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Abstract

Single-cell genomics is revolutionizing the field of biology by continuously generating
larger and more diverse datasets. As a result, studies reveal and investigate cellular het-
erogeneity, and elucidate the intricate mechanisms of cell differentiation both in health
and disease. The fundamental challenge to recovering trajectories is the destructive
nature of common single-cell sequencing assays: Experiments capture snapshot views
of each cell instead of monitoring its change over time. However, sequencing proto-
cols record a range of the underlying differentiation landscape, nonetheless, as biologi-
cal processes unfold asynchronously. Additionally, common single-cell RNA sequencing
(scRNA-seq) workflows detect mature and nascent messenger RNA (mRNA) transcripts,
thereby providing alternative, directed information; sequencing at different time points
adds temporal information for systems not in steady state.

Studying biological processes based on single-cell data usually requires reconstructing
them computationally. Corresponding methods rely on different views to describe cellu-
lar state shifts: Cell-cell similarity and asynchronous state change allow assigning cells
a pseudotime or stemness potential to order them along differentiation processes and in-
duce a relative ranking to each other. Alternatively, optimal transport reconstructs cell
trajectories across a sequence of time-resolved measurements. However, these approaches
do not model the underlying mechanistic system directly to provide directed dynamic
information. RNA velocity bridges this gap by modeling splicing dynamics based on
unspliced and spliced mRNA counts. The recovered dynamics provide a vector field
describing cellular state change mechanistically. Importantly, these methods are limited
to specific data aspects, do not scale, or do not carry notions of uncertainty.

The first contribution of this dissertation is veloVI, a deep generative model for inferring
RNA velocity and facilitating its analysis. Traditional RNA velocity methods make as-
sumptions oftentimes violated, employ a restrictive inference scheme that does not easily
generalize to more accurate models of splicing dynamics and do not scale. Additionally,
these approaches do not quantify uncertainty of fits or model applicability, essential
aspects to ensure accurate analyses and descriptions of biological systems. Conversely,
veloVI provides such notions and introduces novel metrics to evaluate estimates and
the applicability of RNA velocity; to compare different models and inference schemes
consistently, I also present a quantitative evaluation scheme. The proposed model fits
data better than competing approaches, is less sensitive to preprocessing choices, and
extends naturally to more complex kinetic models. Similarly, a veloVI-specific evalua-
tion pipeline gives actionable insight into the applicability of RNA velocity analysis for
a given dataset.

Although RNA velocity has celebrated tremendous success, it suffers from experimen-
tal and conceptual limitations, rendering it not applicable to many datasets. Similarly,
traditional trajectory inference focuses on gene expression alone, omitting other modal-
ities such as valuable time point information available in emerging single-cell datasets;
methods that incorporate these different data views do not generalize to other modalities,
cannot be combined or do not scale. To overcome these limitations, I present CellRank 2
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Abstract

for unified trajectory inference and fate mapping as a second contribution. Under this
framework, CellRank 2 incorporates pseudotime and stemness estimates independent of
their quantification to infer cellular fate consistently. For datasets including time point
information, I present an optimal transport-based trajectory inference scheme to com-
bine inter with intra-time point information. Alternatively, metabolic labels introduce
temporal information by characterizing newly transcribed mRNA molecules; I show how
this information allows estimating cell-specific transcription and degradation rates. For
each method, I describe corresponding analyses to validate their benefit.

Both contributions improve and generalize the inference of trajectories and cellular state
changes. Their modular, scalable and versatile design facilitates the discovery of novel
biology, guarantees further model improvements, and enables the incorporation of newly
emerging data modalities.
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Zusammenfassung

Die Einzelzellgenomik revolutioniert das Feld der Biologie, indem sie kontinuierlich
größere und vielfältigere Datensätze erzeugt. Infolgedessen können Studien die zelluläre
Heterogenität aufdecken und untersuchen und helfen die komplizierten Mechanismen
der Zelldifferenzierung sowohl im gesunden als auch kranken Zustand zu beschreiben.
Die grundlegende Herausforderung bei der Wiederherstellung von Trajektorien liegt in
der destruktiven Natur gängiger Einzelzell-Sequenzierungsexperimenten: Die Experi-
mente erfassen Momentaufnahmen jeder Zelle, anstatt ihre Veränderungen im Laufe der
Zeit zu beobachten. Sequenzierungsprotokolle zeichnen jedoch nichtsdestotrotz einen
Teil der zugrunde liegenden Differenzierungslandschaft auf, da sich biologische Prozesse
asynchron entfalten. Darüber hinaus werden mit den üblichen Arbeitsabläufen für
die Einzelzell-RNA-Sequenzierung (scRNA-seq) old und nascent Boten-RNA (mRNA)-
Transkripte erfasst, wodurch alternative, gerichtete Informationen bereitgestellt werden;
die Sequenzierung zu verschiedenen Zeitpunkten fügt zeitliche Informationen für Systeme
hinzu, die sich nicht im Dauerzustand befinden.

Die Untersuchung biologischer Prozesse anhand von Einzelzelldaten erfordert in der
Regel mittels computergestützter Rekonstruktion. Entsprechende Methoden stützen sich
auf unterschiedliche Sichtweisen zur Beschreibung zellulärer Zustandsveränderungen:
Zell-Zell-Ähnlichkeit und asynchrone Zustandsveränderungen erlauben es, Zellen eine
pseudotime oder ein Potenzial zuzuordnen, um sie entlang von Differenzierungsprozessen
zu ordnen und eine relative Rangfolge zueinander zu erstellen. Alternativ dazu rekon-
struiert optimal transport die Zelltrajektorien über eine Sequenz von zeitaufgelösten
Messungen. Diese Ansätze modellieren jedoch nicht direkt das zugrunde liegende mech-
anistische System, um gezielte dynamische Informationen zu liefern. Die RNA velocity
überbrückt diese Lücke durch die Modellierung der Spleißdynamik auf der Grundlage der
Anzahl der nicht gespleißten und gespleißten mRNA. Die so gewonnene Dynamik liefert
ein Vektorfeld, das die Veränderung des Zellzustands mechanistisch beschreibt. Allerd-
ings sind diese Methoden auf bestimmte Datenaspekte beschränkt, nicht skalierbar sind
und beinhalten keine Unsicherheiten.

Der erste Beitrag dieser Dissertation ist veloVI, ein tiefes generatives Modell zur Ableitung
der RNA velocity und zur Erleichterung ihrer Analyse. Herkömmliche Methoden zur
Bestimmung der RNA velocity gehen von Annahmen aus, die häufig verletzt werden,
verwenden ein restriktives Inferenzschema, das sich nicht ohne weiteres auf genauere
Modelle der Spleißdynamik verallgemeinern lässt, und sind nicht skalierbar. Darüber
hinaus quantifizieren diese Ansätze nicht die Unsicherheit der Anpassungen oder die
Anwendbarkeit des Modells - wesentliche Aspekte, um genaue Analysen und Beschrei-
bungen biologischer Systeme zu gewährleisten. Im Gegensatz dazu liefert veloVI solche
Begriffe und führt neue Metriken ein, um Schätzungen und die Anwendbarkeit von RNA
velolcity zu bewerten; um verschiedene Modelle und Inferenzschemata konsistent zu ver-
gleichen, stelle ich auch ein quantitatives Bewertungsschema vor. Insgesamt beschreibt
das vorgeschlagene Modell Daten besser als konkurrierende Ansätze, reagiert weniger
empfindlich auf die Wahl der Vorverarbeitung und lässt sich natürlich auf komplexere
kinetische Modelle ausweiten. Ebenso gibt eine veloVI-spezifische Bewertungspipeline
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Zusammenfassung

einen verwertbaren Einblick in die Anwendbarkeit der RNA-Geschwindigkeitsanalyse für
einen bestimmten Datensatz.

Obwohl RNA velocity einen enormen Erfolg gefeiert hat, leidet sie unter experimentellen
und konzeptionellen Einschränkungen, sodass sie auf viele Datensätze nicht anwendbar
ist. In ähnlicher Weise konzentriert sich die herkömmliche Trajektorieninferenz allein
auf die Genexpression und lässt andere Modalitäten wie wertvolle Zeitpunktinformatio-
nen, die in neu entstehenden Einzelzelldatensätzen verfügbar sind, außer Acht; Meth-
oden, die diese verschiedenen Datenansichten einbeziehen, lassen sich nicht auf andere
Modalitäten verallgemeinern, können nicht kombiniert werden oder sind nicht skalier-
bar. Um diese Einschränkungen zu überwinden, stelle ich als zweiten Beitrag CellRank 2
für eine einheitliche Trajektorieninferenz und Schicksalskartierung vor. In diesem Rah-
men bezieht CellRank 2 pseudotime- und Potenzialschätzungen unabhängig von ihrer
Quantifizierung ein, um das zelluläre Schicksal konsistent abzuleiten. Für Datensätze,
die Zeitpunktinformationen enthalten, stelle ich ein optimal transport basiertes Trajek-
torieninferenzschema vor, um Inter- mit Intra-Zeitpunktinformationen zu kombinieren.
Alternativ führen metabolische Markierungen zeitliche Informationen ein, indem sie neu
transkribierte mRNA-Moleküle charakterisieren; ich zeige, wie diese Informationen die
Schätzung zellspezifischer Transkriptions- und Abbauraten ermöglichen. Für jede Meth-
ode beschreibe ich entsprechende Analysen, um ihren Nutzen zu validieren.

Beide Beiträge verbessern und verallgemeinern die Inferenz von Trajektorien und zel-
lulären Zustandsänderungen. Ihr modularer, skalierbarer und vielseitiger Aufbau erle-
ichtert die Entdeckung neuartiger Biologie, garantiert weitere Modellverbesserungen und
ermöglicht die Einbeziehung neu entstehender Datenmodalitäten.
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1. Introduction

Multi-cellular organisms such as humans emerge from a single cell, proliferating and de-
veloping into trillions of cells in homeostasis1. These cells specialize in different tasks that
define cell states, and each cell state results from different mechanisms such as molecu-
lar signaling and gene regulation during differentiation. The way these complementary
cellular forms exactly arise is, however, largely unknown2.

Similarly, dysregulation of gene expression in differentiation processes leads to diseases
such as cancer, one of the most prevalent and deadliest diseases of our time; nearly 40
percent of men and women will be diagnosed with cancer during their lifetime3. Yet,
the underlying biological processes leading to cancer are understood poorly, even though
medical advances have led to substantially improved survival rates and prolonged life ex-
pectancy of patients. Similarly, the regulatory mechanisms leading to neurodegenerative
disorders like dementia, Alzheimer’s and Parkinson’s disease, or inflammatory conditions
such as inflammatory bowel disease or arthritis are largely unknown even though these
diseases affect substantial portions of the population.

Understanding the biological processes underlying normal development, disease progres-
sion or reprogramming has been an active research field, its beginning dating back thou-
sands of years4,5. Where original models were based on philosophy, scientific concepts
took over, eventually leading to the discovery of the cell as an entity by Robert Hooke
in 16656. Since then, the focus has shifted to studying cellular state change to map
genotypes to phenotypes.

Cells form the basis of biological processes like normal development and disease mecha-
nisms and constitute larger structures such as tissues and organs. Although these cells
perform a common task and influence each other through external stimuli, they are still
physically distinguishable from each other. Similarly, large, cohesive cellular groups and
structures emerge gradually through differentiation dynamics; since these processes are
asynchronous, a single snapshot view contains different cell states, thereby enabling the
study of the overall process. The discrete nature of cells allows studying them experi-
mentally through dissociation, their asynchronous differentiation allows analyzing their
state changes along dynamic processes from snapshot data. This publication-based dis-
sertation focuses on modeling and describing the processes of cell differentiation and fate
priming computationally.

1.1. Single-cell sequencing

Traditional approaches for studying dynamics in cell biology relied on bulk sequencing
assays (Figure 1.1a): Pooled cell populations are sequenced, thereby revealing average
features of cells; bulk RNA sequencing (RNA-seq)7–10, for example, measures gene ex-
pression, and bulk ATAC-seq11–14 chromatin accessibility. While bulk sequencing assays
yield high feature expression at low measurement noise due to pooling, they lack sensi-
tivity - rare but essential gene expression patterns of infrequent cell types are masked
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1. Introduction

by other, more abundant genes, for example. As such, data analysis based on bulk
sequencing lacks resolution and may miss cellular heterogeneity.

In contrast to bulk RNA-seq experiments, bright-field15 or fluorescence microscopy16,17

protocols offer single-cell and even subcellular resolution18–21 (Figure 1.1b). However,
this approach has two limitations: Low throughput and low capture rate. As such,
microscopy-based experiments cannot analyze large tissues or organs; the number of
cells exceeds the protocols’ processing capabilities, and the small number of targeted
genes does not reveal the underlying cellular heterogeneity. Pre-selecting genes to tar-
get is an additional drawback as it complicates finding novel genes relevant to a given
process.

Figure 1.1.: Experimental techniques for characterizing and studying cells.
a. Bulk sequencing records averaged population features such as gene expression (GEX)
for bulk RNA sequencing7–10. b. Bright-field15 or fluorescence microscopy16,17 provides
single-cell resolution but is low throughput. c. Single-cell sequencing measures cell-
specific features like GEX for scRNA-seq at scale.

Biological tissues and processes consist of different sub-processes and states22; this vari-
ability manifests itself in distinct roles within the system23,24 or causing alternative
cellular fate25, for example. To study this cellular heterogeneity masked by bulk se-
quencing assays at single-cell resolution and scale, single-cell sequencing protocols have
been developed26,27 (Figure 1.1c, Figure 1.2). The power of such methods stems from
their ability to dissociate and isolate individual cells in droplets28–30 or wells31–37, asso-
ciate cell-specific barcodes to each transcript, and sequence all transcripts together in a
single experiment, using the barcodes to assign transcripts to individual cells. Single-cell
RNA sequencing (scRNA-seq), for example, captures the transcriptome at single-cell res-
olution based on standard sequencing protocols26. Commercialization of protocols has
simplified the experimental setup and decreased sequencing cost, leading to an increase
in single-cell datasets both in size and abundance38.

Similar to scRNA-seq, related omics protocols measure other quantities of a cell such
as the DNA39, DNA methylation patterns (scM&T-seq40, scMT-seq41, scNMT-seq42),
surface proteins (CITE-seq43), chromatin accessibility (scATAC-seq27), histone modifi-
cations (scCUT&Tag44), and perturbation effects (Perturb-seq45, ECCITE-seq46, com-
pressed Perturb-seq47) (Figure 1.2). Additionally, experimental protocols exist to mea-
sure multiple views in the same cell, such as gene expression and cell surface proteins
(CITE-seq43), gene expression and intracellular proteins (SPARC48), or gene expression
and chromatin accessibility49–52; newer technologies capture even more modalities from
the same cell53,54, and spatial assays measure cell features and location55–58. Alternative
modalities identifiable in standard scRNA-seq experiments are nascent and mature mes-
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1. Introduction

senger RNA (mRNA) molecules, two quantities that offer directed, dynamic information
by considering their biological causal dependency. Similarly, time-resolved sequencing
data based on experimental time points or metabolic labels offer priors for studying
cellular change.

Figure 1.2.: Single-cell sequencing protocols record different cellular features.
Single-cell sequencing experiments quantify epigenetic, transcriptomic, and proteomic
data. The assays provide information about a single modality (left) or multiple ones
(right).

1.2. Analysis of single-cell data

Statistical models describe observations in terms of their distribution, properties thereof
or intrinsic differences. For bulk sequencing measurements, for example, generalized lin-
ear models or mixed effect models reveal differential expression59,60; similar approaches
exist for single-cell observations61,62. Importantly, such approaches require prior annota-
tion and formulated hypotheses, and increased dataset sizes require alternative machine-
learning methods scaling to millions of data points. Modality-specific tools provide the
necessary means to analyze measurements in a data-driven fashion to enable preprocess-
ing and analysis in a consistent, reproducible framework: Scanpy63 and Seurat64–68 han-
dle scRNA-seq measurements and Squidpy69, Seurat66,68 or Giotto70 the transcriptome
in spatial context; relatedly, muon71, ArchR72 or Signac73 enable studying chromatin
accessibility data, and muon71 and Seurat66,67 cell surface proteins.

Single-cell RNA sequencing measures the whole transcriptome at high throughput, yield-
ing high dimensional datasets - both in the number of observations and features - but
suffers from data sparsity. Conventional statistical and machine learning methods, there-
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1. Introduction

fore, oftentimes do not work out of the box. Thus, data-specific methods have been devel-
oped for analyzing scRNA-seq measurements74; example applications include reducing
the dimension of the data75–78 and interpreting corresponding latent dimensions78–80,
identifying differentially expressed genes, clustering cells with similar transcriptomic
profiles81,82, or integrating datasets while removing batch effects76,83–86. These applica-
tions focus on extracting statistically relevant information from sequencing data but do
not recover changes along a dynamically unfolding process.

Reconstructing the cellular state change during differentiation processes from classical
single-cell sequencing protocols is challenging as experiments are destructive by nature.
Although recent experimental advances capture the transcriptome sequentially in the
same cell, the techniques are experimentally demanding and do not yet scale87–89. In-
stead, computational methods recover the underlying dynamic process, leveraging the
fact that biological processes unfold asynchronously. These methods focus on recovering
the state change along differentiation trajectories - the field of trajectory inference (TI)
- and quantifying cellular fate from single-cell data (Figure 1.3).

Figure 1.3.: Trajectory inference recovers cellular paths along the differen-
tiation landscape. Waddington’s landscape90 models cell differentiation as a surface
of changing potential: Less mature states are unstable and have high potential, whereas
more differentiated cells exhibit smaller potential. Intuitively, this setup can be com-
pared to a sphere rolling down a mountainous landscape. Trajectory inference methods
align observations from single-cell sequencing experiments along this landscape to infer
a differentiation order and positions of fate decisions.

Trajectory inference through pseudotime and stemness scores

A multitude of methods have been proposed for inferring trajectories, all assuming cells
change gradually. Early methods mapped the discrete, observed cellular states aligned
along the differentiation process onto a continuous domain and ranked cells relative to
each other via a so-called pseudotime91–97. To map the differentiation direction, these
methods rely on a pre-defined cell marking the beginning of the process. Following,
popular methods estimate the distance traveled along the phenotypic manifold through
diffusion93 or model trajectories as random walks97. While such root states are apparent
in well-characterized systems such as hematopoiesis91,93,97, skeletal muscle differentia-
tion92,96, or the olfactory epithelium96, they are not as easily, if at all, identifiable in
more challenging settings such as disease or reprogramming.

Differentiation potentials can be used to infer cell trajectories, instead of assuming a
pre-defined start state. Algorithms estimating such potentials rely on the paradigm of
Waddington’s landscape90: Less mature cells exhibit a high potential that decreases as
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1. Introduction

they differentiate into specialized cell types. Related methods estimate the entropic state
of a cell98 or assume a pre-defined gene expression structure along differentiation99, for
example. Although such frameworks circumvent the problem of selecting a root cell,
they introduce additional assumptions that may not hold in every system, and they do
not predict the future expression of a cell.

State change inference through temporal coupling

Relating temporally coupled cell states or views offers an alternative approach to model
state changes. This modeling paradigm has two advantages over pseudotime and differ-
entiation potentials: First, fundamental physical and biological processes define direc-
tionality by relating biological stages of mechanistic and temporal relationships. Second,
this directionality naturally allows for predicting cell states at different time points.

RNA velocity100,101 relates nascent and mature mRNA through a mechanistic model
of splicing dynamics102 to infer trajectories and predict the future expression of a cell.
This concept is especially intriguing as standard scRNA-seq protocols capture unspliced
and spliced mRNA100,103–106. However, the noisy, high-dimensional nature of the data
is one of the challenges faced by RNA velocity; metabolically labeled mRNA provides
complementary state estimates that can be linked through a mechanistic model in a
similar fashion107.

Different experimental time points offer an alternative way to estimate the direction of
change. In this case, the challenge lies in matching cells at earlier time points with pu-
tative progenitors at later stages. Dedicated methods estimate population dynamics108

or assume that earlier time points correspond to earlier stages of the biological process
and match cells across time points with optimal transport (OT) to recover the under-
lying vector field109–111. Specifically, OT assigns each cell from a given time point its
likely future states in the consecutive time point by minimizing an objective function to
match most similar cell tuples (Appendix E). Here, typical challenges include choosing
the spacing of experimental time points to capture small gradual changes or latent ef-
fects; epigenetic differences translating into transcriptomic dissimilarity are one possible
latent variable112.

Cellular fate mapping

Trajectory inference reconstructs lineage relationships for single-cell data where lineage
commitment is a gradual process: Pluripotent stem cells can differentiate into any lin-
eage, and commitment to these lineages precedes a cascade of gene regulatory events like
upregulation of GATA 1 for the erythroid lineage of hematopoiesis113–115, for example.
Genes regulating fate priming are known as lineage drivers, and computational methods
disentangling such decisions assign each cell a fate probability based on cell statistics -
a concept known as fate mapping.

Different approaches rely on different data views for cellular fate mapping: Slingshot96 es-
timates pseudotime values and lineage weights simultaneously, Palantir97 assigns lineage
probabilities using Markov chains after pseudotime inference. Similarly, CellRank116

combines RNA velocity estimates with Markov chain theory to model lineage priming.
For time-resolved scRNA-seq data, Waddington OT109 infers ancestor and progenitor
populations from optimal transport with pushforward and pullback operators, respec-
tively. Dynamo107 uses the temporal information from metabolic labels to study fate
decisions based on optimal transition paths derived from an estimated velocity field.
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1. Introduction

Overall, methods to map cellular fate exist but are tied to specific concepts or data
views.

Gene regulatory inference and perturbation modeling

Gene regulatory networks (GRNs) govern cell differentiation and fate priming, and infer-
ring the GRN of a process elucidates relevant genes and gene programs. Understanding
how regulation changes from a healthy to a diseased state, for example, can provide
putative drug targets for treatment or even prevention. The single-cell community has
developed tools for inferring GRNs117–119 and modeling perturbation effects120–122; al-
though such models give different outputs, they share a common goal: Understanding
how gene regulation shapes a given process. To this end, Pando118, for example, infers
GRNs by computationally connecting transcription factor-binding site parts with the
gene expression of their target genes. CellOracle123 describes GRN structures and rela-
tionships implicitly by perturbing transcription factors in silico. Alternatively, to model
perturbation responses directly, scGen120, CPA121 and CellOT122 rely on VAEs and OT
and leverage data from single-cell perturbation experiments. However, similar to other
single-cell methods, data sparsity and integrating multi-modal data hamper the efficacy
of GRN inference and perturbation response prediction. Additionally, benchmarking
GRN inference is challenging as ground-truth data does not exist.

1.3. Research question and scope of dissertation

Research question

This thesis addresses the problem of modeling splicing dynamics with deep generative
neural networks, and inferring trajectories independent of a specific data view for fate
mapping with single-cell data. These contributions are necessary since existing TI meth-
ods leave room for improvement even though the field of TI has celebrated great suc-
cess:

1. RNA velocity has emerged as a bottom-up modeling approach for splicing dynam-
ics to infer dynamic, directed state change. However, original schemes for inferring
RNA velocity do not quantify estimation uncertainty, fail to provide a metric of
applicability, and are not easily generalizable to more complex but accurate mech-
anistic models124,125. Thus, these methods lack interpretability and quantitative
evaluation metrics, challenging their correct usage on real-world data, and cannot
facilitate more accurate model descriptions.

2. Similarly, methods for analyzing different data modalities are tied to them and
do not generalize to complementary and newly emerging data views. For exam-
ple, CellRank focuses on RNA velocity116, Waddington-OT on experimental time
points109, and dynamo on metabolic labeling data107. The single-cell field lacks a
unified framework for mapping cellular fate in a modality-agnostic fashion as a re-
sult. Such a framework is essential, however, to include newly available modalities
easily and derive cellular fate based on novel methods that model differentiation
processes.

To address these open challenges, this dissertation discusses a two-fold research ques-
tion:
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Q1: How can RNA velocity be inferred in an uncertainty-aware fashion that enables
increased interpretability and facilitates model flexibility?

Q2: How can different data views be used to map cellular fate in a unified fashion to rely
on context-dependent, orthogonal information for improved trajectory inference?

I focused on these questions in published work presented in Sections 3.1 and 3.2. Specif-
ically, to answer questions Q1 and Q2, I split my proposed solution into the following
distinct steps, building upon and complementing each other:

Uncertainty-aware and scalable RNA velocity inference emerges as a crucial aspect
with the growing size and complexity of scRNA-seq datasets. Specifically, traditional
inference methods do not provide parameter uncertainty and rely on classical optimiza-
tion routines, proving challenging when applied to datasets containing millions of cells.
Recent advances in variational inference (VI) offer a framework for scalable, uncertainty-
aware parameter inference (Appendix B). In this work, I show how to formulate the RNA
velocity inference problem in a variational inference context (Section 2.4 and 3.1) to solve
it with the help of deep learning architectures and answer Q1.

Metrics for assessing the applicability of RNA velocity are essential to ensure correct
application of the method and elucidate model failure. The assumptions of original RNA
velocity inference approaches are restrictive and often violated in real-world data and,
therefore, necessitate such an evaluation scheme. Specifically, the used approaches re-
quire an explicit, structural dependency between unspliced and spliced counts; proposed
frameworks, however, do not provide ways of quantifying if their modeling assumptions
are valid for a given dataset. Addressing this lack of interpretability will facilitate the
correct usage of RNA velocity. In this thesis, I present a permutation-based metric to
evaluate if the required dependency between nascent and mature RNA is satisfied (Sec-
tion 3.1); evaluating the distribution of this metric on positive and negative control cases
allows assessing and comparing the quality of new datasets.

Flexibility of mechanistic models describing splicing dynamics is needed for more
accurate descriptions of the underlying principles, but current state-of-the-art inference
methods are tied to a single mechanistic model; this dynamic model is incomplete as it
omits other aspects of the dynamical process. In this thesis, I discuss how the VI-based
model generalizes naturally to more complex descriptions; I previously exemplified this
feature with a splicing model that describes transcription as a time-dependent process126

(Section 3.1).

Quantitative metrics for comparing models of splicing dynamics and inference ap-
proaches do not exist. Instead, comparisons to assess model fit predominantly rely on
two approaches: Projecting high-dimensional velocity fields onto two-dimensional data
representations, and high consistency between velocities of transcritomically similar cells.
However, visual representations lack statistical and quantitative power and are sensitive
to various parameters100,125; assuming similar velocities is valid in unidirectional pro-
cesses but not during branching events such as fate priming. In this dissertation, I
highlight a principled approach to compare models and methods based on the cell cycle
for which the developmental direction is known a priori and experimental techniques
establish a ground truth cell order127,128 (Section 3.1).
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Consistent trajectory inference and cellular fate mapping from pseudotime and stem-
ness estimates offers an alternative approach to RNA velocity when violated assump-
tions prevent its applications. While RNA velocity inference may fail, alternative meth-
ods for recapitulating biological processes, such as pseudotime or stemness potentials,
may work remarkably well91,93,97,99; but there is no consistent way of inferring trajec-
tories and cellular fate based on these alternative quantities, and existing methods may
not scale to atlas-sized datasets. To overcome these limitations, I propose a consistent,
method-agnostic approach for bridging the gap between scalar pseudotime and stemness
scores and cellular fate mapping and improved model formulations that scale to millions
of cells (Sections 2.6 and 3.2).

Inter and intra-time point dynamics occur during asynchronous biological processes.
Although methods that infer trajectories based on experimental time points exist, they
omit intra-time point information. As a result, they map cellular change in a discrete
fashion which makes studying gene expression change on a continuous domain impossible.
In this thesis, I extend optimal transport-based trajectory inference to include intra-time
point information, and infer initial and terminal states automatically; this procedure is
consistent with the approach for pseudotime and developmental potential. Additionally,
I outline how to infer a real-time-informed pseudotime that enables continuous fate
mapping and models of gene expression change (Sections 2.6 and 3.2).

Modeling time-dependent rates of splicing dynamics is essential to an accurate de-
scription of the underlying biological process. Current models for inferring splicing
mechanisms from metabolically labeled data employ and estimate cell-specific rates in a
post-hoc fashion, though107. In addition, their method for inferring cellular fate and pu-
tative driver genes is deterministic, thereby ignoring model uncertainty and the stochas-
tic nature of biology. As part of my consistent fate mapping framework, I present an
estimation paradigm that infers time-dependent rates for each cell and recovers cellular
fate and known lineage drivers more faithfully than competing approaches (Sections 2.4
and 3.2).

Scope of dissertation

To answer the posed research question and resolve existing challenges the single-cell
community faces, I group my contributions into two: Deep generative modeling of tran-
scriptional dynamics126 and unified fate mapping in multiview single-cell data129.

The first part of my contributions addresses RNA velocity inference (Q1):

Publication 1: Deep generative modeling of transcriptional dynamics for RNA
velocity analysis in single cells

Modeling splicing dynamics through deep generative modeling for RNA velocity analysis
with VI is a novel, uncertainty-aware estimation of RNA velocity based on variational
autoencoders (VAEs). The model improves parameter estimation compared to previous
approaches, quantifies estimation uncertainties, and offers metrics for evaluating the
applicability of RNA velocity inference for a given dataset. This publication attempts to
answer Q1 and Section 3.1 presents it in greater detail; Section 2.4 discusses theoretical
aspects of the corresponding deep learning model. I co-lead this study.
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Additional publication 1: A Guide to Trajectory Inference and RNA Veloc-
ity

With the rise of scRNA-seq data as a powerful experimental technique to study cellu-
lar heterogeneity and dynamic processes, dedicated computational methods have been
developed. In this work, we reviewed the concepts of pseudotime and RNA velocity. I
derived the mathematical principles underlying existing RNA velocity methods, high-
lighted and discussed their limitations and challenges, and showcased a typical RNA
velocity analysis workflow. I am the lead author of this study.

Additional publication 2: Best practices for single-cell analysis across modal-
ities

Single-cell sequencing protocols have evolved to allow quantifying different data modali-
ties such as transcriptomics, cell-surface proteins, or chromatin accessibility. As a result,
many computational workflows and methods have been developed to analyze the corre-
sponding data. In this work, we summarized independent benchmarks assessing existing
approaches if such comparisons exist and reviewed and summarized existing methods
otherwise. I contributed to the effort by discussing pseudotime and RNA velocity in-
ference and complemented these theoretical aspects with best-practice tutorials. I am a
supporting author of this study.

The second part of my contributions covers fate mapping with single-cell data in a unified
and data-view agnostic fashion (Q2):

Publication 2: CellRank 2: unified fate mapping in multiview single-cell data

CellRank 2 models cellular state changes probabilistically by inferring cell-cell transi-
tion probabilities via kernels and analyses them with estimators. This modular design
makes CellRank 2 a data-agnostic framework, highlighted by using a pseudotime for
hematopoiesis, stemness potential for embryoid body development, real-time informa-
tion from experimental time points for mouse embryonic fibroblasts and pharyngeal
endoderm development, and metabolic labeled RNA to study regulatory mechanisms
in mouse intestinal organoids. The framework scales to atlas-sized datasets, generalizes
to new, emerging data views, and outperforms competing methods. This publication
presents a solution to research question Q2; Section 2.6 covers related methods, and
Section 3.2 results. I co-lead this study.

Preprint 1: Plasticity of Human Microglia and Brain Perivascular Macro-
phages in Aging and Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive brain disorder and the most common type of
dementia. Yet, little is known about the mechanisms leading to the malfunctions of the
underlying process, and there is no consistent taxonomy describing the heterogeneity
and plasticity of microglia and perivascular macrophages, immune cells specific to the
brain. To establish a common taxonomy and study the role of identified subtypes during
AD progression, this work analyzed two independent, demographically diverse cohorts;
the first included 157 donors, the second 1470. I contributed by inferring and analyzing
a disease-stage-informed pseudotime relying on concepts developed for CellRank 2, and
helped write the manuscript. I am a second author of this study.
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Preprint 2: Modeling Single-Cell Dynamics Using Unbalanced Parameterized
Monge Maps

Optimal transport has emerged as a powerful tool for studying non-steady-state systems
evolving over time. To study such systems, samples at different experimental time
points are sequenced; OT matches cells across time points to describe the underlying
process with couplings traditionally being inferred by solving a minimization problem
with classical optimization routines. Recent advances in machine learning reformulate
the problem to solve it with neural networks, instead, but fail to account for asymmetric
shifts in cell state distributions, routinely present in biological processes. In this work, we
proposed Unbalanced Parametrised Monge Maps to overcome this inherent limitation. I
contributed by benchmarking different modeling approaches with CellRank 2’s inference
agnostic framework and writing the paper. I am a supporting author of this study.

The software developed for my contributions is open-source and, thus, available to the
single-cell community. My contributions and the analysis of single-cell data in general
rely on and are embedded in a greater collection of computational tools and data struc-
tures.

Additional publication 3: The scverse project provides a computational ecosys-
tem for single-cell omics data analysis

This correspondence presents the scverse ecosystem, a multi-institutional open-source
software project. The work outlines how data storage and analysis for single-cell omics
data is addressed. I contributed to this effort through software implementations for and
maintenance of Python packages. I am a supporting author of this study.
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The advancements in single-cell biology have been both experimental and methodologi-
cal. On the experimental side, protocols have been proposed and optimized to measure
different views of cells. Given this sparse and high-dimensional data, machine learning
methods have been applied, adapted, and developed for use cases specific to single-cell
biology.

This chapter is divided into three main parts: Section 2.1 discusses sequencing exper-
iments relevant to data and methods presented in this thesis. Following, Section 2.2
outlines computational aspects of analyzing scRNA-seq data, followed by approaches
for recovering how biological processes unfold: Section 2.3 discusses trajectory infer-
ence, Section 2.4 RNA velocity, and Section 2.5 methods for time-resolved scRNA-seq
data.

2.1. Single-cell sequencing protocols

The ability to measure the transcriptional profile of individual cells at scale has enabled
the study of cellular heterogeneity in health and disease. Different protocols offer com-
plementary views of cells, including the transcriptome with scRNA-seq26,28–37, chromatin
accessibility with scATAC-seq27, and cell surface proteins through CITE-seq43. Here, I
focus on scRNA-seq and strategies for metabolically labeling newly transcribed mRNA;
both types of experiments produce data analyzed with the computational methods I
have developed.

Single-cell RNA-sequencing

Single-cell RNA-seq workflows can be grouped into three consecutive stages: (1) Cell
suspension through dissociation and isolation of cells into droplets or wells, (2) library
construction, and (3) sequencing (Figure 2.1a). Even though experimental workflows
are optimized to capture the underlying biological process in its true form, some experi-
mental artifacts may pertain. Dedicated computational methods mitigate experimental
errors130–132, such as empty droplets (wells) or doublets, i.e., multiple cells captured in
the same droplet (well).

Tissue dissociation forms the first step of scRNA-seq experiments as single-cell se-
quencing protocols operate on isolated cells, obtained through the dissociation of sam-
ples133,134. Isolating individual cells is an intricate process, leading to artifacts and
reduced data quality if done improperly; possible ramifications include groups of cells
sequenced together130, dying cells135,136, or extracellular debris131,132. Problem-specific
analysis methods exist to remove such artifacts but entail data loss. Thus, proper tissue
dissociation is key to ensuring optimal cell suspension.
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Figure 2.1.: Single-cell RNA-sequencing workflow. a. For library construction,
assays load cells into droplets (wells), remove the cell membrane through lysis, and attach
cellular barcodes to transcripts. Following, mRNA molecules are reverse transcribed into
cDNA and amplified by PCR. b. NGS estimates gene abundance from fluorescent (left)
or electrical signals (right).

Tissue dissociation is based on chemical137–144 or mechanical approaches145–147 or a
mixture of the two148,149 and grouped into two strategies - warm and cold tissue disso-
ciation150. Warm tissue dissociation relies on enzymes operating optimally at warmer
temperatures compared to cold tissue dissociation. Employing these methods too ag-
gressively to maximize the number of cells for sequencing can trigger stress responses,
reflected in altered gene expression patterns, however151,152. As such, different experi-
mental setups require fine-tuning workflows for an optimal trade-off between isolation
and yield.

Library construction follows cell suspension (Figure 2.1a). This stage of the experiment
loads cells into droplets (wells) and collects RNA fragments in the so-called sequencing
library. As a first step, cell lysis removes the cell membrane, making intra-cellular mRNA
molecules accessible. Cellular barcodes mark these transcripts in each droplet (well) to
assign captured transcripts to cells after sequencing; guaranteeing statistical power re-
quires amplifying the molecules. The mRNA molecules themselves are unsuitable for
amplification, however, as they are readily degraded by omnipresent RNases, for ex-
ample153,154. Transcripts are, thus, reverse-transcribed into more stable complementary
DNA (cDNA) that can be amplified with polymerase chain reaction (PCR)155–157; unique
molecular indentifiers (UMIs) label captured molecules to mitigate cDNA amplification
noise.

Next-generation sequencing (NGS) processes the amplified cDNA to quantify which
and how many RNA molecules are present (Figure 2.1b). Compared to the labor-
intensive Sanger sequencing158,159, NGS has high throughput as parallel sequencing reac-
tions are only spatially separated, not physically. The sequencing reactions are captured
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either by fluorescent or electrical signals: Fluorescent technologies rely on detecting lu-
minescent signals released during the correct addition of a nucleotide during sequencing
by synthesis39,160,161. Alternatively, nanopore approaches detect changes in an electrical
field induced by RNA molecules passing through nanopores162,163; changes in the ionic
current match the nucleotide sequence passing through the biosensor.

Metabolic labeling of mRNA

Traditional single-cell sequencing protocols are destructive by nature, capturing the state
of a cell only once instead of tracking its dynamic change over time. Sequencing samples
at different experimental time points offers a promising solution to assess the cellular
progression nonetheless, but, in most cases, experimental time points lie at least six
hours apart. This setup thus struggles with capturing rapid transcriptomic changes
on the time scale of minutes to hours since the median mRNA half-life in mammalian
cells is relatively long164,165. Additionally, traditional scRNA-seq protocols also fail
to characterize RNA processing and cannot differentiate the steps thereof. To overcome
these limitations, methods for metabolically labeling newly synthesized mRNA molecules
have been developed first for bulk166–173, then for single-cell sequencing127,174–176.

The fundamental principle of metabolic labeling lies in incorporating chemical tags into
newly synthesized RNA; tagging is achieved by exposing cells to nucleoside analogues
that are taken up, phosphorylated, and incorporated into nascent RNA. Single-cell la-
beling approaches convert the introduced nucleotides into a different organic molecule
- guanine into adenine and uridine into cytosine - identified during sequencing; newly
transcribed RNA, thus, characterizes itself by the presence of corresponding substitutes.
Correctly identifying nascent RNA is challenging due to low incorporation frequency
and sequencing errors; computational methods mitigate this effect by robustly estimat-
ing proportions of old and new RNA172,177. For a more in-depth discussion of metabolic
labeling approaches, I refer to dedicated reviews44,178.

Single-cell sequencing protocols yield high-dimensional, sparse representations of biolog-
ical samples. Manual analysis of the data is, thus, impossible. Instead, computational
frameworks provide the necessary tools.

2.2. Canonical analysis steps for single-cell RNA sequencing
data

The rapid development and advancement of single-cell assays have been accompanied
by computational advances to analyze the generated datasets74. The corresponding
methods include both techniques known from traditional data analysis and adapted or
newly developed strategies; these workflows address generic aspects like data prepro-
cessing and problem-specific solutions for data integration or trajectory inference, for
example. This section reviews data processing common to any scRNA-seq analysis, fol-
lowed by sections focusing on approaches for specific problems. For a more complete
overview of scRNA-seq data analysis, I refer to previously published reviews on best
practices63,179–181.
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Figure 2.2.: scRNA-seq data processing workflow. a. Quality control identifies
and removes or corrects measurements from the count matrix generated by scRNA-seq
experiments. These steps include removing ambient RNA and detecting doublets or low-
quality cells. b. Following quality control, data transformations prepare the compressing
features into a lower dimensional space; common transformations include data normal-
ization182 and log1p transformation. Next, highly variable genes64,183–187 (HV: highly
variable) form the basis of dimensionality reduction techniques such as non-negative
matrix factorization78 or PCA75. c. Deep learning-based preprocessing workflows op-
erate directly on the raw count matrix to recover a latent representation of the data.
Autoencoders76,77 are a common approach to project the data into a latent embedding
via an encoder neural network; a decoder reconstructs the data to define a loss function
for model training76. d. Nearest neighbor graphs approximate the phenotypic manifold
and help reveal clusters82 associated with cell types66,85,188–191. Similarly, the latent
data representation and neighbor graph enable inferring cell trajectories and fate192,193.
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Data preprocessing

Data preprocessing is a common aspect of any machine learning pipeline. For scRNA-
seq data, cells and genes are first filtered based on quality metrics (Figure 2.2a): Likely
compromised cells are removed, ambient mRNA molecules estimated and removed, and
doublets identified. A compromised cell membrane caused by cell death, for example,
leads to a small number of detected genes, low count depth, and a high fraction of
mitochondrial gene expression; quality metric-based filtering removes corresponding ob-
servations from further analyses. In the case of droplet-based sequencing assay, droplets
contain ambient mRNA, inflating the estimate of cellular mRNA molecules present in
the respective cell. Methods like SoupX132 or DecontX131 estimate and remove cell-free
mRNA. Finally, doublets - multiple cells assigned the same barcode and sequenced -
must be identified and removed. Dedicated benchmarks compare corresponding meth-
ods194. In the following, I refer to the data matrix obtained after quality control as the
count matrix.

Following quality control, feature selection or transformation reduces the dimensionality
of the count matrix to reveal the core information it contains; the fact that dynamical
processes occur on a low-dimensional manifold justifies reducing the dimensionality with-
out significant loss of information195. Dimensions are either reduced by successively ap-
plying transformations (Figure 2.2b) or in an end-to-end fashion (Figure 2.2c). Common
transformations consist of count normalization182, log-transformation, selecting highly
variable genes64,183–187, removing unwanted sources of variation and batch effects83,196,
and further dimensionality reduction through methods like principal component anal-
ysis (PCA)75. Part of the success of single-cell biology stems from implementing such
preprocessing steps in open-source software libraries like Scanpy63 or Seurat64–68.

Compared to manually selected data transformations, end-to-end methods directly esti-
mate a low-dimensional representation of the count matrix, possibly filtered for highly
variable genes first; two popular examples of this modeling paradigm are DCA77 and
scVI76, relying on autoencoders and variational inference to estimate a low-dimensional
latent space. In brief, these approaches rely on non-linear function approximation with
neural networks to map the high-dimensional count matrix into a low-dimensional em-
bedding of latent factors. More recent methods extend these frameworks to interpretable
latent space components79,80; similarly, other architectures address specific challenges
and types of data, such as population-level single-cell atlases85 like the human lung23

or embryonic limb cell197 atlas generated as part of the Human Cell Atlas Project198.
Appendix B discusses the theory of variational inference and the scVI model in greater
detail.

Data clustering and visualization

Following dimension reduction, data clustering and quantifying differentially expressed
genes in these clusters allow for interpreting them as different cell states66,85,188–191 (Fig-
ure 2.2d); similarity-based representations such as k-nearest neighbor (kNN) graphs form
the basis for clustering: kNN graph construction first computes the k nearest neighbors of
each cell, and symmetrized neighbor relations define the graph’s adjacency matrix com-
prised of transformed cell-cell distances. An adaptive kernel transforms edge weights to
account for large cell density changes along the phenotypic manifold91,199,200.

Based on a low-dimensional representation and kNN graph, clustering methods identify
groups of cells with similar profiles; the single-cell field commonly employs the Leiden82

and Louvain81 algorithms, where the former improves on the latter. The two methods
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compare connections within a cluster to connections between clusters to optimize the
so-called modularity metric. For more details, I refer to the work introducing the Leiden
algorithm82, for a comparison of clustering approaches to dedicated benchmarking pa-
pers201–204. Identified clusters can be mapped to biological quantities such as cell types
by studying differentially expressed genes ranked by classical statistical tests205–207 or
more sophisticated computational methods59,62,208,209.

The principal component or latent space is low-dimensional but usually has more than
three dimensions; as such, the space cannot be visualized easily. For visualization
purposes, the space is, thus, projected into two or three dimensions with manifold-
learning techniques. Such methods aim at reducing dimensionality while preserving
the higher-dimensional topology. Common approaches are diffusion maps210–212, t-
distributed stochastic neighbor embedding (t-SNE)213, or uniform manifold approxi-
mation and projection (UMAP)214.

2.3. Trajectory inference

Classical scRNA-seq protocols are destructive by nature and, thus, measure each cell
only once instead of tracking its evolution over time. Despite this snapshot nature, cel-
lular heterogeneity exists in single-cell experiments since differentiation processes unfold
asynchronously. As such, a range of the underlying mechanism is captured. However,
given a reference cell, its progenitor state, and their gene expression profiles, it is un-
clear if the reference cell precedes its progenitor or vice versa. Numerous methods have
been developed to recover the direction of the biological process by aligning cells along
a trajectory; the field of TI collects all such methods.

Early methods for recovering trajectories focused on unidirectional processes along a
linear trajectory and assigned each observation a pseudotime based on expression sim-
ilarity; the pseudotime of cells emerging at the beginning of the dynamics is small,
and cells toward the end have high values. Pseudotimes form a continuous domain
of the discrete, observed cellular states aligned along the differentiation process and
rank cells relative to each other. Later methods extended the concept to more com-
plex settings like branching. Approaches for constructing pseudotimes are based on
clusters82,215–217, neighbor graphs91,93,199,218, manifold-learning94,96,219, and probabilis-
tic frameworks97,220–223.

Cluster-based methods identify connections between clusters of cells, with connections
based on similarity or a minimum spanning tree. Similarly, graph-based algorithms
define and connect clusters through kNN graphs. Probabilistic Approximate Graph
Abstraction (PAGA)218, for example, identifies and connects Leiden clusters; RaceID224,
StemID225 and SLICER226 are alternative graph-based approaches. Both cluster and
graph-based approaches quantify cluster similarity but do not align these clusters and the
cells they contain along the differentiation trajectory. Instead, the constructed network
may serve as the trajectory backbone.

To estimate the underlying trajectory on a cell level, manifold-learning-based techniques
infer trajectories based on principle curves - a one-dimensional curve connecting higher-
dimensional observations - or graphs. Slingshot96, for example, defines the pseudotime
of a cell as its orthogonal projection onto principle curves fitted to each branch of a
minimum spanning tree217.

Probabilistic modeling assigns transition probabilities between cell pairs, quantifying
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how likely the reference cell precedes the other. This construction defines a discrete
Markov chain, i.e., random walk. Based on the constructed random walk, Wanderlust91

and diffusion pseudotime (DPT)93, for example, define pseudotimes as a scaled distance
along the data manifold with respect to a pre-defined root cell: DPT considers the differ-
ence between consecutive states of the random walk, Wanderlust samples waypoint cells
and iteratively refines the distance of the shortest paths between them. Alternatively,
Palantir97 models the trajectory as a Markov chain. Appendix C includes the relevant
mathematical theory of discrete Markov chains.

Estimating developmental potential for TI is similar to pseudotime. CytoTRACE99, for
example, relies on a simple but robust assumption validated on 42 scRNA-seq datasets:
Immature cells express more genes than their mature counterparts, biologically moti-
vated by less developed cells regulating their chromatin less tightly (Figure 2.3). Con-
structing the CytoTRACE score is a three-step process: First, the algorithm computes
the Pearson correlation between the number of genes expressed in each cell and each
gene - the gene count signature GCS; further construction of the stemness score relies
on the 200 genes with maximum GCS. In the second step, CytoTRACE smooths gene
expression counts based on a nearest-neighbor graph by solving a non-negative least
squares regression problem and simulating a diffusion process. The final step of the
approach computes the developmental potential of each cell as the geometric mean of its
smoothed counts over the subset of the 200 genes and scales it to the unit interval.

Figure 2.3.: CytoTRACE estimates stemeness potential from scRNA-seq
data. CytoTRACE99 assumes that cells express fewer genes as they differentiate into
specialized cell types (GEX: gene expression). This metric aligns cells along the pheno-
typic manifold, visualized here by Waddington’s landscape.

Dedicated reviews and related work compare pseudotime inference methods227,228 and
give a more in-depth introduction to trajectory inference and its limitations192,193. Al-
though pseudotime and potential-based methods have celebrated great success, they
neither describe nor predict cellular dynamics, such as splicing or mRNA turnover. As
an alternative approach, RNA velocity has emerged as a putative bottom-up mechanis-
tic modeling paradigm for estimating a vector field along the phenotypic manifold in a
data-driven fashion.

2.4. RNA velocity

Similarity-based trajectory inference assigns cellular fate but does not recover directed
dynamic information. According to the central dogma of molecular biology, genetic in-
formation flows unidirectionally: DNA is transcribed into nascent (unspliced) mRNA,
followed by splicing into mature (spliced) mRNA and translation into proteins229 (Fig-
ure 2.4a). Standard scRNA-seq experiments detect both nascent and mature mRNA
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molecules through the presence and absence of introns, respectively100,103–106. Relat-
ing the two abundances via a gene-specific dynamical model, RNA velocity100,101 - the
time derivative of mature mRNA - models the transcriptomic change over the biological
process.

Figure 2.4.: Leveraging the central dogma of molecular biology with scRNA-
seq data. a. DNA is transcribed into nascent (unspliced) mRNA u, followed by splicing
into mature (spliced) mRNA s and translation into proteins229. b. Common scRNA-
seq protocols produce snapshot data, lacking cell-specific time information. Instead
of studying splicing dynamics based on its temporal progression (left), popular RNA
velocity approaches100,101 study the process via the phase space (u, s) (right).

Classical approaches for inferring parameters of dynamical systems rely on maximum
likelihood (MLE) or maximum a posteriori (MAP) estimates of the likelihood and pos-
terior distribution, respectively. However, sequencing data lacks observation-specific
temporal information, rendering the MLE and MAP uncomputable. To infer the kinetic
parameters underlying RNA velocity, nonetheless, the two most popular approaches -
the steady-state model100 and EM model101 - investigate the problem in phase space
(u, s) (Figure 2.4b).

The steady-state and EM model approximate splicing dynamics with a gene-specific
ordinary differential equation (ODE), omitting gene interactions: Unspliced mRNA u
is transcribed at rate α and spliced into spliced mRNA s at rate β; following, spliced
mRNA is degraded at a rate γ. The corresponding dynamical system used for RNA
velocity100–102 inference approximates the chemical master equations (CME)

d

dt
Pt(u = m, s = n) =α [Pt(u = m− 1, s = n)− Pt(u = m, s = n)] +

β [(m + 1)Pt(u = m + 1, s = n− 1)− Pt(u = m, s = n)] +

γ [(n + 1)Pt(u = m, s = n + 1)− Pt(u = m, s = n)]

(2.1)

up to first order (Appendix D); Pt(u = m, s = n) denotes the probability to observe
m ∈ N0 unspliced and n ∈ N0 spliced molecules at time t. The steady-state and EM
model are not count-based, necessitating the first-order approximation; they study the
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process in a continuous and deterministic domain, instead. This view approximates (2.1)
by first-order moments102,230 to model splicing dynamics with

u̇ = α− βu

ṡ = βu− γs,
(2.2)

with α > 0 if the state is in induction, and α = 0, otherwise.

The steady-state model

In addition to no gene-gene interactions, the steady-state model assumes (1) constant
rate parameters, (2) a gene-shared unit splicing rate β = 1, and (3) that the steady-
states of ODE (2.2) are observed. Under these assumptions, cells in equilibrium are
located in the extreme quantiles of the systems’ phase portrait (Figure 2.5a), and the
dependence of unspliced and spliced mRNA is linear

u =
γ

β
s.

The steady-state model fits a regression line with slope γ∗ to the extreme quantiles of the
measured expression profiles and defines the RNA velocity vj of an observation j with
unspliced and spliced reads uj and sj , respectively, as the residual to this fit, i.e.,

vj = uj − γ∗sj .

While the steady-state model successfully recapitulated the lineage tree of developing
mouse hippocampus and human embryonic brain, its modeling assumptions are violated
in many real-world datasets100,101,124,231.

The EM model

Heterogeneous tissue samples or heterogeneous subpopulations with subpopulation-specific
kinetics exist and violate the steady-state model ’s assumptions of a common splicing
rate for all genes. Similarly, the steady-state model estimates incorrect rates in transient
systems that do not reach equilibrium. To overcome these limitations, the EM model
estimates model parameters θ = (α, β, γ) and latent time t and state k - induction, re-
pression, or either steady state - for each cell (Figure 2.5b); the Python package scVelo101

provides an implementation of the approach.

The EM model optimizes model parameters of (2.2). Although the analytic solution
of (2.2)

u(t) = e−βτu0 +
α

β
(1− e−βτ )

s(t) = e−γτs0 +
βu0 − α

γ − β
(e−βτ − e−γτ ) +

α

γ
(1− e−γτ ),

(2.3)

with τ = t− t0 and initial states u0 = u(t0) and s0 = s(t0), exists, maximum likelihood
or maximum a posteriori estimates are intractable as the model contains time and state
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Figure 2.5.: Traditional RNA velocity inference methods. a. The steady-state
model100 estimates cells in steady state (left), infers the steady-state ratio via an extreme
quantile linear regression fit (middle), and defines RNA velocity as the residual to the
fitted line (right). b. The EM model101 relies on less restrictive assumptions compared
to the steady-state model, estimating the full set of model parameters and latent variables
through an EM algorithm (Ind.: Induction; ss: steady state; Rep.: Repression).

as latent variables. Instead, an expectation-maximization (EM) optimization scheme232

forms the basis of parameter inference: The M-step estimates observed parameters, and
the E-step latent variables iteratively. The E-step updates the latent variables time t
and state k of each observation. The latent time assignment minimizes the Euclidean
distance between measured data and its estimate

t
(n+1)
j = arg min

t

∥∥∥xj − x̂(t, θ̂(n))
∥∥∥,

and the state assignment

k∗j = arg min
k

∥∥∥xj − x̂(t
(n+1)
j , θ̂(n))

∥∥∥,
with observations x = (u(t), s(t)) and their estimates x̂(t|θ̂), respectively; superscripts
indicate the current step of the iterative optimization, the index the observation. The
M-step then maximizes

Ek[l(θ|X , t, k)] =

Nc∑
j=1

l(θ|xj , tj).
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scVelo implements the case of normal and Laplace distributed observations, where the
gene-wise variance across all observations defines the corresponding variance; to decrease
runtime, scVelo approximates the optimal latent time assignment, achieving a 30-fold
speedup101.

The EM model improves upon the steady-state model as it does not assume observed
steady-states, and instead solves the full splicing dynamics by relying on the entire data
distribution. However, the approach is still tied to a specific formulation of splicing
kinetics that assumes constant rates and ignores gene-gene interactions. These assump-
tions may hinder its applicability in real-world datasets101,231. Similarly, the EM model
does not provide uncertainty of estimated parameters.

Velocity variational inference

Variational inference (VI) approximates data distributions in a Bayesian setting233 (Ap-
pendix B). As such, it carries notions of estimation uncertainty and, paired with recent
advances in variational autoencoders, scales to large datasets234,235. The framework is,
thus, suitable for RNA velocity to overcome limitations posed by the EM model, namely
scalability, model flexibility, and parameter uncertainty. Such a model posits a gener-
ative process informed by splicing dynamics (2.2) but ties cell and gene-specific latent
variables through the latent space (Figure 2.6).

Figure 2.6.: veloVI infers RNA velocity with variational inference. veloVI
encodes unspliced and spliced mRNA counts into a latent cell representation z, encoding
cell-gene-specific transcriptional state k, based on neural networks. A corresponding
decoder neural network provides cell-gene-specific latent time estimates based on the
cell representation z and latent state k. Following, the model optimizes a likelihood
function in an end-to-end fashion to infer state uncertainty, latent time, transcription,
splicing, and degradation rates α, β and γ, respectively, of splicing dynamics. Figure
adapted from the work introducing veloVI126.

Velocity variational inference (veloVI)126 assumes a latent state zn ∼ Normal (0, INl
)

represents the latent state of a cell n, where INl
denotes the Nl-dimensional identity

matrix. For each gene g, this latent state encodes a distribution over the possible cell
states k with

πng ∼ Dirichlet (0.25, 0.25, 0.25, 0.25)

kng ∼ Categorical (πng)
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Here, k = 1 represents the induction phase, k = 2 its steady state, and k = 3 and k = 4
the repression phase and its equilibrium, respectively.

Latent state and cell representations encode cell-gene-specific latent times by two fully-

connected neural networks: The first network q
(ind)
ξ1

: RNl → (0, 1)Ng is active during

induction, q
(rep)
ξ2

: RNl → (0, 1)Ng during repression. Thus, q
(ind)
ξ1

encodes latent time
as

t(1)ng = q
(ind)
ξ1

(zn)gt
s
g,

with switching time tsg, and q
(rep)
ξ2

with

t(3)ng = tsg + q
(rep)
ξ2

(zn)g(tmax − tsg),

where tmax defines the maximum time of the process to guarantee parameter identifia-
bility101. Finally, the observed data are sampled from normal distributions as

u(obs)ng ∼ Normal
(
u(g)(t

(kng)
ng , kng), (ckσ

u
g )2
)

s(obs)ng ∼ Normal
(
s(g)(t

(kng)
ng , kng), (ckσ

s
g)2
)
,

with state-dependent scaling factors

ck =

{
1 k ∈ {1, 2, 3}
0.1 k = 4,

reflecting the repression steady state corresponds to transcriptional inactivity. Impor-
tantly, the variance is not zero to model noise originating from sequencing workflows or
preprocessing choices.

VAEs infer approximate posterior distributions with encoders qϕ with parameters ϕ. To
guarantee tractable computation, veloVI factorizes the posterior according to

qϕ(z, π | u, s) :=

Ns∏
n=1

qϕ(zn | un, sn)

Ng∏
g=1

qϕ(πng | zn). (2.4)

Integrating over transcriptional states defines the likelihood of unspliced and spliced
mRNA as a mixture of Gaussian distributions

pθ(u
(obs)
ng | zn, πn) =

∑
kng∈{1,2,3,4}

πngkngNormal
(
u(g)(t

(kng)
ng , kng), (ckσ

u
g )2
)

pθ(s
(obs)
ng | zn, πn) =

∑
kng∈{1,2,3,4}

πngkngNormal
(
s(g)(t

(kng)
ng , kng), (ckσ

s
g)2
)
,
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with model parameters θ including splicing parameters α, β, γ, switch time ts, and
network parameters ξ1 and ξ2. Parameters of the generative model minimize

Lvelo(θ, ϕ;u, s) = −ELBO [θ, ϕ;u, s] + λLswitch(θ;u, s),

with evidence lower bound ELBO and Lswitch biasing the switch from induction to re-
pression towards the upper right part of the phase portrait. For this constraint, consider
the median count u∗ and s∗ of unspliced and spliced observations above the 99th per-

centile, respectively; comparing these estimates to the fitted initial states u
(g)
r,0 and s

(g)
r,0

of the repression phase define Lswitch as

Lswitch(θ;u, s) =
∑
g

(
u
(g)
r,0 − u∗g

)2
+
(
s
(g)
r,0 − s∗g

)2
. (2.5)

To summarize, veloVI solves the RNA velocity inference problem in a Bayesian setting
with VAEs. This modeling choice facilitates model flexibility as parameter optimization
is not tied to a specific model formulation, scalability due to recent advances in deep
learning, and uncertainty quantification through the Bayesian formulation. Additionally,
veloVI can estimate RNA velocity for held-out data; comparing the original and shuffled
expression patterns of a given gene, for example, reveals structural insight related to
model applicability126.

2.5. Analysis of time-resolved sequencing data

With decreasing sequencing costs and simplified experimental workflows, single-cell da-
tasets have become more diverse; common dataset size has increased38, and measuring
samples at distinct time points for studying dynamic, non-steady state systems has
become standard109,197,236–238. While this advancement offers a more complete view of
the underlying processes, it poses new problems: Cell evolution needs to be mapped
based on intra and inter-time point information. However, neither pseudotime nor RNA
velocity inference explicitly incorporates the temporal information in their respective
modeling paradigms.

Leveraging temporal information for pseudotime inference

Asynchronous differentiation results in similar cell states in consecutive time points;
mature cells at an earlier stage correspond to less mature cells within a later stage.
However, due to batch effects, classical neighbor graphs tend to neglect this information
and focus on intra-time point similarity alone. To induce inter-time point connectivities,
Harmony239 identifies mutual nearest neighbors196 - cells from different time points that
are in each other’s neighborhood - to build an augmented nearest neighbor graph; the
augmented graph acts as input for classical pseudotime methods operating on graphs
like Palantir97. However, Harmony does not overcome the limitations of pseudotime
inference even though it incorporates temporal information into TI. Alternative methods
try to overcome batch effects manifested in the kNN graph through relative information
content (WNN67) or construct a graph that is balanced across all batches of the data;
however, these approaches have not yet been tested and benchmarked in the context of
pseudotime estimation.
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Optimal transport infers cellular change across time points

Optimal transport (OT) provides a powerful tool for matching cells with their putative
progenitor state at a later time point in a probabilistic fashion. The ground-truth cell
distribution (Figure 2.7a) changes along experimental time but is unknown. Instead,
scRNA-seq approximates it through discrete samples (Figure 2.7b). This paragraph
focuses on briefly outlining the application of OT in the single-cell sequencing context,
Appendix E provides the mathematical theory of OT more in-depth.

Given observations of cells at two consecutive experimental time points, OT matches the
respective distributions probabilistically; Waddington-OT109 (WOT) was among the first
methods to apply unbalanced OT to scRNA-seq data: It associates each cell in an earlier
time point t1 with a set of putative future states in the later time point t2, assigning each
putative progenitor a probability (Figure 2.7c); coupling of consecutive time points and
propagating state changes through matrix multiplication of the transport maps allows
studying sequences of experimental time points.

Figure 2.7.: Optimal transport models differentiation processes. a. The
ground-truth distribution of cell states across different time points describes differentia-
tion processes. b. scRNA-seq approximates these distributions with discrete samples. c.
To connect cells at an earlier time point, OT matches a cell with its putative progenitor
states in the consecutive stage probabilistically (Appendix E).

WOT relies on the Sinkhorn algorithm240 to quantify probabilities of cellular state
change. The assigned probabilities minimize

⟨C, T ⟩+ τ1DKL [T1N2 ∥ a] + τ2DKL

[
T⊤1N1 ∥ b

]
− εH(T ), (2.6)

with Kullback-Leibler divergence DKL
241, cost matrix C, assignment matrix T , entropy

H, regularization parameters τ1, τ2, ε > 0, marginal source and target distributions a ∈
[0, 1]N1 and b ∈ [0, 1]N2 , and the constant, Nj-dimensional one vector 1Nj , respectively;
for WOT, the distance between the PCA representation of two observations represents
the transport cost between them although other latent representations are possible as
well111.
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WOT defines a uniform marginal distribution bj = 1
N2

, j ∈ {1, . . . N2}, and accounts
for cell proliferation and death at rates β and δ, respectively, from t1 to t2. An expo-
nential growth and decline models the distribution shift as a birth-death process g; the
normalized birth-death process defines a element-wise as

aj =
g(xj)

t1−t2∑N1
n=1 g(xn)t1−t2

, (2.7)

with j ∈ {1, . . . N1}. WOT accounts for uncertainty in estimates of g by choosing
marginal weights appropriately: A small τ1 allows variation from the marginal on the
source domain, and a large value τ2 favors matching the marginal distribution b; by
default, WOT sets τ1 = 1 and τ2 = 50.

Metabolic labeling for modeling RNA velocity

Metabolic labeling offers an alternative approach for introducing temporal resolution
to single-cell sequencing data. Nucleotide analogues label newly transcribed mRNA
molecules, offering temporally and mechanistically coupled modalities similar to nascent
and mature mRNA for RNA velocity as consecutive steps of the central dogma of molec-
ular biology229. Compared to discrete experimental time points, metabolic labeling
can reveal biological mechanisms on shorter time scales and distinguish regulatory ef-
fects178.

Dynamo107 infers cellular dynamics through a mechanistic model similar to the splicing
model (2.2) but based on metabolic labels. However, the method relies on a steady-state
assumption, only uses a small subset of cells for parameter inference, and does not esti-
mate cell-specific rates. CellRank 2129 provides an alternative approach for estimating
the velocity field underlying the biological dynamics.

CellRank 2’s approach for kinetic rate estimation works with pulse and chase exper-
iments127: Pulse experiments label n cell cultures at times tj , j ∈ {1, . . . , n} with
tj < tj+1. Alternatively, chase experiments expose cells to nucleoside analogues long
enough to guarantee that all transcripts are labeled before washing them out at times
tj , j ∈ {1, . . . , n}. Both types of experiments sequence cells at a single time tf , defining

the labeling time as τ
(j)
l = tf − tj .

CellRank 2 estimates cell-specific transcription and degradation rates based on pulse
and chase experiments. The method assumes that for each gene,

r(t) = r0e
−γt +

α

γ

(
1− e−γt

)
describes the change in mRNA levels r with transcription rate α and degradation rate γ;
the temporal relationship solves an ODE similar to (2.2). Assuming mRNA abundance
changes according to the proposed model, pulse and chase-specific descriptions arise from
the different experimental setups; the number of labeled transcripts rl is 0 and r0 for
pulse and chase experiments, respectively. CellRank 2, thus, infers model parameters α,
γ and r0.

Inferring model parameters is a two-step process: First, for each gene g and cell j, the

inference scheme includes the set of nearest neighbors N (k)
g that contains 20 non-trivial
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expression counts in g. Based on these observations, an optimization routine minimizes
the quadratic loss

ℓ(r
(j,g)
0 , α(j,g), γ(j,g)) =

∑
k

∑
j∈N (k)

g

[rl,j(τ
(k)
l )− 1(j ∈ C)r(c)l (τ

(k)
l |α, γ, r0)

− 1(j ∈ P)r
(p)
l (τ

(k)
l |α, γ)]2.

Here, superscripts (p) and (c) indicate the type of experiment, and 1 denotes the in-
dicator function. Importantly, at least two (three) labeling times guarantee parameter
identifiability for pulse (chase) experiments. Compared to a previous approach127, Cell-
Rank 2’s framework focuses on total RNA, thereby avoiding the common pitfalls of
identifying unspliced and spliced reads, and does not require a pseudotemporal ordering
of cells.

2.6. Cellular fate mapping

Pseudotime, RNA velocity, and vector fields inferred on time-resolved sequencing data
recover the underlying vector field of biological differentiation processes. However, such
vector fields alone are merely descriptive instead of disentangling and quantifying the
mechanisms driving cellular differentiation. Methods assigning cellular fate potential
aim to infer biological mechanisms and associate key putative regulatory drivers; these
methods identify initial and terminal states, assign cellular fate to define corresponding
lineages, and associate potential drivers. For each data view, dedicated methods have
been developed.

Cellular fate mapping with pseudotime-informed Markov chains

Pseudotime estimation ranks cells relative to each other along the differentiation land-
scape but does not assign cellular fate: To bridge this gap, Palantir97 assumes that
paths in kNN graphs correspond to possible differentiation paths and combines kNN
graphs with pseudotime values; to approximate the phenotypic manifold accurately with
a neighbor graph, an adaptive kernel200 corrects weights based on the distance to the l-th
neighbor - the scaling factor σ. For fate mapping, the algorithm relies on this neighbor
graph and pseudotime estimates to (1) bias graph edges towards increased differentiation
potential and (2) define transition probabilities between states, defining a Markov chain
to infer terminal states and fate probabilities toward them (Figure 2.8a).

Neighbors with larger pseudotime values compared to a given observation pose likely
future progenitors of that state. Given two observations j and k with pseudotimes tj
and tk, respectively, Palantir prunes the edge ejk if the difference between the pseudotime
values exceeds the scaling factor σj . Following, the algorithm normalizes edge weights
wjk for each observation j over its neighborhood to define transition probabilities pjk.
These probabilities induce a Markov chain, where pjk is the probability that cell j evolves
into the state of cell k.

Terminal states do not differentiate further and random walks, thus, terminate in a
perfect scenario; single-cell data is noisy and the Markov chain construction implicitly
includes estimation uncertainty, however. Nonetheless, the biased neighbor graph skews
the stationary distribution of the Markov chain toward states close to terminal by con-
struction. Similarly, terminal states reside at the boundaries of the manifold based on
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the definition of pseudotime. Palantir, thus, defines terminal states as the intersection
of extrema in the stationary distribution and diffusion components; absorption proba-
bilities toward terminal states define fate probabilities.

Figure 2.8.: Fate mapping for single-cell sequencing data. a. Palantir97 biases
the edges of a kNN cell-cell similarity graph towards increased pseudotime to assign
transition probabilities that induce a Markov chain. b. Similarly, CellRank116 relies
on RNA velocity estimates to bias the kNN graph by comparing empirical velocity
estimates to RNA velocity. c. OT-based approaches such as WOT109 and moscot111

assign transition probabilities to putative future cell states in consecutive stages, defined
by experimental time, for example.

RNA velocity-based inference of directed, probabilistic state-change trajectories

Pseudotime inference requires a root state and does not offer directed information; RNA
velocity overcomes these limitations by estimating a vector field without a pre-defined
root cell. CellRank116 combines the vector field with cell-cell similarity measures to
recover initial and terminal states using Markov chains. Similar to Palantir, CellRank
first estimates transition probabilities before inferring terminal states.

CellRank assigns transition probabilities by comparing RNA velocity estimates to state
change estimates derived from a kNN (Figure 2.8b). For each observation j, the method
first computes a displacement vector to each of its neighbors. Following, the transformed
and normalized correlation between the RNA velocity of cell j and the putative state
shifts quantifies how likely a given neighbor is the future state of cell j. This transition
matrix T induces a Markov chain but is noisy, making it challenging to derive biological
insight directly from it. Biological processes exhibit inherent structure, however, as
cells differentiate from one state to another. CellRank makes use of this observation by
coarse-graining the transition matrix.

The high-dimensional cell-cell transition matrix includes clusters of cells, so-called macro-
states, recapitulating biological state changes. CellRank projects the original transition
matrix T onto a coarse-grained representation with Generalized Perron Perron Cluster
Analysis (GPCCA)242–244. GPCCA assigns each cell a soft macrostate membership by
maximizing membership crispness245; an invariant subspace projection defines the tran-
sition probabilities between macrostates. CellRank either automatically defines terminal
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states based on macrostate stability or manual selection, and assigns fate probabilities
through absorption probabilities.

Optimal transport for mapping cell differentiation in time-resolved data

Non-steady state systems change over time and, thus, require samples from multiple time
points to study the full system. Optimal transport provides a framework for matching
likely ancestor-progenitor couples across consecutive time points (Figure 2.8c). These
couplings inform cellular fate mapping with WOT109. For inference, WOT109 assumes
cellular states change in a Markovian fashion, similar to Palantir97 and CellRank116.
Optimal transport maps πtj ,tj+1 between consecutive time points, thus, define the long-
range coupling γj,j+k between arbitrary times tj and tj+k by successively applying the
transport maps

γj,j+k = πj,j+1 ◦ πj+1,j+2 ◦ · · · ◦ πj+k−1,j+k. (2.8)

Pushing a cell set through γj,j+k quantifies its descendants, pulling it through γj,j+k its
ancestors. T-test-based differential expression analysis of gene expression trends along
trajectories identifies putative lineage drivers.

Geometric vector field properties for terminal state identification

Metabolic labels pose an alternative approach for adding temporal information in scRNA-
seq experiments. Dynamo107 offers a framework to recover the vector field along the
phenotypic manifold and identify the initial and terminal states of the dynamical sys-
tem. First, sparseVFC246 approximates the continuous vector field; the method builds
on reproducing kernel Hilbert spaces, characterized by kernel basis functions. In a sec-
ond step, dynamo computes attractors of the recovered vector field to assign initial and
terminal states. Putative drivers of each lineage are characterized as genes deviating
most from the optimal transition path between two states - the least action path247,248;
the deviation is defined as the squared error between gene expression at a sample time
and the start of the trajectory.

Generalized fate mapping for multiview single-cell data

Following CellRank’s modeling paradigm, CellRank 2129 generalizes the concept to in-
clude pseudotime and cell potential estimates, real-time information, or metabolic la-
bels. Importantly, the framework is modality agnostic, modular, and scales to atlas-sized
datasets consisting of millions of cells; estimating cell-cell transition probabilities is de-
coupled from their analysis (Figure 2.9). As such, new data modalities such as lineage
tracing249, chromatin-derived metrics250, and spatiotemporal measurements111 extend
the framework seamlessly.

The PseudotimeKernel generalizes pseudotime-based fate mapping following the Palan-
tir approach - biasing similarity-based neighbor graphs towards increased pseudotime.
Given the adjacency matrix, the PseudotimeKernel decreases edge weights if the pseudo-
time value of a reference cell j succeeds the estimate for a neighbor k. Similar to previous
approaches, the procedure downweighs edges based on a hard threshold (Palantir97) or
continuously (soft thresholding; VIA251); hard thresholding removes most edges towards
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Figure 2.9.: CellRank 2 provides a framework to study single-cell fate deci-
sions using Markov chains in a unified fashion. CellRank 2129 decomposes the
trajectory inference into cell-cell transition inference with kernels and analysis thereof
with estimators. Estimators infer initial and terminal states, quantify fate probability
and identify lineage-correlated genes; to incorporate multiple views, kernels can be com-
bined. Blue coloring indicates features originally proposed in CellRank 1116 and orange
coloring new features. Figure reproduced and adapted from the original CellRank 2
publication129.

neighbors in the pseudotemporal past of the reference cell, while soft thresholding up-
dates edges based on weights

w(∆t) =


2

ν
√

1+eb∆t
, ∆t < 0

1, ∆t ≥ 0,

with difference in pseudotime ∆t and parameters b and ν.

The CytoTRACEKernel estimates a stemness potential following the CytoTRACE99

approach (Section 2.3) to skew neighbor graph edges similar to the PseudotimeKernel.
Compared to the original method, CellRank 2 adapts the imputation step to yield compa-
rable results but scale computation to millions of cells. The CytoTRACE score c assigns
immature cells values close to 1, and mature observations values close to 0. To employ
the biasing scheme of the PseudotimeKernel, CytoTRACEKernel, thus, transforms the
score into a corresponding pseudotime via

pcyt = 1− c.
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The RealTimeKernel combines inter with intra-time point connections to leverage
the information from different experimental time points and asynchronous biological
behavior contained in a single measurement. Considering time points j, OT couples
observations between consecutive time points tj and tj+1 with WOT109 or moscot111,
and cell-cell similarity quantifies the dynamics within time point. The RealTimeKer-
nel combines both sources into a single cell-cell transition matrix with block structure:
The diagonal includes the similarity-based transitions, the first off-diagonal the OT es-
timates.

Unifying the within and across time point information includes row-normalization, weight-
ing intra and inter-time point connections with a global factor, and thresholding transi-
tion probabilities to guarantee scalability; thresholding is necessary as entropic regular-
ized OT yields dense transport maps although mostly negligible entries. By considering
dynamics within and across the RealTimeKernel recovers biological insight more faith-
fully than approaches focusing on a single source of information129.

Metabolic-labelling-based fate mapping is another feature included in CellRank 2,
closely related to CellRank’s116 RNA velocity-based trajectory inference. Instead of es-
timating RNA velocity from unspliced and spliced mRNA abundances, CellRank 2 uses
the velocity field that its routine for metabolic-labeling-informed RNA velocity estima-
tion provides. Compared to dynamo107, CellRank 2 does not rely on a deterministic
framework to infer cellular trajectories.

Different methods for inferring cellular fate focus on alternative data views and require
specific properties of sequencing data. However, each method first quantifies cell-cell
transition probabilities, to then infer differentiation direction, terminal states, and reg-
ulatory mechanisms at branching points towards them. CellRank 2 unifies cellular fate
mapping under this paradigm, making method-specific approaches applicable to more
general settings.
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3. Publication summary

This section summarizes the two main publications presented in this dissertation. Equal
contribution is indicated by an asterisk.

3.1. Publication 1: Deep generative modeling of transcriptional
dynamics for RNA velocity analysis in single cells

The paper titled Deep generative modeling of transcriptional dynamics for RNA velocity
analysis in single cells has been published as an Article in Nature Methods in 2024. The
full citation is

Adam Gayoso *, Philipp Weiler *, Mohammad Lotfollahi, Dominik Klein, Justin Hong,
Aaron Streets, Fabian J. Theis, Nir Yosef Deep generative modeling of transcriptional
dynamics for RNA velocity analysis in single cells. Nat Methods 21, 50-59 (2024)

Contribution

I conceptualized the study with Adam Gayoso and Mohammad Lotfollahi. I contributed
to conceptualizing the statistical model, its design and implementation, and quantifying
model uncertainty. I designed and implemented model extensions to highlight model
flexibility by fitting a model including time-dependent transcriptional rates. Similarly,
I implemented analysis methods to evaluate model performance compared to other ap-
proaches and notions of ground truth. I performed the analyses to highlight veloVI’s
capabilities and better performance compared to existing methods with contributions
from Adam Gayoso. I wrote the manuscript with Adam Gayoso, Mohammad Lotfollahi,
Fabian Theis, and Nir Yosef.

Additional supplementary material

Additional supplementary material is available at the publisher’s website (https://doi.
org/10.1038/s41592-023-01994-w). Code to apply veloVI and reproduce the findings
of the study are publicly available

� veloVI: https://github.com/YosefLab/velovi

� veloVI reproducibility: https://github.com/YosefLab/velovi_reproducibility

Summary

Single-cell RNA sequencing data has enabled studying the cellular heterogeneity of bio-
logical processes consistently. To recover the trajectories of the underlying mechanisms,
the concept of RNA velocity relates nascent and mature mRNA molecules detected in
standard scRNA-seq experiments via a mechanistic model (Section 2.4). However, the
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most frequently used models do not carry notions of estimation uncertainties or means
to assess if modeling assumptions are met; their inference framework is also tied to a
specific splicing model, not easily generalizable if at all.

To address model uncertainty, my collaborators and I have reformulated RNA velocity
inference in a deep learning-based setting using recent advances in variational inference
(Section 2.4 and Appendix B). Our model veloVI makes two assumptions: (1) A process
depending on transcription, splicing, and degradation rates, a latent time and transcrip-
tional state generates nascent and mature mRNA for each gene, and (2) a latent, low
dimensional cell representation ties the latent time of genes. My co-authors and I have
modeled this process using VAEs: The encoder takes preprocessed unspliced and spliced
counts as input, and outputs the cell representation that encodes the latent representa-
tion; these latent factors act as the input of a neural network parametrizing latent time.
Stochastic gradient descent optimizes the likelihood of unspliced and spliced abundances
as a function of the latent time, probabilistic state assignment, and kinetic rates.

Modeling the splicing dynamics with VAEs provides a posterior distribution over ve-
locity estimates, quantifying intrinsic and extrinsic uncertainties of the estimates. The
intrinsic uncertainty emerges from repeatedly sampling cell velocity, and extrapolating
future cell states based on these samples quantifies extrinsic uncertainty. I have also
relied on velocity estimates to define cell-cell transition probabilities and score genes
by how well velocities and predicted future states align - the velocity coherence. I
showed how these metrics relate to regions of putative fate decisions during pancreatic
endocrinogenesis.

veloVI models splicing kinetics via neural networks and can, therefore, assess data not
seen during model training. We have reasoned that model fits between the original
cell order and a random permutation are comparable if the underlying system is in
steady-state or the corresponding gene expression does not contain enough information
for robust inference, due to low coverage or high noise, for example. I have applied
this permutation score to five positive and four negative control cases, revealing distinct
distributions of the gene-specific scores. This baseline comparison will aid in evaluating
the applicability of future datasets for RNA velocity analysis.

My collaborators and I have devised veloVI in a model-agnostic way; the framework
is, thus, easily extensible to more complex dynamics. I have highlighted this feature
via splicing dynamics with time-dependent transcription, allowing for monotonically
increasing or decreasing rates. I have validated the improved data fit through decreased
mean squared errors on four datasets used in prior work on RNA velocity, and have shown
how the model explains linear phase portraits better than the original formulation.

Benchmarking new approaches for RNA velocity routinely relies on visualizing velocity
streams in low dimensions or on comparing velocity estimates in cell neighborhoods; the
former lacks statistical power and is sensitive to feature selection, the latter assumes
similar change of cells with similar gene expression profiles, an assumption violated
during fate priming, for example. As an alternative approach, I have developed an
evaluation scheme based on the cell cycle, a system for which a ground-truth cellular
ordering exists; the given ordering gives a proxy for gene expression change.

To summarize, veloVI is an extensible modeling framework that outperforms previously
proposed methods and provides metrics that can aid downstream data analyses.
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3.2. Publication 2: CellRank 2: Unified fate mapping in
multiview single-cell data

The paper titled CellRank 2: unified fate mapping in multiview single-cell data has been
published as an Article in Nature Methods in 2024. The full citation is

Philipp Weiler *, Marius Lange *, Michal Klein, Dana Pe’er, Fabian Theis CellRank 2:
unified fate mapping in multiview single-cell data. Nat Methods (2024)

Contribution

I conceptualized the study with Marius Lange and Fabian Theis. I designed and imple-
mented the inference scheme for metabolic labeling data, and contributed to the imple-
mentation of CellRank 2. I performed all data analyses with input from all co-authors:
I recovered the differentiation process of human hematopoiesis and mouse endodermal
development, identified a putative progenitor state of medullary thymic epithelial cells,
and delineated differentiation trajectories to pinpoint regulatory strategies in an intesti-
nal organoid system; for each dataset, I compared the proposed techniques to an RNA
velocity-based workflow. To compare alternative approaches consistently, I developed
two metrics and applied them in my data analysis. I wrote the manuscript with Marius
Lange, Fabian Theis and Dana Pe’er.

Additional supplementary material

Additional supplementary material is available at the publisher’s website (https://
doi.org/10.1038/s41592-024-02303-9). Code to apply CellRank 2 and reproduce
the findings of the study are publicly available

� CellRank 2: https://github.com/theislab/cellrank

� Data relevant to the study:
https://doi.org/10.6084/m9.figshare.c.6843633.v1

� CellRank 2 reproducibility:
https://github.com/theislab/cellrank2_reproducibility

Summary

Trajectory inference methods have uncovered numerous biological insights but are typi-
cally limited to snapshot scRNA-seq data and cannot include relevant, orthogonal infor-
mation such as experimental time points, multimodal measurements, RNA velocity, and
metabolic labeling (Section 2.3). Although methods incorporating this information exist
(Section 2.4 and 2.5), they are tied to a specific modality, rendering them inapplicable
when modeling assumptions are violated.

My collaborators and I have developed CellRank 2 to unify fate mapping in a data
view independent, robust, and scalable framework, scaling to millions of cells: Kernels
quantify cell-cell transition probabilities based on which estimators identify initial and
terminal states, estimate cellular fate, and perform other downstream tasks such as
identifying putative lineage drivers (Section 2.6).

Pseudotime is a well-studied method ranking cells relative to each other along a dif-
ferentiation process (Section 2.3). We have developed the PseuodtimeKernel to bias
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edges of cell-cell similarity graphs towards increased differentiation potential, allowing
us to consistently deduce initial and terminal states and fate probabilities. I applied the
PseudotimeKernel to a dataset of human hematopoiesis where RNA velocity inference
fails. This analysis included automatically inferring the system’s initial and terminal
states, and highlighting how CellRank 2 correctly identifies drivers of the plasmacytoid
dendritic cell lineage by correlating fate probabilities with gene expression.

Although pseudotime is a powerful approach, its model requirements or assumptions
may not always hold; a root state identifying the start of a differentiation process is
not always known, for example. In such cases, stemness scores provide an alternative
quantification metric (Section 2.3). CytoTRACE computes such a potential based on
the assumption that less mature cells express more genes, an assumption validated on
overall 42 datasets (Section 2.3). Crucially, the original algorithm failed to scale to large
dataset size, though. To make the method applicable to such data nonetheless, we have
developed a computationally efficient approach implemented in the CytoTRACEKernel
that yields comparable results and scales to millions of cells (Section 2.6). I have studied
human embryoid bodies using the CytoTRACEKernel to recover terminal states and
fate decisions towards them; my analysis focused on endoderm development for which I
recovered lineage drivers and activation patterns.

Experimental time points provide valuable information in non-equilibrium systems with
successively emerging cell types. OT has previously been applied in the form of Wadding-
ton OT (WOT) to match cells with putative progenitors across time points (Section 2.5
and Appendix E). This approach, however, neglects valuable intra-time point transitions.
The RealTimeKernel incorporates both intra and inter-time point information via tran-
scriptomic similarity and OT, respectively, into a single cell-cell transition matrix (Sec-
tion 2.6). I have validated the importance of considering intra-time point information
on datasets of mouse embryonic fibroblasts (MEF) and pharyngeal endoderm develop-
ment; without intra-time point transitions, not all terminal states of the MEF system
were identified. I have recovered the terminal states present in the pharyngeal endoderm
development dataset and analyzed cell maturation into medullary thymic epithelial cells
(mTECs) in detail. This analysis has revealed a cluster of putative progenitor states
and recovered known lineage drivers more accurately than classical WOT.

In addition to ignoring dynamics within a time point, WOT studies fate priming on
a discrete domain as it is constrained to distinct time points. The RealTimeKernel,
however, enables a continuous view. To make use of this potential, I have developed an
inference scheme for a real-time-informed pseudotime and highlighted its utility on the
MEF data.

Metabolic labels are an alternative experimental way to generate time-resolved single-
cell data (Section 2.1). I have devised a computational method to estimate cell and
gene-specific kinetic rates of splicing dynamics (Section 2.4) and have applied it to study
mouse intestinal organoids; I have used the estimated velocity similarly to the way
CellRank 1 employed RNA velocity via the VelocityKernel. The developed approach
identified all terminal states and has ranked known lineage drivers better than an existing
approach estimating velocities from metabolic labels, or classical RNA velocity. My
analysis also pinpointed regulatory mechanisms - cooperative and destructive - governing
fate priming.

To compare different approaches in general, I have developed two metrics: Terminal
state identification (TSI) and cross-boundary correctness (CBC). The TSI score quan-
tifies how accurately a given kernel recovers terminal states compared to an optimal
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scenario. For each CellRank 2 kernel, I have used the TSI score to show that the used
data view leads to better results than relying on RNA velocity. The CBC score is appli-
cable if a differentiation order is known a priori and quantifies how well a given kernel
recapitulates these known state transitions; correlating extrapolated state changes with
an empirical estimate thereof defines the metric. I have computed the CBC score for the
PseudotimeKernel and VelocityKernel and have shown that the pseudotime approach
consistently yields statistically better results.
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Single-cell sequencing protocols have evolved significantly over the last decade, leading
to larger and more complex datasets; corresponding computational advances make use
of these technological developments to recover cellular trajectories and fate, for example.
Although existing methods have proven powerful in many settings, they leave room for
improvement: Approaches focus on specific data aspects and do not generalize to newly
emerging data modalities, or include restrictive modeling paradigms. This dissertation
focused on facilitating RNA velocity inference and unifying fate mapping in a data-view
agnostic fashion.

4.1. Discussion

RNA velocity inference through variational inference

RNA velocity has celebrated great success since its introduction100 and is readily applied
to existing scRNA-seq datasets as it does not require changes to experimental workflows.
However, existing models make restrictive modeling assumptions, fail to quantify infer-
ence uncertainty, and do not easily generalize to more complex but accurate descriptions
of splicing dynamics. To overcome these limitations, I developed veloVI, a deep genera-
tive model for inferring RNA velocity.

Compared to previous approaches100,101, veloVI does not employ classical optimization
techniques but relies on variational inference and neural network architectures to es-
timate RNA velocity, instead. This alternative model formulation entails estimation
uncertainty, decoupling inference from a specific dynamic model, and reduced sensi-
tivity to data preprocessing100,103–106,252. I have shown how veloVI performs favor-
ably to established methods100,101 and have constructed metrics facilitating downstream
data analyses: Intrinsic and extrinsic uncertainty characterize estimates on the level of
cells, velocity coherence on a gene level, and the permutation score genes and entire
datasets.

Modeling splicing dynamics is an ongoing challenge, with emerging data modalities and
more complex models leading to more faithful descriptions of the underlying kinetics - a
consistent, statistically significant benchmarking pipeline for model assessment does not
exist, though. Instead, model comparisons traditionally rely on comparing projections of
high-dimensional vector fields onto low-dimensional data representations, or comparing
velocity estimates in cell neighborhoods. I have developed an alternative approach that
scores RNA velocity estimates on cell cycle data, a well-studied, unidirectional system
for which fluorescent ubiquitination-based cell-cycle indicators define ground-truth cell
orderings experimentally127,128.

While developing veloVI during my dissertation, competing approaches for RNA ve-
locity inference have been proposed: VeloAE253 uses an autoencoder architecture with
graph convolutional networks (GCNs) in the encoder and an attention mechanism in
the decoder but defines RNA velocity in the latent embedding; the estimates, therefore,
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lack mechanistic interpretation and interpretable links between latent factors and genes.
DeepVelo254, another GCN-based model, includes RNA velocity aspects but relies on
pseudotime estimates instead of modeling time explicitly. Other approaches employ
neural ODEs255 or focus on the cell cycle256,257. VeloVAE, a conceptually similar ap-
proach to veloVI, does not provide metrics aiding RNA velocity analysis; the alternative
framework also estimates cell-specific latent times, thereby aggregating simultaneously
occurring but orthogonal processes such as the cell cycle and differentiation. Similarly,
improvements introduced by veloVAE still result in spurious state transitions with low
state uncertainties. The work introducing veloVI126 includes an exhaustive comparison
of veloVI with alternative approaches.

veloVI facilitates RNA velocity analysis through robust, scalable and uncertainty-aware
inference, model flexibility, and evaluation metrics. As such, the framework improves
upon previous work. However, the current modeling approach still includes restrictive
modeling assumptions. First, the default dynamical system assumes constant rates of
transcription, splicing and degradation. Second, the model omits gene-gene interactions.
Thus, RNA velocity inference fails when these assumptions do not hold approximately.
Conversely, alternative methods for estimating cell differentiation may work, motivating
a general fate-mapping approach to leverage different vector fields inferred.

General fate mapping framework for single-cell data

Trajectory inference methods reconstruct biological processes from single-cell sequenc-
ing data. Dedicated algorithms assign pseudotime or stemness potentials, infer RNA
velocity, or leverage temporal information from experimental time points or metabolic
labels. Importantly, methods for mapping cell fate are tied to a specific modality and
do not easily generalize if at all. Consequently, new data views and modalities require
adapting existing methods or conceptualizing new ones.

I have developed CellRank 2 to recover cellular trajectories and fate priming consistently
in a unified framework extensible to newly emerging data views. CellRank 2’s framework
consists of two main parts, separating the inference of cell-cell transitions from their
analysis: Kernels estimate transition probabilities, and estimators use this information
to recover biological insight like initial and terminal states or fate probabilities.

Different data aspects allow quantifying cell transitions: The PseudotimeKernel and
CytoTRACEKernel bias edges of cell similarity graphs towards increased pseudotime
and differentiation potential, respectively, for example. In the accompanying publica-
tion of this cumulative thesis129, I showed how the PseudotimeKernel outperforms an
RNA-velocity-based workflow when recovering the lineages of the human hematopoi-
etic system. Similarly, the CytoTRACEKernel improves upon a previously proposed
method99 to scale data analyses to millions of cells. I used the CytoTRACEKernel
to study human embryoid body development and the maturation of the endoderm in
particular.

Single-cell sequencing assays provide snapshot data of typically asynchronous systems;
experimental time points and metabolic labels add an essential temporal component
when studying systems not in homeostasis. The RealTimeKernel combines inter-time-
point connections via OT with intra-time-point transitions based on cell-cell similarity -
a modeling choice that leads to improved performance on a dataset of mouse embryonic
fibroblasts129; the transition matrix of the RealTimeKernel can further function as the
basis for constructing a real-time-informed pseudotime129. To compare the proposed ap-
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proach to a classical OT-based workflow, I studied medullary thymic epithelial cell matu-
ration. In brief, the CellRank 2 pipeline identified a cluster of putative progenitor states
and recovered known lineage drivers and transcription factors more faithfully129.

Metabolic labels offer an alternative experimental option for adding temporal infor-
mation to single-cell measurements. I have devised an inference scheme to estimate a
vector field based on the metabolic labeling information and applied it to murine in-
testinal development. Compared to competing approaches, the new method inferred all
terminal states and ranked known lineage drivers consistently higher129. Recent exper-
imental advances stress the importance of reliable estimation based on metabolically
labeled mRNA; improvements include throughput175,176,258,259, applications to in vivo
systems260,261 and paired alternative modalities261,262. Methods developed in parallel
to my approach, do not estimate transcription rates and assume constant degradation
rates across all cells258 or do so through post-processing steps and rely on deterministic
downstream analyses263.

Different kernels make different assumptions and are, as a consequence, potentially ap-
plicable to different datasets. To compare kernel performance, I have conceived the
terminal state identification (TSI) and cross-boundary correctness264 (CBC) metric; the
TSI metric quantifies how well a kernel identifies terminal states compared to an optimal
identification scheme, and the CBC score how accurately a kernel recapitulates a priori
known cell state transitions. To use different data views at the same time, kernels can
be combined via a global weighting. Such combinations enable harvesting the power of
complementary views.

CellRank 2 is a robust, modular and scalable framework, extensible by different data
views. Existing studies relied on these features to incorporate spatio-temporal111 and
lineage-tracing information249, or combined kernels to study the developmental processes
in epicardioids265 and to reveal the developmental history during human cortical gyrifi-
cation250. Although CellRank 2-based analyses have recapitulated known and recovered
novel biology, the identification of putative driver genes is correlation-based but not
causal. Additionally, CellRank 2’s approach for resolving terminal states does not re-
veal the transition paths themselves or the speed of transitions. Future iterations of the
CellRank framework will have to address these shortcomings to help describe biological
processes more robustly and in greater detail.

4.2. Outlook

Multi-modal RNA velocity

Splicing kinetics neither start with unregulated transcription nor end with spliced mRNA.
Instead, chromatin accessibility and gene regulation dictate transcription, and spliced
mRNA translates proteins229; spatial context and molecular signaling affect the under-
lying dynamics similarly. However, the RNA velocity model102 employed by veloVI and
related approaches does not consider these additional modalities. A multimodal model is
essential to a more complete and accurate description of the dynamics regulating mRNA
levels.

Traditional scRNA-seq protocols capture only the transcriptome but more advanced as-
says include additional information relevant to transcriptional dynamics. Chromatin
accessibility, for example, poses an additional, orthogonal view to gene expression, mea-
surable in well-established protocols49–52, building on the Assay for Transposase Ac-
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cessible Chromatin (ATAC). However, these assays do not yield count data. Instead,
fragments quantify chromatin accessibility, entailing additional challenges: The dimen-
sion of ATAC data is even higher, more sparse and does not translate into interpretable
and quantifiable data like gene expression counts; dedicated computational approaches
embed RNA and ATAC information into a joint low-dimensional latent space266–268,
construct low-dimensional factors72,269, or compute metacell aggregates270. Defining the
distribution generating ATAC data is also not as straightforward as for the gene expres-
sion case that relied on biophysical arguments271–273. The new data modality, thus, does
not directly integrate into the existing modeling framework.

Despite the challenges posed by ATAC data, several computational methods have incor-
porated the data view into trajectory inference. Pseudotime inference based on neighbor
graphs from shared embeddings naturally includes the new modality; I exemplified this
approach in my analysis of human hematopoiesis with CellRank 2’s PseudotimeKer-
nel129. Alternatively, domains of regulatory chromatin (DORCs) define putative future
RNA states, thereby offering estimates of cellular change52,274; however, this approach
relies on pseudobulking and difference vectors derived from low-dimensional data repre-
sentations.

Two models - to the best of my knowledge - have integrated chromatin information into
RNA velocity inference. MultiVelo275 generalizes the EM model to a three-dimensional
ODE, modeling splicing kinetics based on chromatin accessibility, and unspliced and
spliced RNA; the sum of accessibility at the promoter and linked peaks for a gene defines
chromatin accessibility, an estimation not yet validated. The model suffers from similar
limitations as the EM model, though, such as qualitatively different phase portraits in
simulated data compared to real-world examples. Additionally, MultiVelo assumes that
chromatin accessibility changes translate into gene expression changes, a simplistic causal
relationship between regulatory dynamics. Gene regulation is more complex as multiple,
interlinked features confound the influence of chromatin states; scKinetics276 attempts to
model this more accurate depiction of gene regulation to infer gene regulatory relations
and cell velocities simultaneously.

Chromatin accessibility is part of the onset of the central dogma of molecular biology,
proteins form part of the end. Recent technological advances allow the capturing of
related information through sequencing. CITE-Seq43, for example, captures cell surface
proteins in parallel to gene expression. Different approaches tried to include the pro-
tein information into the splicing model277,278 but faced limitations: In previous work,
I showed how a straight-forward extension of the steady-state model and additional es-
timation of protein acceleration leads to spurious transitions - B to CD4+ T cells in
cord blood mononuclear cells - caused by excessive data imputation, generating phase
portraits artificially278. Another challenge is the shift in data distribution between the
different modalities. Measurements of cell surface proteins exhibit different properties
compared to scRNA-seq measurements and, thus, require different data preprocessing;
example steps include centered log-ratio transformation43 or denoised and scaled by back-
ground279, resulting in different phase portraits278. Additionally, these transformations
are non-linear and, consequently, require non-trivial reformulations of the dynamical
systems.

It is challenging to include cell surface proteins in translation dynamics in general as
they may bind to cells long before mRNA transcription sets in; intracellular proteins
are likely to correlate better with the mRNA level and production cycle. The develop-
ment of assays profiling intracellular proteins at the single-cell level either in isolation
or in combination with gene expression48,280,281 may provide the relevant data for a
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multimodal model describing translation dynamics but do not eliminate all problems:
Assays for paired measurements are technically challenging and, thus, low throughput,
and single-cell proteomics measurements yield mass spectrometry instead of count data.
Consequently, models including intra-cellular proteins will have to account for varying
preprocessing steps, potential data shifts resulting from varying sensitivity and combin-
ing mass spectrometry with count measurements in a coherent manner.

Measuring all major quantities comprising splicing kinetics is not yet possible. However,
experimental workflows measuring more than two views exist53,54. Developing such tech-
nologies further will ultimately provide the necessary data but the discussed challenges,
i.e., sensitivity, preprocessing, and data representation, still require computational solu-
tions.

Alternative extensions of RNA velocity to additional modalities include metabolic labels
and spatial context. Others and I have proposed approaches to include metabolic label-
ing information107,258,263, but leave room for improvement: Deep generative modeling
will facilitate model uncertainty and scalability, aligning cells along the differentiation
process requires latent time inference, and gene regulation inference necessitates more
accurate models. Zman-seq282 provides similar information to metabolic labeling assays
by recording transcriptional dynamics through fluorescent pulse labels. These labels
approximate the time circulating immune cells have been exposed to a tissue. As such,
the given data is similar to the pulse-chase data I relied on for estimating RNA velocity
from metabolic labels.

Spatial dependencies and molecular signaling may offer alternative information and pri-
ors for modeling gene-gene interactions; spatial assays have matured, reaching sub-
cellular resolution55–58,283, and methods for estimating communication events compu-
tationally exist284–288. Although spatial measurements do not distinguish between un-
spliced and spliced counts, they provide spatial proximity estimates or RNA velocity
based on nuclear export283. Importantly, spatial data can provide different flavors of
RNA velocity: In steady-state systems such as the intestine, cellular change occurs
along a spatial dimension that implicitly encodes time; immune infiltration may provide
similar information. Modeling non-steady state systems such as normal development
will require spatio-temporal resolution to describe the underlying processes accurately,
entailing more complex processing steps including batch correction or sample align-
ment.

To conclude, technological advances will facilitate multi-modal RNA velocity models
through orthogonal information. However, these model extensions are not straightfor-
ward as they require alternative preprocessing pipelines and corresponding model and
inference adaptations, for example.

Characterization of cell state transitions

Terminal cell states define lineages but multiple paths along the phenotypic manifold
can lead to a given terminal state, such as the gut tube in murine systems236,238,239.
CellRank 2’s kernels quantify cell-cell transition probabilities, and its GPCCAEstimator
infers terminal states and assigns fate probabilities. The estimator does not resolve
probable paths towards these terminal states, however. Transition path theory289–291

may offer a powerful additional step to quantify the rate at which transition paths occur
between states identified with the existing estimator.

The speed at which cell state transitions occur is another aspect not captured by the
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GPCCAEstimator - the estimator only assigns fate probabilities to observations, not how
stable the observation or its cell state is even though rare and fast transitions are relevant
in numerous biological systems91,109,292–294. Quantifying how transitory paths evolve will
give insight into putative fate choice and dysregulation, both relevant information for
designing intervention treatments. Combining cell density estimates from Mellon295, for
example, with fate probabilities may provide the relevant information, or help identify
and characterize terminal states.

Gene expression change within and across lineages is related to the rate of transitory
events and the speed at which they occur. A statistical framework to identify or relate
gene expression profiles along lineages with CellRank 2 does not exist, however. Instead,
putative driver genes emerge from correlating gene expression with fate probabilities;
analyses to identify regulatory relationships are manual and based on visual inspection of
expression cascades. For a more consistent and streamlined approach, different methods
identify genes differentially expressed across lineages296–298.

GPfates296 employs Gaussian mixture models to test differential expression, and BEAM297

checks if expression changes coincide with branching points; GPfates’ fits can potentially
yield more powerful insight if combined with fate probabilities assigned by CellRank 2,
and fate priming can be characterized better by comparing putative driver genes iden-
tified through BEAM to positions and fate probabilities of cells along the differentia-
tion process. However, GPfates and BEAM are not able to identify which parts along
trajectories are differentially expressed and cannot identify or characterize patterns.
TradeSeq298 attempts to overcome these limitations by identifying differential expres-
sion patterns within and across lineages. The algorithm defines statistical tests that rely
on pseudotime values and lineage weights assigned by classical TI methods. Instead,
CellRank 2’s fate probabilities are an alternative soft assignment to lineages based on
different data views. Additionally, more sophisticated tests for comparing gene pattern
relationships can pinpoint putative gene regulatory events. Finally, moving beyond pat-
terns in gene expression by incorporating multi-modal dynamics and coupling them with
gene patterns is an unanswered but critical problem to be solved.

Improved inference of cell transitions

CellRank 2 unifies fate mapping into a modular, robust, and scalable framework for mul-
tiview single-cell data. So far, pseudotime, developmental potential, experimental time
points, and metabolic labels inform inference of state change; related work incorporates
an alternative flavor of OT for biological systems in equilibrium299, lineage tracing249,
and spatio-temporal relations111. Different views can provide orthogonal information or
characterize state transitions that warrant further investigation.

Combining different kernels incorporates alternative views and can improve numerical
stability but transition matrices are combined globally, ignoring local nuances. However,
a kernel may provide robust and accurate estimates for a subset of a differentiation
process but estimates with less confidence or fail in other regions. Aggregating kernels
globally ignores such shortcomings and local differences. Instead, combinations based
on local weights - cell-wise or for each cell neighborhood or state, for example - can
accommodate the advantages of individual views. How to choose weights is an open
question: Confidence-based weighting is not a valid option, for instance, as predictors
can be confident but wrong; low confidence can instigate more in-depth analyses of the
corresponding regions, though.
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Prior knowledge is a natural way to inform kernel importance locally; transitions should
be silenced with near-zero weights if a kernel violates known biology in a subset of
the data, for example. The CBC score connects prior knowledge with cell-cell tran-
sitions to quantify how accurately kernels recapitulate known state transitions. These
state change-specific scores can, consequently, help define local weights; normalized CBC
scores as weights are a straightforward option. If only terminal states but not individ-
ual state transitions are known a priori, the TSI score could guide kernel importance,
instead; failure to identify a given terminal state should result in downweighing of the
corresponding lineage in the kernel, for example.

Permutation-based tests similar to veloVI’s permutation score126 may offer an alternative
weighting scheme. Inferred transitions on permuted data reveal the dominating data
feature - noise or structure. If transitions under a given inference approach do not
change under permutation, the underlying structure is noisy. A putative test reshuffles
counts for each cell independently, followed by inference and comparison of the original
and permutation-based transitions or vector field. For generative cases, goodness-of-
fit metrics can define test scores as exemplified by veloVI’s permutation score126, and
correlation otherwise, for example.

Local kernel weighting is only one possible avenue for better estimates of state change.
Incorporating additional views is necessary to cover more aspects of biological processes.
Important modalities include spatial organization197,300 or signaling, epigenetic traits in-
cluding chromatin accessibility237 and methylation patterns301,302, or metabolites. Dif-
ferent concepts have attempted to incorporate some of these views but leave room for
improvement: Moscot111 includes spatio-temporal mapping but does not model niche de-
velopment and omits the sub-cellular resolution of common in-situ sequencing protocols.
The same framework includes chromatin accessibility into OT by relying on concatenated
latent representations of gene expression and scATAC data. Other approaches extend
velocity inference275,276 or derive mitotic age estimates from scATAC data250.

Finally, experimental and computational advances will offer data relevant to accurate
fate mapping. Lineage tracing303,304, for example, provides ground-truth state evo-
lution, recoverable after sequencing305. Algorithms already incorporate lineage tracing
into TI110,249 but are limited to experimental techniques not applicable to human studies.
Mitochondrial lineage tracing306 provides an intriguing alternative approach in systems
where inducing artificial genetic mutations is impossible. Experimental techniques pro-
filing mitochondrial DNA alongside additional modalities exist53,307,308, but not every
system may experience sufficient mutations and the single-cell field lacks computational
approaches to reconstruct the corresponding lineage trees automatically.

Spatial omics data

The tissue environment of a cell is an essential factor and driver of its fate, but the
TI field traditionally leverages data from classical single-cell assays. Consequently, the
spatial organization of cells is lost as the protocols work on dissociated data. Spatial
assays55–58 bridge this gap, but many open challenges remain before TI can incorporate
spatial information robustly.

Cell segmentation is a fundamental challenge of single-cell resolved spatial protocols.
Although several tools exist309–311, the lack of ground-truth annotations makes a quan-
titative benchmark challenging. The shortcomings of existing tools include that they do
not work equally well in every tissue and assign many transcripts incorrectly, leading
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to noisy expression profiles. As a result, the segmentation step is laborious and, as a
result, time-consuming, and downstream analyses are easily confounded by data noise.
Improved experimental workflows promise better segmentation through membrane stain-
ing. Importantly, staining will not solve the segmentation problem as (1) it is imperfect,
(2) the number of stains is limited, making not all cell types identifiable and (3) cells
can overlap in space and include multiple nuclei or none at all. Nonetheless, membrane
staining will provide an important prior for computational segmentation tools that will
have to scale to the increasingly high resolution and size of spatially resolved expression
data.

Well-segmented measurements of spatial assays will allow studying biological processes
across multiple scales - from subcellular to tissue and organ. The subcellular patterning
will elucidate cell-cell variability and identify functionally relevant gene signatures in
space, related to cell-cell communication, for example. So far, corresponding features
have only been handcrafted312,313, however, and not described in a data-driven man-
ner through recent advances in deep learning, for example. Relatedly, at the level of
cells, spatial distribution and clustering into niches define cell interactions. Methods for
describing cellular niches exist314,315, but the field lacks a proper definition of a niche,
adaptable to different contexts; instead, current notions use a fixed number of neigh-
boring cells in space or all cells within a given distance to a reference cell. Describing
cellular organization beyond local neighborhoods will improve our understanding of the
functions of tissues and organs and the roles of individual cells within and across them.
Overall, spatially resolved cell profiles will help describe cross-scale dependencies, inter-
actions and regulation to ultimately describe and compare trajectories within and across
scales.

The future of spatial single-cell data will also include experimental advances. Current
single-cell resolved high-throughput experiments at spatial resolution focus on the tran-
scriptome. Future advancements will include epigenomic and proteomic information
which is currently only possible at scale in dissociated samples. Such additional sources
of information will paint a clearer picture of cellular interplay, regulation, and organiza-
tion within and across scales.

Multimodal data is not limited to cellular features but includes hematoxylin and eosin
(H&E) staining of tissues, corresponding annotations, or metadata, including donor in-
formation, for example. Incorporating different modalities such as text, audio and video
recordings into a single foundational model has recently sparked great enthusiasm in
society by generating one modality given another316,317. While these models solve tasks
such as question-answer queries or image generation, their concept may be generalizable
to single-cell biology: In the context of spatial genomics, different modalities include the
position of individual molecules, cellular features such as gene expression or pathology
slides, to name but a few; predicting gene expression from H&E stained and annotated
images is a straightforward application of a foundation model for single-cell data. It is,
however, unclear how applicable foundation models are to problem-specific questions in
biology. Such models require vast amounts of data for training, but biology is oftentimes
driven by rare cell populations. Additionally, robustness and uncertainty quantification
are critical in the medical domain, and model hallucination needs to be prevented. But,
several data properties present in current genomics data cause this model failure: The
data is incomplete and noisy, and it includes inherent biases as datasets from human
samples are skewed in their distribution of ethnicity318. Both the design and evaluation
of future models need to consider these domain-specific challenges before the approaches
can be fine-tuned for trajectory inference or cellular fate mapping.
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Human cell atlases

The Human Cell Atlas Project aims at defining all cell types of the human body198. Ex-
isting atlases focus on organs in equilibrium such as the lung23, brain24 and heart319,320

or developing systems like T cell development in the thymus321,322 or embryonic limb
development197. The first atlases were defined based on dissociated data, but recent ex-
amples consider cellular identity in their spatial context197,322,323. However, these studies
still rely mostly on spot-based spatial transcriptomics for which in-silico approaches es-
timate single-cell resolution. Future iterations of existing and new atlases will need to
include spatial organization based on in situ sequencing and emerging modalities in their
analyses and definitions.

Single-cell atlases provide a reference for new datasets to annotate cell states, for ex-
ample; several tools exist for this task67,84,85,324. One key challenge is the lack of Com-
mon Coordinate Frameworks (CCFs) and consistent cell type annotations. So far, a
CCF exists only for the brain, made partially possible by the organ’s highly structured
anatomy24,325; for less organized organs, defining a CCF will most likely be more chal-
lenging.

Atlases of developing systems2 need to define cellular identity and trajectories, where
trajectory annotation includes both its identity and the position of a cell along it. Con-
sequently, such atlases provide an additional layer of information compared to their
counterparts for fully developed organs. However, it is currently not clear how to map
trajectories onto query datasets - a computational challenge similar to but different from
mapping cell states; compared to cell states, mapping entire trajectories needs to con-
sider cell state and position along the process, and assigning the correct trajectory itself,
for instance. Putative approaches will describe trajectories in a generative framework
that would allow annotating held-out data and mapping it onto the existing reference.
Similar to cell typing, confounding factors such as batch effects, for example, will have
to be taken care of.

To conclude, this dissertation presented veloVI, a deep generative model for inferring
RNA velocity, and CellRank 2, a framework for unified fate mapping in multiview single-
cell data. veloVI facilitates RNA velocity analysis through improved and more robust
inference, and actionable metrics for interpretable data analyses. The generative for-
mulation can function as a blueprint for future methods inferring cellular state changes
and, thus, potentially aid in mapping trajectories onto emerging developmental atlases.
Similarly, the model is flexible enough to infer more complex models of splicing dynam-
ics including gene-gene interaction or additional modalities, for instance. CellRank 2
generalizes Markov chain-based TI to arbitrary views, again facilitating data analyses.
The proposed algorithm allows utilizing orthogonal data views accompanied by different
advantages; the modular, scalable and extensible design further enables rapid develop-
ment and integration of inference methods based on new modalities. The flexibility and
scalability will allow the seamless incorporation of emerging data modalities and ensure
applicability to large datasets such as cell atlases and spatial datasets.
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23. Sikkema, L., Ramı́rez-Suástegui, C., Strobl, D. C., Gillett, T. E., Zappia, L., Madissoon,
E., Markov, N. S., Zaragosi, L.-E., Ji, Y., et al. An integrated cell atlas of the lung in
health and disease. Nature Medicine (2023).

24. Siletti, K., Hodge, R., Mossi Albiach, A., Lee, K. W., Ding, S.-L., Hu, L., Lönnerberg,
P., Bakken, T., Casper, T., et al. Transcriptomic diversity of cell types across the adult
human brain. Science (2023).

25. Goyal, Y., Busch, G. T., Pillai, M., Li, J., Boe, R. H., Grody, E. I., Chelvanambi, M.,
Dardani, I. P., Emert, B., et al. Diverse clonal fates emerge upon drug treatment of
homogeneous cancer cells. Nature (2023).

26. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau,
J., Tuch, B. B., et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature
Methods (2009).

27. Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P.,
Chang, H. Y. & Greenleaf, W. J. Single-cell chromatin accessibility reveals principles of
regulatory variation. Nature (2015).

28. Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I.,
Bialas, A. R., Kamitaki, N., et al. Highly Parallel Genome-wide Expression Profiling of
Individual Cells Using Nanoliter Droplets. Cell (2015).

29. Zilionis, R., Nainys, J., Veres, A., Savova, V., Zemmour, D., Klein, A. M. & Mazutis, L.
Single-cell barcoding and sequencing using droplet microfluidics. Nature Protocols (2016).

30. Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., Ziraldo,
S. B., Wheeler, T. D., McDermott, G. P., et al. Massively parallel digital transcriptional
profiling of single cells. Nature Communications (2017).
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Simon, L. & Theis, F. J. PAGA: graph abstraction reconciles clustering with trajectory
inference through a topology preserving map of single cells. Genome Biology (2019).

219. Mukherjee, S., Heath, L., Preuss, C., Jayadev, S., Garden, G. A., Greenwood, A. K.,
Sieberts, S. K., De Jager, P. L., Ertekin-Taner, N., et al. Molecular estimation of neurode-
generation pseudotime in older brains. Nature Communications (2020).

220. Strauß, M. E., Reid, J. E. & Wernisch, L. GPseudoRank: a permutation sampler for single
cell orderings. Bioinformatics (ed Berger, B.) (2018).

221. Campbell, K. R. & Yau, C. A descriptive marker gene approach to single-cell pseudotime
inference. Bioinformatics (ed Birol, I.) (2018).

222. Ahmed, S., Rattray, M. & Boukouvalas, A. GrandPrix: scaling up the Bayesian GPLVM
for single-cell data. Bioinformatics (ed Stegle, O.) (2018).

223. Lin, C. & Bar-Joseph, Z. Continuous-state HMMs for modeling time-series single-cell
RNA-Seq data. Bioinformatics (ed Kelso, J.) (2019).

224. Grün, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., Sasaki, N., Clevers, H.
& van Oudenaarden, A. Single-cell messenger RNA sequencing reveals rare intestinal cell
types. Nature (2015).

225. Grün, D., Muraro, M. J., Boisset, J.-C., Wiebrands, K., Lyubimova, A., Dharmadhikari,
G., van den Born, M., van Es, J., Jansen, E., et al. De Novo Prediction of Stem Cell
Identity using Single-Cell Transcriptome Data. Cell Stem Cell (2016).

226. Welch, J. D., Hartemink, A. J. & Prins, J. F. SLICER: inferring branched, nonlinear
cellular trajectories from single cell RNA-seq data. Genome Biology (2016).

227. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of single-cell trajectory
inference methods. Nature Biotechnology (2019).

228. Deconinck, L., Cannoodt, R., Saelens, W., Deplancke, B. & Saeys, Y. Recent advances
in trajectory inference from single-cell omics data. Current Opinion in Systems Biology
(2021).

229. Crick, F. H. On protein synthesis. Symp Soc Exp Biol (1958).

230. Li, T. On the Mathematics of RNA Velocity I: Theoretical Analysis. CSIAM Transactions
on Applied Mathematics (2021).

231. Barile, M., Imaz-Rosshandler, I., Inzani, I., Ghazanfar, S., Nichols, J., Marioni, J. C.,
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A. Acronyms

cDNA complementary DNA. 12

GRN gene regulatory network. 6

kNN k-nearest neighbor. 15, 16, 23, 26, 27

mRNA messenger RNA. ii, iii, 2, 5, 11–13, 15, 17–19, 22, 25, 30, 32, 39, 40, 71

NGS next-generation sequencing. 12

ODE ordinary differential equation. 18, 19, 25, 38, 40

OT optimal transport. ii, iii, 5, 6, 8, 10, 24, 27, 28, 30, 35, 38, 39, 42, 43, 72–74

PCA principal component analysis. 14, 15, 24

PCR polymerase chain reaction. 12

scATAC-seq single-cell Assay for Transposase-Accessible Chromatin using sequencing.
2, 11

scRNA-seq single-cell RNA sequencing. ii, 2–5, 7, 9, 11, 13–18, 24, 28, 32, 34, 37, 39,
40, 67

TI trajectory inference. ii, iii, 4–8, 11, 13, 16, 17, 23, 29, 30, 34, 38, 40, 42, 43, 45

UMI unique molecular indentifier. 12

VAE variational autoencoder. 6, 8, 22, 23, 32, 65, 66

veloVI velocity variational inference. i, ii, 21–23, 31–33, 37–39, 43, 45

VI variational inference. 7, 8, 15, 21, 32, 37, 65, 66
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B. Variational inference

Statistical models describe data in terms of its distribution or model parameters. Classi-
cal approaches for parameter inference rely on maximum likelihood (MLE) or maximum
a posteriori (MAP) estimates if all parameters are observed; if latent variables exist,
the Expectation-Maximization algorithm232 infers parameters, instead. However, none
of these approaches directly approximates the distribution that generates the observa-
tions, a limitation that Markov chain Monte Carlo (MCMC) algorithms and variational
inference overcome.

MCMC methods approximate posterior distributions by constructing a Markov chain on
latent variables that (1) is ergodic and (2) has the posterior as its stationary distribution;
sampling from the Markov chain, thus, provides samples from the posterior to approx-
imate it. Classical MCMC algorithms are the Metropolis-Hastings algorithm326,327 or
Gibbs sampling328; extensions and improvements of these traditional approaches exist
and have solved many problems329–331. However, MCMC routines do not scale to large
datasets of current Machine Learning settings and are computationally too expensive
for complex statistical models.

Variational inference offers an alternative approach to overcome the limitations of MCMC.
The following paragraphs summarize relevant aspects of VI and VAEs to understand
their application to single-cell data; dedicated reviews introduce and discuss the mate-
rial in greater detail233,332.

B.1. Variational inference

VI considers the joint distribution p(x, z) of latent and observed variables z and x,
respectively. Following the Bayesian modeling paradigm, a prior on z links the data
likelihood to model observed values. Whereas MCMC relies on sampling, VI optimizes
the Kulback-Leibler (KL) divergence241

q∗ = arg min
q∈Q

DKL [q(z) ∥ p(z|x)] (B.1)

to identify the best approximating distribution q∗ from a set of putative candidates Q.
Importantly, candidate distributions are complex enough to model p(z|x) but simple
enough for fast optimization. Solving (B.1) provides estimates of z and enables data
generation but p(z|x) is, in general, intractable: Bayes’ theorem relates the posterior to
the joint probability and evidence p(x)

p(z|x) =
p(x, z)

p(x)
.

As the evidence
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B. Variational inference

p(x) =

∫
p(x|z)dz

is intractable in general, the posterior suffers from the same challenge. To solve the VI
problem nonetheless, approximate inference solves a related problem - maximizing the
evidence lower bound (ELBO)

ELBO [q] = E[log(p(x|z))]−DKL [q(z) ∥ p(z)] .

B.2. Variational autoencoders

VAEs solve the approximate inference problem by coupling two neural networks: the
encoder and the decoder. The encoder approximates the intractable posterior, and the

decoder generates samples from latent factors. Formally, the encoder q
(e)
ϕ is a neural

network with parameters ϕ that takes observations x as input and approximates the

conditional distribution q(z|x) of the latent variables. Similarly, the decoder q
(d)
θ models

the likelihood p(z|x) through a neural network with parameters θ and input z.

The ELBO is differentiable w.r.t. model parameters if latent variables are continuous and
the encoder and decoder are differentiable, a property true for standard neural networks.
However, differentiating w.r.t. ϕ is intractable since z is stochastic. The reparameteriza-
tion trick resolves this problem through a change of variables234: In brief, a differentiable
transformation through a random variable independent of parameters ϕ and observations
x describes z instead of q(z|x); this change of variables allows approximating derivatives
through Monte Carlo estimators.

B.3. Variational inference for single-cell data

The single-cell field applies VAEs to reduce data dimensionality76,77,79, remove batch
effects76,83–85, or enable joint analysis of multiview data266–268,333, with most methods
building upon the scVI framework76. This section briefly recapitulates this modeling
paradigm as an application of VAEs but omits the dropout included in the original
model formulation.

Single-cell RNA-seq data follows a negative binomial distribution271,272. To model this
distribution, scVI relies on two facts:

1. The negative binomial is the mixture of Gamma-Poisson distributions.

2. The assumption that a

a) latent representation zn ∼ Normal (0, 1)

b) one-hot-encoded batch sn ∈ {0, 1}Nb , and

c) batch-specific scaling factors ℓn|sn ∼ Lognormal
(
ℓ⊤µ sn, ℓ

⊤
σ2sn

)
, with empirical

mean ℓµ ∈ RNb and variance ℓσ2 ∈ RNb
+ of the batch-specific log-library size

generate observations xn ∈ RNg .

65



To generate scRNA-seq data, the decoder network q
(d)
θ : RNl × {0, 1}Nl → ∆Ng maps

the latent representation and batch encoding back to gene expression space, where ∆Ng

denotes the Ng-dimensional probability simplex; mapping to ∆Ng allows interpreting the
output as observation-specific gene frequencies. Following, the decoder output defines
the generating distribution

wng|zn, ℓn, sn ∼ Gamma
(
ℓnq

(d)
θ (zn, sn)g, α

)
xng|wng ∼ Poisson (wng) ,

with the shape α of the Gamma distribution estimated during inference. Integrating out
w yields the negative binomial distribution

xng|zn, ℓn, sn ∼ NB
(
ℓnq

(d)
θ (zn, sn)g, αg

)
.

To guarantee feasible inference, scVI assumes the posterior decomposes into a product of
the latent representation - a mean-field approximation - and scaling factors approximated

by the encoder q
(e)
ϕ

q
(e)
ϕ (zn, ln|xn, sn) = q

(e)
ϕ (zn|xn, sn)q

(e)
ϕ (ln|xn, sn),

Mini-batched stochastic-gradient descent optimizes the ELBO for parameters α, ϕ, and
θ235.
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C. Markov chains

Markov chains describe random processes unfolding in time; discrete Markov chains
consider discrete time steps, and continuous Markov chains study random processes on
a continuous scale. The theory of Markov chains is well developed and a lot of in-depth
literature exists334–336. This appendix briefly introduces the core concepts of Markov
chains relevant for their application to the single-cell field; the theoretical aspects follow
dedicated literature334,337.

C.1. Definition and basic properties

Consider a probability space (Ω,F ,P), a distribution µ0, finite set S, and random vari-
ables Xn : Ω 7→ S. A random process (Xn)n≥0 is a Markov chain with initial distribution
µ0 if

(i) X0 has distribution µ0

(ii) Xn is Markovian, i.e.,

P(Xn = s|Xn−1, . . . , X0) = P(Xn = s|Xjn−1) ∀n > 0, s ∈ S

The distribution µ0 is the initial distribution of the Markov chain, and S is the state-
space with Ns possible states. The homogeneous transition matrix P ∈ [0, 1]Ns×Ns

Pjk = P(Xn+1 = j|Xn = k)

and initial distribution µ0 uniquely define the Markov chain; P is homogeneous if it is
constant with respect to n. The transition matrix also defines the k-step probability
as

P(Xn+k = j|Xn = k) = P k
jk

as a result of the Chapman-Kolmogorov equation336.

C.2. Absorption probabilities

Markov chain model evolutionary processes that may terminate in specific states - the
absorbing states; in the context of single-cell datasets, for instance, absorbing states cor-
respond to terminal states. To quantify the probability of reaching such absorbing states,
this section first formally defines them before introducing hitting times to characterize
the probability of reaching absorbing states.
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C. Markov chains

Absorbing states form a specific subset of Markov chains. Breaking down problems
into smaller subproblems or subsets that are easy to solve and analyze but elucidate the
entire problem is a common technique; communicating classes form such subproblems
for Markov chains. Intuitively, a communication class is a collection of states for which
a path to any other state in the set exists. For a formal definition, consider states
s1, s2 ∈ S. State s1 leads to state s2 ∈ S, denoted by s1 → s2, if

∃n ≥ 0 : P(Xn = s2|X0 = s1).

If both states lead to each other, s1 and s2 communicate, denoted by s1 ↔ s2. Note
that

� s1 ↔ s1, i.e., ↔ is reflexive,

� s1 ↔ s2 ⇐⇒ s2 ↔ s1, i.e., ↔ is symmetric,

� s1 ↔ s2 ∧ s2 ↔ s3 =⇒ s1 ↔ s3 for any s3 ∈ S, i.e., ↔ is transitive.

The relation ↔ is, thus, an equivalence relation and provides a disjoint partition - the
communicating classes - of the state-space S; if S contains a single class, the Markov
chain is irreducible. A class C is closed if there are no transitions to states outside the
class, i.e.,

s1 ∈ C ∧ s1 → s2 =⇒ s2 ∈ C.

The state s1 is absorbing if {s1} is a closed class.

Hitting times define the first time a random walk induced by a Markov chain reaches
a given set of states. For a formal definition, let M ⊆ S; the hitting time HM is the
random variable

HM : Ω→ N ∪ {∞}
ω 7→ inf

n≥0
{Xn ∈M}.

Hitting times characterize classes or cell states in general: If a Markov chain starts in
a class C and its corresponding hitting time is finite for infinitely many n, the class is
recurrent. If the hitting time is non-finite, it is transient.

Absorption probabilities quantify how likely the Markov chain finishes in a closed
class R in finite time: For a transient initial state s, P(HR < ∞|X0 = s) defines the
absorption probability as inR; similarly, for a transient set T , the absorption probability
is

aT =
∑
s∈T

as =
∑
s∈T

P(HR <∞|X0 = s) =
∑
s∈T

∑
sR∈R

P(H{sR} <∞|X0 = s).

The transition matrix P describes state changes within transient and recurrent sets,
denoted by T and R, respectively, and transition probabilities from the union of transient
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to recurrent classes Q; these sub-matrices decompose P into a lower triangular block
structure

P =

(
T 0

Q R

)

and allows for computing absorption probabilities efficiently. Consider the induced ran-
dom walk starting in state s0. The expected number of times the process reaches state
s2 is

En[Xn = s2|X0 = s0] = (I −R)−1
s0s2 .

If s2 is recurrent,

as2 =
(
(I −R)−1Q

)
s0s2

is the probability that s2 is the first recurrent state visited337.

C.3. Long-term behavior

Stationary distributions can characterize the long-term behavior of Markov chains: In-
tuitively, a distribution is stationary if it does not change under additional steps of the
Markov chain. Formally, a distribution π ∈ RNs

+ is stationary if

π⊤P = π.

Stationary distributions exist and are unique for irreducible Markov chains334,338; the
non-negative left eigenvector with eigenvalue 1 defines a stationary distribution.
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D. RNA velocity

D.1. The chemical master equation of splicing dynamics

Splicing dynamics constitutes distinct steps where different molecules are either pro-
duced, transformed, or degraded. The process is, thus, similar to chemical reactions
that are commonly modeled by chemical master equations (CMEs). The CME describing
splicing kinetics emerges as the limiting process of the probability Pt+∆t(u = m, s = n)
to observe m ∈ N0 unspliced and n ∈ N0 spliced molecules at time t + ∆t. This state is
reached if at time t the system includes

� the same number of unspliced and spliced molecules and no transcription, splicing,
or degradation occurs in the time interval [t, t + ∆t],

� u = m + 1 and s = n − 1 molecules, and a single pre-mRNA is transcribed in
[t, t + ∆t],

� u = m and s = n+1 transcripts of which one mature mRNA degrades in [t, t+∆t].

Considering the probabilities at which these events happen, the state Pt+∆t(u = m, s =
n) is described by

Pt+∆t(u = m, s = n) =Pt(u = m, s = n)(1− α∆t)(1− β∆t)m(1− γ∆t)n+

Pt(u = m + 1, s = n− 1)β∆t + Pt(u = m, s = n + 1)γ∆t.

Omitting higher order terms and considering the limiting process ∆t → 0 yields the
CME

d

dt
Pt(u = m, s = n) =α [Pt(u = m− 1, s = n)− Pt(u = m, s = n)] +

β [(m + 1)Pt(u = m + 1, s = n− 1)− Pt(u = m, s = n)] +

γ [(n + 1)Pt(u = m, s = n + 1)− Pt(u = m, s = n)] .

(D.1)
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E. Optimal transport

In its original formulation, optimal transport described how to move a pile of soil into
a pre-defined shape with minimal work339; generalizing this problem led to optimal
couplings of distributions340. Throughout this appendix, consider sample spaces X =
{x1, x2, . . . , xNs} and Y = {y1, y2, . . . , yNt} with probability measures

α =

Ns∑
j=1

ajδxj

β =

Y∑
j=1

bjδyj ,

with the Dirac delta function δ, respectively; X will always denote the source domain,
and Y the target domain. The cost function c : X → Y defines the cost associated with
mapping data from the source to the target domain; the cost matrix C ∈ RNs×Nt with
Cjk = c(xj , yk) collects all costs.

E.1. The Monge problem

The Monge problem seeks to optimally assign each source x ∈ X a unique target y ∈ Y
while preserving mass. If such a coupling exists, the solution is a map T : X → Y
satisfying

min
T

∑
j

c(xj , T (xj) | T♯α = β)

 ,

with the push-forward operator341 T♯ :M(X )→M(Y);M(X ) denotes the set of Radon
measures on X 336.

The Monge problem describes the situation of reshaping a pile of soil or distributing
products to buyers. For single-cell data, the assignment of cells at an earlier time to cells
at a later stage is not unique, however: A cell observed at a time point t1 may divide into
daughter cells observed at a later time point t2; similarly, cells may experience apoptosis.
To apply OT nonetheless, the single-cell field relies on the Kantorovich relaxation.

E.2. The Kantorovich relaxation

The Kantorovich relaxation eases the requirement that source points be mapped to a
single target point. Instead, source points are distributed over targets in a probabilistic
fashion. Possible couplings P ∈ RNs×Nt form the set
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E. Optimal transport

U(a, b) = {P ∈ RNs×Nt | P1Ns = a ∧ P⊤1Nt = b},

with 1N = (1, 1, . . . , 1) ∈ RN . The solution Lc(α, β) of the Kantorovich formulation
solves the optimization problem

min
P∈U(a,b)

⟨C,P ⟩ = min
P∈U(a,b)

Ns∑
j=1

Nt∑
k=1

CjkPjk. (E.1)

Solving problem (E.1) is non-trivial as

(i) equation (E.1) is linear

(ii) U(a, b) imposes Ns + Nt equality constraints

(iii) U(a, b) is bounded,

i.e. (E.1) is a convex linear program342,343, making the solution, in general, not unique.
Additionally, optimization strategies devised for solving (E.1) do not scale to large do-
main dimensions.

E.3. The Sinkhorn algorithm

To solve (E.1) efficiently, the problem can be entropically regularized, yielding a unique
global optimum Lεc(α, β)240; the solution Lεc(α, β) of

min
P∈U(a,b)

⟨C,P ⟩ − ε

Ns∑
j=1

Nt∑
k=1

Pjk log(Pjk − 1)︸ ︷︷ ︸
:=−H(P )

(E.2)

approximates Lc(α, β) as Lεc(α, β)→ Lc(α, β) for ε→ 0.

The Sinkhorn algorithm efficiently computes the solution Lεc(α, β) of (E.2): Consider
optimization variables u ∈ RNs

+ and v ∈ RNt
+ , and the Gibbs kernel

K : Rn×m → Rn×m

kjl 7→ e
kjl
ε , (j, l) ∈ JnK× JmK,

with JnK := {1, 2, . . . n}. With these variables, the unique solution Lεc(α, β) of (E.2) can
be written as342

P = diag(u)Kdiag(v). (E.3)

Based on this formulation, an iterative scheme defines the solution computationally by al-
ternatively scaling rows and columns of a solution candidate: As a feasible solution, (E.3)
lies in U(a, b), i.e.,
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diag(u)Kv = a

diag(v)K⊤u = b,

where diag(u) is an Ns × Ns matrix with u on its diagonal and zeros entries otherwise
- a problem known as the matrix scaling problem. The matrix scaling problem can be
solved by first fixing v and updating u to satisfy the first equality, followed by fixing u
and updating v to satisfy the second equation. Taken together, the Sinkhorn algorithm
is, thus, given by

Algorithm 1: Sinkhorn algorithm

Data:
� Cost matrix C ∈ RNs×Nt

� Source marginal a ∈ RNs

� Target marginal b ∈ RNt

� Regularization parameter ε > 0
Result: Solution matrix P of entropically regularized Kantorovich OT

problem (E.2)

K ← exp
{
C
ε

}
ℓ← 0
u(ℓ) ← 1Ns

v(ℓ) ← 1Nt

while not converged do

u
(ℓ+1)
j ← aj∑Nt

n=1 Kjnv
(ℓ)
n

j ∈ JNsK

v
(ℓ+1)
n ← bn∑Ns

j=1 Knjuj
n ∈ JNtK

ℓ← ℓ + 1
end
P ← diag(u)Kdiag(v)
return P
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