoder-Hamiltonian-SINDy Algorithm

The algorithm presented in this section is quite similar to intrinsic coordinate identifica-
tion setup from section  3.3 . The main idea is to replace the classical SINDy layer with a
Hamiltonian-SINDy layer. However, this imposes intricate challenges. As seen from the
loss function in Equation  2.22 , there are inter-dependencies between the encoder-decoder
weights and the coefficients of the SINDy parametrization. Due to the universal approxi-
mation capabilities of neural networks, it is possible to find encoder-decoder weights that
do not convert the data to canonical conjugate coordinates but can encode and decode
the data with high accuracy. SINDy then predicts gradients on this wrongly encoded
data, identifying incorrect dictionary basis functions. Yet, the loss function from Equa-
tion  2.22 decreases and converges to a sufficiently small value. Unlike in classical SINDy,
in Hamiltonian-SINDy, it is crucial to have the correct coordinates in intrinsic space; oth-
erwise, neither the long-time dynamics nor the vector field equations will be correct. This
problem was not faced by Champion et al. [ 6 ] using classical SINDy as the additional dic-
tionary basis functions that were identified could still produce the trajectory plots with
sufficient accuracy, and their goal was focused on producing correct trajectories rather
than finding the exact governing equations.

Moreover, since the Hamiltonian gradient vector contains elements consisting of the
sums of candidate basis functions and their coefficients, it is much more difficult to find
correct coefficients in Hamiltonian-SINDy than in classical SINDy, where the vector field
has a simpler structure. The autoencoder exacerbates this problem, and larger dictionary
sizes add to this problem. It was also noticed during testing that the differences in the size
of the variables’ data values, for example, having large momentum gradients but small
coordinate gradient terms, would cause the optimization to focus on reducing the larger
terms first to reduce the loss function value. This step causes the optimization to drift
towards the wrong solution and get stuck in a local minima of the loss function. Prob-
lems like this are usually dealt with by normalizing each gradient element independently.
However, normalizing Hamiltonian phase-space data like this will not guarantee that the
volume is conserved. Despite these difficulties, we will attempt to construct a method
similar to Champion et al. [  6 ] that reaches sufficiently accurate results, replacing classical
SINDy with Hamiltonian-SINDy.

While testing the algorithm, Zygote takes unfeasibly long to differentiate through the
RuntimeGeneratedFunction for the SINDy vector field. Due to these inherent limitations in
the Zygote package, we used Enzyme [ 32 ] for automatic differentiation in this part. Al-
though Enzyme has specific requirements for storing gradients and certain incomplete
features, its performance increases were enough to justify tackling these obstacles.

In the prototyping stage, we initialize the encoder-decoder pair weights to identity and
start with the data already in Hamiltonian conjugate coordinates. This initialization allows
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the same freedom for the encoder-decoder coordinates to fluctuate while increasing the
likelihood that the correct coordinates are retained. For testing purposes, starting from
a state close to the correct solution for the encoder-decoder weights helps us prove the
concept of the method.

More straightforward loss functions were also tested. In one setting, the loss function
was set up as follows:

Loss = (
N∑
i

(φD(ψ(φE(x(t0))))− x(t1))
2)

1
2 (3.5)

Where φE is the encoder, ψ is the SINDy layer and φD is the decoder. In equation  3.5 , the
goal was for the encoder to transform the measured data at time t0 into canonical coordi-
nates, use Hamiltonian SINDy as in Section  3.2.1 to predict a state in the encoded space at
a later time step t1, and then transform that value to the original coordinate space with the
decoder. This predicted value would then be compared against sampled data in the origi-
nal coordinate space at time-step t1. However, this performed worse than the loss function
from Champion et al. [ 6 ]. Another approach could be to train the auto-encoder separately
from the SINDy part. However, this does not guarantee that the encoded coordinates in-
deed constitute a pair of canonical-conjugate coordinates, even though the reconstruction
error is small.

Despite these hindrances, there are a few possible ways to guide the encoder weights to
return canonical-conjugate coordinates within limitations. A possible approach is to detect
the symmetry inside systems. An example is a pendulum on a cart where the Hamiltonian
is invariant to position. In the Lie algebra framework, this symmetry can be exploited
to affect the weights of a neural network, as seen in the work from Dierkes et al. [ 10 ].
However, adapting, implementing and testing this approach is outside the scope of this
thesis.

A last possible approach is to limit the number of basis functions the algorithm can
choose from at the start. This last approach was also tested in our implementation and
will be shown in the results. However, this relies on additional apriori knowledge of the
system dynamics beforehand, which is only available in special circumstances.

This explanation concludes the discussion of the implementation of the code. It is fi-
nally time to discuss the results, where we can show the abilities and shortcomings of the
methods discussed in this thesis.
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4 Results

This chapter will discuss the results from each section of the Methodology. Examples will
be shown from different areas of physics and how the developed SINDy extension meth-
ods perform on each. The various implemented methods will also be compared where nec-
essary. The main goal is to show the power of Hamiltonian-SINDy while also showing an
example to depict the approach’s limitations. The results from Autoencoder-Hamiltonian-
SINDy will be given through a test showing its current limitations and a proof of concept
example.

We use random initial conditions integrated using reference model vector fields and the
predicted SINDy vector fields for trajectory plot comparisons. The integrators we employ
are either the Tsit5 tableau of Runge-Kutta coefficients [ 43 ] or one of the Geometric Inte-
grators available in the package GeometricIntegrators.jl [ 27 ]. Integrators that preserve geo-
metric properties are popular when dealing with Hamiltonian systems, where, for correct
predictions, certain properties, such as the symplectic structure, need to be conserved dur-
ing a long-time simulation. From the GeometricIntegrators.jl package, we mainly use the
Gauss(2) integrator, which employs the fully implicit Runge-Kutta method with Tableau
Gauss [ 27 ].

Moreover, all noise added to plots is zero-mean Gaussian noise with various noise am-
plitude as described in Equation  3.1 to simulate real measurement data. In all the SINDy
cycles run in the tests, the SINDy cycles never reach the maximum limit of 10, and the spar-
sification usually ends at a maximum of five loops. The sparsification threshold is usually
set to 0.05 by default. If it is changed for any example, it will be mentioned. Finally, a
single SINDy cycle indicates that only one loop of the SINDy sparsification and optimiza-
tion was carried out after initial optimization. The full implementation of the code and all
examples can be found in the Github repository here  

1
 

4.1 Classical SINDy

Starting with a simple test, we will compare the run-time of the original SINDy code from
Brunton 2016 et al. [ 5 ] to our re-implementation of the SINDy algorithm in Julia. Both will
use the least-squares algorithm on the Lorenz system example [ 30 ]. The original code is
in Matlab Programming Language, while our rewritten and altered versions are in Julia.
Julia usually has significantly shorter computation time for numerical optimization and
root finding problems [ 9 ]. So Julia is expected to be faster for this example as well.

1GitHub Repository  https://github.com/JuliaRCM/SparseIdentification.jl .
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4 Results

From the results of running a profiler for computation time and accuracy on the least-
squares algorithm for the Lorenz system example five times, it was seen that, on average,
the Matlab code takes approximately 0.211 seconds to run as compared to the Julia code,
which runs in 0.021 seconds, ten times less. However, due to both the Matlab and Julia
code being un-optimized for computation speed and the Julia code especially employing
many data structures and supporting code to run other optimizers and methods, the run-
times should not be held in high regard and are only mentioned in passing. The results
are summarized in Table  4.1 where both implementations have similar accuracy for the
predicted coefficients.

Language Average Computation Time (sec) Max Coefficients Residual SINDy Loops
Julia 0.021 0.0004 3
Matlab 0.211 0.0001 10

Table 4.1: SINDy Metrics Julia vs Matlab for Lorenz System

Figure 1, in Brunton et al. [ 5 ], outlines how the data is obtained in the original version.
In their code, state data is collected for a time series, and then noise is added while calcu-
lating the gradient of these states using the reference Lorenz system equations. We differ
slightly in this approach by uniformly sampling from a range instead of using a time-series
approach to get the states. Figure 1 part III from Brunton et al. [  5 ] shows how the collected
coefficients will be used along with the library of basis functions to identify a model, and
we employ the same functioning.

To correctly judge the accuracy of the implementation in Julia versus the original Matlab
code of Brunton et al. [ 5 ], the error versus noise plots for the Lorenz system will be com-
pared to Figure 6 in Brunton 2016 et al. [ 5 ], ensuring the accuracy is of the same order or
better. The actual and predicted dynamics trajectories are compared to get the error plots.
The sum of the absolute errors between the reference and the predicted states are plotted
in log10 scale. The result of this endeavor can be seen in Figure  4.1 .

Comparing our results to the ones from the original Matlab code, it can be seen that the
errors are of the same order. The errors in Julia have been calculated with a step size of
0.001 but plotted with a step size of only 0.1 to allow the differences between noise in-
puts to be seen more clearly. It is assumed that a similar procedure was carried out for
the original plot. The results show us that the re-implementation has very similar accu-
racy to the original implementation, while as was seen in Table  4.1 , the Julia computation
implementation in its current state is around ten times faster.

Next, we will plot dynamics from the linear-harmonic oscillator, Lorenz system, and
mean-field model for fluid wake behind cylinder examples from the original paper [ 5 ]
using the least squares and BFGS [ 3 ] optimizer. The first shows a simple case; the second
shows a chaotic system, and the last shows that the SINDy method works on nonlinear
partial differential equations. Plots for dynamics over time will be presented to see the
drift in error. We will also discuss the dynamic equation coefficients to see if there are any
extra or fewer basis functions and how much the terms differ from the reference solution.
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Figure 4.1: Error over time in states of the Lorenz system for various noise inputs

4.1.1 Illustrative Example: Two-Dimensional Damped Linear Oscillator

Starting with the linear oscillator example, we have the true equation as follows:

d

dt

[
x
y

]
=

[
−0.1 2
−2 −0.1

] [
x
y

]
(4.1)

On this model, SINDy was performed, with zero noise, using both the least-squares
method and the BFGS optimizer. The results for dynamics over time and in phase space
show that the predictions from both SINDy optimizations match the correct dynamics to
extremely high precision.

When a noise amplitude equal to 1.0 is added, which is 5% of the sampling space that
was (-20, 20), one extra constant bias value from both methods is received. However, the
coefficients for the correct basis functions are still accurate within one decimal place. The
dynamics are reproduced to a reasonably accurate estimate, as was seen previously from
the errors reported in Figure  3.2 . The coefficients can be seen in the Appendix, Figure  1 ,
which shows that the residual for the predicted and correct coefficients was small. The
algorithm only takes two SINDy iterations each time for sparsification.
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4 Results

(a) Dynamics in Phase-Space

(b) Dynamics over Time

Figure 4.2: Linear Harmonic Oscillator

4.1.2 Chaotic System: Lorenz Attractor

Next, the Lorenz system’s dynamics are depicted, showing the algorithm’s performance
on a chaotic system. The equation for this system are:
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ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

Small differences in model coefficients or initial conditions can grow exponentially in
the Lorenz system. However, capturing dynamics on the attractor is more important in
such a system since it is chaotic, and any small variation causes exponential divergence
[ 5 ]. As shown in the results in Figure  4.3 and the coefficients in the Appendix Figure  2 ,
the dynamics are captured very precisely. For this example, the standard parameters are
used, namely σ = 10, β = 8/3, ρ = 28, coupled with initial conditions [x y z]T = [-8 7 27]T

for trajectory plotting. Uniform sampling is conducted from the area [-20, 20], and 3375
samples are collected. Then two noise variations are introduced to the system η = 0.01
and η = 10. Parameters and some metrics can be seen in Table  4.2 .

Method Noise Max Coefficients Residual Sparsification Threshold SINDy cycles Iterations
Least-Squares 0.01 1e-5 0.05 2 -
Least-Squares 10 1e-2 0.1 3 -
BFGS 0.01 1e-5 0.05 2 513
BFGS 10 0.003 0.1 3 288

Table 4.2: Metrics and parameters for the Lorenz system

From table  4.2 , we see from the approximate coefficients residual that the accuracy is ap-
proximately the same between the optimizers. The sparsification threshold was increased
in the high noise regime to eliminate extra coefficients that were showing up. We see that
the BFGS method takes more SINDy cycles, which increases with noise, indicating that
the noise terms affect the sparsification, which is also seen from the need to change the
threshold to remove extra coefficients. Finally, the total number of iterations is higher in
the less noise regime as the loss function residual falls more there, reaching a value 3.437e-
01. However, with high noise, the loss function residual can only fall to 3.429e+05 before
stabilizing, which is much higher and reflected by the higher coefficients residual.

For trajectory plots, Figure  4.3 can be compared to Figure 4 and Figure 5 from Brunton et
al. [ 5 ]. From an initial observation, both optimizers’ predictions seem close to the reference
trajectory. The predictions from BFGS and least-squares overlap well in low noise but
differ more in the high noise regime, with least-squares performing slightly better, as is
seen in the Dynamo view in Figure  4.3 b. For long-term plots, we show that the shape of
the trajectory is captured quite well by either optimizer, and the results look close to each
other in Figure  4.3 a.

4.1.3 Nonlinear PDE: Fluid wake behind a cylinder

Finally, the mean-field model dynamics [ 34 ] of fluid behind a cylinder are plotted. In
this example, reference data was obtained from a fluid flow simulation past a cylinder
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(a) Trajectories over time for t = 0 to t = 20 (top), and t=0 to t = 250 (bottom)

(b) Dynamo View of trajectories from t = 0 to t = 20

Figure 4.3: Lorenz System long-time trajectories and dynamo view for two noise levels

in 3 dimensions, at Reynolds number 100, using direct numerical simulation of the two-
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(a) Evolution of wake trajectory in reduced coordinates

(b) Evolution of the wake trajectory initialized at the steady-state limit

Figure 4.4: Mean-field fluid-flow behind a cylinder for Reynolds number 100, in 3-
dimensions

dimensional Navier-Stokes Equation. The three-dimensional system for a mean-field model
described above has the following equations [ 5 ]:

ẋ = µx− ωy +Axz

ẏ = ωx+ µy +Ayz

ż = −λ(z − x2 − y2)
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As explained in Brunton et al. [  5 ], the sparsification algorithms produce similar results to
the data collected from simulations, and by relaxing the sparsity condition, almost perfect
models can be obtained, although with higher-order nonlinear basis terms. For our case,
the results obtained by the least-squares code are almost perfectly replicated using the
BFGS optimizer in Figure  4.4 and their coefficient match almost exactly in Table  4 . Only
the no-noise case is simulated here as was done by Brunton et al. [ 5 ] as well.

Notably, the sparsification threshold was set to 0.00002, a minimal value, which was
done to capture the higher-order dynamics of the model, allowing for some extra terms
in the prediction. However, all the extra terms are only up to quadratic power, consistent
with the Navier-Stokes equations [ 5 ]. Both optimizers take 4 SINDy loops. Unfortunately,
as the coefficients’ data for the reference model is not available, the residual coefficients
cannot be directly compared. However, the BFGS optimizer reports a final loss residual
error of 6.746e+04 from summing all the 5000 sample errors. However, comparing the
plots in Figure  4.4 , we can see that the prediction and reference results’ trajectory plots
match closely.

4.2 Hamiltonian SINDy

Four results will be discussed in this section. These cover a range of systems with dy-
namic equations covering polynomial, trigonometric, exponential, and logarithmic func-
tions. Three of these systems are from different areas of physics, while one is a toy example
for prototyping but still includes non-linearities. The first system models an oscillator of
quadratic polynomial and trigonometric terms. The second example is a Toda lattice from
solid-state physics, the third is a point-vortex system from fluid mechanics, and the last is
a solar-system model. We will show different features of the method in each example, such
as how changing noise and sparsity threshold affect the system, comparing Hamiltonian-
SINDy with classic SINDy, and how extensive nonlinearities can affect trajectory predic-
tions even with high accuracy coefficients. The last example will be to gauge the limits of
the method, while the first three illustrate its range.

In most examples, we know the true Hamiltonian of the system. Still, we always start
with a basis library of around 100 terms to show the system’s identification ability. The
goal is to find the correct dynamic terms, not just sparsification and system trajectory pre-
diction. We will sample either from a uniform range or a normal distribution as convenient
with the system under consideration. For comparison, one of the examples will be run with
the gradient-less version of Hamiltonian SINDy from section  3.2.1 as well. Coefficients for
all tests will be recorded in the Appendix. A long-time trajectory simulation will be carried
out at the end of most examples to show how well the systems can function for predicting
dynamics. To plot the long-time simulation, we will start with a random point from the
data samples and integrate it up to a certain time.
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4.2.1 Nonlinear Oscillator Model

This example Hamiltonian is made up for testing purposes and to present the method’s
power. It is a two-dimensional nonlinear oscillator system, i.e., four variables. Although
its Hamiltonian looks simple, the system can have an intricate trajectory depending on the
initial condition, as shown later. The Hamiltonian can be seen below in Equation  4.2 :

H =
1

2
p21 +

1

2
p21 + cos(q1) + cos(q2) (4.2)

We set up this system to search from 4th order polynomial space, various trigonometric
frequency terms, and functions for differences between variables, totaling 97 terms. This
number and type of guesses for basis functions of the Hamiltonian are realistic as oscilla-
tory trajectories with changing amplitudes are assumed to be prerecorded from measured
data before setting up the library. We want sufficient basis library functions to meet the
assumption that we started with little information about the system. We sample uniformly
from the range [-20, 20] and take 10,000 samples with noise amplitudes of 2.5% and 10%.
The BFGS algorithm will be used for optimization, with sparsification thresholds of 0.05
changed to 0.1 when the noise increases. The results obtained are as follows:

Noise Sparsification Threshold Max Coefficients Residual SINDy cycles Iterations
2.5% 0.05 0.01 1 115
2.5% 0.1 0.007 1 110
10% 0.05 0.04 1 118
10% 0.1 0.02 1 95

Table 4.3: Metrics and parameters for the nonlinear oscillator with BFGS

We get a sufficiently high accuracy for both the high and low noise inputs as seen from
the coefficients residual reported in Table  4.3 . Changing the sparsification parameter for
the high noise input allows a better approximation of the actual dynamics, as noted by
the decrease in the coefficients’ residual. We note that the SINDy cycles are always equal
to one, which could mean that the dynamics are easily identifiable as the system is a toy
model. The total number of iterations carried out does not change much between the noise
inputs, which indicates that the optimization, when coupled with the proper sparsification
parameter, can filter through the noise easily. The coefficients’ prediction only improved
slightly from increasing the sparsification threshold. Still, it did cause the total iterations to
decrease, meaning more extra coefficients were excluded before SINDy optimization. The
accuracy of the low noise input also improves by increasing the sparsification parameter.
From further testing with higher threshold values, the improvement in the prediction stops
at a threshold of 0.2, which is about half the actual value of the smallest coefficient. This
improvement precipice indicates that coefficients’ weights are at first spread out and only
experience significant shifting towards the correct prediction after sparsification.

We can see example trajectory plots in Figure  4.5 , made with sparsification thresholds
of 0.05 for low noise and 0.1 for high noise. As expected, the low-noise system overlaps
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with the reference model trajectory more than the high-noise contaminated prediction. The
difference in the predictions with high and low noise is mostly only in the amplitude of
the trajectory and not the overall shape, which also indicates that the prediction errors are
minor for both parameter settings. The predicted coefficients for these parameter sets can
be seen in Figure  5 of the Appendix.

(a) Trajectories of position and momentum in the first dimension

(b) Trajectories of position and momentum in the second dimension

Figure 4.5: Trajectories of the nonlinear oscillator for noise inputs

4.2.2 Toda Lattice

A Toda lattice is a simple example of a many-body system because it contains exponen-
tial terms in its Hamiltonian, in which states interact. A Toda lattice is a model for a
one-dimensional chain of solid particles [ 42 ] from solid-state physics. We will compare a
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classical SINDy prediction with a Hamiltonian SINDy prediction here, along with some
noisy inputs and threshold values results. We will use a four-particle system with a basis
library containing 156 terms. We will then take 2000 data samples from a standard normal
distribution. The equation for a Toda lattice Hamiltonian is:

H(p, q) =
∑
nϵZ

(
p(n, t)2

2
+ V (q(n+ 1, t)− q(n, t))

)
(4.3)

where q(n, t) is the displacement of the nth particle, p(n, t) is its conjugate momentum,
and V (q) is the interaction Toda potential given by V (q) = e−q + q − 1 [ 42 ]. We will start
by comparing Hamiltonian SINDy to classical SINDy. We will use the BFGS optimizer and
least-squares method to initialize the coefficients to zero for both methods, with a sparsi-
fication threshold of 0.05. All methods will have a noise input of at least 2.5% while the
BFGS methods will have the same convergence criteria that the input coefficients’ vector
needs to converge to a value of 1e−8. The results can be seen for the states of one of the
particles in Figure  4.6 

Figure 4.6: Trajectories of classical versus Hamiltonian SINDy for a Toda Lattice particle

We plot the trajectory using the implicit Runge-Kutta geometric integrator with Gauss
tableau from the GeometricIntegrators.jl library with a time step 0.01 for 250 time units.
As one can see, the Hamiltonian SINDy method produces much more accurate trajectory
plots. Interestingly, the Newton-BFGS method took around 277 seconds for optimization,
much more than the other methods, which consistently took 10 seconds. Below, the results
are summarized in Table  4.4 .

Both the classical SINDy approaches have the worst coefficient guesses for this case.
This significant error is expected because they do not account for the symplectic structure

43



4 Results

Method Noise Threshold Value Max Coefficients Residual SINDy cycles Iterations
Classical-Least-Squares 2.5% 0.05 0.5 2 -
Classical-BFGS 2.5% 0.05 0.504 2 346
Ham-SINDy-BFGS 2.5% 0.05 0.006 1 140
Ham-SINDy-BFGS 10% 0.05 0.07 1 146
Ham-SINDy-BFGS 2.5% 0.1 0.003 1 140
Ham-SINDy-BFGS 10% 0.1 0.003 1 142

Table 4.4: Metrics and parameters for Toda Lattice Hamiltonian with BFGS

while predicting the coefficients. The high iteration number in classical SINDy BFGS and
the much longer time it took to optimize show the difficulty of finding coefficients that
minimize the problem without having the symplectic structure built into the predicted
vector field. Figure  4.6 and Table  4.4 shows that the best results are obtained by pairing a
higher threshold with lower noise. In comparison, the worst results come from using the
least-squares method with a classical SINDy setup. All the Hamiltonian SINDy results are
close together despite a case with 10% noise added to the data and a low threshold. The
case with low noise and high threshold has the highest precision. The result indicates the
advantage of placing the symplectic structure into the prediction method and choosing
appropriate sparsification values.

4.2.3 Point Vortex

A point vortex is an entity where the vorticity is concentrated into a point. Roughly speak-
ing, a vortex tries to make particles move along circular orbits. Vortices are found ubiqui-
tously in nature, not just in fluids, which is why this is a useful example to test. A point
vortex Hamiltonian consists of logarithmic terms, which is one of the reasons we choose it
as an example. Its Hamiltonian is as follows [ 1 ]:

H = − 1

4π

N∑
i=1

N∑
j=1

pipjlog|qi − qj | (4.4)

In this equation, p represents the strength of the vorticity, and q is the distance from
its center [ 1 ]. We will change the Hamiltonian coefficient from −1/(4π) to 1/2 for easier
analysis. We will use a 2-vortex system with 1000 data samples and 168 initial guesses for
basis functions, sampling the data from a standard normal distribution. In this section, we
will show the functioning of the Hamiltonian-nograd-SINDy method from section  3.2.1 to
compare its performance. We will then plot trajectories for 250 time units with a time-step
of 0.001. The results can be seen below in Table  4.5 .

The classical SINDy methods perform the worst, even with zero noise, followed by the
Hamiltonian SINDy without gradient approach from section  3.2.1 as expected. The clas-
sical SINDy BFGS method was set with the criteria to stop when the convergence in the
coefficients inputs falls below 1e−8. The classical SINDy approaches are simply unusable
for analysis because they cannot sparsify most of the coefficients from the basis library,
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Method Noise Threshold Value Max Coefficients Residual SINDy cycles Iterations
Classical-Least-Squares 0% 0.1 6.689 3 -
Classical-BFGS 0% 0.1 1.952 3 270
Ham-SINDy-noGrad 2.5% 0.1 0.268 1 400
Ham-SINDy 2.5% 0.05 0.0002 1 120
Ham-SINDy 2.5% 0.1 2e-5 1 93
Ham-SINDy 10% 0.05 0.003 1 96
Ham-SINDy 10% 0.1 0.002 1 134

Table 4.5: Metrics and parameters for Point Vortex

even when the prediction was made with zero noise input. This result again shows the im-
portance of using the symplectic structure in the prediction. The without gradient Hamil-
tonian SINDy approach took an extremely long time for each iteration, so the maximum
number of iterations was limited to 200 for each SINDy cycle. It also resulted in many
extra coefficients. Due to the large errors in their predictions, the trajectories from these
two methods could not be plotted. The trajectory plot from the case with 2.5% noise and
0.05 threshold also had to be excluded for reasons outlined below. Figure  4.7 shows the
comparison plots

Figure 4.7: Trajectory plots of methods for a point Vortex

The reference trajectory plot matches the predictions quite well for the randomly cho-
sen initial condition. From trying other initial conditions, it was also seen that prediction
plots could also have a more significant difference from the reference. Despite also return-
ing high precision predicted coefficient values, the case of low noise and small threshold
could not be plotted in Figure  4.7 because of its significant trajectory error. Different pa-
rameter sets faced this problem during plotting for different initial state conditions. This
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problem occurred due to the limitation of the integrator, which could not solve the trajec-
tory correctly with the default constraints it was given. This initial condition and plot were
chosen to highlight that the integrator setup matters as much as the correct prediction coef-
ficients when plotting trajectories. The relevant coefficients for Hamiltonian-SINDy with
noises and thresholds are reported in Appendix Figure  7 , where it can be seen that all
Hamiltonian SINDy predictions had high accuracy.

4.2.4 Solar System

The solar system model was initially chosen as an example to have a more tangible case
for many-body interactions. However, it turned out to be an example where Hamiltonian-
SINDy had problems functioning. We will write down the Hamiltonian for the n-body
problem [ 12 ] and then use it to explain why it is challenging to solve using Hamiltonian-
SINDy, for the case of celestial bodies.

H =

N∑
i

p2i
2mi

−
∑

1<i<j<N

Gmimj

|qj − qi|
(4.5)

Where mi is the mass of each body being considered, usually on the order of the Earth’s
mass, i.e., 5.972 × 1024 kg and he gravitational constant is equal to G=6.6743 × 10−11 m3

kg−1 s−2. The problem is that for celestial bodies, the coefficient for the generalized mo-
mentum term 1/(2mi) is minimal on the order of 10−24. In contrast, the coefficient for the
generalized coordinates term, Gmimj is huge, on the order of 1037. Due to the sparsifica-
tion algorithm, the cornerstone of SINDy, when we set up a library of basis functions, the
sparsification threshold cannot retain just the correct function terms because of the huge
difference in the coefficients and because of how small the coefficient 1/2mi is by itself
as well. Suppose one tries to make the Hamiltonian dimensionless. In that case, a huge
coefficient of the product of the mass terms remains as a coefficient of the generalized co-
ordinates, meaning sparsification is still a tough challenge. The difference between the
correct coefficients is too large for the algorithm to output true dynamic equations.

We still try to run the algorithm for this case and examine the output, even if it is incor-
rect. For this example, we took data directly collected by the NASA Horizons System [ 28 ]
for the position and velocity of celestial bodies at a specific time. The masses have been
scaled in this data by 1024. We will simplify the example to just an earth and sun system,
with the sun’s momentum and position held constant. Then, we integrate the system us-
ing the reference governing equations for two bodies to get more state data and reuse the
reference equations on these states to get gradient data. Ultimately, we had 4000 data sam-
ples collected over a time period of 1e6 seconds by taking 250 time steps. Afterward, we
set up a basis library of 113 basis functions. We try to keep the basis library size general
but keep the types of basis functions in it close to the reference equation’s basis functions.
The results from the x-coordinate trajectory of a random initial condition for 1e6 seconds
with a time step of 250 can be seen in Figure  4.8 

46



4.3 Intrinsic Coordinate Identification

Figure 4.8: Earth Trajectory, identified (Id) versus reference (Ref)

It is immediately apparent from Figure  4.8 that the predictions for the Earth’s momen-
tum are incorrect. The coefficients found by the optimizer are correct for the momentum
terms and zero for the position terms, as expected, due to the scaling of the masses. Since
the momentum affects the coordinates gradient, the results were correct for position over
time. However, since the momentum dynamics rely on the coordinates’ terms for its gra-
dient, the result is completely wrong for momentum over time, as expected.

This optimization takes around 3651 seconds to converge because of the prediction dif-
ficulty due to the differences in the coefficients’ sizes. This example shows the limits of the
method. However, obtaining better results in the Newtonian or Lagrangian formulations
might be possible, where equations of motion look different.

4.3 Intrinsic Coordinate Identification

A version of the algorithm from Champion et al. [ 6 ] will be run on the damped linear
oscillator and Lorenz system examples in this section. We will run tests by changing pa-
rameters like noise, sparsification threshold, batch size, and hyperparameter λ3 explained
in section  3.3 . These parameters will then test how the prediction accuracy changes on the
linear oscillator and Lorenz system examples. We will plot trajectories to compare errors,
as getting the correct trajectory and not the exact dynamic equations is one of the origi-
nal goals of this method. All automatic differentiation in this section uses the Zygote.jl
package [ 21 ] with the Flux.jl package [ 22 ] for machine learning setups. We always use the
Adam Optimizer [ 26 ], with Xavier initialization [ 14 ] and stochastic mini-batch technique
to allow learning from diverse patterns. We will always divide the λ1 hyperparameter by
10, one of the two values suggested by Champion et al. [ 6 ], the other being 100. This coef-
ficient helps to scale the weighted effects of λ1 and λ2 hyperparameters against each other.
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Finally, in both cases depicted here, the size of the intrinsic layer is kept the same as the
input size for simplicity during development.

4.3.1 Damped Linear Oscillator with an Autoencoder

We start again with the damped linear oscillator example from section  4.1.1 . The basis
function library size is kept the same as before. The script will take 225 samples for the
plot, sampled from the range (-20, 20). We run the optimization in three stages. The first
is for 2000 epochs, then an optimization with SINDy cycles for each of 500 epochs, and a
final optimization of 500 epochs. Table  4.6 shows the different parameter choices tested to
find accurate trajectory predictions.

Number Sparsification Threshold Noise λ3 coefficient batch size
1 0.05 0.5 0.52 32
2 0.05 2.0 0.52 32
3 0.1 0.5 0.52 32
4 0.05 0.5 0.22 32
5 0.05 0.5 0.82 32
6 0.05 0.5 0.52 64
7 0.05 0.5 0.52 128

Table 4.6: Test cases for Intrinsic Coordinate SINDy linear oscillator

In the figures below, these test cases will be referred to by their number in Table  4.6 . We
start by showing the trajectory results obtained from some of these cases. The trajectory is
plotted for an initial condition of x0 = [2, 0] for 25 time units, with a time-step of 0.01. In
Figure  4.9 , we show plots for trajectories that were reasonably close to the reference. The
trajectories that differed significantly from the reference are ignored. To make the plot, we
pass the data through the encoder, integrate it using the predicted SINDy vector field, and
pass it through the decoder. These steps are necessary because the SINDy vector field is
for the encoded data, so the encoder-decoder layers must also be used while plotting the
dynamics.

We can see from Figure  4.9 that test cases 1 and 5 produce high-accuracy results. For
the corresponding parameters in Table  4.6 , we note that choosing a small sparsification
threshold, small noise input, and the smallest batch size while choosing a reasonably large
λ3 coefficient produces more accurate results. We also compare the loss graphs of all the
cases in Figure  4.10 .

We show three loss graphs from each part of the optimization. Test cases 1 and 5 con-
sistently perform the best on close inspection of all three loss graphs. Initially, most test
case losses fluctuate rapidly, except for test cases 1 and 5, which can be singled out as
progressing steadily. Similarly, in the SINDy loss graphs, test cases 1 and 5 fall steadily
across SINDy cycles, each of 500 iterations, with case 1 undergoing 3 cycles (1500 itera-
tions), while most of the others undergo 2 SINDy cycles. From the final loss plot, we see
that although all the losses have stabilized, the loss for cases 1 and 5 is much lower than
the others, indicating a more accurate prediction.
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Figure 4.9: Trajectories for various test cases corresponding to Table  4.6 

We show some prediction accuracy metrics in Table  4.7 . We see that the iteration loss
over all samples is a small value for these two test cases, which means the optimizer con-
verged with high-accuracy parameters. The number of predicted coefficients corresponds
to our choice for the λ3 hyperparameter. In test case 5, a higher λ3 value leads to fewer
coefficients than the actual value of four, and test case 1 leads to 5 parameters. This dif-
ference hints that choosing a λ3 value between these might improve the predicted results.
The error in the trajectories is also tiny, as expected from the plots of these cases in Fig-
ure  4.9 . The error is taken using the L2 norm of the differences between the prediction
and reference and dividing by the L2 norm of the reference values. From this experiment,
we conclude that the λ3 parameter significantly affects the result. However, choosing the
other parameters correctly also plays a role in correct prediction.

Number Final Average Loss Predicted coefficients Trajectory Error
1 0.218 5 0.921
5 0.229 3 1.104

Table 4.7: Loss metrics of test cases for autoencoder linear oscillator

4.3.2 Lorenz system with an Autoencoder

The Lorenz system will be used here mainly to test the accuracy of our setup because of
the differences we introduced compared to the original setup from Champion et al. [ 6 ].
As mentioned in the methodology in section  3.3 , we will use 3375 uniformly distributed
samples. We introduce a minuscule noise input of 0.05% to the setup, starting with a
library of 56 basis functions as before. Test cases are then set to find the best parameter
combinations. Table  4.8 shows five parameter combinations that performed well. We will
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(a) Initial losses

(b) SINDy losses

(c) Final losses

Figure 4.10: Loss graphs for Autoencoder Linear Oscillator test cases from Table  4.6 

try to gauge the effects of these parameters on the prediction.
As shown in Figure  4.11 all initial loss function graphs stabilize well before we stop op-

timization. We made this decision because even when the losses stabilize, the values still
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Number Sparsification Threshold Noise λ3 coefficient batch size
1 0.05 0.01 0.62 80
2 0.05 0.01 0.92 80
3 0.05 0.01 0.92 32
4 0.1 0.01 0.92 32
5 0.1 0.01 0.92 80

Table 4.8: Test cases for Intrinsic Coordinate SINDy Lorenz System

oscillate, and letting this continue for some iterations improves the result. This improve-
ment could be due to the unnecessary coefficients falling below the sparsification threshold
during these oscillations and being removed in each SINDy cycle later. We see that a com-
bination of small threshold and large batch goes through the most SINDy cycles. These
additional cycles can be attributed to fewer gradient updates with large batches, leading
to less optimization and the smaller threshold eliminating fewer coefficients each time.
The combination of a small λ3 hyperparameter and large batch size from case 1 ends up
with the lowest final loss, followed by case 3, which has a higher λ3 hyperparameter and
smaller batch size.

(a) Initial losses (b) SINDy losses

(c) Final losses

Figure 4.11: Loss graphs for Autoencoder Lorenz test cases from Table  4.8 
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Lastly, we see from Figure  4.12 (a) that all the combinations perform similarly well. We
pick three cases, case 1, case 4, and lastly case 3 which has the fewest coefficients, and plot
them in Figure  4.12 (b) to show that they all have high accuracy. The true Lorenz equation
has seven coefficients. However, Case 1 and Case 4 have around 25 coefficients, which is
likely how they can approximate the actual dynamics so well. Case 3 has the least with 16
coefficients, but we can see that it still captures the dynamics quite well.

(a) Trajectory plot wit all cases

(b) Dynamo trajectory plot with best cases

Figure 4.12: Lorenz System trajectory for case corresponding to Table  4.8 

Compared to Champion et al. [ 6 ] who chose λ3 = 10−5, our λ3 parameters are quite
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high. This difference could mean that having an autoencoder that dramatically changes
sizes in the hidden layers, as they had, coupled with an activation function, does not re-
quire a large sparsification hyperparameter. Similarly, their λ2 = 10−4 and λ1 = 0 param-
eters were also chosen to be minuscule or zero, hinting that the autoencoder handles most
of the job of correct coefficients discovery on its own without the SINDy doing much work.
This effect could be due to the universal approximation power of neural networks when
supplied large enough datasets, which is done in Champion et al. [ 6 ] as they use 256000
sample points, compared to our setup that uses only 3375 samples.

4.4 Autoencoder Hamiltonian SINDy

The Hamiltonian-SINDy algorithm will be combined with an autoencoder setup to dis-
cover canonical-conjugate coordinates and their correct dynamic equations. We will only
show the nonlinear oscillator example in this section. The essential barrier in the optimiza-
tion here is the conversion of the coordinates to canonical conjugate form. The constraints
on the system need to be revised to allow correct dynamic equations to be discovered from
a truly general library of basis functions. An initial test showing the problem of correct co-
ordinate discovery will be developed as follows. We will set up the following basis array
corresponding to the Hamiltonian in Equation  4.2 . cos(a1q1 + a2q2)

cos(a3q1 + a4q2)
0.5((a1p1 + a2p2)

2 + (a3p1 + a4p2)
2)

 (4.6)

This basis array, when summed, is one of the closest basis library setups for the original
Hamiltonian in Equation  4.2 . The variable (a) comprises four coefficients, which can be
optimized. To start the test, we will multiply the sampled data by an identity weight
matrix W of size 2 × 2. This multiplication leaves the reference state and vector field data
in their original canonical-conjugate coordinates form. We expect the coefficients in (a)
matrix to be optimized to values corresponding to the inverse of W, generally in order
to counteract the effect from the W matrix transformation. If we had instead placed the
coefficients as just amplitudes of the library basis functions, the correct basis coefficients
would not have been found, which was also tested. The effect of the W matrix on the data
can be negated only by placing the coefficients in the arguments of the basis array. The
amplitude coefficients are also fixed to the correct ones to make a more decisive point about
how the optimization will function. Since W is initialized to identity which is its inverse,
we expect the coefficients to converge to the following values in order to reproduce the
correct Hamiltonian:

a =

[
a1 a2
a3 a4

] [
1 0
0 1

]
=W−1 (4.7)
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We ran the optimization with 614656 samples from the range [-5, 5] and a sparsification
threshold 0.05. We use the BFGS algorithm to compare the loss function’s reference and
predicted gradients. The coefficients matrix (a) is initialized by sampling random values
from the standard normal distribution. We get the following results for the coefficient
matrix after running the optimization:

a =

[
a1 a2
a3 a4

] [
0 −1
−1 0

]
(4.8)

This coefficient matrix cannot negate the pseudo coordinate transformation from the W
matrix because it is not the inverse of W. However, the coefficients still produce the correct
vector field results, which can be seen by plugging in the values of (a) from Matrix  4.8 into
the basis Array  4.6 . As proof of its validity, it produces the correct trajectory for a sample
initial condition, as seen in Figure  4.13 

This test highlights the difficulty of finding the correct conjugate coordinates from trans-
formed data, even when the exact basis is in the library with as few coefficients as possible
and an enormous sample size.

Therefore, we set up the nonlinear oscillator example with fewer functions in the basis
library than before. We set up 22 basis library functions of up to 2nd order polynomial
terms and trigonometric terms for each variable. Each basis function is multiplied by a
coefficient. We will also add coefficients to the arguments of each trigonometric function
to allow further approximation capability, making a total of 30 coefficients to optimize. It
was observed that taking data from the range [-20,20] is prone to causing crashes because
of the gradient diverging to large numbers. Therefore, we will limit the uniform sample
range to [-5, 5] and take 10,000 samples. We will not introduce noise into this system and
keep the sparsification threshold of 0.05 and a batch size 256. We run the example for
an initial optimization of 1000 epochs, then 500 epochs for each SINDy cycle, and the fi-
nal optimization. The test will be run with coefficients initialized to ones as it results in
better predictions. The sample data is already in canonical conjugate coordinates. The
weight matrices for the encoder and decoder will be initialized to identity and the biases
to zero in this example, which means they start with the values we want them to have.
However, the algorithm can still adjust all encoder-decoder parameters, leaving freedom
for generalization. We also tried random and Xavier initializations for the weight matri-
ces, but the predicted results were consistently wrong by a significant margin with those
initializations.

The result gives us encoder-decoder parameters extremely close to the values we want,
as seen in Appendix Figure  8 . The coefficients found are also approximately correct, with
the highest coefficient difference being in the trigonometric amplitude terms. The pre-
dicted Hamiltonian can be seen below, which can be compared to the reference Equa-
tion  4.2 

H = 0.519p21 + 0.52p21 + 0.7394cos(0.91834q1) + 0.7396cos(0.91833q2) (4.9)
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4.4 Autoencoder Hamiltonian SINDy

(a) State 1

(b) State 2

Figure 4.13: Simple basis with encoder test on the nonlinear oscillator Hamiltonian

The resulting trajectories can be seen in Figure  4.14 , where the prediction matches the
reference reasonably well when the momentum predictions are scaled with small ampli-
tude coefficients and bias terms.
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4 Results

(a) State 1

(b) State 2

Figure 4.14: AutoEnoder-Ham-SINDy trajectory plots for nonlinear oscillator Hamiltonian

In summary, these results tell us that it is generally challenging to get correct results
from coupling an autoencoder with the Hamiltonian SINDy method due to its structure.
However, the method can function reasonably accurately with a small basis library size
corresponding to more system knowledge about the possible forms of the governing equa-
tions.
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5 Conclusion

An extension of the SINDy algorithm for discovering structure-preserving Hamiltonian
governing equations with limited conjugate-coordinate discovering capabilities was de-
veloped in this thesis. The Hamiltonian SINDy part of the method proved a viable option
for small nonlinear Hamiltonian systems from various physics domains. At the same time,
the intrinsic coordinate discovery section of the algorithm needs further development to
be generally applicable. The results for long-term trajectory prediction of Hamiltonian
systems clearly showed the advantages of having the symplectic structure built into the
SINDy algorithm over the classical SINDy approach, which cannot predict correct long-
term dynamics for Hamiltonian systems.

5.0.1 Outlook

This work can be extended in several directions. The most important would be to find
a way to generalize the conjugate-coordinate discovery. Automatic symmetry detection
through a Lie algebra framework [ 10 ] is a viable path for finding the intrinsic coordinates.
After developing this method, tests could be run with the charge particle dynamics and
similar example systems, where momentum is not just the product of mass and velocity.
These tests will show if the algorithm can convert from velocity to conjugate momentum,
finding the correct canonical conjugate coordinates.

Another possible extension could be to set up a similar SINDy method for Lagrangian
systems to cover all three mechanics frameworks. This new setup would possibly open
a direction for discovering governing equations of systems even in cases where library
basis coefficients differ too much for SINDy to sparsify properly, by shifting to another
framework where they might have a more suitable representation. This method extension
could allow users to formulate the library functions more freely according to their known
information, allowing easier use for discovering governing equations. It could also be pos-
sible that setting up intrinsic coordinate discovery and predicting trajectories for specific
systems is easier in Lagrangian dynamics, in which case it would be helpful to develop a
method for the Lagrangian framework.

A final extension could be to run this algorithm on large-scale problems while predicting
truly long-term trajectories. Although we have shown here that the algorithm functions
for various systems, it has yet to be proved that the method that we set up is functional
when systems involving hundreds or thousands of bodies are to be solved over a vast time
scale. A test of such a case would help fine-tune the method and prove that it is not limited
to small and medium-sized systems.
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.1 Coefficients Tables

.1 Coefficients Tables

(a) Coefficients from Least-Squares

(b) Coefficients from BFGS

Figure 1: Basis coefficients of 2 Dimensional Damped Linear Oscillator with noise of am-
plitude 5% of max sample area
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(a) Coefficients from Least-Squares

(b) Coefficients from BFGS

Figure 2: Basis coefficients of Lorenz system for noise = 0.01
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.1 Coefficients Tables

(a) Coefficients from Least-Squares

(b) Coefficients from BFGS

Figure 3: Basis coefficients of Lorenz system for noise = 10
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(a) Coefficients from Least-Squares

(b) Coefficients from BFGS

Figure 4: Basis coefficients of Mean-field model of Flow Field Behind a Cylinder
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.1 Coefficients Tables

(a) Noise level = 2.5% (b) Noise level = 10%

Figure 5: Basis coefficients of Polynomial-Trigonometric Hamiltonian
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(a) Toda Lattice Coefficients with (noise=2.5%, threshold=0.05), (noise=2.5%,
threshold=0.1), (noise=10%, threshold=0.05), (noise=10%, threshold=0.1)

respectively

(b) Toda lattice with classic SINDy least squares

Figure 6: Toda Lattice coefficients with different methods and parameters
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.1 Coefficients Tables

Figure 7: Point Vortex Hamiltonian coefficients with (noise=2.5%, threshold=0.05),
(noise=2.5%, threshold=0.1), (noise=10%, threshold=0.05), (noise=10%, thresh-
old=0.1) respectively

(a) encoder weights (b) encoder bias

(c) decoder weights (d) decoder bias

Figure 8: Autoencoder weights and biases on the nonlinear Oscillator with Hamiltonian
SINDy
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rent neural networks. arXiv preprint arXiv:1909.13334, 2019.

[8] Hoang K. Chu and Mitsuhiro Hayashibe. Discovering interpretable dynamics by
sparsity promotion on energy and the lagrangian. IEEE Robotics and Automation Let-
ters, 5(2):2154–2160, 2020. doi: 10.1109/LRA.2020.2970626.

[9] Chase Coleman, Spencer Lyon, Lilia Maliar, and Serguei Maliar. Matlab, python, julia:
What to choose in economics? Computational Economics, 58:1263–1288, 2021.

[10] Eva Dierkes, Christian Offen, Sina Ober-Blöbaum, and Kathrin Flaßkamp. Hamilto-
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