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Abstract: The anthropogenic climate crisis results in the gradual loss of tree species in locations where
they were previously able to grow. This leads to increasing workloads and requirements for foresters
and arborists as they are forced to restructure their forests and city parks. The advancements in
computer vision (CV)—especially in supervised deep learning (DL)—can help cope with these new
tasks. However, they rely on large, carefully annotated datasets to produce good and generalizable
models. This paper presents BAMFORESTS: a dataset with 27,160 individually delineated tree crowns
in 105 ha of very-high-resolution UAV imagery gathered with two different sensors from two drones.
BAMFORESTS covers four areas of coniferous, mixed, and deciduous forests and city parks. The
labels contain instance segmentations of individual trees, and the proposed splits are balanced by
tree species and vitality. Furthermore, the dataset contains the corrected digital surface model (DSM),
representing tree heights. BAMFORESTS is annotated in the COCO format and is especially suited
for training deep neural networks (DNNs) to solve instance segmentation tasks. BAMFORESTS was
created in the BaKIM project and is freely available under the CC BY 4.0 license.

Keywords: benchmark dataset; individual tree crown; instance segmentation; UAV imagery; tree
species; forest

1. Introduction

The anthropogenic climate crisis (ACC) is probably humanity’s most urgent and most
significant problem to solve and adapt to in the coming years. Just as the years 2017–2022,
2023 was, according to the German Umweltbundesamt, the warmest year in Germany
and worldwide [1]. This rapid increase in temperature puts much pressure on ecosystems
worldwide, including forests and city trees [2–5]. As forests are natural carbon sinks, this is
a self-reinforcing problem [6]. The effects are less resilient trees and increased pests and
secondary pests such as bark beetles and mistletoes [7,8]. Especially in forests that are
heavily used for forestry and, therefore, often structured as tree monocultures, this can lead
to the loss of all trees in large areas [9].

To mitigate the effects of ACC on forests and city trees, arborists and foresters need to
restructure their forests, city parks, and solitary city trees. Experience in the BaKIM (BaKIM
is a cooperation project of the Cognitive Systems Chair of the University of Bamberg and
the City of Bamberg. It is funded with EUR 450,000 by the Bavarian Ministry of Digital
Affairs) project shows that, to accomplish this, German foresters and arborists rely on
incomplete and often old data, which do not allow for a timely and regular evaluation.
Furthermore, research shows that this is not a problem of Germany alone, but a European
and probably worldwide one [10]. BaKIM shows that, to support foresters and arborists in
their work, current data on the position of individual trees, tree species, tree vitality, and
infestation with pests are needed.
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Reliably detecting single trees is the underlying task, which helps all other previously
mentioned tasks, making the information traceable on the single-tree level. Furthermore,
foresters and arborists in the BaKIM project state that this information is also important
and helpful for debating with local decision makers and politicians when it comes to
the funding of city trees and forest areas. The rise of cheap UAV technology and deep
learning in the past few years has built the base for solving this task of single tree detection.
Overview papers such as Kattenborn et al. [11] showed that very-high-resolution UAV data
with a ground sampling distance (GSD) of below 2 cm and deep neural networks (DNNs)
from the computer vision domain yield good results. For example, Gan et al. [12] compared
the widely used Python deep learning packages Detectree2 [13] and Deepforest [14] on
different very-high-resolution GSDs. Xi et al. [15] tested different dimensionality reductions
to overcome the drawbacks of multispectral images for ITCD approaches, which can yield
better results than just RGB-imagery.

One remaining problem with supervised DNNs is the lack of high-quality training data.
Annotating very-high-resolution UAV data on a single-tree level is time-consuming and
expensive. Therefore, only a few small, openly accessible datasets exist. The Million Trees
project [16] initiated by Weinstein et al. [17] tries to solve this by collecting and combining
as many available datasets as possible. Nevertheless, this is an ongoing effort which,
according to Ben Weinstein, will take place until fall 2025. To the best of our knowledge,
none of the existing datasets come with a proposed dataset split to help compare the results
of different methods and DNN architectures created by different researchers.

With this work, we publish BAMFORESTS: relative to other datasets with ITCD
labels, it is a large benchmark dataset of very-high-resolution UAV imagery and individual
delineated tree crowns (ITCD). To make it a benchmark dataset, we specify a fixed split of
training, validation, and testing data. Furthermore, for ease of use, we publish the data in
the COCO format in two different tile sizes so that researchers can easily test their methods
and compare them with other results. BAMFORESTS will become part of the Million Trees
benchmark dataset.

2. Theoretical Background

Deep learning in the form of deep convolutional neural networks (DCNNs) brought
great advancement to different tasks in computer vision. Image classification, object
detection, semantic segmentation, and instance segmentation are all tasks that extract
information from image data [18,19]. Kattenborn et al. [11] provided a detailed overview
on the following aspects of computer vision in the forest domain. While image classification
assigns a label to a whole image, the latter tasks generate spatial information in differing
detail. Object detection produces bounding boxes for multiple objects in an image. These
bounding boxes are represented by pixel coordinates and describe the outer bounds of
detected objects. As multiple objects can be separately detected, these objects can be
counted. For example, with a working object detection, it is possible to count trees in
an image but not possible to obtain the exact area covered by the tree crowns. Semantic
segmentation, on the other hand, is not capable of differentiating between instances as it
predicts a class for each pixel. If overlapping instances of the same class exist, semantic
segmentation does not separate them, therefore making it impossible to count the instances.
The improvement over object detection is that additional spatial information on the class
occurrence is given, as the class of each pixel is predicted. Assuming correct classification,
semantic segmentation for example enables the calculation of the area-related share of
different tree species. Instance segmentation basically combines the two aforementioned
tasks. It classifies each pixel in an image, but at the same time keeps information of single
instances. If instances of the same class overlap, they can still be counted. Therefore,
instance segmentation enables us to count trees, obtain their area-related share, and obtain
their exact tree crown dimensions.

Image classification, due to its simple input–output structure of an image as the input
and a single label as the output, was the first problem that greatly benefited from a large
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benchmark dataset, more powerful computer hardware, and DCNNs in 2012 [20,21]. Huge
performance leaps in the more complex tasks of object detection, semantic segmentation,
and instance segmentation followed in the years after with the release of the COCO
benchmark dataset [22].

The following subsections will summarize the application of such DCNNs in the
domain of forests and trees in aerial images and deal with the state of benchmark datasets
in this domain.

2.1. Supervised Deep Learning on Forest Datasets

DCNNs are the state-of-the-art method for different computer vision tasks and are
also applied in the forest domain. Recent publications show that, for tree detection and
individual tree crown delineation (ITCD), technically an instance segmentation, DCNNs
are the best-performing models. The widespread, successful use of these models in this
domain is summarized by different overview papers and systematical literature reviews,
such as Kattenborn et al. [11] and Zhao et al. [23]. Furthermore, Fan et al. [24] showed
that deep learning approaches outperform statistical segmentation approaches such as
marker-controlled watershed transformation (MCWST).

For example, Weinstein et al. [17] implemented DeepForest, a RetinaNet pre-trained on
several datasets, capable of performing the object detection of trees, even in closed canopies.
Schiefer et al. [25] used the U-Net architecture to map tree species via semantic segmentation.
Ball et al. [13] developed Detectree2, an instance segmentation DCNN based on Face-
book’s Detectron2 architecture. While Schiefer et al. [25] published their dataset and code,
Deepforest and Detectree2 are publicly available Python packages, including pre-trained
weights and pre- and post-processing steps. Therefore, they enable researchers without
profound knowledge in programming and machine learning to utilize DCNNs for their
aerial image datasets.

While all of these approaches and applied methods show that DCNNs are a very
good solution to the task of tree detection and segmentation, the performance in the forest
domain is still far behind when compared with the performance of the same methods on
datasets like ImageNet and COCO, reaching over 90% accuracy in image classification and
AP.50 scores of over 70% for object detection [26,27].

2.2. Forest Datasets

Benchmark datasets in computer vision, such as the COCO dataset or ImageNet, con-
sist of hundreds of thousands or even millions of images and millions of annotations [22,28].
Compared with these, datasets in the forest domain are quite small, covering only tens
of thousands of instances in very-high-resolution datasets with ITCD annotations, and
there are at most a few hundred thousand instances in datasets with lower resolution and
lower-quality labels like point annotations. Datasets in the forest domain can be divided
into the following categories:

• Label completeness:

– All tree instances are labeled;
– Only some tree instances are labeled;

• Ground sampling distance (GSD):

– Low resolution (satellite imagery): >1.2 m per pixel;
– High resolution (airplane): 40 cm–6 cm per pixel;
– Very-high resolution (UAVs): <5 cm per pixel;

• Label type:

– Points: the center of each tree crown is labeled;
– Bounding boxes: the outer extents of each tree crown are labeled;
– Polygons:

* Semantic segmentation: tree species are labeled on a pixel level;
* Instance segmentation: each tree crown is delineated on a pixel level.
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Furthermore, less clear categories such as forest density, geo-location, forest type,
species distribution, and vegetation phase as well as weather conditions in the weeks
before data acquisition should influence the transferability of models trained on a dataset,
as research in land cover detection from satellite data has suggested [29].

The Million Trees project [16] aims to collect as many existing datasets covering all
above-mentioned categories and creating a combined benchmark dataset of at least one
million labeled trees. As BAMFORESTS falls into the category of a very-high-resolution
datasets with complete polygon labels of single trees, we summarize similar datasets in
Table 1.

Table 1. Datasets in the forest domain similar to BAMFORESTS.

BAMFORESTS FORTRESS
[30]

Quebec Trees
Dataset [31,32]

SiDroForest
[33]

Name NA
[34,35]

GSD 1.61 cm–1.81 cm <1.35 cm 1.81 cm–2.02 cm 3 cm 1.70 cm–2.00 cm

Labeled Area 105 ha 47 ha 44 ha 13.25 ha 7ha

N of Labels 27,160 – 22,933
872

(19,342 *) 2547

Label Type Polygons Polygons Polygons Polygons Polygons

Segmentation Type
Instance

segmentation
Semantic

segmentation
Instance

segmentation
Instance

segmentation
Instance

segmentation

Label Completeness Yes Yes Yes No Yes

Acquisition Period
Jul 2022

–
Aug 2022

Mar 2017
–

Sep 2019

May 2021
–

Oct 2021

Jul 2018
–

Aug 2018

Apr 2021
–

Jun 2021

Region
Bavaria,

Germany

Baden-
Württemberg,

Germany

Quebec,
Canada

Yakutia and
Chukotka,

Siberia

Northern
Territory,
Australia

* Shapes are automatically extracted and of differing quality.

Cloutier et al. [32] recently published their dataset with 22,933 ITCs and image data
from seven consecutive monthly flights. Their dataset is taken from two AOIs. One main
AOI is used for training and validation, and a smaller second AOI, separated by a small
body of water, serves as the test set. After BAMFORESTS, it is the second largest dataset
freely available to the knowledge of the authors. Schiefer et al. [30] published a dataset for
semantic segmentation, where not single trees, but patches of the same tree species, were
labeled. Therefore, the number of ITCs is not known. Considering that FORTRESS consists
of 47 ha, it is approximately half as big as BAMFORESTS. Due to the labels for semantic
segmentation, it cannot be used to train and validate ITCD methods. Kruse et al. [33] made
their dataset SiDroForest also publicly available. While it consists of a total of 19,342 shapes,
only 872 of these are labeled by hand. The rest is generated automatically and is, therefore,
of lower quality and probably incomplete. Jansen et al. [34] published a small unnamed
dataset consisting of 2547 ITCs. Due to the small size of the dataset, it is, on its own, not
suitable for the training of DCNNs.

3. Dataset

BAMFORESTS data come from four different AOIs, which are shown in Figure 1. All
AOIs are located within a radius of 20 km in and around Bamberg, and the aerial surveys
were carried out as part of the BaKIM project [36]. Figure 2 shows a detailed example view
of each AOI. Figures 1 and 2 are scaled equally so that the relative size of the AOIs and
trees can be seen.
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(a) Hain-AOI (b) Stadtwald-AOI

(c) Tretzendorf-1-AOI (d) Tretzendorf-2-AOI

Figure 1. Overview of all four AOIs in the BAMFORESTS benchmark dataset. Figure (a) shows the
complete Hain-AOI, (b) shows the complete Stadtwald-AOI, (c) shows the complete Tretzendorf-
1-AOI, and (d) shows the complete Tretzendorf-2-AOI. All images are scaled equally, allowing for
comparison of the AOI sizes (EPSG:4326).

(a) Hain-AOI (b) Stadtwald-AOI

Figure 2. Cont.
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(c) Tretzendorf-1-AOI (d) Tretzendorf-2-AOI

Figure 2. Detailed view of all four AOIs in the BAMFORESTS benchmark dataset. Figure (a) shows a
zoomed-in view of the Hain-AOI, (b) shows a zoomed-in view of the Stadtwald-AOI, (c) shows a
zoomed-in view of the Tretzendorf-1-AOI, and (d) shows a zoomed-in view of the Tretzendorf-2-AOI.
All images are scaled equally (EPSG:4326).

3.1. AOIs

The Hain-AOI is the cities forest-like park with a size of about 61 ha, and it is located
south-east of the city center. As a park, it is heavily frequented, and arborists take a lot of
measures to keep trees and reduce hazards of falling branches near paths. Furthermore,
the Hain has the highest diversity of tree species because of its main functions as a recre-
ational area and special area of conservation (SAC). It mainly consists of deciduous trees
and, the resulting orthomosaic has a GSD of 1.82 cm.

The Stadtwald-AOI covers an area of 152 ha and is located about 5 km south-east of
Bamberg’s city center. On the one hand, it is a managed forest, and on the other hand,
it is a drinking water reservoir for parts of Bamberg and an SAC. In comparison with
the city park, no measurements to keep single trees are taken, but if necessary, trees are
removed and the timber is sold. It is a mainly coniferous forest, but in recent decades,
second and third tree layers of deciduous trees were planted beneath the older coniferous
trees. The resulting orthomosaic has a GSD of 1.70 cm.

The Tretzendorf-1-AOI and Tretzendorf-2-AOI share similar characteristics. The first
one covers an area of 65 ha and the latter one an area of 47 ha. Both are located about 20 km
west to north-west of Bamberg and are SACs. Because coniferous as well as deciduous
trees grow in the Tretzendorf-AOIs, they can be described as managed mixed forests, and
the resulting orthomosaics have a GSD of 1.61 cm and 1.79 cm.

3.2. UAVs and Sensors

Two different UAVs were used for data acquisition. A small DJI Phantom 4 (DJI-
Shenzhen, China) with a 1” CMOS 20MP sensor and 84° angle of view (AOV), acquired
images over the Hain region near the city center. For the forest areas, a larger Quantum
Systems Trinity F90+ (Quantum Systems-Gilching, Germany) fixed-wing UAV with a Sony
RX1 RII (Sony-Tokyo, Japan 42.4 MP sensor and 63° AOV was used. Both sensors are RGB
sensors, and the resulting orthomosaics contain a red, green, and blue channel.
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3.3. Data Acquisition

The data acquisition of all images in BAMFORESTS took place in the summer of 2022.
Both Tretzendorf AOIs were captured on the fifth of July, the Stadtwald AOI was captured
on the sixth of July, and the Hain AOI was captured on the third of August. While the flights
of the Tretzendorf and Stadtwald AOIs were carried out at midday, due to legal reasons the
flights of the Hain AOI took place after sunrise in the morning until early midday.

In all flights, we aimed for a forward overlap and sidelap of 80%. As the Trinity F90+
flies at fixed speeds, we compensated the lower forward overlap of about 65% with a
higher sidelap of 85–90%. With the Trinity F90+, we always flew 120 m above ground
level (AGL) and used a smoothed terrain follow mode in the hilly Tretzendorf-AOIs.
With the DJI Phantom 4, we flew 85 m AGL to reach a similar ground sampling distance
(GSD). The Hain-AOI was covered with a total of 3087 images, the Stadtwald-AOI with
3250 images, the Tretzendorf-1-AOI with 1577 images, and the Tretzendorf-2-AOI with
1229 images.

3.4. Orthomosaic Generation

For the generation of the orthomosaics, we chose the commercial software Agisoft
Metashape (Version 1.8.4) after comparing the process and results to those of WebODM
(Version 1.9.15). While WebODM is free and open-source, the setup is more difficult,
and the flexibility in setting ground control points (GCPs) and influencing the resulting
orthomosaic is lower. Nevertheless, the resulting orthomosaics can be described as of equal
quality, as seen in Figure 3.

(a) Agisoft Metashape (b) WebODM
Figure 3. Comparison of the resulting orthomosaics and artifacts. Figure (a) shows artifacts from the
orthomosaic generation with Agisoft Metashape, whereas (b) shows artifacts from the orthomosaic
generation with WebODM.

Agisoft Metashape uses a structure from motion algorithms to generate a georefer-
enced point cloud from the single overlapping images acquired with the UAVs. This tie
point cloud is then cleaned with three statistical methods and a manual step where the
remaining outliers below ground level and above the tree crowns are deleted by hand.
For the statistical filtering, we found the best results were obtained by deleting about 20%
of the tie points by reconstruction uncertainty, about 10% by reprojection error, and 10%
by projection accuracy. After each filter step, we optimized the camera alignment. Based
on the cleaned tie point cloud, we first generated the dense point cloud, then the digital
surface model, and lastly the orthomosaic.

3.5. Labeling Process

The individual tree crowns were delineated and labeled by an experienced forester
in 2023. To help the labeling process, they had additional access to orthomosaics taken in
March and April for some of the AOIs. During and after labeling, they checked annotations
on the sites. After this labeling, apprentices of the local forestry office randomly checked
the labels onsite and corrected them if necessary. In addition to the tree species, the tree
vitality was assessed from the imagery and categorized into vital, degrading, and dead.
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The tree species information and tree vitality information are used in this work to balance
the dataset splits.

3.6. Dataset Metrics

BAMFORESTS consists of a total of 27,160 individually delineated tree crowns (ITC).
Of those, 1978 are located in the 15 labeled hectares of the Hain-AOI, 15,473 are located in
the 46 labeled hectares of the Stadtwald-AOI, 5900 are located in the 29 labeled hectares of
the Tretzendorf-1-AOI, and 3809 are located in the 15 labeled hectares of the Tretzendorf-
2-AOI. For an overview of the species and vitality distribution of the whole dataset, see
Figure 4. With this publication, as we focus on the ITCD task, we only publish the ITC
shapes and not all existing labels. Nevertheless, the labels are important for comparability
and the splitting of the dataset.

(a) Distribution of genera. (b) Distribution of vitality.

Figure 4. Statistics of BAMFORESTS labels. (a) shows the distribution of all genera with a share of
≥1% in BAMFORESTS. Genera with a share below 1% were combined into the other class. (b) shows
the distribution of the three vitality levels in BAMFORESTS.

3.7. Benchmark Dataset Split

Based on the AOI location, the tree species distribution, and vitality distribution, we
define a fixed testing set for BAMFORESTS and propose a training set and validation set
split. This ensures the comparability of different applied methods for ITCD and therefore
helps the community in the forest domain to compare their models.

To ensure that spatial autocorrelation, as described by Kattenborn et al. [37], does not
lead to an overestimation of the performance of methods, Test-Set-1 (15 ha, 14%) solely
consists of the complete Hain-AOI. It is 5–20 km away from the other AOIs and is of
severely different structure. Furthermore, it was captured with another UAV and sensor.
All of these factors are good for estimating the real-world performance of methods. On the
other hand, we want researchers to gain better insight into their methods performance on
more alike data. This is why we define Test-Set-2 (14 ha, 13%), which is taken from the same
AOIs as the training and validation set. To make sure that no redundant image information
is in Test-Set-2, the split is based on complete hectare plots. This allows for overlapping
tiles inside the hectare plots, thereby making the best use of the existing image data.

The validation set (Val-Set) consists of 16 ha (15%). Like Test-Set-2, it is taken from the
AOIs Stadtwald and Tretzendorf. It follows the same split method based on the hectare
plots. The training set (Train-Set) consists of the remaining 60 ha (57%) from the Stadtwald
and Tretzendorf AOIs. Except for Test-Set-1, which is the Hain-AOI, all sets are as similar



Remote Sens. 2024, 16, 1935 9 of 12

as possible, considering the distribution of classes. See Table 2 for the relative class share in
each set.

Table 2. Distribution of classes in the proposed split of sets in BAMFORESTS.

Train-Set Val-Set Test-Set-2 Test-Set-1

N of shapes 17,212 4390 3580 1978

Pinus 36.23% 31.94% 27.54% 1.11%
Fagus 23.11% 20.71% 23.10% 23.96%
Quercus 23.30% 20.27% 22.43% 19.01%
Picea 5.53% 7.22% 9.11% 1.06%
Larix 2.70% 1.75% 2.21% 1.26%
Pseudotsuga 1.12% 1.80% 1.20% 0.15%
Abies 1.19% 1.12% 1.01% 0.00%
Other 6.83% 15.19% 13.41% 52.88%

Vital 86.34% 84.99% 83.97% 91.20%
Degrading 11.88% 12.35% 13.18% 8.49%
Dead 1.78% 2.67% 2.85% 0.30%

3.8. COCO Label Generation

The COCO dataset is a commonly used dataset for deep learning-based object detec-
tion. BAMFORESTS is released in the same data format as the COCO dataset [38] so that it
can be easily used with state-of-the-art deep learning models. The images in the dataset are
divided into the mentioned 57.14% Train-Set, 15.24% Val-Set, 14.29% Test-Set-1, and 13.33%
Test-Set-2. Corresponding annotations are available in their respective .GeoJSON files.

Based on the division of the hectare plots, the orthomosaics and associated annotations
are cropped and then divided and collectively converted into the COCO format. There is
a 50% overlap between the images both horizontally and vertically. To meet the needs of
the various scenes and available GPU-VRAM, the BAMFORESTS dataset provides two
different image sizes (1024 × 1024 pixels and 2048 × 2048 pixels). At the edges of the
images, individual crowns are cropped. In the center of the image, the individual crowns
are completely recorded, as shown in Figure 5.

Figure 5. BAMFORESTS in the COCO format: (a) orthomosaics and its annotations of individual tree
crowns; (b) partial crown at the edge; (c) full crown in the center.

3.9. COCO Label Stats

The data description of the BAMFORESTS dataset in the COCO format can be seen
in Table 3. Due to image cropping and overlapping, a single tree crown may be captured
several times in different images. Therefore, the number of annotated tree crowns is much
higher than the actual number of individual trees in BAMFORESTS.

Test-Set-1 is based on the Hain plot, which is completely independent of the Train-Set
and Val-Set. However, Test-Set-2 comes from the same forests as the Train-Set and Val-Set.
As shown in Figure 6 and Table 2, the images and annotations from the dataset show
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noticeable differences, such as tree species, crown sizes, and planting densities between
Test-Set-1 and Test-Set-2. The design of the test sets is based on the intention that the trained
model will be tested in both similar and different situations. The different results of these
two test sets in training models are valuable for researchers to better explore the robustness
and transferability of training models.

Table 3. The stats of the BAMFORESTS dataset in the COCO format.

Size
Number of Images Number of Annotations

Train Val Test-Set-1 Test-Set-2 Train Val Test-Set-1 Test-Set-2

1024 7521 2008 1675 1668 96,908 25,316 12,843 20,332
2048 1439 382 313 322 58,235 15,180 6720 12,321

Figure 6. Images and annotations of individual tree crowns from (a) the Hain plot of Test-Set-1,
(b) the Stadtwald plot of Test-Set-2, and (c) the Tretzendorf plot of Test-Set-2.

4. Discussion

With BAMFORESTS, we do not present the first openly accessible dataset of individual
delineated tree crowns but rather the first dataset in the forest domain that proposes a
fixed dataset split; therefore, it serves as a benchmark dataset. Furthermore, with a total of
105 annotated hectares, a total of 27,160 trees, and a GSD of 1.6–1.8 cm, to the best of our
knowledge, BAMFORESTS will be the single largest very-high-resolution dataset.

Nevertheless, BAMFORESTS is still a relatively small dataset for application in deep
learning, but projects like Million Trees from Weinstein [16] will hopefully solve this in the
future. Furthermore, the labels in BAMFORESTS are not of perfect quality. Especially in
overlapping deciduous tree crowns, it is impossible to correctly label all trees. We solved
this by controlling the labels with random samples, but it must be assumed that some trees
are over- or under-segmented.

With two different test sets, we enable two different and important insights on method
or model performance: Test-Set-2 gives good insights on the performance on similar data,
covering applications where a model is trained or fine-tuned on labeled data of the same
AOI and then applied to the remaining unlabeled area; meanwhile, Test-Set-1 gives good
insights of the models real-world performance when it is applied to data from severely
different AOIs and other sensors. With a ready-to-train dataset, split into tiles and made
available with COCO annotation jsons, we make it as easy as possible for other researchers
to train and test their methods on BAMFORESTS. Therefore, BAMFORESTS is an important
and very much-needed contribution to deep learning in the forest domain and ITCD task.

5. Outlook and Future Work

To further improve BAMFORESTS, we are working on the following improvements:
first, we will apply and update the labels from 2022 to orthomosaics from other sensors but
the same AOIs in 2023; and second, as BaKIM and BAMFORESTS is open source, we plan
to gather datasets and labels from other municipalities and cities in Germany. With these
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measures, we plan to reach 50,000 labeled ITCs in 2024. Additionally, we plan to publish
the tree species and vitality information with BAMFORESTS-2.

Author Contributions: Conceptualization, J.T. (Jonas Troles) and J.T. (Jiaojiao Tian); Data curation,
W.F.; Writing—original draft, J.T. (Jonas Troles) and W.F.; Writing—review & editing, U.S. and J.T.
(Jiaojiao Tian). All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Bavarian Ministry of Digital Affairs, grant number 450,000€.

Data Availability Statement: Data will be available at DLR.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Trends der Lufttemperatur. Available online: https://www.umweltbundesamt.de/daten/klima/trends-der-lufttemperatur

(accessed on 13 March 2024).
2. Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging signals of declining forest resilience under climate

change. Nature 2022, 608, 534–539. [CrossRef] [PubMed]
3. Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage.

Nat. Clim. Change 2014, 4, 806–810. [CrossRef] [PubMed]
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