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Abstract: With the rising cost of animal feed protein, finding affordable and effective substitutes
is crucial. Walnut kernel cake, a polyphenol-, fiber-, protein- and fat-rich byproduct of walnut oil
extraction, has been underexplored as a potential protein replacement in pig feed. In this study,
we found that feeding large Diqing Tibetan pigs walnut kernel cake promoted adipose deposition
and improved pork quality during pig growth. Transcriptome analysis revealed the upregulation of
genes ANGPTL8, CCNP, ETV4, and TRIB3, associated with adipose deposition. Pathway analysis
highlighted enrichment in adipose deposition-related pathways, including PPAR, insulin, PI3K-Akt,
Wnt, and MAPK signaling. Further analysis identified DEGs (differentially expressed genes) posi-
tively correlated with adipose-related traits, such as PER2 and PTGES. Single-cell transcriptome data
pointed to the specific expression of CD248 and PTGES in adipocyte progenitor/stem cells (APSCs),
pivotal for adipocyte differentiation and adipose deposition regulation. This study demonstrates
walnut kernel cake’s potential to substitute soybean cake in pig feed, providing high-quality protein
and promoting adipose deposition. It offers insights into feed protein replacement, human functional
food, fat metabolism, and related diseases, with marker genes and pathways supporting pig breeding
and pork quality improvement.

Keywords: walnut kernel cake; transcriptome; single-cell transcriptome; adipose deposition; pig

1. Introduction

As nutritious food, research on walnuts in the human diet has always attracted much
attention [1,2]. Multiple studies have linked walnut intake to cardiovascular health. Wal-
nuts are rich in unsaturated fatty acids, phytosterols and fiber, which can help lower
cholesterol levels, improve blood lipid metabolism, and reduce the risk of cardiovascular
disease [3–5]. Walnuts are rich in antioxidants, such as vitamin E, polyphenols and an-
tioxidant enzymes, which help neutralize free radicals, reduce oxidative stress damage,
and improve the body’s antioxidant capacity [6]. Some studies suggest that walnut con-
sumption may help improve cognitive function and brain health [7]. Components such
as omega-3 fatty acids and antioxidants in walnuts are thought to be beneficial to brain
function [8,9]. However, perhaps due to the small global cultivation range and production
issues, walnut and its ancillary products have been less studied in the field of livestock
farming. China’s walnut planting area and output rank first in the world, and it is also the
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country with the highest walnut consumption in the world [10]. Yunnan Province is the
largest walnut-producing area in China (accounting for 27.17% of the national walnut pro-
duction), and Fengqing County is the main walnut-producing area in Yunnan Province [11].
A large amount of walnut cake is produced here every year due to oil extraction. In line
with a sustainable path, the concept of ‘waste to wealth’ leading to ‘green growth’ is a
great opportunity to improve food security and is being adopted by many developed and
developing countries [12].

In the pig breeding industry, seeking efficient and economical feed alternatives and
improving meat quality have always been the focus of research. Adjustment of feed
ingredients can not only reduce production costs but also improve pig growth performance
and meat production quality. Walnut cake is the solid residue left over from the oil
extraction process from walnuts and is often used as feed or for other agricultural purposes.
It has attracted attention as a potential feed substitute because it is rich in protein and
fat and has potential nutritional advantages [2]. Research on walnut kernel cake may
provide new feed options for the pig industry and improve the health and nutrition
of animal husbandry [13]. Partial replacement of soybean meal with walnut cake as a
protein source has an impact on the meat quality of broiler breast meat [14,15]. However,
there are relatively few studies on the application of walnut cake in pig feed and its
effect on pig fat deposition, especially on the Diqing Tibetan pig, a local breed in Yunnan
Province, China [16]. Therefore, exploring the effect of walnut cake on pig fat deposition
has important theoretical and application value.

This study aimed to investigate the effect of walnut kernel cake as a dietary protein
substitute on adipose deposition-related traits in Diqing Tibetan pigs and to explore its
molecular mechanism at the transcriptome level. We initially investigated the effects of
walnut kernel cake on adipose-related traits at different growth and developmental stages
of pigs. Subsequently, we dissected the molecular mechanisms underlying the alterations
of adipose-related traits induced by walnut kernel cake at the transcriptome level. Finally,
we further elucidated changes in adipocyte types and their marker genes at the single-cell
transcriptome level during this process. This study provides new insights and references for
research on feed protein substitution, pig breeding and genetic improvement of meat quality.

2. Materials and Methods
2.1. Experimental Treatment and Trait Recording

Twelve large Diqing Tibetan pigs at 90 days of age (initial body weight = 8.90 ± 1.85 kg)
were used in this experiment conducted in Yunnan (Yunnan Province, China). The 12 pigs
were allotted to two dietary treatments and two stages (three pigs/diet/stage). Diets included
a corn–soybean cake basal diet (Feed A) and a walnut kernel cake diet (Feed B) containing 5%
expeller-pressed walnut kernel cake substituted for corn and soybean cake (Figure 1). Pigs
had ad libitum access to feed and water at all times. The nutritional value of walnut kernel
cake is shown in Table 1, which shows that walnut kernel cake is a valuable source of crude
protein. The nutritional value of soybean meal is shown in Table S3. The ingredients and
nutritional value of the diets are shown in Table 2.

The slaughter weight of fattening pigs is around 100 kg. We collected adipose tissue
from fattening pigs before and after they were slaughtered to study the effects of differ-
ent feeds on pig adipose deposition. When the body weight reached 80 kg, the backfat
tissues of three pigs fed with Feed A and the backfat tissues of three pigs fed with Feed B
were collected (three pigs/diet/stage). This was also performed when the pigs reached
120 kg (three pigs/diet/stage). Samples were taken immediately after euthanasia, frozen
in liquid nitrogen, and stored at −80 ◦C until used for RNA extraction and sequencing
(Figure 1). Meanwhile, the adipose-related traits were recorded according to the technical
regulation for testing of carcass traits in lean-type pig (NY/T 825-2004), containing caul
fat rate (CFR), abdominal fat rate (AFR), backfat thickness at three positions (BF_A, BF_B,
BF_C), average backfat thickness (BF_Avg), backfat thickness between the 6th and 7th ribs
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(BF_67), fat weight rate at forequarters, middle torso and hindquarters of pig (FWR_F,
FWR_M, FWR_H), and total fat weight rate (FWR_T).
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Figure 1. Experimental design flowchart. Phenotypes include 11 traits such as caul fat rate (CFR),
abdominal fat rate (AFR), backfat thickness at three positions (BF_A, BF_B, BF_C), average backfat
thickness (BF_Avg), backfat thickness between the 6th and 7th ribs (BF_67), fat weight rate at three
positions (FWR_F, FWR_M, FWR_H), and total fat weight rate (FWR_T).

Table 1. The nutritional value of walnut cake.

Nutritional Value/% Value * SE *

Water 8.1320419 0.0290737
Crude protein 22.61978519 0.450726075

Ca 0.4539975 0.00827276
TP 0.5211185 0.3548774

Ash 2.7819314 0.049862
Crude fiber 33.7111167 0.5357425

Neutral detergent fiber 49.2587963 0.8416535
Acid detergent fiber 33.1360225 0.7875224

Crude fat 8.1654504 0.1081171
* The nutritional value of walnut cake; we measured three replicates and finally took the average value.
SE represents the standard error of the three replicates.

Table 2. Composition and nutritional value of the experimental diets.

Ingredients/%
8–15 kg 15–30 kg 30–60 kg 60–120 kg

Feed A * Feed B * Feed A * Feed B * Feed A * Feed B * Feed A * Feed B *

Corn 63.61 61.7 44.9 40.4 47.7 43.3 50.4 45.7
Soybean meal 23.54 21.4 13.39 9.7 10.7 7.3 8 3.9
Wheat bran 3 3 36.3 39.4 36.3 39 36.3 40

Stone powder 1 1 1 1 1 1 1 1
Soybean oil 1.4 0.4
Fish meal 3 3

Walnut cake 5 5 5 5
Nacl 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Lys (78.5%) 0.15 0.2 0.11 0.2 0.1 0.1
Premix 4 4 4 4 4 4 4 4
Total 100 100 100 100 100 100 100 100

Nutritional value
DE (MJ/kg) 13.60 13.60 11.70 11.77 11.72 11.76 11.72 11.76
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Table 2. Cont.

Ingredients/%
8–15 kg 15–30 kg 30–60 kg 60–120 kg

Feed A * Feed B * Feed A * Feed B * Feed A * Feed B * Feed A * Feed B *

CP 18.22 18.23 15.02 15.09 14.07 14.07 13.11 13.11
CF 2.62 4.15 3.87 5.45 3.75 5.36 3.64 5.25

Met + Cys 0.62 1.11 0.54 1.00 0.51 0.98 0.49 0.96
Lys 1.07 1.07 0.78 0.78 0.63 0.63 0.56 0.57
Ca 0.76 0.77 0.64 0.65 0.63 0.64 0.62 0.63
P 0.62 0.62 0.72 0.74 0.71 0.74 0.70 0.73

* The corresponding value below each growth stage is the feed formula for this stage. At the beginning of the
experiment, Feed A and Feed B groups each contained 6 pigs. When the body weight of the pigs reached 80 kg,
three pigs fed with Feed A and three pigs fed with Feed B were slaughtered and the backfat tissues were collected.
8–80 kg, NFeedA = 6, NFeedB = 6. When the body weight reached 120 kg, three pigs fed with Feed A and three pigs
fed with Feed B were slaughtered and the backfat tissues were collected. 80–120 kg, NFeedA = 3, NFeedB = 3.

2.2. RNA Extraction, Library Construction, and Sequencing

We extracted total RNA from these 12 samples using Trizol reagent (Invitrogen, Waltham,
MA, USA) as follows: Transfer 50–100 mg of adipose tissue into a 2 mL centrifuge tube, add
1 mL Trizol reagent and RNAase-free steel beads. Thoroughly mix the sample and reagent
using a homogenizer, and let it stand at room temperature for 5 min. Add 0.2 mL chloroform,
shake for 15 s, and let it stand for 2 min. Centrifuge at 4 ◦C, 12,000× g 15 min, and collect the
supernatant. Add 0.5 mL isopropanol, gently mix the liquid in the tube, and let it stand at room
temperature for 10 min. Centrifuge at 4 ◦C, 12,000× g 10 min, and discard the supernatant.
Add 1 mL of 75% ethanol to wash the precipitate gently. Centrifuge at 4 ◦C, 7500× g 5 min,
and discard the supernatant. Air dry the pellet, and dissolve it in an appropriate amount of
DEPC-treated water. Then treat the RNA with DNase I enzyme (Thermo Fisher Scientific,
Waltham, MA, USA) to remove DNA contamination. The RNA information of the 12 samples
is shown in Table S1.

The purity, concentration and integrity of the RNA were tested by NanoDrop spec-
trometer (Thermo Fisher Scientific), Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA,
USA), and Qubit 2.0 fluorescence analyzer (Thermo Fisher Scientific). TruSeq Stranded
Total RNA Sample Prep Kit (Illumina, San Diego, CA, USA) was used for RNA library
construction. First, poly(A)+ RNA is enriched using magnetic beads, and then the RNA is
fragmented using fragmentation buffer. Next, first-strand cDNA was synthesized using
SuperScript III reverse transcriptase, and DNA polymerase I and RNase H were used
for second-strand synthesis. Afterwards, we performed end repair, A-tail modification
and adapter ligation, and used PCR amplification to amplify the library to the desired
concentration. Finally, the 12 libraries were subjected to pair-end 150 bp high-throughput
sequencing using the Illumina HiSeq X Ten platform.

2.3. Sequencing Data Filtering and Differentially Expressed Gene (DEG) Analysis

We first checked the quality of the sequencing data using FastQC (v0.11.8) and then
used fastp (v0.20.0) software to remove low-quality sequences with default parameters to
obtain clean data [17,18]. The clean reads were further aligned to the reference genome
(Sscrofa11.1.97) using STAR (v2.7.1) to compare with the reference genome [19]. The quality
values and the mapping rate of RNA-seq data for the 12 samples are shown in Table S2.
We used featureCounts (v2.0.0) to calculate the gene expression level [20], and filtered out
genes with an average count of less than 1 in all samples. We then used DESeq2 (v1.38.3)
software to normalize gene expression levels, and further analyze differentially expressed
genes (DEGs) [21]. The genes with the criterion of |log2 (fold change)| > 1 (|log2FC| > 1)
and unadjusted p < 0.05 were considered DEGs.
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2.4. Functional Enrichment Analysis

Gene function enrichment analysis is a method used to discover gene functions associ-
ated with biological processes or pathways in a set of genes. In this study, we took the list
of DEGs as input and used the R package clusterProfiler (v4.6.2) to perform Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment
analyses to explore the biological functions of DEGs [22]. For GO analysis, we performed
the analysis on three different GO categories (molecular function, biological process, and
cellular component), setting p < 0.05 as the significance threshold. At the same time, we
also analyzed all KEGG pathways and set p < 0.05 as the significance threshold. We used
the wordcloud (v2.6) package and enrichplot (v1.18.4) package in the R language (v4.2.2) to
visualize the results of the GO and KEGG enrichment analyses. Significantly enriched path-
ways and GO terms were shown using barplot and dotplot. Frequency and classification of
pathways and GO terms were shown using wordcloud and treeplot. Heatplot and cnetplot
functions were also used to generate heatmaps and network diagrams to more intuitively
display the relationship and interaction between DEGs and GO or KEGG pathways.

2.5. Gene Set Enrichment Analysis (GSEA)

GSEA (Gene Set Enrichment Analysis) is a method commonly used in transcriptome
analysis, which can compare gene expression profiles between different samples and find
gene sets related to certain biological processes, diseases, etc. [23]. In this study, GSEA
was performed using all genes for the two growth stages, respectively. First, all genes
were sorted in descending order according to log2FC, and then the gseGO and gseKEGG
functions of the R package clusterProfiler were used to perform the GSEA of GO and KEGG,
respectively. We screened for significantly enriched gene sets with |NES| > 1, p < 0.05, and
p.adjust < 0.25.

2.6. Weighted Gene Co-Expression Network Analysis (WGCNA)

We further performed WGCNA in the R software (v4.0.2) environment using the
WGCNA package (v1.72) [24]. We filtered the raw data of all 12 RNA-seq samples in
this study, eliminated low-expression genes, retained genes with a coefficient of variation
greater than 0.4 and 30% of the samples had an expression level greater than 1 to obtain an
expression matrix. After normalizing the expression matrix, we used the pickSoftThreshold
function to estimate the soft threshold parameter and selected the best parameter value that
could achieve a high degree of modularity. Afterwards, using the blockwiseModules func-
tion (minModuleSize = 30, mergeCutHeight = 0.4), we clustered the gene expression data
and identified co-expressed modules. We used the similarity based on module eigenvectors
(Module Eigengene) to calculate the similarity between modules. Through hierarchical
clustering, we aggregated highly related modules together and assigned each module a
color name. Finally, we imported adipose-related traits and performed correlation analyses
with each module to identify key modules that affect the adipose traits.

2.7. Correlation Analysis of Adipose-Related Traits and Genes

In order to mine the genes that significantly affect adipose traits, we first extracted
the expression level of all 182 genes in the tan module that were highly correlated with
adipose traits. We then performed Pearson correlation analysis between the genes and the
11 adipose-related traits, such as Caul fat rate (CFR), Abdominal fat rate (AFR), Backfat
thickness_A (BF_A), Backfat thickness_B (BF_B), Backfat thickness_C (BF_C), Backfat thick-
ness_Avg (BF_Avg), Backfat thickness_67 (BF_67), Fat weight rate_Forequarters (FWR_F),
Fat weight rate_Middle torso (FWR_M), Fat weight rate_Hindquarters (FWR_H) and Fat
weight rate_Total (FWR_T). It was considered to be significantly correlated between genes
and traits when p < 0.05. Furthermore, we also used the 80 kg and 120 kg stages of DEG
expression levels and adipose traits to conduct correlation analyses to explore the molecular
mechanism of walnut kernel cake affecting pig adipose deposition in different periods.
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2.8. scRNA-seq Analysis of Adipose Tissue

To study the effect of walnut kernel cake on pig adipose deposition from the single-
cell level, we downloaded the expression matrix of single-cell data (GSE193975) of pig
adipose from the NCBI public database [25]. We first used Seurat (v4.3.0) software to
remove low-quality cells and genes (nCount_RNA < 1000 and nFeature_RNA < 500 and
percent.mt > 20), then used decontX (v4.3.0) and DoubletFinder (v4.3.0) to remove am-
bient RNA and doublets, respectively [26–28]. Subsequently, Seurat software (v4.3.0.1)
was used for data dimensionality reduction and clustering. The FindMarkers function
in Seurat was used to find the DEGs among different clusters. The DEGs were deter-
mined according to the threshold of log2FC > 0.25 and p.adjust < 0.05. We annotated the
cell types of clusters based on classic marker genes and online databases such as Cellmarker
(http://bio-bigdata.hrbmu.edu.cn/CellMarker/, accessed on 7 March 2023) and PanglaoDB
(https://panglaodb.se/index.html, accessed on 7 March 2023). Moreover, we used Seurat’s
DotPlot function to visualize the expression patterns of cell type-specific marker genes. The
expression patterns of key genes significantly associated with adipose traits in different cell
types were visualized using the VlnPlot function.

2.9. Statistical Analysis

Differences in adipose-related traits (CFR, AFR, BF_A, BF_B, BF_C, BF_Avg, BF_67,
FWR_F, FWR_M, FWR_H and FWR_T) across comparison combinations were analyzed
using a two-tailed t-test. Pearson correlation analysis of these traits and gene expression was
performed using the “cor” function in the R package with the method of “Pearson”. These
genes include the 182 genes in the tan module of WGCNA, DEGs of Feed A and Feed B
groups during the 80 kg body weight period, and DEGs of Feed A and Feed B groups during
the 120 kg body weight period. The correlation coefficient and p value were calculated with
default parameters. A p value less than 0.05 was considered statistically significant.

3. Results
3.1. Effects of Walnut Kernel Cake on Traits Related to Adipose Deposition

In order to study the effect of walnut kernel cake on adipose deposition in pigs, we
measured 11 traits, such as CFR, AFR, BF_A, BF_B, BF_C, BF_Avg, BF_67, FWR_F, FWR_M,
FWR_H and FWR_T at 80 kg and 120 kg, respectively (Figure 2). It was found that at the
80 kg stage, walnut kernel cake significantly increased the CFR of pigs (p < 0.05, Figure 2A).
At the 120 kg stage, walnut kernel cake significantly increased the BF_67 and FWR_T of pigs
(p < 0.05, Figure 2B). There was also an increasing trend for traits such as AFR, BF_A, BF_B,
BF_C, BF_Avg, FWR_F, FWR_M, and FWR_H at the 120 kg stage (Figure 2B). The results
showed that walnut kernel cake may promote adipose deposition and improve pork quality.

3.2. Walnut Kernel Cake Causes Significant Alteration in the Adipose Transcriptome

In order to study the effect of walnut kernel cake on the pig adipose transcriptome,
we collected adipose tissue from pigs at two stages of 80 kg and 120 kg for transcriptome
sequencing. It was found that walnut kernel cake had a significant effect on the pig
adipose transcriptome at both stages (Figure 3A,B). Using the criteria of p < 0.05 and
fold change > 2, we screened 378 and 687 differentially expressed genes (DEGs) at the two
stages, respectively, among which there were 153 and 225 up-regulated and down-regulated
genes for the feed B group (walnut kernel cake diet) at the 80 kg stage, and 310 and 377
up-regulated and down-regulated genes for the feed B group (walnut kernel cake diet) at
the 120 kg stage (Figure 3C). Furthermore, we found that there were 44 shared DEGs at the
two stages of 80 kg and 120 kg, of which 14 were shared up-regulated DEGs (ANGPTL8,
CCNP, ETV4, MESP1, MLANA, NUDT7, TRIB3, etc.) and 12 were shared down-regulated
DEGs (ABCC11, ACTG2, DES, ENPP3, MMRN1, TBX1, etc.) (Figure 3D). In addition, there
were 18 DEGs with opposite expression trends in the two stages.

http://bio-bigdata.hrbmu.edu.cn/CellMarker/
https://panglaodb.se/index.html
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Figure 3. Differential expression analysis of adipose transcriptome at the 80 kg and 120 kg body
weight stages. (A) Heatmap of differentially expressed genes (DEGs) at 80 kg stage, which showed
the feed effect on the group of pigs at the 80 kg stage. (B) Heatmap of DEGs at 120 kg stage, which
showed the feed effect on the group of pigs at the 120 kg stage. (C) Statistics on the number of DEGs.
(D) Venn diagram of DEGs at the two stages. The left is a Venn diagram of up-regulated DEGs. The
middle is a Venn diagram of all DEGs. The right is the Venn diagram of down-regulated DEGs. The
genes in the red and green boxes below are the up-regulated and down-regulated DEGs shared by
the two stages, respectively. BF80_A: pigs fed with Feed A at 80 kg stage. BF80_B: pigs fed with Feed
B at 80 kg stage. BF120_A: pigs fed with Feed A at 120 kg stage. BF120_B: pigs fed with Feed B at
120 kg stage. BF80: pigs at 80 kg stage. BF120: pigs at 120 kg stage.
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3.3. GO Enrichment Analysis Reveals Adipose Deposition-Related Biological Processes and Genes

To study the function of DEGs at two body weight stages of 80 kg and 120 kg, we
performed GO term enrichment analysis using DEGs. At the 80 kg body weight stage, we
obtained 74 significantly enriched GO terms (p < 0.05), and all these GO terms belonged to
Biological Processes (BP). The word cloud annotation shows that these GO terms are mainly
enriched in cell–cell signaling, organic acid metabolic process, etc. (Figure 4A). We classified
the top 30 significantly enriched GO terms, which can be divided into five categories: nega-
tive behavior cycle activity, generation glycogen metabolites energy, diterpenoid fat-soluble
retinoid hormone, blood tube diameter circulatory and endoderm endodermal formation
development (Figure 4B). We further listed the significant enrichment of the top 20 GO
terms and found that negative regulation of the Wnt signaling pathway related to adipose
deposition was significantly enriched. Moreover, sugar and energy metabolism-related
terms such as regulation of the glycogen metabolic process, regulation of the polysaccharide
metabolic process and regulation of generation of the precursor metabolites and energy
were significantly enriched (Figure 4C). This reveals that, at this stage, walnut kernel cake
may affect the sugar and energy metabolism and further affect adipose deposition. To study
the relationship between GO terms and genes, we further displayed the top 10 GO terms
and the genes involved. We found that the genes SOSTDC1, GRB10 and EGR1 were signifi-
cantly enriched in the negative regulation of the Wnt signaling pathway, and PPP1R3B and
PHLDA2 were significantly enriched in the regulation of the glycogen metabolic process
(Figure 4D), suggesting that these genes may have an important role in adipose deposition.
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Figure 4. GO term enrichment analysis of DEGs at the 80 kg and 120 kg body weight stages. (A) GO
term word cloud annotation at the 80 kg body weight stage. As the font size of a word increases,
its frequency in the terms also increases. The colors of different entries are randomly assigned.
(B) Taxonomic summary of the GO terms at the 80 kg body weight stage. (C) Top 20 GO terms
at the 80 kg body weight stage. (D) Top 10 GO terms and their enriched gene interactions at the
80 kg body weight stage. (E) GO term word cloud annotation at the 120 kg body weight stage. As the
font size of a word increases, its frequency in the terms also increases. The colors of different entries
are randomly assigned. (F) Taxonomic summary of the GO terms at the 120 kg body weight stage.
(G) Top 20 GO terms at the 120 kg body weight stage. (H) Top 10 GO terms and their enriched gene
interactions at the 120 kg body weight stage.
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At the 120 kg body weight stage, we obtained 546 significantly enriched GO terms
(p < 0.05), all of which belonged to BP. The word cloud annotation shows that these GO
terms are mainly enriched in epithelium development, organic acid metabolic process, and
regulation of cell differentiation (Figure 4E). We classified the top 30 significantly enriched
GO terms, which can be divided into five categories: growth multicellular development
organism, ameboidal-type cell motility migration, epithelial tissue branching, MAPK
cascade signal communication and purine nucleotide bisphosphate biosynthetic (Figure 4F).
We further showed the significant enrichment of the top 20 GO terms, and found that the
adipose-related MAPK cascade term was significantly enriched. Furthermore, multiple
epithelium-related terms were significantly enriched (Figure 4G). To study the relationship
between GO terms and genes, we further displayed the top 10 GO terms and the genes
involved. We found that adipose deposition-related genes such as WNT2, WNT11 and
SOX9 were significantly up-regulated (Figure 4H). From the number of enriched terms, it
can be seen that the number of significantly enriched terms at the 120 kg body weight stage
was significantly higher than that at the 80 kg body weight stage, indicating that walnut
kernel cake might have a greater impact on pigs at the later stage of growth than at the
early stage.

3.4. KEGG Enrichment Analysis Reveals Adipose Deposition-Related Pathways and Genes

We investigated the KEGG enrichment pathways of DEGs at two body weight stages
of 80 kg and 120 kg. At the 80 kg body weight stage, we obtained 41 significantly enriched
pathways (p < 0.05). The word cloud annotation shows that these pathways are mainly
enriched in the calcium signaling pathway, ECM–receptor interaction, MAPK signaling
pathway, and insulin secretion, and the latter three of which are related to adipose depo-
sition (Figure 5A). We classified the top 30 significantly enriched pathways, which can
be divided into five categories: African AGE-RAGE secretion action, Amphetamine Cal-
cium Circadian ataxia, Axon Butanoate Cytokine–cytokine guidance, Neuroactive Nicotine
ligand–receptor addiction and ECM–receptor Focal Human adhesion (Figure 5B). We fur-
ther showed the significantly enriched pathways of the top 20 and found some adipose
deposition-related pathways such as insulin secretion, ECM–receptor interaction, and Wnt
signaling pathway were significantly enriched (Figure 5C). To study the relationship be-
tween pathways and genes, we further showed the top 10 pathways and the genes involved
(Figure 5D).

At the 120 kg body weight stage, we obtained 30 significantly enriched pathways
(p < 0.05). The word cloud annotation shows that these pathways are mainly enriched
in the calcium signaling pathway, MAPK signaling pathway, PPAR signaling pathway,
and insulin signaling pathway (Figure 5E). We classified the top 30 significantly enriched
pathways, which can be divided into five categories: acute adhesion B6 biosynthesis, ECM–
receptor human digestion infection and carbon citrate cycle (TCA cycle) (Figure 5F). We
further showed the significantly enriched pathways of the top 20, and also found that
adipose deposition-related pathways such as the PPAR signaling pathway and Wnt signaling
pathway were significantly enriched (Figure 5G). To study the relationship between pathways
and genes, we further displayed the top 10 pathways and the genes involved, and found that
the genes in the PPAR signaling pathway were significantly up-regulated, such as PPARD,
PLINNN5, CYP4A24, ACSL1, FABP3, FABP7, ME1, etc. (Figure 5H), indicating that walnut
kernel cake may regulate adipose deposition by up-regulating the PPAR signaling pathway.

Furthermore, we found eight common significantly enriched pathways in the two
stages: melanogenesis, neuroactive ligand–receptor interaction, calcium signaling pathway,
Wnt signaling pathway, PI3K–Akt signaling pathway, Human papillomavirus infection,
ECM–receptor interaction, and retinol metabolism. Among them, the Wnt signaling path-
way, PI3K–Akt signaling pathway and ECM–receptor interaction are related to adipose
deposition, indicating that walnut kernel cake can further affect adipose deposition by
significantly affecting these two pathways.
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Figure 5. KEGG enrichment analysis of DEGs at the 80 kg and 120 kg body weight stages. (A) KEGG
pathway word cloud annotation at the 80 kg body weight stage. As the font size of a word increases,
its frequency in the terms also increases. The colors of different entries are randomly assigned.
(B) Taxonomic summary of the pathways at the 80 kg body weight stage. (C) Top 20 pathways at
the 80 kg body weight stage. (D) Top 10 pathways and their enriched gene interactions at the 80 kg
body weight stage. (E) KEGG pathway word cloud annotation at the 120 kg body weight stage. As
the font size of a word increases, its frequency in the terms also increases. The colors of different
entries are randomly assigned. (F) Taxonomic summary of the pathways at the 120 kg body weight
stage. (G) Top 20 pathways at the 120 kg body weight stage. (H) Top 10 pathways and their enriched
gene interactions at the 120 kg body weight stage. Red and blue squares indicate gene up- and
down-regulation, respectively.

3.5. GSEA Reveals That the PPAR Signaling Pathway Was Activated by Walnut Kernel Cake

To investigate gene set enrichment at both stages, we performed GSEA with all genes.
At the 80 kg body weight stage, we obtained 41 and 11 significantly enriched GO terms
and KEGG pathways, respectively (|NES| > 1, p < 0.05, p.adjust < 0.25). These include
9 up-regulated GO terms and 2 up-regulated KEGG pathways (|NES| > 1, p < 0.05,
p.adjust < 0.25), 32 down-regulated GO terms and 9 down-regulated KEGG pathways
(|NES| > 1, p < 0.05, p.adjust < 0.25). Among the top 10 GO terms, only the ribonucleo-
protein complex was up-regulated in the walnut kernel cake additional group (Figure 6A).
In the top 10 KEGG pathways, only the ribosome and synaptic vesicle cycles were up-
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regulated in the walnut kernel cake additional group (Figure 6B). At the 120 kg body weight
stage, we obtained 205 and 38 significantly enriched GO terms and KEGG pathways, respec-
tively (|NES| > 1, p < 0.05, p.adjust < 0.25). These include 145 up-regulated GO terms and
22 up-regulated KEGG pathways (|NES| > 1, p < 0.05, p.adjust < 0.25), 60 down-regulated
GO terms and 16 down-regulated KEGG pathways (|NES| > 1, p < 0.05, p.adjust < 0.25).
All the top 10 GO terms were up-regulated in the walnut kernel cake additional group, and
many terms were related to mitochondria (Figure 6C). Among the top 10 KEGG pathways,
the PPAR signaling pathway was up-regulated in the walnut kernel cake additional group
(Figure 6D). The genes ACSL1, CYP4A24, FABP3, FABP7, ME1, PLIN5, PPARD and RXRG
involved in this pathway are all related to adipose deposition, and all of them are signif-
icantly up-regulated (Figure 6E). This shows that walnut kernel cake promotes adipose
deposition in pigs by activating the PPAR signaling pathway and the related genes.
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Figure 6. Gene set enrichment analysis of the 80 kg and 120 kg body weight stages. (A) GSEA of GO term
at the 80 kg body weight stage. (B) GSEA of KEGG pathway at the 80 kg body weight stage. (C) GSEA of
GO term at the 120 kg body weight stage. (D) GSEA of KEGG pathway at the 120 kg body weight stage.
(E) PPAR signaling pathway and its related DEGs at the 120 kg body weight stage.
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3.6. WGCNA Identifies Two Modules Significantly Associated with Adipose Traits

To study gene sets associated with traits, we performed WGCNA and obtained
21 modules (Figure 7A). Using the hub genes in each module, we performed cluster
analysis on these 21 modules (Figure 7B). Further, we used the expression level of genes
in each module to perform a correlation analysis with the 11 adipose-related traits. The
results showed that the module tan was highly correlated with adipose traits, especially
with BF and AFR (Figure 7C). The correlation coefficients between the module tan and
AFR, BF_A, BF_B, BF_C, and BF_Avg were above 0.5 (p < 0.05). It indicated that walnut
kernel cake mainly affected traits such as BF and AF through the gene sets of this module.
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Figure 7. Construction of co-expression modules based on genes in all samples. (A) Cluster dendro-
gram of genes. Each branch represents one gene, and every color below represents one co-expression
module. (B) Hierarchical clustering and heatmap of modules. Different colors at the bottom represent
different modules. The grey module contains genes that are not significantly correlated with genes in
other modules and is removed here. (C) Heatmap of the correlation between module eigengenes and
adipose-related traits. The grey60 and tan modules were the most positively correlated with traits.

3.7. Correlation Analysis Identifies Adipose Deposition-Related Genes

In order to study the genes that significantly affect adipose-related traits, we extracted the
182 genes in the tan module and performed correlation analysis with the 11 traits. Among the
2002 gene–trait pairs, 432 (21.58%) were significantly correlated (p < 0.05, |r| > 0.576), of which
169 had |r| > 0.7, involving 88 genes, such as ABTB2, ADAMTS18, AHSP, ALAS2 and ATP6V1G2
(Figure 8A). Among them, ALAS2, DUSP4, ENSSSCG00000007978, ENSSSCG00000036334, HK2,
KCNS3 and LRATD1 are the DEGs in the 80 kg stage, and a total of 17 genes such as ABTB2, DUSP4,
ENSSSCG00000001458, ENSSSCG00000025367, ENSSSCG00000036334, EVPL, HK2, HMCN1,
HSPA12A, KCNH3, KIF17, LRATD1, NR1I2, RGS7, SMAD7, TNN and U6 are the DEGs in the
120 kg stage.
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Figure 8. Correlation analysis of genes and adipose-related traits. (A) Heatmap of the correlation
coefficients between genes and adipose-related traits in the tan module. (B) Heatmap of correlation
coefficients between DEGs and adipose-related traits at the 80 kg body weight stage. (C) Heatmap of
correlation coefficients between DEGs and adipose-related traits at the 120 kg body weight stage. Each
row represents a gene, and each column represents a trait. Gene names with correlation coefficients
greater than 0.8 for traits are displayed.

At the same time, we also used the DEGs of the two stages of 80 kg and 120 kg to
conduct correlation analysis with these 11 traits and found that there were 147 pairs and
735 pairs of significant correlations in the two stages (p < 0.05, |r| > 0.576). Among them,
there were 35 gene–trait pairs with |r| > 0.7 in the 80 kg stage, involving 30 genes, in which
three genes such as ALAS2, ADRB1 and ENSSSCG00000016467 had correlation coefficients
greater than 0.8 (Figure 8B). In the 120 kg stage, there were 185 gene–trait pairs involving
154 genes with |r| > 0.7. Among them, 35 gene–trait pairs with 30 genes had correlation
coefficients greater than 0.8 (Figure 8C).

Notably, genes in 96% (24/25) of the negatively correlated gene–trait pairs were signifi-
cantly down-regulated, and genes in 80% (8/10) of the positively correlated gene–trait pairs
were significantly up-regulated. Namely, 91.43% (32/35) of the gene–trait pairs promoted
adipose deposition, involving 90% (27/30) of the genes. Among the 32 gene–trait pairs
that promote adipose deposition, 25 were related to FWR, involving the genes ADRB1,
CCDC173, CDC45, DCLK3, DUSP10, ENSSSCG00000001081, ENSSSCG00000001458, EN-
SSSCG00000013869, ENSSSCG00000016467, ENSSSCG00000038037, FBP2, GATM, GPR18,
LEP, MAP3K15, NECTIN1, PLA2G10, RNASE4, SLC25A45, and ZGRF1. There were six
gene–trait pairs related to backfat thickness, such as CKB, EEF1A2, ENSSSCG00000033248,
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ENSSSCG00000040134, PER2 and PTGES. This further explained that walnut kernel cake
mainly affected adipose-related traits such as FWR and BF at the 120 kg stage.

3.8. Single-Cell Transcriptome Analysis Reveals Key Genes for Adipose Deposition

In order to explore the regulatory mechanism of walnut kernel cake on adipose
deposition at the single-cell level, we used the published single-cell transcriptome data
of porcine adipose tissue to conduct an in-depth analysis of genes significantly related to
adipose traits. We initially obtained data with 10,890 cells covering 15,490 genes. After
quality control, we finally retained 9941 cells, and after further dimensionality reduction, a
total of 17 clusters were obtained (Figure 9A). Combining CellMarker, PanglaoDB and the
classic adipose tissue marker genes in the literature, we annotated these 17 clusters as seven
cell types, including adipocyte progenitor/stem cells (APSCs), cycling cells, endothelial
cells, lymphatic endothelial cells, macrophages, NK/T cells and smooth muscle cells
(Figure 9B). Figure 9C shows the marker genes we used to annotate cell types (Figure 9C).
Next, we investigated gene expression that was significantly associated with the traits in
each cell type. The results showed that these genes were mainly expressed in non-immune
cell types such as APSCs, cycling cells, endothelial cells and smooth muscle cells. Among
them, CPXM2, FMOD, SMOC2, VIPR2, CD248 and PTGES were specifically expressed in
APSCs. ZNF367 and ENSSSCG00000005481 genes were specifically expressed in cycling
cells. PPP1R3B, SULT1C4, RNF125, SELP and VEGFC genes were specifically expressed in
endothelial cells (Figure 9D–F). The above genes, especially the cell type-specific expression
genes of APSCs, may play an important role in regulating adipogenesis and deposition. In
addition, we found that EGR1, FOS and TXNIP genes were relatively highly conserved in
various cell types and may also play an important role in regulating adipose deposition.
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Figure 9. Single-cell transcriptome analysis of porcine adipose tissue. (A) UMAP plot of cell clusters
in pig adipose tissue. (B) UMAP plot of cell types in adipose tissue. (C) Dotplot of marker genes in
different cell types. (D) Violin plots of genes that are significantly associated with adipose-related
traits in the grey60 and tan modules. (E) Violin plot of DEGs that are significantly associated with
adipose-related traits at the 80 kg body weight stage. (F) Violin plot of DEGs that are significantly
associated with adipose-related traits at the 120 kg body weight stage.

4. Discussion

In the field of pig breeding, research has been dedicated to finding efficient and eco-
nomical feed alternatives that can improve meat quality. Walnut cake is a by-product of
walnut processing and is usually used as a feed additive [14,15]. It is rich in protein, fat,
fiber, minerals, vitamins, phytic acid and polyphenolic compounds, which may play an im-
portant role in regulating the nutritional needs and growth performance of animals [29,30].
However, there are few reports on the effect of walnut kernel cake on adipose deposition in
pigs. In this study, substituting walnut kernel cake for part of the soybean protein in feed
was found to have an effect on adipose deposition in large Diqing Tibetan pigs and altered
the gene expression profile of adipose tissue.

In this study, walnut kernel cake significantly promoted adipose deposition and
improved pork quality in pigs. Specifically, it significantly increased the caul fat rate of pigs
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at the 80 kg stage, and significantly increased the backfat thickness and FWR of pigs at the
120 kg stage. Some studies have shown that walnut functional food or walnut meal will not
cause obesity or adipose deposition [31–34]. However, the walnut kernel cake in this study
caused adipose deposition in pigs, probably because the walnut kernel cake contained
more lipids compared to the partially replaced soybean meal, which is consistent with
the experimental results of Untea et al. in chickens [14,15]. The effects of fiber, minerals,
vitamins, phytic acid and polyphenolic compounds in walnut cake on pig fat deposition
and their regulatory mechanisms need to be further explored.

Walnut kernel cake also significantly altered the transcriptome level of porcine adipose
tissue. Among them, the number of DEGs in the 120 kg stage was 1.82 times that in
the 80 kg stage, indicating that the walnut kernel cake played an important role in the
adipose deposition of pigs, especially in the late fattening period. We found a total of
26 shared genes in the two stages, among which ANGPTL8 is an adipocytokine known
to play an important regulatory role in fat metabolism. The study found that ANGPTL8
can promote the maturation of adipocytes and the release of fatty acids, while regulating
insulin sensitivity and glucose metabolism [35–38]. ETV4 may play a role in the regulation
of adipocyte differentiation and metabolism [39,40]. TRIB3 is involved in regulating cell
proliferation, differentiation and apoptosis [41]. In adipocytes, TRIB3 may interact with the
insulin signaling pathway to affect fat metabolism and insulin sensitivity [42]. These genes
may play an important regulatory role in adipose deposition.

The functional enrichment results of differentially expressed genes showed that multi-
ple fat-related pathways were significantly enriched, including the PPAR signaling pathway,
insulin signaling pathway, PI3K-Akt signaling pathway, Wnt signaling pathway, MAPK
signaling pathway, etc. These pathways have key regulatory roles in adipocyte differen-
tiation, proliferation and fatty acid synthesis, which can promote adipocyte maturation,
increase adipocyte number and adipose deposition [43–48]. GSEA analysis showed that the
walnut kernel cake activated the PPAR signaling pathway at the 120 kg stage. It plays a key
regulatory role in adipocyte differentiation and fatty acid synthesis. The PPAR signaling
pathway can promote the differentiation process of adipose stem cells into adipocytes,
and promote the differentiation and maturation of adipocytes [49,50]. In addition, it can
also promote fatty acid synthesis and triacylglycerol synthesis, thereby increasing adipose
deposition and storage [51].

The PPAR signaling pathway is very important for the regulation of insulin sensitivity.
Insulin is an important metabolic hormone that promotes glucose uptake and utilization
and inhibits fatty acid release. Activating the PPAR signaling pathway can improve the
sensitivity of cells to insulin, and promote the uptake and metabolism of glucose by adipose
cells, thereby reducing the release of fatty acids and inhibiting the decomposition of adipose
tissue [52,53]. This pathway may play an important regulatory role in the process of walnut
kernel cake promoting adipose deposition. All DEGs involved in this pathway, such as
ACSL1, CYP4A24, FABP3, FABP7, ME1, PLIN5, PPARD and RXRG, were related to adipose
deposition, and were significantly up-regulated in the walnut kernel cake-supplemented
group. In addition, we also found mitochondrial and energy metabolism-related pathways
and the role of these pathways in adipose deposition in this study needs further study.

We screened some DEGs significantly associated with adipose traits through WGCNA
and correlation analysis. In the 120 kg stage, we found many genes highly correlated with
adipose traits (|r| > 0.8, p < 0.05). Among them, 96% of DEGs negatively correlated with
adipose traits were down-regulated, and 80% of DEGs positively correlated with adipose
traits were up-regulated. The above results further indicated that walnut kernel cake
feeding can promote adipose deposition in pigs. Among them, Per2 and Cry2 interact to
promote adipogenesis by inhibiting the Wnt signaling pathway in mice [54]. The increase
in PTGES may promote the synthesis of prostaglandin E2, which in turn regulates the
metabolic activity of adipocytes. Prostaglandin E2 is considered to be a biologically active
substance that can promote adipocyte proliferation and fat synthesis. It can promote the
differentiation and proliferation of adipocytes and increase the synthesis and deposition of
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fat by activating PGE2 receptors in adipocytes [55]. The up-regulation of these genes may
play an important regulatory role in the process of walnut kernel cake promoting adipose
deposition. In addition, we also found some other DEGs that regulated adipose deposition,
such as CKB and LEP [56,57]. How the above genes and pathways interact to promote
adipose deposition in the present study needs further exploration.

There are few studies exploring adipose deposition at the single-cell level. This study
further explored the expression of these key genes in different adipose tissue cell types
using single-cell transcriptome data. It was found that CPXM2, FMOD, SMOC2, VIPR2,
CD248, PTGES and other genes were specifically expressed in APSCs. APSCs are adipocyte
precursors and stem cells that can differentiate into mature adipocytes and promote adipose
deposition [58]. Among them, CD248 and PTGES were significantly up-regulated at the 120 kg
stage, and these two genes were highly positively correlated with backfat thickness, indicating
that these two genes may mainly act on APSCs to promote the differentiation of adipose
precursor stem cells and then promote the formation of adipocytes and adipose deposition.

The limitation of this study is that the sample size used is slightly smaller. Although
we have used more stringent standards to screen differentially expressed genes and analyze
trait differences, there may still be some bias in the results. Therefore, we will conduct
functional experimental verification of some key genes in the future. A sufficient number
of samples will be used for experiments in future studies to ensure the credibility and
representativeness of the data.

5. Conclusions

In the present study, we found that incorporating walnut kernel cake into feed can
efficiently replace a portion of soybean cake, offering pigs high-quality protein and fos-
tering adipose deposition. This process is regulated by the transcriptome and single-cell
transcriptome. Although we identified some genes and pathways related to adipose depo-
sition, adipose deposition is a complex biological process involving the combined action
of multiple genes and regulatory networks. An in-depth study of the functions of these
genes and pathways in adipose metabolism and deposition will help to better understand
their roles in animal breeding and adipose-metabolism-related diseases in humans. This
study provides a theoretical basis for feed protein replacement, pig genetic breeding, and
meat quality improvement and also provides reference materials for the study of human
fat metabolism and related diseases.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes15060667/s1, Table S1: The RNA information of the 12 samples for
RNA-seq; Table S2: The quality values of RNA-seq data for the 12 samples; Table S3: The nutritional
value of soybean meal.

Author Contributions: Conceptualization, X.D. and Y.B.; Data curation, L.L. and L.M.; Formal
analysis, L.L., X.S. and L.M.; Funding acquisition, X.D., Y.B. and L.L.; Investigation, X.S., D.Y.
and A.A.A.; Project administration, X.D. and Y.B.; Resources, D.Y.; Supervision, X.D. and Y.B.;
Visualization, L.L. and X.S.; Writing—Original Draft, L.L.; Writing—Review and Editing, L.M., D.Y.,
A.A.A., Y.B. and X.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of China
(2022YFD1601903), Hebei Province Natural Science Foundation (C2021402038), National Natural
Science Foundation of China (32002151), Major Science and Technology Projects in Yunnan Province
(202202AE090005 and 202302AE090015) and National Transgenic Project of China (2018ZX0800928B).

Institutional Review Board Statement: This study adhered to the guidelines set by the Ministry
of Agriculture and Rural Affairs of China for the ethical treatment and utilization of experimental
animals. Approval for the research was obtained from the ethics committee of Yunnan Agricultural
University (YNAU, Kunming, China).

Informed Consent Statement: Not applicable.

https://www.mdpi.com/article/10.3390/genes15060667/s1
https://www.mdpi.com/article/10.3390/genes15060667/s1


Genes 2024, 15, 667 18 of 19

Data Availability Statement: The RNA-seq datasets supporting the conclusions of this article are
available in the National Center for Biotechnology Information (NCBI) database. The corresponding
accession number is PRJNA1003490.

Acknowledgments: We are very grateful to Shangri-La Lvyuan Ecological Breeding Professional
Cooperative for providing us with experimental animals. Thanks to Zhengjun Zhang and Lihua
Chen for their help in the process of raising the experimental animals. Thanks to Shouzhang Sun,
Rui Zhang, Tao Lin and Guoxiang Lan for their help in the process of slaughtering, phenotype
determination and sample collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sandu-Balan Tabacariu, A.; Ifrim, I.L.; Patriciu, O.I.; Stefanescu, I.A.; Finaru, A.L. Walnut By-Products and Elderberry Extracts-

Sustainable Alternatives for Human and Plant Health. Molecules 2024, 29, 498. [CrossRef] [PubMed]
2. Ni, Z.J.; Zhang, Y.G.; Chen, S.X.; Thakur, K.; Wang, S.; Zhang, J.G.; Shang, Y.F.; Wei, Z.J. Exploration of walnut components and

their association with health effects. Crit. Rev. Food Sci. Nutr. 2022, 62, 5113–5129. [CrossRef] [PubMed]
3. Petersen, K.S.; Chandra, M.; Chen See, J.R.; Leister, J.; Jafari, F.; Tindall, A.; Kris-Etherton, P.M.; Lamendella, R. Walnut

consumption and gut microbial metabolism: Results of an exploratory analysis from a randomized, crossover, controlled-feeding
study. Clin. Nutr. 2023, 42, 2258–2269. [CrossRef] [PubMed]

4. Tepavcevic, S.; Romic, S.; Zec, M.; Culafic, T.; Stojiljkovic, M.; Ivkovic, T.; Pantelic, M.; Kostic, M.; Stanisic, J.; Koricanac, G. Effects
of Walnut-Rich Diet on Cation-Handling Proteins in the Heart of Healthy and Metabolically Compromised Male Rats. J. Med.
Food 2023, 26, 849–857. [CrossRef] [PubMed]

5. Olas, B. The Cardioprotective Properties of Selected Nuts: Their Functional Ingredients and Molecular Mechanisms. Foods 2024,
13, 242. [CrossRef] [PubMed]

6. Fan, N.; Fusco, J.L.; Rosenberg, D.W. Antioxidant and Anti-Inflammatory Properties of Walnut Constituents: Focus on Personal-
ized Cancer Prevention and the Microbiome. Antioxidants 2023, 12, 982. [CrossRef] [PubMed]

7. Wu, W.; Niu, B.; Peng, L.; Chen, Q.; Chen, H.; Chen, H.; Xia, W.; Jin, L.; Simal-Gandara, J.; Gao, H. Recent advances on the effect
of nut consumption on cognitive improvement. Food Front. 2023, 4, 1737–1746. [CrossRef]

8. Loong, S.; Barnes, S.; Gatto, N.M.; Chowdhury, S.; Lee, G.J. Omega-3 Fatty Acids, Cognition, and Brain Volume in Older Adults.
Brain Sci. 2023, 13, 1278. [CrossRef] [PubMed]

9. Feng, J.; Zheng, Y.; Guo, M.; Ares, I.; Martinez, M.; Lopez-Torres, B.; Martinez-Larranaga, M.R.; Wang, X.; Anadon, A.; Martinez,
M.A. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants.
Acta Pharm. Sin. B 2023, 13, 3988–4024. [CrossRef]

10. Ma, X.; Wang, W.; Zheng, C.; Liu, C.; Huang, Y.; Zhao, W.; Du, J. Quality Evaluation of Walnuts from Different Regions in China.
Foods 2023, 12, 4123. [CrossRef]

11. Zhou, X.; Peng, X.; Pei, H.; Chen, Y.; Meng, H.; Yuan, J.; Xing, H.; Wu, Y. An overview of walnuts application as a plant-based.
Front. Endocrinol. 2022, 13, 1083707. [CrossRef] [PubMed]

12. Sari, T.; Sirohi, R.; Krishania, M.; Bhoj, S.; Samtiya, M.; Duggal, M.; Kumar, D.; Badgujar, P.C. Critical overview of biorefinery
approaches for valorization of protein rich tree nut oil industry by-product. Bioresour. Technol. 2022, 362, 127775. [CrossRef]
[PubMed]

13. Danilov, A.; Donică, I. The use of nut kernel cake in the feeding of young pigs. Sci. Papers. Ser. D Anim. Sci. 2022, 65, 110–116.
14. Untea, A.E.; Varzaru, I.; Saracila, M.; Panaite, T.D.; Oancea, A.G.; Vlaicu, P.A.; Grosu, I.A. Antioxidant Properties of Cranberry

Leaves and Walnut Meal and Their Effect on Nutritional Quality and Oxidative Stability of Broiler Breast Meat. Antioxidants 2023,
12, 1084. [CrossRef] [PubMed]

15. Untea, A.E.; Turcu, R.P.; Saracila, M.; Vlaicu, P.A.; Panaite, T.D.; Oancea, A.G. Broiler meat fatty acids composition, lipid
metabolism, and oxidative stability parameters as affected by cranberry leaves and walnut meal supplemented diets. Sci. Rep.
2022, 12, 21618. [CrossRef] [PubMed]

16. Cai, Y.; Quan, J.; Gao, C.; Ge, Q.; Jiao, T.; Guo, Y.; Zheng, W.; Zhao, S. Multiple domestication centers revealed by the geographical
distribution of Chinese native pigs. Animals 2019, 9, 709. [CrossRef] [PubMed]

17. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
[PubMed]

18. Andrews, S. FastQC: A quality control tool for high throughput sequence data. In Babraham Bioinformatics; Babraham Institute:
Cambridge, UK, 2010.

19. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast
universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef] [PubMed]

20. Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic
features. Bioinformatics 2014, 30, 923–930. [CrossRef]

21. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014, 15, 1–21. [CrossRef]

https://doi.org/10.3390/molecules29020498
https://www.ncbi.nlm.nih.gov/pubmed/38276576
https://doi.org/10.1080/10408398.2021.1881439
https://www.ncbi.nlm.nih.gov/pubmed/33567903
https://doi.org/10.1016/j.clnu.2023.09.023
https://www.ncbi.nlm.nih.gov/pubmed/37826992
https://doi.org/10.1089/jmf.2022.0157
https://www.ncbi.nlm.nih.gov/pubmed/37889606
https://doi.org/10.3390/foods13020242
https://www.ncbi.nlm.nih.gov/pubmed/38254543
https://doi.org/10.3390/antiox12050982
https://www.ncbi.nlm.nih.gov/pubmed/37237848
https://doi.org/10.1002/fft2.298
https://doi.org/10.3390/brainsci13091278
https://www.ncbi.nlm.nih.gov/pubmed/37759879
https://doi.org/10.1016/j.apsb.2023.07.010
https://doi.org/10.3390/foods12224123
https://doi.org/10.3389/fendo.2022.1083707
https://www.ncbi.nlm.nih.gov/pubmed/36589804
https://doi.org/10.1016/j.biortech.2022.127775
https://www.ncbi.nlm.nih.gov/pubmed/35964919
https://doi.org/10.3390/antiox12051084
https://www.ncbi.nlm.nih.gov/pubmed/37237949
https://doi.org/10.1038/s41598-022-25866-z
https://www.ncbi.nlm.nih.gov/pubmed/36517513
https://doi.org/10.3390/ani9100709
https://www.ncbi.nlm.nih.gov/pubmed/31546583
https://doi.org/10.1093/bioinformatics/bty560
https://www.ncbi.nlm.nih.gov/pubmed/30423086
https://doi.org/10.1093/bioinformatics/bts635
https://www.ncbi.nlm.nih.gov/pubmed/23104886
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1186/s13059-014-0550-8


Genes 2024, 15, 667 19 of 19

22. Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics
A J. Integr. Biol. 2012, 16, 284–287. [CrossRef] [PubMed]

23. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;
Lander, E.S. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc.
Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

24. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 1–13.
[CrossRef] [PubMed]

25. Wang, F.; Ding, P.; Liang, X.; Ding, X.; Brandt, C.B.; Sjostedt, E.; Zhu, J.; Bolund, S.; Zhang, L.; de Rooij, L.; et al. Endothelial cell
heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level. Nat. Commun. 2022, 13, 3620. [CrossRef]

26. Satija, R.; Farrell, J.A.; Gennert, D.; Schier, A.F.; Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol.
2015, 33, 495–502. [CrossRef]

27. Yang, S.; Corbett, S.E.; Koga, Y.; Wang, Z.; Johnson, W.E.; Yajima, M.; Campbell, J.D. Decontamination of ambient RNA in
single-cell RNA-seq with DecontX. Genome Biol. 2020, 21, 1–15. [CrossRef] [PubMed]

28. McGinnis, C.S.; Murrow, L.M.; Gartner, Z.J. DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial
nearest neighbors. Cell Syst. 2019, 8, 329–337.e4. [CrossRef]

29. Abedini, A.; Alizadeh, A.M.; Mahdavi, A.; Golzan, S.A.; Salimi, M.; Tajdar-Oranj, B.; Hosseini, H. Oilseed cakes in the food
industry; a review on applications, challenges, and future perspectives. Curr. Nutr. Food Sci. 2022, 18, 345–362. [CrossRef]

30. Marconato, M.N.S.; Sanches, T.P.; Chaves, C.M.S.; Bueno, M.S.; Issakowicz, J.; Haguiwara, M.M.H.; Paz, C.C.P.; Reis, L.L.D.;
Abdalla, A.L.; Costa, R. Growth performance, carcass traits and meat quality of lambs fed increasing level of Macadamia nut cake.
An. Acad. Bras. Cienc. 2021, 93, e20190852. [CrossRef]

31. Yang, X.-Y.; Zhong, D.-Y.; Wang, G.-L.; Zhang, R.-G.; Zhang, Y.-L. Effect of walnut meal peptides on hyperlipidemia and hepatic
lipid metabolism in rats fed a high-fat diet. Nutrients 2021, 13, 1410. [CrossRef]

32. Weschenfelder, C.; Schaan de Quadros, A.; Lorenzon dos Santos, J.; Bueno Garofallo, S.; Marcadenti, A. Adipokines and adipose
tissue-related metabolites, nuts and cardiovascular disease. Metabolites 2020, 10, 32. [CrossRef] [PubMed]

33. Tindall, A.M.; Petersen, K.S.; Lamendella, R.; Shearer, G.C.; Murray-Kolb, L.E.; Proctor, D.N.; Kris-Etherton, P.M. Tree nut
consumption and adipose tissue mass: Mechanisms of action. Curr. Dev. Nutr. 2018, 2, nzy069. [CrossRef]

34. Rock, C.L.; Flatt, S.W.; Barkai, H.-S.; Pakiz, B.; Heath, D.D. A walnut-containing meal had similar effects on early satiety, CCK, and
PYY, but attenuated the postprandial GLP-1 and insulin response compared to a nut-free control meal. Appetite 2017, 117, 51–57.
[CrossRef] [PubMed]

35. Tang, J.; Ma, S.; Gao, Y.; Zeng, F.; Feng, Y.; Guo, C.; Hu, L.; Yang, L.; Chen, Y.; Zhang, Q.; et al. ANGPTL8 promotes adipogenic
differentiation of mesenchymal stem cells: Potential role in ectopic lipid deposition. Front. Endocrinol. 2022, 13, 927763. [CrossRef]
[PubMed]

36. Zheng, J.; Liu, J.; Hong, B.S.; Ke, W.; Huang, M.; Li, Y. Circulating betatrophin/ANGPTL8 levels correlate with body fat
distribution in individuals with normal glucose tolerance but not those with glucose disorders. BMC Endocr. Disord. 2020, 20, 1–9.
[CrossRef] [PubMed]

37. Vatner, D.F.; Goedeke, L.; Camporez, J.-P.G.; Lyu, K.; Nasiri, A.R.; Zhang, D.; Bhanot, S.; Murray, S.F.; Still, C.D.; Gerhard, G.S.
Angptl8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin
resistance in rodents. Diabetologia 2018, 61, 1435–1446. [CrossRef] [PubMed]

38. Wei, X.; Han, S.; Wang, S.; Zheng, Q.; Li, X.; Du, J.; Zhao, J.; Li, F.; Ma, Y. ANGPTL8 regulates adipocytes differentiation and
adipogenesis in bovine. Gene 2019, 707, 93–99. [CrossRef] [PubMed]

39. Park, K.W.; Waki, H.; Choi, S.-P.; Park, K.-M.; Tontonoz, P. The small molecule phenamil is a modulator of adipocyte differentiation
and PPARγ expression [S]. J. Lipid Res. 2010, 51, 2775–2784. [CrossRef] [PubMed]

40. Zhang, Y.; Sun, Y.; Wu, Z.; Xiong, X.; Zhang, J.; Ma, J.; Xiao, S.; Huang, L.; Yang, B. Subcutaneous and intramuscular fat
transcriptomes show large differences in network organization and associations with adipose traits in pigs. Sci. China Life Sci.
2021, 64, 1732–1746. [CrossRef]

41. Hernández-Quiles, M.; Campesino, L.M.; Morris, I.; Ilyas, Z.; Alcaraz, P.S.; Varga, Á.; Varga, J.; van Es, R.; Vos, H.; Wilson, H.L.
The pseudokinase TRIB3 regulates adipose tissue homeostasis and adipocyte function. In Proteomics Approaches for the Study of
Adipose Tissue Biology TRIB3 and Beyond; Utrecht University: Utrecht, The Netherlands, 2023.

42. Lee, S.K.; Park, C.Y.; Kim, J.; Kim, D.; Choe, H.; Kim, J.-H.; Hong, J.P.; Lee, Y.J.; Heo, Y.; Park, H.S. TRIB3 is highly expressed in
the adipose tissue of obese patients and is associated with insulin resistance. J. Clin. Endocrinol. Metab. 2022, 107, e1057–e1073.
[CrossRef]

43. Janani, C.; Kumari, B.R. PPAR γ gene—A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 46–50. [CrossRef] [PubMed]
44. Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315.

[CrossRef] [PubMed]
45. Czech, M.P. Fat targets for insulin signaling. Mol. Cell 2002, 9, 695–696. [CrossRef] [PubMed]
46. Song, C.; Huang, Y.; Yang, Z.; Ma, Y.; Chaogetu, B.; Zhuoma, Z.; Chen, H. RNA-Seq analysis identifies differentially expressed

genes in subcutaneous adipose tissue in qaidaford cattle, cattle-yak, and angus cattle. Animals 2019, 9, 1077. [CrossRef] [PubMed]
47. Xiao, C.; Sun, T.; Yang, Z.; Xu, W.; Wang, J.; Zeng, L.; Deng, J.; Yang, X. Transcriptome landscapes of differentially expressed genes

related to fat deposits in Nandan-Yao chicken. Funct. Integr. Genom. 2021, 21, 113–124. [CrossRef] [PubMed]

https://doi.org/10.1089/omi.2011.0118
https://www.ncbi.nlm.nih.gov/pubmed/22455463
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1186/1471-2105-9-559
https://www.ncbi.nlm.nih.gov/pubmed/19114008
https://doi.org/10.1038/s41467-022-31388-z
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1186/s13059-020-1950-6
https://www.ncbi.nlm.nih.gov/pubmed/32138770
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.2174/1573401317666211209150147
https://doi.org/10.1590/0001-3765202120190852
https://doi.org/10.3390/nu13051410
https://doi.org/10.3390/metabo10010032
https://www.ncbi.nlm.nih.gov/pubmed/31940832
https://doi.org/10.1093/cdn/nzy069
https://doi.org/10.1016/j.appet.2017.06.008
https://www.ncbi.nlm.nih.gov/pubmed/28610906
https://doi.org/10.3389/fendo.2022.927763
https://www.ncbi.nlm.nih.gov/pubmed/36034432
https://doi.org/10.1186/s12902-020-0531-8
https://www.ncbi.nlm.nih.gov/pubmed/32299395
https://doi.org/10.1007/s00125-018-4579-1
https://www.ncbi.nlm.nih.gov/pubmed/29497783
https://doi.org/10.1016/j.gene.2019.04.048
https://www.ncbi.nlm.nih.gov/pubmed/31048067
https://doi.org/10.1194/jlr.M008490
https://www.ncbi.nlm.nih.gov/pubmed/20519739
https://doi.org/10.1007/s11427-020-1824-7
https://doi.org/10.1210/clinem/dgab780
https://doi.org/10.1016/j.dsx.2014.09.015
https://www.ncbi.nlm.nih.gov/pubmed/25450819
https://doi.org/10.1016/j.biopha.2021.111315
https://www.ncbi.nlm.nih.gov/pubmed/33561645
https://doi.org/10.1016/S1097-2765(02)00509-9
https://www.ncbi.nlm.nih.gov/pubmed/11983159
https://doi.org/10.3390/ani9121077
https://www.ncbi.nlm.nih.gov/pubmed/31816988
https://doi.org/10.1007/s10142-020-00764-7
https://www.ncbi.nlm.nih.gov/pubmed/33404913


Genes 2024, 15, 667 20 of 19

48. Morigny, P.; Boucher, J.; Arner, P.; Langin, D. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and
therapeutics. Nat. Rev. Endocrinol. 2021, 17, 276–295. [CrossRef] [PubMed]

49. Zhang, K.; Yang, X.; Zhao, Q.; Li, Z.; Fu, F.; Zhang, H.; Zheng, M.; Zhang, S. Molecular mechanism of stem cell differentiation into
adipocytes and adipocyte differentiation of malignant tumor. Stem Cells Int. 2020, 2020. [CrossRef]

50. Xu, C.; Wang, J.; Zhu, T.; Shen, Y.; Tang, X.; Fang, L.; Xu, Y. Cross-talking between PPAR and WNT signaling and its regulation in
mesenchymal stem cell differentiation. Curr. Stem Cell Res. Ther. 2016, 11, 247–254. [CrossRef] [PubMed]

51. Liu, L.; Cui, H.; Xing, S.; Zhao, G.; Wen, J. Effect of divergent selection for intramuscular fat content on muscle lipid metabolism
in chickens. Animals 2019, 10, 4. [CrossRef] [PubMed]

52. Zhang, J.; Fu, M.; Cui, T.; Xiong, C.; Xu, K.; Zhong, W.; Xiao, Y.; Floyd, D.; Liang, J.; Li, E. Selective disruption of PPARγ2 impairs
the development of adipose tissue and insulin sensitivity. Proc. Natl. Acad. Sci. USA 2004, 101, 10703–10708. [CrossRef]

53. Haag, M.; Dippenaar, N.G. Dietary fats, fatty acids and insulin resistance: Short review of a multifaceted connection. Med. Sci.
Monit. 2005, 11, RA359.

54. Li, W.; Xiong, X.; Kiperman, T.; Ma, K. Transcription repression of Cry2 via Per2 interaction promotes adipogenesis. bioRxiv 2023,
43, 500–514. [CrossRef] [PubMed]

55. Vianello, E.; Dozio, E.; Bandera, F.; Froldi, M.; Micaglio, E.; Lamont, J.; Tacchini, L.; Schmitz, G. Correlative study on impaired
prostaglandin E2 regulation in EAT and maladaptive cardiac remodeling via EPAC2 and ST2 signaling in overweight CVD
subjects. Int. J. Mol. Sci. 2020, 21, 520. [CrossRef]

56. Rahbani, J.F.; Roesler, A.; Hussain, M.F.; Samborska, B.; Dykstra, C.B.; Tsai, L.; Jedrychowski, M.P.; Vergnes, L.; Reue, K.;
Spiegelman, B.M. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 2021, 590, 480–485. [CrossRef]
[PubMed]

57. Auger, C.; Kajimura, S. Adipose tissue remodeling in pathophysiology. Annu. Rev. Pathol. Mech. Dis. 2023, 18, 71–93. [CrossRef]
[PubMed]

58. Liao, X.; Zhou, H.; Deng, T. The composition, function, and regulation of adipose stem and progenitor cells. J. Genet. Genom. 2022,
49, 308–315. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41574-021-00471-8
https://www.ncbi.nlm.nih.gov/pubmed/33627836
https://doi.org/10.1155/2020/8892300
https://doi.org/10.2174/1574888X10666150723145707
https://www.ncbi.nlm.nih.gov/pubmed/26201865
https://doi.org/10.3390/ani10010004
https://www.ncbi.nlm.nih.gov/pubmed/31861430
https://doi.org/10.1073/pnas.0403652101
https://doi.org/10.1080/10985549.2023.2253710
https://www.ncbi.nlm.nih.gov/pubmed/37724597
https://doi.org/10.3390/ijms21020520
https://doi.org/10.1038/s41586-021-03221-y
https://www.ncbi.nlm.nih.gov/pubmed/33597756
https://doi.org/10.1146/annurev-pathol-042220-023633
https://www.ncbi.nlm.nih.gov/pubmed/36070562
https://doi.org/10.1016/j.jgg.2022.02.014
https://www.ncbi.nlm.nih.gov/pubmed/35240306

	Introduction 
	Materials and Methods 
	Experimental Treatment and Trait Recording 
	RNA Extraction, Library Construction, and Sequencing 
	Sequencing Data Filtering and Differentially Expressed Gene (DEG) Analysis 
	Functional Enrichment Analysis 
	Gene Set Enrichment Analysis (GSEA) 
	Weighted Gene Co-Expression Network Analysis (WGCNA) 
	Correlation Analysis of Adipose-Related Traits and Genes 
	scRNA-seq Analysis of Adipose Tissue 
	Statistical Analysis 

	Results 
	Effects of Walnut Kernel Cake on Traits Related to Adipose Deposition 
	Walnut Kernel Cake Causes Significant Alteration in the Adipose Transcriptome 
	GO Enrichment Analysis Reveals Adipose Deposition-Related Biological Processes and Genes 
	KEGG Enrichment Analysis Reveals Adipose Deposition-Related Pathways and Genes 
	GSEA Reveals That the PPAR Signaling Pathway Was Activated by Walnut Kernel Cake 
	WGCNA Identifies Two Modules Significantly Associated with Adipose Traits 
	Correlation Analysis Identifies Adipose Deposition-Related Genes 
	Single-Cell Transcriptome Analysis Reveals Key Genes for Adipose Deposition 

	Discussion 
	Conclusions 
	References

