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Abstract

ExaHyPE 2 is a generic hyperbolic Partial Differential Equation (PDE) software Engine
designed to solve user defined specific hyperbolic PDEs. Typical applications are solid
and fluid dynamics problems in geophysical applications like seismology.

ExaHyPE 2 is built on top of Peano 4, a software tool providing modeling for the
physical simulation domains by Cartesian grids as well as their storage and traversal
using an adaptive spacetree concept. One implemented way to realize the numerics is
the Finite-Volume Solver, specifically the Rusanov Solver, which is implemented using
floating-point numbers of double precision (i. e. 64 bits).

In this thesis the existing implementation was extended for use of single-precision
(i. e. 32 bits) or half-precision (i. e. 16 bits) floating-point numbers, and simulation results
based on the new lower-precision datatypes were evaluated by comparing it to the
existing double-precision implementation. For the evaluated scenarios the double and
single-precision implementations show similar computing accuracy and performance,
while the half-precision datatypes are both less precise and performant.
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1 Introduction

Constant advances in hardware, algorithms and software for high performance com-
puting have drastically pushed boundaries for numerical simulation of real-world
problems and applications. Lately, high-performance computing has entered the so-
called exa-scale era, denoting that fastest supercomputers can operate at a speed of
executing 1018 floating-point operations per second1. These advances for example
enable research of large-scale geophysical problems such as earthquake or tsunami
wave analysis increasingly to rely on numerical computing.

General Continuum Mechanics (CM) concepts help to describe these geophysical
problems and cover fields including solid mechanics, fluid mechanics, thermodynamics,
and heat transfer. For many practical problems in CM, simulations are needed if a
given problem cannot be investigated by experiments, e. g. if the problem area is just
too large, some quantities cannot be measured, can only be measured with great effort,
or intrusive measuring techniques often distort the results.

General computational methods in Continuum Mechanics cover the numerical study
of flow and deformation effects in solids and fluids based on the principles of mass,
momentum, and energy conservation. Mathematically, CM problems usually are mod-
eled by complex systems of Partial Differential Equations (PDEs) which are generally
non-linear, but can often be at least partially linearized. Their solutions cannot be
reached analytically unless the problem is highly simplified – which usually is not
possible with keeping necessary accuracy - but require numerical computation. For
example, earthquakes are modeled as elastic waves as either seismic so-called P-waves
(Primary, compressional waves) that can travel through both solids and fluids and travel
fast, or S-waves (Secondary, shear waves) that can travel only through solids and cause
more damage due to their transverse motion, while for tsunamis shallow-water wave
models are used (or in special cases, acoustic wave models).

Simulation capabilities in terms of computable problem size and computation speed
increased due to advances in computing hardware and software and costs per floating
point operation decreased [12], while cost and capabilities on practical experimenting
cannot keep up.

However, numerical modeling and computation is necessarily subject to approxima-
tion and require trade-offs between accuracy, computation time, computing power and
storage requirements.

Reasons for inaccuracies include:

1The exa-scale barrier was first surpassed in May 2022 [19]
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• Modeling: In simulations, individual phenomena are described using models.
These models are not a perfect representation of reality but reduce the complex-
ity of the problem being described to such an extent that a solution becomes
achievable.

• Discretization: For the simulation, the implemented differential equations are
converted into difference equations in space and time, e. g. on a finite grid.
This process can result in a loss of information and accuracy. The solution is
approximated through an iterative process, which can also lead to deviations.

• Numerics: Finally, the simulation result is numerically computed with finite num-
bers based on a computer system’s numerical capability potentially introducing
additional inaccuracies or (in worst cases) even leading to non-convergence of the
mathematical algorithm not even yielding any result.

Thus, the results of the numerical simulations must be critically examined for plausi-
bility. [7]

This work focuses on the study of the last mentioned inaccuracy effect, namely how
the use of different precision types of floating-point numbers impacts the simulation
results with respect to mainly accuracy versus computing effort (i. e. required computing
time and storage).

Generally, use of lower-resolution numbers (i. e. of single or even so-called "half"
precision) can be expected to yield faster computation times at the expense of lower
accuracy of the numerical result versus the reference "real" result/reality as compared
to respective results with use of higher-resolution numbers (i. e. of double precision).
[15]

To study the impact of lower-resolution numbers, this thesis uses and extends the
open-source simulation software tools Peano 4 and ExaHyPE 2 written in C++ and
Python. ExaHyPE 2 is an open-source engine to solve hyperbolic PDEs. It is built
on top of and integrated with Peano 4, which provides the storage and traversal of a
simulated domain based on a spacetree concept (see Chapter 2).

The thesis work extends the available double-precision implementation of ExaHyPE 2
and Peano 4 to include use of single-precision as well as half-precision number types
(Chapter 4).

The effect of the different precision-type usage is evaluated (see Chapter 5) based on
simulations of given reference wave scenarios described in Chapter 3: A planar wave in
an elastic medium, a two-dimensional Euler Gaussian bell wave, and a Shallow Water
Equations-based resting-lake scenario.
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2 Related Work

The present thesis project has been carried out based on pre-existing related work,
namely

• commonly used Finite Volume Method simulation [6] (Section 2.2) solving general
PDE systems for wave propagation problems (Section 2.1), as well as

• software framework/packages

– Peano 4 [26] (Section 2.3) and

– ExaHyPE 2 [5] (Section 2.4).

2.1 Theoretical background

2.1.1 Solid and Fluid Dynamics

Many physical phenomena and problems are described and investigated by Continuum
Mechanics methods. Conservation laws for mass, momentum and energy are founda-
tional to solid mechanics, fluid dynamics, and wave propagation. Mathematically they
are expressed in terms of Partial Differential Equations (PDEs). Especially important
are hyberbolic PDEs describing wave propagation. If a disturbance is made in the
initial data of a hyperbolic differential equation, the disturbance is not "seen" by every
point of space at once, instead the disturbance (wave) travels with a finite propagation
speed along the characteristics of the equation (while for elliptic PDEs, the disturbance
effects would be seen by all points in the domain at once). [2]

Table 2.1 summarizes a high-level overview on the basic concepts with the basic
equations listed as well.
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2 Related Work

Criteria
Continuum Mechanics (CM)

& Theory of Elasticity
Computational Fluid Dynamics (CFD)

Scope
Solids & some fluids:
Deformation, stress, strain, waves

Fluids (liquids & gases):
Flow behavior, turbulence,
aerodynamics, multiphase flows

Governing
Equations

General wave equation /
Cauchy’s equation of motion:
Describe motion and deformation
in a continuum

Navier-Stokes Equations:
Govern the motion of viscous fluid
flows based on mass, momentum, and
energy conservation

Special Case
Elastic Wave Equation (EWE):
Special case for wave propagation
in elastic materials

Shallow Water Equations (SWE):
Special case for thin-layer
fluid flows under hydrostatic
approximation

Table 2.1: Theory overview [8, 33, 2]

2.1.2 Elastic Wave Equation and Shallow Water Equations

The Elastic Wave Equation (EWE) is used to model the propagation of elastic waves,
such as seismic waves or sound waves in solids. For the EWE the material is assumed
elastic and isotropic for simplicity, and the model assumes linear elasticity, where strain
is proportional to stress. The EWE is only valid for elastic media. Simplified models,
such as the acoustic wave equation, may not be applicable for shear waves.

The EWE is most useful for modeling seismic wave propagation in geophysics and
sound wave propagation in materials for non-destructive testing (e. g. ultrasonic testing).
It is not suitable for non-elastic materials/plastic deformation. For fluids, the EWE only
models P-wave behavior but is not applicable for S-waves.

The Shallow Water Equations (SWE) are primarily applicable in shallow water
regions, such as coastal areas, rivers, and for flood modeling. Key assumptions in
the SWE include the assumption that the fluid layer is shallow, meaning the depth
is much smaller than the horizontal dimensions. The equations also neglect vertical
accelerations and assume a hydrostatic pressure distribution.

The SWE are particularly effective in predicting wave behavior in shallow regions
where gravity waves dominate and are not suitable for modeling behavior in deep
water or high-frequency waves.

Both the SWE and the EWE describe wave propagation in different media. The
SWE model surface waves in a fluid layer, governed by the velocity and height of the
fluid, while the EWE models elastic waves in solids, governed by the displacement and
stress in the material. Both are hyperbolic equations, meaning they describe wave-like
phenomena that propagate disturbances through a continuous medium.

The SWE is concerned with gravity waves, which are dominated by gravitational
forces, while the EWE handles elastic waves, which are dominated by material elasticity.

In summary, SWE are best suited for modeling tsunami waves and shallow water
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dynamics, in regions with shallow depths, while EWE are used for modeling seismic
wave propagation in both solids and fluids, including both compressional and shear
waves. [8, 33, 2]

2.2 Discretization Methods

As it is very difficult to solve the resulting PDEs in a continuum, it is necessary to
discretize the continuous problem to be able to solve it numerically. To do this there
are three common methods:

• Finite Difference

• Finite Element

• Finite Volume

Following, first an overview on these is given following literature, e.g. [6, 7] chapters
2.6, 3 and 4, resp., and [32]. After the general overview of all three methods a more
detailed explanation of the Finite Volume (FV) method used in this thesis is given.

2.2.1 Overview

Finite Difference (FD) method is the oldest of the three methods traced back to L. Euler
in the 18th century [7]. It uses a usually structured point grid of the solution domain
with conservation equations in their differential form. The latter are approximated at
each grid point resulting in a single algebraic equation at each node containing the
unknown value at this and neighboring grid nodes. First and second derivatives of the
variables are approximated using Taylor series expansion and polynomial fitting. Also,
FD may be used to interpolate between grid nodes to calculate values at locations lying
between several grid nodes. Although FD is simple and effective on structured grids, it
is restricted to simple geometries and therefore limited for most real-world problems.

Next, Finite Element (FE) methods discretize the domain into discrete volumes
or elements. Depending on the domain, these elements mostly are of triangular or
quadrangular shape (for 2D domains) and tetrahedra or hexahedra (for 3D), respectively.

In contrast to FD and Finite Volume, FE uses equations multiplied by a weight
function prior to integration over the entire domain. To ensure continuity across
elements’ boundaries the simple FE both solution functions and weight functions
are of linear shape within an element. Contrary to FD, FE methods are capable of
simulating and solving complex geometries also allowing for further grid refinement
by subdividing existing elements. However, FE methods suffer from unstructured grids
leading to not well structured matrices.

Finally, Finite Volume (FV) methods are similar to FE as the domain is discretized
using a finite number of elements, called control volumes in context of FV, each
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containing a computational node in the center of the control volume (CV) at which all
variables’ values are to be calculated. [7]

Usually, these nodes are positioned in the center of the control volume, i. e. the
volume is defined first and the node afterwards. However, it is also possible to first
define the computational nodes and based on the grid of nodes define the control
volumes. Both methods have advantages and disadvantages regarding accuracy with
respect to the mean value of the volume or at the control volumes’ surfaces. Similar to
the equation described above for FD methods, also for FV each computational node
is assigned an algebraic equation containing its value as well as the values of the
neighboring nodes. In a next step the integral forms of the conservation equations are
used and approximated by approximating the surface integral. Although the approach
of FV methods is the easiest one among the presented approaches, as each term to be
approximated has a clear physical meaning, it requires considerable implementation
effort especially in 3D applications [7]. Nevertheless, FV methods are commonly used
in CFD frameworks and toolboxes such as Peano/ExaHyPE.

Figure 2.1 gives an iconized graphical illustration of the discretization model for the
three described methods as well as their basic mathematical discretization logic.

Figure 2.1: Discretization methods with their grids and equations
[17]
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2.2.2 Finite Volume Method for Solving Wave Equations

The FV method can be used for solving various types of wave equations, such as the
Elastic Wave Equation (EWE) in solids and fluids, and the Shallow Water Equations
(SWE). It is a conservative, robust, and flexible method for solving hyperbolic PDEs,
making it suitable for a wide range of applications in computational geophysics,
hydrodynamics, and engineering.
The principal steps for the FV method are [20, 22]:

• Volume Discretization: FV transforms the basic PDEs to be solved into algebraic
equations by integrating over a control volume (CV) and applying Gauss’s diver-
gence theorem. The governing equation for a conserved quantity Q (e. g. velocity,
water height, etc.) can be written as:

∂Q
∂t

+∇ · F = 0, (2.1)

where F is the flux vector. Applying the divergence theorem transforms the
volume integral of the CV into a surface integral over its surface S:

d
dt

∫︂
V

QdV +
∫︂

S
FdS = 0. (2.2)

which is then approximated by discretizing over a set of Cartesian cells Vi.

• Time Discretization: Time integration can be performed using explicit or implicit
schemes. Explicit schemes, e. g. Leapfrog or Runge-Kutta methods, are typically
used in more stable cases. Implicit schemes, such as the Crank-Nicholson method,
allow for larger time steps but require solving a system of equations at each time
step, increasing computational complexity per step. E. g. a simple Euler method
yields:

Qn+1
i = Qn

i −
∆t
Vi

∑
S

FS · nSAS. (2.3)

where AS is the face surface area and nS is the outward normal.

• Solver: In this work a simple Rusanov-type Riemann solver is used approximating
the numerical fluxes between cells by correcting the average of the neighboring
cell’s fluxes by a wave-speed depending factor with the maximum wave speed
λmax across the interface. [21]

FRusanov =
1
2
(Fin + Fout)−

1
2

λmax(Qout − Qin), (2.4)
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2.3 Peano 4

The Peano software, currently available in its 4th generation, is a framework for gener-
ating dynamically adaptive Cartesian grids for a wide range of scientific applications.
It, as well as many of the subprojects that rely on it, is implemented in a mix of C++
and Python.

The framework is named after the Italian mathematician Giuseppe Peano who
discovered its foundational space-filling curve of the same name. [35]. The development
of Peano started originally in the early 2000s at the group of Prof. Tobias Weinzierl at
TUM’s Department of Computer Science and is available as open source repository.
[24].

On top of Peano multiple extensions and applications have been implemented.
One key example is the ExaHyPE solver engine for hyberbolic PDEs used in this
work. ExaHyPE uses Peano’s Adaptive Mesh Refinement (AMR) and has been closely
integrated and merged into Peano in its second generation ExaHyPE 2 since 2019
(Section 2.4). [24]

2.3.1 Architecture

Figure 2.2: Peano’s code architecture [23]

Peano is structured in layers providing components in static libraries implemented
in C++ code. Its layer structure in turn is also reflected by all applications based on
Peano (Figure 2.2).

Peano (with any extension) does not consist of static libraries but generates application-
specific code. However, some of the applications built on top of Peano with all its
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toolboxes and extensions provide "ready to use" options. Peano components are
integrated in one repository and one code base.

Likewise, Peano‘s extensions are tools that enable users to write simulation code for
a specific application domain. [23]

2.3.2 Spacetree traversal approach

Peano is based on the concept of spacetrees, a generalisation of the classical octree
concept [1], that generate cascaded series of adaptive Cartesian grids [35].

A spacetree traversal means an element-wise traversal of the hierarchy of the adaptive
Cartesian grids. Peano implements such a grid traversal together with a storage
algorithm. It provides interfaces for applications performing operations (e. g. per
element, per vertex) on the grid as well as those for adaptive load balancing, advanced
geometry enhancements, etc.

There are multiple extensions of Peano for specific application domains. Examples of
such extensions include those for Smoothed Particle Hydrodynamics (SPH; a rather
particle- than mesh-based concept), multigrids or hyperbolic solvers such as ExaHyPE 2
which is used in the present work. [24]

The grid traversal, i. e. the sequence of stepping through the grid, is prescribed in the
Peano code, i. e. the user (application) cannot or does not have to advise, command or
change it. [35]

Figure 2.3: Spacetree traversal [25]

Peano traverses spacetrees top-down, i. e. from coarse to fine. This traversal is given
by the Peano core code as an integral element.

Simulation traversals are executed in the following steps (Figure 2.4) [23]:

9
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Figure 2.4: Flow of simulation (traversals) in Peano [23]

1. The main file hosted in the user code first creates a spacetree. (For parallel code
also sets of spacetrees can exist from forkation).

2. The user’s main program runs through its algorithmic steps. Each step might
trigger a mesh traversal by calling Peano (peano4::parallel::SpacetreeSet::
traverse()) to run through all spacetrees. Peano manages the traversal itself
retaining control on all parameters incl. order and parallelization approach.

3. Users interact with the ongoing traversal by so-called Observers (peano4::grid
::TraversalObserver). These classes provide binding points, such as when the
core loads, enters or leaves a cell, at which code can be injected in order to interact
with data on the mesh.

4. The user code passes the observer object into the traverse() function. The observer
allows to execute instructions (e. g. visualising a cell or updating the finite-volume
solution) upon specific events during the traversal (e. g. when entering a cell
or starting a traversal of a tree) by calling a function from the user code or the
supporting toolbox (depicted in red color in Figure 2.4). [23, 35]

To use Peano’s functionality, typically users would not need to access/change Peano‘s
low level C++ code but rather either use Peano’s Python Application Programming
Interface (API) or one of its extensions built on top of it (such as ExaHyPE) hiding
Peano’s internal details.

10
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Figure 2.5: Peano’s traversal path in AMR grid [36]

Peano models the computational space into a unit hypercube of dimension d. The
domain is then iteratively divided further down into k = 3 equidistant parts along
each axis, resulting in 3d hypercubes („refinement“). For further refinement this step
is repeated recursively (Figure 2.5). In cases where greater computing resources are
necessary (e. g. for greater accuracy) patches (hypercubes) can be further refined down.
This constitutes a so-called spacetree hierarchy, whose nodes at a depth n represent a
patch which has been n times refined. [36]

Cells and vertices are unique by their level of refinement and spatial position. During
run-time, Peano determines the order of traversal through the spacetree. A traversal
visits each cell. The user can define exact functionality of actions performed in each
cell during each traversal. [24]

2.4 ExaHyPE 2

ExaHyPE ("Exascale Hyperbolic PDE Engine") is an open-source software simulation
engine for solving systems of first-order (both linear and non-linear) hyperbolic Partial
Differential Equations (PDEs) [30]. The term "Exascale" denotes the capability to
compute exaFLOPS i. e. 1018 64-bit double-precision floating point operations per
second.

Hyperbolic PDEs are typically derived from the conservation laws of physics and
are useful in a wide range of application areas. Applications powered by ExaHyPE
can be scaled to run on a wide range of computer hardware from laptops up to
supercomputers using thousands of processor cores.

ExaHyPE provides robust numerical methods yielding high-accuracy solution capa-
bilities for both linear and non-linear hyperbolic PDEs by increasing the simulation
accuracy based on its dynamic Adaptive Mesh Refinement.

Users can parametrize the engine to the particular PDE to be solved. Therefore
ExaHype 2/Peano allows to drastically reduce creation time for a complete simulation
code for a new hyperbolic PDE from typically weeks down to hours. Typical application
areas include seismology (used in this work) and astrophysics. [30]
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ExaHyPE is built on top of Peano (Section 2.3) and is implemented in C++ and Python
using Peano’s Python API. As such ExaHyPE is also based on dynamically adaptive
Cartesian meshes. It supports Finite Volume, Runge-Kutta, Discontinuous Galerkin
(DG) and ADER-DG discretization models. ExaHyPE hides most of its technical and
computer science aspects as well as most of the used numerical algorithms from the
users: Instead, they insert user functions for their specific PDE problems into the engine
entrusting the further modeling and computation to ExaHyPE.

Figure 2.6: Top-down spacetree decomposition in Peano [36]

The architecture of ExaHyPE 2 is illustrated in Figure 2.7. ExaHyPE is a solver
engine, leaving it to the user to create domain-specific code (turquoise color denotes
files written by the user) as basis for specific simulation code generation. From the
user input, ExaHyPE creates glue code, empty application-specific classes and core
routines. These templates are filled by the user with application-specific PDE terms
and parameters in C++, Python or Fortran.

Specifically for the FV method used in this work, during the run-time spacetree
traversal, ExaHyPE ensures the computed values’ boundary conditions between the
current computed patch and its neighboring, i. e. face-connected, patches are satisfied
by modeling them in a halo representing the neighboring cells around the current
patch.

For this, ExaHyPE passes values of a patch of size p × p cells plus its halo of
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Figure 2.7: ExaHyPE2 architecture [30, 23, 5]

neighboring cells with the halo width N (so a total of (p + 2N)d cells) into a kernel,
where d is the spatial dimension, i. e. 2 or 3. ExaHyPE fills these halo values with the
neighbor cells’ valid data called Qin. The kernel then returns (p + 2N)d data with the
new time step’s values, called Qout. An example for p = 7, N = 2 and d = 2 is shown
in Figure 2.8.

Figure 2.8: ExaHyPE’s halo concept for boundary conditions for the FV solver [21]
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In this chapter, an overview is given for the three basic (2D) test scenarios used in
Chapter 5 for evaluating and comparing the results of the different implementations of
the Finite Volume solver:

• Elastic planar wave (Section 3.1),

• 2D Euler Gaussian bell wave (Section 3.2),

• SWE Resting Lake (Section 3.3).

These scenarios were chosen selected based on several reasons.
An elastic harmonic planar wave has a simple waveform that remains stable in an

ideal elastic medium. Likewise Euler Gaussian wave excitation theoretically also main-
tains a stable wave form in an ideal lossless medium, however its numerical solution
tends to be more sensitive to numerical instabilities depending on the discretization
method, solver schemes, and handling of numerical errors. A 2D shallow water scenario
represents a well-balanced physical problem, and as such represents a good test case
for the behavior of the numerical solution algorithm. Thus the three scenarios cover
a meaningful range of problem types. Also, all three scenarios have been studied
thoroughly (references see Sections 3.1-3.3). Last but not least, due to their simple
symmetry/periodicity they allow for analytical solutions.

3.1 Elastic Planar Waves

Waves can propagate in elastic or non-elastic media. Table 3.1 shows the basic charac-
teristics.

Waves propagate through an elastic medium depending on the nature of the medium
and the initial wave excitation:

1. Longitudinal Waves (P-Waves): Particle motion is parallel to the wave propagation
direction. These waves depend on the bulk modulus and density of the medium.

2. Transverse Waves (S-Waves): Particle motion is perpendicular to the wave prop-
agation direction. These waves exist only in solids and depend on the shear
modulus of the material.

14
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Property Elastic Waves Non-Elastic Waves

Energy Loss
Minimal (ideally lossless),

energy is conserved
Energy dissipates as

heat/deformation

Medium Response Returns to original shape
Undergoes permanent

deformation

Propagation
Efficient, travels long

distances
Attenuates quickly

Examples
Sound waves, seismic P-
and S-waves, ultrasound

Shock waves, plastic
deformation

Table 3.1: Comparison of Elastic and Non-Elastic Waves

Elastic planar waves propagate through an elastic medium (solid), with their wave-
fronts forming infinite, parallel planes. The deformation caused by these waves results
in strain in the medium. Key to understanding their propagation is knowing the initial
conditions and boundary conditions. The initial condition is governed by the material’s
Lamé parameters, λ and µ, and the initial deformation causing strain. [9, 18, 4]

In this scenario [27], based on that of [16], planar waves are translated through a
periodic domain without deformation, returning to their initial conditions at regular
intervals.

For a homogeneous, isotropic elastic medium, the displacement field u of an elastic
planar (harmonic) wave is given by:

u = Aei(k·r−ωt) (3.5)

where

• u: Displacement vector field representing the displacement of particles in the
medium as a function of position and time.

• A: Amplitude vector indicating the initial magnitude and direction of the dis-
placement,

• i: Imaginary unit, where i2 = −1,

• k: Wave vector defining the direction of wave propagation and its magnitude,
related to the wavelength l by |k| = 2π/l = 2π f /v, with the wave speed v,

• r: Position vector specifying a point in the medium

• ω: Angular frequency of the wave, related to the temporal frequency f by
ω = 2π f , and

• t: Time.
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3 Scenarios

For longitudinal waves, the wave phase speed is:

vp =

√︄
λ + 2µ

ρ
(3.6)

For transverse waves, the wave phase speed is:

vs =

√︃
µ

ρ
(3.7)

where

• λ: First Lamé parameter, a material constant describing its compressibility,

• µ: Second Lamé parameter (also known as the shear modulus), representing the
medium’s resistance to shear deformation, and

• ρ: Mass density of the medium.

The 2D Elastic Wave Equation linearized for small deformations only is [27, 16]:

∂t

⎡⎢⎢⎢⎢⎢⎣
u
v

σxx

σyy

σxy

⎤⎥⎥⎥⎥⎥⎦+∇ · F

⎡⎢⎢⎢⎢⎢⎣
u
v

σxx

σyy

σxy

⎤⎥⎥⎥⎥⎥⎦ = 0 (3.8)

where

• u, v are the displacement velocities in x- and y-directions, resp.,

• σxx and σyy are the normal stress components in x- and y-directions, resp.,

• σxy is the shear stress component acting on the xy-plane, and

• F = (F1, F2) is a tensor for the linear flux:

F1 =

⎡⎢⎢⎢⎢⎢⎣
0 0 1/ρ 0 0
0 0 0 0 1/ρ

(λ + 2µ) 0 0 0 0
λ 0 0 0 0
0 ρ 0 0 0

⎤⎥⎥⎥⎥⎥⎦ , F2 =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 1/ρ

0 0 0 1/ρ 0
0 λ 0 0 0
0 (λ + 2µ) 0 0 0
µ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ (3.9)

The eigenvalues of the flux are (−vp,−vs, 0, vs, vp).
For the simulations the values are chosen as λ = −4.0, µ = 4.0 and ρ = 1.0.
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3 Scenarios

3.2 Euler Gaussian Bell

The Euler equations describe the behavior of an inviscid fluid in the absence of both
friction and heat conduction. A common test case is the Gaussian bell, which models a
localized density perturbation propagating in a medium. The Gaussian bell propagates
as a wave, maintaining its shape in a non-dispersive medium. However, numerical
artifacts, such as artificial diffusion and dispersion errors, may distort the propagation
of the Gaussian wave, even though the physical system itself is non-dispersive.

The Euler equations in two dimensions are [14, 28]:

∂

∂t

⎡⎢⎢⎣
ρ

ρu1

ρu2

ρEt

⎤⎥⎥⎦+
∂

∂x

⎡⎢⎢⎣
ρu1

ρu1
2+

ρu1u2

(ρEt + p)u1

⎤⎥⎥⎦+
∂

∂y

⎡⎢⎢⎣
ρu2

ρu1u2

ρu2
2 + p

(ρEt + p)u2

⎤⎥⎥⎦ = 0 (3.10)

where ρ is the medium’s mass density, u = (u1(x, y, 0), u2(x, y, 0)) is the velocity
vector, Et is the total energy density and p(x, y, 0) is the pressure.

The initial condition is given by [14]:

ρ(x, y, 0) = ρ0

(︃
1 + e−

(x−x0)
2+(y−y0)

2

2σ2

)︃
(3.11)

where ρ0 is the background density, (x0, y0) is the initial peak location, and σ controls
the width of the Gaussian profile. For the computations in Chapter 5 the values were
used as ρ0 = 0.02, σ = 0.1, p = 1 and u1 = u2 = 1. Also in this scenario a periodic
domain is assumed.

The eigenvalues of the 2-dimensional Euler equation are [28]:⎡⎣λ1

λ2

λ3

⎤⎦ =

⎡⎣u − c
u

u + c

⎤⎦ (3.12)

where c is the wave propagation speed.

3.3 SWE Resting Lake

The Shallow Water Equations (SWE) model the motion of a fluid layer under gravity,
assuming the horizontal length scale is much larger than the vertical depth. The lake-
at-rest condition is a steady-state solution where the water remains still, satisfying the
balance condition

h + b = constant, (3.13)

where h is the water height above sea bottom and b is the bathymetry, i. e. the sea
bottom’s elevation. [3, 29]
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3 Scenarios

The SWE system consists of mass and momentum conservation equations:

∂

∂t

⎡⎢⎢⎣
h

hu1

hu2

b

⎤⎥⎥⎦+
∂

∂x

⎡⎢⎢⎣
hu1

hu1
2

hu1u2

0

⎤⎥⎥⎦+
∂

∂y

⎡⎢⎢⎣
hu2

hu1u2

hu2
2

0

⎤⎥⎥⎦+ hg

⎡⎢⎢⎣
0

∂x(b + h)
∂y(b + h)

0

⎤⎥⎥⎦ = 0 (3.14)

with eigenvalues ⎡⎣λ1

λ2

λ3

⎤⎦ =

⎡⎣u +
√︁

g(h + b)
u

u −
√︁

g(h + b)

⎤⎦ (3.15)

where g is the gravitational acceleration, u = (u1, u2) is the velocity vector, and
u = |u|.

At rest, the velocity components vanish (u = 0), leading to a stable equilibrium. If
perturbed, gravity acts as a restoring force, leading to wave-like oscillations.

The SWE formulation is used in modeling tsunamis, dam breaks, and other geophys-
ical flows under shallow water conditions.

For the computations in Chapter 5 initially the domain is divided in half and the
water height of one half is slightly higher (1.1 units) than the height in the other half
(1.0 units).
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4 Implementation

4.1 Types of Floating-Point Numbers

Floating-point numbers come in different precision levels, each with varying storage
sizes, precision, and range.

Classically, there have been floating-point numbers of

• single (with binary 32-bit coding, also called "FP32") and

• double (with binary 64-bit coding, also called "FP64") precision.

Later so-called "half"-precision types of floating-point numbers have been introduced:

• IEEE standard 754’s 2008 version [13] introduced half-precision 16-bit "float16" or
"FP16" [10] [11].

• To overcome float16’s main disadvantage of much narrower range while preserv-
ing storage advantage, a decade later half-precision type "bfloat16" (or "BF16",
"brain floating-point") was introduced by the Google Brain group focusing on
Artificial Intelligence [34].

Below is a comparison of FP64, FP32, FP16 and BF16 floating-point number types:

Precision
Type

Storage
Size

Exponent
Bits

Mantissa
Bits

Approx. Dec.
Precision

Approx.
Range

FP64 64 bits 11 bits 52 bits 15-17 digits −10308... + 10308

FP32 32 bits 8 bits 23 bits 6-9 digits −1038... + 1038

FP16 16 bits 5 bits 10 bits 3-4 digits −105... + 104

BF16 16 bits 8 bits 7 bits 2-3 digits −1038... + 1038

Table 4.1: Floating-point precision characteristics

The key differences between the different floating-point precision types are:

• Precision: FP64 has the highest precision (∼15-17 decimal digits), followed by
FP32 (∼6-9 digits). BF16 has low precision (∼2-3 digits) due to fewer mantissa
bits, whereas FP16 is slightly better (∼3-4 digits).
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• Range: BF16 retains the exponent size of FP32, allowing for a large range but
with reduced precision. FP16, however, has a much smaller exponent (5 bits),
leading to a narrower range.

• Performance & Use Cases [31, 34]:

– FP64 is used for high-precision applications like scientific computing and
finance - at cost of higher memory and computing time compared to FP32.

– FP32 is the standard for general computing, gaming, and deep learning.

– FP16 is common in GPUs for deep learning inference and graphics, offering
reduced memory usage and increased speed while providing much narrower
range than FP32.

– BF16 is optimized for machine learning (especially training on TPUs) since
it maintains FP32’s range but uses less memory.

4.2 Code Adaptation

Figure 4.1: Code Structure

In the following section I explain how I changed and templated the code to extend the
usage to 32-bit single-precision (C++ type float) and 16-bit half-precision (_Float16
and __bf16) beyond previous 64-bit double-precision floating-point numbers (double).
ExaHyPE 2 supports different FV solvers, but for this thesis I constrain the changes and
outcomes to the Rusanov Global Adaptive FV solver which is a specialized Riemann
solver (Subsection 2.2.2) using Rusanov fluxes and global adaptive time stepping, i. e.
timestep sizes are chosen automatically based on the greatest wave speed over the
domain.

As Figure 4.1 illustrates the code of the ExaHyPE 2 and Peano 4 environment is
basically divided in two main parts. One part is the core code written in C++. The
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second code part written in Python generates the final code depending on the input the
user gives. The process of computing a specific scenario using ExaHyPE 2 and Peano 4
can be divided in the following steps:

1. The user defines a specific scenario describing an initial condition and other
information like which solver to use and passes it to the Python part of the
ExaHyPE 2 and Peano 4 code.

2. The Python code takes the given information and generates C++ code. It should
be noted that there is no actual numerical computation executed in the Python
part.

3. The generated C++ code calls functions from the C++ core code (function calls
depend on the user input, e. g. the user specifying the Rusanov Global Adaptive
FV solver leads to a function call of RusanovGlobalAdaptiveFV::<function>()).

4. The generated C++ code is compiled into an executable that computes the problem
stated in the user’s input.

Considering this structure of the code the implementation of the templated Rusanov
Global Adaptive FV solver was executed in two phases:

• In a first phase the generated C++ code and the C++ core code shown in blue in
Figure 4.1 were modified to validate the approach.

• In a second phase the generative Python code shown in green was adapted.

Phase 1 - Extension of C++ code parts

An initial implementation of both the solver and existing scenarios relying on said solver
were available before I started, which I used to generate a functioning implementation
in 64-bit double precision for the pre-defined Euler Gaussian Explosion scenario. The
generated C++ code calls the relevant functions of ExaHyPE’s Rusanov Global Adaptive
FV solver and the Peano 4 traversal implemented in the C++ core code. At that moment
everything is implemented in 64-bit double precision.

Next, I redefined all variables from double* to float*. From here I templated the
used functions in the C++ core code as shown in the simple example below

template<typename T=double>

void clearHaloLayerAoS(

const peano4::datamanagement::FaceMarker& marker,

int numberOfDoFsPerAxisInPatch,

int overlap,

int unknowns,
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T* values

);

where the first line template<typenameT=double> tells that the function is templated
and can take various datatypes instead of the T. In this specific example T* is then used
as the datatype of the parameter values meaning that it is possible to call the function
not only by

clearHaloLayerAoS<double>(const peano4::datamanagement::FaceMarker&

exampleMarker, int exampleNumberOfDoFsPerAxisnPatch, int

exampleOverlap, int exampleUnknowns, double* exampleValues)

as in the original version of the solver but also by

clearHaloLayerAoS<float>(const peano4::datamanagement::FaceMarker&

exampleMarker, int exampleNumberOfDoFsPerAxisnPatch, int

exampleOverlap, int exampleUnknowns, float* exampleValues)

or similarly using the datatypes _Float16* and __bf16* for the exampleValues.
After not only templating every relevant function in the C++ core code but also

declaring it with the possible types as shown below for the example of float the
generated code was compiled without errors and used the 32-bit single precision
datatype float successfully for the first time.

template

void toolbox::blockstructured::clearHaloLayerAoS<float>(

const peano4::datamanagement::FaceMarker& marker,

int numberOfDoFsPerAxisInPatch,

int overlap,

int unknowns,

float* value

);

Phase 2 - Extension of Python code generation

In a second phase, in order to be able to reproduce the generated code supporting
the four different datatypes mentioned above I modified the generative Python code
of ExaHyPE 2 and Peano 4. To allow the user to specify the used precision type I
modified the code of the main Python file of the FV solvers (FV.py) as shown below
adding the entry PRECISION to the dictionary. PRECISION takes the chosen precision
type as a string that the user gives as a parameter to the instance of the Rusanov Global
Adaptive FV solver.

class FV(object):

def __init__(
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self,

precision: str,

name,

patch_size,

overlap,

unknowns,

auxiliary_variables,

min_volume_h,

max_volume_h,

plot_grid_properties,

pde_terms_without_state: bool,

kernel_namespace,

baseline_action_set_descend_invocation_order=0,

):

self._precision = precision

# Other initialization code here

def _init_dictionary_with_default_parameters(self, d):

d["PRECISION"] = self._precision

# Other dictionary entries here

I also added the parameter precision to the __init__ function of the subclasses of FV.
This ensures that the precision parameter can be passed up along the class hierarchy to
the top-level’s class dictionary when calling the Rusanov Global Adaptive FV solver
(on the lowest level).

Using this dictionary entry, every occurrence of the 64-bit double precision variables
changed in the generated C++ code in the first phase of the code adaptation gets
replaced by the adapted generative Python code and guarantees that the generated
code uses the chosen precision type at every relevant occurrence as shown below:

[[maybe_unused]] const {{PRECISION}}* __restrict__ Q,

{{PRECISION}} gets replaced using the dictionary entry and therefore lets the generated
code use the specified datatype.

The outcome of the explained implementation process is a templated version of the
implemented Rusanov Global Adaptive FV solver that works with the 64-bit double-
precision C++ datatype double, the 32-bit single-precision datatype float and the
16-bit half-precision datatypes _Float16 and __bf16, respectively. The implementation
allows the user to specify the precision type by adding it to the parameters given to the
Rusanov FV solver.

The source code extended in this thesis work can be found at https://gitlab.lrz.
de/CedricDietermann/singleprecisionexahype2.
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5 Evaluation

5.1 Hypotheses and Hardware

In the following sections both the performance and the accuracy of the simulation
results of the extended solver are discussed and compared to the original solver using
double precision. Several effects can be expected when changing the precision types.
Due to the difference in the approximated decimal precision of the four different
datatypes introduced in Section 4.1 a difference in the errors of the results is expected.
In particular FP64 should yield the best results followed by FP32, then the 16-bit half-
precision types FP16 and BF16 are expected to have higher errors in the results. The use
of lower-precision types should lead to a reduced computing time and lower storage
use.

In order to compare both the accuracy and the performance of the different numerical
precision types the code for the different scenarios described in Chapter 3 was compiled
and run on the CoolMUC-4 Cluster of the LRZ. The program was executed on the
partition cm4_tiny that uses Intel Sapphire Rapids (Xeon Platinum 8480+) nodes and
therefore Peano was configured with the following command:

./configure --enable-exahype --enable-loadbalancing --enable-

blockstructured --with-multithreading=omp --with-mpi=mpicxx CC=gcc

CXX=g++ CXXFLAGS="-Ofast -std=c++23 -W -Wall -Wextra -fopenmp -g -

funroll-loops -Ofast -g3 -march=sapphirerapids -mtune=

sapphirerapids -static-libstdc++ -static -Wno-attributes=clang::"

The parameters -march=sapphirerapids and -mtune=sapphirerapids ensure that the
code is optimized for the architecture of the used compute nodes of the partition
cm_tiny.

Using -std=c++23 additionally ensures that the 16-bit precision FP16 (Float16) and
BF16 (__bf16) datatypes are supported in the code.
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5.2 Accuracy

5.2.1 Method

In this chapter I compare the errors of the four different precision types. In order to
see how the differences in errors between the precision types behave with different
amounts of cells every scenario is simulated for double, single and both half precision
types with different amounts of cells.

The following different amounts of cells are considered in detail:

• Elastic Planar Wave Scenario

– 450 x 450 cells

– 2835 x 2835 cells

• Euler Gaussian Bell Scenario

– 135 x 135 cells

– 450 x 450 cells

– 810 x 810 cells

• SWE Resting Lake Scenario

– 1350 x 1350 cells

– 4455 x 4455 cells

The computing accuracy of the different implementations is presented as the error
in the l2-norm of the numerical solution with respect to the analytical solution. The
l2-norm [37] for a vector

x =

⎡⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎦
is defined by:

∥x∥ =

√︄
n

∑
k=1

|xk|2 (5.16)
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5.2.2 Elastic Planar Wave

The Elastic Planar Wave scenario (Section 3.1) is evaluated for either 450 x 450 or 2835 x
2835 cells.

Comparison for 450 x 450 cells

0 0.5 1 1.5 2

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Time

l2 -E
rr

or

Elastic 450x450

FP64
FP32

(a) l2-Error of FP64 and FP32

0 0.5 1 1.5 2

0

2

4

6

8

Time

l2 -E
rr

or

Elastic 450x450

FP16
BF16

(b) l2-Error of FP16 and BF16

Figure 5.1: l2-Error of the Elastic Planar Wave scenario simulated with the finite volume
method using 450 x 450 cells in FP64, FP32, FP16 and BF16 precision

Figure 5.1 shows the l2-errors of FP64, FP32, BF16 and FP16 in case of a domain divided
in 450 x 450 cells. FP64 and FP32 show almost the same l2-errors, increasing linearly
over time, i. e. the source of the errors is constant. However the l2-errors of BF16 and
FP16 are much higher, as expected, and they also show a significant difference between
each other. While the l2-error of BF16 shows a slightly decreasing gradient, the FP16
curve is more linear. Additionally, the l2-error of the BF16 implementation is increasing
much faster than the l2-error of FP16.

In summary, the results of the Elastic Planar Wave scenario with 450 x 450 cells show
that the FP32 precision type (like FP64) is sufficient for the computation, while both
half-precision types lead to high l2-errors, increasing over the simulated time.
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Comparison for 2835 x 2835 cells
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Figure 5.2: l2-Error of the Elastic Planar Wave scenario simulated with the finite volume
method using 2835 x 2835 cells in FP64, FP32, FP16 and BF16 precision

When dividing the domain in 2835 x 2835 cells the behavior for the FP64 and FP32
implementations remain roughly the same but the l2-error is constantly higher than in
case of 450 x 450 cells. Figure 5.2a) shows an increase in l2-error over time but both
precision types show the same behavior, meaning again that there is no significant
difference between the two implementations.

Figure 5.2b shows that the l2-error of the FP16 implementation still evolves roughly
linear. However, the BF16 implementation shows fast growing errors in the beginning
and then behaves similar to the FP16 implementation, i. e. the errors grow steadily
and more slowly. This behavior could arise because the BF16 implementation is not
able to simulate the initial conditions stably and therefore quickly changes to another
semi-stable state. Both implementations still show much higher l2-errors than the FP64
and FP32 implementations.

This simulation confirms the results of the simulation with less cells, namely that
there is no significant difference between the FP64 and FP32 precision types, while the
half-precision types show much higher l2-errors, i. e. considerably less accurate solution
results.
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5.2.3 Euler Gaussian Bell

Simulation of the Euler Gaussian Bell scenario (Section 3.2) showed that FP16 is not
accurate enough to complete the computing over the whole simulating time. The
computation stopped before reaching the end of the time and the l2-errors resulted
in NAN values (Not A Number). Therefore in the following only FP32, FP64 and
BF16 cases are considered. For 810 x 810 cells BF16 is also not considered due to a
significantly higher computing time that could not be reached with the used partition
of the CoolMUC-4 (see Subsection 5.3.2).

Comparison for 135 x 135 cells
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Figure 5.3: l2-Error of the Euler Gaussian Bell scenario simulated with the finite volume
method using 135 x 135 cells in FP64, FP32 and BF16 precision with outliers
(a) and without outliers (b)

Figure 5.3 compares the l2-error of the FP64, FP32 and BF16 implementations for
135 x 135 cells using the Euler Gaussian Bell scenario. Figure 5.3a shows outliers
in the l2-errors of the FP32 and BF16 implementations. Filtering the outliers in the
results yields the error evolution shown in Figure 5.3b. It shows that the FP64 and
FP32 implementations are similar in terms of the level of errors, while the BF16
implementation shows higher error values with a peak in the middle of the simulation.
All three curves show a strongly oscillating behavior.
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Comparison for 450 x 450 cells
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Figure 5.4: l2-Error of the Euler Gaussian Bell scenario simulated with the finite volume
method using 450 x 450 cells in FP64, FP32 and BF16 precision with outliers
(a) and without outliers (b)

Figure 5.4 partially confirms the results of the simulation with 135 x 135 cells. While
Figure 5.4a shows that there are still outliers, they now appear in FP64 and BF16 cases
but not in the FP32 one anymore. Filtering the outliers, Figure 5.4b confirms that the
BF16 implementation yields higher l2-errors than the FP64 and FP32 implementations,
that show similar behavior with increasing errors over time within the same level. All
three implementations still show strongly oscillating behavior.
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Comparison for 810 x 810 cells
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Figure 5.5: l2-Error of the Euler Gaussian Bell scenario simulated with the finite volume
method using 810 x 810 cells in FP64 and FP32 precision with outliers (a)
and without outliers (b)

Increasing the amount of cells further to 810 x 810 yields the results shown in Figure 5.5.
There are still outliers shown in Figure 5.5a, but they mostly occur in the FP32 imple-
mentation again, while the FP64 implementation only shows one smaller outlier in the
beginning of the simulation. Again filtering the outliers Figure 5.5b shows a similar
evolution of the l2-error over time for both implementations, increasing over time with
a slowly decreasing gradient. However the effect causing the highest outlier in the FP32
implementation at about 0.7 seconds still influences the curve, because the error values
slowly decrease after the outlier and approaches the curve of the FP64 implementation.

In summary, the Euler Gaussian Bell scenario could also be computed using the FP32
precision type without significantly increasing the l2-error. While the outliers shown
could be caused by some rounding done in the analytical solution (used as reference in
the l2-error computation) they need further investigations.
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5.2.4 SWE Resting Lake

The SWE Resting Lake scenario (Section 3.3) was simulated with 1350 x 1350 and 4455
x 4455 cells.

Comparison for 1350 x 1350 cells
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Figure 5.6: l2-Error of the SWE Resting Lake scenario simulated with the finite volume
method using 1350 x 1350 cells in FP64, FP32, FP16 and BF16 precision

The SWE Resting Lake scenario shows similar behavior as the Elastic Planar Wave and
Euler Gaussian Bell scenarios. As Figure 5.6a shows in case of 1350 x 1350 cells the
FP64 and the FP32 implementation lead to the same computing accuracy. However,
in this scenario there is no constant increase over time but the l2-error sharply jumps
at the very beginning and further remains at a roughly constant level. This can be
explained by the immediately appearing waves in the beginning of this scenario. After
these the scenario settles into a different steady state that is off by the amount of error
that slowly decreases because bigger waves smooth out over time.

The BF16 and FP16 implementations show a higher l2-error (Figure 5.6b). Confirming
the results of the Elastic Planar Wave scenario the BF16 implementation shows higher
l2-errors over the simulated time period than the FP16 implementation. Both increase
over the simulation time. This shows that no steady state is reached when using the
half-precision datatypes. In contrary to the FP64 and FP32 implementations especially
using the BF16 precision yields oscillating l2-errors which might indicate an oscillating
internal state.
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Comparison for 4455 x 4455 cells
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Figure 5.7: l2-Error of the Euler Gaussian Bell scenario simulated with the finite volume
method using 4455 x 4455 cells in FP64, FP32, FP16 and BF16 precision

Also with 4455 x 4455 cells, the SWE Resting Lake scenario still shows the same behavior
for the FP64 and FP32 implementations (Figure 5.7a). While the order of magnitude
of the l2-error is still the same, the value is noticeably lower. The curve still shows the
same behavior with a sharp jump in the beginning followed by a slow decrease.

Considering the half-precision types the results of the other simulations are con-
firmed, namely that the BF16 implementation leads to higher l2-errors than the FP16
implementation (Figure 5.7b). However in this simulation the BF16 l2-error shows a
strongly ascending curve while the FP16 l2-error still increases very slowly over time.

In summary, also for the SWE Resting Lake scenario the FP32 implementation is
sufficient, while the half-precision types show much higher l2-errors, i. e. do not lead to
an accurate result.

5.3 Performance

5.3.1 Method

In this section the computation time of the scenarios is compared using the same
amounts of cells as in Section 5.2. Additionally a VTune analysis for the SWE Resting
Lake Scenario with 1350 x 1350 cells is carried out. In particular the VTune command
-collect system-overview provides an overview including the CPU utilization, the
memory usage and the time allocation.
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5.3.2 Runtime Comparison

Elastic Planar Wave scenario

Amount of Cells FP64 FP32 FP16 BF16

450 x 450 00:00:59 00:01:06 00:01:14 00:01:25

2835 x 2835 03:53:24 04:03:50 04:19:50 05:47:56

Table 5.1: Runtime Comparison for the Elastic Planar Wave scenario (hh:mm:ss)

The amount of time needed to simulate the Elastic Planar Wave scenario on the
CoolMUC-4 is displayed in Table 5.1. Surprisingly the FP64 implementation needed
less time to compute the simulated problem than the FP32 one. However the difference
between those two precision types’ required runtime is very small. The two half-
precision cases FP16 and BF16 however needed significantly more time which can be
attributed to the fact that these have to be emulated on the CoolMUC-4 because there
is no native hardware support for them.

Euler Gaussian Bell scenario

Amount of Cells FP64 FP32 FP16 BF16

135 x 135 00:00:54 00:00:57 00:00:54 00:01:43

450 x 450 00:20:15 00:20:20 N/A 00:40:27

810 x 810 02:01:52 02:07:23 N/A timeout

Table 5.2: Runtime Comparison for the Euler Gaussian Bell scenario (hh:mm:ss)

Table 5.2 shows the runtime results for the Euler Gaussian Bell scenario. It confirms
the results for the Elastic Planar Wave scenario regarding the FP64 and FP32 imple-
mentations as both show similar computing times for each amount of cells. Contrary
to the Elastic Planar Wave scenario, the FP16 implementation for the Euler Gaussian
Bell scenario shows a similar computing time for 135 x 135 cells as the FP64 and FP32
implementations. Using more cells (450 x 450 and 810 x 810) the FP16 simulation
stopped unsuccessfully. The significantly higher computing time of the BF16 imple-
mentation shows the same issue of emulation as in the Elastic Planar Wave scenario.
With the domain consisting of 810 x 810 cells the computation using BF16 could not be
executed as the required computing time exceeds the time limits of the used partition
of the CoolMUC-4, i. e. after 8 hours computing time only 0,38 seconds (i. e. 19% of the
simulation) were simulated.
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SWE Resting Lake scenario

Amount of Cells FP64 FP32 FP16 BF16

1350 x 1350 00:07:43 00:07:38 00:08:34 00:12:33

4455 x 4455 04:15:48 04:29:39 05:03:56 07:25:33

Table 5.3: Runtime Comparison for the SWE Resting Lake scenario (hh:mm:ss)

The runtimes of the SWE Resting Lake scenario compared in Table 5.3 show the same
characteristics as in the other scenarios. While the FP64 and FP32 implementations
don’t show much difference in computing time, BF16 and FP16 take considerably more
time to compute the scenario.

Summary

Overall the analysis of the computing time shows that there is no significant difference
between the double and single-precision implementations, while the half-precision
implementations take considerably more time, while giving less accurate results.

5.3.3 VTune Analysis for the SWE Resting Lake scenario

In the following a VTune analysis of the SWE Resting Lake scenario with 1350 x 1350
cells is interpreted. Due to the fact that the half-precision types have to be emulated
on the CoolMUC-4 and showed considerably worse performance when comparing the
total computing time in Subsection 5.3.2, only the FP64 and FP32 implementations are
taken into consideration.

Execution Time & CPU Usage

Metric FP64 FP32

Elapsed Time (s) 469.613 462.863
Total CPU Time (s) 618.405 594.650
User CPU Time (s) 353.400 309.035
Unknown CPU Time (s) 265.005 285.615

Table 5.4: Comparison of Execution Time and CPU Usage

Table 5.4 shows that the FP32 float format is slightly faster than FP64, with a reduction
of approximately 1.4% in elapsed time. Additionally, the total CPU time for FP32 is
about 3.8% less than FP64, indicating a more efficient use of CPU resources. In terms
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of user CPU time, FP32 spent 44 seconds, i. e. 12.5%, less than FP64, showing better
performance in user mode. However, FP32 used 20 seconds, i. e. 7.5%, higher unknown
CPU time compared to FP64.

Thread Count

Metric FP64 FP32

Total Thread Count 2,126 1,850

Table 5.5: Thread Count Comparison

Table 5.5 shows that FP32 uses considerably fewer threads than FP64 (approximately
13% less). This result is somewhat surprising given native hardware support for both.

Memory & Bandwidth Utilization

Metric FP64 FP32

Total DRAM Bandwidth (GB/sec) 0.151 0.163
Average Read Bandwidth (GB/sec) 0.078 0.083
Average Write Bandwidth (GB/sec) 0.073 0.079
Max Observed DRAM BW (GB/sec) 3.000 4.200
Average PCIe Bandwidth (MB/sec) 0.621 0.620

Table 5.6: Memory and Bandwidth Utilization

The FP32 precision type utilizes approximately 8% more total DRAM bandwidth
compared to FP64, indicating a higher demand for memory resources. In terms of read
bandwidth, FP32 reads slightly more data, with a marginal increase over FP64. Similarly,
write bandwidth is also higher for FP32. The maximum observed DRAM bandwidth
for FP32 is significantly higher, with a peak of 4.2 GB/sec compared to FP64’s 3.0
GB/sec, suggesting more intensive memory usage during execution. Furthermore, the
average PCIe bandwidth of the FP32 is similar to the FP64 version.

Summary

In summary, for the analyzed scenario FP64 and FP32 show rather similar results in
terms of computing times, and resource utilization. All results remain within a ±15%
range, most of them even below 10% deviation. Some of the comparison results seem
rather unexpected but as they are both very close to one another this indicates that there
is no significant difference in performance between the FP64 and FP32 implementations.
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6 Conclusion

In this thesis I implemented a templated version of the pre-existing Rusanov Global
Adaptive Finite Volume Solver in ExaHyPE 2 so that it supports not only 64-bit
double precision (FP64) but also 32-bit single precision (FP32) and 16-bit half precision
(FP16, BF16) datatypes. Analyzing the performance and the precision of the different
implemented computing precisions led to some interesting results.

In the evaluated cases there is no significant difference in terms of accuracy and
performance between the use of 64-bit and 32-bit floating point numbers. However
using the 16-bit half-precision datatypes has a huge negative impact on the precision of
the solver, even though it does not lead to an improvement in performance on the used
hardware but on the contrary increases the computing time by quite a margin.

Future work should elaborate more on potential reasons leading to some of the
unexpected results. Specifically the implementation could be extended to support
other Finite Volume solvers to further evaluate the accuracy and performance over the
different precision types. Additionally it could be analyzed more deeply if there are
significant changes in memory and storage usage depending on the used precision
type. With regard to performance, unexpected behaviors should be more thoroughly
analyzed through additional profiling.
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Abbreviations

AMR Adaptive Mesh Refinement

API Application Programming Interface

CFD Computational Fluid Dynamics

CM Continuum Mechanics

EWE Elastic Wave Equation

FD Finite Difference

FE Finite Element

FV Finite Volume

PDE Partial Differential Equation

SWE Shallow Water Equations
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